path
stringlengths 13
17
| screenshot_names
sequencelengths 1
873
| code
stringlengths 0
40.4k
| cell_type
stringclasses 1
value |
---|---|---|---|
105190732/cell_17 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
PATH = '../input/titanic/'
df_train = pd.read_csv(f'{PATH}/train.csv', low_memory=False)
df_test = pd.read_csv(f'{PATH}/test.csv', low_memory=False)
df_train.dtypes
df_train.info()
print('----------------------------------')
df_test.info() | code |
105190732/cell_14 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
PATH = '../input/titanic/'
df_train = pd.read_csv(f'{PATH}/train.csv', low_memory=False)
df_test = pd.read_csv(f'{PATH}/test.csv', low_memory=False)
df_train.dtypes
label = df_train['Survived']
label.unique()
label.value_counts().plot.pie(autopct='%1.2f%%') | code |
105190732/cell_22 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
PATH = '../input/titanic/'
df_train = pd.read_csv(f'{PATH}/train.csv', low_memory=False)
df_test = pd.read_csv(f'{PATH}/test.csv', low_memory=False)
df_train.dtypes
print('Amount of missing data in Fare for train:', df_train.Fare.isnull().sum())
print('Amount of missing data in Fare for test:', df_test.Fare.isnull().sum())
print('--------------------------------------------------')
print('Amount of missing data in Embarked for train:', df_train.Embarked.isnull().sum())
print('Amount of missing data in Embarked for test:', df_test.Embarked.isnull().sum()) | code |
105190732/cell_27 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
PATH = '../input/titanic/'
df_train = pd.read_csv(f'{PATH}/train.csv', low_memory=False)
df_test = pd.read_csv(f'{PATH}/test.csv', low_memory=False)
df_train.dtypes
print(df_train.Age.isnull().sum())
print(df_test.Age.isnull().sum()) | code |
105190732/cell_12 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
PATH = '../input/titanic/'
df_train = pd.read_csv(f'{PATH}/train.csv', low_memory=False)
df_test = pd.read_csv(f'{PATH}/test.csv', low_memory=False)
df_train.dtypes
label = df_train['Survived']
label.unique() | code |
16111090/cell_13 | [
"text_plain_output_1.png"
] | from collections import Counter
from sklearn.metrics import accuracy_score
import numpy as np
import numpy as np # linear algebra
def predict(x_train, y_train, x_test, k):
distances = []
targets = []
for i in range(len(x_train)):
distance = np.sqrt(np.sum(np.square(x_test - x_train.values[i, :])))
distances.append([distance, i])
distances = sorted(distances)
for i in range(k):
index = distances[i][1]
targets.append(y_train.values[index])
return Counter(targets).most_common(1)[0][0]
def train(x_train, y_train):
return
def kNearestNeighbor(x_train, y_train, x_test, predictions, k):
train(x_train, y_train)
for i in range(len(x_test)):
predictions.append(predict(x_train, y_train, x_test.values[i, :], k))
predictions = []
from sklearn.metrics import accuracy_score
kNearestNeighbor(x_train, y_train, x_test, predictions, 9)
predictions = np.asarray(predictions)
accuracy = accuracy_score(y_test, predictions)
print('accuracy score is :', accuracy * 100, '%') | code |
16111090/cell_11 | [
"text_plain_output_1.png"
] | from collections import Counter
from sklearn.metrics import accuracy_score
import numpy as np
import numpy as np # linear algebra
def predict(x_train, y_train, x_test, k):
distances = []
targets = []
for i in range(len(x_train)):
distance = np.sqrt(np.sum(np.square(x_test - x_train.values[i, :])))
distances.append([distance, i])
distances = sorted(distances)
for i in range(k):
index = distances[i][1]
targets.append(y_train.values[index])
return Counter(targets).most_common(1)[0][0]
def train(x_train, y_train):
return
def kNearestNeighbor(x_train, y_train, x_test, predictions, k):
train(x_train, y_train)
for i in range(len(x_test)):
predictions.append(predict(x_train, y_train, x_test.values[i, :], k))
predictions = []
from sklearn.metrics import accuracy_score
kNearestNeighbor(x_train, y_train, x_test, predictions, 9)
predictions = np.asarray(predictions)
accuracy = accuracy_score(y_test, predictions)
for i in range(len(x_test)):
print('Flower with sepal length', x_test.iloc[i], ':')
print('belongs to the kingdom', predictions[i]) | code |
16111090/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
print(os.listdir('../input')) | code |
16111090/cell_3 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pandas as pd
import numpy as np
import math
import operator
df = pd.read_csv('../input/Iris.csv')
print(df.head())
df.shape
from collections import Counter | code |
16111090/cell_5 | [
"text_plain_output_1.png"
] | from sklearn.model_selection import train_test_split
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pandas as pd
import numpy as np
import math
import operator
df = pd.read_csv('../input/Iris.csv')
df.shape
from collections import Counter
from sklearn.model_selection import train_test_split
x = df[['SepalLengthCm']]
y = df['Species']
x_train, x_test, y_train, y_test = train_test_split(x, y, train_size=0.33)
len(y_train) | code |
18137353/cell_4 | [
"image_output_1.png"
] | from sklearn.utils import shuffle
import matplotlib.pyplot as plt
data_path = '../input/all-dogs/all-dogs/'
lable_path = '../input/annotation/Annotation/'
all_image_paths = os.listdir(data_path)
IMG_SIZE = 64
BUFFER_SIZE = 20579
BATCH_SIZE = 256
def get_images(directory):
Images = []
for image_file in all_image_paths:
image = cv2.imread(directory + '/' + image_file)
image = cv2.resize(image, (IMG_SIZE, IMG_SIZE))
Images.append(image)
return shuffle(Images, random_state=81732)
data_images = get_images(data_path)
plt.figure(figsize=(15, 15))
i = 0
for i in range(25):
plt.subplot(5, 5, i + 1)
plt.xticks([])
plt.yticks([])
plt.imshow(data_images[i])
i += 1
plt.show() | code |
18137353/cell_1 | [
"text_plain_output_1.png"
] | import tensorflow as tf
import glob, os, imageio, PIL, time, cv2
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from IPython import display
from sklearn.utils import shuffle
print(tf.__version__) | code |
106199219/cell_4 | [
"text_html_output_1.png"
] | import pandas as pd
data = pd.read_csv('../input/segment/Segmentation_dataset.csv')
data | code |
106199219/cell_6 | [
"text_html_output_1.png"
] | import pandas as pd
data = pd.read_csv('../input/segment/Segmentation_dataset.csv')
data.describe() | code |
72098912/cell_2 | [
"text_html_output_1.png"
] | import glob
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import numpy as np
import pandas as pd
import os
import glob
import pandas as pd
path = '../input/pandastasks/Pandas-Data-Science-Tasks-master/SalesAnalysis/Sales_Data'
filenames = glob.glob(path + '/*.csv')
dfs = []
for filename in filenames:
dfs.append(pd.read_csv(filename))
big_frame = pd.concat(dfs, ignore_index=True)
big_frame.tail() | code |
129020869/cell_9 | [
"image_output_1.png"
] | import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df_flight = pd.read_csv('/kaggle/input/airindia-monthly-passenger-traffic/AirIndia (International).csv')
df_flight.isnull().sum()
cat_cols = df_flight.columns[df_flight.dtypes == object]
num_cols = df_flight.select_dtypes(include=np.number).columns.tolist()
print('The categorical columns are', cat_cols)
print('The numerical columns are', num_cols) | code |
129020869/cell_4 | [
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df_flight = pd.read_csv('/kaggle/input/airindia-monthly-passenger-traffic/AirIndia (International).csv')
df_flight.head() | code |
129020869/cell_23 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
df_flight = pd.read_csv('/kaggle/input/airindia-monthly-passenger-traffic/AirIndia (International).csv')
df_flight.isnull().sum()
cat_cols = df_flight.columns[df_flight.dtypes == object]
num_cols = df_flight.select_dtypes(include=np.number).columns.tolist()
df_flight.groupby('FY')['HOURS\n'].mean().sort_values(ascending=False).plot.bar(fontsize=12)
plt.title('Average flight hours yearwise')
plt.show() | code |
129020869/cell_6 | [
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df_flight = pd.read_csv('/kaggle/input/airindia-monthly-passenger-traffic/AirIndia (International).csv')
df_flight.info() | code |
129020869/cell_26 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
df_flight = pd.read_csv('/kaggle/input/airindia-monthly-passenger-traffic/AirIndia (International).csv')
df_flight.isnull().sum()
cat_cols = df_flight.columns[df_flight.dtypes == object]
num_cols = df_flight.select_dtypes(include=np.number).columns.tolist()
df_flight.groupby('Month')['DEPARTURES\n'].mean().sort_values(ascending=False).plot.bar(fontsize=12)
plt.title('Average departures monthwise')
plt.show() | code |
129020869/cell_2 | [
"text_plain_output_1.png"
] | import seaborn as sns
import matplotlib.pyplot as plt
sns.set()
import warnings
warnings.filterwarnings('ignore') | code |
129020869/cell_19 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
df_flight = pd.read_csv('/kaggle/input/airindia-monthly-passenger-traffic/AirIndia (International).csv')
df_flight.isnull().sum()
cat_cols = df_flight.columns[df_flight.dtypes == object]
num_cols = df_flight.select_dtypes(include=np.number).columns.tolist()
df_flight[df_flight['KILOMETRE\n(TH)'] < 100] | code |
129020869/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
129020869/cell_7 | [
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df_flight = pd.read_csv('/kaggle/input/airindia-monthly-passenger-traffic/AirIndia (International).csv')
df_flight.isnull().sum() | code |
129020869/cell_28 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
df_flight = pd.read_csv('/kaggle/input/airindia-monthly-passenger-traffic/AirIndia (International).csv')
df_flight.isnull().sum()
cat_cols = df_flight.columns[df_flight.dtypes == object]
num_cols = df_flight.select_dtypes(include=np.number).columns.tolist()
df_flight.groupby('Month')['PASSENGERS CARRIED\n'].mean().sort_values(ascending=False).plot.bar(fontsize=12)
plt.title('Average passengers carried monthwise')
plt.show() | code |
129020869/cell_15 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
df_flight = pd.read_csv('/kaggle/input/airindia-monthly-passenger-traffic/AirIndia (International).csv')
df_flight.isnull().sum()
cat_cols = df_flight.columns[df_flight.dtypes == object]
num_cols = df_flight.select_dtypes(include=np.number).columns.tolist()
for col in df_flight.select_dtypes(include=np.number).columns.tolist():
print(col)
plt.figure(figsize=(15, 4))
plt.subplot(1, 2, 1)
sns.distplot(a=df_flight[col], bins=20, color='green', hist_kws={'edgecolor': 'black'})
plt.ylabel('count')
plt.subplot(1, 2, 2)
sns.boxplot(x=df_flight[col], color='pink')
plt.show() | code |
129020869/cell_17 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
df_flight = pd.read_csv('/kaggle/input/airindia-monthly-passenger-traffic/AirIndia (International).csv')
df_flight.isnull().sum()
cat_cols = df_flight.columns[df_flight.dtypes == object]
num_cols = df_flight.select_dtypes(include=np.number).columns.tolist()
df_flight[df_flight['DEPARTURES\n'] < 100] | code |
129020869/cell_24 | [
"text_plain_output_5.png",
"text_plain_output_4.png",
"image_output_5.png",
"text_plain_output_6.png",
"image_output_7.png",
"text_plain_output_3.png",
"image_output_4.png",
"text_plain_output_7.png",
"image_output_6.png",
"text_plain_output_2.png",
"text_plain_output_1.png",
"image_output_3.png",
"image_output_2.png",
"image_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
df_flight = pd.read_csv('/kaggle/input/airindia-monthly-passenger-traffic/AirIndia (International).csv')
df_flight.isnull().sum()
cat_cols = df_flight.columns[df_flight.dtypes == object]
num_cols = df_flight.select_dtypes(include=np.number).columns.tolist()
df_flight.groupby('FY')['KILOMETRE\n(TH)'].mean().sort_values(ascending=False).plot.bar(fontsize=12)
plt.title('Average distance covered yearwise')
plt.show() | code |
129020869/cell_22 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
df_flight = pd.read_csv('/kaggle/input/airindia-monthly-passenger-traffic/AirIndia (International).csv')
df_flight.isnull().sum()
cat_cols = df_flight.columns[df_flight.dtypes == object]
num_cols = df_flight.select_dtypes(include=np.number).columns.tolist()
df_flight.groupby('FY')['DEPARTURES\n'].mean().sort_values(ascending=False).plot.bar(fontsize=12)
plt.title('Average departures yearwise')
plt.show() | code |
129020869/cell_27 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
df_flight = pd.read_csv('/kaggle/input/airindia-monthly-passenger-traffic/AirIndia (International).csv')
df_flight.isnull().sum()
cat_cols = df_flight.columns[df_flight.dtypes == object]
num_cols = df_flight.select_dtypes(include=np.number).columns.tolist()
df_flight.groupby('Month')['HOURS\n'].mean().sort_values(ascending=False).plot.bar(fontsize=12)
plt.title('Average flight hours monthwise')
plt.show() | code |
129020869/cell_12 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df_flight = pd.read_csv('/kaggle/input/airindia-monthly-passenger-traffic/AirIndia (International).csv')
df_flight.isnull().sum()
