path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
34118365/cell_3
[ "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
from glob import glob from itertools import chain import numpy as np # linear algebra import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) all_xray_df = pd.read_csv('/kaggle/input/data/Data_Entry_2017.csv') all_image_paths = {os.path.basename(x): x for x in glob(os.path.join('/kaggle/input/data', 'images*', '*', '*.png'))} all_xray_df['path'] = all_xray_df['Image Index'].map(all_image_paths.get) all_xray_df.sample(3) all_labels = np.unique(list(chain(*all_xray_df['Finding Labels'].map(lambda x: x.split('|')).tolist()))) all_labels = [x for x in all_labels if len(x) > 0] print('All Labels ({}): {}'.format(len(all_labels), all_labels)) for c_label in all_labels: if len(c_label) > 1: all_xray_df[c_label] = all_xray_df['Finding Labels'].map(lambda finding: 1.0 if c_label in finding else 0) all_xray_df['pneumonia_class'] = all_xray_df['Pneumonia'] all_xray_df.sample(3)
code
34118365/cell_17
[ "text_plain_output_1.png" ]
from glob import glob from itertools import chain from keras.applications.resnet_v2 import ResNet50V2 from keras.callbacks import ModelCheckpoint, LearningRateScheduler, EarlyStopping, TensorBoard, ReduceLROnPlateau from keras.layers import Conv2D, SeparableConv2D, MaxPool2D, LeakyReLU, Activation from keras.layers import GlobalAveragePooling2D, MaxPooling2D, Reshape from keras.layers import Input, Dense, Flatten, Dropout, BatchNormalization, AveragePooling2D from keras.models import Sequential, Model from keras.models import model_from_json from keras.optimizers import Adam, RMSprop from keras.preprocessing.image import ImageDataGenerator from random import sample from sklearn.metrics import roc_curve, auc, precision_recall_curve, average_precision_score, plot_precision_recall_curve, f1_score, confusion_matrix, accuracy_score import matplotlib.pyplot as plt import numpy as np # linear algebra import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import sklearn.model_selection as skl all_xray_df = pd.read_csv('/kaggle/input/data/Data_Entry_2017.csv') all_image_paths = {os.path.basename(x): x for x in glob(os.path.join('/kaggle/input/data', 'images*', '*', '*.png'))} all_xray_df['path'] = all_xray_df['Image Index'].map(all_image_paths.get) all_xray_df.sample(3) all_labels = np.unique(list(chain(*all_xray_df['Finding Labels'].map(lambda x: x.split('|')).tolist()))) all_labels = [x for x in all_labels if len(x) > 0] for c_label in all_labels: if len(c_label) > 1: all_xray_df[c_label] = all_xray_df['Finding Labels'].map(lambda finding: 1.0 if c_label in finding else 0) all_xray_df['pneumonia_class'] = all_xray_df['Pneumonia'] all_xray_df.sample(3) def create_splits(df, test_size, column_name): train_df, valid_df = skl.train_test_split(df, test_size=test_size, stratify=df[column_name]) p_inds = train_df[train_df[column_name] == 1].index.tolist() np_inds = train_df[train_df[column_name] == 0].index.tolist() np_sample = sample(np_inds, len(p_inds)) train_df = train_df.loc[p_inds + np_sample] p_inds = valid_df[valid_df[column_name] == 1].index.tolist() np_inds = valid_df[valid_df[column_name] == 0].index.tolist() np_sample = sample(np_inds, 4 * len(p_inds)) valid_df = valid_df.loc[p_inds + np_sample] return (train_df, valid_df) train_df, valid_df = create_splits(all_xray_df, 0.2, 'pneumonia_class') def my_image_augmentation(): my_idg = ImageDataGenerator(rescale=1.0 / 255.0, horizontal_flip=True, vertical_flip=False, height_shift_range=0.1, width_shift_range=0.1, rotation_range=20, shear_range=0.1, zoom_range=0.1) return my_idg def make_train_gen(train_df, img_size, batch_size): idg = my_image_augmentation() train_gen = idg.flow_from_dataframe(dataframe=train_df, directory=None, x_col='path', y_col='pneumonia_class', class_mode='raw', target_size=img_size, batch_size=batch_size) return train_gen def make_val_gen(valid_df, img_size, batch_size): val_idg = ImageDataGenerator(rescale=1.0 / 255.0) val_gen = val_idg.flow_from_dataframe(dataframe=valid_df, directory=None, x_col='path', y_col='pneumonia_class', class_mode='raw', target_size=img_size, batch_size=batch_size) return val_gen batch_size = 64 img_size = (224, 224) train_gen = make_train_gen(train_df, img_size, batch_size) val_gen = make_val_gen(valid_df, img_size, batch_size) ## May want to look at some examples of our augmented training data. ## This is helpful for understanding the extent to which data is being manipulated prior to training, ## and can be compared with how the raw data look prior to augmentation t_x, t_y = next(train_gen) fig, m_axs = plt.subplots(4, 4, figsize = (16, 16)) for (c_x, c_y, c_ax) in zip(t_x, t_y, m_axs.flatten()): c_ax.imshow(c_x[:,:,0], cmap = 'bone') if c_y == 1: c_ax.set_title('Pneumonia') else: c_ax.set_title('No Pneumonia') c_ax.axis('off') def load_pretrained_model(): """ model = VGG16(include_top=True, weights='imagenet') transfer_layer = model.get_layer('block5_pool') vgg_model = Model(inputs = model.input, outputs = transfer_layer.output) for layer in vgg_model.layers[0:17]: layer.trainable = False """ model = ResNet50V2(include_top=False, weights='imagenet') resnet_model = Model(inputs=model.input, outputs=model.output, name='Resnet') return resnet_model def build_my_model(): """ # my_model = Sequential() # ....add your pre-trained model, and then whatever additional layers you think you might # want for fine-tuning (Flatteen, Dense, Dropout, etc.) # if you want to compile your model within this function, consider which layers of your pre-trained model, # you want to freeze before you compile # also make sure you set your optimizer, loss function, and metrics to monitor # Todo my_model = Sequential() vgg_model = load_pretrained_model() # Add the convolutional part of the VGG16 model from above. my_model.add(vgg_model) # Flatten the output of the VGG16 model because it is from a # convolutional layer. my_model.add(Flatten()) # Add a dropout-layer which may prevent overfitting and # improve generalization ability to unseen data e.g. the test-set. my_model.add(Dropout(0.5)) # Add a dense (aka. fully-connected) layer. # This is for combining features that the VGG16 model has # recognized in the image. my_model.add(Dense(1024, activation='relu')) # Add a dropout-layer which may prevent overfitting and # improve generalization ability to unseen data e.g. the test-set. my_model.add(Dropout(0.5)) # Add a dense (aka. fully-connected) layer. # This is for combining features that the VGG16 model has # recognized in the image. my_model.add(Dense(512, activation='relu')) # Add a dropout-layer which may prevent overfitting and # improve generalization ability to unseen data e.g. the test-set. my_model.add(Dropout(0.5)) # Add a dense (aka. fully-connected) layer. # This is for combining features that the VGG16 model has # recognized in the image. my_model.add(Dense(256, activation='relu')) # Add a dropout-layer which may prevent overfitting and # improve generalization ability to unseen data e.g. the test-set. my_model.add(Dropout(0.5)) # Add a dense (aka. fully-connected) layer. # This is for combining features that the VGG16 model has # recognized in the image. my_model.add(Dense(1, activation='sigmoid')) """ resnet_model = load_pretrained_model() my_model = Sequential([resnet_model, BatchNormalization(), Conv2D(1024, 1, activation='relu'), Dropout(0.5), BatchNormalization(), Conv2D(256, 1, activation='relu'), Dropout(0.5), AveragePooling2D((7, 7)), BatchNormalization(), Conv2D(1, 1, activation='sigmoid'), Reshape((-1,))]) return my_model my_model = build_my_model() my_model.summary() weight_path = '{}_my_model.best.hdf5'.format('xray_class') checkpoint = ModelCheckpoint(weight_path, monitor='val_binary_accuracy', verbose=1, save_best_only=True, mode='auto', save_weights_only=True) early = EarlyStopping(monitor='val_binary_accuracy', mode='auto', patience=5) def scheduler(epoch, lr): if epoch < 1: return lr else: return lr * np.exp(-0.1) lr_scheduler = LearningRateScheduler(scheduler) callbacks_list = [checkpoint, early, lr_scheduler] from keras.models import model_from_json model_path = '/kaggle/input/model-and-weights/my_model2.json' weight_path = '/kaggle/input/model-and-weights/xray_class_my_model2.best.hdf5' json_file = open(model_path, 'r') loaded_model_json = json_file.read() json_file.close() my_model = model_from_json(loaded_model_json) my_model.load_weights(weight_path) optimizer = RMSprop(learning_rate=0.0001) loss = 'binary_crossentropy' metrics = ['binary_accuracy'] my_model.compile(optimizer=optimizer, loss=loss, metrics=metrics) history = my_model.fit_generator(train_gen, validation_data=(valX, valY), epochs=10, callbacks=callbacks_list) weight_path = 'xray_class_my_model.best.hdf5' my_model.load_weights(weight_path) pred_Y = my_model.predict(valX, batch_size=100, verbose=True) def plot_auc(t_y, p_y): fpr, tpr, threshold = roc_curve(valY, pred_Y) roc_auc = auc(fpr, tpr) plt.xlim([0, 1]) plt.ylim([0, 1]) return def plot_prec_rec(val_Y, pred_Y): prec, rec, threshold = precision_recall_curve(val_Y, pred_Y) plt.xlim([0, 1]) plt.ylim([0, 1]) def plot_history(history): n = len(history.history['loss']) return def optimize_accuracy(t_y, p_y): best_threshold = None best_accuracy = 0.0 for t in np.arange(0.5, 1, 0.1): pred = (p_y.reshape(-1) > t) * 1.0 accuracy = np.mean(pred == t_y) if accuracy > best_accuracy: best_threshold = t best_accuracy = accuracy return (best_threshold, best_accuracy) best_threshold, best_accuracy = optimize_accuracy(valY, pred_Y) print('Threshold of %.2f gives best accuracy at %.4f' % (best_threshold, best_accuracy)) pred_Y_class = pred_Y > best_threshold f1_score(valY, pred_Y_class)
code
34118365/cell_14
[ "text_plain_output_1.png" ]
from glob import glob from itertools import chain from keras.applications.resnet_v2 import ResNet50V2 from keras.callbacks import ModelCheckpoint, LearningRateScheduler, EarlyStopping, TensorBoard, ReduceLROnPlateau from keras.layers import Conv2D, SeparableConv2D, MaxPool2D, LeakyReLU, Activation from keras.layers import GlobalAveragePooling2D, MaxPooling2D, Reshape from keras.layers import Input, Dense, Flatten, Dropout, BatchNormalization, AveragePooling2D from keras.models import Sequential, Model from keras.models import model_from_json from keras.optimizers import Adam, RMSprop from keras.preprocessing.image import ImageDataGenerator from random import sample import numpy as np # linear algebra import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import sklearn.model_selection as skl all_xray_df = pd.read_csv('/kaggle/input/data/Data_Entry_2017.csv') all_image_paths = {os.path.basename(x): x for x in glob(os.path.join('/kaggle/input/data', 'images*', '*', '*.png'))} all_xray_df['path'] = all_xray_df['Image Index'].map(all_image_paths.get) all_xray_df.sample(3) all_labels = np.unique(list(chain(*all_xray_df['Finding Labels'].map(lambda x: x.split('|')).tolist()))) all_labels = [x for x in all_labels if len(x) > 0] for c_label in all_labels: if len(c_label) > 1: all_xray_df[c_label] = all_xray_df['Finding Labels'].map(lambda finding: 1.0 if c_label in finding else 0) all_xray_df['pneumonia_class'] = all_xray_df['Pneumonia'] all_xray_df.sample(3) def create_splits(df, test_size, column_name): train_df, valid_df = skl.train_test_split(df, test_size=test_size, stratify=df[column_name]) p_inds = train_df[train_df[column_name] == 1].index.tolist() np_inds = train_df[train_df[column_name] == 0].index.tolist() np_sample = sample(np_inds, len(p_inds)) train_df = train_df.loc[p_inds + np_sample] p_inds = valid_df[valid_df[column_name] == 1].index.tolist() np_inds = valid_df[valid_df[column_name] == 0].index.tolist() np_sample = sample(np_inds, 4 * len(p_inds)) valid_df = valid_df.loc[p_inds + np_sample] return (train_df, valid_df) train_df, valid_df = create_splits(all_xray_df, 0.2, 'pneumonia_class') def my_image_augmentation(): my_idg = ImageDataGenerator(rescale=1.0 / 255.0, horizontal_flip=True, vertical_flip=False, height_shift_range=0.1, width_shift_range=0.1, rotation_range=20, shear_range=0.1, zoom_range=0.1) return my_idg def make_train_gen(train_df, img_size, batch_size): idg = my_image_augmentation() train_gen = idg.flow_from_dataframe(dataframe=train_df, directory=None, x_col='path', y_col='pneumonia_class', class_mode='raw', target_size=img_size, batch_size=batch_size) return train_gen def make_val_gen(valid_df, img_size, batch_size): val_idg = ImageDataGenerator(rescale=1.0 / 255.0) val_gen = val_idg.flow_from_dataframe(dataframe=valid_df, directory=None, x_col='path', y_col='pneumonia_class', class_mode='raw', target_size=img_size, batch_size=batch_size) return val_gen batch_size = 64 img_size = (224, 224) train_gen = make_train_gen(train_df, img_size, batch_size) val_gen = make_val_gen(valid_df, img_size, batch_size) def load_pretrained_model(): """ model = VGG16(include_top=True, weights='imagenet') transfer_layer = model.get_layer('block5_pool') vgg_model = Model(inputs = model.input, outputs = transfer_layer.output) for layer in vgg_model.layers[0:17]: layer.trainable = False """ model = ResNet50V2(include_top=False, weights='imagenet') resnet_model = Model(inputs=model.input, outputs=model.output, name='Resnet') return resnet_model def build_my_model(): """ # my_model = Sequential() # ....add your pre-trained model, and then whatever additional layers you think you might # want for fine-tuning (Flatteen, Dense, Dropout, etc.) # if you want to compile your model within this function, consider which layers of your pre-trained model, # you want to freeze before you compile # also make sure you set your optimizer, loss function, and metrics to monitor # Todo my_model = Sequential() vgg_model = load_pretrained_model() # Add the convolutional part of the VGG16 model from above. my_model.add(vgg_model) # Flatten the output of the VGG16 model because it is from a # convolutional layer. my_model.add(Flatten()) # Add a dropout-layer which may prevent overfitting and # improve generalization ability to unseen data e.g. the test-set. my_model.add(Dropout(0.5)) # Add a dense (aka. fully-connected) layer. # This is for combining features that the VGG16 model has # recognized in the image. my_model.add(Dense(1024, activation='relu')) # Add a dropout-layer which may prevent overfitting and # improve generalization ability to unseen data e.g. the test-set. my_model.add(Dropout(0.5)) # Add a dense (aka. fully-connected) layer. # This is for combining features that the VGG16 model has # recognized in the image. my_model.add(Dense(512, activation='relu')) # Add a dropout-layer which may prevent overfitting and # improve generalization ability to unseen data e.g. the test-set. my_model.add(Dropout(0.5)) # Add a dense (aka. fully-connected) layer. # This is for combining features that the VGG16 model has # recognized in the image. my_model.add(Dense(256, activation='relu')) # Add a dropout-layer which may prevent overfitting and # improve generalization ability to unseen data e.g. the test-set. my_model.add(Dropout(0.5)) # Add a dense (aka. fully-connected) layer. # This is for combining features that the VGG16 model has # recognized in the image. my_model.add(Dense(1, activation='sigmoid')) """ resnet_model = load_pretrained_model() my_model = Sequential([resnet_model, BatchNormalization(), Conv2D(1024, 1, activation='relu'), Dropout(0.5), BatchNormalization(), Conv2D(256, 1, activation='relu'), Dropout(0.5), AveragePooling2D((7, 7)), BatchNormalization(), Conv2D(1, 1, activation='sigmoid'), Reshape((-1,))]) return my_model my_model = build_my_model() my_model.summary() weight_path = '{}_my_model.best.hdf5'.format('xray_class') checkpoint = ModelCheckpoint(weight_path, monitor='val_binary_accuracy', verbose=1, save_best_only=True, mode='auto', save_weights_only=True) early = EarlyStopping(monitor='val_binary_accuracy', mode='auto', patience=5) def scheduler(epoch, lr): if epoch < 1: return lr else: return lr * np.exp(-0.1) lr_scheduler = LearningRateScheduler(scheduler) callbacks_list = [checkpoint, early, lr_scheduler] from keras.models import model_from_json model_path = '/kaggle/input/model-and-weights/my_model2.json' weight_path = '/kaggle/input/model-and-weights/xray_class_my_model2.best.hdf5' json_file = open(model_path, 'r') loaded_model_json = json_file.read() json_file.close() my_model = model_from_json(loaded_model_json) my_model.load_weights(weight_path) optimizer = RMSprop(learning_rate=0.0001) loss = 'binary_crossentropy' metrics = ['binary_accuracy'] my_model.compile(optimizer=optimizer, loss=loss, metrics=metrics) history = my_model.fit_generator(train_gen, validation_data=(valX, valY), epochs=10, callbacks=callbacks_list) weight_path = 'xray_class_my_model.best.hdf5' my_model.load_weights(weight_path) pred_Y = my_model.predict(valX, batch_size=100, verbose=True)
code
34118365/cell_12
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import multiprocessing as mp import multiprocessing as mp cpu_count = mp.cpu_count() cpu_count
code
34118365/cell_5
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
from glob import glob from itertools import chain from keras.preprocessing.image import ImageDataGenerator from random import sample import numpy as np # linear algebra import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import sklearn.model_selection as skl all_xray_df = pd.read_csv('/kaggle/input/data/Data_Entry_2017.csv') all_image_paths = {os.path.basename(x): x for x in glob(os.path.join('/kaggle/input/data', 'images*', '*', '*.png'))} all_xray_df['path'] = all_xray_df['Image Index'].map(all_image_paths.get) all_xray_df.sample(3) all_labels = np.unique(list(chain(*all_xray_df['Finding Labels'].map(lambda x: x.split('|')).tolist()))) all_labels = [x for x in all_labels if len(x) > 0] for c_label in all_labels: if len(c_label) > 1: all_xray_df[c_label] = all_xray_df['Finding Labels'].map(lambda finding: 1.0 if c_label in finding else 0) all_xray_df['pneumonia_class'] = all_xray_df['Pneumonia'] all_xray_df.sample(3) def create_splits(df, test_size, column_name): train_df, valid_df = skl.train_test_split(df, test_size=test_size, stratify=df[column_name]) p_inds = train_df[train_df[column_name] == 1].index.tolist() np_inds = train_df[train_df[column_name] == 0].index.tolist() np_sample = sample(np_inds, len(p_inds)) train_df = train_df.loc[p_inds + np_sample] p_inds = valid_df[valid_df[column_name] == 1].index.tolist() np_inds = valid_df[valid_df[column_name] == 0].index.tolist() np_sample = sample(np_inds, 4 * len(p_inds)) valid_df = valid_df.loc[p_inds + np_sample] return (train_df, valid_df) train_df, valid_df = create_splits(all_xray_df, 0.2, 'pneumonia_class') def my_image_augmentation(): my_idg = ImageDataGenerator(rescale=1.0 / 255.0, horizontal_flip=True, vertical_flip=False, height_shift_range=0.1, width_shift_range=0.1, rotation_range=20, shear_range=0.1, zoom_range=0.1) return my_idg def make_train_gen(train_df, img_size, batch_size): idg = my_image_augmentation() train_gen = idg.flow_from_dataframe(dataframe=train_df, directory=None, x_col='path', y_col='pneumonia_class', class_mode='raw', target_size=img_size, batch_size=batch_size) return train_gen def make_val_gen(valid_df, img_size, batch_size): val_idg = ImageDataGenerator(rescale=1.0 / 255.0) val_gen = val_idg.flow_from_dataframe(dataframe=valid_df, directory=None, x_col='path', y_col='pneumonia_class', class_mode='raw', target_size=img_size, batch_size=batch_size) return val_gen batch_size = 64 img_size = (224, 224) train_gen = make_train_gen(train_df, img_size, batch_size) val_gen = make_val_gen(valid_df, img_size, batch_size)
code
18131743/cell_21
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_3.png", "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import f1_score,confusion_matrix from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split import matplotlib.cm as cm import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('../input/data.csv') import seaborn as sns from pandas.plotting import scatter_matrix import matplotlib.cm as cm import matplotlib.pyplot as plt data['diagnosis'] = data['diagnosis'].map({'M': 1, 'B': 0}) y = pd.DataFrame(data=data['diagnosis']) list = ['Unnamed: 32', 'id', 'diagnosis'] x = data.drop(list, axis=1) #correlation map f,ax = plt.subplots(figsize=(18, 18)) sns.heatmap(x.corr(), annot=True, linewidths=.5, fmt= '.1f',ax=ax) rem = ['perimeter_mean','radius_mean','compactness_mean','concave points_mean','radius_se','perimeter_se','radius_worst','perimeter_worst','compactness_worst','concave points_worst','compactness_se','concave points_se','texture_worst','area_worst'] data_new = x.drop(rem, axis=1) f,ax = plt.subplots(figsize=(14, 14)) sns.heatmap(data_new.corr(), annot=True, linewidths=.5, fmt= '.1f',ax=ax) data_new['diagnosis'] = y corrmat = data_new.corr().abs() top_corr_features = corrmat.index[abs(corrmat["diagnosis"])>0.1] plt.figure(figsize=(10,10)) g = sns.heatmap(data_new[top_corr_features].corr(),annot=True,cmap="RdYlGn") req = ['texture_mean', 'area_mean', 'smoothness_mean', 'concavity_mean', 'symmetry_mean', 'area_se', 'concavity_se', 'smoothness_worst', 'concavity_worst', 'symmetry_worst', 'fractal_dimension_worst'] data_new2 = data_new[req] data_new = data_new.drop(['diagnosis'], axis=1) from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import f1_score, confusion_matrix from sklearn.metrics import accuracy_score x_train, x_test, y_train, y_test = train_test_split(data_new2, y, test_size=0.3, random_state=42) clf_rf = RandomForestClassifier(random_state=43) clr_rf = clf_rf.fit(x_train, y_train) ac = accuracy_score(y_test, clf_rf.predict(x_test)) cm = confusion_matrix(y_test, clf_rf.predict(x_test)) data_final = pd.read_csv('../input/data.csv') y_final = data_final['diagnosis'].map({'M': 0, 'B': 1}) data_final = data_final[req] from sklearn.model_selection import train_test_split x_final = data_final x_train, x_test, y_train, y_test = train_test_split(x_final, y_final, test_size=0.2, random_state=42) x_train.shape clf_rf = RandomForestClassifier(random_state=43, n_estimators=20, min_samples_split=2, min_samples_leaf=2, max_features='sqrt', max_depth=21, bootstrap=False) clr_rf = clf_rf.fit(x_train, y_train) print(r2_score(y_test, clf_rf.predict(x_test))) print(mean_squared_error(y_test, clf_rf.predict(x_test)))
code
18131743/cell_9
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('../input/data.csv') import seaborn as sns from pandas.plotting import scatter_matrix import matplotlib.cm as cm import matplotlib.pyplot as plt data['diagnosis'] = data['diagnosis'].map({'M': 1, 'B': 0}) y = pd.DataFrame(data=data['diagnosis']) list = ['Unnamed: 32', 'id', 'diagnosis'] x = data.drop(list, axis=1) #correlation map f,ax = plt.subplots(figsize=(18, 18)) sns.heatmap(x.corr(), annot=True, linewidths=.5, fmt= '.1f',ax=ax) rem = ['perimeter_mean', 'radius_mean', 'compactness_mean', 'concave points_mean', 'radius_se', 'perimeter_se', 'radius_worst', 'perimeter_worst', 'compactness_worst', 'concave points_worst', 'compactness_se', 'concave points_se', 'texture_worst', 'area_worst'] data_new = x.drop(rem, axis=1) f, ax = plt.subplots(figsize=(14, 14)) sns.heatmap(data_new.corr(), annot=True, linewidths=0.5, fmt='.1f', ax=ax)
code
18131743/cell_25
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('../input/data.csv') import seaborn as sns from pandas.plotting import scatter_matrix import matplotlib.cm as cm import matplotlib.pyplot as plt data['diagnosis'] = data['diagnosis'].map({'M': 1, 'B': 0}) y = pd.DataFrame(data=data['diagnosis']) list = ['Unnamed: 32', 'id', 'diagnosis'] x = data.drop(list, axis=1) #correlation map f,ax = plt.subplots(figsize=(18, 18)) sns.heatmap(x.corr(), annot=True, linewidths=.5, fmt= '.1f',ax=ax) rem = ['perimeter_mean','radius_mean','compactness_mean','concave points_mean','radius_se','perimeter_se','radius_worst','perimeter_worst','compactness_worst','concave points_worst','compactness_se','concave points_se','texture_worst','area_worst'] data_new = x.drop(rem, axis=1) f,ax = plt.subplots(figsize=(14, 14)) sns.heatmap(data_new.corr(), annot=True, linewidths=.5, fmt= '.1f',ax=ax) data_new['diagnosis'] = y corrmat = data_new.corr().abs() top_corr_features = corrmat.index[abs(corrmat["diagnosis"])>0.1] plt.figure(figsize=(10,10)) g = sns.heatmap(data_new[top_corr_features].corr(),annot=True,cmap="RdYlGn") req = ['texture_mean', 'area_mean', 'smoothness_mean', 'concavity_mean', 'symmetry_mean', 'area_se', 'concavity_se', 'smoothness_worst', 'concavity_worst', 'symmetry_worst', 'fractal_dimension_worst'] data_new2 = data_new[req] data_new = data_new.drop(['diagnosis'], axis=1) data_final = pd.read_csv('../input/data.csv') y_final = data_final['diagnosis'].map({'M': 0, 'B': 1}) data_final = data_final[req] from sklearn.model_selection import train_test_split x_final = data_final x_train, x_test, y_train, y_test = train_test_split(x_final, y_final, test_size=0.2, random_state=42) x_train.shape from sklearn.tree import DecisionTreeClassifier dtc_test = DecisionTreeClassifier(random_state=43, min_samples_leaf=8) dtc_test = dtc_test.fit(x_train, y_train) print(r2_score(y_test, dtc_test.predict(x_test))) print(mean_squared_error(y_test, dtc_test.predict(x_test)))
