path
stringlengths 13
17
| screenshot_names
sequencelengths 1
873
| code
stringlengths 0
40.4k
| cell_type
stringclasses 1
value |
---|---|---|---|
72107386/cell_5 | [
"text_plain_output_1.png"
] | import pandas as pd
train = pd.read_csv('../input/30-days-of-ml/train.csv')
test = pd.read_csv('../input/30-days-of-ml/test.csv')
print('The training set is {}.'.format(train.shape))
print('The test set is {}.'.format(test.shape)) | code |
17141799/cell_21 | [
"text_html_output_1.png"
] | from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.preprocessing import LabelEncoder
from tensorflow.python.framework import ops
import math
import matplotlib.pyplot as plt
import numpy as np
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pylab
import seaborn as sns
import tensorflow as tf
dataset = pd.read_csv('../input/census-data-set/Census Income Dataset.csv', na_values=[' ?'])
test_dataset = pd.read_csv('../input/census-test-dataset/Census Income Testset.csv', na_values=[' ?'])
def Income_bracket_binarization(feat_val):
if feat_val == '<=50K':
return 0
else:
return 1
dataset['Income_bracket'] = dataset['Income_bracket'].apply(Income_bracket_binarization)
test_dataset['Income_bracket'] = test_dataset['Income_bracket'].apply(Income_bracket_binarization)
class CategoricalImputer:
def __init__(self, columns=None, strategy='most_frequent'):
self.columns = columns
self.strategy = strategy
def fit(self, X, y=None):
if self.columns is None:
self.columns = X.columns
if self.strategy is 'most_frequent':
self.fill = {column: X[column].value_counts().index[0] for column in self.columns}
else:
self.fill = {column: '0' for column in self.columns}
return self
def transform(self, X):
for column in self.columns:
X[column] = X[column].fillna(self.fill[column])
return X
def Plot():
#Find Indices where Income is >50K and <=50K
fig = plt.figure(figsize=(15,15))
fig.subplots_adjust(hspace=0.7, wspace=0.7)
pylab.suptitle("Analyzing the dataset", fontsize="xx-large")
plt.subplot(3,2,1)
ax = sns.countplot(x='Age', hue='Income_bracket', data=dataset)
plt.subplot(3,2,2)
ax =sns.countplot(x='workclass', hue='Income_bracket', data=dataset)
ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right")
plt.subplot(3,2,3)
ax =sns.countplot(x='Education', hue='Income_bracket', data=dataset)
ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right")
plt.subplot(3,2,4)
ax = sns.countplot(x='Occupation', hue='Income_bracket', data=dataset)
ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right")
plt.subplot(3,2,5)
ax = sns.countplot(x='Gender', hue='Income_bracket', data=dataset)
ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right")
plt.subplot(3,2,6)
ax = sns.countplot(x='hours_per_week', hue='Income_bracket', data=dataset)
return None
Plot()
X = dataset.drop('Income_bracket', axis=1)
y = dataset['Income_bracket']
class Categorical_Encoder(BaseEstimator, TransformerMixin):
def __init__(self, columns=None):
self.columns = columns
self.encoders = None
def fit(self, data, target=None):
"""
Expects a data frame with named columns to encode.
"""
if self.columns is None:
self.columns = data.columns
self.encoders = {column: LabelEncoder().fit(data[column]) for column in self.columns}
return self
def transform(self, data):
"""
Uses the encoders to transform a data frame.
"""
output = data.copy()
for column, encoder in self.encoders.items():
output[column] = encoder.transform(data[column])
return output
categorical_features = {column: list(dataset[column].unique()) for column in dataset.columns if dataset[column].dtype == 'object'}
encoder = Categorical_Encoder(categorical_features.keys())
dataset = encoder.fit_transform(dataset)
data = dataset.values
X_train = np.float32(data[:, [0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12]])
Y_train = data[:, [13]]
def computeCost(A, y):
"""
Computes the cost using the sigmoid cross entropy
Arguments:
logits -- vector containing z, output of the last linear unit (before the final sigmoid activation)
labels -- vector of labels y (1 or 0)
Note: What we've been calling "z" and "y" in this class are respectively called "logits" and "labels"
in the TensorFlow documentation. So logits will feed into z, and labels into y.
Returns:
cost -- runs the session of the cost (formula (2))
"""
A = tf.cast(A, tf.float32)
y = tf.cast(y, tf.float32)
cross_entropy_cost = tf.nn.sigmoid_cross_entropy_with_logits(logits=A, labels=y)
return cross_entropy_cost
def Xavier_Intializer(dim):
tf.set_random_seed(1)
w = tf.get_variable('w', [dim, 1], initializer=tf.contrib.layers.xavier_initializer(seed=1))
b = 0
assert w.shape == (dim, 1)
assert isinstance(b, float) or isinstance(b, int)
return (w, b)
def propagate(X, y, w, b):
Z = tf.add(tf.matmul(X, w), b)
A = tf.sigmoid(Z)
return A
def random_mini_batches(X, Y, mini_batch_size, seed=0):
m = X.shape[1]
mini_batches = []
np.random.seed(seed)
permutation = list(np.random.permutation(m))
shuffled_X = X[:, permutation]
shuffled_Y = Y[:, permutation].reshape((Y.shape[0], m))
num_complete_minibatches = math.floor(m / mini_batch_size)
for k in range(0, num_complete_minibatches):
mini_batch_X = shuffled_X[:, k * mini_batch_size:k * mini_batch_size + mini_batch_size]
mini_batch_Y = shuffled_Y[:, k * mini_batch_size:k * mini_batch_size + mini_batch_size]
mini_batch = (mini_batch_X, mini_batch_Y)
mini_batches.append(mini_batch)
if m % mini_batch_size != 0:
mini_batch_X = shuffled_X[:, num_complete_minibatches * mini_batch_size:m]
mini_batch_Y = shuffled_Y[:, num_complete_minibatches * mini_batch_size:m]
mini_batch = (mini_batch_X, mini_batch_Y)
mini_batches.append(mini_batch)
return mini_batches
def model(X_train, Y_train, minibatch_size, learning_rate=0.005, num_iterations=1500, num_epochs=1500, print_cost=True):
ops.reset_default_graph()
m, n_x = X_train.shape
n_y = Y_train.shape[0]
costs = []
seed = 3
w, b = Xavier_Intializer(n_x)
A = propagate(X_train, Y_train, w, b)
cost = computeCost(A, Y_train)
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(cost)
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
for epoch in range(num_epochs):
epoch_cost = 0.0
num_minibatches = int(m / minibatch_size)
seed = seed + 1
minibatches = random_mini_batches(X_train.T, Y_train, minibatch_size, seed)
for minibatch in minibatches:
minibatch_X, minibatch_Y = minibatch
_, minibatch_cost = sess.run([optimizer, cost], feed_dict={X: minibatch_X, Y: minibatch_Y})
epoch_cost += minibatch_cost / num_minibatches
if print_cost == True and epoch % 5 == 0:
costs.append(epoch_cost)
w = sess.run(w)
b = sess.run(b)
return (w, b)
w, b = model(X_train, Y_train, minibatch_size=256) | code |
17141799/cell_9 | [
"application_vnd.jupyter.stderr_output_2.png",
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pylab
import seaborn as sns
dataset = pd.read_csv('../input/census-data-set/Census Income Dataset.csv', na_values=[' ?'])