cat_cols = df_flight.columns[df_flight.dtypes == object]
num_cols = df_flight.select_dtypes(include=np.number).columns.tolist()
df_flight[' PAX.LOAD FACTOR (IN %)'].dtype | code |
129020869/cell_5 | [
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df_flight = pd.read_csv('/kaggle/input/airindia-monthly-passenger-traffic/AirIndia (International).csv')
df_flight.tail() | code |
73097621/cell_4 | [
"text_plain_output_1.png"
] | from sklearn.tree import DecisionTreeRegressor
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv')
data.isna().sum()
y = data.target
features_1 = ['cat0', 'cat1', 'cat2', 'cat3', 'cat4', 'cat5', 'cat6', 'cat7', 'cat8', 'cat9']
features_2 = ['cont0', 'cont1', 'cont2', 'cont3', 'cont4', 'cont5', 'cont6', 'cont7', 'cont8', 'cont9', 'cont10', 'cont11', 'cont12', 'cont13']
features_3 = ['cat0', 'cat1', 'cat2', 'cat3', 'cat4', 'cat5', 'cat6', 'cat7', 'cat8', 'cat9', 'cont0', 'cont1', 'cont2', 'cont3', 'cont4', 'cont5', 'cont6', 'cont7', 'cont8', 'cont9', 'cont10', 'cont11', 'cont12', 'cont13']
X1 = data[features_2]
from sklearn.tree import DecisionTreeRegressor
model = DecisionTreeRegressor(random_state=1)
model.fit(X1, y) | code |
73097621/cell_6 | [
"text_plain_output_1.png"
] | from sklearn.tree import DecisionTreeRegressor
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv')
data.isna().sum()
y = data.target
features_1 = ['cat0', 'cat1', 'cat2', 'cat3', 'cat4', 'cat5', 'cat6', 'cat7', 'cat8', 'cat9']
features_2 = ['cont0', 'cont1', 'cont2', 'cont3', 'cont4', 'cont5', 'cont6', 'cont7', 'cont8', 'cont9', 'cont10', 'cont11', 'cont12', 'cont13']
features_3 = ['cat0', 'cat1', 'cat2', 'cat3', 'cat4', 'cat5', 'cat6', 'cat7', 'cat8', 'cat9', 'cont0', 'cont1', 'cont2', 'cont3', 'cont4', 'cont5', 'cont6', 'cont7', 'cont8', 'cont9', 'cont10', 'cont11', 'cont12', 'cont13']
X1 = data[features_2]
from sklearn.tree import DecisionTreeRegressor
model = DecisionTreeRegressor(random_state=1)
model.fit(X1, y)
test = pd.read_csv('/kaggle/input/30-days-of-ml/test.csv')
predictions = model.predict(test[features_2])
output = pd.DataFrame({'Id': test.index, 'target': predictions})
output.to_csv('submission.csv', index=False)
print('complete') | code |
73097621/cell_2 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv')
data.isna().sum() | code |
73097621/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
17097984/cell_21 | [
"text_plain_output_1.png"
] | pets = 'https://s3.amazonaws.com/fast-ai-imageclas/oxford-iiit-pet'
path = untar_data(pets)
path
path.ls()
path_anno = path / 'annotations'
path_img = path / 'images'
fnames = get_image_files(path_img)
fnames[:5]
np.random.seed(2)
pat = '/([^/]+)_\\d+.jpg$'
data = ImageDataBunch.from_name_re(path_img, fnames, pat, ds_tfms=get_transforms(), size=224)
data.normalize(imagenet_stats)
help(data.show_batch)
len(data.classes)
learn = cnn_learner(data, models.resnet34, metrics=error_rate)
learn.fit_one_cycle(4)
learn.save('stage-1')
interp = ClassificationInterpretation.from_learner(learn)
interp.plot_top_losses(9) | code |
17097984/cell_13 | [
"text_plain_output_1.png"
] | pets = 'https://s3.amazonaws.com/fast-ai-imageclas/oxford-iiit-pet'
path = untar_data(pets)
path
path.ls()
path_anno = path / 'annotations'
path_img = path / 'images'
fnames = get_image_files(path_img)
fnames[:5]
np.random.seed(2)
pat = '/([^/]+)_\\d+.jpg$'
data = ImageDataBunch.from_name_re(path_img, fnames, pat, ds_tfms=get_transforms(), size=224)
data.normalize(imagenet_stats)
help(data.show_batch) | code |
17097984/cell_9 | [
"text_html_output_1.png"
] | pets = 'https://s3.amazonaws.com/fast-ai-imageclas/oxford-iiit-pet'
path = untar_data(pets)
path
path.ls()
path_anno = path / 'annotations'
path_img = path / 'images'
fnames = get_image_files(path_img)
fnames[:5] | code |
17097984/cell_23 | [
"application_vnd.jupyter.stderr_output_1.png"
] | pets = 'https://s3.amazonaws.com/fast-ai-imageclas/oxford-iiit-pet'
path = untar_data(pets)
path
path.ls()
path_anno = path / 'annotations'
path_img = path / 'images'
fnames = get_image_files(path_img)
fnames[:5]
np.random.seed(2)
pat = '/([^/]+)_\\d+.jpg$'
data = ImageDataBunch.from_name_re(path_img, fnames, pat, ds_tfms=get_transforms(), size=224)
data.normalize(imagenet_stats)
help(data.show_batch)
len(data.classes)
learn = cnn_learner(data, models.resnet34, metrics=error_rate)
learn.fit_one_cycle(4)
learn.save('stage-1')
interp = ClassificationInterpretation.from_learner(learn)
doc(interp.plot_top_losses)
interp.plot_confusion_matrix(figsize=(12, 12), dpi=60) | code |
17097984/cell_30 | [
"text_plain_output_1.png"
] | pets = 'https://s3.amazonaws.com/fast-ai-imageclas/oxford-iiit-pet'
path = untar_data(pets)
path
path.ls()
path_anno = path / 'annotations'
path_img = path / 'images'
fnames = get_image_files(path_img)
fnames[:5]
np.random.seed(2)
pat = '/([^/]+)_\\d+.jpg$'
data = ImageDataBunch.from_name_re(path_img, fnames, pat, ds_tfms=get_transforms(), size=224)
data.normalize(imagenet_stats)
help(data.show_batch)
len(data.classes)
learn = cnn_learner(data, models.resnet34, metrics=error_rate)
learn.fit_one_cycle(4)
learn.save('stage-1')
learn.unfreeze()
learn.fit_one_cycle(1)
learn.load('stage-1')
learn.lr_find()
learn.unfreeze()
learn.fit_one_cycle(2, max_lr=slice(1e-06, 0.0001)) | code |
17097984/cell_6 | [
"text_plain_output_1.png"
] | pets = 'https://s3.amazonaws.com/fast-ai-imageclas/oxford-iiit-pet'
path = untar_data(pets)
path | code |
17097984/cell_29 | [
"text_html_output_1.png"
] | pets = 'https://s3.amazonaws.com/fast-ai-imageclas/oxford-iiit-pet'
path = untar_data(pets)
path
path.ls()
path_anno = path / 'annotations'
path_img = path / 'images'
fnames = get_image_files(path_img)
fnames[:5]
np.random.seed(2)
pat = '/([^/]+)_\\d+.jpg$'
data = ImageDataBunch.from_name_re(path_img, fnames, pat, ds_tfms=get_transforms(), size=224)
data.normalize(imagenet_stats)
help(data.show_batch)
len(data.classes)
learn = cnn_learner(data, models.resnet34, metrics=error_rate)
learn.fit_one_cycle(4)
learn.save('stage-1')
learn.unfreeze()
learn.fit_one_cycle(1)
learn.load('stage-1')
learn.lr_find()
learn.recorder.plot() | code |
17097984/cell_26 | [
"image_output_1.png"
] | pets = 'https://s3.amazonaws.com/fast-ai-imageclas/oxford-iiit-pet'
path = untar_data(pets)
path
path.ls()
path_anno = path / 'annotations'
path_img = path / 'images'
fnames = get_image_files(path_img)
fnames[:5]
np.random.seed(2)
pat = '/([^/]+)_\\d+.jpg$'
data = ImageDataBunch.from_name_re(path_img, fnames, pat, ds_tfms=get_transforms(), size=224)
data.normalize(imagenet_stats)
help(data.show_batch)
len(data.classes)
learn = cnn_learner(data, models.resnet34, metrics=error_rate)
learn.fit_one_cycle(4)
learn.save('stage-1')
learn.unfreeze()
learn.fit_one_cycle(1) | code |
17097984/cell_7 | [
"image_output_1.png"
] | pets = 'https://s3.amazonaws.com/fast-ai-imageclas/oxford-iiit-pet'
path = untar_data(pets)
path
path.ls() | code |
17097984/cell_18 | [
"text_plain_output_1.png"
] | pets = 'https://s3.amazonaws.com/fast-ai-imageclas/oxford-iiit-pet'
path = untar_data(pets)
path
path.ls()
path_anno = path / 'annotations'
path_img = path / 'images'
fnames = get_image_files(path_img)
fnames[:5]
np.random.seed(2)
pat = '/([^/]+)_\\d+.jpg$'
data = ImageDataBunch.from_name_re(path_img, fnames, pat, ds_tfms=get_transforms(), size=224)
data.normalize(imagenet_stats)
help(data.show_batch)
len(data.classes)
learn = cnn_learner(data, models.resnet34, metrics=error_rate)
learn.fit_one_cycle(4) | code |
17097984/cell_28 | [
"text_plain_output_1.png"
] | pets = 'https://s3.amazonaws.com/fast-ai-imageclas/oxford-iiit-pet'
path = untar_data(pets)
path
path.ls()
path_anno = path / 'annotations'
path_img = path / 'images'
fnames = get_image_files(path_img)
fnames[:5]
np.random.seed(2)
pat = '/([^/]+)_\\d+.jpg$'
data = ImageDataBunch.from_name_re(path_img, fnames, pat, ds_tfms=get_transforms(), size=224)
data.normalize(imagenet_stats)
help(data.show_batch)
len(data.classes)
learn = cnn_learner(data, models.resnet34, metrics=error_rate)
learn.fit_one_cycle(4)
learn.save('stage-1')
learn.unfreeze()
learn.fit_one_cycle(1)
learn.load('stage-1')
learn.lr_find() | code |
17097984/cell_15 | [
"text_plain_output_1.png"
] | pets = 'https://s3.amazonaws.com/fast-ai-imageclas/oxford-iiit-pet'
path = untar_data(pets)
path
path.ls()
path_anno = path / 'annotations'
path_img = path / 'images'
fnames = get_image_files(path_img)
fnames[:5]
np.random.seed(2)
pat = '/([^/]+)_\\d+.jpg$'
data = ImageDataBunch.from_name_re(path_img, fnames, pat, ds_tfms=get_transforms(), size=224)
data.normalize(imagenet_stats)
help(data.show_batch)
print(data.classes) | code |
17097984/cell_16 | [
"text_plain_output_1.png"
] | pets = 'https://s3.amazonaws.com/fast-ai-imageclas/oxford-iiit-pet'
path = untar_data(pets)
path
path.ls()
path_anno = path / 'annotations'
path_img = path / 'images'
fnames = get_image_files(path_img)
fnames[:5]
np.random.seed(2)
pat = '/([^/]+)_\\d+.jpg$'
data = ImageDataBunch.from_name_re(path_img, fnames, pat, ds_tfms=get_transforms(), size=224)
data.normalize(imagenet_stats)
help(data.show_batch)
len(data.classes) | code |
17097984/cell_17 | [
"image_output_1.png"
] | pets = 'https://s3.amazonaws.com/fast-ai-imageclas/oxford-iiit-pet'
path = untar_data(pets)
path
path.ls()
path_anno = path / 'annotations'
path_img = path / 'images'
fnames = get_image_files(path_img)
fnames[:5]
np.random.seed(2)
pat = '/([^/]+)_\\d+.jpg$'
data = ImageDataBunch.from_name_re(path_img, fnames, pat, ds_tfms=get_transforms(), size=224)
data.normalize(imagenet_stats)
help(data.show_batch)
len(data.classes)
learn = cnn_learner(data, models.resnet34, metrics=error_rate) | code |
17097984/cell_24 | [
"text_html_output_1.png"
] | pets = 'https://s3.amazonaws.com/fast-ai-imageclas/oxford-iiit-pet'
path = untar_data(pets)
path
path.ls()
path_anno = path / 'annotations'
path_img = path / 'images'
fnames = get_image_files(path_img)
fnames[:5]
np.random.seed(2)
pat = '/([^/]+)_\\d+.jpg$'
data = ImageDataBunch.from_name_re(path_img, fnames, pat, ds_tfms=get_transforms(), size=224)
data.normalize(imagenet_stats)
help(data.show_batch)
len(data.classes)
learn = cnn_learner(data, models.resnet34, metrics=error_rate)
learn.fit_one_cycle(4)
learn.save('stage-1')
interp = ClassificationInterpretation.from_learner(learn)
doc(interp.plot_top_losses)
interp.most_confused(min_val=2) | code |
17097984/cell_14 | [
"text_plain_output_1.png"
] | pets = 'https://s3.amazonaws.com/fast-ai-imageclas/oxford-iiit-pet'
path = untar_data(pets)
path
path.ls()
path_anno = path / 'annotations'
path_img = path / 'images'
fnames = get_image_files(path_img)
fnames[:5]
np.random.seed(2)
pat = '/([^/]+)_\\d+.jpg$'
data = ImageDataBunch.from_name_re(path_img, fnames, pat, ds_tfms=get_transforms(), size=224)
data.normalize(imagenet_stats)
help(data.show_batch)
data.show_batch(rows=3) | code |
17097984/cell_27 | [
"image_output_1.png"
] | pets = 'https://s3.amazonaws.com/fast-ai-imageclas/oxford-iiit-pet'
path = untar_data(pets)
path
path.ls()
path_anno = path / 'annotations'
path_img = path / 'images'
fnames = get_image_files(path_img)
fnames[:5]
np.random.seed(2)
pat = '/([^/]+)_\\d+.jpg$'
data = ImageDataBunch.from_name_re(path_img, fnames, pat, ds_tfms=get_transforms(), size=224)
data.normalize(imagenet_stats)
help(data.show_batch)
len(data.classes)
learn = cnn_learner(data, models.resnet34, metrics=error_rate)
learn.fit_one_cycle(4)
learn.save('stage-1')
learn.unfreeze()
learn.fit_one_cycle(1)
learn.load('stage-1') | code |
17097984/cell_12 | [
"text_plain_output_1.png"
] | pets = 'https://s3.amazonaws.com/fast-ai-imageclas/oxford-iiit-pet'
path = untar_data(pets)
path
path.ls()
path_anno = path / 'annotations'
path_img = path / 'images'
fnames = get_image_files(path_img)
fnames[:5]
np.random.seed(2)
pat = '/([^/]+)_\\d+.jpg$'
data = ImageDataBunch.from_name_re(path_img, fnames, pat, ds_tfms=get_transforms(), size=224)
data.normalize(imagenet_stats) | code |
121151048/cell_9 | [
"text_html_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
training_set = pd.read_parquet('/kaggle/input/unswnb15/UNSW_NB15_training-set.parquet')
testing_set = pd.read_parquet('/kaggle/input/unswnb15/UNSW_NB15_testing-set.parquet')
training_set.dtypes
training_set.head(5) | code |
121151048/cell_25 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
training_set = pd.read_parquet('/kaggle/input/unswnb15/UNSW_NB15_training-set.parquet')
testing_set = pd.read_parquet('/kaggle/input/unswnb15/UNSW_NB15_testing-set.parquet')
training_set.dtypes
training_set.attack_cat.value_counts()
training_set.dtypes
target = 'label'
features = list(training_set.columns.difference([target]).values)
training_set.drop(columns=['attack_cat'], inplace=True)
testing_set.drop(columns=['attack_cat'], inplace=True)
training_set.isna().sum()
cat_cols = [col for col in training_set.columns if training_set[col].dtype == 'category']
cat_cols
training_set.head(2) | code |
121151048/cell_23 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
