path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
105192343/cell_12
[ "text_plain_output_1.png" ]
total_apple = 5890 no_of_people = 70 no_of_apple_to_each = total_apple / no_of_people total_apple = 5890 no_of_people = 70 no_of_apple_reminded = total_apple % no_of_people print('no of apple reminded is', no_of_apple_reminded)
code
17098574/cell_4
[ "text_html_output_1.png" ]
from sklearn.linear_model import LinearRegression import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/train.csv') X = df[['OverallQual']].values y = df['SalePrice'].values slr = LinearRegression() slr.fit(X, y)
code
17098574/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') df_test[['Id', 'SalePrice']].head()
code
17098574/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os print(os.listdir('../input')) import seaborn as sns from sklearn.linear_model import LinearRegression import matplotlib.pyplot as plt
code
17098574/cell_7
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') df_test.head()
code
17098574/cell_8
[ "text_html_output_1.png" ]
from sklearn.linear_model import LinearRegression import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/train.csv') X = df[['OverallQual']].values y = df['SalePrice'].values slr = LinearRegression() slr.fit(X, y) df_test = pd.read_csv('../input/test.csv') X_test = df_test[['OverallQual']].values y_test_pred = slr.predict(X_test) y_test_pred
code
17098574/cell_3
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/train.csv') df.head()
code
17098574/cell_10
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') df_test.head()
code
17098574/cell_5
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/train.csv') X = df[['OverallQual']].values y = df['SalePrice'].values slr = LinearRegression() slr.fit(X, y) plt.scatter(X, y) plt.plot(X, slr.predict(X), color='red') plt.show()
code
327983/cell_21
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn import datasets, svm, cross_validation, tree, preprocessing, metrics import numpy as np import pandas as pd titanic_df = pd.read_csv('../input/train.csv', dtype={'Age': np.float64}) test_df = pd.read_csv('../input/test.csv', dtype={'Age': np.float64}) titanic_df.groupby('Pclass').mean() class_sex_grouping = titanic_df.groupby(['Pclass', 'Sex']).mean() group_by_age = pd.cut(titanic_df['Age'], np.arange(0, 90, 10)) age_grouping = titanic_df.groupby(group_by_age).mean() titanic_df.count() titanic_df = titanic_df.drop(['Cabin'], axis=1) titanic_df = titanic_df.dropna() titanic_df.count() def preprocess_titanic_df(df): processed_df = df.copy() le = preprocessing.LabelEncoder() processed_df.Sex = le.fit_transform(processed_df.Sex) processed_df.Embarked = le.fit_transform(processed_df.Embarked) processed_df = processed_df.drop(['Name', 'Ticket'], axis=1) return processed_df processed_df = preprocess_titanic_df(titanic_df) processed_df.count() processed_df X = processed_df.drop(['Survived'], axis=1).values Y = processed_df['Survived'].values print(X)
code
327983/cell_9
[ "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np import pandas as pd titanic_df = pd.read_csv('../input/train.csv', dtype={'Age': np.float64}) test_df = pd.read_csv('../input/test.csv', dtype={'Age': np.float64}) titanic_df.groupby('Pclass').mean() class_sex_grouping = titanic_df.groupby(['Pclass', 'Sex']).mean() group_by_age = pd.cut(titanic_df['Age'], np.arange(0, 90, 10)) age_grouping = titanic_df.groupby(group_by_age).mean() age_grouping['Survived'].plot.bar()
code
327983/cell_4
[ "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np import pandas as pd titanic_df = pd.read_csv('../input/train.csv', dtype={'Age': np.float64}) test_df = pd.read_csv('../input/test.csv', dtype={'Age': np.float64}) test_df.head()
code
327983/cell_20
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn import datasets, svm, cross_validation, tree, preprocessing, metrics import numpy as np import pandas as pd titanic_df = pd.read_csv('../input/train.csv', dtype={'Age': np.float64}) test_df = pd.read_csv('../input/test.csv', dtype={'Age': np.float64}) test_df.count() test_df = test_df.dropna() test_df.count() def preprocess_titanic_df(df): processed_df = df.copy() le = preprocessing.LabelEncoder() processed_df.Sex = le.fit_transform(processed_df.Sex) processed_df.Embarked = le.fit_transform(processed_df.Embarked) processed_df = processed_df.drop(['Name', 'Ticket'], axis=1) return processed_df processed_test_df = preprocess_titanic_df(test_df) processed_test_df.count() processed_test
code
327983/cell_6
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd titanic_df = pd.read_csv('../input/train.csv', dtype={'Age': np.float64}) test_df = pd.read_csv('../input/test.csv', dtype={'Age': np.float64}) titanic_df.groupby('Pclass').mean()
code
327983/cell_29
[ "text_html_output_1.png" ]
from sklearn import datasets, svm, cross_validation, tree, preprocessing, metrics import numpy as np import pandas as pd import sklearn.ensemble as ske titanic_df = pd.read_csv('../input/train.csv', dtype={'Age': np.float64}) test_df = pd.read_csv('../input/test.csv', dtype={'Age': np.float64}) titanic_df.groupby('Pclass').mean() class_sex_grouping = titanic_df.groupby(['Pclass', 'Sex']).mean() group_by_age = pd.cut(titanic_df['Age'], np.arange(0, 90, 10)) age_grouping = titanic_df.groupby(group_by_age).mean() titanic_df.count() titanic_df = titanic_df.drop(['Cabin'], axis=1) titanic_df = titanic_df.dropna() titanic_df.count() def preprocess_titanic_df(df): processed_df = df.copy() le = preprocessing.LabelEncoder() processed_df.Sex = le.fit_transform(processed_df.Sex) processed_df.Embarked = le.fit_transform(processed_df.Embarked) processed_df = processed_df.drop(['Name', 'Ticket'], axis=1) return processed_df processed_df = preprocess_titanic_df(titanic_df) processed_df.count() processed_df X = processed_df.drop(['Survived'], axis=1).values Y = processed_df['Survived'].values clf_dt = tree.DecisionTreeClassifier(max_depth=10) clf_dt.fit(X, Y) clf_dt.score(x_test, y_test) shuffle_validator = cross_validation.ShuffleSplit(len(X), n_iter=20, test_size=0.2, random_state=0) def test_classifier(clf): scores = cross_validation.cross_val_score(clf, X, Y, cv=shuffle_validator) clf_rf = ske.RandomForestClassifier(n_estimators=50) test_classifier(clf_rf) clf_gb = ske.GradientBoostingClassifier(n_estimators=50) test_classifier(clf_gb) eclf = ske.VotingClassifier([('dt', clf_dt), ('rf', clf_rf), ('gb', clf_gb)]) test_classifier(eclf)
code
327983/cell_26
[ "text_plain_output_1.png" ]
from sklearn import datasets, svm, cross_validation, tree, preprocessing, metrics import numpy as np import pandas as pd titanic_df = pd.read_csv('../input/train.csv', dtype={'Age': np.float64}) test_df = pd.read_csv('../input/test.csv', dtype={'Age': np.float64}) titanic_df.groupby('Pclass').mean() class_sex_grouping = titanic_df.groupby(['Pclass', 'Sex']).mean() group_by_age = pd.cut(titanic_df['Age'], np.arange(0, 90, 10)) age_grouping = titanic_df.groupby(group_by_age).mean() titanic_df.count() titanic_df = titanic_df.drop(['Cabin'], axis=1) titanic_df = titanic_df.dropna() titanic_df.count() def preprocess_titanic_df(df): processed_df = df.copy() le = preprocessing.LabelEncoder() processed_df.Sex = le.fit_transform(processed_df.Sex) processed_df.Embarked = le.fit_transform(processed_df.Embarked) processed_df = processed_df.drop(['Name', 'Ticket'], axis=1) return processed_df processed_df = preprocess_titanic_df(titanic_df) processed_df.count() processed_df X = processed_df.drop(['Survived'], axis=1).values Y = processed_df['Survived'].values clf_dt = tree.DecisionTreeClassifier(max_depth=10) clf_dt.fit(X, Y) clf_dt.score(x_test, y_test) shuffle_validator = cross_validation.ShuffleSplit(len(X), n_iter=20, test_size=0.2, random_state=0) def test_classifier(clf): scores = cross_validation.cross_val_score(clf, X, Y, cv=shuffle_validator) test_classifier(clf_dt)
code
327983/cell_11
[ "text_html_output_1.png" ]
import numpy as np import pandas as pd titanic_df = pd.read_csv('../input/train.csv', dtype={'Age': np.float64}) test_df = pd.read_csv('../input/test.csv', dtype={'Age': np.float64}) test_df.count()
code
327983/cell_19
[ "text_plain_output_1.png" ]
from sklearn import datasets, svm, cross_validation, tree, preprocessing, metrics import numpy as np import pandas as pd titanic_df = pd.read_csv('../input/train.csv', dtype={'Age': np.float64}) test_df = pd.read_csv('../input/test.csv', dtype={'Age': np.float64}) titanic_df.groupby('Pclass').mean() class_sex_grouping = titanic_df.groupby(['Pclass', 'Sex']).mean() group_by_age = pd.cut(titanic_df['Age'], np.arange(0, 90, 10)) age_grouping = titanic_df.groupby(group_by_age).mean() titanic_df.count() titanic_df = titanic_df.drop(['Cabin'], axis=1) titanic_df = titanic_df.dropna() titanic_df.count() def preprocess_titanic_df(df): processed_df = df.copy() le = preprocessing.LabelEncoder() processed_df.Sex = le.fit_transform(processed_df.Sex) processed_df.Embarked = le.fit_transform(processed_df.Embarked) processed_df = processed_df.drop(['Name', 'Ticket'], axis=1) return processed_df processed_df = preprocess_titanic_df(titanic_df) processed_df.count() processed_df
code
327983/cell_1
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import random import numpy as np import pandas as pd from sklearn import datasets, svm, cross_validation, tree, preprocessing, metrics import sklearn.ensemble as ske import tensorflow as tf from tensorflow.contrib import skflow
code
327983/cell_7