test_dataset = pd.read_csv('../input/census-test-dataset/Census Income Testset.csv', na_values=[' ?'])
def Income_bracket_binarization(feat_val):
if feat_val == '<=50K':
return 0
else:
return 1
dataset['Income_bracket'] = dataset['Income_bracket'].apply(Income_bracket_binarization)
test_dataset['Income_bracket'] = test_dataset['Income_bracket'].apply(Income_bracket_binarization)
def Plot():
#Find Indices where Income is >50K and <=50K
fig = plt.figure(figsize=(15,15))
fig.subplots_adjust(hspace=0.7, wspace=0.7)
pylab.suptitle("Analyzing the dataset", fontsize="xx-large")
plt.subplot(3,2,1)
ax = sns.countplot(x='Age', hue='Income_bracket', data=dataset)
plt.subplot(3,2,2)
ax =sns.countplot(x='workclass', hue='Income_bracket', data=dataset)
ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right")
plt.subplot(3,2,3)
ax =sns.countplot(x='Education', hue='Income_bracket', data=dataset)
ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right")
plt.subplot(3,2,4)
ax = sns.countplot(x='Occupation', hue='Income_bracket', data=dataset)
ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right")
plt.subplot(3,2,5)
ax = sns.countplot(x='Gender', hue='Income_bracket', data=dataset)
ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right")
plt.subplot(3,2,6)
ax = sns.countplot(x='hours_per_week', hue='Income_bracket', data=dataset)
return None
dataset.hist(column=['Age', 'Education', 'hours_per_week'], figsize=(6, 5))
pylab.suptitle('Analyzing distribution for the dataset', fontsize='xx-large')
Plot()
X = dataset.drop('Income_bracket', axis=1)
y = dataset['Income_bracket'] | code |
17141799/cell_4 | [
"image_output_2.png",
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
dataset = pd.read_csv('../input/census-data-set/Census Income Dataset.csv', na_values=[' ?'])
test_dataset = pd.read_csv('../input/census-test-dataset/Census Income Testset.csv', na_values=[' ?'])
def Income_bracket_binarization(feat_val):
if feat_val == '<=50K':
return 0
else:
return 1
dataset['Income_bracket'] = dataset['Income_bracket'].apply(Income_bracket_binarization)
test_dataset['Income_bracket'] = test_dataset['Income_bracket'].apply(Income_bracket_binarization)
dataset.head() | code |
17141799/cell_2 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
dataset = pd.read_csv('../input/census-data-set/Census Income Dataset.csv', na_values=[' ?'])
dataset.head() | code |
17141799/cell_1 | [
"text_plain_output_1.png"
] | import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow.python.framework import ops
import sklearn
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import numpy as np
import pylab
from sklearn.preprocessing import LabelEncoder
from sklearn.base import BaseEstimator, TransformerMixin
import seaborn as sns
import math
import os
print(os.listdir('../input')) | code |
17141799/cell_7 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
dataset = pd.read_csv('../input/census-data-set/Census Income Dataset.csv', na_values=[' ?'])
test_dataset = pd.read_csv('../input/census-test-dataset/Census Income Testset.csv', na_values=[' ?'])
def Income_bracket_binarization(feat_val):
if feat_val == '<=50K':
return 0
else:
return 1
dataset['Income_bracket'] = dataset['Income_bracket'].apply(Income_bracket_binarization)
test_dataset['Income_bracket'] = test_dataset['Income_bracket'].apply(Income_bracket_binarization)
obj = CategoricalImputer(columns=['workclass', 'Occupation', 'Native_Country'])
train_result = obj.fit(dataset[['workclass', 'Occupation', 'Native_Country']])
dataset[['workclass', 'Occupation', 'Native_Country']] = train_result.transform(dataset[['workclass', 'Occupation', 'Native_Country']])
test_obj = CategoricalImputer(columns=['workclass', 'Occupation', 'Native_Country'])
test_result = test_obj.fit(test_dataset[['workclass', 'Occupation', 'Native_Country']])
test_dataset[['workclass', 'Occupation', 'Native_Country']] = test_result.transform(test_dataset[['workclass', 'Occupation', 'Native_Country']]) | code |
17141799/cell_15 | [
"text_html_output_1.png"
] | from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.preprocessing import LabelEncoder
import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pylab
import seaborn as sns
dataset = pd.read_csv('../input/census-data-set/Census Income Dataset.csv', na_values=[' ?'])
test_dataset = pd.read_csv('../input/census-test-dataset/Census Income Testset.csv', na_values=[' ?'])
def Income_bracket_binarization(feat_val):
if feat_val == '<=50K':
return 0
else:
return 1
dataset['Income_bracket'] = dataset['Income_bracket'].apply(Income_bracket_binarization)
test_dataset['Income_bracket'] = test_dataset['Income_bracket'].apply(Income_bracket_binarization)
class CategoricalImputer:
def __init__(self, columns=None, strategy='most_frequent'):
self.columns = columns
self.strategy = strategy
def fit(self, X, y=None):
if self.columns is None:
self.columns = X.columns
if self.strategy is 'most_frequent':
self.fill = {column: X[column].value_counts().index[0] for column in self.columns}
else:
self.fill = {column: '0' for column in self.columns}
return self
def transform(self, X):
for column in self.columns:
X[column] = X[column].fillna(self.fill[column])
return X
def Plot():
#Find Indices where Income is >50K and <=50K
fig = plt.figure(figsize=(15,15))
fig.subplots_adjust(hspace=0.7, wspace=0.7)
pylab.suptitle("Analyzing the dataset", fontsize="xx-large")
plt.subplot(3,2,1)
ax = sns.countplot(x='Age', hue='Income_bracket', data=dataset)
plt.subplot(3,2,2)
ax =sns.countplot(x='workclass', hue='Income_bracket', data=dataset)
ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right")
plt.subplot(3,2,3)
ax =sns.countplot(x='Education', hue='Income_bracket', data=dataset)
ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right")
plt.subplot(3,2,4)
ax = sns.countplot(x='Occupation', hue='Income_bracket', data=dataset)
ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right")
plt.subplot(3,2,5)
ax = sns.countplot(x='Gender', hue='Income_bracket', data=dataset)
ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right")
plt.subplot(3,2,6)
ax = sns.countplot(x='hours_per_week', hue='Income_bracket', data=dataset)
return None
Plot()
X = dataset.drop('Income_bracket', axis=1)
y = dataset['Income_bracket']
class Categorical_Encoder(BaseEstimator, TransformerMixin):
def __init__(self, columns=None):
self.columns = columns
self.encoders = None
def fit(self, data, target=None):
"""
Expects a data frame with named columns to encode.