training_set = pd.read_parquet('/kaggle/input/unswnb15/UNSW_NB15_training-set.parquet')
testing_set = pd.read_parquet('/kaggle/input/unswnb15/UNSW_NB15_testing-set.parquet')
training_set.dtypes
training_set.attack_cat.value_counts()
training_set.dtypes
target = 'label'
features = list(training_set.columns.difference([target]).values)
training_set.drop(columns=['attack_cat'], inplace=True)
testing_set.drop(columns=['attack_cat'], inplace=True)
training_set.isna().sum()
cat_cols = [col for col in training_set.columns if training_set[col].dtype == 'category']
cat_cols
def train_test_category_union(feature):
tcl = len(training_set[feature].cat.categories)
tcll = len(testing_set[feature].cat.categories)
feature_cat_union = training_set[feature].cat.categories.union(testing_set[feature].cat.categories)
training_set[feature] = training_set[feature].cat.set_categories(feature_cat_union)
testing_set[feature] = testing_set[feature].cat.set_categories(feature_cat_union)
for f in cat_cols:
train_test_category_union(f) | code |
121151048/cell_33 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import plotly.express as px
import seaborn as sns
training_set = pd.read_parquet('/kaggle/input/unswnb15/UNSW_NB15_training-set.parquet')
testing_set = pd.read_parquet('/kaggle/input/unswnb15/UNSW_NB15_testing-set.parquet')
training_set.dtypes
training_set.attack_cat.value_counts()
training_set.dtypes
target = 'label'
features = list(training_set.columns.difference([target]).values)
training_set.drop(columns=['attack_cat'], inplace=True)
testing_set.drop(columns=['attack_cat'], inplace=True)
training_set.isna().sum()
cat_cols = [col for col in training_set.columns if training_set[col].dtype == 'category']
cat_cols
# fig, axes = plt.subplots(15,4, figsize=(25,70))
# axes=axes.flatten()
# for i, col in enumerate(df_train.columns):
# sns.histplot(df_train,x=col, stat='percent', hue="Label", bins=100, log_scale=(False, False), ax=axes[i])
fig=plt.figure(figsize=(25,70))
for i, col in enumerate(training_set.columns):
plt.subplot(15,4,i+1)
sns.histplot(training_set,x=col, stat='percent', hue="label", bins=100, log_scale=(False, False))
fig.tight_layout()
plt.show()
metadata = ['service']
training_set.drop(columns=metadata, inplace=True)
testing_set.drop(columns=metadata, inplace=True)
import plotly.express as px
px.histogram(training_set, x='ct_state_ttl', color='label', barmode='group') | code |
121151048/cell_6 | [
"text_html_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
training_set = pd.read_parquet('/kaggle/input/unswnb15/UNSW_NB15_training-set.parquet')
testing_set = pd.read_parquet('/kaggle/input/unswnb15/UNSW_NB15_testing-set.parquet')
print(training_set.shape, testing_set.shape) | code |
121151048/cell_39 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import plotly.express as px
import seaborn as sns
training_set = pd.read_parquet('/kaggle/input/unswnb15/UNSW_NB15_training-set.parquet')
testing_set = pd.read_parquet('/kaggle/input/unswnb15/UNSW_NB15_testing-set.parquet')
training_set.dtypes
training_set.attack_cat.value_counts()
training_set.dtypes
target = 'label'
features = list(training_set.columns.difference([target]).values)
training_set.drop(columns=['attack_cat'], inplace=True)
testing_set.drop(columns=['attack_cat'], inplace=True)
training_set.isna().sum()
cat_cols = [col for col in training_set.columns if training_set[col].dtype == 'category']
cat_cols
# fig, axes = plt.subplots(15,4, figsize=(25,70))
# axes=axes.flatten()
# for i, col in enumerate(df_train.columns):
# sns.histplot(df_train,x=col, stat='percent', hue="Label", bins=100, log_scale=(False, False), ax=axes[i])
fig=plt.figure(figsize=(25,70))
for i, col in enumerate(training_set.columns):
plt.subplot(15,4,i+1)
sns.histplot(training_set,x=col, stat='percent', hue="label", bins=100, log_scale=(False, False))
fig.tight_layout()
plt.show()
metadata = ['service']
training_set.drop(columns=metadata, inplace=True)
testing_set.drop(columns=metadata, inplace=True)
import plotly.express as px
training_set.dttl = training_set.dttl.astype('uint8')
pd.DataFrame(training_set.groupby(['dttl', 'label']).dttl.count()) | code |
121151048/cell_2 | [
"text_plain_output_1.png"
] | from plotly.offline import init_notebook_mode, iplot
from plotly.offline import init_notebook_mode, iplot
init_notebook_mode(connected=True) | code |
121151048/cell_19 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
training_set = pd.read_parquet('/kaggle/input/unswnb15/UNSW_NB15_training-set.parquet')
testing_set = pd.read_parquet('/kaggle/input/unswnb15/UNSW_NB15_testing-set.parquet')
training_set.dtypes
training_set.attack_cat.value_counts()
training_set.dtypes
target = 'label'
features = list(training_set.columns.difference([target]).values)
training_set.drop(columns=['attack_cat'], inplace=True)
testing_set.drop(columns=['attack_cat'], inplace=True)
training_set.isna().sum()
cat_cols = [col for col in training_set.columns if training_set[col].dtype == 'category']
cat_cols
good_label_cols = [col for col in cat_cols if set(testing_set[col]).issubset(set(training_set[col]))]
print(good_label_cols)
bad_label_cols = list(set(cat_cols) - set(good_label_cols))
print(bad_label_cols) | code |
121151048/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
121151048/cell_7 | [
"text_html_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
training_set = pd.read_parquet('/kaggle/input/unswnb15/UNSW_NB15_training-set.parquet')
testing_set = pd.read_parquet('/kaggle/input/unswnb15/UNSW_NB15_testing-set.parquet')
training_set.dtypes | code |
121151048/cell_18 | [
"text_html_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
training_set = pd.read_parquet('/kaggle/input/unswnb15/UNSW_NB15_training-set.parquet')
testing_set = pd.read_parquet('/kaggle/input/unswnb15/UNSW_NB15_testing-set.parquet')
training_set.dtypes
training_set.attack_cat.value_counts()
training_set.dtypes
target = 'label'
features = list(training_set.columns.difference([target]).values)
training_set.drop(columns=['attack_cat'], inplace=True)
testing_set.drop(columns=['attack_cat'], inplace=True)
training_set.isna().sum()
cat_cols = [col for col in training_set.columns if training_set[col].dtype == 'category']
cat_cols | code |
121151048/cell_15 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
training_set = pd.read_parquet('/kaggle/input/unswnb15/UNSW_NB15_training-set.parquet')
testing_set = pd.read_parquet('/kaggle/input/unswnb15/UNSW_NB15_testing-set.parquet')
training_set.dtypes
training_set.attack_cat.value_counts()
training_set.dtypes
target = 'label'
features = list(training_set.columns.difference([target]).values)
print(training_set[target].value_counts())
training_set.drop(columns=['attack_cat'], inplace=True)
testing_set.drop(columns=['attack_cat'], inplace=True) | code |
121151048/cell_3 | [
"text_plain_output_1.png"
] | from fastcore.basics import *
from fastcore.parallel import *
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import roc_auc_score, roc_curve, precision_score, recall_score, f1_score, accuracy_score
from os import cpu_count
from math import floor
import pandas as pd
import numpy as np
from sklearn.linear_model import LinearRegression, LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from xgboost import XGBClassifier
from lightgbm import LGBMClassifier
from catboost import CatBoostClassifier
from sklearn.naive_bayes import GaussianNB | code |
121151048/cell_17 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
training_set = pd.read_parquet('/kaggle/input/unswnb15/UNSW_NB15_training-set.parquet')
testing_set = pd.read_parquet('/kaggle/input/unswnb15/UNSW_NB15_testing-set.parquet')
training_set.dtypes
training_set.attack_cat.value_counts()
training_set.dtypes
target = 'label'
features = list(training_set.columns.difference([target]).values)
training_set.drop(columns=['attack_cat'], inplace=True)
testing_set.drop(columns=['attack_cat'], inplace=True)
training_set.isna().sum() | code |
121151048/cell_27 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
training_set = pd.read_parquet('/kaggle/input/unswnb15/UNSW_NB15_training-set.parquet')
testing_set = pd.read_parquet('/kaggle/input/unswnb15/UNSW_NB15_testing-set.parquet')
training_set.dtypes
training_set.attack_cat.value_counts()
training_set.dtypes
target = 'label'
features = list(training_set.columns.difference([target]).values)
training_set.drop(columns=['attack_cat'], inplace=True)
testing_set.drop(columns=['attack_cat'], inplace=True)
training_set.isna().sum()
cat_cols = [col for col in training_set.columns if training_set[col].dtype == 'category']
cat_cols
fig = plt.figure(figsize=(25, 70))
for i, col in enumerate(training_set.columns):
plt.subplot(15, 4, i + 1)
sns.histplot(training_set, x=col, stat='percent', hue='label', bins=100, log_scale=(False, False))
fig.tight_layout()
plt.show() | code |
121151048/cell_37 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import plotly.express as px
import seaborn as sns
training_set = pd.read_parquet('/kaggle/input/unswnb15/UNSW_NB15_training-set.parquet')
testing_set = pd.read_parquet('/kaggle/input/unswnb15/UNSW_NB15_testing-set.parquet')
training_set.dtypes
training_set.attack_cat.value_counts()
training_set.dtypes
target = 'label'
features = list(training_set.columns.difference([target]).values)
training_set.drop(columns=['attack_cat'], inplace=True)
testing_set.drop(columns=['attack_cat'], inplace=True)
training_set.isna().sum()
cat_cols = [col for col in training_set.columns if training_set[col].dtype == 'category']
cat_cols
# fig, axes = plt.subplots(15,4, figsize=(25,70))
# axes=axes.flatten()
# for i, col in enumerate(df_train.columns):
# sns.histplot(df_train,x=col, stat='percent', hue="Label", bins=100, log_scale=(False, False), ax=axes[i])
fig=plt.figure(figsize=(25,70))
for i, col in enumerate(training_set.columns):
plt.subplot(15,4,i+1)
sns.histplot(training_set,x=col, stat='percent', hue="label", bins=100, log_scale=(False, False))
fig.tight_layout()
plt.show()
metadata = ['service']
training_set.drop(columns=metadata, inplace=True)
testing_set.drop(columns=metadata, inplace=True)
import plotly.express as px
training_set.dttl = training_set.dttl.astype('uint8')
px.histogram(training_set, x='dttl', color='label', barmode='group') | code |
73090574/cell_13 | [
"text_plain_output_1.png"
] | from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import math
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
parameters = {'axes.grid': True}
plt.rcParams.update(parameters)
import optuna
from optuna.samplers import TPESampler
import xgboost as xgb
from sklearn.model_selection import train_test_split, cross_val_score, KFold
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error
df_train = pd.read_csv('../input/tabular-playground-series-aug-2021/train.csv')
df_test = pd.read_csv('../input/tabular-playground-series-aug-2021/test.csv')
df_train.drop('id', axis=1, inplace=True)
df_train.isnull().sum().max() == 0
df_test.drop('id', axis=1, inplace=True)
df_test.isnull().sum().max() == 0
# Plotting some graphs of random features in train set
fig = plt.figure(figsize = (15, 10))
for j in [j for j in range(1, 16)]:
i = np.random.randint(0, df_train.columns.size - 1)
plt.subplot(3, 5, j)
sns.kdeplot(x = df_train[df_train.columns[i]])
plt.title(df_train.columns[i])
fig.tight_layout()
print('15 graphs of random features in train set')
plt.show()
df_train_no_target = df_train.drop('loss', axis=1)
scaler = StandardScaler()
df_train_no_target_scal = pd.DataFrame(scaler.fit_transform(df_train_no_target), columns=df_train_no_target.columns)
df_test = pd.DataFrame(scaler.fit_transform(df_test), columns=df_test.columns)
df_train_no_target_scal.head() | code |
73090574/cell_9 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import math
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
parameters = {'axes.grid': True}
plt.rcParams.update(parameters)
import optuna
from optuna.samplers import TPESampler
import xgboost as xgb
from sklearn.model_selection import train_test_split, cross_val_score, KFold
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error
df_train = pd.read_csv('../input/tabular-playground-series-aug-2021/train.csv')
df_test = pd.read_csv('../input/tabular-playground-series-aug-2021/test.csv')
df_train.drop('id', axis=1, inplace=True)
df_train.isnull().sum().max() == 0
fig = plt.figure(figsize=(15, 10))
for j in [j for j in range(1, 16)]:
i = np.random.randint(0, df_train.columns.size - 1)
plt.subplot(3, 5, j)
sns.kdeplot(x=df_train[df_train.columns[i]])
plt.title(df_train.columns[i])
fig.tight_layout()
print('15 graphs of random features in train set')
plt.show() | code |
73090574/cell_25 | [
"text_plain_output_1.png"
] | from optuna.samplers import TPESampler
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split, cross_val_score, KFold
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
import numpy as np
import optuna
import pandas as pd
import seaborn as sns
import xgboost as xgb
import math