code
18131743/cell_23
[ "text_plain_output_1.png" ]
from sklearn.ensemble import ExtraTreesRegressor from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('../input/data.csv') import seaborn as sns from pandas.plotting import scatter_matrix import matplotlib.cm as cm import matplotlib.pyplot as plt data['diagnosis'] = data['diagnosis'].map({'M': 1, 'B': 0}) y = pd.DataFrame(data=data['diagnosis']) list = ['Unnamed: 32', 'id', 'diagnosis'] x = data.drop(list, axis=1) #correlation map f,ax = plt.subplots(figsize=(18, 18)) sns.heatmap(x.corr(), annot=True, linewidths=.5, fmt= '.1f',ax=ax) rem = ['perimeter_mean','radius_mean','compactness_mean','concave points_mean','radius_se','perimeter_se','radius_worst','perimeter_worst','compactness_worst','concave points_worst','compactness_se','concave points_se','texture_worst','area_worst'] data_new = x.drop(rem, axis=1) f,ax = plt.subplots(figsize=(14, 14)) sns.heatmap(data_new.corr(), annot=True, linewidths=.5, fmt= '.1f',ax=ax) data_new['diagnosis'] = y corrmat = data_new.corr().abs() top_corr_features = corrmat.index[abs(corrmat["diagnosis"])>0.1] plt.figure(figsize=(10,10)) g = sns.heatmap(data_new[top_corr_features].corr(),annot=True,cmap="RdYlGn") req = ['texture_mean', 'area_mean', 'smoothness_mean', 'concavity_mean', 'symmetry_mean', 'area_se', 'concavity_se', 'smoothness_worst', 'concavity_worst', 'symmetry_worst', 'fractal_dimension_worst'] data_new2 = data_new[req] data_new = data_new.drop(['diagnosis'], axis=1) data_final = pd.read_csv('../input/data.csv') y_final = data_final['diagnosis'].map({'M': 0, 'B': 1}) data_final = data_final[req] from sklearn.model_selection import train_test_split x_final = data_final x_train, x_test, y_train, y_test = train_test_split(x_final, y_final, test_size=0.2, random_state=42) x_train.shape from sklearn.ensemble import ExtraTreesRegressor etr_test = ExtraTreesRegressor(random_state=43, n_estimators=100, min_samples_split=2, min_samples_leaf=1, max_features='auto', max_depth=None, bootstrap=False) etr_test = etr_test.fit(x_train, y_train) print(r2_score(y_test, etr_test.predict(x_test))) print(mean_squared_error(y_test, etr_test.predict(x_test)))
code
18131743/cell_20
[ "image_output_1.png" ]
from sklearn.model_selection import RandomizedSearchCV from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('../input/data.csv') import seaborn as sns from pandas.plotting import scatter_matrix import matplotlib.cm as cm import matplotlib.pyplot as plt data['diagnosis'] = data['diagnosis'].map({'M': 1, 'B': 0}) y = pd.DataFrame(data=data['diagnosis']) list = ['Unnamed: 32', 'id', 'diagnosis'] x = data.drop(list, axis=1) #correlation map f,ax = plt.subplots(figsize=(18, 18)) sns.heatmap(x.corr(), annot=True, linewidths=.5, fmt= '.1f',ax=ax) rem = ['perimeter_mean','radius_mean','compactness_mean','concave points_mean','radius_se','perimeter_se','radius_worst','perimeter_worst','compactness_worst','concave points_worst','compactness_se','concave points_se','texture_worst','area_worst'] data_new = x.drop(rem, axis=1) f,ax = plt.subplots(figsize=(14, 14)) sns.heatmap(data_new.corr(), annot=True, linewidths=.5, fmt= '.1f',ax=ax) data_new['diagnosis'] = y corrmat = data_new.corr().abs() top_corr_features = corrmat.index[abs(corrmat["diagnosis"])>0.1] plt.figure(figsize=(10,10)) g = sns.heatmap(data_new[top_corr_features].corr(),annot=True,cmap="RdYlGn") req = ['texture_mean', 'area_mean', 'smoothness_mean', 'concavity_mean', 'symmetry_mean', 'area_se', 'concavity_se', 'smoothness_worst', 'concavity_worst', 'symmetry_worst', 'fractal_dimension_worst'] data_new2 = data_new[req] data_new = data_new.drop(['diagnosis'], axis=1) data_final = pd.read_csv('../input/data.csv') y_final = data_final['diagnosis'].map({'M': 0, 'B': 1}) data_final = data_final[req] from sklearn.model_selection import train_test_split x_final = data_final x_train, x_test, y_train, y_test = train_test_split(x_final, y_final, test_size=0.2, random_state=42) x_train.shape from sklearn.model_selection import RandomizedSearchCV criterion = ['mse', 'friedman_mse', 'mae'] splitter = ['best', 'random'] max_depth = [None, 1, 11, 21, 31] min_samples_split = [2, 5, 10] min_samples_leaf = [1, 2, 4] max_features = ['auto', 'sqrt', 'log2'] random_grid = {'max_features': max_features, 'max_depth': max_depth, 'min_samples_split': min_samples_split, 'min_samples_leaf': min_samples_leaf, 'criterion': criterion, 'splitter': splitter} print(random_grid) model_test = DecisionTreeRegressor(random_state=43) model_random = RandomizedSearchCV(estimator=model_test, param_distributions=random_grid, n_iter=100, cv=3, random_state=42, n_jobs=-1) model_random.fit(x_train, y_train) model_random.best_params_
code
18131743/cell_29
[ "application_vnd.jupyter.stderr_output_1.png" ]
from mlxtend.regressor import StackingCVRegressor from sklearn import ensemble from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import ExtraTreesRegressor from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.tree import DecisionTreeRegressor import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('../input/data.csv') import seaborn as sns from pandas.plotting import scatter_matrix import matplotlib.cm as cm import matplotlib.pyplot as plt data['diagnosis'] = data['diagnosis'].map({'M': 1, 'B': 0}) y = pd.DataFrame(data=data['diagnosis']) list = ['Unnamed: 32', 'id', 'diagnosis'] x = data.drop(list, axis=1) #correlation map f,ax = plt.subplots(figsize=(18, 18)) sns.heatmap(x.corr(), annot=True, linewidths=.5, fmt= '.1f',ax=ax) rem = ['perimeter_mean','radius_mean','compactness_mean','concave points_mean','radius_se','perimeter_se','radius_worst','perimeter_worst','compactness_worst','concave points_worst','compactness_se','concave points_se','texture_worst','area_worst'] data_new = x.drop(rem, axis=1) f,ax = plt.subplots(figsize=(14, 14)) sns.heatmap(data_new.corr(), annot=True, linewidths=.5, fmt= '.1f',ax=ax) data_new['diagnosis'] = y corrmat = data_new.corr().abs() top_corr_features = corrmat.index[abs(corrmat["diagnosis"])>0.1] plt.figure(figsize=(10,10)) g = sns.heatmap(data_new[top_corr_features].corr(),annot=True,cmap="RdYlGn") req = ['texture_mean', 'area_mean', 'smoothness_mean', 'concavity_mean', 'symmetry_mean', 'area_se', 'concavity_se', 'smoothness_worst', 'concavity_worst', 'symmetry_worst', 'fractal_dimension_worst'] data_new2 = data_new[req] data_new = data_new.drop(['diagnosis'], axis=1) data_final = pd.read_csv('../input/data.csv') y_final = data_final['diagnosis'].map({'M': 0, 'B': 1}) data_final = data_final[req] from sklearn.model_selection import train_test_split x_final = data_final x_train, x_test, y_train, y_test = train_test_split(x_final, y_final, test_size=0.2, random_state=42) x_train.shape from sklearn import ensemble gbr = ensemble.GradientBoostingRegressor(n_estimators=400, max_depth=7, min_samples_split=8, learning_rate=0.1, loss='ls') gbr = gbr.fit(x_train, y_train) from mlxtend.regressor import StackingCVRegressor rfc = RandomForestClassifier(random_state=43, n_estimators=20, min_samples_split=2, min_samples_leaf=2, max_features='sqrt', max_depth=21, bootstrap=False) etc = ExtraTreesClassifier(random_state=43, n_estimators=300, min_samples_split=2, min_samples_leaf=1, max_features='sqrt', max_depth=31, bootstrap=True) etr = ExtraTreesRegressor(random_state=43, n_estimators=100, min_samples_split=2, min_samples_leaf=1, max_features='auto', max_depth=None, bootstrap=False) rfr = RandomForestRegressor(random_state=43, n_estimators=200, min_samples_split=2, min_samples_leaf=1, max_features='log2', max_depth=11, bootstrap=False) dtc = DecisionTreeClassifier(random_state=43, min_samples_leaf=8) dtr = DecisionTreeRegressor(random_state=43, splitter='best', min_samples_split=2, min_samples_leaf=8, max_features='auto', max_depth=11, criterion='mse') gbr = ensemble.GradientBoostingRegressor(n_estimators=400, max_depth=7, min_samples_split=8, learning_rate=0.1, loss='ls') stack_gen = StackingCVRegressor(regressors=(rfc, etr, rfr, dtc, dtr), meta_regressor=dtr, use_features_in_secondary=True) stack_gen_model = stack_gen.fit(x_train, y_train) print(r2_score(y_test, stack_gen_model.predict(x_test))) print(mean_squared_error(y_test, stack_gen_model.predict(x_test)))
code
18131743/cell_26
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeRegressor import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('../input/data.csv') import seaborn as sns from pandas.plotting import scatter_matrix import matplotlib.cm as cm import matplotlib.pyplot as plt data['diagnosis'] = data['diagnosis'].map({'M': 1, 'B': 0}) y = pd.DataFrame(data=data['diagnosis']) list = ['Unnamed: 32', 'id', 'diagnosis'] x = data.drop(list, axis=1) #correlation map f,ax = plt.subplots(figsize=(18, 18)) sns.heatmap(x.corr(), annot=True, linewidths=.5, fmt= '.1f',ax=ax) rem = ['perimeter_mean','radius_mean','compactness_mean','concave points_mean','radius_se','perimeter_se','radius_worst','perimeter_worst','compactness_worst','concave points_worst','compactness_se','concave points_se','texture_worst','area_worst'] data_new = x.drop(rem, axis=1) f,ax = plt.subplots(figsize=(14, 14)) sns.heatmap(data_new.corr(), annot=True, linewidths=.5, fmt= '.1f',ax=ax) data_new['diagnosis'] = y corrmat = data_new.corr().abs() top_corr_features = corrmat.index[abs(corrmat["diagnosis"])>0.1] plt.figure(figsize=(10,10)) g = sns.heatmap(data_new[top_corr_features].corr(),annot=True,cmap="RdYlGn") req = ['texture_mean', 'area_mean', 'smoothness_mean', 'concavity_mean', 'symmetry_mean', 'area_se', 'concavity_se', 'smoothness_worst', 'concavity_worst', 'symmetry_worst', 'fractal_dimension_worst'] data_new2 = data_new[req] data_new = data_new.drop(['diagnosis'], axis=1) data_final = pd.read_csv('../input/data.csv') y_final = data_final['diagnosis'].map({'M': 0, 'B': 1}) data_final = data_final[req] from sklearn.model_selection import train_test_split x_final = data_final x_train, x_test, y_train, y_test = train_test_split(x_final, y_final, test_size=0.2, random_state=42) x_train.shape from sklearn.tree import DecisionTreeRegressor dtr_test = DecisionTreeRegressor(random_state=43, splitter='best', min_samples_split=2, min_samples_leaf=8, max_features='auto', max_depth=11, criterion='mse') dtr_test = dtr_test.fit(x_train, y_train) print(r2_score(y_test, dtr_test.predict(x_test))) print(mean_squared_error(y_test, dtr_test.predict(x_test)))
code
18131743/cell_2
[ "text_plain_output_1.png", "image_output_1.png" ]
import os import numpy as np import pandas as pd import os print(os.listdir('../input'))
code
18131743/cell_11
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('../input/data.csv') import seaborn as sns from pandas.plotting import scatter_matrix import matplotlib.cm as cm import matplotlib.pyplot as plt data['diagnosis'] = data['diagnosis'].map({'M': 1, 'B': 0}) y = pd.DataFrame(data=data['diagnosis']) list = ['Unnamed: 32', 'id', 'diagnosis'] x = data.drop(list, axis=1) #correlation map f,ax = plt.subplots(figsize=(18, 18)) sns.heatmap(x.corr(), annot=True, linewidths=.5, fmt= '.1f',ax=ax) rem = ['perimeter_mean','radius_mean','compactness_mean','concave points_mean','radius_se','perimeter_se','radius_worst','perimeter_worst','compactness_worst','concave points_worst','compactness_se','concave points_se','texture_worst','area_worst'] data_new = x.drop(rem, axis=1) f,ax = plt.subplots(figsize=(14, 14)) sns.heatmap(data_new.corr(), annot=True, linewidths=.5, fmt= '.1f',ax=ax) data_new['diagnosis'] = y corrmat = data_new.corr().abs() top_corr_features = corrmat.index[abs(corrmat['diagnosis']) > 0.1] plt.figure(figsize=(10, 10)) g = sns.heatmap(data_new[top_corr_features].corr(), annot=True, cmap='RdYlGn')
