path
stringlengths
13
17
screenshot_names
listlengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
50239477/cell_58
[ "text_html_output_1.png" ]
import miner_a_de_datos_an_lisis_exploratorio_utilidad as utils import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) seed = 27912 filepath = '../input/breast-cancer-wisconsin-data/data.csv' indexC = 'id' targetC = 'diagnosis' dataC = utils.load_data(filepath, indexC, targetC) dataC.sample(5, random_state=seed) filepathD = '../input/pima-indians-diabetes-database/diabetes.csv' targetD = 'Outcome' dataD = utils.pd.read_csv(filepathD, dtype={'Outcome': 'category'}) dataD.sample(5, random_state=seed) filepathT_train = '../input/titanic/train.csv' filepathT_test = '../input/titanic/test.csv' filepathT_Union = '../input/titanic/gender_submission.csv' dataT_train = utils.pd.read_csv(filepathT_train) dataT_test = utils.pd.read_csv(filepathT_test) dataT_Union = utils.pd.read_csv(filepathT_Union) dataT = pd.DataFrame(columns=['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'], index=range(len(dataT_test) + len(dataT_train) + 1)) w = [] for i in range(len(dataT_train)): k = i + 1 dataT.iloc[k]['PassengerId'] = dataT_train.iloc[i]['PassengerId'] dataT.iloc[k]['Survived'] = dataT_train.iloc[i]['Survived'] dataT.iloc[k]['Pclass'] = dataT_train.iloc[i]['Pclass'] dataT.iloc[k]['Name'] = dataT_train.iloc[i]['Name'] dataT.iloc[k]['Sex'] = dataT_train.iloc[i]['Sex'] dataT.iloc[k]['Age'] = dataT_train.iloc[i]['Age'] dataT.iloc[k]['SibSp'] = dataT_train.iloc[i]['SibSp'] dataT.iloc[k]['Parch'] = dataT_train.iloc[i]['Parch'] dataT.iloc[k]['Ticket'] = dataT_train.iloc[i]['Ticket'] dataT.iloc[k]['Fare'] = dataT_train.iloc[i]['Fare'] dataT.iloc[k]['Cabin'] = dataT_train.iloc[i]['Cabin'] dataT.iloc[k]['Embarked'] = dataT_train.iloc[i]['Embarked'] for j in range(len(dataT_test)): i = j + len(dataT_train) + 1 dataT.iloc[i]['PassengerId'] = dataT_test.iloc[j]['PassengerId'] dataT.iloc[i]['Survived'] = dataT_Union.iloc[j]['Survived'] dataT.iloc[i]['Pclass'] = dataT_test.iloc[j]['Pclass'] dataT.iloc[i]['Name'] = dataT_test.iloc[j]['Name'] dataT.iloc[i]['Sex'] = dataT_test.iloc[j]['Sex'] dataT.iloc[i]['Age'] = dataT_test.iloc[j]['Age'] dataT.iloc[i]['SibSp'] = dataT_test.iloc[j]['SibSp'] dataT.iloc[i]['Parch'] = dataT_test.iloc[j]['Parch'] dataT.iloc[i]['Ticket'] = dataT_test.iloc[j]['Ticket'] dataT.iloc[i]['Fare'] = dataT_test.iloc[j]['Fare'] dataT.iloc[i]['Cabin'] = dataT_test.iloc[j]['Cabin'] dataT.iloc[i]['Embarked'] = dataT_test.iloc[j]['Embarked'] dataT = dataT.drop([0], axis=0) dataT = dataT.drop(['PassengerId'], axis=1) dataT.sample(5, random_state=seed) CX, Cy = utils.divide_dataset(dataC, target='diagnosis') DX, Dy = utils.divide_dataset(dataD, target='Outcome') TX, Ty = utils.divide_dataset(dataT, target='Survived') DX_train.sample(5, random_state=seed) CX_train.sample(5, random_state=seed) Dy_train.sample(5, random_state=seed) Cy_train.sample(5, random_state=seed) CX_test.sample(5, random_state=seed) Cy_test.sample(5, random_state=seed) dataC_train = utils.join_dataset(CX_train, Cy_train) dataC_test = utils.join_dataset(CX_test, Cy_test) dataD_train = utils.join_dataset(DX_train, Dy_train) dataD_train.sample(5, random_state=seed)
code
50239477/cell_16
[ "text_html_output_1.png" ]
import miner_a_de_datos_an_lisis_exploratorio_utilidad as utils seed = 27912 filepath = '../input/breast-cancer-wisconsin-data/data.csv' indexC = 'id' targetC = 'diagnosis' dataC = utils.load_data(filepath, indexC, targetC) filepathD = '../input/pima-indians-diabetes-database/diabetes.csv' targetD = 'Outcome' dataD = utils.pd.read_csv(filepathD, dtype={'Outcome': 'category'}) dataD.sample(5, random_state=seed)
code
50239477/cell_47
[ "text_html_output_1.png" ]
seed = 27912 CX_test.sample(5, random_state=seed)
code
50239477/cell_35
[ "text_plain_output_1.png" ]
seed = 27912 Dy.sample(5, random_state=seed)
code
50239477/cell_43
[ "text_plain_output_1.png" ]
seed = 27912 Dy_train.sample(5, random_state=seed)
code
50239477/cell_31
[ "text_html_output_1.png" ]
seed = 27912 CX.sample(5, random_state=seed)
code
50239477/cell_46
[ "text_html_output_1.png" ]
seed = 27912 DX_test.sample(5, random_state=seed)
code
50239477/cell_27
[ "text_html_output_1.png" ]
import miner_a_de_datos_an_lisis_exploratorio_utilidad as utils import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) seed = 27912 filepath = '../input/breast-cancer-wisconsin-data/data.csv' indexC = 'id' targetC = 'diagnosis' dataC = utils.load_data(filepath, indexC, targetC) filepathD = '../input/pima-indians-diabetes-database/diabetes.csv' targetD = 'Outcome' dataD = utils.pd.read_csv(filepathD, dtype={'Outcome': 'category'}) filepathT_train = '../input/titanic/train.csv' filepathT_test = '../input/titanic/test.csv' filepathT_Union = '../input/titanic/gender_submission.csv' dataT_train = utils.pd.read_csv(filepathT_train) dataT_test = utils.pd.read_csv(filepathT_test) dataT_Union = utils.pd.read_csv(filepathT_Union) dataT = pd.DataFrame(columns=['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'], index=range(len(dataT_test) + len(dataT_train) + 1)) w = [] for i in range(len(dataT_train)): k = i + 1 dataT.iloc[k]['PassengerId'] = dataT_train.iloc[i]['PassengerId'] dataT.iloc[k]['Survived'] = dataT_train.iloc[i]['Survived'] dataT.iloc[k]['Pclass'] = dataT_train.iloc[i]['Pclass'] dataT.iloc[k]['Name'] = dataT_train.iloc[i]['Name'] dataT.iloc[k]['Sex'] = dataT_train.iloc[i]['Sex'] dataT.iloc[k]['Age'] = dataT_train.iloc[i]['Age'] dataT.iloc[k]['SibSp'] = dataT_train.iloc[i]['SibSp'] dataT.iloc[k]['Parch'] = dataT_train.iloc[i]['Parch'] dataT.iloc[k]['Ticket'] = dataT_train.iloc[i]['Ticket'] dataT.iloc[k]['Fare'] = dataT_train.iloc[i]['Fare'] dataT.iloc[k]['Cabin'] = dataT_train.iloc[i]['Cabin'] dataT.iloc[k]['Embarked'] = dataT_train.iloc[i]['Embarked'] for j in range(len(dataT_test)): i = j + len(dataT_train) + 1 dataT.iloc[i]['PassengerId'] = dataT_test.iloc[j]['PassengerId'] dataT.iloc[i]['Survived'] = dataT_Union.iloc[j]['Survived'] dataT.iloc[i]['Pclass'] = dataT_test.iloc[j]['Pclass'] dataT.iloc[i]['Name'] = dataT_test.iloc[j]['Name'] dataT.iloc[i]['Sex'] = dataT_test.iloc[j]['Sex'] dataT.iloc[i]['Age'] = dataT_test.iloc[j]['Age'] dataT.iloc[i]['SibSp'] = dataT_test.iloc[j]['SibSp'] dataT.iloc[i]['Parch'] = dataT_test.iloc[j]['Parch'] dataT.iloc[i]['Ticket'] = dataT_test.iloc[j]['Ticket'] dataT.iloc[i]['Fare'] = dataT_test.iloc[j]['Fare'] dataT.iloc[i]['Cabin'] = dataT_test.iloc[j]['Cabin'] dataT.iloc[i]['Embarked'] = dataT_test.iloc[j]['Embarked'] dataT = dataT.drop([0], axis=0) dataT = dataT.drop(['PassengerId'], axis=1) dataT.sample(5, random_state=seed)
code
50239477/cell_36
[ "text_plain_output_1.png" ]
seed = 27912 Ty.sample(5, random_state=seed)
code
74064119/cell_6
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/dataviz-facens-20182-ex3/BlackFriday.csv', delimiter=',') fig, ax = plt.subplots(figsize=(18,9)) plt.title('Valor Gasto por Faixa Etária', fontsize=14, fontweight = 'bold') frame = plt.gca() frame.spines['right'].set_visible(False) frame.spines['top'].set_visible(False) sns.violinplot(ax = ax, x="Age", y="Purchase", data=df[['Age','Purchase']].sort_values(by=['Age']), palette="RdBu_r") g = sns.catplot(x='Purchase', y='Gender', col='Age', data=df.sort_values(by=['Age']), col_wrap=1, orient='h', height=3, aspect=3, palette='Set3', kind='violin', dodge=True, bw=0.2)
code
74064119/cell_8
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/dataviz-facens-20182-ex3/BlackFriday.csv', delimiter=',') fig, ax = plt.subplots(figsize=(18,9)) plt.title('Valor Gasto por Faixa Etária', fontsize=14, fontweight = 'bold') frame = plt.gca() frame.spines['right'].set_visible(False) frame.spines['top'].set_visible(False) sns.violinplot(ax = ax, x="Age", y="Purchase", data=df[['Age','Purchase']].sort_values(by=['Age']), palette="RdBu_r") g = sns.catplot(x="Purchase", y="Gender", col="Age", data=df.sort_values(by=['Age']), col_wrap=1, orient="h", height=3, aspect=3, palette="Set3", kind="violin", dodge=True, bw=.2) import numpy as np total = pd.DataFrame(df.Product_ID.value_counts()).head(9) x = total.index.unique() y = total.Product_ID width = 0.8 fig, ax = plt.subplots() ax.barh(x, y, width, color='#AAAAAA') frame = plt.gca() frame.spines['right'].set_visible(False) frame.spines['top'].set_visible(False) for i, v in enumerate(y): ax.text(v / 2, i, str(v), color='#111111', fontweight='bold', verticalalignment='center') ax.invert_yaxis() fig.set_size_inches(15, 8) plt.title('Top 9 Produtos mais Comprados', fontsize=14, fontweight='bold') plt.show()
code
74064119/cell_3
[ "image_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/dataviz-facens-20182-ex3/BlackFriday.csv', delimiter=',') df.head()
code
74064119/cell_10
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/dataviz-facens-20182-ex3/BlackFriday.csv', delimiter=',') fig, ax = plt.subplots(figsize=(18,9)) plt.title('Valor Gasto por Faixa Etária', fontsize=14, fontweight = 'bold') frame = plt.gca() frame.spines['right'].set_visible(False) frame.spines['top'].set_visible(False) sns.violinplot(ax = ax, x="Age", y="Purchase", data=df[['Age','Purchase']].sort_values(by=['Age']), palette="RdBu_r") g = sns.catplot(x="Purchase", y="Gender", col="Age", data=df.sort_values(by=['Age']), col_wrap=1, orient="h", height=3, aspect=3, palette="Set3", kind="violin", dodge=True, bw=.2) import numpy as np total = pd.DataFrame(df.Product_ID.value_counts()).head(9) x = total.index.unique() y = total.Product_ID width = 0.8 fig, ax = plt.subplots() ax.barh(x, y, width, color = '#AAAAAA') frame = plt.gca() frame.spines['right'].set_visible(False) frame.spines['top'].set_visible(False) for i, v in enumerate(y): ax.text(v/2 , i , str(v), color='#111111', fontweight='bold', verticalalignment='center') ax.invert_yaxis() fig.set_size_inches(15, 8) plt.title('Top 9 Produtos mais Comprados', fontsize=14, fontweight = 'bold') plt.show() occupation_order = list(df['Occupation'].value_counts().head(5).index) df_target = df[df['Occupation'].isin(occupation_order)].sort_values(by='Age') plt.figure(figsize=(20, 10)) g = sns.boxplot(x='Occupation', y='Purchase', hue='Age', data=df_target) plt.title('Valores gastos por faixa etária associados às 5 ocupações mais frequentes\n', fontsize=16) plt.xlabel('Ocupação') plt.ylabel('Valor gasto') plt.legend(loc=1, title='Idade') plt.ylim(0, 35000) plt.show()
code
74064119/cell_12
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/dataviz-facens-20182-ex3/BlackFriday.csv', delimiter=',') fig, ax = plt.subplots(figsize=(18,9)) plt.title('Valor Gasto por Faixa Etária', fontsize=14, fontweight = 'bold') frame = plt.gca() frame.spines['right'].set_visible(False) frame.spines['top'].set_visible(False) sns.violinplot(ax = ax, x="Age", y="Purchase", data=df[['Age','Purchase']].sort_values(by=['Age']), palette="RdBu_r") g = sns.catplot(x="Purchase", y="Gender", col="Age", data=df.sort_values(by=['Age']), col_wrap=1, orient="h", height=3, aspect=3, palette="Set3", kind="violin", dodge=True, bw=.2) import numpy as np total = pd.DataFrame(df.Product_ID.value_counts()).head(9) x = total.index.unique() y = total.Product_ID width = 0.8 fig, ax = plt.subplots() ax.barh(x, y, width, color = '#AAAAAA') frame = plt.gca() frame.spines['right'].set_visible(False) frame.spines['top'].set_visible(False) for i, v in enumerate(y): ax.text(v/2 , i , str(v), color='#111111', fontweight='bold', verticalalignment='center') ax.invert_yaxis() fig.set_size_inches(15, 8) plt.title('Top 9 Produtos mais Comprados', fontsize=14, fontweight = 'bold') plt.show() occupation_order = list(df['Occupation'].value_counts().head(5).index) df_target = df[df['Occupation'].isin(occupation_order)].sort_values(by='Age') plt.figure(figsize=(20,10)) g = sns.boxplot(x="Occupation", y="Purchase", hue="Age", data=df_target) plt.title('Valores gastos por faixa etária associados às 5 ocupações mais frequentes\n', fontsize=16) plt.xlabel('Ocupação') plt.ylabel('Valor gasto') plt.legend(loc=1, title='Idade') plt.ylim(0, 35000) plt.show() total = df[df.Purchase > 9000].groupby(['Marital_Status', 'Occupation']).Purchase.sum().reset_index() labels = total.Occupation.unique().astype(str) casado = total[total.Marital_Status == 1].reset_index().Purchase / total.groupby('Occupation').sum().reset_index().Purchase solteiro = total[total.Marital_Status == 0].reset_index().Purchase / total.groupby('Occupation').sum().reset_index().Purchase width = 0.8 fig, ax = plt.subplots() ax.bar(labels, casado, width, label='Casado', color='#7473aa') ax.bar(labels, solteiro, width, label='Solteiro', bottom=casado, color='#f5ac9f') frame = plt.gca() frame.spines['right'].set_visible(False) frame.spines['top'].set_visible(False) ax.legend() fig.set_size_inches(15, 10) plt.title('Valor Gasto por Ocupação x Estado Civil', fontsize=14, fontweight='bold') plt.show()