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd titanic_df = pd.read_csv('../input/train.csv', dtype={'Age': np.float64}) test_df = pd.read_csv('../input/test.csv', dtype={'Age': np.float64}) titanic_df.groupby('Pclass').mean() class_sex_grouping = titanic_df.groupby(['Pclass', 'Sex']).mean() print(class_sex_grouping['Survived'])
code
327983/cell_28
[ "text_plain_output_1.png" ]
from sklearn import datasets, svm, cross_validation, tree, preprocessing, metrics import numpy as np import pandas as pd import sklearn.ensemble as ske titanic_df = pd.read_csv('../input/train.csv', dtype={'Age': np.float64}) test_df = pd.read_csv('../input/test.csv', dtype={'Age': np.float64}) titanic_df.groupby('Pclass').mean() class_sex_grouping = titanic_df.groupby(['Pclass', 'Sex']).mean() group_by_age = pd.cut(titanic_df['Age'], np.arange(0, 90, 10)) age_grouping = titanic_df.groupby(group_by_age).mean() titanic_df.count() titanic_df = titanic_df.drop(['Cabin'], axis=1) titanic_df = titanic_df.dropna() titanic_df.count() def preprocess_titanic_df(df): processed_df = df.copy() le = preprocessing.LabelEncoder() processed_df.Sex = le.fit_transform(processed_df.Sex) processed_df.Embarked = le.fit_transform(processed_df.Embarked) processed_df = processed_df.drop(['Name', 'Ticket'], axis=1) return processed_df processed_df = preprocess_titanic_df(titanic_df) processed_df.count() processed_df X = processed_df.drop(['Survived'], axis=1).values Y = processed_df['Survived'].values shuffle_validator = cross_validation.ShuffleSplit(len(X), n_iter=20, test_size=0.2, random_state=0) def test_classifier(clf): scores = cross_validation.cross_val_score(clf, X, Y, cv=shuffle_validator) clf_rf = ske.RandomForestClassifier(n_estimators=50) test_classifier(clf_rf) clf_gb = ske.GradientBoostingClassifier(n_estimators=50) test_classifier(clf_gb)
code
327983/cell_8
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd titanic_df = pd.read_csv('../input/train.csv', dtype={'Age': np.float64}) test_df = pd.read_csv('../input/test.csv', dtype={'Age': np.float64}) titanic_df.groupby('Pclass').mean() class_sex_grouping = titanic_df.groupby(['Pclass', 'Sex']).mean() class_sex_grouping['Survived'].plot.bar()
code
327983/cell_16
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd titanic_df = pd.read_csv('../input/train.csv', dtype={'Age': np.float64}) test_df = pd.read_csv('../input/test.csv', dtype={'Age': np.float64}) titanic_df.groupby('Pclass').mean() class_sex_grouping = titanic_df.groupby(['Pclass', 'Sex']).mean() group_by_age = pd.cut(titanic_df['Age'], np.arange(0, 90, 10)) age_grouping = titanic_df.groupby(group_by_age).mean() titanic_df.count() titanic_df = titanic_df.drop(['Cabin'], axis=1) titanic_df = titanic_df.dropna() titanic_df.count()
code
327983/cell_3
[ "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np import pandas as pd titanic_df = pd.read_csv('../input/train.csv', dtype={'Age': np.float64}) test_df = pd.read_csv('../input/test.csv', dtype={'Age': np.float64}) titanic_df.head()
code
327983/cell_17
[ "text_html_output_1.png" ]
import numpy as np import pandas as pd titanic_df = pd.read_csv('../input/train.csv', dtype={'Age': np.float64}) test_df = pd.read_csv('../input/test.csv', dtype={'Age': np.float64}) test_df.count() test_df = test_df.dropna() test_df.count()
code
327983/cell_31
[ "text_plain_output_1.png" ]
from sklearn import datasets, svm, cross_validation, tree, preprocessing, metrics from tensorflow.contrib import skflow import numpy as np import pandas as pd import tensorflow as tf titanic_df = pd.read_csv('../input/train.csv', dtype={'Age': np.float64}) test_df = pd.read_csv('../input/test.csv', dtype={'Age': np.float64}) titanic_df.groupby('Pclass').mean() class_sex_grouping = titanic_df.groupby(['Pclass', 'Sex']).mean() group_by_age = pd.cut(titanic_df['Age'], np.arange(0, 90, 10)) age_grouping = titanic_df.groupby(group_by_age).mean() titanic_df.count() titanic_df = titanic_df.drop(['Cabin'], axis=1) titanic_df = titanic_df.dropna() titanic_df.count() def preprocess_titanic_df(df): processed_df = df.copy() le = preprocessing.LabelEncoder() processed_df.Sex = le.fit_transform(processed_df.Sex) processed_df.Embarked = le.fit_transform(processed_df.Embarked) processed_df = processed_df.drop(['Name', 'Ticket'], axis=1) return processed_df processed_df = preprocess_titanic_df(titanic_df) processed_df.count() processed_df X = processed_df.drop(['Survived'], axis=1).values Y = processed_df['Survived'].values def custom_model(X, Y): layers = skflow.ops.dnn(X, [20, 40, 20], tf.tanh) return skflow.models.logistic_regression(layers, Y) tf_clf_c = skflow.TensorFlowEstimator(model_fn=custom_model, n_classes=2, batch_size=256, steps=1000, learning_rate=0.05) tf_clf_c.fit(x_train, y_train) metrics.accuracy_score(y_test, tf_clf_c.predict(x_test))
code
327983/cell_24
[ "text_plain_output_1.png" ]
from sklearn import datasets, svm, cross_validation, tree, preprocessing, metrics import numpy as np import pandas as pd titanic_df = pd.read_csv('../input/train.csv', dtype={'Age': np.float64}) test_df = pd.read_csv('../input/test.csv', dtype={'Age': np.float64}) titanic_df.groupby('Pclass').mean() class_sex_grouping = titanic_df.groupby(['Pclass', 'Sex']).mean() group_by_age = pd.cut(titanic_df['Age'], np.arange(0, 90, 10)) age_grouping = titanic_df.groupby(group_by_age).mean() titanic_df.count() titanic_df = titanic_df.drop(['Cabin'], axis=1) titanic_df = titanic_df.dropna() titanic_df.count() def preprocess_titanic_df(df): processed_df = df.copy() le = preprocessing.LabelEncoder() processed_df.Sex = le.fit_transform(processed_df.Sex) processed_df.Embarked = le.fit_transform(processed_df.Embarked) processed_df = processed_df.drop(['Name', 'Ticket'], axis=1) return processed_df processed_df = preprocess_titanic_df(titanic_df) processed_df.count() processed_df X = processed_df.drop(['Survived'], axis=1).values Y = processed_df['Survived'].values clf_dt = tree.DecisionTreeClassifier(max_depth=10) clf_dt.fit(X, Y) clf_dt.score(x_test, y_test)
code
327983/cell_10
[ "text_html_output_1.png" ]
import numpy as np import pandas as pd titanic_df = pd.read_csv('../input/train.csv', dtype={'Age': np.float64}) test_df = pd.read_csv('../input/test.csv', dtype={'Age': np.float64}) titanic_df.groupby('Pclass').mean() class_sex_grouping = titanic_df.groupby(['Pclass', 'Sex']).mean() group_by_age = pd.cut(titanic_df['Age'], np.arange(0, 90, 10)) age_grouping = titanic_df.groupby(group_by_age).mean() titanic_df.count()
code
327983/cell_27
[ "text_plain_output_1.png" ]
from sklearn import datasets, svm, cross_validation, tree, preprocessing, metrics import numpy as np import pandas as pd import sklearn.ensemble as ske titanic_df = pd.read_csv('../input/train.csv', dtype={'Age': np.float64}) test_df = pd.read_csv('../input/test.csv', dtype={'Age': np.float64}) titanic_df.groupby('Pclass').mean() class_sex_grouping = titanic_df.groupby(['Pclass', 'Sex']).mean() group_by_age = pd.cut(titanic_df['Age'], np.arange(0, 90, 10)) age_grouping = titanic_df.groupby(group_by_age).mean() titanic_df.count() titanic_df = titanic_df.drop(['Cabin'], axis=1) titanic_df = titanic_df.dropna() titanic_df.count() def preprocess_titanic_df(df): processed_df = df.copy() le = preprocessing.LabelEncoder() processed_df.Sex = le.fit_transform(processed_df.Sex) processed_df.Embarked = le.fit_transform(processed_df.Embarked) processed_df = processed_df.drop(['Name', 'Ticket'], axis=1) return processed_df processed_df = preprocess_titanic_df(titanic_df) processed_df.count() processed_df X = processed_df.drop(['Survived'], axis=1).values Y = processed_df['Survived'].values shuffle_validator = cross_validation.ShuffleSplit(len(X), n_iter=20, test_size=0.2, random_state=0) def test_classifier(clf): scores = cross_validation.cross_val_score(clf, X, Y, cv=shuffle_validator) clf_rf = ske.RandomForestClassifier(n_estimators=50) test_classifier(clf_rf)
code
327983/cell_5
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd titanic_df = pd.read_csv('../input/train.csv', dtype={'Age': np.float64}) test_df = pd.read_csv('../input/test.csv', dtype={'Age': np.float64}) titanic_df['Survived'].mean()
code
50242244/cell_13
[ "text_plain_output_1.png" ]
from lightfm import LightFM from lightfm.datasets import fetch_movielens import numpy as np import numpy as np # linear algebra data = fetch_movielens(min_rating=3.0) model_0 = LightFM(loss='warp') model_0.fit(data['train'], epochs=70, num_threads=4) def recommendation(model, data, ids): n_users, n_items = data['test'].shape for i in ids: pos = data['item_labels'][data['test'].tocsr()[i].indices] scores = model.predict(i, np.arange(n_items)) top_items = data['item_labels'][np.argsort(-scores)] recommendation(model_0, data, [215, 489, 116])
code
50242244/cell_9
[ "text_plain_output_1.png" ]
from lightfm import LightFM from lightfm.datasets import fetch_movielens data = fetch_movielens(min_rating=3.0) model_1 = LightFM(loss='bpr') model_1.fit(data['train'], epochs=70, num_threads=4)
code
50242244/cell_6
[ "text_plain_output_1.png" ]
from lightfm.datasets import fetch_movielens data = fetch_movielens(min_rating=3.0) print(repr(data['train'])) print(repr(data['test']))
code
50242244/cell_8
[ "text_plain_output_1.png" ]
from lightfm import LightFM from lightfm.datasets import fetch_movielens data = fetch_movielens(min_rating=3.0) model_0 = LightFM(loss='warp') model_0.fit(data['train'], epochs=70, num_threads=4)
code
50242244/cell_10
[ "text_plain_output_1.png" ]