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
parameters = {'axes.grid': True}
plt.rcParams.update(parameters)
import optuna
from optuna.samplers import TPESampler
import xgboost as xgb
from sklearn.model_selection import train_test_split, cross_val_score, KFold
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error
df_train = pd.read_csv('../input/tabular-playground-series-aug-2021/train.csv')
df_test = pd.read_csv('../input/tabular-playground-series-aug-2021/test.csv')
df_train.drop('id', axis=1, inplace=True)
df_train.isnull().sum().max() == 0
df_test.drop('id', axis=1, inplace=True)
df_test.isnull().sum().max() == 0
# Plotting some graphs of random features in train set
fig = plt.figure(figsize = (15, 10))
for j in [j for j in range(1, 16)]:
i = np.random.randint(0, df_train.columns.size - 1)
plt.subplot(3, 5, j)
sns.kdeplot(x = df_train[df_train.columns[i]])
plt.title(df_train.columns[i])
fig.tight_layout()
print('15 graphs of random features in train set')
plt.show()
df_train_no_target = df_train.drop('loss', axis=1)
scaler = StandardScaler()
df_train_no_target_scal = pd.DataFrame(scaler.fit_transform(df_train_no_target), columns=df_train_no_target.columns)
df_test = pd.DataFrame(scaler.fit_transform(df_test), columns=df_test.columns)
X = df_train_no_target_scal
y = df_train['loss']
model = xgb.XGBRegressor(objective='reg:tweedie', tree_method='gpu_hist', predictor='gpu_predictor', sampling_method='gradient_based', max_bin=512, silent=False, random_state=17)
model.fit(X_train, y_train)
preds_test = model.predict(X_test)
preds_train = model.predict(X_train)
def check_model(model=model, n_splits=10):
scores = []
cv = KFold(n_splits, shuffle=True)
for train_idx, test_idx in cv.split(X):
X_train, y_train = (X.iloc[train_idx], y.iloc[train_idx])
X_test, y_test = (X.iloc[test_idx], y.iloc[test_idx])
model.fit(X_train, y_train)
preds = model.predict(X_test)
score = np.sqrt(mean_squared_error(y_test, preds))
scores.append(score)
def objective(trial):
params = {'tweedie_variance_power': trial.suggest_discrete_uniform('tweedie_variance_power', 1.03, 1.12, 0.0001), 'n_estimators': trial.suggest_int('n_estimators', 3500, 5000), 'max_depth': trial.suggest_int('max_depth', 4, 8), 'eta': trial.suggest_float('eta', 0.005, 0.012), 'subsample': trial.suggest_discrete_uniform('subsample', 0.3, 0.6, 0.01), 'colsample_bytree': trial.suggest_discrete_uniform('colsample_bytree', 0.4, 1.0, 0.01), 'colsample_bylevel': trial.suggest_discrete_uniform('colsample_bylevel', 0.5, 0.9, 0.01), 'colsample_bynode': trial.suggest_discrete_uniform('colsample_bynode', 0.2, 1.0, 0.01), 'min_child_weight': trial.suggest_loguniform('min_child_weight', 0.001, 1), 'reg_alpha': trial.suggest_loguniform('reg_alpha', 1, 100.0), 'reg_lambda': trial.suggest_float('reg_lambda', 1000, 10000), 'max_delta_step': trial.suggest_loguniform('max_delta_step', 0.1, 10000.0), 'gamma': trial.suggest_loguniform('gamma', 0.001, 1), 'base_score': trial.suggest_float('base_score', 0.42, 0.48)}
model = xgb.XGBRegressor(objective='reg:tweedie', tree_method='gpu_hist', predictor='gpu_predictor', sampling_method='gradient_based', n_jobs=-1, max_bin=512, **params, random_state=17)
scores = []
cv = KFold(n_splits=10, shuffle=True)
for train_idx, test_idx in cv.split(X):
X_train, y_train = (X.iloc[train_idx], y.iloc[train_idx])
X_test, y_test = (X.iloc[test_idx], y.iloc[test_idx])
model.fit(X_train, y_train)
preds = model.predict(X_test)
score = np.sqrt(mean_squared_error(y_test, preds))
scores.append(score / cv.n_splits)
return sum(scores)
study = optuna.create_study(direction='minimize', sampler=TPESampler())
study.optimize(objective, n_trials=30)
params = study.best_params
params
check_model(model=xgb.XGBRegressor(objective='reg:tweedie', tree_method='gpu_hist', predictor='gpu_predictor', sampling_method='gradient_based', n_jobs=-1, max_bin=512, random_state=17, silent=False, **params))
model = xgb.XGBRegressor(objective='reg:tweedie', tree_method='gpu_hist', predictor='gpu_predictor', sampling_method='gradient_based', n_jobs=-1, max_bin=512, random_state=17, silent=False, **params)
model.fit(X, y)
preds = model.predict(df_test)
preds = preds.astype(int) | code |
73090574/cell_23 | [
"text_html_output_1.png"
] | from optuna.samplers import TPESampler
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split, cross_val_score, KFold
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
import numpy as np
import optuna
import pandas as pd
import seaborn as sns
import xgboost as xgb
import math
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
parameters = {'axes.grid': True}
plt.rcParams.update(parameters)
import optuna
from optuna.samplers import TPESampler
import xgboost as xgb
from sklearn.model_selection import train_test_split, cross_val_score, KFold
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error
df_train = pd.read_csv('../input/tabular-playground-series-aug-2021/train.csv')
df_test = pd.read_csv('../input/tabular-playground-series-aug-2021/test.csv')
df_train.drop('id', axis=1, inplace=True)
df_train.isnull().sum().max() == 0
df_test.drop('id', axis=1, inplace=True)
df_test.isnull().sum().max() == 0
# Plotting some graphs of random features in train set
fig = plt.figure(figsize = (15, 10))
for j in [j for j in range(1, 16)]:
i = np.random.randint(0, df_train.columns.size - 1)
plt.subplot(3, 5, j)
sns.kdeplot(x = df_train[df_train.columns[i]])
plt.title(df_train.columns[i])
fig.tight_layout()
print('15 graphs of random features in train set')
plt.show()
df_train_no_target = df_train.drop('loss', axis=1)
scaler = StandardScaler()
df_train_no_target_scal = pd.DataFrame(scaler.fit_transform(df_train_no_target), columns=df_train_no_target.columns)
df_test = pd.DataFrame(scaler.fit_transform(df_test), columns=df_test.columns)
X = df_train_no_target_scal
y = df_train['loss']
model = xgb.XGBRegressor(objective='reg:tweedie', tree_method='gpu_hist', predictor='gpu_predictor', sampling_method='gradient_based', max_bin=512, silent=False, random_state=17)
model.fit(X_train, y_train)
preds_test = model.predict(X_test)
preds_train = model.predict(X_train)
def check_model(model=model, n_splits=10):
scores = []
cv = KFold(n_splits, shuffle=True)
for train_idx, test_idx in cv.split(X):
X_train, y_train = (X.iloc[train_idx], y.iloc[train_idx])
X_test, y_test = (X.iloc[test_idx], y.iloc[test_idx])
model.fit(X_train, y_train)
preds = model.predict(X_test)
score = np.sqrt(mean_squared_error(y_test, preds))
scores.append(score)
def objective(trial):
params = {'tweedie_variance_power': trial.suggest_discrete_uniform('tweedie_variance_power', 1.03, 1.12, 0.0001), 'n_estimators': trial.suggest_int('n_estimators', 3500, 5000), 'max_depth': trial.suggest_int('max_depth', 4, 8), 'eta': trial.suggest_float('eta', 0.005, 0.012), 'subsample': trial.suggest_discrete_uniform('subsample', 0.3, 0.6, 0.01), 'colsample_bytree': trial.suggest_discrete_uniform('colsample_bytree', 0.4, 1.0, 0.01), 'colsample_bylevel': trial.suggest_discrete_uniform('colsample_bylevel', 0.5, 0.9, 0.01), 'colsample_bynode': trial.suggest_discrete_uniform('colsample_bynode', 0.2, 1.0, 0.01), 'min_child_weight': trial.suggest_loguniform('min_child_weight', 0.001, 1), 'reg_alpha': trial.suggest_loguniform('reg_alpha', 1, 100.0), 'reg_lambda': trial.suggest_float('reg_lambda', 1000, 10000), 'max_delta_step': trial.suggest_loguniform('max_delta_step', 0.1, 10000.0), 'gamma': trial.suggest_loguniform('gamma', 0.001, 1), 'base_score': trial.suggest_float('base_score', 0.42, 0.48)}
model = xgb.XGBRegressor(objective='reg:tweedie', tree_method='gpu_hist', predictor='gpu_predictor', sampling_method='gradient_based', n_jobs=-1, max_bin=512, **params, random_state=17)
scores = []
cv = KFold(n_splits=10, shuffle=True)
for train_idx, test_idx in cv.split(X):
X_train, y_train = (X.iloc[train_idx], y.iloc[train_idx])
X_test, y_test = (X.iloc[test_idx], y.iloc[test_idx])
model.fit(X_train, y_train)
preds = model.predict(X_test)
score = np.sqrt(mean_squared_error(y_test, preds))
scores.append(score / cv.n_splits)
return sum(scores)
study = optuna.create_study(direction='minimize', sampler=TPESampler())
study.optimize(objective, n_trials=30)
params = study.best_params
params | code |
73090574/cell_20 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split, cross_val_score, KFold
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import xgboost as xgb
import math
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
parameters = {'axes.grid': True}
plt.rcParams.update(parameters)
import optuna
from optuna.samplers import TPESampler
import xgboost as xgb
from sklearn.model_selection import train_test_split, cross_val_score, KFold
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error
df_train = pd.read_csv('../input/tabular-playground-series-aug-2021/train.csv')
df_test = pd.read_csv('../input/tabular-playground-series-aug-2021/test.csv')
df_train.drop('id', axis=1, inplace=True)
df_train.isnull().sum().max() == 0
df_test.drop('id', axis=1, inplace=True)
df_test.isnull().sum().max() == 0
# Plotting some graphs of random features in train set
fig = plt.figure(figsize = (15, 10))
for j in [j for j in range(1, 16)]:
i = np.random.randint(0, df_train.columns.size - 1)
plt.subplot(3, 5, j)
sns.kdeplot(x = df_train[df_train.columns[i]])
plt.title(df_train.columns[i])
fig.tight_layout()
print('15 graphs of random features in train set')
plt.show()
df_train_no_target = df_train.drop('loss', axis=1)
scaler = StandardScaler()
df_train_no_target_scal = pd.DataFrame(scaler.fit_transform(df_train_no_target), columns=df_train_no_target.columns)
df_test = pd.DataFrame(scaler.fit_transform(df_test), columns=df_test.columns)
X = df_train_no_target_scal
y = df_train['loss']
model = xgb.XGBRegressor(objective='reg:tweedie', tree_method='gpu_hist', predictor='gpu_predictor', sampling_method='gradient_based', max_bin=512, silent=False, random_state=17)
model.fit(X_train, y_train)
preds_test = model.predict(X_test)
preds_train = model.predict(X_train)
def check_model(model=model, n_splits=10):
scores = []
cv = KFold(n_splits, shuffle=True)
for train_idx, test_idx in cv.split(X):
X_train, y_train = (X.iloc[train_idx], y.iloc[train_idx])
X_test, y_test = (X.iloc[test_idx], y.iloc[test_idx])
model.fit(X_train, y_train)
preds = model.predict(X_test)
score = np.sqrt(mean_squared_error(y_test, preds))
scores.append(score)
check_model(model) | code |
73090574/cell_6 | [
"text_plain_output_1.png"
] | import pandas as pd
df_train = pd.read_csv('../input/tabular-playground-series-aug-2021/train.csv')
df_test = pd.read_csv('../input/tabular-playground-series-aug-2021/test.csv')
df_test.head() | code |
73090574/cell_18 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from sklearn.metrics import mean_squared_error
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import xgboost as xgb
import math
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
parameters = {'axes.grid': True}
plt.rcParams.update(parameters)
import optuna
from optuna.samplers import TPESampler
import xgboost as xgb
from sklearn.model_selection import train_test_split, cross_val_score, KFold
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error
df_train = pd.read_csv('../input/tabular-playground-series-aug-2021/train.csv')
df_test = pd.read_csv('../input/tabular-playground-series-aug-2021/test.csv')
df_train.drop('id', axis=1, inplace=True)
df_train.isnull().sum().max() == 0
# Plotting some graphs of random features in train set
fig = plt.figure(figsize = (15, 10))
for j in [j for j in range(1, 16)]:
i = np.random.randint(0, df_train.columns.size - 1)
plt.subplot(3, 5, j)
sns.kdeplot(x = df_train[df_train.columns[i]])
plt.title(df_train.columns[i])
fig.tight_layout()
print('15 graphs of random features in train set')
plt.show()
model = xgb.XGBRegressor(objective='reg:tweedie', tree_method='gpu_hist', predictor='gpu_predictor', sampling_method='gradient_based', max_bin=512, silent=False, random_state=17)
model.fit(X_train, y_train)
preds_test = model.predict(X_test)
preds_train = model.predict(X_train)
print(f' Test RMSE score: {np.sqrt(mean_squared_error(y_test, preds_test))}')
print(f' Train RMSE score: {np.sqrt(mean_squared_error(y_train, preds_train))}') | code |
73090574/cell_8 | [
"text_plain_output_1.png"
] | import pandas as pd
df_train = pd.read_csv('../input/tabular-playground-series-aug-2021/train.csv')
df_test = pd.read_csv('../input/tabular-playground-series-aug-2021/test.csv')
df_test.drop('id', axis=1, inplace=True)
df_test.isnull().sum().max() == 0 | code |
73090574/cell_3 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd
df_train = pd.read_csv('../input/tabular-playground-series-aug-2021/train.csv')
df_test = pd.read_csv('../input/tabular-playground-series-aug-2021/test.csv')
df_train.head() | code |
73090574/cell_17 | [
"text_plain_output_1.png"
] | import xgboost as xgb
model = xgb.XGBRegressor(objective='reg:tweedie', tree_method='gpu_hist', predictor='gpu_predictor', sampling_method='gradient_based', max_bin=512, silent=False, random_state=17)