code
74064119/cell_5
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/dataviz-facens-20182-ex3/BlackFriday.csv', delimiter=',') fig, ax = plt.subplots(figsize=(18, 9)) plt.title('Valor Gasto por Faixa Etária', fontsize=14, fontweight='bold') frame = plt.gca() frame.spines['right'].set_visible(False) frame.spines['top'].set_visible(False) sns.violinplot(ax=ax, x='Age', y='Purchase', data=df[['Age', 'Purchase']].sort_values(by=['Age']), palette='RdBu_r')
code
89131938/cell_13
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/nyc-taxi-trip-duration/train.zip') test = pd.read_csv('/kaggle/input/nyc-taxi-trip-duration/test.zip') train.head()
code
89131938/cell_4
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/nyc-taxi-trip-duration/train.zip') test = pd.read_csv('/kaggle/input/nyc-taxi-trip-duration/test.zip') train.head()
code
89131938/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
89131938/cell_8
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/nyc-taxi-trip-duration/train.zip') test = pd.read_csv('/kaggle/input/nyc-taxi-trip-duration/test.zip') train.head()
code
89131938/cell_16
[ "text_html_output_1.png" ]
from matplotlib import pyplot import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/nyc-taxi-trip-duration/train.zip') test = pd.read_csv('/kaggle/input/nyc-taxi-trip-duration/test.zip') EARTH_RADIUS = 6378.137 def haversine(xy1, xy2): return 2 * EARTH_RADIUS * np.arcsin(np.sqrt(np.sin((xy2[:, 0] - xy1[:, 0]) / 2) ** 2 + np.cos(xy1[:, 0]) * np.cos(xy2[:, 0]) * np.sin((xy2[:, 1] - xy2[:, 1]) / 2))) train['distance'] = haversine(np.radians(train[['pickup_longitude', 'pickup_latitude']].values), np.radians(train[['dropoff_longitude', 'dropoff_latitude']].values)) test['distance'] = haversine(np.radians(test[['pickup_longitude', 'pickup_latitude']].values), np.radians(test[['dropoff_longitude', 'dropoff_latitude']].values)) pyplot.hist(np.log(train['distance'] + 1e-05), bins=50)
code
89131938/cell_17
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/nyc-taxi-trip-duration/train.zip') test = pd.read_csv('/kaggle/input/nyc-taxi-trip-duration/test.zip') train.head()
code
89131938/cell_10
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/nyc-taxi-trip-duration/train.zip') test = pd.read_csv('/kaggle/input/nyc-taxi-trip-duration/test.zip') train.head()
code
89131938/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/nyc-taxi-trip-duration/train.zip') test = pd.read_csv('/kaggle/input/nyc-taxi-trip-duration/test.zip') train.describe()
code
90153261/cell_4
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) class Envierment: def __init__(self, K, horizon): self.K, self.horizon = (K, horizon) self.q_values = list() for k in range(self.K): self.q_values.append(np.random.randn()) def give_reward(self, k): if k >= K: print('Invalid action!') raise ValueError() else: return np.random.randn() + self.q_values[k] class Agent: def __init__(self, K, horizon): self.K, self.horizon = (K, horizon) self.action, self.reward = (0, 0) self.result = np.zeros((horizon, 1)) self.result_df = pd.DataFrame() def take_action(self, k=None): if k == None: self.action = np.random.choice(self.K) else: self.action = k return self.action def record_reward(self, trial, n, reward): self.reward = reward if self.result.shape[1] < n + 1: self.result = np.c_[self.result, np.zeros(self.horizon)] self.result[n][trial] = self.reward def turn_result_into_df(self): self.result = np.cumsum(self.result, axis=0) for n in range(1, self.horizon): self.result[n] /= n self.result_df = pd.DataFrame(self.result, columns=['trial_' + str(x) for x in range(self.result.shape[1])]) K, horizon = (3, 100) envioronment = Envierment(K, horizon) agent = Agent(envioronment.K, envioronment.horizon) trials = 10 Result = np.zeros((horizon, trials)) for trial in range(trials): for n in range(horizon): action = agent.take_action() reward = envioronment.give_reward(action) agent.record_reward(trial, n, reward) agent.turn_result_into_df() fig, ax = plt.subplots(figsize=(20, 10)) for trial in range(trials): ax.plot(agent.result_df['trial_' + str(trial)]) ax.legend(agent.result_df.columns, loc='upper right') ax.set(title='Average reward for each trial') print(f'K: {envioronment.K}') print(f'action-value: {envioronment.q_values}')
code
90153261/cell_11
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) ### Let's create a simple 'Environment' class and 'Agent' class. ### For every action, the instant reward is sampled from Gaussian distribution with unit standard deviation, each one of which however has different mean. ### For the sake of simplicity, we assume stationarity. class Envierment: def __init__(self, K, horizon): self.K, self.horizon = K, horizon self.q_values = list() for k in range(self.K): self.q_values.append(np.random.randn()) def give_reward(self, k): if k>= K: print('Invalid action!') raise ValueError() else: return np.random.randn() + self.q_values[k] class Agent: def __init__(self, K, horizon): self.K, self.horizon = K, horizon self.action, self.reward = 0, 0 self.result = np.zeros((horizon, 1)) self.result_df = pd.DataFrame() def take_action(self, k=None): if k == None: self.action = np.random.choice(self.K) else: self.action = k return self.action def record_reward(self, trial, n, reward): self.reward = reward if self.result.shape[1]<n+1: self.result = np.c_[self.result, np.zeros(self.horizon)] self.result[n][trial] = self.reward def turn_result_into_df(self): self.result = np.cumsum(self.result, axis=0) for n in range(1, self.horizon): self.result[n] /=n self.result_df = pd.DataFrame(self.result, columns = ['trial_'+ str(x) for x in range(self.result.shape[1])]) ### Instantiate an Envierment object with K=3 K, horizon = 3, 100 envioronment = Envierment(K, horizon) agent = Agent(envioronment.K, envioronment.horizon) ### The actions (0~K-1) are taken randomly, i.e. with no stretegy. ### We run 10 independent trials and compare them. trials = 10 Result = np.zeros((horizon, trials)) for trial in range(trials): for n in range(horizon): action = agent.take_action() reward = envioronment.give_reward(action) agent.record_reward(trial, n, reward) agent.turn_result_into_df() ### Plot the result fig, ax = plt.subplots(figsize=(20, 10)) for trial in range(trials): ax.plot(agent.result_df['trial_'+ str(trial)]) ax.legend(agent.result_df.columns, loc='upper right') ax.set(title='Average reward for each trial') print(f'K: {envioronment.K}') print(f'action-value: {envioronment.q_values}') ### Let's modity 'Environment' class in a way that we can feed the predefined q_values when instantiating. class Envierment: def __init__(self, K, horizon): self.K, self.horizon = K, horizon self.q_values = list() for k in range(self.K): self.q_values.append(np.random.randn()) def give_reward(self, k): if k>= K: print('Invalid action!') raise ValueError() else: return np.random.randn() + self.q_values[k] ### Let's also modity 'Agent' class so that it can update the estimate of action-values as it goes through the trials. class Agent: def __init__(self, K, horizon): self.K, self.horizon = K, horizon self.action, self.reward = 0, 0 self.result = np.zeros((horizon, 1)) self.result_df = pd.DataFrame() self.Q_values = [0]*self.K self.num_actions = [0]*self.K self.step_size = 1 def take_action(self, k=None): if k == None: self.action = np.random.choice(self.K) else: self.action = k return self.action def incremental_update(self, step_size): self.num_actions[self.action] += 1 if step_size == 'sample_average': self.step_size = (1/self.num_actions[self.action]) else : self.step_size = step_size self.Q_values[self.action] = self.Q_values[self.action] + self.step_size*(self.reward-self.Q_values[self.action]) def record_reward(self, trial, n, reward, step_size): self.reward = reward if self.result.shape[1]<n+1: self.result = np.c_[self.result, np.zeros(self.horizon)] self.result[n][trial] = self.reward self.incremental_update(step_size) def turn_result_into_df(self): self.result = np.cumsum(self.result, axis=0) for n in range(1, self.horizon): self.result[n] /=n self.result_df = pd.DataFrame(self.result, columns = ['trial_'+ str(x) for x in range(self.result.shape[1])]) ### Instantiate an Envierment object with K=3 K, horizon = 1, 20 true_q_values = np.array([0, 4, 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 4, 0, 4, 0, 4, 0, 4, 0]).reshape((horizon, 1)) envioronment = Envierment(K, horizon) agent = Agent(envioronment.K, envioronment.horizon) ### Set K=1, i.e., we have only one action 0. ### To compare the effect of the step size, let's see how well the agent estimates the action-values depending on different stet sizes step_sizes = [1/2, 1/8, 1, 'sample_average'] Result = np.zeros((horizon, len(step_sizes))) Q_values = np.zeros((horizon, len(step_sizes))) for trial, step_size in enumerate(step_sizes): for n in range(horizon): Q_values[n][trial] = np.array(agent.Q_values).squeeze() action = agent.take_action() reward = envioronment.give_reward(action) agent.record_reward(trial, n, reward, step_size) Q_values = Q_values.T fig, axes = plt.subplots(1, 4, figsize=(40, 10)) for trial in range(len(step_sizes)): axes[trial].plot( Q_values[trial] ) # ax.legend(df.columns, loc='upper right') # ax.set(title='Average reward for each trial') # print(f'K: {envioronment.K}') # print(f'action-value: {envioronment.q_values}') horizon = 20 q_a = [0, 4, 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 4, 0, 4, 0, 4, 0, 4, 0] step_sizes = [1 / 2, 1 / 8, 1] Q_a = [0] df = pd.DataFrame(q_a, columns=['q_a']) for step_size in step_sizes: for n in range(1, horizon): reward = np.random.randn() + q_a[n] Q_a.append(Q_a[-1] + step_size * (reward - Q_a[-1])) df[f'Q_a_{step_size}'] = Q_a Q_a = [0] for n in range(1, horizon): reward = np.random.randn() + q_a[n] Q_a.append(Q_a[-1] + 1 / n * (reward - Q_a[-1])) df[f'Q_a_1/n'] = Q_a fig, axes = plt.subplots(2, 2, figsize=(20, 12)) axes[0][0].plot(df['q_a'], 'o-') axes[0][0].plot(df['Q_a_0.5'], 'o-') axes[0][0].legend(['target', 'estimate'], loc='upper right') axes[0][1].plot(df['q_a'], 'o-') axes[0][1].plot(df['Q_a_0.125'], 'o-') axes[0][1].legend(['target', 'estimate'], loc='upper right') axes[1][0].plot(df['q_a'], 'o-') axes[1][0].plot(df['Q_a_1'], 'o-') axes[1][0].legend(['target', 'estimate'], loc='upper right') axes[1][1].plot(df['q_a'], 'o-') axes[1][1].plot(df['Q_a_1/n'], 'o-') axes[1][1].legend(['target', 'estimate'], loc='upper right') plt.show() plt.close() df
code
90153261/cell_8