code
18131743/cell_7
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('../input/data.csv') import seaborn as sns from pandas.plotting import scatter_matrix import matplotlib.cm as cm import matplotlib.pyplot as plt data['diagnosis'] = data['diagnosis'].map({'M': 1, 'B': 0}) y = pd.DataFrame(data=data['diagnosis']) list = ['Unnamed: 32', 'id', 'diagnosis'] x = data.drop(list, axis=1) f, ax = plt.subplots(figsize=(18, 18)) sns.heatmap(x.corr(), annot=True, linewidths=0.5, fmt='.1f', ax=ax)
code
18131743/cell_18
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('../input/data.csv') import seaborn as sns from pandas.plotting import scatter_matrix import matplotlib.cm as cm import matplotlib.pyplot as plt data['diagnosis'] = data['diagnosis'].map({'M': 1, 'B': 0}) y = pd.DataFrame(data=data['diagnosis']) list = ['Unnamed: 32', 'id', 'diagnosis'] x = data.drop(list, axis=1) #correlation map f,ax = plt.subplots(figsize=(18, 18)) sns.heatmap(x.corr(), annot=True, linewidths=.5, fmt= '.1f',ax=ax) rem = ['perimeter_mean','radius_mean','compactness_mean','concave points_mean','radius_se','perimeter_se','radius_worst','perimeter_worst','compactness_worst','concave points_worst','compactness_se','concave points_se','texture_worst','area_worst'] data_new = x.drop(rem, axis=1) f,ax = plt.subplots(figsize=(14, 14)) sns.heatmap(data_new.corr(), annot=True, linewidths=.5, fmt= '.1f',ax=ax) data_new['diagnosis'] = y corrmat = data_new.corr().abs() top_corr_features = corrmat.index[abs(corrmat["diagnosis"])>0.1] plt.figure(figsize=(10,10)) g = sns.heatmap(data_new[top_corr_features].corr(),annot=True,cmap="RdYlGn") req = ['texture_mean', 'area_mean', 'smoothness_mean', 'concavity_mean', 'symmetry_mean', 'area_se', 'concavity_se', 'smoothness_worst', 'concavity_worst', 'symmetry_worst', 'fractal_dimension_worst'] data_new2 = data_new[req] data_new = data_new.drop(['diagnosis'], axis=1) data_final = pd.read_csv('../input/data.csv') y_final = data_final['diagnosis'].map({'M': 0, 'B': 1}) data_final = data_final[req] from sklearn.model_selection import train_test_split x_final = data_final x_train, x_test, y_train, y_test = train_test_split(x_final, y_final, test_size=0.2, random_state=42) x_train.shape
code
18131743/cell_15
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import f1_score,confusion_matrix from sklearn.model_selection import train_test_split import matplotlib.cm as cm import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('../input/data.csv') import seaborn as sns from pandas.plotting import scatter_matrix import matplotlib.cm as cm import matplotlib.pyplot as plt data['diagnosis'] = data['diagnosis'].map({'M': 1, 'B': 0}) y = pd.DataFrame(data=data['diagnosis']) list = ['Unnamed: 32', 'id', 'diagnosis'] x = data.drop(list, axis=1) #correlation map f,ax = plt.subplots(figsize=(18, 18)) sns.heatmap(x.corr(), annot=True, linewidths=.5, fmt= '.1f',ax=ax) rem = ['perimeter_mean','radius_mean','compactness_mean','concave points_mean','radius_se','perimeter_se','radius_worst','perimeter_worst','compactness_worst','concave points_worst','compactness_se','concave points_se','texture_worst','area_worst'] data_new = x.drop(rem, axis=1) f,ax = plt.subplots(figsize=(14, 14)) sns.heatmap(data_new.corr(), annot=True, linewidths=.5, fmt= '.1f',ax=ax) data_new['diagnosis'] = y corrmat = data_new.corr().abs() top_corr_features = corrmat.index[abs(corrmat["diagnosis"])>0.1] plt.figure(figsize=(10,10)) g = sns.heatmap(data_new[top_corr_features].corr(),annot=True,cmap="RdYlGn") req = ['texture_mean', 'area_mean', 'smoothness_mean', 'concavity_mean', 'symmetry_mean', 'area_se', 'concavity_se', 'smoothness_worst', 'concavity_worst', 'symmetry_worst', 'fractal_dimension_worst'] data_new2 = data_new[req] data_new = data_new.drop(['diagnosis'], axis=1) from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import f1_score, confusion_matrix from sklearn.metrics import accuracy_score x_train, x_test, y_train, y_test = train_test_split(data_new2, y, test_size=0.3, random_state=42) clf_rf = RandomForestClassifier(random_state=43) clr_rf = clf_rf.fit(x_train, y_train) ac = accuracy_score(y_test, clf_rf.predict(x_test)) print('Accuracy is: ', ac) cm = confusion_matrix(y_test, clf_rf.predict(x_test)) sns.heatmap(cm, annot=True, fmt='d')
code
18131743/cell_3
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/data.csv') data.info()
code
18131743/cell_17
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('../input/data.csv') import seaborn as sns from pandas.plotting import scatter_matrix import matplotlib.cm as cm import matplotlib.pyplot as plt data['diagnosis'] = data['diagnosis'].map({'M': 1, 'B': 0}) y = pd.DataFrame(data=data['diagnosis']) list = ['Unnamed: 32', 'id', 'diagnosis'] x = data.drop(list, axis=1) #correlation map f,ax = plt.subplots(figsize=(18, 18)) sns.heatmap(x.corr(), annot=True, linewidths=.5, fmt= '.1f',ax=ax) rem = ['perimeter_mean','radius_mean','compactness_mean','concave points_mean','radius_se','perimeter_se','radius_worst','perimeter_worst','compactness_worst','concave points_worst','compactness_se','concave points_se','texture_worst','area_worst'] data_new = x.drop(rem, axis=1) f,ax = plt.subplots(figsize=(14, 14)) sns.heatmap(data_new.corr(), annot=True, linewidths=.5, fmt= '.1f',ax=ax) data_new['diagnosis'] = y corrmat = data_new.corr().abs() top_corr_features = corrmat.index[abs(corrmat["diagnosis"])>0.1] plt.figure(figsize=(10,10)) g = sns.heatmap(data_new[top_corr_features].corr(),annot=True,cmap="RdYlGn") req = ['texture_mean', 'area_mean', 'smoothness_mean', 'concavity_mean', 'symmetry_mean', 'area_se', 'concavity_se', 'smoothness_worst', 'concavity_worst', 'symmetry_worst', 'fractal_dimension_worst'] data_new2 = data_new[req] data_new = data_new.drop(['diagnosis'], axis=1) data_final = pd.read_csv('../input/data.csv') y_final = data_final['diagnosis'].map({'M': 0, 'B': 1}) data_final = data_final[req] data_final.info()
code
18131743/cell_31
[ "application_vnd.jupyter.stderr_output_1.png" ]
from mlxtend.regressor import StackingCVRegressor from sklearn import ensemble from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import ExtraTreesRegressor from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.tree import DecisionTreeRegressor import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('../input/data.csv') import seaborn as sns from pandas.plotting import scatter_matrix import matplotlib.cm as cm import matplotlib.pyplot as plt data['diagnosis'] = data['diagnosis'].map({'M': 1, 'B': 0}) y = pd.DataFrame(data=data['diagnosis']) list = ['Unnamed: 32', 'id', 'diagnosis'] x = data.drop(list, axis=1) #correlation map f,ax = plt.subplots(figsize=(18, 18)) sns.heatmap(x.corr(), annot=True, linewidths=.5, fmt= '.1f',ax=ax) rem = ['perimeter_mean','radius_mean','compactness_mean','concave points_mean','radius_se','perimeter_se','radius_worst','perimeter_worst','compactness_worst','concave points_worst','compactness_se','concave points_se','texture_worst','area_worst'] data_new = x.drop(rem, axis=1) f,ax = plt.subplots(figsize=(14, 14)) sns.heatmap(data_new.corr(), annot=True, linewidths=.5, fmt= '.1f',ax=ax) data_new['diagnosis'] = y corrmat = data_new.corr().abs() top_corr_features = corrmat.index[abs(corrmat["diagnosis"])>0.1] plt.figure(figsize=(10,10)) g = sns.heatmap(data_new[top_corr_features].corr(),annot=True,cmap="RdYlGn") req = ['texture_mean', 'area_mean', 'smoothness_mean', 'concavity_mean', 'symmetry_mean', 'area_se', 'concavity_se', 'smoothness_worst', 'concavity_worst', 'symmetry_worst', 'fractal_dimension_worst'] data_new2 = data_new[req] data_new = data_new.drop(['diagnosis'], axis=1) data_final = pd.read_csv('../input/data.csv') y_final = data_final['diagnosis'].map({'M': 0, 'B': 1}) data_final = data_final[req] from sklearn.model_selection import train_test_split x_final = data_final x_train, x_test, y_train, y_test = train_test_split(x_final, y_final, test_size=0.2, random_state=42) x_train.shape from sklearn import ensemble gbr = ensemble.GradientBoostingRegressor(n_estimators=400, max_depth=7, min_samples_split=8, learning_rate=0.1, loss='ls') gbr = gbr.fit(x_train, y_train) from mlxtend.regressor import StackingCVRegressor rfc = RandomForestClassifier(random_state=43, n_estimators=20, min_samples_split=2, min_samples_leaf=2, max_features='sqrt', max_depth=21, bootstrap=False) etc = ExtraTreesClassifier(random_state=43, n_estimators=300, min_samples_split=2, min_samples_leaf=1, max_features='sqrt', max_depth=31, bootstrap=True) etr = ExtraTreesRegressor(random_state=43, n_estimators=100, min_samples_split=2, min_samples_leaf=1, max_features='auto', max_depth=None, bootstrap=False) rfr = RandomForestRegressor(random_state=43, n_estimators=200, min_samples_split=2, min_samples_leaf=1, max_features='log2', max_depth=11, bootstrap=False) dtc = DecisionTreeClassifier(random_state=43, min_samples_leaf=8) dtr = DecisionTreeRegressor(random_state=43, splitter='best', min_samples_split=2, min_samples_leaf=8, max_features='auto', max_depth=11, criterion='mse') gbr = ensemble.GradientBoostingRegressor(n_estimators=400, max_depth=7, min_samples_split=8, learning_rate=0.1, loss='ls') stack_gen = StackingCVRegressor(regressors=(rfc, etr, rfr, dtc, dtr), meta_regressor=dtr, use_features_in_secondary=True) stack_gen_model = stack_gen.fit(x_train, y_train) def blend_models_predict(X): return 0.05 * etc.predict(X) + 0.05 * gbr.predict(X) + 0.1 * rfc.predict(X) + 0.1 * rfr.predict(X) + 0.1 * dtc.predict(X) + 0.2 * dtr.predict(X) + 0.1 * etr.predict(X) + 0.3 * stack_gen_model.predict(np.array(X)) etc_model = etc.fit(x_train, y_train) gbr_model = gbr.fit(x_train, y_train) rfc_model = rfc.fit(x_train, y_train) rfr_model = rfr.fit(x_train, y_train) dtc_model = dtc.fit(x_train, y_train) dtr_model = dtr.fit(x_train, y_train) etr_model = etr.fit(x_train, y_train) print(r2_score(y_test, blend_models_predict(x_test))) print(mean_squared_error(y_test, blend_models_predict(x_test)))
code
18131743/cell_24
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('../input/data.csv') import seaborn as sns from pandas.plotting import scatter_matrix import matplotlib.cm as cm import matplotlib.pyplot as plt data['diagnosis'] = data['diagnosis'].map({'M': 1, 'B': 0}) y = pd.DataFrame(data=data['diagnosis']) list = ['Unnamed: 32', 'id', 'diagnosis'] x = data.drop(list, axis=1) #correlation map f,ax = plt.subplots(figsize=(18, 18)) sns.heatmap(x.corr(), annot=True, linewidths=.5, fmt= '.1f',ax=ax) rem = ['perimeter_mean','radius_mean','compactness_mean','concave points_mean','radius_se','perimeter_se','radius_worst','perimeter_worst','compactness_worst','concave points_worst','compactness_se','concave points_se','texture_worst','area_worst'] data_new = x.drop(rem, axis=1) f,ax = plt.subplots(figsize=(14, 14)) sns.heatmap(data_new.corr(), annot=True, linewidths=.5, fmt= '.1f',ax=ax) data_new['diagnosis'] = y corrmat = data_new.corr().abs() top_corr_features = corrmat.index[abs(corrmat["diagnosis"])>0.1] plt.figure(figsize=(10,10)) g = sns.heatmap(data_new[top_corr_features].corr(),annot=True,cmap="RdYlGn") req = ['texture_mean', 'area_mean', 'smoothness_mean', 'concavity_mean', 'symmetry_mean', 'area_se', 'concavity_se', 'smoothness_worst', 'concavity_worst', 'symmetry_worst', 'fractal_dimension_worst'] data_new2 = data_new[req] data_new = data_new.drop(['diagnosis'], axis=1) data_final = pd.read_csv('../input/data.csv') y_final = data_final['diagnosis'].map({'M': 0, 'B': 1}) data_final = data_final[req] from sklearn.model_selection import train_test_split x_final = data_final x_train, x_test, y_train, y_test = train_test_split(x_final, y_final, test_size=0.2, random_state=42) x_train.shape from sklearn.ensemble import RandomForestRegressor rfr_test = RandomForestRegressor(random_state=43, n_estimators=200, min_samples_split=2, min_samples_leaf=1, max_features='log2', max_depth=11, bootstrap=False) rfr_test = rfr_test.fit(x_train, y_train) print(r2_score(y_test, rfr_test.predict(x_test))) print(mean_squared_error(y_test, rfr_test.predict(x_test)))