from lightfm import LightFM from lightfm.datasets import fetch_movielens from lightfm.evaluation import precision_at_k,auc_score data = fetch_movielens(min_rating=3.0) model_0 = LightFM(loss='warp') model_0.fit(data['train'], epochs=70, num_threads=4) model_1 = LightFM(loss='bpr') model_1.fit(data['train'], epochs=70, num_threads=4) test_precision_0 = auc_score(model_0, data['test'], data['train']).mean() test_precision_1 = auc_score(model_1, data['test'], data['train']).mean() print(test_precision_0, test_precision_1)
code
50242244/cell_5
[ "text_plain_output_1.png" ]
from lightfm.datasets import fetch_movielens data = fetch_movielens(min_rating=3.0) data
code
17121162/cell_13
[ "text_plain_output_1.png" ]
param = {'lr': (0.1, 10, 10), 'batch_size': [32, 64, 128, 256, 512], 'epochs': [10, 20, 50], 'validation_split': [0.1, 0.2, 0.5], 'dropout': [0.1, 0.25, 0.5, 0.8], 'optimizer': [Adam, Nadam], 'loss': ['categorical_crossentropy'], 'last_activation': ['softmax'], 'weight_regulizer': [None]}
code
17121162/cell_4
[ "text_html_output_1.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd Accepted = [540, 602, 643, 783, 979, 1300] Submitted = [1807, 2123, 2145, 2620, 3303, 5160] Year = [2014, 2015, 2016, 2017, 2018, 2019] list_of_tuples = list(zip(Year, Accepted, Submitted)) df = pd.DataFrame(list_of_tuples, columns=['Year', 'Accepted', 'Submitted']) df train = pd.read_csv('../input/petfinder-adoption-prediction/train/train.csv') train.AdoptionSpeed.value_counts(normalize=True)
code
17121162/cell_6
[ "text_plain_output_1.png" ]
from sklearn.metrics import cohen_kappa_score import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd Accepted = [540, 602, 643, 783, 979, 1300] Submitted = [1807, 2123, 2145, 2620, 3303, 5160] Year = [2014, 2015, 2016, 2017, 2018, 2019] list_of_tuples = list(zip(Year, Accepted, Submitted)) df = pd.DataFrame(list_of_tuples, columns=['Year', 'Accepted', 'Submitted']) df train = pd.read_csv('../input/petfinder-adoption-prediction/train/train.csv') train.AdoptionSpeed.value_counts(normalize=True) from sklearn.metrics import cohen_kappa_score from itertools import repeat import random distribution = list(reversed(list(train.AdoptionSpeed.value_counts(normalize=True)))) y_true = train['AdoptionSpeed'].tolist() y_pred = list(np.random.choice([0, 1, 2, 3, 4], p=distribution, size=len(y_true))) cohen_kappa_score(y_true, y_pred, weights='quadratic') y_pred = list(np.random.choice([0, 1, 2, 3, 4], p=[0.2, 0.2, 0.2, 0.2, 0.2], size=len(y_true))) cohen_kappa_score(y_true, y_pred, weights='quadratic')
code
17121162/cell_2
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd Accepted = [540, 602, 643, 783, 979, 1300] Submitted = [1807, 2123, 2145, 2620, 3303, 5160] Year = [2014, 2015, 2016, 2017, 2018, 2019] list_of_tuples = list(zip(Year, Accepted, Submitted)) df = pd.DataFrame(list_of_tuples, columns=['Year', 'Accepted', 'Submitted']) df
code
17121162/cell_11
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.metrics import cohen_kappa_score import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd Accepted = [540, 602, 643, 783, 979, 1300] Submitted = [1807, 2123, 2145, 2620, 3303, 5160] Year = [2014, 2015, 2016, 2017, 2018, 2019] list_of_tuples = list(zip(Year, Accepted, Submitted)) df = pd.DataFrame(list_of_tuples, columns=['Year', 'Accepted', 'Submitted']) df train = pd.read_csv('../input/petfinder-adoption-prediction/train/train.csv') train.AdoptionSpeed.value_counts(normalize=True) from sklearn.metrics import cohen_kappa_score from itertools import repeat import random distribution = list(reversed(list(train.AdoptionSpeed.value_counts(normalize=True)))) y_true = train['AdoptionSpeed'].tolist() y_pred = list(np.random.choice([0, 1, 2, 3, 4], p=distribution, size=len(y_true))) cohen_kappa_score(y_true, y_pred, weights='quadratic') train = pd.read_csv('../input/petfinder-adoption-prediction/train/train.csv') test = pd.read_csv('../input/petfinder-adoption-prediction/test/test.csv') train['has_photo'] = train['PhotoAmt'].apply(lambda x: True if x > 0 else False) test['has_photo'] = test['PhotoAmt'].apply(lambda x: True if x > 0 else False) train[train.has_photo == False].AdoptionSpeed.value_counts()
code
17121162/cell_19
[ "text_plain_output_1.png" ]
from sklearn.metrics import cohen_kappa_score from sklearn.utils import class_weight import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd Accepted = [540, 602, 643, 783, 979, 1300] Submitted = [1807, 2123, 2145, 2620, 3303, 5160] Year = [2014, 2015, 2016, 2017, 2018, 2019] list_of_tuples = list(zip(Year, Accepted, Submitted)) df = pd.DataFrame(list_of_tuples, columns=['Year', 'Accepted', 'Submitted']) df train = pd.read_csv('../input/petfinder-adoption-prediction/train/train.csv') train.AdoptionSpeed.value_counts(normalize=True) from sklearn.metrics import cohen_kappa_score from itertools import repeat import random distribution = list(reversed(list(train.AdoptionSpeed.value_counts(normalize=True)))) y_true = train['AdoptionSpeed'].tolist() y_pred = list(np.random.choice([0, 1, 2, 3, 4], p=distribution, size=len(y_true))) cohen_kappa_score(y_true, y_pred, weights='quadratic') y_pred = list(np.random.choice([0, 1, 2, 3, 4], p=[0.2, 0.2, 0.2, 0.2, 0.2], size=len(y_true))) cohen_kappa_score(y_true, y_pred, weights='quadratic') y_pred = list(np.random.choice([0, 1, 2, 3, 4], p=[0.0, 0.0, 0.0, 0.01, 0.99], size=len(y_true))) cohen_kappa_score(y_true, y_pred, weights='quadratic') y_pred = list(np.random.choice([0, 1, 2, 3, 4], p=[0.99, 0.0, 0.0, 0.0, 0.01], size=len(y_true))) cohen_kappa_score(y_true, y_pred, weights='quadratic') from sklearn.utils import class_weight result = [] for x in range(781): result.append(0) for x in range(6768): result.append(1) for x in range(9949): result.append(2) for x in range(9467): result.append(3) for x in range(7960): result.append(4) result = np.asarray(result) class_weight.compute_class_weight('balanced', np.unique(result), result)
code
17121162/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os print(os.listdir('../input'))
code
17121162/cell_7
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.metrics import cohen_kappa_score import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd Accepted = [540, 602, 643, 783, 979, 1300] Submitted = [1807, 2123, 2145, 2620, 3303, 5160] Year = [2014, 2015, 2016, 2017, 2018, 2019] list_of_tuples = list(zip(Year, Accepted, Submitted)) df = pd.DataFrame(list_of_tuples, columns=['Year', 'Accepted', 'Submitted']) df train = pd.read_csv('../input/petfinder-adoption-prediction/train/train.csv') train.AdoptionSpeed.value_counts(normalize=True) from sklearn.metrics import cohen_kappa_score from itertools import repeat import random distribution = list(reversed(list(train.AdoptionSpeed.value_counts(normalize=True)))) y_true = train['AdoptionSpeed'].tolist() y_pred = list(np.random.choice([0, 1, 2, 3, 4], p=distribution, size=len(y_true))) cohen_kappa_score(y_true, y_pred, weights='quadratic') y_pred = list(np.random.choice([0, 1, 2, 3, 4], p=[0.2, 0.2, 0.2, 0.2, 0.2], size=len(y_true))) cohen_kappa_score(y_true, y_pred, weights='quadratic') y_pred = list(np.random.choice([0, 1, 2, 3, 4], p=[0.0, 0.0, 0.0, 0.01, 0.99], size=len(y_true))) cohen_kappa_score(y_true, y_pred, weights='quadratic')
code
17121162/cell_8
[ "text_plain_output_1.png" ]
from sklearn.metrics import cohen_kappa_score import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd Accepted = [540, 602, 643, 783, 979, 1300] Submitted = [1807, 2123, 2145, 2620, 3303, 5160] Year = [2014, 2015, 2016, 2017, 2018, 2019] list_of_tuples = list(zip(Year, Accepted, Submitted)) df = pd.DataFrame(list_of_tuples, columns=['Year', 'Accepted', 'Submitted']) df train = pd.read_csv('../input/petfinder-adoption-prediction/train/train.csv') train.AdoptionSpeed.value_counts(normalize=True) from sklearn.metrics import cohen_kappa_score from itertools import repeat import random distribution = list(reversed(list(train.AdoptionSpeed.value_counts(normalize=True)))) y_true = train['AdoptionSpeed'].tolist() y_pred = list(np.random.choice([0, 1, 2, 3, 4], p=distribution, size=len(y_true))) cohen_kappa_score(y_true, y_pred, weights='quadratic') y_pred = list(np.random.choice([0, 1, 2, 3, 4], p=[0.2, 0.2, 0.2, 0.2, 0.2], size=len(y_true))) cohen_kappa_score(y_true, y_pred, weights='quadratic') y_pred = list(np.random.choice([0, 1, 2, 3, 4], p=[0.0, 0.0, 0.0, 0.01, 0.99], size=len(y_true))) cohen_kappa_score(y_true, y_pred, weights='quadratic') y_pred = list(np.random.choice([0, 1, 2, 3, 4], p=[0.99, 0.0, 0.0, 0.0, 0.01], size=len(y_true))) cohen_kappa_score(y_true, y_pred, weights='quadratic')
code
17121162/cell_15
[ "text_plain_output_1.png" ]
from talos import Reporting from talos import Reporting r = Reporting('../input/resnet50-talos-score/resnet50_talos_score.csv') r.data.sort_values(['val_acc'], ascending=False) r.best_params()[0]
code
17121162/cell_16
[ "text_plain_output_1.png" ]
from talos import Reporting from talos import Reporting r = Reporting('../input/resnet50-talos-score/resnet50_talos_score.csv') r.data.sort_values(['val_acc'], ascending=False) r.best_params()[0] r.correlate('val_loss')
code
17121162/cell_3
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd Accepted = [540, 602, 643, 783, 979, 1300] Submitted = [1807, 2123, 2145, 2620, 3303, 5160] Year = [2014, 2015, 2016, 2017, 2018, 2019] list_of_tuples = list(zip(Year, Accepted, Submitted)) df = pd.DataFrame(list_of_tuples, columns=['Year', 'Accepted', 'Submitted']) df import seaborn as sns import matplotlib.pyplot as plt plt.figure(figsize=(20, 10)) df.plot.bar(x='Year', stacked=False) ax = plt.gca() ax.grid(which='major', axis='y', linestyle='--') plt.xticks(rotation=0) plt.ylabel('# of papers') plt.savefig('submissions.png')
code
17121162/cell_17
[ "text_plain_output_1.png" ]