model.fit(X_train, y_train)
preds_test = model.predict(X_test)
preds_train = model.predict(X_train) | code |
73090574/cell_24 | [
"text_plain_output_1.png"
] | from optuna.samplers import TPESampler
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split, cross_val_score, KFold
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
import numpy as np
import optuna
import pandas as pd
import seaborn as sns
import xgboost as xgb
import math
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
parameters = {'axes.grid': True}
plt.rcParams.update(parameters)
import optuna
from optuna.samplers import TPESampler
import xgboost as xgb
from sklearn.model_selection import train_test_split, cross_val_score, KFold
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error
df_train = pd.read_csv('../input/tabular-playground-series-aug-2021/train.csv')
df_test = pd.read_csv('../input/tabular-playground-series-aug-2021/test.csv')
df_train.drop('id', axis=1, inplace=True)
df_train.isnull().sum().max() == 0
df_test.drop('id', axis=1, inplace=True)
df_test.isnull().sum().max() == 0
# Plotting some graphs of random features in train set
fig = plt.figure(figsize = (15, 10))
for j in [j for j in range(1, 16)]:
i = np.random.randint(0, df_train.columns.size - 1)
plt.subplot(3, 5, j)
sns.kdeplot(x = df_train[df_train.columns[i]])
plt.title(df_train.columns[i])
fig.tight_layout()
print('15 graphs of random features in train set')
plt.show()
df_train_no_target = df_train.drop('loss', axis=1)
scaler = StandardScaler()
df_train_no_target_scal = pd.DataFrame(scaler.fit_transform(df_train_no_target), columns=df_train_no_target.columns)
df_test = pd.DataFrame(scaler.fit_transform(df_test), columns=df_test.columns)
X = df_train_no_target_scal
y = df_train['loss']
model = xgb.XGBRegressor(objective='reg:tweedie', tree_method='gpu_hist', predictor='gpu_predictor', sampling_method='gradient_based', max_bin=512, silent=False, random_state=17)
model.fit(X_train, y_train)
preds_test = model.predict(X_test)
preds_train = model.predict(X_train)
def check_model(model=model, n_splits=10):
scores = []
cv = KFold(n_splits, shuffle=True)
for train_idx, test_idx in cv.split(X):
X_train, y_train = (X.iloc[train_idx], y.iloc[train_idx])
X_test, y_test = (X.iloc[test_idx], y.iloc[test_idx])
model.fit(X_train, y_train)
preds = model.predict(X_test)
score = np.sqrt(mean_squared_error(y_test, preds))
scores.append(score)
def objective(trial):
params = {'tweedie_variance_power': trial.suggest_discrete_uniform('tweedie_variance_power', 1.03, 1.12, 0.0001), 'n_estimators': trial.suggest_int('n_estimators', 3500, 5000), 'max_depth': trial.suggest_int('max_depth', 4, 8), 'eta': trial.suggest_float('eta', 0.005, 0.012), 'subsample': trial.suggest_discrete_uniform('subsample', 0.3, 0.6, 0.01), 'colsample_bytree': trial.suggest_discrete_uniform('colsample_bytree', 0.4, 1.0, 0.01), 'colsample_bylevel': trial.suggest_discrete_uniform('colsample_bylevel', 0.5, 0.9, 0.01), 'colsample_bynode': trial.suggest_discrete_uniform('colsample_bynode', 0.2, 1.0, 0.01), 'min_child_weight': trial.suggest_loguniform('min_child_weight', 0.001, 1), 'reg_alpha': trial.suggest_loguniform('reg_alpha', 1, 100.0), 'reg_lambda': trial.suggest_float('reg_lambda', 1000, 10000), 'max_delta_step': trial.suggest_loguniform('max_delta_step', 0.1, 10000.0), 'gamma': trial.suggest_loguniform('gamma', 0.001, 1), 'base_score': trial.suggest_float('base_score', 0.42, 0.48)}
model = xgb.XGBRegressor(objective='reg:tweedie', tree_method='gpu_hist', predictor='gpu_predictor', sampling_method='gradient_based', n_jobs=-1, max_bin=512, **params, random_state=17)
scores = []
cv = KFold(n_splits=10, shuffle=True)
for train_idx, test_idx in cv.split(X):
X_train, y_train = (X.iloc[train_idx], y.iloc[train_idx])
X_test, y_test = (X.iloc[test_idx], y.iloc[test_idx])
model.fit(X_train, y_train)
preds = model.predict(X_test)
score = np.sqrt(mean_squared_error(y_test, preds))
scores.append(score / cv.n_splits)
return sum(scores)
study = optuna.create_study(direction='minimize', sampler=TPESampler())
study.optimize(objective, n_trials=30)
params = study.best_params
params
check_model(model=xgb.XGBRegressor(objective='reg:tweedie', tree_method='gpu_hist', predictor='gpu_predictor', sampling_method='gradient_based', n_jobs=-1, max_bin=512, random_state=17, silent=False, **params)) | code |
73090574/cell_14 | [
"text_html_output_1.png"
] | from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import math
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
parameters = {'axes.grid': True}
plt.rcParams.update(parameters)
import optuna
from optuna.samplers import TPESampler
import xgboost as xgb
from sklearn.model_selection import train_test_split, cross_val_score, KFold
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error
df_train = pd.read_csv('../input/tabular-playground-series-aug-2021/train.csv')
df_test = pd.read_csv('../input/tabular-playground-series-aug-2021/test.csv')
df_train.drop('id', axis=1, inplace=True)
df_train.isnull().sum().max() == 0
df_test.drop('id', axis=1, inplace=True)
df_test.isnull().sum().max() == 0
# Plotting some graphs of random features in train set
fig = plt.figure(figsize = (15, 10))
for j in [j for j in range(1, 16)]:
i = np.random.randint(0, df_train.columns.size - 1)
plt.subplot(3, 5, j)
sns.kdeplot(x = df_train[df_train.columns[i]])
plt.title(df_train.columns[i])
fig.tight_layout()
print('15 graphs of random features in train set')
plt.show()
df_train_no_target = df_train.drop('loss', axis=1)
scaler = StandardScaler()
df_train_no_target_scal = pd.DataFrame(scaler.fit_transform(df_train_no_target), columns=df_train_no_target.columns)
df_test = pd.DataFrame(scaler.fit_transform(df_test), columns=df_test.columns)
df_test.head() | code |
73090574/cell_22 | [
"text_html_output_1.png"
] | from optuna.samplers import TPESampler
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split, cross_val_score, KFold
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
import numpy as np
import optuna
import pandas as pd
import seaborn as sns
import xgboost as xgb
import math
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
parameters = {'axes.grid': True}
plt.rcParams.update(parameters)
import optuna
from optuna.samplers import TPESampler
import xgboost as xgb
from sklearn.model_selection import train_test_split, cross_val_score, KFold
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error
df_train = pd.read_csv('../input/tabular-playground-series-aug-2021/train.csv')
df_test = pd.read_csv('../input/tabular-playground-series-aug-2021/test.csv')
df_train.drop('id', axis=1, inplace=True)
df_train.isnull().sum().max() == 0
df_test.drop('id', axis=1, inplace=True)
df_test.isnull().sum().max() == 0
# Plotting some graphs of random features in train set
fig = plt.figure(figsize = (15, 10))
for j in [j for j in range(1, 16)]:
i = np.random.randint(0, df_train.columns.size - 1)
plt.subplot(3, 5, j)
sns.kdeplot(x = df_train[df_train.columns[i]])
plt.title(df_train.columns[i])
fig.tight_layout()
print('15 graphs of random features in train set')
plt.show()
df_train_no_target = df_train.drop('loss', axis=1)
scaler = StandardScaler()
df_train_no_target_scal = pd.DataFrame(scaler.fit_transform(df_train_no_target), columns=df_train_no_target.columns)
df_test = pd.DataFrame(scaler.fit_transform(df_test), columns=df_test.columns)
X = df_train_no_target_scal
y = df_train['loss']
model = xgb.XGBRegressor(objective='reg:tweedie', tree_method='gpu_hist', predictor='gpu_predictor', sampling_method='gradient_based', max_bin=512, silent=False, random_state=17)
model.fit(X_train, y_train)
preds_test = model.predict(X_test)
preds_train = model.predict(X_train)
def check_model(model=model, n_splits=10):
scores = []
cv = KFold(n_splits, shuffle=True)
for train_idx, test_idx in cv.split(X):
X_train, y_train = (X.iloc[train_idx], y.iloc[train_idx])
X_test, y_test = (X.iloc[test_idx], y.iloc[test_idx])
model.fit(X_train, y_train)
preds = model.predict(X_test)
score = np.sqrt(mean_squared_error(y_test, preds))
scores.append(score)
def objective(trial):
params = {'tweedie_variance_power': trial.suggest_discrete_uniform('tweedie_variance_power', 1.03, 1.12, 0.0001), 'n_estimators': trial.suggest_int('n_estimators', 3500, 5000), 'max_depth': trial.suggest_int('max_depth', 4, 8), 'eta': trial.suggest_float('eta', 0.005, 0.012), 'subsample': trial.suggest_discrete_uniform('subsample', 0.3, 0.6, 0.01), 'colsample_bytree': trial.suggest_discrete_uniform('colsample_bytree', 0.4, 1.0, 0.01), 'colsample_bylevel': trial.suggest_discrete_uniform('colsample_bylevel', 0.5, 0.9, 0.01), 'colsample_bynode': trial.suggest_discrete_uniform('colsample_bynode', 0.2, 1.0, 0.01), 'min_child_weight': trial.suggest_loguniform('min_child_weight', 0.001, 1), 'reg_alpha': trial.suggest_loguniform('reg_alpha', 1, 100.0), 'reg_lambda': trial.suggest_float('reg_lambda', 1000, 10000), 'max_delta_step': trial.suggest_loguniform('max_delta_step', 0.1, 10000.0), 'gamma': trial.suggest_loguniform('gamma', 0.001, 1), 'base_score': trial.suggest_float('base_score', 0.42, 0.48)}
model = xgb.XGBRegressor(objective='reg:tweedie', tree_method='gpu_hist', predictor='gpu_predictor', sampling_method='gradient_based', n_jobs=-1, max_bin=512, **params, random_state=17)
scores = []
cv = KFold(n_splits=10, shuffle=True)
for train_idx, test_idx in cv.split(X):
X_train, y_train = (X.iloc[train_idx], y.iloc[train_idx])
X_test, y_test = (X.iloc[test_idx], y.iloc[test_idx])
model.fit(X_train, y_train)
preds = model.predict(X_test)
score = np.sqrt(mean_squared_error(y_test, preds))
scores.append(score / cv.n_splits)
return sum(scores)
study = optuna.create_study(direction='minimize', sampler=TPESampler())
study.optimize(objective, n_trials=30) | code |
73090574/cell_10 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import math
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
parameters = {'axes.grid': True}
plt.rcParams.update(parameters)
import optuna
from optuna.samplers import TPESampler
import xgboost as xgb
from sklearn.model_selection import train_test_split, cross_val_score, KFold
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error
df_train = pd.read_csv('../input/tabular-playground-series-aug-2021/train.csv')
df_test = pd.read_csv('../input/tabular-playground-series-aug-2021/test.csv')
df_train.drop('id', axis=1, inplace=True)
df_train.isnull().sum().max() == 0
# Plotting some graphs of random features in train set
fig = plt.figure(figsize = (15, 10))
for j in [j for j in range(1, 16)]:
i = np.random.randint(0, df_train.columns.size - 1)
plt.subplot(3, 5, j)
sns.kdeplot(x = df_train[df_train.columns[i]])
plt.title(df_train.columns[i])
fig.tight_layout()
print('15 graphs of random features in train set')
plt.show()
plt.figure(figsize=(15, 5))
sns.histplot(x=df_train['loss'], kde=True)
plt.title('Distribution of target (loss)') | code |
73090574/cell_5 | [
"text_plain_output_1.png"
] | import pandas as pd
df_train = pd.read_csv('../input/tabular-playground-series-aug-2021/train.csv')
df_test = pd.read_csv('../input/tabular-playground-series-aug-2021/test.csv')
df_train.drop('id', axis=1, inplace=True)
df_train.isnull().sum().max() == 0 | code |
128006176/cell_13 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import os
import pandas as pd
root_dir = '/kaggle/input/image-matching-challenge-2023'
train_labels_file = os.path.join(root_dir, 'train/train_labels.csv')
train_labels = pd.read_csv(train_labels_file)
train_labels.columns
dataset_counts = train_labels['dataset'].value_counts()
scene_counts = train_labels['scene'].value_counts()
plt.figure(figsize=(10, 5))
plt.bar(scene_counts.index, scene_counts.values)
plt.xlabel('Scene')
plt.ylabel('Number of Images')
plt.title('Distribution of Images per Scene')
plt.show() | code |
128006176/cell_4 | [
"image_output_1.png"
] | !wget https://raw.githubusercontent.com/colmap/colmap/dev/scripts/python/read_write_model.py | code |
128006176/cell_11 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import os
import pandas as pd
root_dir = '/kaggle/input/image-matching-challenge-2023'
train_labels_file = os.path.join(root_dir, 'train/train_labels.csv')
train_labels = pd.read_csv(train_labels_file)
train_labels.columns
dataset_counts = train_labels['dataset'].value_counts()
scene_counts = train_labels['scene'].value_counts()
plt.figure(figsize=(10, 5))
plt.bar(dataset_counts.index, dataset_counts.values)
plt.xlabel('Dataset')
plt.ylabel('Number of Images')
plt.title('Distribution of Images per Dataset')
plt.show() | code |
128006176/cell_7 | [
"image_output_1.png"
] | import os
import pandas as pd
root_dir = '/kaggle/input/image-matching-challenge-2023'
train_labels_file = os.path.join(root_dir, 'train/train_labels.csv')
train_labels = pd.read_csv(train_labels_file)
train_labels.head() | code |
128006176/cell_18 | [
"image_output_1.png"
] | from PIL import Image
import matplotlib.pyplot as plt