code
18131743/cell_22
[ "text_plain_output_1.png" ]
from sklearn.ensemble import ExtraTreesClassifier from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('../input/data.csv') import seaborn as sns from pandas.plotting import scatter_matrix import matplotlib.cm as cm import matplotlib.pyplot as plt data['diagnosis'] = data['diagnosis'].map({'M': 1, 'B': 0}) y = pd.DataFrame(data=data['diagnosis']) list = ['Unnamed: 32', 'id', 'diagnosis'] x = data.drop(list, axis=1) #correlation map f,ax = plt.subplots(figsize=(18, 18)) sns.heatmap(x.corr(), annot=True, linewidths=.5, fmt= '.1f',ax=ax) rem = ['perimeter_mean','radius_mean','compactness_mean','concave points_mean','radius_se','perimeter_se','radius_worst','perimeter_worst','compactness_worst','concave points_worst','compactness_se','concave points_se','texture_worst','area_worst'] data_new = x.drop(rem, axis=1) f,ax = plt.subplots(figsize=(14, 14)) sns.heatmap(data_new.corr(), annot=True, linewidths=.5, fmt= '.1f',ax=ax) data_new['diagnosis'] = y corrmat = data_new.corr().abs() top_corr_features = corrmat.index[abs(corrmat["diagnosis"])>0.1] plt.figure(figsize=(10,10)) g = sns.heatmap(data_new[top_corr_features].corr(),annot=True,cmap="RdYlGn") req = ['texture_mean', 'area_mean', 'smoothness_mean', 'concavity_mean', 'symmetry_mean', 'area_se', 'concavity_se', 'smoothness_worst', 'concavity_worst', 'symmetry_worst', 'fractal_dimension_worst'] data_new2 = data_new[req] data_new = data_new.drop(['diagnosis'], axis=1) data_final = pd.read_csv('../input/data.csv') y_final = data_final['diagnosis'].map({'M': 0, 'B': 1}) data_final = data_final[req] from sklearn.model_selection import train_test_split x_final = data_final x_train, x_test, y_train, y_test = train_test_split(x_final, y_final, test_size=0.2, random_state=42) x_train.shape from sklearn.ensemble import ExtraTreesClassifier etc_test = ExtraTreesClassifier(random_state=43, n_estimators=300, min_samples_split=2, min_samples_leaf=1, max_features='sqrt', max_depth=31, bootstrap=True) etc_test = etc_test.fit(x_train, y_train) print(r2_score(y_test, etc_test.predict(x_test))) print(mean_squared_error(y_test, etc_test.predict(x_test)))
code
18131743/cell_27
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn import ensemble from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('../input/data.csv') import seaborn as sns from pandas.plotting import scatter_matrix import matplotlib.cm as cm import matplotlib.pyplot as plt data['diagnosis'] = data['diagnosis'].map({'M': 1, 'B': 0}) y = pd.DataFrame(data=data['diagnosis']) list = ['Unnamed: 32', 'id', 'diagnosis'] x = data.drop(list, axis=1) #correlation map f,ax = plt.subplots(figsize=(18, 18)) sns.heatmap(x.corr(), annot=True, linewidths=.5, fmt= '.1f',ax=ax) rem = ['perimeter_mean','radius_mean','compactness_mean','concave points_mean','radius_se','perimeter_se','radius_worst','perimeter_worst','compactness_worst','concave points_worst','compactness_se','concave points_se','texture_worst','area_worst'] data_new = x.drop(rem, axis=1) f,ax = plt.subplots(figsize=(14, 14)) sns.heatmap(data_new.corr(), annot=True, linewidths=.5, fmt= '.1f',ax=ax) data_new['diagnosis'] = y corrmat = data_new.corr().abs() top_corr_features = corrmat.index[abs(corrmat["diagnosis"])>0.1] plt.figure(figsize=(10,10)) g = sns.heatmap(data_new[top_corr_features].corr(),annot=True,cmap="RdYlGn") req = ['texture_mean', 'area_mean', 'smoothness_mean', 'concavity_mean', 'symmetry_mean', 'area_se', 'concavity_se', 'smoothness_worst', 'concavity_worst', 'symmetry_worst', 'fractal_dimension_worst'] data_new2 = data_new[req] data_new = data_new.drop(['diagnosis'], axis=1) data_final = pd.read_csv('../input/data.csv') y_final = data_final['diagnosis'].map({'M': 0, 'B': 1}) data_final = data_final[req] from sklearn.model_selection import train_test_split x_final = data_final x_train, x_test, y_train, y_test = train_test_split(x_final, y_final, test_size=0.2, random_state=42) x_train.shape from sklearn import ensemble gbr = ensemble.GradientBoostingRegressor(n_estimators=400, max_depth=7, min_samples_split=8, learning_rate=0.1, loss='ls') gbr = gbr.fit(x_train, y_train) print(r2_score(y_test, gbr.predict(x_test))) print(mean_squared_error(y_test, gbr.predict(x_test)))
code
18131743/cell_5
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/data.csv') import seaborn as sns from pandas.plotting import scatter_matrix import matplotlib.cm as cm import matplotlib.pyplot as plt data['diagnosis'] = data['diagnosis'].map({'M': 1, 'B': 0}) y = pd.DataFrame(data=data['diagnosis']) list = ['Unnamed: 32', 'id', 'diagnosis'] x = data.drop(list, axis=1) x.head()
code
106194784/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd athlete_df = pd.read_csv('../input/120-years-of-olympic-history-athletes-and-results/athlete_events.csv') region_df = pd.read_csv('../input/120-years-of-olympic-history-athletes-and-results/noc_regions.csv') data = pd.merge(athlete_df, region_df, how='left', on='NOC') data
code
106194784/cell_30
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns athlete_df = pd.read_csv('../input/120-years-of-olympic-history-athletes-and-results/athlete_events.csv') region_df = pd.read_csv('../input/120-years-of-olympic-history-athletes-and-results/noc_regions.csv') data = pd.merge(athlete_df, region_df, how='left', on='NOC') data.rename(columns={'region': 'Region', 'notes': 'Notes'}, inplace=True) data.isnull().sum().sort_values(ascending=False) data.query('Team == "Egypt"') data.query('Team == "Egypt" and Medal == "Gold"') data[data.Age == data.Age.max()] goldMedals = data[data.Medal == 'Gold'] goldMedals = goldMedals[np.isfinite(goldMedals['Age'])] plt.tight_layout() masters = goldMedals['Sport'][goldMedals['Age'] > 50] plt.tight_layout() # top 20 couontries participating top_10_countries = data.Team.value_counts().sort_values(ascending = False).head(20) plt.style.use('fivethirtyeight') fig = plt.figure(figsize=(18,8)) plt.title('Top 10 countries participate in the olympicss',size = 25) top_10_countries.plot(kind = 'barh') gold_medals = data.query('Medal == "Gold"') total_gold_medals = gold_medals.Region.value_counts().head(15) plt.style.use('fivethirtyeight') fig = plt.figure(figsize=(18, 8)) total_gold_medals.plot(kind='bar') plt.title('Top 10 countries with most gold medals', size=25) plt.xlabel('gold medals')
code
106194784/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd athlete_df = pd.read_csv('../input/120-years-of-olympic-history-athletes-and-results/athlete_events.csv') region_df = pd.read_csv('../input/120-years-of-olympic-history-athletes-and-results/noc_regions.csv') region_df
code
106194784/cell_29
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns athlete_df = pd.read_csv('../input/120-years-of-olympic-history-athletes-and-results/athlete_events.csv') region_df = pd.read_csv('../input/120-years-of-olympic-history-athletes-and-results/noc_regions.csv') data = pd.merge(athlete_df, region_df, how='left', on='NOC') data.rename(columns={'region': 'Region', 'notes': 'Notes'}, inplace=True) data.isnull().sum().sort_values(ascending=False) data.query('Team == "Egypt"') data.query('Team == "Egypt" and Medal == "Gold"') data[data.Age == data.Age.max()] goldMedals = data[data.Medal == 'Gold'] goldMedals = goldMedals[np.isfinite(goldMedals['Age'])] plt.tight_layout() masters = goldMedals['Sport'][goldMedals['Age'] > 50] plt.tight_layout() top_10_countries = data.Team.value_counts().sort_values(ascending=False).head(20) plt.style.use('fivethirtyeight') fig = plt.figure(figsize=(18, 8)) plt.title('Top 10 countries participate in the olympicss', size=25) top_10_countries.plot(kind='barh')
code
106194784/cell_11
[ "text_html_output_1.png" ]
import pandas as pd athlete_df = pd.read_csv('../input/120-years-of-olympic-history-athletes-and-results/athlete_events.csv') region_df = pd.read_csv('../input/120-years-of-olympic-history-athletes-and-results/noc_regions.csv') data = pd.merge(athlete_df, region_df, how='left', on='NOC') data.describe()
code
106194784/cell_19
[ "text_plain_output_1.png" ]
import pandas as pd athlete_df = pd.read_csv('../input/120-years-of-olympic-history-athletes-and-results/athlete_events.csv') region_df = pd.read_csv('../input/120-years-of-olympic-history-athletes-and-results/noc_regions.csv') data = pd.merge(athlete_df, region_df, how='left', on='NOC') data.rename(columns={'region': 'Region', 'notes': 'Notes'}, inplace=True) data.isnull().sum().sort_values(ascending=False) data.query('Team == "Egypt"') data.query('Team == "Egypt" and Medal == "Gold"') data[data.Age == data.Age.max()]
code
106194784/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd athlete_df = pd.read_csv('../input/120-years-of-olympic-history-athletes-and-results/athlete_events.csv') region_df = pd.read_csv('../input/120-years-of-olympic-history-athletes-and-results/noc_regions.csv') data = pd.merge(athlete_df, region_df, how='left', on='NOC') data.rename(columns={'region': 'Region', 'notes': 'Notes'}, inplace=True) data.isnull().sum().sort_values(ascending=False) data.query('Team == "Egypt"')
code
106194784/cell_17
[ "text_html_output_1.png" ]
import pandas as pd athlete_df = pd.read_csv('../input/120-years-of-olympic-history-athletes-and-results/athlete_events.csv') region_df = pd.read_csv('../input/120-years-of-olympic-history-athletes-and-results/noc_regions.csv') data = pd.merge(athlete_df, region_df, how='left', on='NOC') data.rename(columns={'region': 'Region', 'notes': 'Notes'}, inplace=True) data.isnull().sum().sort_values(ascending=False) data.query('Team == "Egypt"') data.query('Team == "Egypt" and Medal == "Gold"')
code
106194784/cell_24
[ "text_html_output_1.png" ]
import numpy as np import pandas as pd athlete_df = pd.read_csv('../input/120-years-of-olympic-history-athletes-and-results/athlete_events.csv') region_df = pd.read_csv('../input/120-years-of-olympic-history-athletes-and-results/noc_regions.csv') data = pd.merge(athlete_df, region_df, how='left', on='NOC') data.rename(columns={'region': 'Region', 'notes': 'Notes'}, inplace=True) data.isnull().sum().sort_values(ascending=False) data.query('Team == "Egypt"') data.query('Team == "Egypt" and Medal == "Gold"') data[data.Age == data.Age.max()] goldMedals = data[data.Medal == 'Gold'] goldMedals = goldMedals[np.isfinite(goldMedals['Age'])] goldMedals[goldMedals['Age'] > 50]['ID'].count()
code
106194784/cell_14
[ "text_html_output_1.png" ]
import pandas as pd athlete_df = pd.read_csv('../input/120-years-of-olympic-history-athletes-and-results/athlete_events.csv') region_df = pd.read_csv('../input/120-years-of-olympic-history-athletes-and-results/noc_regions.csv') data = pd.merge(athlete_df, region_df, how='left', on='NOC') data.rename(columns={'region': 'Region', 'notes': 'Notes'}, inplace=True) data.isnull().sum().sort_values(ascending=False)
code
106194784/cell_22
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns athlete_df = pd.read_csv('../input/120-years-of-olympic-history-athletes-and-results/athlete_events.csv') region_df = pd.read_csv('../input/120-years-of-olympic-history-athletes-and-results/noc_regions.csv') data = pd.merge(athlete_df, region_df, how='left', on='NOC') data.rename(columns={'region': 'Region', 'notes': 'Notes'}, inplace=True) data.isnull().sum().sort_values(ascending=False) data.query('Team == "Egypt"') data.query('Team == "Egypt" and Medal == "Gold"') data[data.Age == data.Age.max()] goldMedals = data[data.Medal == 'Gold'] goldMedals = goldMedals[np.isfinite(goldMedals['Age'])] plt.figure(figsize=(26, 18)) plt.tight_layout() sns.countplot(goldMedals['Age']) plt.title('Distribution of Gold Medals')
code
106194784/cell_10
[ "text_html_output_1.png" ]
import pandas as pd athlete_df = pd.read_csv('../input/120-years-of-olympic-history-athletes-and-results/athlete_events.csv') region_df = pd.read_csv('../input/120-years-of-olympic-history-athletes-and-results/noc_regions.csv') data = pd.merge(athlete_df, region_df, how='left', on='NOC') data.info()
code
106194784/cell_27