from keras.layers import Dense from keras.models import Sequential from keras.models import Sequential from keras.layers import Dense model = Sequential() model.add(Dense(units=64, activation='relu', input_dim=100)) model.add(Dropout()) model.add(Dense(units=10, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy']) model.fit(x_train, y_train, epochs=5, batch_size=32)
code
17121162/cell_14
[ "text_plain_output_1.png" ]
from talos import Reporting from talos import Reporting r = Reporting('../input/resnet50-talos-score/resnet50_talos_score.csv') r.data.sort_values(['val_acc'], ascending=False)
code
17121162/cell_10
[ "text_html_output_1.png" ]
from sklearn.metrics import cohen_kappa_score import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd Accepted = [540, 602, 643, 783, 979, 1300] Submitted = [1807, 2123, 2145, 2620, 3303, 5160] Year = [2014, 2015, 2016, 2017, 2018, 2019] list_of_tuples = list(zip(Year, Accepted, Submitted)) df = pd.DataFrame(list_of_tuples, columns=['Year', 'Accepted', 'Submitted']) df train = pd.read_csv('../input/petfinder-adoption-prediction/train/train.csv') train.AdoptionSpeed.value_counts(normalize=True) from sklearn.metrics import cohen_kappa_score from itertools import repeat import random distribution = list(reversed(list(train.AdoptionSpeed.value_counts(normalize=True)))) y_true = train['AdoptionSpeed'].tolist() y_pred = list(np.random.choice([0, 1, 2, 3, 4], p=distribution, size=len(y_true))) cohen_kappa_score(y_true, y_pred, weights='quadratic') train = pd.read_csv('../input/petfinder-adoption-prediction/train/train.csv') test = pd.read_csv('../input/petfinder-adoption-prediction/test/test.csv') train['has_photo'] = train['PhotoAmt'].apply(lambda x: True if x > 0 else False) test['has_photo'] = test['PhotoAmt'].apply(lambda x: True if x > 0 else False) print('Missing photos in train set: %d' % train.has_photo.value_counts()[0]) print('Missing photos in test set: %d' % test.has_photo.value_counts()[0]) print('Percent missing in test set: %.2f' % (test.has_photo.value_counts()[0] / test.shape[0] * 100))
code
17121162/cell_12
[ "text_plain_output_1.png" ]
!pip install talos
code
17121162/cell_5
[ "text_plain_output_1.png" ]
from sklearn.metrics import cohen_kappa_score import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd Accepted = [540, 602, 643, 783, 979, 1300] Submitted = [1807, 2123, 2145, 2620, 3303, 5160] Year = [2014, 2015, 2016, 2017, 2018, 2019] list_of_tuples = list(zip(Year, Accepted, Submitted)) df = pd.DataFrame(list_of_tuples, columns=['Year', 'Accepted', 'Submitted']) df train = pd.read_csv('../input/petfinder-adoption-prediction/train/train.csv') train.AdoptionSpeed.value_counts(normalize=True) from sklearn.metrics import cohen_kappa_score from itertools import repeat import random distribution = list(reversed(list(train.AdoptionSpeed.value_counts(normalize=True)))) y_true = train['AdoptionSpeed'].tolist() y_pred = list(np.random.choice([0, 1, 2, 3, 4], p=distribution, size=len(y_true))) cohen_kappa_score(y_true, y_pred, weights='quadratic')
code
18120034/cell_13
[ "text_plain_output_1.png" ]
from google.cloud import bigquery from google.cloud import bigquery client = bigquery.Client() dataset_ref = client.dataset('openaq', project='bigquery-public-data') dataset = client.get_dataset(dataset_ref) tables = list(client.list_tables(dataset)) table_ref = dataset_ref.table('global_air_quality') table = client.get_table(table_ref) client.list_rows(table, max_results=5).to_dataframe() query = "\n SELECT city\n FROM `bigquery-public-data.openaq.global_air_quality`\n WHERE country = 'US'\n" query_job = client.query(query) us_cities = query_job.to_dataframe() us_cities.city.value_counts().head()
code
18120034/cell_9
[ "text_html_output_1.png" ]
query = "\n SELECT city\n FROM `bigquery-public-data.openaq.global_air_quality`\n WHERE country = 'US'\n" query
code
18120034/cell_4
[ "text_plain_output_1.png" ]
from google.cloud import bigquery from google.cloud import bigquery client = bigquery.Client() dataset_ref = client.dataset('openaq', project='bigquery-public-data') dataset = client.get_dataset(dataset_ref) tables = list(client.list_tables(dataset)) for table in tables: print(table.table_id)
code
18120034/cell_6
[ "text_plain_output_1.png" ]
from google.cloud import bigquery from google.cloud import bigquery client = bigquery.Client() dataset_ref = client.dataset('openaq', project='bigquery-public-data') dataset = client.get_dataset(dataset_ref) tables = list(client.list_tables(dataset)) table_ref = dataset_ref.table('global_air_quality') table = client.get_table(table_ref) type(table)
code
18120034/cell_2
[ "text_plain_output_1.png" ]
from google.cloud import bigquery from google.cloud import bigquery client = bigquery.Client() dataset_ref = client.dataset('openaq', project='bigquery-public-data') dataset = client.get_dataset(dataset_ref)
code
18120034/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os print(os.listdir('../input'))
code
18120034/cell_7
[ "text_html_output_1.png", "text_plain_output_1.png" ]
from google.cloud import bigquery from google.cloud import bigquery client = bigquery.Client() dataset_ref = client.dataset('openaq', project='bigquery-public-data') dataset = client.get_dataset(dataset_ref) tables = list(client.list_tables(dataset)) table_ref = dataset_ref.table('global_air_quality') table = client.get_table(table_ref) client.list_rows(table, max_results=5).to_dataframe()
code
18120034/cell_15
[ "text_html_output_1.png" ]
from google.cloud import bigquery from google.cloud import bigquery client = bigquery.Client() dataset_ref = client.dataset('openaq', project='bigquery-public-data') dataset = client.get_dataset(dataset_ref) tables = list(client.list_tables(dataset)) table_ref = dataset_ref.table('global_air_quality') table = client.get_table(table_ref) client.list_rows(table, max_results=5).to_dataframe() query = "\n SELECT city\n FROM `bigquery-public-data.openaq.global_air_quality`\n WHERE country = 'US'\n" query_job = client.query(query) ONE_MB = 1000 * 1000 safe_config = bigquery.QueryJobConfig(maximum_bytes_billed=ONE_MB) safe_query_job = client.query(query, job_config=safe_config) safe_query_job.to_dataframe().head()
code
18120034/cell_14
[ "text_plain_output_1.png" ]
query_1 = "\n SELECT city, country, source_name\n FROM `bigquery-public-data.openaq.global_air_quality`\n WHERE country = 'US'\n" query_job_1 = client.query(query_1) df_1 = query_job_1.to_dataframe() df_1.head()
code
18120034/cell_12
[ "text_plain_output_1.png" ]
from google.cloud import bigquery from google.cloud import bigquery client = bigquery.Client() dataset_ref = client.dataset('openaq', project='bigquery-public-data') dataset = client.get_dataset(dataset_ref) tables = list(client.list_tables(dataset)) table_ref = dataset_ref.table('global_air_quality') table = client.get_table(table_ref) client.list_rows(table, max_results=5).to_dataframe() query = "\n SELECT city\n FROM `bigquery-public-data.openaq.global_air_quality`\n WHERE country = 'US'\n" query_job = client.query(query) us_cities = query_job.to_dataframe() type(us_cities)
code
16163769/cell_4
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/train.csv') df simple_feature_cutting_df = df.drop(['PassengerId', 'Name', 'Ticket', 'Cabin', 'Embarked'], axis=1) simple_feature_cutting_df = simple_feature_cutting_df.dropna() simple_feature_cutting_df = pd.get_dummies(simple_feature_cutting_df, columns=['Sex']) simple_feature_cutting_df.index = range(0, len(simple_feature_cutting_df)) simple_feature_cutting_df
code
16163769/cell_6
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/train.csv') df simple_feature_cutting_df = df.drop(['PassengerId', 'Name', 'Ticket', 'Cabin', 'Embarked'], axis=1) simple_feature_cutting_df = simple_feature_cutting_df.dropna() simple_feature_cutting_df = pd.get_dummies(simple_feature_cutting_df, columns=['Sex']) simple_feature_cutting_df.index = range(0, len(simple_feature_cutting_df)) simple_feature_cutting_df test_data_set = simple_feature_cutting_df[:100] train_data_set = simple_feature_cutting_df[100:] from sklearn.ensemble import RandomForestClassifier model = RandomForestClassifier() label_data = train_data_set['Survived'] train_data = train_data_set.drop('Survived', axis=1) model.fit(train_data, label_data)
code
16163769/cell_2
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/train.csv') df
code
16163769/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os print(os.listdir('../input'))
code
16163769/cell_7
[ "text_html_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/train.csv') df simple_feature_cutting_df = df.drop(['PassengerId', 'Name', 'Ticket', 'Cabin', 'Embarked'], axis=1) simple_feature_cutting_df = simple_feature_cutting_df.dropna() simple_feature_cutting_df = pd.get_dummies(simple_feature_cutting_df, columns=['Sex']) simple_feature_cutting_df.index = range(0, len(simple_feature_cutting_df)) simple_feature_cutting_df test_data_set = simple_feature_cutting_df[:100] train_data_set = simple_feature_cutting_df[100:] from sklearn.ensemble import RandomForestClassifier model = RandomForestClassifier() label_data = train_data_set['Survived'] train_data = train_data_set.drop('Survived', axis=1) model.fit(train_data, label_data) result_test_predict = model.predict(test_data_set.drop('Survived', axis=1)) real_test_observations = np.array(test_data_set['Survived']) result = pd.DataFrame({'predict': result_test_predict, 'real': real_test_observations}) result['Correct'] = result.apply(lambda row: row['predict'] == row['real'], axis=1) result
code
16163769/cell_8