"""
if self.columns is None:
self.columns = data.columns
self.encoders = {column: LabelEncoder().fit(data[column]) for column in self.columns}
return self
def transform(self, data):
"""
Uses the encoders to transform a data frame.
"""
output = data.copy()
for column, encoder in self.encoders.items():
output[column] = encoder.transform(data[column])
return output
categorical_features = {column: list(dataset[column].unique()) for column in dataset.columns if dataset[column].dtype == 'object'}
encoder = Categorical_Encoder(categorical_features.keys())
dataset = encoder.fit_transform(dataset)
categorical_features = {column: list(test_dataset[column].unique()) for column in test_dataset.columns if test_dataset[column].dtype == 'object'}
encoder = Categorical_Encoder(categorical_features.keys())
test_dataset = encoder.fit_transform(test_dataset)
test_dataset.head() | code |
17141799/cell_3 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
dataset = pd.read_csv('../input/census-data-set/Census Income Dataset.csv', na_values=[' ?'])
test_dataset = pd.read_csv('../input/census-test-dataset/Census Income Testset.csv', na_values=[' ?'])
test_dataset.head() | code |
17141799/cell_12 | [
"text_html_output_1.png"
] | from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.preprocessing import LabelEncoder
import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pylab
import seaborn as sns
dataset = pd.read_csv('../input/census-data-set/Census Income Dataset.csv', na_values=[' ?'])
test_dataset = pd.read_csv('../input/census-test-dataset/Census Income Testset.csv', na_values=[' ?'])
def Income_bracket_binarization(feat_val):
if feat_val == '<=50K':
return 0
else:
return 1
dataset['Income_bracket'] = dataset['Income_bracket'].apply(Income_bracket_binarization)
test_dataset['Income_bracket'] = test_dataset['Income_bracket'].apply(Income_bracket_binarization)
class CategoricalImputer:
def __init__(self, columns=None, strategy='most_frequent'):
self.columns = columns
self.strategy = strategy
def fit(self, X, y=None):
if self.columns is None:
self.columns = X.columns
if self.strategy is 'most_frequent':
self.fill = {column: X[column].value_counts().index[0] for column in self.columns}
else:
self.fill = {column: '0' for column in self.columns}
return self
def transform(self, X):
for column in self.columns:
X[column] = X[column].fillna(self.fill[column])
return X
def Plot():
#Find Indices where Income is >50K and <=50K
fig = plt.figure(figsize=(15,15))
fig.subplots_adjust(hspace=0.7, wspace=0.7)
pylab.suptitle("Analyzing the dataset", fontsize="xx-large")
plt.subplot(3,2,1)
ax = sns.countplot(x='Age', hue='Income_bracket', data=dataset)
plt.subplot(3,2,2)
ax =sns.countplot(x='workclass', hue='Income_bracket', data=dataset)
ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right")
plt.subplot(3,2,3)
ax =sns.countplot(x='Education', hue='Income_bracket', data=dataset)
ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right")
plt.subplot(3,2,4)
ax = sns.countplot(x='Occupation', hue='Income_bracket', data=dataset)
ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right")
plt.subplot(3,2,5)
ax = sns.countplot(x='Gender', hue='Income_bracket', data=dataset)
ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right")
plt.subplot(3,2,6)
ax = sns.countplot(x='hours_per_week', hue='Income_bracket', data=dataset)
return None
Plot()
X = dataset.drop('Income_bracket', axis=1)
y = dataset['Income_bracket']
class Categorical_Encoder(BaseEstimator, TransformerMixin):
def __init__(self, columns=None):
self.columns = columns
self.encoders = None
def fit(self, data, target=None):
"""
Expects a data frame with named columns to encode.
"""
if self.columns is None:
self.columns = data.columns
self.encoders = {column: LabelEncoder().fit(data[column]) for column in self.columns}
return self
def transform(self, data):
"""
Uses the encoders to transform a data frame.
"""
output = data.copy()
for column, encoder in self.encoders.items():
output[column] = encoder.transform(data[column])
return output
categorical_features = {column: list(dataset[column].unique()) for column in dataset.columns if dataset[column].dtype == 'object'}
encoder = Categorical_Encoder(categorical_features.keys())
dataset = encoder.fit_transform(dataset)
dataset.head() | code |
17141799/cell_5 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
dataset = pd.read_csv('../input/census-data-set/Census Income Dataset.csv', na_values=[' ?'])
test_dataset = pd.read_csv('../input/census-test-dataset/Census Income Testset.csv', na_values=[' ?'])