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns athlete_df = pd.read_csv('../input/120-years-of-olympic-history-athletes-and-results/athlete_events.csv') region_df = pd.read_csv('../input/120-years-of-olympic-history-athletes-and-results/noc_regions.csv') data = pd.merge(athlete_df, region_df, how='left', on='NOC') data.rename(columns={'region': 'Region', 'notes': 'Notes'}, inplace=True) data.isnull().sum().sort_values(ascending=False) data.query('Team == "Egypt"') data.query('Team == "Egypt" and Medal == "Gold"') data[data.Age == data.Age.max()] goldMedals = data[data.Medal == 'Gold'] goldMedals = goldMedals[np.isfinite(goldMedals['Age'])] plt.tight_layout() masters = goldMedals['Sport'][goldMedals['Age'] > 50] plt.figure(figsize=(20, 10)) plt.tight_layout() sns.countplot(masters) plt.title('Gold Medals for Athletes Over 50')
code
106194784/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd athlete_df = pd.read_csv('../input/120-years-of-olympic-history-athletes-and-results/athlete_events.csv') region_df = pd.read_csv('../input/120-years-of-olympic-history-athletes-and-results/noc_regions.csv') athlete_df
code
106202299/cell_13
[ "text_html_output_2.png", "text_html_output_1.png", "text_plain_output_2.png", "text_plain_output_1.png" ]
import holidays import matplotlib.pyplot as plt import numpy as np import pandas as pd import warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.metrics import mean_squared_error from sklearn.linear_model import LinearRegression, Ridge from sklearn.model_selection import train_test_split, GroupKFold from sklearn.preprocessing import OrdinalEncoder, OneHotEncoder, MinMaxScaler, StandardScaler from sklearn.pipeline import make_pipeline import dateutil.easter as easter import holidays from tqdm import tqdm import warnings warnings.filterwarnings('ignore') pd.set_option('display.max_columns', 100) pd.set_option('display.max_rows', 6) pd.set_option('display.float_format', '{:.2f}'.format) plt.style.use('seaborn-whitegrid') plt.rc('figure', autolayout=True, titlesize=18, titleweight='bold') plt.rc('axes', labelweight='bold', labelsize='large', titlesize=8, titlepad=2) train_df = pd.read_csv('../input/tabular-playground-series-sep-2022/train.csv', parse_dates=['date'], index_col='row_id') test_df = pd.read_csv('../input/tabular-playground-series-sep-2022/test.csv', parse_dates=['date'], index_col='row_id') sub_df = pd.read_csv('../input/tabular-playground-series-sep-2022/sample_submission.csv') def feature_engineer(df): new_df = df.copy() new_df['year'] = df['date'].dt.year - 2016 new_df['quarter'] = df['date'].dt.quarter new_df['month'] = df['date'].dt.month new_df['month_sin'] = np.sin(new_df['month'] * (2 * np.pi / 12)) new_df['day'] = df['date'].dt.day new_df['day_of_week'] = df['date'].dt.dayofweek new_df['day_of_year'] = df['date'].dt.dayofyear new_df['week'] = df['date'].dt.week new_df['is_weekend'] = new_df.apply(lambda x: 1 if x['day_of_week'] >= 5 else 0, axis=1) new_df = new_df.drop('date', axis=1) important_dates = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 124, 125, 126, 127, 140, 141, 167, 168, 169, 170, 171, 173, 174, 175, 176, 177, 178, 179, 180, 181, 203, 230, 231, 232, 233, 234, 282, 289, 290, 307, 308, 309, 310, 311, 312, 313, 317, 318, 319, 320, 360, 361, 362, 363, 364, 365] new_df['important_dates'] = new_df['day_of_year'].apply(lambda x: x if x in important_dates else 0) new_df = new_df.drop(['day_of_year', 'month'], axis=1) return new_df def get_holidays(df, country_name): years_list = [2017, 2018, 2019, 2020, 2021] country_map = {'Belgium': 'BE', 'France': 'FR', 'Germany': 'DE', 'Italy': 'IT', 'Poland': 'PL', 'Spain': 'ES'} holiday_ = holidays.CountryHoliday(country_map[country_name], years=years_list) df['holiday_name'] = df['date'].map(holiday_) df['is_holiday'] = np.where(df['holiday_name'].notnull(), 1, 0) df = df.drop('holiday_name', axis=1) return df sub_df['num_sold'] = np.array(test_df['num_sold']) sub_df.to_csv('submission.csv', index=False) sub_df
code
106202299/cell_11
[ "text_html_output_2.png", "text_plain_output_3.png", "text_html_output_1.png", "text_plain_output_2.png", "text_plain_output_1.png", "text_html_output_3.png" ]
_, ax = plt.subplots(12, 4, figsize=(14, 50)) test_df['num_sold'] = 0 oh_cols = ['day', 'day_of_week', 'week', 'quarter', 'important_dates'] encoder = OneHotEncoder(sparse=False) for country, i in zip(train_df['country'].unique(), range(6)): for store, k in zip(train_df['store'].unique(), range(2)): for product, j in zip(train_df['product'].unique(), range(4)): temp_df = None temp_roll = None temp_df = train_df.loc[(train_df['country'] == country) & (train_df['store'] == store) & (train_df['product'] == product), ['date', 'num_sold']] temp_test_df = test_df.loc[(test_df['country'] == country) & (test_df['store'] == store) & (test_df['product'] == product), ['date', 'num_sold']] temp_df_all = get_holidays(temp_df, country) temp_test_df_all = get_holidays(temp_test_df, country) temp_df_all = feature_engineer(temp_df_all) temp_test_df_all = feature_engineer(temp_test_df_all) X = temp_df_all.drop(['num_sold'], axis=1) X_temp = None X_temp = pd.concat([X[[col for col in X.columns if col not in oh_cols]], pd.DataFrame(encoder.fit_transform(X[oh_cols]), index=X.index)], axis=1) X = X_temp y = temp_df['num_sold'] X_fore = temp_test_df_all.drop(['num_sold'], axis=1) X_fore_temp = None X_fore_temp = pd.concat([X_fore[[col for col in X_fore.columns if col not in oh_cols]], pd.DataFrame(encoder.transform(X_fore[oh_cols]), index=X_fore.index)], axis=1) X_fore = X_fore_temp model = Ridge(tol=0.01, max_iter=1000000, random_state=0) model.fit(X, y) y_pred = pd.Series(model.predict(X), index=X.index) y_fore = pd.Series(model.predict(X_fore), index=X_fore.index) y.plot(ax=ax[i * 2 + k, j], color='0.95', style='.-', markerfacecolor='0.25', markersize=10, title=f'{country} {store} {product}', label='Actual Values', legend=True, xlabel='') y_pred.plot(ax=ax[i * 2 + k, j], linewidth=0.4, label='Trend fitted', legend=True, xlabel='') y_fore.plot(ax=ax[i * 2 + k, j], linewidth=0.3, label='Trend Forecasted', color='C3', legend=True, xlabel='') test_df.loc[(test_df['country'] == country) & (test_df['store'] == store) & (test_df['product'] == product), ['num_sold']] = y_fore
code
106202299/cell_7
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.metrics import mean_squared_error from sklearn.linear_model import LinearRegression, Ridge from sklearn.model_selection import train_test_split, GroupKFold from sklearn.preprocessing import OrdinalEncoder, OneHotEncoder, MinMaxScaler, StandardScaler from sklearn.pipeline import make_pipeline import dateutil.easter as easter import holidays from tqdm import tqdm import warnings warnings.filterwarnings('ignore') pd.set_option('display.max_columns', 100) pd.set_option('display.max_rows', 6) pd.set_option('display.float_format', '{:.2f}'.format) plt.style.use('seaborn-whitegrid') plt.rc('figure', autolayout=True, titlesize=18, titleweight='bold') plt.rc('axes', labelweight='bold', labelsize='large', titlesize=8, titlepad=2) train_df = pd.read_csv('../input/tabular-playground-series-sep-2022/train.csv', parse_dates=['date'], index_col='row_id') test_df = pd.read_csv('../input/tabular-playground-series-sep-2022/test.csv', parse_dates=['date'], index_col='row_id') sub_df = pd.read_csv('../input/tabular-playground-series-sep-2022/sample_submission.csv') print('describtion of train data:') display(train_df.describe(include='object')) print('describtion of test data:') display(test_df.describe(include='object'))
code
106202299/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.metrics import mean_squared_error from sklearn.linear_model import LinearRegression, Ridge from sklearn.model_selection import train_test_split, GroupKFold from sklearn.preprocessing import OrdinalEncoder, OneHotEncoder, MinMaxScaler, StandardScaler from sklearn.pipeline import make_pipeline import dateutil.easter as easter import holidays from tqdm import tqdm import warnings warnings.filterwarnings('ignore') pd.set_option('display.max_columns', 100) pd.set_option('display.max_rows', 6) pd.set_option('display.float_format', '{:.2f}'.format) plt.style.use('seaborn-whitegrid') plt.rc('figure', autolayout=True, titlesize=18, titleweight='bold') plt.rc('axes', labelweight='bold', labelsize='large', titlesize=8, titlepad=2) train_df = pd.read_csv('../input/tabular-playground-series-sep-2022/train.csv', parse_dates=['date'], index_col='row_id') test_df = pd.read_csv('../input/tabular-playground-series-sep-2022/test.csv', parse_dates=['date'], index_col='row_id') sub_df = pd.read_csv('../input/tabular-playground-series-sep-2022/sample_submission.csv') print('shape of train data: ', train_df.shape) display(train_df) print('shape of test data', test_df.shape) display(test_df) print('shape of sample submission data: ', sub_df.shape) display(sub_df)
code
49119038/cell_21
[ "application_vnd.jupyter.stderr_output_1.png" ]
from dask.diagnostics import ProgressBar import dask.dataframe as dd import datetime import math dask_data = dd.read_csv('./train.csv') dask_data.columns dask_data.compute().shape len(dask_data.columns) dask_data.isnull().sum().compute() dask_data.fare_amount.mean().compute() missing_values = dask_data.isnull().sum().compute() missing_values mysize = dask_data.index.size.compute() missing_count = missing_values / mysize * 100 missing_count def haversine_dist(long_pickup, long_dropoff, lat_pickup, lat_dropoff): distance = [] for i in range(len(long_pickup)): long1, long2, lat1, lat2 = map(math.radians, (long_pickup[i], long_dropoff[i], lat_pickup[i], lat_dropoff[i])) dlat = lat2 - lat1 dlong = long2 - long1 a = math.sin(dlat / 2) ** 2 + math.cos(lat1) * math.cos(lat2) * math.sin(dlong / 2) ** 2 distance.append(2 * math.asin(math.sqrt(a)) * 6371) return distance dask_data.columns dist_km_interim = dask_data.map_partitions(lambda df: haversine_dist(df['pickup_longitude'], df['dropoff_longitude'], df['pickup_latitude'], df['dropoff_latitude'])) dask_data['dist_km'] = dist_km
code
49119038/cell_9
[ "application_vnd.jupyter.stderr_output_1.png" ]
from dask.diagnostics import ProgressBar import dask.dataframe as dd import datetime dask_data = dd.read_csv('./train.csv') dask_data.columns with ProgressBar(): dask_data.head()
code
49119038/cell_25
[ "text_plain_output_1.png" ]
from dask.diagnostics import ProgressBar import dask.dataframe as dd import datetime import math dask_data = dd.read_csv('./train.csv') dask_data.columns dask_data.compute().shape len(dask_data.columns) dask_data.isnull().sum().compute() dask_data.fare_amount.mean().compute() missing_values = dask_data.isnull().sum().compute() missing_values mysize = dask_data.index.size.compute() missing_count = missing_values / mysize * 100 missing_count def haversine_dist(long_pickup, long_dropoff, lat_pickup, lat_dropoff): distance = [] for i in range(len(long_pickup)): long1, long2, lat1, lat2 = map(math.radians, (long_pickup[i], long_dropoff[i], lat_pickup[i], lat_dropoff[i])) dlat = lat2 - lat1 dlong = long2 - long1 a = math.sin(dlat / 2) ** 2 + math.cos(lat1) * math.cos(lat2) * math.sin(dlong / 2) ** 2 distance.append(2 * math.asin(math.sqrt(a)) * 6371) return distance dask_data.columns dist_km_interim = dask_data.map_partitions(lambda df: haversine_dist(df['pickup_longitude'], df['dropoff_longitude'], df['pickup_latitude'], df['dropoff_latitude'])) dask_data_new = dask_data.assign(dist_km=dist_km_interim) dask_data['dist_km'] = haversine_dist(dask_data['pickup_longitude'], dask_data['dropoff_longitude'], dask_data['pickup_latitude'], dask_data['dropoff_latitude']) dask_data_test['dist_km'] = haversine_dist(dask_data_test['pickup_longitude'], dask_data_test['dropoff_longitude'], dask_data_test['pickup_latitude'], dask_data_test['dropoff_latitude']) dask_data.head(5)
code
49119038/cell_23
[ "text_plain_output_1.png" ]