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/train.csv') df simple_feature_cutting_df = df.drop(['PassengerId', 'Name', 'Ticket', 'Cabin', 'Embarked'], axis=1) simple_feature_cutting_df = simple_feature_cutting_df.dropna() simple_feature_cutting_df = pd.get_dummies(simple_feature_cutting_df, columns=['Sex']) simple_feature_cutting_df.index = range(0, len(simple_feature_cutting_df)) simple_feature_cutting_df test_data_set = simple_feature_cutting_df[:100] train_data_set = simple_feature_cutting_df[100:] from sklearn.ensemble import RandomForestClassifier model = RandomForestClassifier() label_data = train_data_set['Survived'] train_data = train_data_set.drop('Survived', axis=1) model.fit(train_data, label_data) result_test_predict = model.predict(test_data_set.drop('Survived', axis=1)) real_test_observations = np.array(test_data_set['Survived']) result = pd.DataFrame({'predict': result_test_predict, 'real': real_test_observations}) result['Correct'] = result.apply(lambda row: row['predict'] == row['real'], axis=1) result num_correct = len(result[result['Correct']]) num_total = len(result) num_correct / num_total
code
16163769/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/train.csv') df import matplotlib.pyplot as plt df['Age'].hist(bins=20)
code
72069261/cell_21
[ "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import numpy as np import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/breast-cancer-csv/breastCancer.csv') df df.shape df.columns c = {col: df[df[col] == '?'].shape[0] for col in df.columns} c import numpy as np for i in range(df.shape[1]): for j in range(df.shape[0]): if df.iloc[j, i] == '?': df.iloc[j, i] = np.NaN df.corr() fig1 = plt.figure(figsize=(10,8)) sns.heatmap(df.corr(),annot=True,cmap='YlGnBu',vmax=1.0,vmin=-1.0) fig2 = plt.figure(figsize=(6,6)) sns.pairplot(df.iloc[:,1:],hue='class',palette='Set2') X_train, X_test, y_train, y_test = train_test_split(df.iloc[:, 1:-1], df.iloc[:, -1]) print(X_train, '\n') print(X_test, '\n') print(y_train, '\n') print(y_test, '\n') print('The dimension of X_train is : ', X_train.shape, '\n') print('The dimension of X_test is : ', X_test.shape, '\n') print('The dimension of y_train is : ', y_train.shape, '\n') print('The dimension of y_test is : ', y_test.shape, '\n')
code
72069261/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/breast-cancer-csv/breastCancer.csv') df df.shape df.columns print(df['class'].value_counts() / 6.99) df['class'].value_counts()
code
72069261/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/breast-cancer-csv/breastCancer.csv') df df.head(10)
code
72069261/cell_33
[ "text_plain_output_2.png", "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix from sklearn.model_selection import train_test_split from sklearn.naive_bayes import GaussianNB import matplotlib.pyplot as plt import numpy as np import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/breast-cancer-csv/breastCancer.csv') df df.shape df.columns c = {col: df[df[col] == '?'].shape[0] for col in df.columns} c import numpy as np for i in range(df.shape[1]): for j in range(df.shape[0]): if df.iloc[j, i] == '?': df.iloc[j, i] = np.NaN df.corr() fig1 = plt.figure(figsize=(10,8)) sns.heatmap(df.corr(),annot=True,cmap='YlGnBu',vmax=1.0,vmin=-1.0) fig2 = plt.figure(figsize=(6,6)) sns.pairplot(df.iloc[:,1:],hue='class',palette='Set2') X_train, X_test, y_train, y_test = train_test_split(df.iloc[:, 1:-1], df.iloc[:, -1]) gaussnb = GaussianNB() gaussnb.fit(X_train, y_train) gaussnbpred = gaussnb.predict(X_test) gaussnbresults = confusion_matrix(y_test, gaussnbpred) gaussnbacc_score = accuracy_score(y_test, gaussnbpred) print('The accuracy of NaiveBayes model is : %0.4f ', gaussnbacc_score) print('The confusion matrix is :\n', gaussnbresults)
code
72069261/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/breast-cancer-csv/breastCancer.csv') df df.shape df.describe()
code
72069261/cell_29
[ "text_html_output_1.png" ]
from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier import matplotlib.pyplot as plt import numpy as np import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/breast-cancer-csv/breastCancer.csv') df df.shape df.columns c = {col: df[df[col] == '?'].shape[0] for col in df.columns} c import numpy as np for i in range(df.shape[1]): for j in range(df.shape[0]): if df.iloc[j, i] == '?': df.iloc[j, i] = np.NaN df.corr() fig1 = plt.figure(figsize=(10,8)) sns.heatmap(df.corr(),annot=True,cmap='YlGnBu',vmax=1.0,vmin=-1.0) fig2 = plt.figure(figsize=(6,6)) sns.pairplot(df.iloc[:,1:],hue='class',palette='Set2') X_train, X_test, y_train, y_test = train_test_split(df.iloc[:, 1:-1], df.iloc[:, -1]) error_rate = [] for i in range(1, 40): knn = KNeighborsClassifier(n_neighbors=i) knn.fit(X_train, y_train) pred = knn.predict(X_test) error_rate.append(np.mean(pred != y_test)) print(accuracy_score(y_test, pred))
code
72069261/cell_19
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/breast-cancer-csv/breastCancer.csv') df df.shape df.columns c = {col: df[df[col] == '?'].shape[0] for col in df.columns} c import numpy as np for i in range(df.shape[1]): for j in range(df.shape[0]): if df.iloc[j, i] == '?': df.iloc[j, i] = np.NaN df.corr() fig1 = plt.figure(figsize=(10,8)) sns.heatmap(df.corr(),annot=True,cmap='YlGnBu',vmax=1.0,vmin=-1.0) fig2 = plt.figure(figsize=(6, 6)) sns.pairplot(df.iloc[:, 1:], hue='class', palette='Set2')
code
72069261/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
72069261/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/breast-cancer-csv/breastCancer.csv') df df.shape df.info()
code
72069261/cell_18
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/breast-cancer-csv/breastCancer.csv') df df.shape df.columns c = {col: df[df[col] == '?'].shape[0] for col in df.columns} c import numpy as np for i in range(df.shape[1]): for j in range(df.shape[0]): if df.iloc[j, i] == '?': df.iloc[j, i] = np.NaN df.corr() fig1 = plt.figure(figsize=(10, 8)) sns.heatmap(df.corr(), annot=True, cmap='YlGnBu', vmax=1.0, vmin=-1.0)
code
72069261/cell_28
[ "text_plain_output_1.png" ]
from sklearn.metrics import classification_report from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier import matplotlib.pyplot as plt import numpy as np import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/breast-cancer-csv/breastCancer.csv') df df.shape df.columns c = {col: df[df[col] == '?'].shape[0] for col in df.columns} c import numpy as np for i in range(df.shape[1]): for j in range(df.shape[0]): if df.iloc[j, i] == '?': df.iloc[j, i] = np.NaN df.corr() fig1 = plt.figure(figsize=(10,8)) sns.heatmap(df.corr(),annot=True,cmap='YlGnBu',vmax=1.0,vmin=-1.0) fig2 = plt.figure(figsize=(6,6)) sns.pairplot(df.iloc[:,1:],hue='class',palette='Set2') X_train, X_test, y_train, y_test = train_test_split(df.iloc[:, 1:-1], df.iloc[:, -1]) model1 = KNeighborsClassifier(n_neighbors=4).fit(X_train, y_train) print(classification_report(model1.predict(X_train), y_train)) print(classification_report(model1.predict(X_test), y_test))
code
72069261/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/breast-cancer-csv/breastCancer.csv') df df.shape df.columns
code
72069261/cell_15
[ "text_html_output_1.png" ]
import numpy as np import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/breast-cancer-csv/breastCancer.csv') df df.shape df.columns c = {col: df[df[col] == '?'].shape[0] for col in df.columns} c import numpy as np for i in range(df.shape[1]): for j in range(df.shape[0]): if df.iloc[j, i] == '?': df.iloc[j, i] = np.NaN list(df['bare_nucleoli'].mode())
code
72069261/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/breast-cancer-csv/breastCancer.csv') df
code
72069261/cell_17
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/breast-cancer-csv/breastCancer.csv') df df.shape df.columns c = {col: df[df[col] == '?'].shape[0] for col in df.columns} c import numpy as np for i in range(df.shape[1]): for j in range(df.shape[0]): if df.iloc[j, i] == '?': df.iloc[j, i] = np.NaN df.corr()
code
72069261/cell_24
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier import matplotlib.pyplot as plt import numpy as np import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/breast-cancer-csv/breastCancer.csv') df df.shape df.columns c = {col: df[df[col] == '?'].shape[0] for col in df.columns} c import numpy as np for i in range(df.shape[1]): for j in range(df.shape[0]): if df.iloc[j, i] == '?': df.iloc[j, i] = np.NaN df.corr() fig1 = plt.figure(figsize=(10,8)) sns.heatmap(df.corr(),annot=True,cmap='YlGnBu',vmax=1.0,vmin=-1.0) fig2 = plt.figure(figsize=(6,6)) sns.pairplot(df.iloc[:,1:],hue='class',palette='Set2') X_train, X_test, y_train, y_test = train_test_split(df.iloc[:, 1:-1], df.iloc[:, -1]) error_rate = [] for i in range(1, 40): knn = KNeighborsClassifier(n_neighbors=i) knn.fit(X_train, y_train) pred = knn.predict(X_test) error_rate.append(np.mean(pred != y_test)) plt.figure(figsize=(10, 6)) plt.plot(range(1, 40), error_rate, 'o--') plt.ylabel('Error Rate') plt.xlabel('K')
code
72069261/cell_27
[ "text_plain_output_1.png" ]
from sklearn.metrics import plot_confusion_matrix from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier import matplotlib.pyplot as plt import numpy as np import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/breast-cancer-csv/breastCancer.csv') df df.shape df.columns c = {col: df[df[col] == '?'].shape[0] for col in df.columns} c import numpy as np for i in range(df.shape[1]): for j in range(df.shape[0]): if df.iloc[j, i] == '?': df.iloc[j, i] = np.NaN df.corr() fig1 = plt.figure(figsize=(10,8)) sns.heatmap(df.corr(),annot=True,cmap='YlGnBu',vmax=1.0,vmin=-1.0) fig2 = plt.figure(figsize=(6,6)) sns.pairplot(df.iloc[:,1:],hue='class',palette='Set2') X_train, X_test, y_train, y_test = train_test_split(df.iloc[:, 1:-1], df.iloc[:, -1]) error_rate = [] for i in range(1, 40): knn = KNeighborsClassifier(n_neighbors=i) knn.fit(X_train, y_train) pred = knn.predict(X_test) error_rate.append(np.mean(pred != y_test)) model1 = KNeighborsClassifier(n_neighbors=4).fit(X_train, y_train) fig3, axs = plt.subplots(figsize=(5, 5)) plot_confusion_matrix(model1, X_test, y_test, ax=axs)