test_dataset.head() | code |
16145643/cell_21 | [
"text_html_output_1.png"
] | import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import numpy as np
import pandas as pd
import os
import matplotlib.pyplot as plt
import seaborn as sns
import missingno
pd.set_option('display.max_columns', 1000)
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = 'all'
df = pd.read_csv('../input/train.csv')
d_test = pd.read_csv('../input/test.csv')
df.isna().sum().sort_values(ascending=False)[:20]
for c in df.columns:
if df[c].dtypes == 'O':
df[c].fillna(value='none', inplace=True)
else:
df[c].fillna(value=0, inplace=True)
objects_list = ['MSSubClass']
linkert_list = ['ExterQual', 'ExterCond', 'BsmtQual', 'BsmtCond', 'BsmtExposure', 'HeatingQC', 'KitchenQual', 'Functional', 'FireplaceQu', 'GarageQual', 'GarageCond', 'PavedDrive', 'Fence']
for c in df.columns:
if df[c].dtypes == 'O':
d = df.set_index(c)['SalePrice'].groupby(axis=0, level=0).mean()
d = round(d / df['SalePrice'].mean() * 100, 1)
d.name = 'Mean'
b = df.set_index(c)['SalePrice'].groupby(axis=0, level=0).std()
b = round(b / df['SalePrice'].std() * 100, 1)
b.name = 'std'
a = []
for c in linkert_list:
a.append(df[c].unique().tolist())
label_values = pd.DataFrame(a).T
label_values.columns = linkert_list
label_values
label_loc = [4, 7, 8, 11, 12]
for i in label_loc:
label_values.iloc[:, i].dropna().tolist() | code |
16145643/cell_25 | [
"text_html_output_1.png"
] | import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import numpy as np
import pandas as pd
import os
import matplotlib.pyplot as plt
import seaborn as sns
import missingno
pd.set_option('display.max_columns', 1000)
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = 'all'
df = pd.read_csv('../input/train.csv')
d_test = pd.read_csv('../input/test.csv')
df.isna().sum().sort_values(ascending=False)[:20]
for c in df.columns:
if df[c].dtypes == 'O':
df[c].fillna(value='none', inplace=True)
else:
df[c].fillna(value=0, inplace=True)
for c in df.columns:
if df[c].dtypes == 'O':
d = df.set_index(c)['SalePrice'].groupby(axis=0, level=0).mean()
d = round(d / df['SalePrice'].mean() * 100, 1)
d.name = 'Mean'
b = df.set_index(c)['SalePrice'].groupby(axis=0, level=0).std()
b = round(b / df['SalePrice'].std() * 100, 1)
b.name = 'std'
categorical_cols = df.columns[df.dtypes == 'object']
labeldict = defaultdict(LabelEncoder)
labelfit = df[categorical_cols].apply(lambda x: labeldict[x.name].fit_transform(x))
df[categorical_cols] = labelfit | code |
16145643/cell_20 | [
"text_plain_output_1.png"
] | import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import numpy as np
import pandas as pd
import os
import matplotlib.pyplot as plt
import seaborn as sns
import missingno
pd.set_option('display.max_columns', 1000)
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = 'all'
df = pd.read_csv('../input/train.csv')
d_test = pd.read_csv('../input/test.csv')
df.isna().sum().sort_values(ascending=False)[:20]
for c in df.columns:
if df[c].dtypes == 'O':
df[c].fillna(value='none', inplace=True)
else:
df[c].fillna(value=0, inplace=True)
objects_list = ['MSSubClass']
linkert_list = ['ExterQual', 'ExterCond', 'BsmtQual', 'BsmtCond', 'BsmtExposure', 'HeatingQC', 'KitchenQual', 'Functional', 'FireplaceQu', 'GarageQual', 'GarageCond', 'PavedDrive', 'Fence']
for c in df.columns:
if df[c].dtypes == 'O':
d = df.set_index(c)['SalePrice'].groupby(axis=0, level=0).mean()
d = round(d / df['SalePrice'].mean() * 100, 1)
d.name = 'Mean'
b = df.set_index(c)['SalePrice'].groupby(axis=0, level=0).std()
b = round(b / df['SalePrice'].std() * 100, 1)
b.name = 'std'
a = []
for c in linkert_list:
a.append(df[c].unique().tolist())
label_values = pd.DataFrame(a).T
label_values.columns = linkert_list
label_values | code |
16145643/cell_6 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import missingno
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import numpy as np
import pandas as pd
import os
import matplotlib.pyplot as plt
import seaborn as sns
import missingno
pd.set_option('display.max_columns', 1000)
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = 'all'
df = pd.read_csv('../input/train.csv')
d_test = pd.read_csv('../input/test.csv')
missingno.matrix(df, figsize=(30, 5)) | code |
16145643/cell_11 | [
"text_html_output_1.png"
] | import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import numpy as np
import pandas as pd
import os
import matplotlib.pyplot as plt
import seaborn as sns
import missingno
pd.set_option('display.max_columns', 1000)
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = 'all'
df = pd.read_csv('../input/train.csv')
d_test = pd.read_csv('../input/test.csv')
df.isna().sum().sort_values(ascending=False)[:20]
for c in df.columns:
if df[c].dtypes == 'O':
df[c].fillna(value='none', inplace=True)
else:
df[c].fillna(value=0, inplace=True)
df.head() | code |
16145643/cell_1 | [
"text_plain_output_1.png"
] | import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import numpy as np
import pandas as pd
import os
print(os.listdir('../input'))
import matplotlib.pyplot as plt
import seaborn as sns
import missingno
pd.set_option('display.max_columns', 1000)
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = 'all' | code |
16145643/cell_7 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import numpy as np
import pandas as pd
import os
import matplotlib.pyplot as plt
import seaborn as sns
import missingno
pd.set_option('display.max_columns', 1000)
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = 'all'
df = pd.read_csv('../input/train.csv')
d_test = pd.read_csv('../input/test.csv')
df.isna().sum().sort_values(ascending=False)[:20] | code |
16145643/cell_38 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from sklearn.ensemble import RandomForestClassifier
clf = RandomForestClassifier(n_estimators=100)
clf.fit(x_train, y_train)