[ "text_html_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) ### Let's create a simple 'Environment' class and 'Agent' class. ### For every action, the instant reward is sampled from Gaussian distribution with unit standard deviation, each one of which however has different mean. ### For the sake of simplicity, we assume stationarity. class Envierment: def __init__(self, K, horizon): self.K, self.horizon = K, horizon self.q_values = list() for k in range(self.K): self.q_values.append(np.random.randn()) def give_reward(self, k): if k>= K: print('Invalid action!') raise ValueError() else: return np.random.randn() + self.q_values[k] class Agent: def __init__(self, K, horizon): self.K, self.horizon = K, horizon self.action, self.reward = 0, 0 self.result = np.zeros((horizon, 1)) self.result_df = pd.DataFrame() def take_action(self, k=None): if k == None: self.action = np.random.choice(self.K) else: self.action = k return self.action def record_reward(self, trial, n, reward): self.reward = reward if self.result.shape[1]<n+1: self.result = np.c_[self.result, np.zeros(self.horizon)] self.result[n][trial] = self.reward def turn_result_into_df(self): self.result = np.cumsum(self.result, axis=0) for n in range(1, self.horizon): self.result[n] /=n self.result_df = pd.DataFrame(self.result, columns = ['trial_'+ str(x) for x in range(self.result.shape[1])]) ### Instantiate an Envierment object with K=3 K, horizon = 3, 100 envioronment = Envierment(K, horizon) agent = Agent(envioronment.K, envioronment.horizon) ### The actions (0~K-1) are taken randomly, i.e. with no stretegy. ### We run 10 independent trials and compare them. trials = 10 Result = np.zeros((horizon, trials)) for trial in range(trials): for n in range(horizon): action = agent.take_action() reward = envioronment.give_reward(action) agent.record_reward(trial, n, reward) agent.turn_result_into_df() ### Plot the result fig, ax = plt.subplots(figsize=(20, 10)) for trial in range(trials): ax.plot(agent.result_df['trial_'+ str(trial)]) ax.legend(agent.result_df.columns, loc='upper right') ax.set(title='Average reward for each trial') print(f'K: {envioronment.K}') print(f'action-value: {envioronment.q_values}') class Envierment: def __init__(self, K, horizon): self.K, self.horizon = (K, horizon) self.q_values = list() for k in range(self.K): self.q_values.append(np.random.randn()) def give_reward(self, k): if k >= K: print('Invalid action!') raise ValueError() else: return np.random.randn() + self.q_values[k] class Agent: def __init__(self, K, horizon): self.K, self.horizon = (K, horizon) self.action, self.reward = (0, 0) self.result = np.zeros((horizon, 1)) self.result_df = pd.DataFrame() self.Q_values = [0] * self.K self.num_actions = [0] * self.K self.step_size = 1 def take_action(self, k=None): if k == None: self.action = np.random.choice(self.K) else: self.action = k return self.action def incremental_update(self, step_size): self.num_actions[self.action] += 1 if step_size == 'sample_average': self.step_size = 1 / self.num_actions[self.action] else: self.step_size = step_size self.Q_values[self.action] = self.Q_values[self.action] + self.step_size * (self.reward - self.Q_values[self.action]) def record_reward(self, trial, n, reward, step_size): self.reward = reward if self.result.shape[1] < n + 1: self.result = np.c_[self.result, np.zeros(self.horizon)] self.result[n][trial] = self.reward self.incremental_update(step_size) def turn_result_into_df(self): self.result = np.cumsum(self.result, axis=0) for n in range(1, self.horizon): self.result[n] /= n self.result_df = pd.DataFrame(self.result, columns=['trial_' + str(x) for x in range(self.result.shape[1])]) K, horizon = (1, 20) true_q_values = np.array([0, 4, 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 4, 0, 4, 0, 4, 0, 4, 0]).reshape((horizon, 1)) envioronment = Envierment(K, horizon) agent = Agent(envioronment.K, envioronment.horizon) step_sizes = [1 / 2, 1 / 8, 1, 'sample_average'] Result = np.zeros((horizon, len(step_sizes))) Q_values = np.zeros((horizon, len(step_sizes))) for trial, step_size in enumerate(step_sizes): for n in range(horizon): Q_values[n][trial] = np.array(agent.Q_values).squeeze() action = agent.take_action() reward = envioronment.give_reward(action) agent.record_reward(trial, n, reward, step_size) Q_values = Q_values.T fig, axes = plt.subplots(1, 4, figsize=(40, 10)) for trial in range(len(step_sizes)): axes[trial].plot(Q_values[trial])
code
34132178/cell_21
[ "image_output_1.png" ]
i = 0 while i != 10: print('i: ', i) i += 2 print(i, ' döngü sonunda değerimiz 10')
code
34132178/cell_13
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt #plt ifadesini önceden tanımlamamıştık. Burada onu tanımlıyoruz. import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns # sns'yi de görselleştirme (visualization tool) için kullanıyoruz. data = pd.read_csv('../input/creditcardfraud/creditcard.csv') data.corr() import matplotlib.pyplot as plt #plt ifadesini önceden tanımlamamıştık. Burada onu tanımlıyoruz. import seaborn as sns # sns'yi de görselleştirme (visualization tool) için kullanıyoruz. #korelasyonu görsel olarak görüntülemek için aşağıdaki işlemi yapıyoruz. f,ax = plt.subplots(figsize=(32, 32)) #Parantez içindeki değerler bizlere çizim alanının boyutunu gösteriyor. sns.heatmap(data.corr(), annot=True, linewidths=.7, fmt= '.1f',ax=ax) #sns kodunu görselleştirme için kullanıyoruz. plt.show() # En altta formülün çıkmasını engelliyor. data.columns data.V7.plot(kind='hist', bins=1000, figsize=(12, 5)) plt.show()
code
34132178/cell_2
[ "image_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
34132178/cell_11
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt #plt ifadesini önceden tanımlamamıştık. Burada onu tanımlıyoruz. import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns # sns'yi de görselleştirme (visualization tool) için kullanıyoruz. data = pd.read_csv('../input/creditcardfraud/creditcard.csv') data.corr() import matplotlib.pyplot as plt #plt ifadesini önceden tanımlamamıştık. Burada onu tanımlıyoruz. import seaborn as sns # sns'yi de görselleştirme (visualization tool) için kullanıyoruz. #korelasyonu görsel olarak görüntülemek için aşağıdaki işlemi yapıyoruz. f,ax = plt.subplots(figsize=(32, 32)) #Parantez içindeki değerler bizlere çizim alanının boyutunu gösteriyor. sns.heatmap(data.corr(), annot=True, linewidths=.7, fmt= '.1f',ax=ax) #sns kodunu görselleştirme için kullanıyoruz. plt.show() # En altta formülün çıkmasını engelliyor. data.columns data.V7.plot(kind='line', color='b', label='V7', linewidth=1, alpha=0.5, grid=True, linestyle=':') data.V8.plot(color='r', label='V8', linewidth=1, alpha=0.5, grid=True, linestyle='-.') plt.legend(loc='lower right') plt.xlabel('V7') plt.ylabel('V8 Değeri') plt.title('Credit Card Fraud') plt.show()
code
34132178/cell_19
[ "image_output_1.png" ]
import matplotlib.pyplot as plt #plt ifadesini önceden tanımlamamıştık. Burada onu tanımlıyoruz. import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd #Padndas'ı pd olarak import edeceğimizi tanımlıyoruz. import seaborn as sns # sns'yi de görselleştirme (visualization tool) için kullanıyoruz. data = pd.read_csv('../input/creditcardfraud/creditcard.csv') data.corr() import matplotlib.pyplot as plt #plt ifadesini önceden tanımlamamıştık. Burada onu tanımlıyoruz. import seaborn as sns # sns'yi de görselleştirme (visualization tool) için kullanıyoruz. #korelasyonu görsel olarak görüntülemek için aşağıdaki işlemi yapıyoruz. f,ax = plt.subplots(figsize=(32, 32)) #Parantez içindeki değerler bizlere çizim alanının boyutunu gösteriyor. sns.heatmap(data.corr(), annot=True, linewidths=.7, fmt= '.1f',ax=ax) #sns kodunu görselleştirme için kullanıyoruz. plt.show() # En altta formülün çıkmasını engelliyor. data.columns import pandas as pd data = pd.read_csv('../input/creditcardfraud/creditcard.csv') series = data['V7'] data_frame = data[['V7']] data[np.logical_and(data['V7'] > 40, data['V6'] < 70)]
code
34132178/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/creditcardfraud/creditcard.csv') data.corr()
code
34132178/cell_18
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt #plt ifadesini önceden tanımlamamıştık. Burada onu tanımlıyoruz. import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd #Padndas'ı pd olarak import edeceğimizi tanımlıyoruz. import seaborn as sns # sns'yi de görselleştirme (visualization tool) için kullanıyoruz. data = pd.read_csv('../input/creditcardfraud/creditcard.csv') data.corr() import matplotlib.pyplot as plt #plt ifadesini önceden tanımlamamıştık. Burada onu tanımlıyoruz. import seaborn as sns # sns'yi de görselleştirme (visualization tool) için kullanıyoruz. #korelasyonu görsel olarak görüntülemek için aşağıdaki işlemi yapıyoruz. f,ax = plt.subplots(figsize=(32, 32)) #Parantez içindeki değerler bizlere çizim alanının boyutunu gösteriyor. sns.heatmap(data.corr(), annot=True, linewidths=.7, fmt= '.1f',ax=ax) #sns kodunu görselleştirme için kullanıyoruz. plt.show() # En altta formülün çıkmasını engelliyor. data.columns import pandas as pd data = pd.read_csv('../input/creditcardfraud/creditcard.csv') series = data['V7'] data_frame = data[['V7']] x = data['V7'] > 40 data[x]
code
34132178/cell_8
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt #plt ifadesini önceden tanımlamamıştık. Burada onu tanımlıyoruz. import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns # sns'yi de görselleştirme (visualization tool) için kullanıyoruz. data = pd.read_csv('../input/creditcardfraud/creditcard.csv') data.corr() import matplotlib.pyplot as plt import seaborn as sns f, ax = plt.subplots(figsize=(32, 32)) sns.heatmap(data.corr(), annot=True, linewidths=0.7, fmt='.1f', ax=ax) plt.show()
code
34132178/cell_3
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/creditcardfraud/creditcard.csv') data.head(10)
code
34132178/cell_14
[ "image_output_1.png" ]
dictionary = {'elma': 'apple', 'üzüm': 'grape'} print(dictionary.keys()) print(dictionary.values()) dictionary['elma'] = 'apple1' print(dictionary) dictionary['kavun'] = 'melon' print(dictionary) del dictionary['elma'] print(dictionary) print('kavun' in dictionary) dictionary.clear() print(dictionary) del dictionary print(dictionary)
code
34132178/cell_22
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
import matplotlib.pyplot as plt #plt ifadesini önceden tanımlamamıştık. Burada onu tanımlıyoruz. import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd #Padndas'ı pd olarak import edeceğimizi tanımlıyoruz. import seaborn as sns # sns'yi de görselleştirme (visualization tool) için kullanıyoruz. data = pd.read_csv('../input/creditcardfraud/creditcard.csv') data.corr() import matplotlib.pyplot as plt #plt ifadesini önceden tanımlamamıştık. Burada onu tanımlıyoruz. import seaborn as sns # sns'yi de görselleştirme (visualization tool) için kullanıyoruz. #korelasyonu görsel olarak görüntülemek için aşağıdaki işlemi yapıyoruz. f,ax = plt.subplots(figsize=(32, 32)) #Parantez içindeki değerler bizlere çizim alanının boyutunu gösteriyor. sns.heatmap(data.corr(), annot=True, linewidths=.7, fmt= '.1f',ax=ax) #sns kodunu görselleştirme için kullanıyoruz. plt.show() # En altta formülün çıkmasını engelliyor. data.columns dictionary = {'elma': 'apple', 'üzüm': 'grape'} dictionary['elma'] = 'apple1' dictionary['kavun'] = 'melon' del dictionary['elma'] dictionary.clear() del dictionary import pandas as pd data = pd.read_csv('../input/creditcardfraud/creditcard.csv') series = data['V7'] data_frame = data[['V7']] i = 0 while i != 10: i += 2 lis = [2, 4, 6, 8, 10] for i in lis: print('i değeri: ', i) print('') for index, value in enumerate(lis): print(index, ' : ', value) print('') dictionary = {'elma': 'apple', 'kavun': 'melon'} for key, value in dictionary.items(): print(key, ' : ', value) dictionary = {'elma': 'apple', 'kavun': 'melon'} for key, value in dictionary.items(): print(value, ' : ', key) for index, value in data[['V7']][0:1].iterrows(): print(index, ' : ', value)