from dask.diagnostics import ProgressBar import dask.dataframe as dd import datetime import math dask_data = dd.read_csv('./train.csv') dask_data.columns dask_data.compute().shape len(dask_data.columns) dask_data.isnull().sum().compute() dask_data.fare_amount.mean().compute() missing_values = dask_data.isnull().sum().compute() missing_values mysize = dask_data.index.size.compute() missing_count = missing_values / mysize * 100 missing_count def haversine_dist(long_pickup, long_dropoff, lat_pickup, lat_dropoff): distance = [] for i in range(len(long_pickup)): long1, long2, lat1, lat2 = map(math.radians, (long_pickup[i], long_dropoff[i], lat_pickup[i], lat_dropoff[i])) dlat = lat2 - lat1 dlong = long2 - long1 a = math.sin(dlat / 2) ** 2 + math.cos(lat1) * math.cos(lat2) * math.sin(dlong / 2) ** 2 distance.append(2 * math.asin(math.sqrt(a)) * 6371) return distance dask_data.columns dist_km_interim = dask_data.map_partitions(lambda df: haversine_dist(df['pickup_longitude'], df['dropoff_longitude'], df['pickup_latitude'], df['dropoff_latitude'])) dask_data_new = dask_data.assign(dist_km=dist_km_interim) with ProgressBar(): dask_data_new.head()
code
49119038/cell_6
[ "application_vnd.jupyter.stderr_output_1.png" ]
import dask.dataframe as dd import datetime print('Start of Dask Read:', datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')) dask_data = dd.read_csv('./train.csv') print('End of Dask Read:', datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'))
code
49119038/cell_19
[ "application_vnd.jupyter.stderr_output_2.png", "application_vnd.jupyter.stderr_output_3.png", "text_html_output_1.png", "text_plain_output_1.png" ]
from dask.diagnostics import ProgressBar import dask.dataframe as dd import datetime dask_data = dd.read_csv('./train.csv') dask_data.columns dask_data.compute().shape len(dask_data.columns) dask_data.isnull().sum().compute() dask_data.fare_amount.mean().compute() missing_values = dask_data.isnull().sum().compute() missing_values mysize = dask_data.index.size.compute() missing_count = missing_values / mysize * 100 missing_count dask_data.columns
code
49119038/cell_8
[ "text_html_output_1.png" ]
import dask.dataframe as dd import datetime dask_data = dd.read_csv('./train.csv') dask_data.columns
code
49119038/cell_15
[ "text_plain_output_1.png" ]
from dask.diagnostics import ProgressBar import dask.dataframe as dd import datetime dask_data = dd.read_csv('./train.csv') dask_data.columns dask_data.compute().shape len(dask_data.columns) dask_data.isnull().sum().compute() dask_data.fare_amount.mean().compute() missing_values = dask_data.isnull().sum().compute() missing_values
code
49119038/cell_16
[ "text_html_output_1.png" ]
from dask.diagnostics import ProgressBar import dask.dataframe as dd import datetime dask_data = dd.read_csv('./train.csv') dask_data.columns dask_data.compute().shape len(dask_data.columns) dask_data.isnull().sum().compute() dask_data.fare_amount.mean().compute() missing_values = dask_data.isnull().sum().compute() missing_values mysize = dask_data.index.size.compute() missing_count = missing_values / mysize * 100 missing_count
code
49119038/cell_3
[ "text_plain_output_1.png" ]
from dask.diagnostics import ProgressBar from dask.distributed import progress from distributed import Client client = Client() client from IPython.core.interactiveshell import InteractiveShell InteractiveShell.ast_node_interactivity = 'all' import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np import math import pandas_profiling import dask import dask.dataframe as dd import datetime import warnings warnings.filterwarnings('ignore') import os print(os.listdir('../input/new-york-city-taxi-fare-prediction'))
code
49119038/cell_10
[ "text_plain_output_1.png" ]
from dask.diagnostics import ProgressBar import dask.dataframe as dd import datetime dask_data = dd.read_csv('./train.csv') dask_data.columns display(dask_data.head(2)) print('Information:') dask_data.compute().info() print('Shape:') dask_data.compute().shape print('Describe:') dask_data.describe().compute() print('Columns:') len(dask_data.columns) print('Empty Values:') dask_data.isnull().sum().compute() print('Taxi fare Mean Value:') dask_data.fare_amount.mean().compute()
code
49119038/cell_12
[ "text_plain_output_1.png" ]
pandas_data.shape pandas_data.head(2) pandas_data.describe pandas_data['fare_amount'].unique() pandas_data.isnull().sum() pandas_data.isna().sum()
code
121152199/cell_9
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/airbnb-user-pathways/airbnb.csv') df.drop('id_visitor', axis=1, inplace=True) df.drop('id_session', axis=1, inplace=True) df.drop('next_id_session', axis=1, inplace=True) df.drop('dim_user_agent', axis=1, inplace=True) df.isnull().sum() df.corr() * 100 sending = df.groupby('dim_device_app_combo').sum() sending.sort_values('sent_message', ascending=False, inplace=True) sending.plot.bar(y='sent_message') sending
code
121152199/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/airbnb-user-pathways/airbnb.csv') df.drop('id_visitor', axis=1, inplace=True) df.drop('id_session', axis=1, inplace=True) df.drop('next_id_session', axis=1, inplace=True) df.drop('dim_user_agent', axis=1, inplace=True) df.isnull().sum()
code
121152199/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/airbnb-user-pathways/airbnb.csv') df.drop('id_visitor', axis=1, inplace=True) df.drop('id_session', axis=1, inplace=True) df.drop('next_id_session', axis=1, inplace=True) df.drop('dim_user_agent', axis=1, inplace=True) df.isnull().sum() df.corr() * 100
code
121152199/cell_2
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/airbnb-user-pathways/airbnb.csv') df.drop('id_visitor', axis=1, inplace=True) df.drop('id_session', axis=1, inplace=True) df.drop('next_id_session', axis=1, inplace=True) df.drop('dim_user_agent', axis=1, inplace=True) df.head()
code
121152199/cell_11
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/airbnb-user-pathways/airbnb.csv') df.drop('id_visitor', axis=1, inplace=True) df.drop('id_session', axis=1, inplace=True) df.drop('next_id_session', axis=1, inplace=True) df.drop('dim_user_agent', axis=1, inplace=True) df.isnull().sum() df.corr() * 100 sending = df.groupby('dim_device_app_combo').sum() sending.sort_values('sent_message', ascending=False, inplace=True) sending df['time_spend'] = df['ts_max'] - df['ts_min'] df['time_spend'] = df['time_spend'].dt.total_seconds() time_spend = sending = df.groupby('dim_device_app_combo').mean().sort_values('time_spend') time_spend.plot.bar(y='time_spend')
code
121152199/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
121152199/cell_7
[ "text_html_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/airbnb-user-pathways/airbnb.csv') df.drop('id_visitor', axis=1, inplace=True) df.drop('id_session', axis=1, inplace=True) df.drop('next_id_session', axis=1, inplace=True) df.drop('dim_user_agent', axis=1, inplace=True) df.isnull().sum() df.corr() * 100 device = df['dim_device_app_combo'].value_counts() device.plot.bar(x='device', y='val', rot=90)
code
121152199/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/airbnb-user-pathways/airbnb.csv') df.drop('id_visitor', axis=1, inplace=True) df.drop('id_session', axis=1, inplace=True) df.drop('next_id_session', axis=1, inplace=True) df.drop('dim_user_agent', axis=1, inplace=True) df.isnull().sum() df.corr() * 100 device = df['dim_device_app_combo'].value_counts() device.plot.pie()
code
121152199/cell_3
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/airbnb-user-pathways/airbnb.csv') df.drop('id_visitor', axis=1, inplace=True) df.drop('id_session', axis=1, inplace=True) df.drop('next_id_session', axis=1, inplace=True) df.drop('dim_user_agent', axis=1, inplace=True) df.describe()
code
121152199/cell_12
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/airbnb-user-pathways/airbnb.csv') df.drop('id_visitor', axis=1, inplace=True) df.drop('id_session', axis=1, inplace=True) df.drop('next_id_session', axis=1, inplace=True) df.drop('dim_user_agent', axis=1, inplace=True) df.isnull().sum() df.corr() * 100 sending = df.groupby('dim_device_app_combo').sum() sending.sort_values('sent_message', ascending=False, inplace=True) sending df['time_spend'] = df['ts_max'] - df['ts_min'] df['time_spend'] = df['time_spend'].dt.total_seconds() time_spend = sending = df.groupby('dim_device_app_combo').mean().sort_values('time_spend') cout = df['sent_message'].sum() sent_message = df.groupby(['sent_message', 'sent_booking_request']).count() sent_message
code
88093824/cell_13
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import f1_score from sklearn.metrics import recall_score from sklearn.linear_model import LogisticRegression from sklearn.metrics import f1_score from sklearn.metrics import confusion_matrix lr = LogisticRegression(solver='liblinear') lr.fit(X_train, y_train) y_pred = lr.predict(X_test) from sklearn.metrics import recall_score recall_score(y_test, y_pred)
code
88093824/cell_19
[ "text_plain_output_1.png" ]
from sklearn.metrics import f1_score from sklearn.metrics import recall_score from xgboost import XGBRegressor import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/creditcardfraud/creditcard.csv') data.isnull().sum() data.dtypes X = data.drop('Class', axis=1) y = data['Class'] from xgboost import XGBRegressor xgb = XGBRegressor() xgb.fit(X_train, y_train) xgb_pred = xgb.predict(X_test) def xgb_f1(y, t, threshold=0.5): y_bin = (y > threshold).astype(int) return ('f1', f1_score(t, y_bin)) def xgb_recall(y, t, threshold=0.5): y_bin = (y > threshold).astype(int) return ('recall score', recall_score(t, y_bin)) xgb_recall(xgb_pred, y_test)
code
88093824/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
88093824/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/creditcardfraud/creditcard.csv') data.isnull().sum() data.dtypes
code
88093824/cell_18
[ "text_plain_output_1.png" ]
from sklearn.metrics import f1_score from xgboost import XGBRegressor import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/creditcardfraud/creditcard.csv') data.isnull().sum() data.dtypes X = data.drop('Class', axis=1) y = data['Class'] from xgboost import XGBRegressor xgb = XGBRegressor() xgb.fit(X_train, y_train) xgb_pred = xgb.predict(X_test) def xgb_f1(y, t, threshold=0.5): y_bin = (y > threshold).astype(int) return ('f1', f1_score(t, y_bin)) xgb_f1(xgb_pred, y_test)
code
88093824/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/creditcardfraud/creditcard.csv') data.isnull().sum() data.dtypes data['Class'].value_counts()
code
88093824/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/creditcardfraud/creditcard.csv') data.head()
code
88093824/cell_12
[ "text_html_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import f1_score from sklearn.linear_model import LogisticRegression from sklearn.metrics import f1_score from sklearn.metrics import confusion_matrix lr = LogisticRegression(solver='liblinear') lr.fit(X_train, y_train) y_pred = lr.predict(X_test) print(f'F1 score is {f1_score(y_test, y_pred)}')
code
88093824/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/creditcardfraud/creditcard.csv') data.isnull().sum()
code
50223616/cell_9
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/ibm-hr-analytics-attrition-dataset/WA_Fn-UseC_-HR-Employee-Attrition.csv') df = df.drop(['EmployeeNumber', 'EmployeeCount', 'StandardHours'], axis=1) df.isna().sum() df.isnull().values.any() categorial_col = df.select_dtypes(include='object') import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import LabelEncoder lr = LabelEncoder() for i in categorial_col: df[i] = lr.fit_transform(df[i]) df[categorial_col.columns].head()
code
50223616/cell_4
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/ibm-hr-analytics-attrition-dataset/WA_Fn-UseC_-HR-Employee-Attrition.csv') df = df.drop(['EmployeeNumber', 'EmployeeCount', 'StandardHours'], axis=1) df.isna().sum()
code
50223616/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/ibm-hr-analytics-attrition-dataset/WA_Fn-UseC_-HR-Employee-Attrition.csv') df = df.drop(['EmployeeNumber', 'EmployeeCount', 'StandardHours'], axis=1) df.isna().sum() df.isnull().values.any() df.describe()
code
50223616/cell_2
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/ibm-hr-analytics-attrition-dataset/WA_Fn-UseC_-HR-Employee-Attrition.csv') df.head()
code
50223616/cell_11
[ "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/ibm-hr-analytics-attrition-dataset/WA_Fn-UseC_-HR-Employee-Attrition.csv') df = df.drop(['EmployeeNumber', 'EmployeeCount', 'StandardHours'], axis=1) df.isna().sum() df.isnull().values.any() categorial_col = df.select_dtypes(include='object') import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split X = df.drop('Attrition', axis=1) y = df.Attrition X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1) X_train.shape from sklearn.tree import DecisionTreeClassifier dtc = DecisionTreeClassifier() dtc.fit(X_train, y_train) print_score(dtc, X_train, y_train, X_test, y_test, train=True) print_score(dtc, X_train, y_train, X_test, y_test, train=False)