import os
import pandas as pd
import random
import read_write_model
root_dir = '/kaggle/input/image-matching-challenge-2023'
train_labels_file = os.path.join(root_dir, 'train/train_labels.csv')
train_labels = pd.read_csv(train_labels_file)
train_labels.columns
dataset_counts = train_labels['dataset'].value_counts()
scene_counts = train_labels['scene'].value_counts()
# Visualize images
num_images_to_show = 5
random_image_indices = random.sample(range(len(train_labels)), num_images_to_show)
fig, axes = plt.subplots(1, num_images_to_show, figsize=(20, 5))
train_folder = os.path.join(root_dir, 'train')
for i, image_index in enumerate(random_image_indices):
relative_image_path = train_labels.iloc[image_index]['image_path']
image_path = os.path.join(train_folder, relative_image_path)
img = Image.open(image_path)
axes[i].imshow(img)
axes[i].set_title(f"Dataset: {train_labels.iloc[image_index]['dataset']} | Scene: {train_labels.iloc[image_index]['scene']}")
axes[i].axis('off')
plt.show()
def plot_sfm_3d_reconstruction(reconstruction, num_points=1000, num_cameras=50):
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
point3D_ids = list(reconstruction[2].keys())
selected_point3D_ids = random.sample(point3D_ids, min(num_points, len(point3D_ids)))
for point3D_id in selected_point3D_ids:
point3D = reconstruction[2][point3D_id]
ax.scatter(point3D.xyz[0], point3D.xyz[1], point3D.xyz[2], c='b', marker='o')
image_ids = list(reconstruction[1].keys())
selected_image_ids = random.sample(image_ids, min(num_cameras, len(image_ids)))
for image_id in selected_image_ids:
image = reconstruction[1][image_id]
camera_center = -image.qvec2rotmat().T @ image.tvec
ax.scatter(camera_center[0], camera_center[1], camera_center[2], c='r', marker='^')
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
plt.show()
sample_sfm_folder = os.path.join(train_folder, 'urban/kyiv-puppet-theater/sfm')
cameras, images, points3D = read_write_model.read_model(sample_sfm_folder)
reconstruction = (cameras, images, points3D)
plot_sfm_3d_reconstruction(reconstruction) | code |
128006176/cell_8 | [
"image_output_1.png"
] | import os
import pandas as pd
root_dir = '/kaggle/input/image-matching-challenge-2023'
train_labels_file = os.path.join(root_dir, 'train/train_labels.csv')
train_labels = pd.read_csv(train_labels_file)
train_labels.columns | code |
128006176/cell_16 | [
"text_plain_output_1.png"
] | from PIL import Image
import matplotlib.pyplot as plt
import os
import pandas as pd
import random
root_dir = '/kaggle/input/image-matching-challenge-2023'
train_labels_file = os.path.join(root_dir, 'train/train_labels.csv')
train_labels = pd.read_csv(train_labels_file)
train_labels.columns
dataset_counts = train_labels['dataset'].value_counts()
scene_counts = train_labels['scene'].value_counts()
num_images_to_show = 5
random_image_indices = random.sample(range(len(train_labels)), num_images_to_show)
fig, axes = plt.subplots(1, num_images_to_show, figsize=(20, 5))
train_folder = os.path.join(root_dir, 'train')
for i, image_index in enumerate(random_image_indices):
relative_image_path = train_labels.iloc[image_index]['image_path']
image_path = os.path.join(train_folder, relative_image_path)
img = Image.open(image_path)
axes[i].imshow(img)
axes[i].set_title(f"Dataset: {train_labels.iloc[image_index]['dataset']} | Scene: {train_labels.iloc[image_index]['scene']}")
axes[i].axis('off')
plt.show() | code |
128006176/cell_24 | [
"image_output_1.png"
] | from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
import os
import pandas as pd
import random
import read_write_model
root_dir = '/kaggle/input/image-matching-challenge-2023'
train_labels_file = os.path.join(root_dir, 'train/train_labels.csv')
train_labels = pd.read_csv(train_labels_file)
train_labels.columns
dataset_counts = train_labels['dataset'].value_counts()
scene_counts = train_labels['scene'].value_counts()
# Visualize images
num_images_to_show = 5
random_image_indices = random.sample(range(len(train_labels)), num_images_to_show)
fig, axes = plt.subplots(1, num_images_to_show, figsize=(20, 5))
train_folder = os.path.join(root_dir, 'train')
for i, image_index in enumerate(random_image_indices):
relative_image_path = train_labels.iloc[image_index]['image_path']
image_path = os.path.join(train_folder, relative_image_path)
img = Image.open(image_path)
axes[i].imshow(img)
axes[i].set_title(f"Dataset: {train_labels.iloc[image_index]['dataset']} | Scene: {train_labels.iloc[image_index]['scene']}")
axes[i].axis('off')
plt.show()
# Explore 3D reconstructions
def plot_sfm_3d_reconstruction(reconstruction, num_points=1000, num_cameras=50):
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
# Plot 3D points
point3D_ids = list(reconstruction[2].keys())
selected_point3D_ids = random.sample(point3D_ids, min(num_points, len(point3D_ids)))
for point3D_id in selected_point3D_ids:
point3D = reconstruction[2][point3D_id]
ax.scatter(point3D.xyz[0], point3D.xyz[1], point3D.xyz[2], c='b', marker='o')
# Plot camera poses
image_ids = list(reconstruction[1].keys())
selected_image_ids = random.sample(image_ids, min(num_cameras, len(image_ids)))
for image_id in selected_image_ids:
image = reconstruction[1][image_id]
camera_center = -image.qvec2rotmat().T @ image.tvec
ax.scatter(camera_center[0], camera_center[1], camera_center[2], c='r', marker='^')
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
plt.show()
# You can replace the following path with any other scene's sfm folder path
sample_sfm_folder = os.path.join(train_folder, 'urban/kyiv-puppet-theater/sfm')
cameras, images, points3D = read_write_model.read_model(sample_sfm_folder)
reconstruction = (cameras, images, points3D)
plot_sfm_3d_reconstruction(reconstruction)
def string_to_matrix(matrix_string):
return np.array(list(map(float, matrix_string.split(';')))).reshape(3, 3)
def string_to_vector(vector_string):
return np.array(list(map(float, vector_string.split(';'))))
rotation_matrices = train_labels['rotation_matrix'].apply(string_to_matrix)
translation_vectors = train_labels['translation_vector'].apply(string_to_vector)
rotation_angles = [np.rad2deg(np.arccos((np.trace(R) - 1) / 2)) for R in rotation_matrices]
translation_magnitudes = [np.linalg.norm(tvec) for tvec in translation_vectors]
plt.figure()
plt.hist(translation_magnitudes, bins=50)
plt.xlabel('Translation Magnitude (meters)')
plt.ylabel('Number of Images')
plt.title('Distribution of Translation Magnitudes')
plt.show() | code |
128006176/cell_22 | [
"image_output_1.png"
] | from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
import os
import pandas as pd
import random
import read_write_model
root_dir = '/kaggle/input/image-matching-challenge-2023'
train_labels_file = os.path.join(root_dir, 'train/train_labels.csv')
train_labels = pd.read_csv(train_labels_file)
train_labels.columns
dataset_counts = train_labels['dataset'].value_counts()
scene_counts = train_labels['scene'].value_counts()
# Visualize images
num_images_to_show = 5
random_image_indices = random.sample(range(len(train_labels)), num_images_to_show)
fig, axes = plt.subplots(1, num_images_to_show, figsize=(20, 5))
train_folder = os.path.join(root_dir, 'train')
for i, image_index in enumerate(random_image_indices):
relative_image_path = train_labels.iloc[image_index]['image_path']
image_path = os.path.join(train_folder, relative_image_path)
img = Image.open(image_path)
axes[i].imshow(img)
axes[i].set_title(f"Dataset: {train_labels.iloc[image_index]['dataset']} | Scene: {train_labels.iloc[image_index]['scene']}")
axes[i].axis('off')
plt.show()
# Explore 3D reconstructions
def plot_sfm_3d_reconstruction(reconstruction, num_points=1000, num_cameras=50):
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
# Plot 3D points
point3D_ids = list(reconstruction[2].keys())
selected_point3D_ids = random.sample(point3D_ids, min(num_points, len(point3D_ids)))
for point3D_id in selected_point3D_ids:
point3D = reconstruction[2][point3D_id]
ax.scatter(point3D.xyz[0], point3D.xyz[1], point3D.xyz[2], c='b', marker='o')
# Plot camera poses
image_ids = list(reconstruction[1].keys())
selected_image_ids = random.sample(image_ids, min(num_cameras, len(image_ids)))
for image_id in selected_image_ids:
image = reconstruction[1][image_id]
camera_center = -image.qvec2rotmat().T @ image.tvec
ax.scatter(camera_center[0], camera_center[1], camera_center[2], c='r', marker='^')
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
plt.show()
# You can replace the following path with any other scene's sfm folder path
sample_sfm_folder = os.path.join(train_folder, 'urban/kyiv-puppet-theater/sfm')
cameras, images, points3D = read_write_model.read_model(sample_sfm_folder)
reconstruction = (cameras, images, points3D)
plot_sfm_3d_reconstruction(reconstruction)
def string_to_matrix(matrix_string):
return np.array(list(map(float, matrix_string.split(';')))).reshape(3, 3)
def string_to_vector(vector_string):
return np.array(list(map(float, vector_string.split(';'))))
rotation_matrices = train_labels['rotation_matrix'].apply(string_to_matrix)
translation_vectors = train_labels['translation_vector'].apply(string_to_vector)
rotation_angles = [np.rad2deg(np.arccos((np.trace(R) - 1) / 2)) for R in rotation_matrices]
plt.figure()
plt.hist(rotation_angles, bins=50)
plt.xlabel('Rotation Angle (degrees)')
plt.ylabel('Number of Images')
plt.title('Distribution of Rotation Angles')
plt.show() | code |
34118365/cell_13 | [
"text_html_output_1.png",
"text_plain_output_1.png"
] | from glob import glob
from itertools import chain
from keras.applications.resnet_v2 import ResNet50V2
from keras.callbacks import ModelCheckpoint, LearningRateScheduler, EarlyStopping, TensorBoard, ReduceLROnPlateau
from keras.layers import Conv2D, SeparableConv2D, MaxPool2D, LeakyReLU, Activation
from keras.layers import GlobalAveragePooling2D, MaxPooling2D, Reshape
from keras.layers import Input, Dense, Flatten, Dropout, BatchNormalization, AveragePooling2D
from keras.models import Sequential, Model
from keras.models import model_from_json
from keras.optimizers import Adam, RMSprop
from keras.preprocessing.image import ImageDataGenerator
from random import sample
import numpy as np # linear algebra
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import sklearn.model_selection as skl
all_xray_df = pd.read_csv('/kaggle/input/data/Data_Entry_2017.csv')
all_image_paths = {os.path.basename(x): x for x in glob(os.path.join('/kaggle/input/data', 'images*', '*', '*.png'))}
all_xray_df['path'] = all_xray_df['Image Index'].map(all_image_paths.get)
all_xray_df.sample(3)
all_labels = np.unique(list(chain(*all_xray_df['Finding Labels'].map(lambda x: x.split('|')).tolist())))
all_labels = [x for x in all_labels if len(x) > 0]
for c_label in all_labels:
if len(c_label) > 1:
all_xray_df[c_label] = all_xray_df['Finding Labels'].map(lambda finding: 1.0 if c_label in finding else 0)
all_xray_df['pneumonia_class'] = all_xray_df['Pneumonia']
all_xray_df.sample(3)
def create_splits(df, test_size, column_name):
train_df, valid_df = skl.train_test_split(df, test_size=test_size, stratify=df[column_name])
p_inds = train_df[train_df[column_name] == 1].index.tolist()
np_inds = train_df[train_df[column_name] == 0].index.tolist()
np_sample = sample(np_inds, len(p_inds))
train_df = train_df.loc[p_inds + np_sample]
p_inds = valid_df[valid_df[column_name] == 1].index.tolist()
np_inds = valid_df[valid_df[column_name] == 0].index.tolist()
np_sample = sample(np_inds, 4 * len(p_inds))
valid_df = valid_df.loc[p_inds + np_sample]
return (train_df, valid_df)
train_df, valid_df = create_splits(all_xray_df, 0.2, 'pneumonia_class')
def my_image_augmentation():
my_idg = ImageDataGenerator(rescale=1.0 / 255.0, horizontal_flip=True, vertical_flip=False, height_shift_range=0.1, width_shift_range=0.1, rotation_range=20, shear_range=0.1, zoom_range=0.1)
return my_idg
def make_train_gen(train_df, img_size, batch_size):
idg = my_image_augmentation()
train_gen = idg.flow_from_dataframe(dataframe=train_df, directory=None, x_col='path', y_col='pneumonia_class', class_mode='raw', target_size=img_size, batch_size=batch_size)
return train_gen
def make_val_gen(valid_df, img_size, batch_size):
val_idg = ImageDataGenerator(rescale=1.0 / 255.0)
val_gen = val_idg.flow_from_dataframe(dataframe=valid_df, directory=None, x_col='path', y_col='pneumonia_class', class_mode='raw', target_size=img_size, batch_size=batch_size)
return val_gen
batch_size = 64
img_size = (224, 224)
train_gen = make_train_gen(train_df, img_size, batch_size)
val_gen = make_val_gen(valid_df, img_size, batch_size)
def load_pretrained_model():
"""
model = VGG16(include_top=True, weights='imagenet')
transfer_layer = model.get_layer('block5_pool')
vgg_model = Model(inputs = model.input, outputs = transfer_layer.output)
for layer in vgg_model.layers[0:17]:
layer.trainable = False
"""
model = ResNet50V2(include_top=False, weights='imagenet')
resnet_model = Model(inputs=model.input, outputs=model.output, name='Resnet')
return resnet_model
def build_my_model():
"""