code
72069261/cell_12
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/breast-cancer-csv/breastCancer.csv') df df.shape df.columns c = {col: df[df[col] == '?'].shape[0] for col in df.columns} c
code
72069261/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/breast-cancer-csv/breastCancer.csv') df df.shape
code
128033738/cell_3
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd path = '/kaggle/input/news-headlines/news_summary.csv' df = pd.read_csv(path) df.head()
code
128033738/cell_24
[ "text_html_output_82.png", "text_html_output_255.png", "text_html_output_149.png", "text_html_output_277.png", "text_html_output_338.png", "text_html_output_282.png", "text_html_output_219.png", "text_html_output_130.png", "text_html_output_320.png", "text_html_output_155.png", "text_html_output_328.png", "text_html_output_327.png", "text_html_output_307.png", "text_html_output_314.png", "text_html_output_103.png", "text_html_output_321.png", "text_html_output_197.png", "text_html_output_88.png", "text_html_output_80.png", "text_html_output_29.png", "text_html_output_89.png", "text_html_output_146.png", "text_html_output_261.png", "text_html_output_60.png", "text_html_output_227.png", "text_html_output_159.png", "text_html_output_237.png", "text_html_output_68.png", "text_html_output_341.png", "text_html_output_178.png", "text_html_output_117.png", "text_html_output_27.png", "text_html_output_115.png", "text_html_output_239.png", "text_html_output_235.png", "text_html_output_28.png", "text_html_output_209.png", "text_html_output_356.png", "text_html_output_263.png", "text_html_output_310.png", "text_html_output_141.png", "text_html_output_323.png", "text_html_output_45.png", "text_html_output_90.png", "text_html_output_274.png", "text_html_output_329.png", "text_html_output_353.png", "text_html_output_304.png", "text_html_output_10.png", "text_html_output_183.png", "text_html_output_165.png", "text_html_output_59.png", "text_html_output_319.png", "text_html_output_180.png", "text_html_output_116.png", "text_html_output_161.png", "text_html_output_347.png", "text_html_output_190.png", "text_html_output_258.png", "text_html_output_142.png", "text_html_output_218.png", "text_html_output_224.png", "text_html_output_181.png", "text_html_output_186.png", "text_html_output_22.png", "text_html_output_230.png", "text_html_output_350.png", "text_html_output_214.png", "text_html_output_125.png", "text_html_output_150.png", "text_html_output_234.png", "text_html_output_16.png", "text_html_output_337.png", "text_html_output_40.png", "text_html_output_223.png", "text_html_output_91.png", "text_html_output_100.png", "text_html_output_293.png", "text_html_output_317.png", "text_html_output_176.png", "text_html_output_199.png", "text_html_output_144.png", "text_html_output_173.png", "text_html_output_305.png", "text_html_output_153.png", "text_html_output_52.png", "text_html_output_122.png", "text_html_output_166.png", "text_html_output_53.png", "text_html_output_4.png", "text_html_output_194.png", "text_html_output_41.png", "text_html_output_81.png", "text_html_output_205.png", "text_html_output_300.png", "text_html_output_132.png", "text_html_output_57.png", "text_html_output_73.png", "text_html_output_147.png", "text_html_output_203.png", "text_html_output_158.png", "text_html_output_254.png", "text_html_output_35.png", "text_html_output_306.png", "text_html_output_244.png", "text_html_output_6.png", "text_html_output_47.png", "text_html_output_139.png", "text_html_output_113.png", "text_html_output_241.png", "text_html_output_269.png", "text_html_output_339.png", "text_html_output_168.png", "text_html_output_61.png", "text_html_output_253.png", "text_html_output_311.png", "text_html_output_288.png", "text_html_output_63.png", "text_html_output_123.png", "text_html_output_94.png", "text_html_output_136.png", "text_html_output_222.png", "text_html_output_140.png", "text_html_output_248.png", "text_html_output_333.png", "text_html_output_266.png", "text_html_output_352.png", "text_html_output_211.png", "text_html_output_26.png", "text_html_output_316.png", "text_html_output_346.png", "text_html_output_37.png", "text_html_output_270.png", "text_html_output_2.png", "text_html_output_38.png", "text_html_output_246.png", "text_html_output_15.png", "text_html_output_5.png", "text_html_output_271.png", "text_html_output_281.png", "text_html_output_358.png", "text_html_output_124.png", "text_html_output_295.png", "text_html_output_252.png", "text_html_output_163.png", "text_html_output_200.png", "text_html_output_75.png", "text_html_output_208.png", "text_html_output_64.png", "text_html_output_204.png", "text_html_output_110.png", "text_html_output_206.png", "text_html_output_14.png", "text_html_output_191.png", "text_html_output_210.png", "text_html_output_332.png", "text_html_output_71.png", "text_html_output_98.png", "text_html_output_120.png", "text_html_output_157.png", "text_html_output_65.png", "text_html_output_43.png", "text_html_output_104.png", "text_html_output_101.png", "text_html_output_95.png", "text_html_output_268.png", "text_html_output_108.png", "text_html_output_175.png", "text_html_output_336.png", "text_html_output_131.png", "text_html_output_127.png", "text_html_output_121.png", "text_html_output_170.png", "text_html_output_23.png", "text_html_output_278.png", "text_html_output_118.png", "text_html_output_309.png", "text_html_output_249.png", "text_html_output_290.png", "text_html_output_291.png", "text_html_output_19.png", "text_html_output_283.png", "text_html_output_196.png", "text_html_output_137.png", "text_html_output_238.png", "text_html_output_48.png", "text_html_output_324.png", "text_html_output_298.png", "text_html_output_72.png", "text_html_output_354.png", "text_html_output_251.png", "text_html_output_169.png", "text_html_output_9.png", "text_html_output_109.png", "text_html_output_46.png", "text_html_output_201.png", "text_html_output_49.png", "text_html_output_13.png", "text_html_output_20.png", "text_html_output_250.png", "text_html_output_114.png", "text_html_output_70.png", "text_html_output_51.png", "text_html_output_151.png", "text_html_output_192.png", "text_html_output_259.png", "text_html_output_357.png", "text_html_output_129.png", "text_html_output_105.png", "text_html_output_164.png", "text_html_output_326.png", "text_html_output_134.png", "text_html_output_111.png", "text_html_output_188.png", "text_html_output_126.png", "text_html_output_256.png", "text_html_output_233.png", "text_html_output_148.png", "text_html_output_135.png", "text_html_output_212.png", "text_html_output_184.png", "text_html_output_225.png", "text_html_output_21.png", "text_html_output_69.png", "text_html_output_285.png", "text_html_output_128.png", "text_html_output_349.png", "text_html_output_83.png", "text_html_output_215.png", "text_html_output_79.png", "text_html_output_308.png", "text_html_output_289.png", "text_html_output_276.png", "text_html_output_335.png", "text_html_output_302.png", "text_html_output_187.png", "text_html_output_172.png", "text_html_output_202.png", "text_html_output_348.png", "text_html_output_257.png", "text_html_output_322.png", "text_html_output_343.png", "text_html_output_267.png", "text_html_output_92.png", "text_html_output_1.png", "text_html_output_93.png", "text_html_output_66.png", "text_html_output_36.png", "text_html_output_78.png", "text_html_output_17.png", "text_html_output_33.png", "text_html_output_42.png", "text_html_output_189.png", "text_html_output_44.png", "text_html_output_301.png", "text_html_output_160.png", "text_html_output_96.png", "text_html_output_87.png", "text_html_output_247.png", "text_html_output_299.png", "text_html_output_242.png", "text_html_output_50.png", "text_html_output_243.png", "text_html_output_30.png", "text_html_output_18.png", "text_html_output_236.png", "text_html_output_85.png", "text_html_output_334.png", "text_html_output_280.png", "text_html_output_330.png", "text_html_output_77.png", "text_html_output_275.png", "text_html_output_351.png", "text_html_output_54.png", "text_html_output_286.png", "text_html_output_162.png", "text_html_output_229.png", "text_html_output_179.png", "text_html_output_156.png", "text_html_output_76.png", "text_html_output_325.png", "text_html_output_345.png", "text_html_output_12.png", "text_html_output_213.png", "text_html_output_303.png", "text_html_output_292.png", "text_html_output_97.png", "text_html_output_34.png", "text_html_output_221.png", "text_html_output_193.png", "text_html_output_74.png", "text_html_output_272.png", "text_html_output_62.png", "text_html_output_273.png", "text_html_output_198.png", "text_html_output_56.png", "text_html_output_297.png", "text_html_output_55.png", "text_html_output_216.png", "text_html_output_240.png", "text_html_output_220.png", "text_html_output_106.png", "text_html_output_86.png", "text_html_output_217.png", "text_html_output_145.png", "text_html_output_102.png", "text_html_output_264.png", "application_vnd.jupyter.stderr_output_1.png", "text_html_output_11.png", "text_html_output_342.png", "text_html_output_195.png", "text_html_output_84.png", "text_html_output_24.png", "text_html_output_355.png", "text_html_output_284.png", "text_html_output_182.png", "text_html_output_167.png", "text_html_output_287.png", "text_html_output_31.png", "text_html_output_260.png", "text_html_output_313.png", "text_html_output_228.png", "text_html_output_344.png", "text_html_output_99.png", "text_html_output_143.png", "text_html_output_154.png", "text_html_output_177.png", "text_html_output_8.png", "text_html_output_67.png", "text_html_output_25.png", "text_html_output_231.png", "text_html_output_331.png", "text_html_output_58.png", "text_html_output_294.png", "text_html_output_171.png", "text_html_output_265.png", "text_html_output_232.png", "text_html_output_152.png", "text_html_output_39.png", "text_html_output_279.png", "text_html_output_207.png", "text_html_output_312.png", "text_html_output_174.png", "text_html_output_315.png", "text_html_output_112.png", "text_html_output_245.png", "text_html_output_32.png", "text_html_output_119.png", "text_html_output_296.png", "text_html_output_3.png", "text_html_output_185.png", "text_html_output_133.png", "text_html_output_107.png", "text_html_output_138.png", "text_html_output_226.png", "text_html_output_262.png", "text_html_output_7.png", "text_html_output_318.png", "text_html_output_340.png" ]