clf.score(x_train, y_train) | code |
16145643/cell_3 | [
"text_plain_output_5.png",
"text_plain_output_4.png",
"text_plain_output_3.png",
"text_plain_output_2.png",
"text_plain_output_1.png"
] | import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import numpy as np
import pandas as pd
import os
import matplotlib.pyplot as plt
import seaborn as sns
import missingno
pd.set_option('display.max_columns', 1000)
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = 'all'
df = pd.read_csv('../input/train.csv')
d_test = pd.read_csv('../input/test.csv')
df.head() | code |
16145643/cell_14 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import numpy as np
import pandas as pd
import os
import matplotlib.pyplot as plt
import seaborn as sns
import missingno
pd.set_option('display.max_columns', 1000)
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = 'all'
df = pd.read_csv('../input/train.csv')
d_test = pd.read_csv('../input/test.csv')
df.isna().sum().sort_values(ascending=False)[:20]
for c in df.columns:
if df[c].dtypes == 'O':
df[c].fillna(value='none', inplace=True)
else:
df[c].fillna(value=0, inplace=True)
df.iloc[:, -1].head() | code |
16145643/cell_22 | [
"text_plain_output_1.png"
] | sortlabels = defaultdict()
['No', 'Gd', 'Mn', 'Av', 'none']
['1.No', '4.Gd', '2.Mn', '3.Av', '0.none']
['Typ', 'Min1', 'Maj1', 'Min2', 'Mod', 'Maj2', 'Sev']
['none', 'TA', 'Gd', 'Fa', 'Ex', 'Po']
['0.none', '3.TA', '4.Gd', '2.Fa', '5.Ex', '1.Po']
['Y', 'N', 'P']
['3.Y', '1.N', '2.P']
['none', 'MnPrv', 'GdWo', 'GdPrv', 'MnWw']
['0.none', '3.MnPrv', '2.GdWo', '4.GdPrv', '1.MnWw'] | code |
17115300/cell_9 | [
"text_plain_output_1.png"
] | from sklearn import model_selection
from sklearn.ensemble import AdaBoostClassifier
from sklearn.ensemble import BaggingClassifier
from sklearn.preprocessing import MinMaxScaler
from sklearn.tree import DecisionTreeClassifier
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
url = '../input/data.csv'
df = pd.read_csv(url, index_col=0)
df.replace('?', 0, inplace=True)
df.diagnosis = pd.get_dummies(df.diagnosis)
df = df.drop(labels='Unnamed: 32', axis=1)
scaler = MinMaxScaler(feature_range=(0, 1))
normalizedData = scaler.fit_transform(df.values)
names = list(df.columns)
normalizedData = pd.DataFrame(normalizedData)
normalizedData.columns = names
x = normalizedData.loc[:, normalizedData.columns != 'diagnosis']
y = normalizedData.diagnosis
kfold = model_selection.KFold(n_splits=10, random_state=17)
cart = DecisionTreeClassifier()
num_trees = 100
model = BaggingClassifier(base_estimator=cart, n_estimators=num_trees, random_state=17)
results = model_selection.cross_val_score(model, x, y, cv=kfold)
from sklearn.ensemble import AdaBoostClassifier
seed = 17
num_trees = 100
kfold = model_selection.KFold(n_splits=10, random_state=seed)
model = AdaBoostClassifier(n_estimators=num_trees, random_state=seed)
results = model_selection.cross_val_score(model, x, y, cv=kfold)
print(results.mean()) | code |
17115300/cell_4 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
url = '../input/data.csv'
df = pd.read_csv(url, index_col=0)
df.head(3) | code |
17115300/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
print(os.listdir('../input')) | code |
17115300/cell_8 | [
"text_plain_output_1.png"
] | from sklearn import model_selection
from sklearn.ensemble import BaggingClassifier
from sklearn.preprocessing import MinMaxScaler
from sklearn.tree import DecisionTreeClassifier
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
url = '../input/data.csv'
df = pd.read_csv(url, index_col=0)
df.replace('?', 0, inplace=True)
df.diagnosis = pd.get_dummies(df.diagnosis)
df = df.drop(labels='Unnamed: 32', axis=1)
scaler = MinMaxScaler(feature_range=(0, 1))
normalizedData = scaler.fit_transform(df.values)
names = list(df.columns)
normalizedData = pd.DataFrame(normalizedData)
normalizedData.columns = names
x = normalizedData.loc[:, normalizedData.columns != 'diagnosis']
y = normalizedData.diagnosis
kfold = model_selection.KFold(n_splits=10, random_state=17)
cart = DecisionTreeClassifier()
num_trees = 100
model = BaggingClassifier(base_estimator=cart, n_estimators=num_trees, random_state=17)
results = model_selection.cross_val_score(model, x, y, cv=kfold)
print(results.mean()) | code |
88099839/cell_25 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
data = pd.read_csv('../input/world-happiness/2019.csv')
correlation_matrix_data = data.corr()
# Correlation Matrix function in Matplotlib π©βπ
fig, ax= plt.subplots(figsize=(6,6))
cp=ax.matshow(correlation_matrix_data)
ax.set_title('Correlation Matrix Plot')
# Annotate the values into correlation plot
for (i, j), z in np.ndenumerate(correlation_matrix_data):
ax.text(j, i, '{:0.2f}'.format(z), ha='center', va='center')
fig.colorbar(cp, ax=ax,fraction=0.046, pad=0.04);
# fraction=0.046, pad=0.04 seem like a magical combination to keep the colorbar scaled to the plot all the time π
-Seaborn
-sns.heatmap(df.corr())
# Correlation Matrix function in Seaborn π¨βπ
fig, ax= plt.subplots(figsize=(8,8))
cmap = plt.get_cmap('magma',30)
ax= sns.heatmap(correlation_matrix_data, annot=True, fmt="0.3f", square=True
,cmap=cmap, cbar_kws={"shrink": 0.8})
ax.set_title('Correlation Matrix Plot', fontsize=13);
# annot=True: annotate values into the corr matrix
# cbar_kws={"shrink": 0.8} : change the size of the colorbar to 0.8 of the plot πββοΈ
Group = np.repeat(np.array(['Q1', 'Q2', 'Q3']), [52, 52, 52], axis=0)
Group = pd.Series(Group)
pair_plot_data = data[['Social support', 'Healthy life expectancy', 'Score', 'GDP per capita']]
pair_plot_data['Group'] = Group
pair_plot_data.iloc[[0, 52, 104]]
sns.pairplot(data=pair_plot_data, kind='reg', diag_kws={'bins': 20, 'color': 'darkblue', 'edgecolor': 'black'}, plot_kws={'marker': '.', 'color': 'darkred'}, size=2.5) | code |
88099839/cell_57 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