# my_model = Sequential()
# ....add your pre-trained model, and then whatever additional layers you think you might
# want for fine-tuning (Flatteen, Dense, Dropout, etc.)
# if you want to compile your model within this function, consider which layers of your pre-trained model,
# you want to freeze before you compile
# also make sure you set your optimizer, loss function, and metrics to monitor
# Todo
my_model = Sequential()
vgg_model = load_pretrained_model()
# Add the convolutional part of the VGG16 model from above.
my_model.add(vgg_model)
# Flatten the output of the VGG16 model because it is from a
# convolutional layer.
my_model.add(Flatten())
# Add a dropout-layer which may prevent overfitting and
# improve generalization ability to unseen data e.g. the test-set.
my_model.add(Dropout(0.5))
# Add a dense (aka. fully-connected) layer.
# This is for combining features that the VGG16 model has
# recognized in the image.
my_model.add(Dense(1024, activation='relu'))
# Add a dropout-layer which may prevent overfitting and
# improve generalization ability to unseen data e.g. the test-set.
my_model.add(Dropout(0.5))
# Add a dense (aka. fully-connected) layer.
# This is for combining features that the VGG16 model has
# recognized in the image.
my_model.add(Dense(512, activation='relu'))
# Add a dropout-layer which may prevent overfitting and
# improve generalization ability to unseen data e.g. the test-set.
my_model.add(Dropout(0.5))
# Add a dense (aka. fully-connected) layer.
# This is for combining features that the VGG16 model has
# recognized in the image.
my_model.add(Dense(256, activation='relu'))
# Add a dropout-layer which may prevent overfitting and
# improve generalization ability to unseen data e.g. the test-set.
my_model.add(Dropout(0.5))
# Add a dense (aka. fully-connected) layer.
# This is for combining features that the VGG16 model has
# recognized in the image.
my_model.add(Dense(1, activation='sigmoid'))
"""
resnet_model = load_pretrained_model()
my_model = Sequential([resnet_model, BatchNormalization(), Conv2D(1024, 1, activation='relu'), Dropout(0.5), BatchNormalization(), Conv2D(256, 1, activation='relu'), Dropout(0.5), AveragePooling2D((7, 7)), BatchNormalization(), Conv2D(1, 1, activation='sigmoid'), Reshape((-1,))])
return my_model
my_model = build_my_model()
my_model.summary()
weight_path = '{}_my_model.best.hdf5'.format('xray_class')
checkpoint = ModelCheckpoint(weight_path, monitor='val_binary_accuracy', verbose=1, save_best_only=True, mode='auto', save_weights_only=True)
early = EarlyStopping(monitor='val_binary_accuracy', mode='auto', patience=5)
def scheduler(epoch, lr):
if epoch < 1:
return lr
else:
return lr * np.exp(-0.1)
lr_scheduler = LearningRateScheduler(scheduler)
callbacks_list = [checkpoint, early, lr_scheduler]
from keras.models import model_from_json
model_path = '/kaggle/input/model-and-weights/my_model2.json'
weight_path = '/kaggle/input/model-and-weights/xray_class_my_model2.best.hdf5'
json_file = open(model_path, 'r')
loaded_model_json = json_file.read()
json_file.close()
my_model = model_from_json(loaded_model_json)
my_model.load_weights(weight_path)
optimizer = RMSprop(learning_rate=0.0001)
loss = 'binary_crossentropy'
metrics = ['binary_accuracy']
my_model.compile(optimizer=optimizer, loss=loss, metrics=metrics)
history = my_model.fit_generator(train_gen, validation_data=(valX, valY), epochs=10, callbacks=callbacks_list) | code |
34118365/cell_2 | [
"text_plain_output_1.png"
] | from glob import glob
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
all_xray_df = pd.read_csv('/kaggle/input/data/Data_Entry_2017.csv')
all_image_paths = {os.path.basename(x): x for x in glob(os.path.join('/kaggle/input/data', 'images*', '*', '*.png'))}
print('Scans found:', len(all_image_paths), ', Total Headers', all_xray_df.shape[0])
all_xray_df['path'] = all_xray_df['Image Index'].map(all_image_paths.get)
all_xray_df.sample(3) | code |
34118365/cell_1 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import numpy as np
import pandas as pd
import os
from glob import glob
import matplotlib.pyplot as plt
from itertools import chain
from random import sample
import scipy
import sklearn.model_selection as skl
from sklearn.utils import class_weight
import tensorflow as tf
from skimage import io
from keras.preprocessing.image import ImageDataGenerator
from keras.layers import GlobalAveragePooling2D, MaxPooling2D, Reshape
from keras.layers import Input, Dense, Flatten, Dropout, BatchNormalization, AveragePooling2D
from keras.layers import Conv2D, SeparableConv2D, MaxPool2D, LeakyReLU, Activation
from keras.models import Sequential, Model
from keras.applications.vgg16 import VGG16
from keras.applications.resnet_v2 import ResNet50V2
from keras.optimizers import Adam, RMSprop
from keras.callbacks import ModelCheckpoint, LearningRateScheduler, EarlyStopping, TensorBoard, ReduceLROnPlateau
from sklearn.metrics import roc_curve, auc, precision_recall_curve, average_precision_score, plot_precision_recall_curve, f1_score, confusion_matrix, accuracy_score | code |
34118365/cell_7 | [
"image_output_1.png"
] | from glob import glob
from itertools import chain
from keras.preprocessing.image import ImageDataGenerator
from random import sample
import matplotlib.pyplot as plt
import numpy as np # linear algebra
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import sklearn.model_selection as skl
all_xray_df = pd.read_csv('/kaggle/input/data/Data_Entry_2017.csv')
all_image_paths = {os.path.basename(x): x for x in glob(os.path.join('/kaggle/input/data', 'images*', '*', '*.png'))}
all_xray_df['path'] = all_xray_df['Image Index'].map(all_image_paths.get)
all_xray_df.sample(3)
all_labels = np.unique(list(chain(*all_xray_df['Finding Labels'].map(lambda x: x.split('|')).tolist())))
all_labels = [x for x in all_labels if len(x) > 0]
for c_label in all_labels:
if len(c_label) > 1:
all_xray_df[c_label] = all_xray_df['Finding Labels'].map(lambda finding: 1.0 if c_label in finding else 0)
all_xray_df['pneumonia_class'] = all_xray_df['Pneumonia']
all_xray_df.sample(3)
def create_splits(df, test_size, column_name):
train_df, valid_df = skl.train_test_split(df, test_size=test_size, stratify=df[column_name])
p_inds = train_df[train_df[column_name] == 1].index.tolist()
np_inds = train_df[train_df[column_name] == 0].index.tolist()
np_sample = sample(np_inds, len(p_inds))
train_df = train_df.loc[p_inds + np_sample]
p_inds = valid_df[valid_df[column_name] == 1].index.tolist()
np_inds = valid_df[valid_df[column_name] == 0].index.tolist()
np_sample = sample(np_inds, 4 * len(p_inds))
valid_df = valid_df.loc[p_inds + np_sample]
return (train_df, valid_df)
train_df, valid_df = create_splits(all_xray_df, 0.2, 'pneumonia_class')
def my_image_augmentation():
my_idg = ImageDataGenerator(rescale=1.0 / 255.0, horizontal_flip=True, vertical_flip=False, height_shift_range=0.1, width_shift_range=0.1, rotation_range=20, shear_range=0.1, zoom_range=0.1)
return my_idg
def make_train_gen(train_df, img_size, batch_size):
idg = my_image_augmentation()
train_gen = idg.flow_from_dataframe(dataframe=train_df, directory=None, x_col='path', y_col='pneumonia_class', class_mode='raw', target_size=img_size, batch_size=batch_size)
return train_gen
def make_val_gen(valid_df, img_size, batch_size):
val_idg = ImageDataGenerator(rescale=1.0 / 255.0)
val_gen = val_idg.flow_from_dataframe(dataframe=valid_df, directory=None, x_col='path', y_col='pneumonia_class', class_mode='raw', target_size=img_size, batch_size=batch_size)
return val_gen
batch_size = 64
img_size = (224, 224)
train_gen = make_train_gen(train_df, img_size, batch_size)
val_gen = make_val_gen(valid_df, img_size, batch_size)
t_x, t_y = next(train_gen)
fig, m_axs = plt.subplots(4, 4, figsize=(16, 16))
for c_x, c_y, c_ax in zip(t_x, t_y, m_axs.flatten()):
c_ax.imshow(c_x[:, :, 0], cmap='bone')
if c_y == 1:
c_ax.set_title('Pneumonia')
else:
c_ax.set_title('No Pneumonia')
c_ax.axis('off') | code |
34118365/cell_18 | [
"text_plain_output_1.png"
] | from glob import glob
from itertools import chain
from keras.applications.resnet_v2 import ResNet50V2
from keras.callbacks import ModelCheckpoint, LearningRateScheduler, EarlyStopping, TensorBoard, ReduceLROnPlateau
from keras.layers import Conv2D, SeparableConv2D, MaxPool2D, LeakyReLU, Activation
from keras.layers import GlobalAveragePooling2D, MaxPooling2D, Reshape
from keras.layers import Input, Dense, Flatten, Dropout, BatchNormalization, AveragePooling2D
from keras.models import Sequential, Model
from keras.models import model_from_json
from keras.optimizers import Adam, RMSprop
from keras.preprocessing.image import ImageDataGenerator
from random import sample
from sklearn.metrics import roc_curve, auc, precision_recall_curve, average_precision_score, plot_precision_recall_curve, f1_score, confusion_matrix, accuracy_score
import matplotlib.pyplot as plt
import numpy as np # linear algebra
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import sklearn.model_selection as skl
all_xray_df = pd.read_csv('/kaggle/input/data/Data_Entry_2017.csv')
all_image_paths = {os.path.basename(x): x for x in glob(os.path.join('/kaggle/input/data', 'images*', '*', '*.png'))}
all_xray_df['path'] = all_xray_df['Image Index'].map(all_image_paths.get)
all_xray_df.sample(3)
all_labels = np.unique(list(chain(*all_xray_df['Finding Labels'].map(lambda x: x.split('|')).tolist())))
all_labels = [x for x in all_labels if len(x) > 0]
for c_label in all_labels:
if len(c_label) > 1:
all_xray_df[c_label] = all_xray_df['Finding Labels'].map(lambda finding: 1.0 if c_label in finding else 0)
all_xray_df['pneumonia_class'] = all_xray_df['Pneumonia']
all_xray_df.sample(3)
def create_splits(df, test_size, column_name):
train_df, valid_df = skl.train_test_split(df, test_size=test_size, stratify=df[column_name])
p_inds = train_df[train_df[column_name] == 1].index.tolist()
np_inds = train_df[train_df[column_name] == 0].index.tolist()
np_sample = sample(np_inds, len(p_inds))
train_df = train_df.loc[p_inds + np_sample]
p_inds = valid_df[valid_df[column_name] == 1].index.tolist()
np_inds = valid_df[valid_df[column_name] == 0].index.tolist()
np_sample = sample(np_inds, 4 * len(p_inds))
valid_df = valid_df.loc[p_inds + np_sample]
return (train_df, valid_df)
train_df, valid_df = create_splits(all_xray_df, 0.2, 'pneumonia_class')
def my_image_augmentation():
my_idg = ImageDataGenerator(rescale=1.0 / 255.0, horizontal_flip=True, vertical_flip=False, height_shift_range=0.1, width_shift_range=0.1, rotation_range=20, shear_range=0.1, zoom_range=0.1)
return my_idg
def make_train_gen(train_df, img_size, batch_size):
idg = my_image_augmentation()
train_gen = idg.flow_from_dataframe(dataframe=train_df, directory=None, x_col='path', y_col='pneumonia_class', class_mode='raw', target_size=img_size, batch_size=batch_size)
return train_gen
def make_val_gen(valid_df, img_size, batch_size):
val_idg = ImageDataGenerator(rescale=1.0 / 255.0)
val_gen = val_idg.flow_from_dataframe(dataframe=valid_df, directory=None, x_col='path', y_col='pneumonia_class', class_mode='raw', target_size=img_size, batch_size=batch_size)
return val_gen
batch_size = 64
img_size = (224, 224)
train_gen = make_train_gen(train_df, img_size, batch_size)
val_gen = make_val_gen(valid_df, img_size, batch_size)
## May want to look at some examples of our augmented training data.
## This is helpful for understanding the extent to which data is being manipulated prior to training,
## and can be compared with how the raw data look prior to augmentation
t_x, t_y = next(train_gen)
fig, m_axs = plt.subplots(4, 4, figsize = (16, 16))
for (c_x, c_y, c_ax) in zip(t_x, t_y, m_axs.flatten()):
c_ax.imshow(c_x[:,:,0], cmap = 'bone')
if c_y == 1:
c_ax.set_title('Pneumonia')
else:
c_ax.set_title('No Pneumonia')
c_ax.axis('off')
def load_pretrained_model():
"""
model = VGG16(include_top=True, weights='imagenet')
transfer_layer = model.get_layer('block5_pool')
vgg_model = Model(inputs = model.input, outputs = transfer_layer.output)
for layer in vgg_model.layers[0:17]:
layer.trainable = False
"""
model = ResNet50V2(include_top=False, weights='imagenet')
resnet_model = Model(inputs=model.input, outputs=model.output, name='Resnet')
return resnet_model
def build_my_model():
"""