from rich import box from rich.console import Console from rich.table import Column, Table from torch import cuda from torch.utils.data import Dataset, DataLoader, RandomSampler, SequentialSampler from transformers import T5Tokenizer, T5ForConditionalGeneration import numpy as np import os import os import pandas as pd import pandas as pd import torch import pandas as pd path = '/kaggle/input/news-headlines/news_summary.csv' df = pd.read_csv(path) console = Console(record=True) def display_df(df): """display dataframe in ASCII format""" console = Console() table = Table(Column('source_text', justify='center'), Column('target_text', justify='center'), title='Sample Data', pad_edge=False, box=box.ASCII) for i, row in enumerate(df.values.tolist()): table.add_row(row[0], row[1]) training_logger = Table(Column('Epoch', justify='center'), Column('Steps', justify='center'), Column('Loss', justify='center'), title='Training Status', pad_edge=False, box=box.ASCII) from torch import cuda device = 'cuda' if cuda.is_available() else 'cpu' device class CustomDataSetClass(Dataset): """ Creating a custom dataset for reading the dataset and loading it into the dataloader to pass it to the transformer for finetuning the model """ def __init__(self, dataframe, tokenizer, source_len, target_len, source_text, target_text): """ Initializes a Dataset class Args: dataframe (pandas.DataFrame): Input dataframe tokenizer (transformers.tokenizer): Transformers tokenizer source_len (int): Max length of source text target_len (int): Max length of target text source_text (str): column name of source text target_text (str): column name of target text """ self.tokenizer = tokenizer self.data = dataframe self.source_len = source_len self.summ_len = target_len self.target_text = self.data[target_text] self.source_text = self.data[source_text] def __len__(self): """returns the length of dataframe""" return len(self.target_text) def __getitem__(self, index): """return the input ids, attention masks and target ids""" source_text = str(self.source_text[index]) target_text = str(self.target_text[index]) source_text = ' '.join(source_text.split()) target_text = ' '.join(target_text.split()) source = self.tokenizer.batch_encode_plus([source_text], max_length=self.source_len, pad_to_max_length=True, truncation=True, padding='max_length', return_tensors='pt') target = self.tokenizer.batch_encode_plus([target_text], max_length=self.summ_len, pad_to_max_length=True, truncation=True, padding='max_length', return_tensors='pt') source_ids = source['input_ids'].squeeze() source_mask = source['attention_mask'].squeeze() target_ids = target['input_ids'].squeeze() target_mask = target['attention_mask'].squeeze() return {'source_ids': source_ids.to(dtype=torch.long), 'source_mask': source_mask.to(dtype=torch.long), 'target_ids': target_ids.to(dtype=torch.long), 'target_ids_y': target_ids.to(dtype=torch.long)} def train(epoch, tokenizer, model, device, loader, optimizer): """ Function to be called for training with the parameters passed from main function """ model.train() for _, data in enumerate(loader, 0): y = data['target_ids'].to(device, dtype=torch.long) y_ids = y[:, :-1].contiguous() lm_labels = y[:, 1:].clone().detach() lm_labels[y[:, 1:] == tokenizer.pad_token_id] = -100 ids = data['source_ids'].to(device, dtype=torch.long) mask = data['source_mask'].to(device, dtype=torch.long) outputs = model(input_ids=ids, attention_mask=mask, decoder_input_ids=y_ids, labels=lm_labels) loss = outputs[0] if _ % 100 == 0: training_logger.add_row(str(epoch), str(_), str(loss)) optimizer.zero_grad() loss.backward() optimizer.step() def validate(epoch, tokenizer, model, device, loader): """ Function to evaluate model for predictions """ model.eval() predictions = [] actuals = [] with torch.no_grad(): for _, data in enumerate(loader, 0): y = data['target_ids'].to(device, dtype=torch.long) ids = data['source_ids'].to(device, dtype=torch.long) mask = data['source_mask'].to(device, dtype=torch.long) generated_ids = model.generate(input_ids=ids, attention_mask=mask, max_length=150, num_beams=2, repetition_penalty=2.5, length_penalty=1.0, early_stopping=True) preds = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True) for g in generated_ids] target = [tokenizer.decode(t, skip_special_tokens=True, clean_up_tokenization_spaces=True) for t in y] predictions.extend(preds) actuals.extend(target) return (predictions, actuals) def T5Trainer(dataframe, source_text, target_text, model_params, output_dir='/kaggle/working/'): """ T5 trainer """ torch.manual_seed(model_params['SEED']) np.random.seed(model_params['SEED']) torch.backends.cudnn.deterministic = True console.log(f"[Model]: Loading {model_params['MODEL']}...\n") tokenizer = T5Tokenizer.from_pretrained(model_params['MODEL']) model = T5ForConditionalGeneration.from_pretrained(model_params['MODEL']) model = model.to(device) console.log(f'[Data]: Reading data...\n') dataframe = dataframe[[source_text, target_text]] train_size = 0.8 train_dataset = dataframe.sample(frac=train_size, random_state=model_params['SEED']) val_dataset = dataframe.drop(train_dataset.index).reset_index(drop=True) train_dataset = train_dataset.reset_index(drop=True) training_set = CustomDataSetClass(train_dataset, tokenizer, model_params['MAX_SOURCE_TEXT_LENGTH'], model_params['MAX_TARGET_TEXT_LENGTH'], source_text, target_text) val_set = CustomDataSetClass(val_dataset, tokenizer, model_params['MAX_SOURCE_TEXT_LENGTH'], model_params['MAX_TARGET_TEXT_LENGTH'], source_text, target_text) train_params = {'batch_size': model_params['TRAIN_BATCH_SIZE'], 'shuffle': True, 'num_workers': 0} val_params = {'batch_size': model_params['VALID_BATCH_SIZE'], 'shuffle': False, 'num_workers': 0} training_loader = DataLoader(training_set, **train_params) val_loader = DataLoader(val_set, **val_params) optimizer = torch.optim.Adam(params=model.parameters(), lr=model_params['LEARNING_RATE']) console.log(f'[Initiating Fine Tuning]...\n') for epoch in range(model_params['TRAIN_EPOCHS']): train(epoch, tokenizer, model, device, training_loader, optimizer) console.log(f'[Saving Model]...\n') path = os.path.join(output_dir, 'model_files') model.save_pretrained(path) tokenizer.save_pretrained(path) console.log(f'[Initiating Validation]...\n') for epoch in range(model_params['VAL_EPOCHS']): predictions, actuals = validate(epoch, tokenizer, model, device, val_loader) final_df = pd.DataFrame({'Generated Text': predictions, 'Actual Text': actuals}) final_df.to_csv(os.path.join(output_dir, 'predictions.csv')) console.save_text(os.path.join(output_dir, 'logs.txt')) console.log(f'[Validation Completed.]\n') return final_df model_params = {'MODEL': 't5-base', 'TRAIN_BATCH_SIZE': 8, 'VALID_BATCH_SIZE': 8, 'TRAIN_EPOCHS': 1, 'VAL_EPOCHS': 1, 'LEARNING_RATE': 0.0001, 'MAX_SOURCE_TEXT_LENGTH': 512, 'MAX_TARGET_TEXT_LENGTH': 50, 'SEED': 42} df['text'] = 'summarize: ' + df['text'] predictions = T5Trainer(dataframe=df, source_text='text', target_text='headlines', model_params=model_params, output_dir='outputs') predictions.sample(20)
code
128033738/cell_22
[ "text_plain_output_1.png" ]