code
34132178/cell_10
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt #plt ifadesini önceden tanımlamamıştık. Burada onu tanımlıyoruz. import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns # sns'yi de görselleştirme (visualization tool) için kullanıyoruz. data = pd.read_csv('../input/creditcardfraud/creditcard.csv') data.corr() import matplotlib.pyplot as plt #plt ifadesini önceden tanımlamamıştık. Burada onu tanımlıyoruz. import seaborn as sns # sns'yi de görselleştirme (visualization tool) için kullanıyoruz. #korelasyonu görsel olarak görüntülemek için aşağıdaki işlemi yapıyoruz. f,ax = plt.subplots(figsize=(32, 32)) #Parantez içindeki değerler bizlere çizim alanının boyutunu gösteriyor. sns.heatmap(data.corr(), annot=True, linewidths=.7, fmt= '.1f',ax=ax) #sns kodunu görselleştirme için kullanıyoruz. plt.show() # En altta formülün çıkmasını engelliyor. data.columns
code
34132178/cell_12
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt #plt ifadesini önceden tanımlamamıştık. Burada onu tanımlıyoruz. import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns # sns'yi de görselleştirme (visualization tool) için kullanıyoruz. data = pd.read_csv('../input/creditcardfraud/creditcard.csv') data.corr() import matplotlib.pyplot as plt #plt ifadesini önceden tanımlamamıştık. Burada onu tanımlıyoruz. import seaborn as sns # sns'yi de görselleştirme (visualization tool) için kullanıyoruz. #korelasyonu görsel olarak görüntülemek için aşağıdaki işlemi yapıyoruz. f,ax = plt.subplots(figsize=(32, 32)) #Parantez içindeki değerler bizlere çizim alanının boyutunu gösteriyor. sns.heatmap(data.corr(), annot=True, linewidths=.7, fmt= '.1f',ax=ax) #sns kodunu görselleştirme için kullanıyoruz. plt.show() # En altta formülün çıkmasını engelliyor. data.columns data.plot(kind='scatter', x='V7', y='V8', alpha=0.7, color='b') plt.xlabel('V7') plt.ylabel('V8') plt.title('V7 & V8 Dağılım Grafiği') plt.show()
code
34132178/cell_5
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/creditcardfraud/creditcard.csv') data.info()
code
129029630/cell_21
[ "image_output_1.png" ]
from fcmeans import FCM from fcmeans import FCM from sklearn.metrics import silhouette_score import itertools import itertools import matplotlib.pyplot as plt import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') df.drop('Gender', inplace=True, axis=1) df.sample(3) df.isnull().sum() X_numerics = df[['Age', 'Annual Income (k$)', 'Spending Score (1-100)']] ax = sns.pairplot(X_numerics[X_numerics.columns]) data = X_numerics.values import numpy as np import matplotlib.pyplot as plt from sklearn.metrics import silhouette_score from fcmeans import FCM min_clusters = 2 max_clusters = 10 silhouette_scores = [] cluster_numbers = [] for n_clusters in range(min_clusters, max_clusters + 1): fcm = FCM(n_clusters=n_clusters) fcm.fit(data) labels = fcm.predict(data) silhouette_avg = silhouette_score(data, labels) silhouette_scores.append(silhouette_avg) cluster_numbers.append(n_clusters) fcmean = FCM(n_clusters=5) fcmean.fit(data) cnt = fcmean.centers pred = fcmean.predict(data) import itertools variable_combinations = list(itertools.combinations(range(data.shape[1]), 2)) colors = ['r', 'b', 'g', 'purple', 'orange'] fcmean = FCM(n_clusters=6) fcmean.fit(data) cnt = fcmean.centers pred = fcmean.predict(data) import itertools variable_combinations = list(itertools.combinations(range(data.shape[1]), 2)) colors = ['r', 'b', 'g', 'purple', 'orange', 'yellow'] for i, (x_index, y_index) in enumerate(variable_combinations): plt.scatter(data[pred == 0, x_index], data[pred == 0, y_index], s=10, c=colors[0]) plt.scatter(data[pred == 1, x_index], data[pred == 1, y_index], s=10, c=colors[1]) plt.scatter(data[pred == 2, x_index], data[pred == 2, y_index], s=10, c=colors[2]) plt.scatter(data[pred == 3, x_index], data[pred == 3, y_index], s=10, c=colors[3]) plt.scatter(data[pred == 4, x_index], data[pred == 4, y_index], s=10, c=colors[4]) plt.scatter(data[pred == 5, x_index], data[pred == 5, y_index], s=10, c=colors[5]) plt.scatter(cnt[:, x_index], cnt[:, y_index], s=300, c='black', marker='+') plt.xlabel(X_numerics.columns[x_index]) plt.ylabel(X_numerics.columns[y_index]) plt.title('Customer Clustering based on ' + X_numerics.columns[x_index] + ' and ' + X_numerics.columns[y_index]) plt.show()
code
129029630/cell_13
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') df.drop('Gender', inplace=True, axis=1) df.sample(3) df.isnull().sum() X_numerics = df[['Age', 'Annual Income (k$)', 'Spending Score (1-100)']] ax = sns.pairplot(X_numerics[X_numerics.columns])
code
129029630/cell_6
[ "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') df.drop('Gender', inplace=True, axis=1) df.sample(3)
code
129029630/cell_2
[ "image_output_1.png" ]
pip install fuzzy-c-means
code
129029630/cell_11
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') df.drop('Gender', inplace=True, axis=1) df.sample(3) df.isnull().sum() print('Data shape is', df.shape)
code
129029630/cell_19
[ "text_plain_output_1.png" ]
from fcmeans import FCM from fcmeans import FCM from sklearn.metrics import silhouette_score import itertools import matplotlib.pyplot as plt import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') df.drop('Gender', inplace=True, axis=1) df.sample(3) df.isnull().sum() X_numerics = df[['Age', 'Annual Income (k$)', 'Spending Score (1-100)']] ax = sns.pairplot(X_numerics[X_numerics.columns]) data = X_numerics.values import numpy as np import matplotlib.pyplot as plt from sklearn.metrics import silhouette_score from fcmeans import FCM min_clusters = 2 max_clusters = 10 silhouette_scores = [] cluster_numbers = [] for n_clusters in range(min_clusters, max_clusters + 1): fcm = FCM(n_clusters=n_clusters) fcm.fit(data) labels = fcm.predict(data) silhouette_avg = silhouette_score(data, labels) silhouette_scores.append(silhouette_avg) cluster_numbers.append(n_clusters) fcmean = FCM(n_clusters=5) fcmean.fit(data) cnt = fcmean.centers pred = fcmean.predict(data) import itertools variable_combinations = list(itertools.combinations(range(data.shape[1]), 2)) colors = ['r', 'b', 'g', 'purple', 'orange'] for i, (x_index, y_index) in enumerate(variable_combinations): plt.scatter(data[pred == 0, x_index], data[pred == 0, y_index], s=10, c=colors[0]) plt.scatter(data[pred == 1, x_index], data[pred == 1, y_index], s=10, c=colors[1]) plt.scatter(data[pred == 2, x_index], data[pred == 2, y_index], s=10, c=colors[2]) plt.scatter(data[pred == 3, x_index], data[pred == 3, y_index], s=10, c=colors[3]) plt.scatter(data[pred == 4, x_index], data[pred == 4, y_index], s=10, c=colors[4]) plt.scatter(cnt[:, x_index], cnt[:, y_index], s=300, c='black', marker='+') plt.xlabel(X_numerics.columns[x_index]) plt.ylabel(X_numerics.columns[y_index]) plt.title('Customer Clustering based on ' + X_numerics.columns[x_index] + ' and ' + X_numerics.columns[y_index]) plt.show()
code
129029630/cell_7
[ "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') df.drop('Gender', inplace=True, axis=1) df.sample(3) df.isnull().sum()
code
129029630/cell_8
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') df.drop('Gender', inplace=True, axis=1) df.sample(3) df.isnull().sum() df.describe()
code
129029630/cell_16
[ "text_plain_output_1.png" ]
from fcmeans import FCM from fcmeans import FCM from sklearn.metrics import silhouette_score import matplotlib.pyplot as plt import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') df.drop('Gender', inplace=True, axis=1) df.sample(3) df.isnull().sum() X_numerics = df[['Age', 'Annual Income (k$)', 'Spending Score (1-100)']] ax = sns.pairplot(X_numerics[X_numerics.columns]) data = X_numerics.values import numpy as np import matplotlib.pyplot as plt from sklearn.metrics import silhouette_score from fcmeans import FCM min_clusters = 2 max_clusters = 10 silhouette_scores = [] cluster_numbers = [] for n_clusters in range(min_clusters, max_clusters + 1): fcm = FCM(n_clusters=n_clusters) fcm.fit(data) labels = fcm.predict(data) silhouette_avg = silhouette_score(data, labels) silhouette_scores.append(silhouette_avg) cluster_numbers.append(n_clusters) plt.plot(cluster_numbers, silhouette_scores, marker='o') plt.xlabel('Number of Clusters') plt.ylabel('Silhouette Score') plt.title('Silhouette Score for Different Numbers of Clusters') plt.show()
code
129029630/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') df.drop('Gender', inplace=True, axis=1) df.sample(3) df.isnull().sum() print('Is there any missing values', df.isnull().sum().any())
code
129029630/cell_12
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') df.drop('Gender', inplace=True, axis=1) df.sample(3) df.isnull().sum() X_numerics = df[['Age', 'Annual Income (k$)', 'Spending Score (1-100)']] plt.figure(figsize=(15, 10)) sns.heatmap(X_numerics.corr(), annot=True) plt.show()
code
49118528/cell_25
[ "text_plain_output_1.png" ]
from itertools import product import matplotlib.pyplot as plt import numpy as np import pandas as pd sales = pd.read_csv('../input/competitive-data-science-predict-future-sales/sales_train.csv') test_data = pd.read_csv('../input/competitive-data-science-predict-future-sales/test.csv') items = pd.read_csv('../input/competitive-data-science-predict-future-sales/items.csv') item_category = pd.read_csv('../input/competitive-data-science-predict-future-sales/item_categories.csv') shops = pd.read_csv('../input/competitive-data-science-predict-future-sales/shops.csv') def downcast_dtypes(df): """ Changes column types in the dataframe: `float64` type to `float32` `int64` type to `int32` """ float_cols = [c for c in df if df[c].dtype == 'float64'] int_cols = [c for c in df if df[c].dtype == 'int64'] df[float_cols] = df[float_cols].astype(np.float32) df[int_cols] = df[int_cols].astype(np.int32) return df def lag_feature(all_data, list_lags, index_cols, cols_to_rename): shift_range = list_lags for month_shift in tqdm_notebook(shift_range): train_shift = all_data[index_cols + cols_to_rename].copy() train_shift['date_block_num'] = train_shift['date_block_num'] + month_shift foo = lambda x: '{}_lag_{}'.format(x, month_shift) if x in cols_to_rename else x train_shift = train_shift.rename(columns=foo) all_data = pd.merge(all_data, train_shift, on=index_cols, how='left').fillna(0) del train_shift return all_data Monthly_sales = sales.groupby(["date_block_num", "shop_id"])['item_cnt_day'].sum().reset_index(name = 'item_cnt_month') fig, axs = plt.subplots(10, 6) for i in range(60): shop_sale_per_month = Monthly_sales.loc[Monthly_sales['shop_id']==i] axs[i//6,i%6].tick_params(axis='both', which='both', bottom=False, top= False, labelbottom=False, right=False, left=False, labelleft=False) axs[i//6,i%6].plot(shop_sale_per_month['date_block_num'], shop_sale_per_month['item_cnt_month']) del Monthly_sales, shop_sale_per_month sales.loc[sales.shop_id == 0, 'shop_id'] = 57 test_data.loc[test_data.shop_id == 0, 'shop_id'] = 57 sales.loc[sales.shop_id == 1, 'shop_id'] = 58 test_data.loc[test_data.shop_id == 1, 'shop_id'] = 58 sales.loc[sales.shop_id == 10, 'shop_id'] = 11 test_data.loc[test_data.shop_id == 10, 'shop_id'] = 11 sales = sales[sales.item_cnt_day < 1001] temp_df = pd.merge(test_data[['shop_id', 'item_id']], sales[['shop_id', 'item_id']], on=['shop_id', 'item_id'], how='left', indicator='Exist') temp_var = (temp_df['Exist'] == 'left_only').sum() index_cols = ['shop_id', 'item_id', 'date_block_num'] grid = [] for block_num in sales['date_block_num'].unique(): cur_shops = sales[sales['date_block_num'] == block_num]['shop_id'].unique() cur_items = sales[sales['date_block_num'] == block_num]['item_id'].unique() grid.append(np.array(list(product(*[cur_shops, cur_items, [block_num]])), dtype='int32')) grid = pd.DataFrame(np.vstack(grid), columns=index_cols, dtype=np.int32) gb = sales.groupby(index_cols, as_index=False).agg({'item_cnt_day': ['sum']}) gb.rename(columns={'sum': 'target'}, inplace=True) gb.columns = [col[0] if col[-1] == '' else col[-1] for col in gb.columns.values] all_data = pd.merge(grid, gb, how='left', on=index_cols).fillna(0) all_data.sort_values(['date_block_num', 'shop_id', 'item_id'], inplace=True) all_data['target'] = all_data['target'].fillna(0).clip(0, 20) all_data = all_data[all_data['date_block_num'] >= 12] all_data