# my_model = Sequential()
# ....add your pre-trained model, and then whatever additional layers you think you might
# want for fine-tuning (Flatteen, Dense, Dropout, etc.)
# if you want to compile your model within this function, consider which layers of your pre-trained model,
# you want to freeze before you compile
# also make sure you set your optimizer, loss function, and metrics to monitor
# Todo
my_model = Sequential()
vgg_model = load_pretrained_model()
# Add the convolutional part of the VGG16 model from above.
my_model.add(vgg_model)
# Flatten the output of the VGG16 model because it is from a
# convolutional layer.
my_model.add(Flatten())
# Add a dropout-layer which may prevent overfitting and
# improve generalization ability to unseen data e.g. the test-set.
my_model.add(Dropout(0.5))
# Add a dense (aka. fully-connected) layer.
# This is for combining features that the VGG16 model has
# recognized in the image.
my_model.add(Dense(1024, activation='relu'))
# Add a dropout-layer which may prevent overfitting and
# improve generalization ability to unseen data e.g. the test-set.
my_model.add(Dropout(0.5))
# Add a dense (aka. fully-connected) layer.
# This is for combining features that the VGG16 model has
# recognized in the image.
my_model.add(Dense(512, activation='relu'))
# Add a dropout-layer which may prevent overfitting and
# improve generalization ability to unseen data e.g. the test-set.
my_model.add(Dropout(0.5))
# Add a dense (aka. fully-connected) layer.
# This is for combining features that the VGG16 model has
# recognized in the image.
my_model.add(Dense(256, activation='relu'))
# Add a dropout-layer which may prevent overfitting and
# improve generalization ability to unseen data e.g. the test-set.
my_model.add(Dropout(0.5))
# Add a dense (aka. fully-connected) layer.
# This is for combining features that the VGG16 model has
# recognized in the image.
my_model.add(Dense(1, activation='sigmoid'))
"""
resnet_model = load_pretrained_model()
my_model = Sequential([resnet_model, BatchNormalization(), Conv2D(1024, 1, activation='relu'), Dropout(0.5), BatchNormalization(), Conv2D(256, 1, activation='relu'), Dropout(0.5), AveragePooling2D((7, 7)), BatchNormalization(), Conv2D(1, 1, activation='sigmoid'), Reshape((-1,))])
return my_model
my_model = build_my_model()
my_model.summary()
weight_path = '{}_my_model.best.hdf5'.format('xray_class')
checkpoint = ModelCheckpoint(weight_path, monitor='val_binary_accuracy', verbose=1, save_best_only=True, mode='auto', save_weights_only=True)
early = EarlyStopping(monitor='val_binary_accuracy', mode='auto', patience=5)
def scheduler(epoch, lr):
if epoch < 1:
return lr
else:
return lr * np.exp(-0.1)
lr_scheduler = LearningRateScheduler(scheduler)
callbacks_list = [checkpoint, early, lr_scheduler]
from keras.models import model_from_json
model_path = '/kaggle/input/model-and-weights/my_model2.json'
weight_path = '/kaggle/input/model-and-weights/xray_class_my_model2.best.hdf5'
json_file = open(model_path, 'r')
loaded_model_json = json_file.read()
json_file.close()
my_model = model_from_json(loaded_model_json)
my_model.load_weights(weight_path)
optimizer = RMSprop(learning_rate=0.0001)
loss = 'binary_crossentropy'
metrics = ['binary_accuracy']
my_model.compile(optimizer=optimizer, loss=loss, metrics=metrics)
history = my_model.fit_generator(train_gen, validation_data=(valX, valY), epochs=10, callbacks=callbacks_list)
weight_path = 'xray_class_my_model.best.hdf5'
my_model.load_weights(weight_path)
pred_Y = my_model.predict(valX, batch_size=100, verbose=True)
def plot_auc(t_y, p_y):
fpr, tpr, threshold = roc_curve(valY, pred_Y)
roc_auc = auc(fpr, tpr)
plt.xlim([0, 1])
plt.ylim([0, 1])
return
def plot_prec_rec(val_Y, pred_Y):
prec, rec, threshold = precision_recall_curve(val_Y, pred_Y)
plt.xlim([0, 1])
plt.ylim([0, 1])
def plot_history(history):
n = len(history.history['loss'])
return
def optimize_accuracy(t_y, p_y):
best_threshold = None
best_accuracy = 0.0
for t in np.arange(0.5, 1, 0.1):
pred = (p_y.reshape(-1) > t) * 1.0
accuracy = np.mean(pred == t_y)
if accuracy > best_accuracy:
best_threshold = t
best_accuracy = accuracy
return (best_threshold, best_accuracy)
best_threshold, best_accuracy = optimize_accuracy(valY, pred_Y)
pred_Y_class = pred_Y > best_threshold
f1_score(valY, pred_Y_class)
YOUR_THRESHOLD = best_threshold
fig, m_axs = plt.subplots(8, 8, figsize=(16, 16))
i = 0
for c_x, c_y, c_ax in zip(valX[0:64], valY[0:64], m_axs.flatten()):
c_ax.imshow(c_x[:, :, 0], cmap='bone')
if c_y == 1:
if pred_Y[i] > YOUR_THRESHOLD:
c_ax.set_title('1, 1')
else:
c_ax.set_title('1, 0')
elif pred_Y[i] > YOUR_THRESHOLD:
c_ax.set_title('0, 1')
else:
c_ax.set_title('0, 0')
c_ax.axis('off')
i = i + 1 | code |
34118365/cell_16 | [
"image_output_1.png"
] | from glob import glob
from itertools import chain
from keras.applications.resnet_v2 import ResNet50V2
from keras.callbacks import ModelCheckpoint, LearningRateScheduler, EarlyStopping, TensorBoard, ReduceLROnPlateau
from keras.layers import Conv2D, SeparableConv2D, MaxPool2D, LeakyReLU, Activation
from keras.layers import GlobalAveragePooling2D, MaxPooling2D, Reshape
from keras.layers import Input, Dense, Flatten, Dropout, BatchNormalization, AveragePooling2D
from keras.models import Sequential, Model
from keras.models import model_from_json
from keras.optimizers import Adam, RMSprop
from keras.preprocessing.image import ImageDataGenerator
from random import sample
from sklearn.metrics import roc_curve, auc, precision_recall_curve, average_precision_score, plot_precision_recall_curve, f1_score, confusion_matrix, accuracy_score
import matplotlib.pyplot as plt
import numpy as np # linear algebra
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import sklearn.model_selection as skl
all_xray_df = pd.read_csv('/kaggle/input/data/Data_Entry_2017.csv')
all_image_paths = {os.path.basename(x): x for x in glob(os.path.join('/kaggle/input/data', 'images*', '*', '*.png'))}
all_xray_df['path'] = all_xray_df['Image Index'].map(all_image_paths.get)
all_xray_df.sample(3)
all_labels = np.unique(list(chain(*all_xray_df['Finding Labels'].map(lambda x: x.split('|')).tolist())))
all_labels = [x for x in all_labels if len(x) > 0]
for c_label in all_labels:
if len(c_label) > 1:
all_xray_df[c_label] = all_xray_df['Finding Labels'].map(lambda finding: 1.0 if c_label in finding else 0)
all_xray_df['pneumonia_class'] = all_xray_df['Pneumonia']
all_xray_df.sample(3)
def create_splits(df, test_size, column_name):
train_df, valid_df = skl.train_test_split(df, test_size=test_size, stratify=df[column_name])
p_inds = train_df[train_df[column_name] == 1].index.tolist()
np_inds = train_df[train_df[column_name] == 0].index.tolist()
np_sample = sample(np_inds, len(p_inds))
train_df = train_df.loc[p_inds + np_sample]
p_inds = valid_df[valid_df[column_name] == 1].index.tolist()
np_inds = valid_df[valid_df[column_name] == 0].index.tolist()
np_sample = sample(np_inds, 4 * len(p_inds))
valid_df = valid_df.loc[p_inds + np_sample]
return (train_df, valid_df)
train_df, valid_df = create_splits(all_xray_df, 0.2, 'pneumonia_class')
def my_image_augmentation():
my_idg = ImageDataGenerator(rescale=1.0 / 255.0, horizontal_flip=True, vertical_flip=False, height_shift_range=0.1, width_shift_range=0.1, rotation_range=20, shear_range=0.1, zoom_range=0.1)
return my_idg
def make_train_gen(train_df, img_size, batch_size):
idg = my_image_augmentation()
train_gen = idg.flow_from_dataframe(dataframe=train_df, directory=None, x_col='path', y_col='pneumonia_class', class_mode='raw', target_size=img_size, batch_size=batch_size)
return train_gen
def make_val_gen(valid_df, img_size, batch_size):
val_idg = ImageDataGenerator(rescale=1.0 / 255.0)
val_gen = val_idg.flow_from_dataframe(dataframe=valid_df, directory=None, x_col='path', y_col='pneumonia_class', class_mode='raw', target_size=img_size, batch_size=batch_size)
return val_gen
batch_size = 64
img_size = (224, 224)
train_gen = make_train_gen(train_df, img_size, batch_size)
val_gen = make_val_gen(valid_df, img_size, batch_size)
## May want to look at some examples of our augmented training data.
## This is helpful for understanding the extent to which data is being manipulated prior to training,
## and can be compared with how the raw data look prior to augmentation
t_x, t_y = next(train_gen)
fig, m_axs = plt.subplots(4, 4, figsize = (16, 16))
for (c_x, c_y, c_ax) in zip(t_x, t_y, m_axs.flatten()):
c_ax.imshow(c_x[:,:,0], cmap = 'bone')
if c_y == 1:
c_ax.set_title('Pneumonia')
else:
c_ax.set_title('No Pneumonia')
c_ax.axis('off')
def load_pretrained_model():
"""
model = VGG16(include_top=True, weights='imagenet')
transfer_layer = model.get_layer('block5_pool')
vgg_model = Model(inputs = model.input, outputs = transfer_layer.output)
for layer in vgg_model.layers[0:17]:
layer.trainable = False
"""
model = ResNet50V2(include_top=False, weights='imagenet')
resnet_model = Model(inputs=model.input, outputs=model.output, name='Resnet')
return resnet_model
def build_my_model():
"""
# my_model = Sequential()
# ....add your pre-trained model, and then whatever additional layers you think you might
# want for fine-tuning (Flatteen, Dense, Dropout, etc.)
# if you want to compile your model within this function, consider which layers of your pre-trained model,
# you want to freeze before you compile
# also make sure you set your optimizer, loss function, and metrics to monitor
# Todo
my_model = Sequential()
vgg_model = load_pretrained_model()
# Add the convolutional part of the VGG16 model from above.
my_model.add(vgg_model)
# Flatten the output of the VGG16 model because it is from a
# convolutional layer.
my_model.add(Flatten())
# Add a dropout-layer which may prevent overfitting and
# improve generalization ability to unseen data e.g. the test-set.
my_model.add(Dropout(0.5))
# Add a dense (aka. fully-connected) layer.
# This is for combining features that the VGG16 model has
# recognized in the image.
my_model.add(Dense(1024, activation='relu'))
# Add a dropout-layer which may prevent overfitting and
# improve generalization ability to unseen data e.g. the test-set.
my_model.add(Dropout(0.5))
# Add a dense (aka. fully-connected) layer.
# This is for combining features that the VGG16 model has
# recognized in the image.
my_model.add(Dense(512, activation='relu'))
# Add a dropout-layer which may prevent overfitting and
# improve generalization ability to unseen data e.g. the test-set.
my_model.add(Dropout(0.5))
# Add a dense (aka. fully-connected) layer.
# This is for combining features that the VGG16 model has
# recognized in the image.
my_model.add(Dense(256, activation='relu'))
# Add a dropout-layer which may prevent overfitting and
# improve generalization ability to unseen data e.g. the test-set.
my_model.add(Dropout(0.5))
# Add a dense (aka. fully-connected) layer.
# This is for combining features that the VGG16 model has
# recognized in the image.
my_model.add(Dense(1, activation='sigmoid'))
"""
resnet_model = load_pretrained_model()
my_model = Sequential([resnet_model, BatchNormalization(), Conv2D(1024, 1, activation='relu'), Dropout(0.5), BatchNormalization(), Conv2D(256, 1, activation='relu'), Dropout(0.5), AveragePooling2D((7, 7)), BatchNormalization(), Conv2D(1, 1, activation='sigmoid'), Reshape((-1,))])
return my_model
my_model = build_my_model()
my_model.summary()
weight_path = '{}_my_model.best.hdf5'.format('xray_class')
checkpoint = ModelCheckpoint(weight_path, monitor='val_binary_accuracy', verbose=1, save_best_only=True, mode='auto', save_weights_only=True)
early = EarlyStopping(monitor='val_binary_accuracy', mode='auto', patience=5)
def scheduler(epoch, lr):
if epoch < 1:
return lr
else:
return lr * np.exp(-0.1)
lr_scheduler = LearningRateScheduler(scheduler)
callbacks_list = [checkpoint, early, lr_scheduler]
from keras.models import model_from_json
model_path = '/kaggle/input/model-and-weights/my_model2.json'
weight_path = '/kaggle/input/model-and-weights/xray_class_my_model2.best.hdf5'
json_file = open(model_path, 'r')
loaded_model_json = json_file.read()
json_file.close()
my_model = model_from_json(loaded_model_json)
my_model.load_weights(weight_path)
optimizer = RMSprop(learning_rate=0.0001)
loss = 'binary_crossentropy'
metrics = ['binary_accuracy']
my_model.compile(optimizer=optimizer, loss=loss, metrics=metrics)
history = my_model.fit_generator(train_gen, validation_data=(valX, valY), epochs=10, callbacks=callbacks_list)
weight_path = 'xray_class_my_model.best.hdf5'
my_model.load_weights(weight_path)
pred_Y = my_model.predict(valX, batch_size=100, verbose=True)
def plot_auc(t_y, p_y):
fpr, tpr, threshold = roc_curve(valY, pred_Y)
roc_auc = auc(fpr, tpr)
plt.xlim([0, 1])
plt.ylim([0, 1])
return
def plot_prec_rec(val_Y, pred_Y):
prec, rec, threshold = precision_recall_curve(val_Y, pred_Y)
plt.xlim([0, 1])
plt.ylim([0, 1])
def plot_history(history):
n = len(history.history['loss'])
return
plot_auc(valY, pred_Y)
plot_prec_rec(valY, pred_Y)
plot_history(history) | code |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.