from rich import box from rich.console import Console from rich.table import Column, Table from torch import cuda from torch.utils.data import Dataset, DataLoader, RandomSampler, SequentialSampler from transformers import T5Tokenizer, T5ForConditionalGeneration import numpy as np import os import os import pandas as pd import pandas as pd import torch import pandas as pd path = '/kaggle/input/news-headlines/news_summary.csv' df = pd.read_csv(path) console = Console(record=True) def display_df(df): """display dataframe in ASCII format""" console = Console() table = Table(Column('source_text', justify='center'), Column('target_text', justify='center'), title='Sample Data', pad_edge=False, box=box.ASCII) for i, row in enumerate(df.values.tolist()): table.add_row(row[0], row[1]) training_logger = Table(Column('Epoch', justify='center'), Column('Steps', justify='center'), Column('Loss', justify='center'), title='Training Status', pad_edge=False, box=box.ASCII) from torch import cuda device = 'cuda' if cuda.is_available() else 'cpu' device class CustomDataSetClass(Dataset): """ Creating a custom dataset for reading the dataset and loading it into the dataloader to pass it to the transformer for finetuning the model """ def __init__(self, dataframe, tokenizer, source_len, target_len, source_text, target_text): """ Initializes a Dataset class Args: dataframe (pandas.DataFrame): Input dataframe tokenizer (transformers.tokenizer): Transformers tokenizer source_len (int): Max length of source text target_len (int): Max length of target text source_text (str): column name of source text target_text (str): column name of target text """ self.tokenizer = tokenizer self.data = dataframe self.source_len = source_len self.summ_len = target_len self.target_text = self.data[target_text] self.source_text = self.data[source_text] def __len__(self): """returns the length of dataframe""" return len(self.target_text) def __getitem__(self, index): """return the input ids, attention masks and target ids""" source_text = str(self.source_text[index]) target_text = str(self.target_text[index]) source_text = ' '.join(source_text.split()) target_text = ' '.join(target_text.split()) source = self.tokenizer.batch_encode_plus([source_text], max_length=self.source_len, pad_to_max_length=True, truncation=True, padding='max_length', return_tensors='pt') target = self.tokenizer.batch_encode_plus([target_text], max_length=self.summ_len, pad_to_max_length=True, truncation=True, padding='max_length', return_tensors='pt') source_ids = source['input_ids'].squeeze() source_mask = source['attention_mask'].squeeze() target_ids = target['input_ids'].squeeze() target_mask = target['attention_mask'].squeeze() return {'source_ids': source_ids.to(dtype=torch.long), 'source_mask': source_mask.to(dtype=torch.long), 'target_ids': target_ids.to(dtype=torch.long), 'target_ids_y': target_ids.to(dtype=torch.long)} def train(epoch, tokenizer, model, device, loader, optimizer): """ Function to be called for training with the parameters passed from main function """ model.train() for _, data in enumerate(loader, 0): y = data['target_ids'].to(device, dtype=torch.long) y_ids = y[:, :-1].contiguous() lm_labels = y[:, 1:].clone().detach() lm_labels[y[:, 1:] == tokenizer.pad_token_id] = -100 ids = data['source_ids'].to(device, dtype=torch.long) mask = data['source_mask'].to(device, dtype=torch.long) outputs = model(input_ids=ids, attention_mask=mask, decoder_input_ids=y_ids, labels=lm_labels) loss = outputs[0] if _ % 100 == 0: training_logger.add_row(str(epoch), str(_), str(loss)) optimizer.zero_grad() loss.backward() optimizer.step() def validate(epoch, tokenizer, model, device, loader): """ Function to evaluate model for predictions """ model.eval() predictions = [] actuals = [] with torch.no_grad(): for _, data in enumerate(loader, 0): y = data['target_ids'].to(device, dtype=torch.long) ids = data['source_ids'].to(device, dtype=torch.long) mask = data['source_mask'].to(device, dtype=torch.long) generated_ids = model.generate(input_ids=ids, attention_mask=mask, max_length=150, num_beams=2, repetition_penalty=2.5, length_penalty=1.0, early_stopping=True) preds = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True) for g in generated_ids] target = [tokenizer.decode(t, skip_special_tokens=True, clean_up_tokenization_spaces=True) for t in y] predictions.extend(preds) actuals.extend(target) return (predictions, actuals) def T5Trainer(dataframe, source_text, target_text, model_params, output_dir='/kaggle/working/'): """ T5 trainer """ torch.manual_seed(model_params['SEED']) np.random.seed(model_params['SEED']) torch.backends.cudnn.deterministic = True console.log(f"[Model]: Loading {model_params['MODEL']}...\n") tokenizer = T5Tokenizer.from_pretrained(model_params['MODEL']) model = T5ForConditionalGeneration.from_pretrained(model_params['MODEL']) model = model.to(device) console.log(f'[Data]: Reading data...\n') dataframe = dataframe[[source_text, target_text]] train_size = 0.8 train_dataset = dataframe.sample(frac=train_size, random_state=model_params['SEED']) val_dataset = dataframe.drop(train_dataset.index).reset_index(drop=True) train_dataset = train_dataset.reset_index(drop=True) training_set = CustomDataSetClass(train_dataset, tokenizer, model_params['MAX_SOURCE_TEXT_LENGTH'], model_params['MAX_TARGET_TEXT_LENGTH'], source_text, target_text) val_set = CustomDataSetClass(val_dataset, tokenizer, model_params['MAX_SOURCE_TEXT_LENGTH'], model_params['MAX_TARGET_TEXT_LENGTH'], source_text, target_text) train_params = {'batch_size': model_params['TRAIN_BATCH_SIZE'], 'shuffle': True, 'num_workers': 0} val_params = {'batch_size': model_params['VALID_BATCH_SIZE'], 'shuffle': False, 'num_workers': 0} training_loader = DataLoader(training_set, **train_params) val_loader = DataLoader(val_set, **val_params) optimizer = torch.optim.Adam(params=model.parameters(), lr=model_params['LEARNING_RATE']) console.log(f'[Initiating Fine Tuning]...\n') for epoch in range(model_params['TRAIN_EPOCHS']): train(epoch, tokenizer, model, device, training_loader, optimizer) console.log(f'[Saving Model]...\n') path = os.path.join(output_dir, 'model_files') model.save_pretrained(path) tokenizer.save_pretrained(path) console.log(f'[Initiating Validation]...\n') for epoch in range(model_params['VAL_EPOCHS']): predictions, actuals = validate(epoch, tokenizer, model, device, val_loader) final_df = pd.DataFrame({'Generated Text': predictions, 'Actual Text': actuals}) final_df.to_csv(os.path.join(output_dir, 'predictions.csv')) console.save_text(os.path.join(output_dir, 'logs.txt')) console.log(f'[Validation Completed.]\n') return final_df model_params = {'MODEL': 't5-base', 'TRAIN_BATCH_SIZE': 8, 'VALID_BATCH_SIZE': 8, 'TRAIN_EPOCHS': 1, 'VAL_EPOCHS': 1, 'LEARNING_RATE': 0.0001, 'MAX_SOURCE_TEXT_LENGTH': 512, 'MAX_TARGET_TEXT_LENGTH': 50, 'SEED': 42} df['text'] = 'summarize: ' + df['text'] predictions = T5Trainer(dataframe=df, source_text='text', target_text='headlines', model_params=model_params, output_dir='outputs')
code
128033738/cell_10
[ "text_html_output_1.png" ]
from torch import cuda from torch import cuda device = 'cuda' if cuda.is_available() else 'cpu' device
code
16168139/cell_9
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) structures = pd.read_csv('../input/structures.csv') M = 8000 fig, ax = plt.subplots(1,3,figsize=(20,5)) colors = ["darkred", "dodgerblue", "mediumseagreen", "gold", "purple"] atoms = structures.atom.unique() for n in range(len(atoms)): ax[0].scatter(structures.loc[structures.atom==atoms[n]].x.values[0:M], structures.loc[structures.atom==atoms[n]].y.values[0:M], color=colors[n], s=2, alpha=0.5, label=atoms[n]) ax[0].legend() ax[0].set_xlabel("x") ax[0].set_xlabel("y") ax[1].scatter(structures.loc[structures.atom==atoms[n]].x.values[0:M], structures.loc[structures.atom==atoms[n]].z.values[0:M], color=colors[n], s=2, alpha=0.5, label=atoms[n]) ax[1].legend() ax[1].set_xlabel("x") ax[1].set_xlabel("z") ax[2].scatter(structures.loc[structures.atom==atoms[n]].y.values[0:M], structures.loc[structures.atom==atoms[n]].z.values[0:M], color=colors[n], s=2, alpha=0.5, label=atoms[n]) ax[2].legend() ax[2].set_xlabel("y") ax[2].set_xlabel("z") M = 200000 fig, ax = plt.subplots(1, 3, figsize=(20, 5)) ax[0].scatter(structures.x.values[0:M], structures.y.values[0:M], c=structures.index.values[0:M], s=2, alpha=0.5, cmap='magma') ax[0].set_xlabel('x') ax[0].set_xlabel('y') ax[1].scatter(structures.x.values[0:M], structures.z.values[0:M], c=structures.index.values[0:M], s=2, alpha=0.5, cmap='magma') ax[1].set_xlabel('x') ax[1].set_xlabel('z') ax[2].scatter(structures.y.values[0:M], structures.z.values[0:M], c=structures.index.values[0:M], s=2, alpha=0.5, cmap='magma') ax[2].set_xlabel('y') ax[2].set_xlabel('z')
code
16168139/cell_4
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) structures = pd.read_csv('../input/structures.csv') structures.head()
code
16168139/cell_2
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set() import os print(os.listdir('../input'))
code
16168139/cell_7
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) structures = pd.read_csv('../input/structures.csv') M = 8000 fig, ax = plt.subplots(1, 3, figsize=(20, 5)) colors = ['darkred', 'dodgerblue', 'mediumseagreen', 'gold', 'purple'] atoms = structures.atom.unique() for n in range(len(atoms)): ax[0].scatter(structures.loc[structures.atom == atoms[n]].x.values[0:M], structures.loc[structures.atom == atoms[n]].y.values[0:M], color=colors[n], s=2, alpha=0.5, label=atoms[n]) ax[0].legend() ax[0].set_xlabel('x') ax[0].set_xlabel('y') ax[1].scatter(structures.loc[structures.atom == atoms[n]].x.values[0:M], structures.loc[structures.atom == atoms[n]].z.values[0:M], color=colors[n], s=2, alpha=0.5, label=atoms[n]) ax[1].legend() ax[1].set_xlabel('x') ax[1].set_xlabel('z') ax[2].scatter(structures.loc[structures.atom == atoms[n]].y.values[0:M], structures.loc[structures.atom == atoms[n]].z.values[0:M], color=colors[n], s=2, alpha=0.5, label=atoms[n]) ax[2].legend() ax[2].set_xlabel('y') ax[2].set_xlabel('z')
code
106196484/cell_13
[ "text_plain_output_1.png" ]
from pipelines import pipeline nlp = pipeline('multitask-qa-qg')
code
106196484/cell_2
[ "text_plain_output_1.png" ]
!pip install Wikipedia-API import wikipediaapi wiki_wiki = wikipediaapi.Wikipedia('en') ml_art = wiki_wiki.page('Machine_Learning') print("Page - Exists: %s" % ml_art.exists()) print("Page - Title: %s" % ml_art.title) print("Page - Summary: %s" % ml_art.summary[0:60]) print(ml_art.fullurl) ml_ftxt = ml_art.text
code
106196484/cell_7
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
!pip install git+https://github.com/boudinfl/pke.git import pke
code