code
50223616/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
50223616/cell_7
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/ibm-hr-analytics-attrition-dataset/WA_Fn-UseC_-HR-Employee-Attrition.csv') df = df.drop(['EmployeeNumber', 'EmployeeCount', 'StandardHours'], axis=1) df.isna().sum() df.isnull().values.any() categorial_col = df.select_dtypes(include='object') categorial_col.head()
code
50223616/cell_8
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/ibm-hr-analytics-attrition-dataset/WA_Fn-UseC_-HR-Employee-Attrition.csv') df = df.drop(['EmployeeNumber', 'EmployeeCount', 'StandardHours'], axis=1) df.isna().sum() df.isnull().values.any() categorial_col = df.select_dtypes(include='object') import matplotlib.pyplot as plt import seaborn as sns plt.figure(figsize=(30, 30)) sns.heatmap(df.corr(), annot=True, cmap='RdYlGn', annot_kws={'size': 15})
code
50223616/cell_10
[ "text_html_output_1.png" ]
from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/ibm-hr-analytics-attrition-dataset/WA_Fn-UseC_-HR-Employee-Attrition.csv') df = df.drop(['EmployeeNumber', 'EmployeeCount', 'StandardHours'], axis=1) df.isna().sum() df.isnull().values.any() categorial_col = df.select_dtypes(include='object') import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split X = df.drop('Attrition', axis=1) y = df.Attrition X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1) X_train.shape
code
50223616/cell_5
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/ibm-hr-analytics-attrition-dataset/WA_Fn-UseC_-HR-Employee-Attrition.csv') df = df.drop(['EmployeeNumber', 'EmployeeCount', 'StandardHours'], axis=1) df.isna().sum() df.isnull().values.any()
code
122251150/cell_21
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') predict = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') train.dtypes.value_counts() missing_vals_train = pd.DataFrame(train.isna().sum(), columns=['Sum']) missing_vals_train = missing_vals_train.sort_values(by='Sum', ascending=False) missing_vals_train = missing_vals_train[missing_vals_train['Sum'] > 0] missing_vals_train['Percent'] = missing_vals_train['Sum'] / 8693 * 100 missing_vals_train # categorical variable: CryoSleep fig, ax = plt.subplots(1,2, figsize =(10, 5)) sns.countplot(data=train, x='CryoSleep', ax=ax[0]) sns.countplot(data=train, x='CryoSleep', hue='Transported', ax=ax[1]) fig, axs = plt.subplots(3, 3, figsize=(17, 10)) sns.countplot(data=train, x='HomePlanet', hue='CryoSleep', ax=axs[0, 0]) sns.violinplot(train, x='CryoSleep', y='Age', ax=axs[0, 1]) sns.countplot(data=train, x='VIP', hue='CryoSleep', ax=axs[0, 2]) sns.violinplot(train, x='CryoSleep', y='FoodCourt', ax=axs[1, 0]) sns.violinplot(train, x='CryoSleep', y='ShoppingMall', ax=axs[1, 1]) sns.violinplot(train, x='CryoSleep', y='Spa', ax=axs[1, 2]) sns.violinplot(train, x='CryoSleep', y='VRDeck', ax=axs[2, 0]) sns.violinplot(train, x='CryoSleep', y='RoomService', ax=axs[2, 1]) sns.countplot(data=train, x='Destination', hue='CryoSleep', ax=axs[2, 2])
code
122251150/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') predict = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') train.dtypes.value_counts()
code
122251150/cell_34
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') predict = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') train.dtypes.value_counts() missing_vals_train = pd.DataFrame(train.isna().sum(), columns=['Sum']) missing_vals_train = missing_vals_train.sort_values(by='Sum', ascending=False) missing_vals_train = missing_vals_train[missing_vals_train['Sum'] > 0] missing_vals_train['Percent'] = missing_vals_train['Sum'] / 8693 * 100 missing_vals_train train['VRDeck'].isnull().sum()
code
122251150/cell_26
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') predict = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') train.dtypes.value_counts() missing_vals_train = pd.DataFrame(train.isna().sum(), columns=['Sum']) missing_vals_train = missing_vals_train.sort_values(by='Sum', ascending=False) missing_vals_train = missing_vals_train[missing_vals_train['Sum'] > 0] missing_vals_train['Percent'] = missing_vals_train['Sum'] / 8693 * 100 missing_vals_train # categorical variable: CryoSleep fig, ax = plt.subplots(1,2, figsize =(10, 5)) sns.countplot(data=train, x='CryoSleep', ax=ax[0]) sns.countplot(data=train, x='CryoSleep', hue='Transported', ax=ax[1]) # categorical variable: CryoSleep fig, axs = plt.subplots(3,3, figsize =(17, 10)) sns.countplot(data=train, x='HomePlanet', hue='CryoSleep', ax=axs[0,0]) sns.violinplot(train, x = 'CryoSleep', y='Age', ax=axs[0,1]) sns.countplot(data=train, x='VIP', hue='CryoSleep', ax=axs[0,2]) sns.violinplot(train, x = 'CryoSleep', y='FoodCourt', ax=axs[1,0]) sns.violinplot(train, x = 'CryoSleep', y='ShoppingMall', ax=axs[1,1]) sns.violinplot(train, x = 'CryoSleep', y='Spa', ax=axs[1,2]) sns.violinplot(train, x = 'CryoSleep', y='VRDeck', ax=axs[2,0]) sns.violinplot(train, x = 'CryoSleep', y='RoomService', ax=axs[2,1]) sns.countplot(data=train, x='Destination', hue='CryoSleep', ax=axs[2,2]) fig, axs = plt.subplots(2, 3, figsize=(17, 10)) sns.distplot(train['RoomService'], ax=axs[0, 0]) sns.distplot(train['FoodCourt'], ax=axs[0, 1]) sns.distplot(train['ShoppingMall'], ax=axs[0, 2]) sns.distplot(train['Spa'], ax=axs[1, 0]) sns.distplot(train['VRDeck'], ax=axs[1, 1])
code
122251150/cell_19
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') predict = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') train.dtypes.value_counts() missing_vals_train = pd.DataFrame(train.isna().sum(), columns=['Sum']) missing_vals_train = missing_vals_train.sort_values(by='Sum', ascending=False) missing_vals_train = missing_vals_train[missing_vals_train['Sum'] > 0] missing_vals_train['Percent'] = missing_vals_train['Sum'] / 8693 * 100 missing_vals_train fig, ax = plt.subplots(1, 2, figsize=(10, 5)) sns.countplot(data=train, x='CryoSleep', ax=ax[0]) sns.countplot(data=train, x='CryoSleep', hue='Transported', ax=ax[1])
code
122251150/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
122251150/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') predict = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') train.info()
code
122251150/cell_24
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') predict = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') train.dtypes.value_counts() missing_vals_train = pd.DataFrame(train.isna().sum(), columns=['Sum']) missing_vals_train = missing_vals_train.sort_values(by='Sum', ascending=False) missing_vals_train = missing_vals_train[missing_vals_train['Sum'] > 0] missing_vals_train['Percent'] = missing_vals_train['Sum'] / 8693 * 100 missing_vals_train train['CryoSleep'].isnull().sum()
code
122251150/cell_14
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') predict = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') train.dtypes.value_counts() missing_vals_train = pd.DataFrame(train.isna().sum(), columns=['Sum']) missing_vals_train = missing_vals_train.sort_values(by='Sum', ascending=False) missing_vals_train = missing_vals_train[missing_vals_train['Sum'] > 0] missing_vals_train['Percent'] = missing_vals_train['Sum'] / 8693 * 100 missing_vals_train missing_vals_predict = pd.DataFrame(predict.isna().sum(), columns=['Sum']) missing_vals_predict = missing_vals_predict.sort_values(by='Sum', ascending=False) missing_vals_predict = missing_vals_predict[missing_vals_predict['Sum'] > 0] missing_vals_predict['Percent'] = missing_vals_predict['Sum'] / 8693 * 100 missing_vals_predict
code
122251150/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') predict = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') train.dtypes.value_counts() train.head()
code
122251150/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') predict = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') train.dtypes.value_counts() missing_vals_train = pd.DataFrame(train.isna().sum(), columns=['Sum']) missing_vals_train = missing_vals_train.sort_values(by='Sum', ascending=False) missing_vals_train = missing_vals_train[missing_vals_train['Sum'] > 0] missing_vals_train['Percent'] = missing_vals_train['Sum'] / 8693 * 100 missing_vals_train
code
122251150/cell_36
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') predict = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') train.dtypes.value_counts() missing_vals_train = pd.DataFrame(train.isna().sum(), columns=['Sum']) missing_vals_train = missing_vals_train.sort_values(by='Sum', ascending=False) missing_vals_train = missing_vals_train[missing_vals_train['Sum'] > 0] missing_vals_train['Percent'] = missing_vals_train['Sum'] / 8693 * 100 missing_vals_train # categorical variable: CryoSleep fig, ax = plt.subplots(1,2, figsize =(10, 5)) sns.countplot(data=train, x='CryoSleep', ax=ax[0]) sns.countplot(data=train, x='CryoSleep', hue='Transported', ax=ax[1]) # categorical variable: CryoSleep fig, axs = plt.subplots(3,3, figsize =(17, 10)) sns.countplot(data=train, x='HomePlanet', hue='CryoSleep', ax=axs[0,0]) sns.violinplot(train, x = 'CryoSleep', y='Age', ax=axs[0,1]) sns.countplot(data=train, x='VIP', hue='CryoSleep', ax=axs[0,2]) sns.violinplot(train, x = 'CryoSleep', y='FoodCourt', ax=axs[1,0]) sns.violinplot(train, x = 'CryoSleep', y='ShoppingMall', ax=axs[1,1]) sns.violinplot(train, x = 'CryoSleep', y='Spa', ax=axs[1,2]) sns.violinplot(train, x = 'CryoSleep', y='VRDeck', ax=axs[2,0]) sns.violinplot(train, x = 'CryoSleep', y='RoomService', ax=axs[2,1]) sns.countplot(data=train, x='Destination', hue='CryoSleep', ax=axs[2,2]) fig, axs = plt.subplots(2,3, figsize =(17, 10)) sns.distplot(train['RoomService'], ax=axs[0,0]) sns.distplot(train['FoodCourt'], ax=axs[0,1]) sns.distplot(train['ShoppingMall'], ax=axs[0,2]) sns.distplot(train['Spa'], ax=axs[1,0]) sns.distplot(train['VRDeck'], ax=axs[1,1]) fig, axs = plt.subplots(3, 3, figsize=(17, 10)) sns.countplot(data=train, x='HomePlanet', hue='VIP', ax=axs[0, 0]) sns.violinplot(train, x='VIP', y='Age', ax=axs[0, 1]) sns.countplot(data=train, x='CryoSleep', hue='VIP', ax=axs[0, 2]) sns.violinplot(train, x='VIP', y='FoodCourt', ax=axs[1, 0]) sns.violinplot(train, x='VIP', y='ShoppingMall', ax=axs[1, 1]) sns.violinplot(train, x='VIP', y='Spa', ax=axs[1, 2]) sns.violinplot(train, x='VIP', y='VRDeck', ax=axs[2, 0]) sns.violinplot(train, x='VIP', y='RoomService', ax=axs[2, 1]) sns.countplot(data=train, x='Destination', hue='VIP', ax=axs[2, 2])
code
72107386/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') train.head()
code
72107386/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') test.head()
code
72107386/cell_15
[ "text_html_output_1.png" ]
from catboost import Pool, CatBoostRegressor import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') X_train = train.drop(['id', 'target'], axis=1) y_train = train['target'] X_test = test.drop(['id'], axis=1) cat_features = [i for i, col in enumerate(X_train.columns) if 'cat' in col] cat_features train_pool = Pool(X_train, y_train, cat_features=cat_features) test_pool = Pool(X_test, cat_features=cat_features) model = CatBoostRegressor(verbose=False) model.fit(train_pool)
code
72107386/cell_17
[ "text_html_output_1.png" ]
from catboost import Pool, CatBoostRegressor import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') X_train = train.drop(['id', 'target'], axis=1) y_train = train['target'] X_test = test.drop(['id'], axis=1) cat_features = [i for i, col in enumerate(X_train.columns) if 'cat' in col] cat_features train_pool = Pool(X_train, y_train, cat_features=cat_features) test_pool = Pool(X_test, cat_features=cat_features) model = CatBoostRegressor(verbose=False) model.fit(train_pool) model.get_best_score()
code
72107386/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') X_train = train.drop(['id', 'target'], axis=1) y_train = train['target'] X_test = test.drop(['id'], axis=1) cat_features = [i for i, col in enumerate(X_train.columns) if 'cat' in col] cat_features
code