data = pd.read_csv('../input/world-happiness/2019.csv')
correlation_matrix_data = data.corr()
# Correlation Matrix function in Matplotlib π©βπ
fig, ax= plt.subplots(figsize=(6,6))
cp=ax.matshow(correlation_matrix_data)
ax.set_title('Correlation Matrix Plot')
# Annotate the values into correlation plot
for (i, j), z in np.ndenumerate(correlation_matrix_data):
ax.text(j, i, '{:0.2f}'.format(z), ha='center', va='center')
fig.colorbar(cp, ax=ax,fraction=0.046, pad=0.04);
# fraction=0.046, pad=0.04 seem like a magical combination to keep the colorbar scaled to the plot all the time π
-Seaborn
-sns.heatmap(df.corr())
# Correlation Matrix function in Seaborn π¨βπ
fig, ax= plt.subplots(figsize=(8,8))
cmap = plt.get_cmap('magma',30)
ax= sns.heatmap(correlation_matrix_data, annot=True, fmt="0.3f", square=True
,cmap=cmap, cbar_kws={"shrink": 0.8})
ax.set_title('Correlation Matrix Plot', fontsize=13);
# annot=True: annotate values into the corr matrix
# cbar_kws={"shrink": 0.8} : change the size of the colorbar to 0.8 of the plot πββοΈ
Group = np.repeat(np.array(['Q1', 'Q2', 'Q3']), [52, 52, 52], axis=0)
Group = pd.Series(Group)
pair_plot_data = data[['Social support', 'Healthy life expectancy', 'Score', 'GDP per capita']]
pair_plot_data['Group'] = Group
pair_plot_data.iloc[[0, 52, 104]]
grid = sns.PairGrid(data=pair_plot_data, size=2.5, hue='Group')
grid = grid.map_upper(plt.scatter, linewidths=0.3, edgecolor='black', alpha=0.7)
grid = grid.map_diag(sns.kdeplot, fill=True, bw=0.3)
grid = grid.map_lower(plt.hist2d, bins=30, lw=0.0)
scatter_matrix_data = data[['Social support', 'Healthy life expectancy', 'Score', 'GDP per capita']]
Group = np.repeat(np.array(['H1', 'H2', 'H3']), [30, 50, 76], axis=0)
Group = pd.Series(Group)
countplot_data = data['Country or region']
countplot_data['Group'] = Group
boxplot_data = data.drop(['Overall rank', 'Country or region', 'Score'], axis=1)
props = dict(boxes='darkblue', whiskers='black', medians='red', caps='black')
boxplot_data.plot.box(color=props, patch_artist=True, rot=45, figsize=(10, 5))
group = np.repeat(np.array(['T1', 'T2', 'T3', 'T4']), [39, 39, 39, 39], axis=0).tolist()
df = boxplot_data.copy()
df['Group'] = group
props = dict(boxes='darkblue', whiskers='black', medians='red', caps='black')
df.groupby(by='Group').boxplot(column='GDP per capita', patch_artist=True, color=props, layout=(1, 4), fontsize=15, figsize=(15, 5)) | code |
88099839/cell_56 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
data = pd.read_csv('../input/world-happiness/2019.csv')
correlation_matrix_data = data.corr()
# Correlation Matrix function in Matplotlib π©βπ
fig, ax= plt.subplots(figsize=(6,6))
cp=ax.matshow(correlation_matrix_data)
ax.set_title('Correlation Matrix Plot')
# Annotate the values into correlation plot
for (i, j), z in np.ndenumerate(correlation_matrix_data):
ax.text(j, i, '{:0.2f}'.format(z), ha='center', va='center')
fig.colorbar(cp, ax=ax,fraction=0.046, pad=0.04);
# fraction=0.046, pad=0.04 seem like a magical combination to keep the colorbar scaled to the plot all the time π
-Seaborn
-sns.heatmap(df.corr())
# Correlation Matrix function in Seaborn π¨βπ
fig, ax= plt.subplots(figsize=(8,8))
cmap = plt.get_cmap('magma',30)
ax= sns.heatmap(correlation_matrix_data, annot=True, fmt="0.3f", square=True
,cmap=cmap, cbar_kws={"shrink": 0.8})
ax.set_title('Correlation Matrix Plot', fontsize=13);
# annot=True: annotate values into the corr matrix
# cbar_kws={"shrink": 0.8} : change the size of the colorbar to 0.8 of the plot πββοΈ
Group = np.repeat(np.array(['Q1', 'Q2', 'Q3']), [52, 52, 52], axis=0)
Group = pd.Series(Group)
pair_plot_data = data[['Social support', 'Healthy life expectancy', 'Score', 'GDP per capita']]
pair_plot_data['Group'] = Group
pair_plot_data.iloc[[0, 52, 104]]
grid = sns.PairGrid(data=pair_plot_data, size=2.5, hue='Group')
grid = grid.map_upper(plt.scatter, linewidths=0.3, edgecolor='black', alpha=0.7)
grid = grid.map_diag(sns.kdeplot, fill=True, bw=0.3)
grid = grid.map_lower(plt.hist2d, bins=30, lw=0.0)
scatter_matrix_data = data[['Social support', 'Healthy life expectancy', 'Score', 'GDP per capita']]
Group = np.repeat(np.array(['H1', 'H2', 'H3']), [30, 50, 76], axis=0)
Group = pd.Series(Group)
countplot_data = data['Country or region']
countplot_data['Group'] = Group
boxplot_data = data.drop(['Overall rank', 'Country or region', 'Score'], axis=1)
props = dict(boxes='darkblue', whiskers='black', medians='red', caps='black')
boxplot_data.plot.box(color=props, patch_artist=True, rot=45, figsize=(10, 5))
group = np.repeat(np.array(['T1', 'T2', 'T3', 'T4']), [39, 39, 39, 39], axis=0).tolist()
df = boxplot_data.copy()
df['Group'] = group
df.head(3) | code |
88099839/cell_34 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
data = pd.read_csv('../input/world-happiness/2019.csv')
correlation_matrix_data = data.corr()
# Correlation Matrix function in Matplotlib π©βπ
fig, ax= plt.subplots(figsize=(6,6))
cp=ax.matshow(correlation_matrix_data)
ax.set_title('Correlation Matrix Plot')
# Annotate the values into correlation plot
for (i, j), z in np.ndenumerate(correlation_matrix_data):
ax.text(j, i, '{:0.2f}'.format(z), ha='center', va='center')
fig.colorbar(cp, ax=ax,fraction=0.046, pad=0.04);
# fraction=0.046, pad=0.04 seem like a magical combination to keep the colorbar scaled to the plot all the time π
-Seaborn
-sns.heatmap(df.corr())
# Correlation Matrix function in Seaborn π¨βπ
fig, ax= plt.subplots(figsize=(8,8))
cmap = plt.get_cmap('magma',30)
ax= sns.heatmap(correlation_matrix_data, annot=True, fmt="0.3f", square=True
,cmap=cmap, cbar_kws={"shrink": 0.8})
ax.set_title('Correlation Matrix Plot', fontsize=13);
# annot=True: annotate values into the corr matrix
# cbar_kws={"shrink": 0.8} : change the size of the colorbar to 0.8 of the plot πββοΈ
Group = np.repeat(np.array(['Q1', 'Q2', 'Q3']), [52, 52, 52], axis=0)