code
49118528/cell_20
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd sales = pd.read_csv('../input/competitive-data-science-predict-future-sales/sales_train.csv') test_data = pd.read_csv('../input/competitive-data-science-predict-future-sales/test.csv') items = pd.read_csv('../input/competitive-data-science-predict-future-sales/items.csv') item_category = pd.read_csv('../input/competitive-data-science-predict-future-sales/item_categories.csv') shops = pd.read_csv('../input/competitive-data-science-predict-future-sales/shops.csv') def lag_feature(all_data, list_lags, index_cols, cols_to_rename): shift_range = list_lags for month_shift in tqdm_notebook(shift_range): train_shift = all_data[index_cols + cols_to_rename].copy() train_shift['date_block_num'] = train_shift['date_block_num'] + month_shift foo = lambda x: '{}_lag_{}'.format(x, month_shift) if x in cols_to_rename else x train_shift = train_shift.rename(columns=foo) all_data = pd.merge(all_data, train_shift, on=index_cols, how='left').fillna(0) del train_shift return all_data Monthly_sales = sales.groupby(["date_block_num", "shop_id"])['item_cnt_day'].sum().reset_index(name = 'item_cnt_month') fig, axs = plt.subplots(10, 6) for i in range(60): shop_sale_per_month = Monthly_sales.loc[Monthly_sales['shop_id']==i] axs[i//6,i%6].tick_params(axis='both', which='both', bottom=False, top= False, labelbottom=False, right=False, left=False, labelleft=False) axs[i//6,i%6].plot(shop_sale_per_month['date_block_num'], shop_sale_per_month['item_cnt_month']) del Monthly_sales, shop_sale_per_month sales.loc[sales.shop_id == 0, 'shop_id'] = 57 test_data.loc[test_data.shop_id == 0, 'shop_id'] = 57 sales.loc[sales.shop_id == 1, 'shop_id'] = 58 test_data.loc[test_data.shop_id == 1, 'shop_id'] = 58 sales.loc[sales.shop_id == 10, 'shop_id'] = 11 test_data.loc[test_data.shop_id == 10, 'shop_id'] = 11 sales = sales[sales.item_cnt_day < 1001] temp_df = pd.merge(test_data[['shop_id', 'item_id']], sales[['shop_id', 'item_id']], on=['shop_id', 'item_id'], how='left', indicator='Exist') temp_var = (temp_df['Exist'] == 'left_only').sum() print('Number of unique shop-item combination in the test set that do not exist in the training set:', temp_var)
code
49118528/cell_6
[ "text_html_output_1.png" ]
import pandas as pd sales = pd.read_csv('../input/competitive-data-science-predict-future-sales/sales_train.csv') test_data = pd.read_csv('../input/competitive-data-science-predict-future-sales/test.csv') items = pd.read_csv('../input/competitive-data-science-predict-future-sales/items.csv') item_category = pd.read_csv('../input/competitive-data-science-predict-future-sales/item_categories.csv') shops = pd.read_csv('../input/competitive-data-science-predict-future-sales/shops.csv') sales.head()
code
49118528/cell_29
[ "text_html_output_1.png" ]
from itertools import product from sklearn.preprocessing import LabelEncoder import matplotlib.pyplot as plt import numpy as np import pandas as pd sales = pd.read_csv('../input/competitive-data-science-predict-future-sales/sales_train.csv') test_data = pd.read_csv('../input/competitive-data-science-predict-future-sales/test.csv') items = pd.read_csv('../input/competitive-data-science-predict-future-sales/items.csv') item_category = pd.read_csv('../input/competitive-data-science-predict-future-sales/item_categories.csv') shops = pd.read_csv('../input/competitive-data-science-predict-future-sales/shops.csv') def downcast_dtypes(df): """ Changes column types in the dataframe: `float64` type to `float32` `int64` type to `int32` """ float_cols = [c for c in df if df[c].dtype == 'float64'] int_cols = [c for c in df if df[c].dtype == 'int64'] df[float_cols] = df[float_cols].astype(np.float32) df[int_cols] = df[int_cols].astype(np.int32) return df def lag_feature(all_data, list_lags, index_cols, cols_to_rename): shift_range = list_lags for month_shift in tqdm_notebook(shift_range): train_shift = all_data[index_cols + cols_to_rename].copy() train_shift['date_block_num'] = train_shift['date_block_num'] + month_shift foo = lambda x: '{}_lag_{}'.format(x, month_shift) if x in cols_to_rename else x train_shift = train_shift.rename(columns=foo) all_data = pd.merge(all_data, train_shift, on=index_cols, how='left').fillna(0) del train_shift return all_data Monthly_sales = sales.groupby(["date_block_num", "shop_id"])['item_cnt_day'].sum().reset_index(name = 'item_cnt_month') fig, axs = plt.subplots(10, 6) for i in range(60): shop_sale_per_month = Monthly_sales.loc[Monthly_sales['shop_id']==i] axs[i//6,i%6].tick_params(axis='both', which='both', bottom=False, top= False, labelbottom=False, right=False, left=False, labelleft=False) axs[i//6,i%6].plot(shop_sale_per_month['date_block_num'], shop_sale_per_month['item_cnt_month']) del Monthly_sales, shop_sale_per_month sales.loc[sales.shop_id == 0, 'shop_id'] = 57 test_data.loc[test_data.shop_id == 0, 'shop_id'] = 57 sales.loc[sales.shop_id == 1, 'shop_id'] = 58 test_data.loc[test_data.shop_id == 1, 'shop_id'] = 58 sales.loc[sales.shop_id == 10, 'shop_id'] = 11 test_data.loc[test_data.shop_id == 10, 'shop_id'] = 11 sales = sales[sales.item_cnt_day < 1001] temp_df = pd.merge(test_data[['shop_id', 'item_id']], sales[['shop_id', 'item_id']], on=['shop_id', 'item_id'], how='left', indicator='Exist') temp_var = (temp_df['Exist'] == 'left_only').sum() Leakage_Percentage = (test_data.shape[0] - temp_var) / test_data.shape[0] * 100 index_cols = ['shop_id', 'item_id', 'date_block_num'] grid = [] for block_num in sales['date_block_num'].unique(): cur_shops = sales[sales['date_block_num'] == block_num]['shop_id'].unique() cur_items = sales[sales['date_block_num'] == block_num]['item_id'].unique() grid.append(np.array(list(product(*[cur_shops, cur_items, [block_num]])), dtype='int32')) grid = pd.DataFrame(np.vstack(grid), columns=index_cols, dtype=np.int32) gb = sales.groupby(index_cols, as_index=False).agg({'item_cnt_day': ['sum']}) gb.rename(columns={'sum': 'target'}, inplace=True) gb.columns = [col[0] if col[-1] == '' else col[-1] for col in gb.columns.values] all_data = pd.merge(grid, gb, how='left', on=index_cols).fillna(0) all_data.sort_values(['date_block_num', 'shop_id', 'item_id'], inplace=True) all_data['target'] = all_data['target'].fillna(0).clip(0, 20) all_data = all_data[all_data['date_block_num'] >= 12] all_data shops['city'] = shops.shop_name.apply(lambda x: str.replace(x, '!', '')).apply(lambda x: x.split(' ')[0]) shops['city_enc'] = LabelEncoder().fit_transform(shops['city']) shops_data = shops[['shop_id', 'city_enc']] all_data = pd.merge(all_data, shops_data, how='left', on=['shop_id']) all_data = pd.merge(all_data, items, how='left', on=['item_id']) all_data = all_data.drop('item_name', axis=1) item_category['basket'] = item_category['item_category_name'].apply(lambda x: str(x).split(' ')[0]) item_category['basket_enc'] = LabelEncoder().fit_transform(item_category['basket']) item_category = item_category[['item_category_id', 'basket_enc']] all_data = pd.merge(all_data, item_category, how='left', on=['item_category_id']) all_data all_data = pd.concat([all_data, test_data], ignore_index=True, sort=False, keys=['date_block_num', 'shop_id', 'item_id', 'city_enc', 'item_category_id', 'basket_enc', 'target']) all_data = downcast_dtypes(all_data) all_data
code
49118528/cell_15
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd sales = pd.read_csv('../input/competitive-data-science-predict-future-sales/sales_train.csv') test_data = pd.read_csv('../input/competitive-data-science-predict-future-sales/test.csv') items = pd.read_csv('../input/competitive-data-science-predict-future-sales/items.csv') item_category = pd.read_csv('../input/competitive-data-science-predict-future-sales/item_categories.csv') shops = pd.read_csv('../input/competitive-data-science-predict-future-sales/shops.csv') Monthly_sales = sales.groupby(['date_block_num', 'shop_id'])['item_cnt_day'].sum().reset_index(name='item_cnt_month') fig, axs = plt.subplots(10, 6) for i in range(60): shop_sale_per_month = Monthly_sales.loc[Monthly_sales['shop_id'] == i] axs[i // 6, i % 6].tick_params(axis='both', which='both', bottom=False, top=False, labelbottom=False, right=False, left=False, labelleft=False) axs[i // 6, i % 6].plot(shop_sale_per_month['date_block_num'], shop_sale_per_month['item_cnt_month']) del Monthly_sales, shop_sale_per_month
code
49118528/cell_22
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd sales = pd.read_csv('../input/competitive-data-science-predict-future-sales/sales_train.csv') test_data = pd.read_csv('../input/competitive-data-science-predict-future-sales/test.csv') items = pd.read_csv('../input/competitive-data-science-predict-future-sales/items.csv') item_category = pd.read_csv('../input/competitive-data-science-predict-future-sales/item_categories.csv') shops = pd.read_csv('../input/competitive-data-science-predict-future-sales/shops.csv') def lag_feature(all_data, list_lags, index_cols, cols_to_rename): shift_range = list_lags for month_shift in tqdm_notebook(shift_range): train_shift = all_data[index_cols + cols_to_rename].copy() train_shift['date_block_num'] = train_shift['date_block_num'] + month_shift foo = lambda x: '{}_lag_{}'.format(x, month_shift) if x in cols_to_rename else x train_shift = train_shift.rename(columns=foo) all_data = pd.merge(all_data, train_shift, on=index_cols, how='left').fillna(0) del train_shift return all_data Monthly_sales = sales.groupby(["date_block_num", "shop_id"])['item_cnt_day'].sum().reset_index(name = 'item_cnt_month') fig, axs = plt.subplots(10, 6) for i in range(60): shop_sale_per_month = Monthly_sales.loc[Monthly_sales['shop_id']==i] axs[i//6,i%6].tick_params(axis='both', which='both', bottom=False, top= False, labelbottom=False, right=False, left=False, labelleft=False) axs[i//6,i%6].plot(shop_sale_per_month['date_block_num'], shop_sale_per_month['item_cnt_month']) del Monthly_sales, shop_sale_per_month sales.loc[sales.shop_id == 0, 'shop_id'] = 57 test_data.loc[test_data.shop_id == 0, 'shop_id'] = 57 sales.loc[sales.shop_id == 1, 'shop_id'] = 58 test_data.loc[test_data.shop_id == 1, 'shop_id'] = 58 sales.loc[sales.shop_id == 10, 'shop_id'] = 11 test_data.loc[test_data.shop_id == 10, 'shop_id'] = 11 sales = sales[sales.item_cnt_day < 1001] temp_df = pd.merge(test_data[['shop_id', 'item_id']], sales[['shop_id', 'item_id']], on=['shop_id', 'item_id'], how='left', indicator='Exist') temp_var = (temp_df['Exist'] == 'left_only').sum() Leakage_Percentage = (test_data.shape[0] - temp_var) / test_data.shape[0] * 100 print('Percentage of shop-item combination in test data that are available in the training set:', Leakage_Percentage)
code
49118528/cell_27
[ "text_plain_output_1.png" ]