Group = pd.Series(Group)
pair_plot_data = data[['Social support', 'Healthy life expectancy', 'Score', 'GDP per capita']]
pair_plot_data['Group'] = Group
pair_plot_data.iloc[[0, 52, 104]]
grid = sns.PairGrid(data=pair_plot_data, size=2.5, hue='Group')
grid = grid.map_upper(plt.scatter, linewidths=0.3, edgecolor='black', alpha=0.7)
grid = grid.map_diag(sns.kdeplot, fill=True, bw=0.3)
grid = grid.map_lower(plt.hist2d, bins=30, lw=0.0)
scatter_matrix_data = data[['Social support', 'Healthy life expectancy', 'Score', 'GDP per capita']]
pd.plotting.scatter_matrix(scatter_matrix_data, diagonal='hist', figsize=(8, 8), color='darkgreen', marker='.', alpha=0.8, s=60, hist_kwds={'bins': 15, 'color': 'darkblue', 'edgecolor': 'black'})
plt.suptitle('Scatter Matrix of Data', fontsize=15) | code |
88099839/cell_23 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
data = pd.read_csv('../input/world-happiness/2019.csv')
correlation_matrix_data = data.corr()
# Correlation Matrix function in Matplotlib π©βπ
fig, ax= plt.subplots(figsize=(6,6))
cp=ax.matshow(correlation_matrix_data)
ax.set_title('Correlation Matrix Plot')
# Annotate the values into correlation plot
for (i, j), z in np.ndenumerate(correlation_matrix_data):
ax.text(j, i, '{:0.2f}'.format(z), ha='center', va='center')
fig.colorbar(cp, ax=ax,fraction=0.046, pad=0.04);
# fraction=0.046, pad=0.04 seem like a magical combination to keep the colorbar scaled to the plot all the time π
Group = np.repeat(np.array(['Q1', 'Q2', 'Q3']), [52, 52, 52], axis=0)
Group = pd.Series(Group)
pair_plot_data = data[['Social support', 'Healthy life expectancy', 'Score', 'GDP per capita']]
pair_plot_data['Group'] = Group
pair_plot_data.iloc[[0, 52, 104]] | code |
88099839/cell_30 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
data = pd.read_csv('../input/world-happiness/2019.csv')
correlation_matrix_data = data.corr()
# Correlation Matrix function in Matplotlib π©βπ
fig, ax= plt.subplots(figsize=(6,6))
cp=ax.matshow(correlation_matrix_data)
ax.set_title('Correlation Matrix Plot')
# Annotate the values into correlation plot
for (i, j), z in np.ndenumerate(correlation_matrix_data):
ax.text(j, i, '{:0.2f}'.format(z), ha='center', va='center')
fig.colorbar(cp, ax=ax,fraction=0.046, pad=0.04);
# fraction=0.046, pad=0.04 seem like a magical combination to keep the colorbar scaled to the plot all the time π
-Seaborn
-sns.heatmap(df.corr())
# Correlation Matrix function in Seaborn π¨βπ
fig, ax= plt.subplots(figsize=(8,8))
cmap = plt.get_cmap('magma',30)
ax= sns.heatmap(correlation_matrix_data, annot=True, fmt="0.3f", square=True
,cmap=cmap, cbar_kws={"shrink": 0.8})
ax.set_title('Correlation Matrix Plot', fontsize=13);
# annot=True: annotate values into the corr matrix
# cbar_kws={"shrink": 0.8} : change the size of the colorbar to 0.8 of the plot πββοΈ
Group = np.repeat(np.array(['Q1', 'Q2', 'Q3']), [52, 52, 52], axis=0)
Group = pd.Series(Group)
pair_plot_data = data[['Social support', 'Healthy life expectancy', 'Score', 'GDP per capita']]
pair_plot_data['Group'] = Group
pair_plot_data.iloc[[0, 52, 104]]
grid = sns.PairGrid(data=pair_plot_data, size=2.5, hue='Group')
grid = grid.map_upper(plt.scatter, linewidths=0.3, edgecolor='black', alpha=0.7)
grid = grid.map_diag(sns.kdeplot, fill=True, bw=0.3)
grid = grid.map_lower(plt.hist2d, bins=30, lw=0.0) | code |
88099839/cell_20 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
data = pd.read_csv('../input/world-happiness/2019.csv')
correlation_matrix_data = data.corr()
# Correlation Matrix function in Matplotlib π©βπ
fig, ax= plt.subplots(figsize=(6,6))
cp=ax.matshow(correlation_matrix_data)
ax.set_title('Correlation Matrix Plot')
# Annotate the values into correlation plot
for (i, j), z in np.ndenumerate(correlation_matrix_data):
ax.text(j, i, '{:0.2f}'.format(z), ha='center', va='center')
fig.colorbar(cp, ax=ax,fraction=0.046, pad=0.04);
# fraction=0.046, pad=0.04 seem like a magical combination to keep the colorbar scaled to the plot all the time π
-Seaborn
-sns.heatmap(df.corr())
fig, ax = plt.subplots(figsize=(8, 8))
cmap = plt.get_cmap('magma', 30)
ax = sns.heatmap(correlation_matrix_data, annot=True, fmt='0.3f', square=True, cmap=cmap, cbar_kws={'shrink': 0.8})
ax.set_title('Correlation Matrix Plot', fontsize=13) | code |
88099839/cell_55 | [
"image_output_1.png"
] | import pandas as pd
data = pd.read_csv('../input/world-happiness/2019.csv')
correlation_matrix_data = data.corr()
boxplot_data = data.drop(['Overall rank', 'Country or region', 'Score'], axis=1)
props = dict(boxes='darkblue', whiskers='black', medians='red', caps='black')
boxplot_data.plot.box(color=props, patch_artist=True, rot=45, figsize=(10, 5)) | code |
88099839/cell_39 | [
"text_html_output_1.png"
] | import pandas as pd
data = pd.read_csv('../input/world-happiness/2019.csv')
correlation_matrix_data = data.corr()
histogram_data = data[['Score', 'GDP per capita']]
histogram_data.head(3) | code |
88099839/cell_41 | [
"image_output_1.png"
] | import pandas as pd
data = pd.read_csv('../input/world-happiness/2019.csv')
correlation_matrix_data = data.corr()
histogram_data = data[['Score', 'GDP per capita']]
histogram_data.plot.hist(bins=40, color=['darkblue', 'darkgreen'], figsize=(10, 4), edgecolor='black', lw=1) | code |
88099839/cell_11 | [
"text_html_output_1.png"
] | import pandas as pd
data = pd.read_csv('../input/world-happiness/2019.csv')
data.head() | code |
88099839/cell_50 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
data = pd.read_csv('../input/world-happiness/2019.csv')
correlation_matrix_data = data.corr()
# Correlation Matrix function in Matplotlib π©βπ
fig, ax= plt.subplots(figsize=(6,6))
cp=ax.matshow(correlation_matrix_data)
ax.set_title('Correlation Matrix Plot')
# Annotate the values into correlation plot
for (i, j), z in np.ndenumerate(correlation_matrix_data):