from itertools import product from sklearn.preprocessing import LabelEncoder import matplotlib.pyplot as plt import numpy as np import pandas as pd sales = pd.read_csv('../input/competitive-data-science-predict-future-sales/sales_train.csv') test_data = pd.read_csv('../input/competitive-data-science-predict-future-sales/test.csv') items = pd.read_csv('../input/competitive-data-science-predict-future-sales/items.csv') item_category = pd.read_csv('../input/competitive-data-science-predict-future-sales/item_categories.csv') shops = pd.read_csv('../input/competitive-data-science-predict-future-sales/shops.csv') def downcast_dtypes(df): """ Changes column types in the dataframe: `float64` type to `float32` `int64` type to `int32` """ float_cols = [c for c in df if df[c].dtype == 'float64'] int_cols = [c for c in df if df[c].dtype == 'int64'] df[float_cols] = df[float_cols].astype(np.float32) df[int_cols] = df[int_cols].astype(np.int32) return df def lag_feature(all_data, list_lags, index_cols, cols_to_rename): shift_range = list_lags for month_shift in tqdm_notebook(shift_range): train_shift = all_data[index_cols + cols_to_rename].copy() train_shift['date_block_num'] = train_shift['date_block_num'] + month_shift foo = lambda x: '{}_lag_{}'.format(x, month_shift) if x in cols_to_rename else x train_shift = train_shift.rename(columns=foo) all_data = pd.merge(all_data, train_shift, on=index_cols, how='left').fillna(0) del train_shift return all_data Monthly_sales = sales.groupby(["date_block_num", "shop_id"])['item_cnt_day'].sum().reset_index(name = 'item_cnt_month') fig, axs = plt.subplots(10, 6) for i in range(60): shop_sale_per_month = Monthly_sales.loc[Monthly_sales['shop_id']==i] axs[i//6,i%6].tick_params(axis='both', which='both', bottom=False, top= False, labelbottom=False, right=False, left=False, labelleft=False) axs[i//6,i%6].plot(shop_sale_per_month['date_block_num'], shop_sale_per_month['item_cnt_month']) del Monthly_sales, shop_sale_per_month sales.loc[sales.shop_id == 0, 'shop_id'] = 57 test_data.loc[test_data.shop_id == 0, 'shop_id'] = 57 sales.loc[sales.shop_id == 1, 'shop_id'] = 58 test_data.loc[test_data.shop_id == 1, 'shop_id'] = 58 sales.loc[sales.shop_id == 10, 'shop_id'] = 11 test_data.loc[test_data.shop_id == 10, 'shop_id'] = 11 sales = sales[sales.item_cnt_day < 1001] temp_df = pd.merge(test_data[['shop_id', 'item_id']], sales[['shop_id', 'item_id']], on=['shop_id', 'item_id'], how='left', indicator='Exist') temp_var = (temp_df['Exist'] == 'left_only').sum() index_cols = ['shop_id', 'item_id', 'date_block_num'] grid = [] for block_num in sales['date_block_num'].unique(): cur_shops = sales[sales['date_block_num'] == block_num]['shop_id'].unique() cur_items = sales[sales['date_block_num'] == block_num]['item_id'].unique() grid.append(np.array(list(product(*[cur_shops, cur_items, [block_num]])), dtype='int32')) grid = pd.DataFrame(np.vstack(grid), columns=index_cols, dtype=np.int32) gb = sales.groupby(index_cols, as_index=False).agg({'item_cnt_day': ['sum']}) gb.rename(columns={'sum': 'target'}, inplace=True) gb.columns = [col[0] if col[-1] == '' else col[-1] for col in gb.columns.values] all_data = pd.merge(grid, gb, how='left', on=index_cols).fillna(0) all_data.sort_values(['date_block_num', 'shop_id', 'item_id'], inplace=True) all_data['target'] = all_data['target'].fillna(0).clip(0, 20) all_data = all_data[all_data['date_block_num'] >= 12] all_data shops['city'] = shops.shop_name.apply(lambda x: str.replace(x, '!', '')).apply(lambda x: x.split(' ')[0]) shops['city_enc'] = LabelEncoder().fit_transform(shops['city']) shops_data = shops[['shop_id', 'city_enc']] all_data = pd.merge(all_data, shops_data, how='left', on=['shop_id']) all_data = pd.merge(all_data, items, how='left', on=['item_id']) all_data = all_data.drop('item_name', axis=1) item_category['basket'] = item_category['item_category_name'].apply(lambda x: str(x).split(' ')[0]) item_category['basket_enc'] = LabelEncoder().fit_transform(item_category['basket']) item_category = item_category[['item_category_id', 'basket_enc']] all_data = pd.merge(all_data, item_category, how='left', on=['item_category_id']) all_data
code
49118528/cell_5
[ "text_html_output_1.png" ]
import lightgbm as lgb import numpy as np import pandas as pd for p in [np, pd, lgb]: print(p.__name__, p.__version__)
code
1003897/cell_21
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd INPUT_DIR = '../input/' TRAIN_FILE = 'train.json' TEST_FILE = 'test.json' train_df = pd.read_json(INPUT_DIR + TRAIN_FILE) test_df = pd.read_json(INPUT_DIR + TEST_FILE) all_df = pd.concat((train_df, test_df), axis=0) all_df['train'] = all_df['interest_level'].notnull() all_df['test'] = all_df['interest_level'].isnull() n_train = train_df.shape[0] n_test = test_df.shape[0] n_total = n_train + n_test n_train_pct = n_train / n_total * 100.0 n_test_pct = n_test / n_total * 100.0 # How does the train / test split depend on the creation date? all_agg_df = all_df.copy() all_agg_df = all_agg_df.set_index('created', drop=True) all_agg_df = all_agg_df.groupby('train').resample('1D').size().transpose() fig, ax = plt.subplots(1,1, figsize=(18,10)) ax = all_agg_df.plot.bar(ax=ax, stacked=True) ax.set_xticklabels(all_agg_df.index.strftime('%a %b %d')) ax.set_title('All listings creation date and train/test split'); all_agg_df.head() all_agg_df = all_df.copy() all_agg_df['dayofweek'] = all_df['created'].dt.dayofweek all_agg_df = all_agg_df.groupby('dayofweek').size() all_agg_df.plot.bar(title='All row creation by day of week')
code
1003897/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd import seaborn as sns INPUT_DIR = '../input/' TRAIN_FILE = 'train.json' TEST_FILE = 'test.json' train_df = pd.read_json(INPUT_DIR + TRAIN_FILE) test_df = pd.read_json(INPUT_DIR + TEST_FILE) all_df = pd.concat((train_df, test_df), axis=0) all_df['train'] = all_df['interest_level'].notnull() all_df['test'] = all_df['interest_level'].isnull() n_train = train_df.shape[0] n_test = test_df.shape[0] n_total = n_train + n_test n_train_pct = n_train / n_total * 100.0 n_test_pct = n_test / n_total * 100.0 g = sns.FacetGrid(all_df, col='test', sharex=True, sharey=False, size=5) g = g.map(sns.distplot, 'bathrooms') g = sns.FacetGrid(all_df[all_df['bathrooms'] < 10], col='test', sharex=True, sharey=False, size=5) g = g.map(sns.countplot, 'bathrooms')
code
1003897/cell_25
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns INPUT_DIR = '../input/' TRAIN_FILE = 'train.json' TEST_FILE = 'test.json' train_df = pd.read_json(INPUT_DIR + TRAIN_FILE) test_df = pd.read_json(INPUT_DIR + TEST_FILE) all_df = pd.concat((train_df, test_df), axis=0) all_df['train'] = all_df['interest_level'].notnull() all_df['test'] = all_df['interest_level'].isnull() n_train = train_df.shape[0] n_test = test_df.shape[0] n_total = n_train + n_test n_train_pct = n_train / n_total * 100.0 n_test_pct = n_test / n_total * 100.0 g = sns.FacetGrid(all_df, col='test', sharex=True, sharey=False, size=5) g = g.map(sns.distplot, 'bathrooms') g = sns.FacetGrid(all_df[all_df['bathrooms'] < 10], col='test', sharex=True, sharey=False, size=5) g = g.map(sns.countplot, 'bathrooms') g = sns.FacetGrid(all_df, col='test', sharex=True, sharey=False, size=5) g = g.map(sns.countplot, 'bedrooms') g = sns.FacetGrid(all_df, col='train', sharex=True, sharey=True, size=5) g = g.map(sns.distplot, 'bathrooms') # How does the train / test split depend on the creation date? all_agg_df = all_df.copy() all_agg_df = all_agg_df.set_index('created', drop=True) all_agg_df = all_agg_df.groupby('train').resample('1D').size().transpose() fig, ax = plt.subplots(1,1, figsize=(18,10)) ax = all_agg_df.plot.bar(ax=ax, stacked=True) ax.set_xticklabels(all_agg_df.index.strftime('%a %b %d')) ax.set_title('All listings creation date and train/test split'); all_agg_df.head() all_agg_df = all_df.copy() all_agg_df['dayofweek'] = all_df['created'].dt.dayofweek all_agg_df = all_agg_df.groupby('dayofweek').size() all_agg_df = all_df.copy() all_agg_df['hour'] = all_df['created'].dt.hour all_agg_df = all_agg_df.groupby('hour').size() # Separate line plot for day vs hour of day creation all_agg_df = all_df.copy() all_agg_df = all_agg_df.reset_index() all_agg_df['dayofweek'] = all_agg_df['created'].dt.weekday_name all_agg_df['hour'] = all_agg_df['created'].dt.hour all_agg_df = all_agg_df.groupby(['dayofweek', 'hour']).size().reset_index(name="count") # all_agg_df = all_agg_df[['dayofweek', 'hour', 'checkouts']] all_agg_df = all_agg_df.pivot_table(values='count', index='hour', columns='dayofweek') all_agg_df = all_agg_df[['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday']] day_palette = sns.color_palette("hls", 7) # Need to have 7 distinct colours fig, ax = plt.subplots(1,1, figsize=(16,10)) all_agg_df.plot.line(ax=ax, linewidth=3, color=day_palette, title="Created by hour and day"); plot_df = train_df.copy() plot_df['day'] = plot_df['created'].dt.dayofweek plot_df['hour'] = plot_df['created'].dt.hour sns.boxplot(data=plot_df, x='interest_level', y='day')
code
1003897/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd INPUT_DIR = '../input/' TRAIN_FILE = 'train.json' TEST_FILE = 'test.json' train_df = pd.read_json(INPUT_DIR + TRAIN_FILE) test_df = pd.read_json(INPUT_DIR + TEST_FILE) all_df = pd.concat((train_df, test_df), axis=0) all_df['train'] = all_df['interest_level'].notnull() all_df['test'] = all_df['interest_level'].isnull() n_train = train_df.shape[0] n_test = test_df.shape[0] n_total = n_train + n_test n_train_pct = n_train / n_total * 100.0 n_test_pct = n_test / n_total * 100.0 print('Train DF Shape: {}, %age: {:.1f}'.format(train_df.shape, n_train_pct)) print('Test DF Shape: {}, %age: {:.1f}'.format(test_df.shape, n_test_pct))
code
1003897/cell_23
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns INPUT_DIR = '../input/' TRAIN_FILE = 'train.json' TEST_FILE = 'test.json' train_df = pd.read_json(INPUT_DIR + TRAIN_FILE) test_df = pd.read_json(INPUT_DIR + TEST_FILE) all_df = pd.concat((train_df, test_df), axis=0) all_df['train'] = all_df['interest_level'].notnull() all_df['test'] = all_df['interest_level'].isnull() n_train = train_df.shape[0] n_test = test_df.shape[0] n_total = n_train + n_test n_train_pct = n_train / n_total * 100.0 n_test_pct = n_test / n_total * 100.0 g = sns.FacetGrid(all_df, col='test', sharex=True, sharey=False, size=5) g = g.map(sns.distplot, 'bathrooms') g = sns.FacetGrid(all_df[all_df['bathrooms'] < 10], col='test', sharex=True, sharey=False, size=5) g = g.map(sns.countplot, 'bathrooms') g = sns.FacetGrid(all_df, col='test', sharex=True, sharey=False, size=5) g = g.map(sns.countplot, 'bedrooms') g = sns.FacetGrid(all_df, col='train', sharex=True, sharey=True, size=5) g = g.map(sns.distplot, 'bathrooms') # How does the train / test split depend on the creation date? all_agg_df = all_df.copy() all_agg_df = all_agg_df.set_index('created', drop=True) all_agg_df = all_agg_df.groupby('train').resample('1D').size().transpose() fig, ax = plt.subplots(1,1, figsize=(18,10)) ax = all_agg_df.plot.bar(ax=ax, stacked=True) ax.set_xticklabels(all_agg_df.index.strftime('%a %b %d')) ax.set_title('All listings creation date and train/test split'); all_agg_df.head() all_agg_df = all_df.copy() all_agg_df['dayofweek'] = all_df['created'].dt.dayofweek all_agg_df = all_agg_df.groupby('dayofweek').size() all_agg_df = all_df.copy() all_agg_df['hour'] = all_df['created'].dt.hour all_agg_df = all_agg_df.groupby('hour').size() all_agg_df = all_df.copy() all_agg_df = all_agg_df.reset_index() all_agg_df['dayofweek'] = all_agg_df['created'].dt.weekday_name all_agg_df['hour'] = all_agg_df['created'].dt.hour all_agg_df = all_agg_df.groupby(['dayofweek', 'hour']).size().reset_index(name='count') all_agg_df = all_agg_df.pivot_table(values='count', index='hour', columns='dayofweek') all_agg_df = all_agg_df[['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday']] day_palette = sns.color_palette('hls', 7) fig, ax = plt.subplots(1, 1, figsize=(16, 10)) all_agg_df.plot.line(ax=ax, linewidth=3, color=day_palette, title='Created by hour and day')
code
1003897/cell_20
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd INPUT_DIR = '../input/' TRAIN_FILE = 'train.json' TEST_FILE = 'test.json' train_df = pd.read_json(INPUT_DIR + TRAIN_FILE) test_df = pd.read_json(INPUT_DIR + TEST_FILE) all_df = pd.concat((train_df, test_df), axis=0) all_df['train'] = all_df['interest_level'].notnull() all_df['test'] = all_df['interest_level'].isnull() n_train = train_df.shape[0] n_test = test_df.shape[0] n_total = n_train + n_test n_train_pct = n_train / n_total * 100.0 n_test_pct = n_test / n_total * 100.0 all_agg_df = all_df.copy() all_agg_df = all_agg_df.set_index('created', drop=True) all_agg_df = all_agg_df.groupby('train').resample('1D').size().transpose() fig, ax = plt.subplots(1, 1, figsize=(18, 10)) ax = all_agg_df.plot.bar(ax=ax, stacked=True) ax.set_xticklabels(all_agg_df.index.strftime('%a %b %d')) ax.set_title('All listings creation date and train/test split') all_agg_df.head()
code
1003897/cell_19
[ "image_output_1.png" ]
import pandas as pd import seaborn as sns INPUT_DIR = '../input/' TRAIN_FILE = 'train.json' TEST_FILE = 'test.json' train_df = pd.read_json(INPUT_DIR + TRAIN_FILE) test_df = pd.read_json(INPUT_DIR + TEST_FILE) all_df = pd.concat((train_df, test_df), axis=0) all_df['train'] = all_df['interest_level'].notnull() all_df['test'] = all_df['interest_level'].isnull() n_train = train_df.shape[0] n_test = test_df.shape[0] n_total = n_train + n_test n_train_pct = n_train / n_total * 100.0 n_test_pct = n_test / n_total * 100.0 g = sns.FacetGrid(all_df, col='test', sharex=True, sharey=False, size=5) g = g.map(sns.distplot, 'bathrooms') g = sns.FacetGrid(all_df[all_df['bathrooms'] < 10], col='test', sharex=True, sharey=False, size=5) g = g.map(sns.countplot, 'bathrooms') g = sns.FacetGrid(all_df, col='test', sharex=True, sharey=False, size=5) g = g.map(sns.countplot, 'bedrooms') g = sns.FacetGrid(all_df, col='train', sharex=True, sharey=True, size=5) g = g.map(sns.distplot, 'bathrooms')
code
1003897/cell_15
[ "image_output_1.png" ]
import pandas as pd import seaborn as sns INPUT_DIR = '../input/' TRAIN_FILE = 'train.json' TEST_FILE = 'test.json' train_df = pd.read_json(INPUT_DIR + TRAIN_FILE) test_df = pd.read_json(INPUT_DIR + TEST_FILE) all_df = pd.concat((train_df, test_df), axis=0) all_df['train'] = all_df['interest_level'].notnull() all_df['test'] = all_df['interest_level'].isnull() n_train = train_df.shape[0] n_test = test_df.shape[0] n_total = n_train + n_test n_train_pct = n_train / n_total * 100.0 n_test_pct = n_test / n_total * 100.0 g = sns.FacetGrid(all_df, col='test', sharex=True, sharey=False, size=5) g = g.map(sns.distplot, 'bathrooms') g = sns.FacetGrid(all_df[all_df['bathrooms'] < 10], col='test', sharex=True, sharey=False, size=5) g = g.map(sns.countplot, 'bathrooms') g = sns.FacetGrid(all_df, col='test', sharex=True, sharey=False, size=5) g = g.map(sns.countplot, 'bedrooms') sns.jointplot(data=all_df[all_df['train']], x='bedrooms', y='bathrooms', kind='reg')
code
1003897/cell_24
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd INPUT_DIR = '../input/' TRAIN_FILE = 'train.json' TEST_FILE = 'test.json' train_df = pd.read_json(INPUT_DIR + TRAIN_FILE) test_df = pd.read_json(INPUT_DIR + TEST_FILE) all_df = pd.concat((train_df, test_df), axis=0) all_df['train'] = all_df['interest_level'].notnull() all_df['test'] = all_df['interest_level'].isnull() n_train = train_df.shape[0] n_test = test_df.shape[0] n_total = n_train + n_test n_train_pct = n_train / n_total * 100.0 n_test_pct = n_test / n_total * 100.0 plot_df = train_df.copy() plot_df['day'] = plot_df['created'].dt.dayofweek plot_df['hour'] = plot_df['created'].dt.hour plot_df.groupby(['day', 'interest_level']).size().plot.bar()
code
1003897/cell_14
[ "image_output_1.png" ]
import pandas as pd import seaborn as sns INPUT_DIR = '../input/' TRAIN_FILE = 'train.json' TEST_FILE = 'test.json' train_df = pd.read_json(INPUT_DIR + TRAIN_FILE) test_df = pd.read_json(INPUT_DIR + TEST_FILE) all_df = pd.concat((train_df, test_df), axis=0) all_df['train'] = all_df['interest_level'].notnull() all_df['test'] = all_df['interest_level'].isnull() n_train = train_df.shape[0] n_test = test_df.shape[0] n_total = n_train + n_test n_train_pct = n_train / n_total * 100.0 n_test_pct = n_test / n_total * 100.0 g = sns.FacetGrid(all_df, col='test', sharex=True, sharey=False, size=5) g = g.map(sns.distplot, 'bathrooms') g = sns.FacetGrid(all_df[all_df['bathrooms'] < 10], col='test', sharex=True, sharey=False, size=5) g = g.map(sns.countplot, 'bathrooms') g = sns.FacetGrid(all_df, col='test', sharex=True, sharey=False, size=5) g = g.map(sns.countplot, 'bedrooms')
code
1003897/cell_22
[ "text_html_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd INPUT_DIR = '../input/' TRAIN_FILE = 'train.json' TEST_FILE = 'test.json' train_df = pd.read_json(INPUT_DIR + TRAIN_FILE) test_df = pd.read_json(INPUT_DIR + TEST_FILE) all_df = pd.concat((train_df, test_df), axis=0) all_df['train'] = all_df['interest_level'].notnull() all_df['test'] = all_df['interest_level'].isnull() n_train = train_df.shape[0] n_test = test_df.shape[0] n_total = n_train + n_test n_train_pct = n_train / n_total * 100.0 n_test_pct = n_test / n_total * 100.0 # How does the train / test split depend on the creation date? all_agg_df = all_df.copy() all_agg_df = all_agg_df.set_index('created', drop=True) all_agg_df = all_agg_df.groupby('train').resample('1D').size().transpose() fig, ax = plt.subplots(1,1, figsize=(18,10)) ax = all_agg_df.plot.bar(ax=ax, stacked=True) ax.set_xticklabels(all_agg_df.index.strftime('%a %b %d')) ax.set_title('All listings creation date and train/test split'); all_agg_df.head() all_agg_df = all_df.copy() all_agg_df['dayofweek'] = all_df['created'].dt.dayofweek all_agg_df = all_agg_df.groupby('dayofweek').size() all_agg_df = all_df.copy() all_agg_df['hour'] = all_df['created'].dt.hour all_agg_df = all_agg_df.groupby('hour').size() all_agg_df.plot.bar(title='All row creation by hour of day', figsize=(10, 6))
code
1003897/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd import seaborn as sns INPUT_DIR = '../input/' TRAIN_FILE = 'train.json' TEST_FILE = 'test.json' train_df = pd.read_json(INPUT_DIR + TRAIN_FILE) test_df = pd.read_json(INPUT_DIR + TEST_FILE) all_df = pd.concat((train_df, test_df), axis=0) all_df['train'] = all_df['interest_level'].notnull() all_df['test'] = all_df['interest_level'].isnull() n_train = train_df.shape[0] n_test = test_df.shape[0] n_total = n_train + n_test n_train_pct = n_train / n_total * 100.0 n_test_pct = n_test / n_total * 100.0 g = sns.FacetGrid(all_df, col='test', sharex=True, sharey=False, size=5) g = g.map(sns.distplot, 'bathrooms')
code
1003897/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd INPUT_DIR = '../input/' TRAIN_FILE = 'train.json' TEST_FILE = 'test.json' train_df = pd.read_json(INPUT_DIR + TRAIN_FILE) test_df = pd.read_json(INPUT_DIR + TEST_FILE) all_df = pd.concat((train_df, test_df), axis=0) all_df['train'] = all_df['interest_level'].notnull() all_df['test'] = all_df['interest_level'].isnull() n_train = train_df.shape[0] n_test = test_df.shape[0] n_total = n_train + n_test n_train_pct = n_train / n_total * 100.0 n_test_pct = n_test / n_total * 100.0 def print_df_info(df, name): """ Prints out more detailed DF info """ print('\n{} Info:\n'.format(name)) print(df.info()) print('\n{} Null info by column:\n'.format(name)) print(df.isnull().sum(axis=0)) print('\n{} Statistical Description:\n'.format(name)) print(df.describe()) print_df_info(train_df, 'Train') print_df_info(test_df, 'Test')
code
105193321/cell_21
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns airline_data = pd.read_csv('../input/airline-passenger-satisfaction/airline_passenger_satisfaction.csv') data_dic = pd.read_csv('../input/airline-passenger-satisfaction/data_dictionary.csv') airline_data.shape airline_data.isnull().sum() airline_data.duplicated().sum() des = airline_data.describe() d = des.iloc[[1,5],:] d.style.background_gradient(cmap='viridis') # YELLOW represent the MAX. airline_data.nunique() plt.figure(figsize=(20, 7)) sns.countplot(x=airline_data['Age'], hue=airline_data['Type of Travel'], palette='rocket_r')
code
105193321/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd airline_data = pd.read_csv('../input/airline-passenger-satisfaction/airline_passenger_satisfaction.csv') data_dic = pd.read_csv('../input/airline-passenger-satisfaction/data_dictionary.csv') airline_data.shape airline_data.isnull().sum() airline_data.duplicated().sum()
code
105193321/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd airline_data = pd.read_csv('../input/airline-passenger-satisfaction/airline_passenger_satisfaction.csv') data_dic = pd.read_csv('../input/airline-passenger-satisfaction/data_dictionary.csv') airline_data.shape
code
105193321/cell_25
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns airline_data = pd.read_csv('../input/airline-passenger-satisfaction/airline_passenger_satisfaction.csv') data_dic = pd.read_csv('../input/airline-passenger-satisfaction/data_dictionary.csv') airline_data.shape airline_data.isnull().sum() airline_data.duplicated().sum() des = airline_data.describe() d = des.iloc[[1,5],:] d.style.background_gradient(cmap='viridis') # YELLOW represent the MAX. airline_data.nunique() sns.histplot(x='Type of Travel', data=airline_data, color='seagreen')
code
105193321/cell_56
[ "text_plain_output_1.png" ]
import pandas as pd import seaborn as sns airline_data = pd.read_csv('../input/airline-passenger-satisfaction/airline_passenger_satisfaction.csv') data_dic = pd.read_csv('../input/airline-passenger-satisfaction/data_dictionary.csv') airline_data.shape airline_data.isnull().sum() airline_data.duplicated().sum() des = airline_data.describe() d = des.iloc[[1,5],:] d.style.background_gradient(cmap='viridis') # YELLOW represent the MAX. airline_data.nunique() airline_data.columns airline_data.isnull().sum() df_airline = pd.DataFrame({'Departure Delay': airline_data['Departure Delay'], 'Arrival Delay': airline_data['Arrival Delay']}) ax = df_airline.plot.kde() for i, row in airline_data.iterrows(): value = row['Arrival Delay'] if pd.isnull(value): airline_data.loc[:, 'Arrival Delay'][i] = airline_data.loc[:, 'Departure Delay'][i] airline_data.isnull().sum() airline_data.info()
code
105193321/cell_34
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns airline_data = pd.read_csv('../input/airline-passenger-satisfaction/airline_passenger_satisfaction.csv') data_dic = pd.read_csv('../input/airline-passenger-satisfaction/data_dictionary.csv') airline_data.shape airline_data.isnull().sum() airline_data.duplicated().sum() des = airline_data.describe() d = des.iloc[[1,5],:] d.style.background_gradient(cmap='viridis') # YELLOW represent the MAX. airline_data.nunique() airline_data.columns cols = ['Departure and Arrival Time Convenience', 'Ease of Online Booking', 'Check-in Service', 'Online Boarding', 'Gate Location', 'On-board Service', 'Seat Comfort', 'Leg Room Service', 'Cleanliness', 'Food and Drink', 'In-flight Service', 'In-flight Wifi Service', 'In-flight Entertainment', 'Baggage Handling'] def create_plot_pivot(df, x_column): """ Create a pivot table for satisfaction versus another rating for easy plotting. """ _df_plot = df.groupby([x_column, 'Satisfaction']).size().reset_index().pivot(columns='Satisfaction', index=x_column, values=0) return _df_plot fig, ax = plt.subplots(7, 2, figsize=(20, 40)) axe = ax.ravel() for i in range(14): create_plot_pivot(airline_data, cols[i]).plot(kind='bar', stacked=True, ax=axe[i]) plt.xlabel(cols[i]) axe[i].set_ylabel('Count of Passengers') fig.show()
code
105193321/cell_23
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns airline_data = pd.read_csv('../input/airline-passenger-satisfaction/airline_passenger_satisfaction.csv') data_dic = pd.read_csv('../input/airline-passenger-satisfaction/data_dictionary.csv') airline_data.shape airline_data.isnull().sum() airline_data.duplicated().sum() des = airline_data.describe() d = des.iloc[[1,5],:] d.style.background_gradient(cmap='viridis') # YELLOW represent the MAX. airline_data.nunique() plt.figure(figsize=(20, 7)) sns.countplot(x=airline_data['Age'], hue=airline_data['Class'], palette='cubehelix')
code
105193321/cell_55
[ "text_plain_output_1.png" ]
import pandas as pd import seaborn as sns airline_data = pd.read_csv('../input/airline-passenger-satisfaction/airline_passenger_satisfaction.csv') data_dic = pd.read_csv('../input/airline-passenger-satisfaction/data_dictionary.csv') airline_data.shape airline_data.isnull().sum() airline_data.duplicated().sum() des = airline_data.describe() d = des.iloc[[1,5],:] d.style.background_gradient(cmap='viridis') # YELLOW represent the MAX. airline_data.nunique() airline_data.columns airline_data.isnull().sum() df_airline = pd.DataFrame({'Departure Delay': airline_data['Departure Delay'], 'Arrival Delay': airline_data['Arrival Delay']}) ax = df_airline.plot.kde() for i, row in airline_data.iterrows(): value = row['Arrival Delay'] if pd.isnull(value): airline_data.loc[:, 'Arrival Delay'][i] = airline_data.loc[:, 'Departure Delay'][i] airline_data.isnull().sum() airline_data.head()
code
105193321/cell_40
[ "text_plain_output_1.png" ]
import pandas as pd import seaborn as sns airline_data = pd.read_csv('../input/airline-passenger-satisfaction/airline_passenger_satisfaction.csv') data_dic = pd.read_csv('../input/airline-passenger-satisfaction/data_dictionary.csv') airline_data.shape airline_data.isnull().sum() airline_data.duplicated().sum() des = airline_data.describe() d = des.iloc[[1,5],:] d.style.background_gradient(cmap='viridis') # YELLOW represent the MAX. airline_data.nunique() airline_data.columns airline_data.isnull().sum() df_airline = pd.DataFrame({'Departure Delay': airline_data['Departure Delay'], 'Arrival Delay': airline_data['Arrival Delay']}) ax = df_airline.plot.kde() for i, row in airline_data.iterrows(): value = row['Arrival Delay'] if pd.isnull(value): airline_data.loc[:, 'Arrival Delay'][i] = airline_data.loc[:, 'Departure Delay'][i]
code
105193321/cell_29
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns airline_data = pd.read_csv('../input/airline-passenger-satisfaction/airline_passenger_satisfaction.csv') data_dic = pd.read_csv('../input/airline-passenger-satisfaction/data_dictionary.csv') airline_data.shape airline_data.isnull().sum() airline_data.duplicated().sum() des = airline_data.describe() d = des.iloc[[1,5],:] d.style.background_gradient(cmap='viridis') # YELLOW represent the MAX. airline_data.nunique() sns.histplot(x='Satisfaction', data=airline_data, color='#ffab8d')
code
105193321/cell_26
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns airline_data = pd.read_csv('../input/airline-passenger-satisfaction/airline_passenger_satisfaction.csv') data_dic = pd.read_csv('../input/airline-passenger-satisfaction/data_dictionary.csv') airline_data.shape airline_data.isnull().sum() airline_data.duplicated().sum() des = airline_data.describe() d = des.iloc[[1,5],:] d.style.background_gradient(cmap='viridis') # YELLOW represent the MAX. airline_data.nunique() sns.histplot(x='Class', data=airline_data, color='purple')
code
105193321/cell_41
[ "image_output_1.png" ]
import pandas as pd import seaborn as sns airline_data = pd.read_csv('../input/airline-passenger-satisfaction/airline_passenger_satisfaction.csv') data_dic = pd.read_csv('../input/airline-passenger-satisfaction/data_dictionary.csv') airline_data.shape airline_data.isnull().sum() airline_data.duplicated().sum() des = airline_data.describe() d = des.iloc[[1,5],:] d.style.background_gradient(cmap='viridis') # YELLOW represent the MAX. airline_data.nunique() airline_data.columns airline_data.isnull().sum() df_airline = pd.DataFrame({'Departure Delay': airline_data['Departure Delay'], 'Arrival Delay': airline_data['Arrival Delay']}) ax = df_airline.plot.kde() for i, row in airline_data.iterrows(): value = row['Arrival Delay'] if pd.isnull(value): airline_data.loc[:, 'Arrival Delay'][i] = airline_data.loc[:, 'Departure Delay'][i] airline_data.isnull().sum()
code
105193321/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd airline_data = pd.read_csv('../input/airline-passenger-satisfaction/airline_passenger_satisfaction.csv') data_dic = pd.read_csv('../input/airline-passenger-satisfaction/data_dictionary.csv') airline_data.shape airline_data.isnull().sum()
code
105193321/cell_19
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns airline_data = pd.read_csv('../input/airline-passenger-satisfaction/airline_passenger_satisfaction.csv') data_dic = pd.read_csv('../input/airline-passenger-satisfaction/data_dictionary.csv') airline_data.shape airline_data.isnull().sum() airline_data.duplicated().sum() des = airline_data.describe() d = des.iloc[[1,5],:] d.style.background_gradient(cmap='viridis') # YELLOW represent the MAX. airline_data.nunique() plt.figure(figsize=(20, 7)) sns.countplot(x=airline_data['Age'], hue=airline_data['Customer Type'], palette='Set2')
code
105193321/cell_18
[ "text_html_output_1.png" ]
import pandas as pd import seaborn as sns airline_data = pd.read_csv('../input/airline-passenger-satisfaction/airline_passenger_satisfaction.csv') data_dic = pd.read_csv('../input/airline-passenger-satisfaction/data_dictionary.csv') airline_data.shape airline_data.isnull().sum() airline_data.duplicated().sum() des = airline_data.describe() d = des.iloc[[1,5],:] d.style.background_gradient(cmap='viridis') # YELLOW represent the MAX. airline_data.nunique() round(airline_data['Gender'].value_counts() / airline_data.shape[0] * 100, 2).plot.pie(autopct='%1.1f%%', figsize=(7, 7), explode=(0.02, 0.02), colors=sns.color_palette('pastel'))
code
105193321/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd airline_data = pd.read_csv('../input/airline-passenger-satisfaction/airline_passenger_satisfaction.csv') data_dic = pd.read_csv('../input/airline-passenger-satisfaction/data_dictionary.csv') airline_data.head()
code
105193321/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd airline_data = pd.read_csv('../input/airline-passenger-satisfaction/airline_passenger_satisfaction.csv') data_dic = pd.read_csv('../input/airline-passenger-satisfaction/data_dictionary.csv') airline_data.shape airline_data.isnull().sum() airline_data.duplicated().sum() des = airline_data.describe() d = des.iloc[[1, 5], :] d.style.background_gradient(cmap='viridis')
code
105193321/cell_38
[ "image_output_1.png" ]
import pandas as pd import seaborn as sns airline_data = pd.read_csv('../input/airline-passenger-satisfaction/airline_passenger_satisfaction.csv') data_dic = pd.read_csv('../input/airline-passenger-satisfaction/data_dictionary.csv') airline_data.shape airline_data.isnull().sum() airline_data.duplicated().sum() des = airline_data.describe() d = des.iloc[[1,5],:] d.style.background_gradient(cmap='viridis') # YELLOW represent the MAX. airline_data.nunique() airline_data.columns airline_data.isnull().sum() df_airline = pd.DataFrame({'Departure Delay': airline_data['Departure Delay'], 'Arrival Delay': airline_data['Arrival Delay']}) ax = df_airline.plot.kde()
code
105193321/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd airline_data = pd.read_csv('../input/airline-passenger-satisfaction/airline_passenger_satisfaction.csv') data_dic = pd.read_csv('../input/airline-passenger-satisfaction/data_dictionary.csv') airline_data.shape airline_data.isnull().sum() airline_data.duplicated().sum() des = airline_data.describe() d = des.iloc[[1,5],:] d.style.background_gradient(cmap='viridis') # YELLOW represent the MAX. airline_data.nunique()
code
105193321/cell_43
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import seaborn as sns airline_data = pd.read_csv('../input/airline-passenger-satisfaction/airline_passenger_satisfaction.csv') data_dic = pd.read_csv('../input/airline-passenger-satisfaction/data_dictionary.csv') airline_data.shape airline_data.isnull().sum() airline_data.duplicated().sum() des = airline_data.describe() d = des.iloc[[1,5],:] d.style.background_gradient(cmap='viridis') # YELLOW represent the MAX. airline_data.nunique() airline_data.columns airline_data.isnull().sum() df_airline = pd.DataFrame({'Departure Delay': airline_data['Departure Delay'], 'Arrival Delay': airline_data['Arrival Delay']}) ax = df_airline.plot.kde() for i, row in airline_data.iterrows(): value = row['Arrival Delay'] if pd.isnull(value): airline_data.loc[:, 'Arrival Delay'][i] = airline_data.loc[:, 'Departure Delay'][i] airline_data.isnull().sum() airline_data.info()
code
105193321/cell_31
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import seaborn as sns airline_data = pd.read_csv('../input/airline-passenger-satisfaction/airline_passenger_satisfaction.csv') data_dic = pd.read_csv('../input/airline-passenger-satisfaction/data_dictionary.csv') airline_data.shape airline_data.isnull().sum() airline_data.duplicated().sum() des = airline_data.describe() d = des.iloc[[1,5],:] d.style.background_gradient(cmap='viridis') # YELLOW represent the MAX. airline_data.nunique() airline_data.columns
code
105193321/cell_10
[ "text_html_output_1.png" ]
import pandas as pd airline_data = pd.read_csv('../input/airline-passenger-satisfaction/airline_passenger_satisfaction.csv') data_dic = pd.read_csv('../input/airline-passenger-satisfaction/data_dictionary.csv') airline_data.shape airline_data.info()
code
105193321/cell_27
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns airline_data = pd.read_csv('../input/airline-passenger-satisfaction/airline_passenger_satisfaction.csv') data_dic = pd.read_csv('../input/airline-passenger-satisfaction/data_dictionary.csv') airline_data.shape airline_data.isnull().sum() airline_data.duplicated().sum() des = airline_data.describe() d = des.iloc[[1,5],:] d.style.background_gradient(cmap='viridis') # YELLOW represent the MAX. airline_data.nunique() sns.histplot(x='Customer Type', data=airline_data, color='steelblue')
code
105193321/cell_36
[ "text_plain_output_1.png" ]
import pandas as pd import seaborn as sns airline_data = pd.read_csv('../input/airline-passenger-satisfaction/airline_passenger_satisfaction.csv') data_dic = pd.read_csv('../input/airline-passenger-satisfaction/data_dictionary.csv') airline_data.shape airline_data.isnull().sum() airline_data.duplicated().sum() des = airline_data.describe() d = des.iloc[[1,5],:] d.style.background_gradient(cmap='viridis') # YELLOW represent the MAX. airline_data.nunique() airline_data.columns airline_data.isnull().sum()
code
17116059/cell_13
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) quartet = pd.read_csv('../input/quartet.csv', index_col='id') df = pd.read_csv('../input/raw_lemonade_data.csv') df['Revenue'] = df['Price'] * df['Sales'] df.head()
code
17116059/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) quartet = pd.read_csv('../input/quartet.csv', index_col='id') print(quartet)
code
17116059/cell_16
[ "text_html_output_1.png" ]
import numpy as np # linear algebra library import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) quartet = pd.read_csv('../input/quartet.csv', index_col='id') df = pd.read_csv('../input/raw_lemonade_data.csv') df['Revenue'] = df['Price'] * df['Sales'] df['Price'] = df.Price.str.replace('$', '').replace(' ', '') df.Price = df.Price.astype(np.float64) df.Revenue = df.Price * df.Sales df
code
17116059/cell_14
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra library import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) quartet = pd.read_csv('../input/quartet.csv', index_col='id') df = pd.read_csv('../input/raw_lemonade_data.csv') df['Revenue'] = df['Price'] * df['Sales'] df['Price'] = df.Price.str.replace('$', '').replace(' ', '') df.Price = df.Price.astype(np.float64) print(df.dtypes)
code