ax.text(j, i, '{:0.2f}'.format(z), ha='center', va='center')
fig.colorbar(cp, ax=ax,fraction=0.046, pad=0.04);
# fraction=0.046, pad=0.04 seem like a magical combination to keep the colorbar scaled to the plot all the time π
-Seaborn
-sns.heatmap(df.corr())
# Correlation Matrix function in Seaborn π¨βπ
fig, ax= plt.subplots(figsize=(8,8))
cmap = plt.get_cmap('magma',30)
ax= sns.heatmap(correlation_matrix_data, annot=True, fmt="0.3f", square=True
,cmap=cmap, cbar_kws={"shrink": 0.8})
ax.set_title('Correlation Matrix Plot', fontsize=13);
# annot=True: annotate values into the corr matrix
# cbar_kws={"shrink": 0.8} : change the size of the colorbar to 0.8 of the plot πββοΈ
Group = np.repeat(np.array(['Q1', 'Q2', 'Q3']), [52, 52, 52], axis=0)
Group = pd.Series(Group)
pair_plot_data = data[['Social support', 'Healthy life expectancy', 'Score', 'GDP per capita']]
pair_plot_data['Group'] = Group
pair_plot_data.iloc[[0, 52, 104]]
grid = sns.PairGrid(data=pair_plot_data, size=2.5, hue='Group')
grid = grid.map_upper(plt.scatter, linewidths=0.3, edgecolor='black', alpha=0.7)
grid = grid.map_diag(sns.kdeplot, fill=True, bw=0.3)
grid = grid.map_lower(plt.hist2d, bins=30, lw=0.0)
scatter_matrix_data = data[['Social support', 'Healthy life expectancy', 'Score', 'GDP per capita']]
histogram_data = data[['Score', 'GDP per capita']]
# Histogram function with matplotlib π
fig,ax= plt.subplots(figsize=(10,4))
ax.hist(histogram_data['Score'], bins=30, color='darkblue',histtype='stepfilled',
edgecolor='black', label='Happiness Score')
ax.hist(histogram_data['GDP per capita'], bins=10, color='darkgreen',histtype='barstacked',
edgecolor='black', label='GDP')
ax.legend(prop ={'size': 10});
# Histogram function with seaborn π
sns.set(rc={'figure.figsize':(10,4)}) # set figure size
sns.set_theme(style='whitegrid') # theme of the graph
ax=sns.histplot(x='Score', data=histogram_data, bins=30,
color='darkgreen', edgecolor='black', kde=True)
ax=sns.histplot(x='GDP per capita', data=histogram_data, bins=10,
color='darkblue', edgecolor='black', kde=True)
Group = np.repeat(np.array(['H1', 'H2', 'H3']), [30, 50, 76], axis=0)
Group = pd.Series(Group)
countplot_data = data['Country or region']
countplot_data['Group'] = Group
sns.set(rc={'figure.figsize': (8, 6)})
sns.set_theme(style='whitegrid')
ax = sns.countplot(x='Group', data=countplot_data, palette='viridis', edgecolor='black')
ax.set_title('Count Plot of Groups', fontsize=15)
ax.set_xlabel('Groups of Countries') | code |
88099839/cell_45 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
data = pd.read_csv('../input/world-happiness/2019.csv')
correlation_matrix_data = data.corr()
# Correlation Matrix function in Matplotlib π©βπ
fig, ax= plt.subplots(figsize=(6,6))
cp=ax.matshow(correlation_matrix_data)
ax.set_title('Correlation Matrix Plot')
# Annotate the values into correlation plot
for (i, j), z in np.ndenumerate(correlation_matrix_data):
ax.text(j, i, '{:0.2f}'.format(z), ha='center', va='center')
fig.colorbar(cp, ax=ax,fraction=0.046, pad=0.04);
# fraction=0.046, pad=0.04 seem like a magical combination to keep the colorbar scaled to the plot all the time π
-Seaborn
-sns.heatmap(df.corr())
# Correlation Matrix function in Seaborn π¨βπ
fig, ax= plt.subplots(figsize=(8,8))
cmap = plt.get_cmap('magma',30)
ax= sns.heatmap(correlation_matrix_data, annot=True, fmt="0.3f", square=True
,cmap=cmap, cbar_kws={"shrink": 0.8})
ax.set_title('Correlation Matrix Plot', fontsize=13);
# annot=True: annotate values into the corr matrix
# cbar_kws={"shrink": 0.8} : change the size of the colorbar to 0.8 of the plot πββοΈ
Group = np.repeat(np.array(['Q1', 'Q2', 'Q3']), [52, 52, 52], axis=0)
Group = pd.Series(Group)
pair_plot_data = data[['Social support', 'Healthy life expectancy', 'Score', 'GDP per capita']]
pair_plot_data['Group'] = Group
pair_plot_data.iloc[[0, 52, 104]]
grid = sns.PairGrid(data=pair_plot_data, size=2.5, hue='Group')
grid = grid.map_upper(plt.scatter, linewidths=0.3, edgecolor='black', alpha=0.7)
grid = grid.map_diag(sns.kdeplot, fill=True, bw=0.3)
grid = grid.map_lower(plt.hist2d, bins=30, lw=0.0)
histogram_data = data[['Score', 'GDP per capita']]
sns.set(rc={'figure.figsize': (10, 4)})
sns.set_theme(style='whitegrid')
ax = sns.histplot(x='Score', data=histogram_data, bins=30, color='darkgreen', edgecolor='black', kde=True)
ax = sns.histplot(x='GDP per capita', data=histogram_data, bins=10, color='darkblue', edgecolor='black', kde=True) | code |
88099839/cell_18 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
data = pd.read_csv('../input/world-happiness/2019.csv')
correlation_matrix_data = data.corr()
fig, ax = plt.subplots(figsize=(6, 6))
cp = ax.matshow(correlation_matrix_data)
ax.set_title('Correlation Matrix Plot')
for (i, j), z in np.ndenumerate(correlation_matrix_data):
ax.text(j, i, '{:0.2f}'.format(z), ha='center', va='center')
fig.colorbar(cp, ax=ax, fraction=0.046, pad=0.04) | code |
88099839/cell_59 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
data = pd.read_csv('../input/world-happiness/2019.csv')
correlation_matrix_data = data.corr()
# Correlation Matrix function in Matplotlib π©βπ
fig, ax= plt.subplots(figsize=(6,6))
cp=ax.matshow(correlation_matrix_data)
ax.set_title('Correlation Matrix Plot')
# Annotate the values into correlation plot
for (i, j), z in np.ndenumerate(correlation_matrix_data):
ax.text(j, i, '{:0.2f}'.format(z), ha='center', va='center')
fig.colorbar(cp, ax=ax,fraction=0.046, pad=0.04);
# fraction=0.046, pad=0.04 seem like a magical combination to keep the colorbar scaled to the plot all the time π
-Seaborn
-sns.heatmap(df.corr())
# Correlation Matrix function in Seaborn π¨βπ
fig, ax= plt.subplots(figsize=(8,8))
cmap = plt.get_cmap('magma',30)
ax= sns.heatmap(correlation_matrix_data, annot=True, fmt="0.3f", square=True
,cmap=cmap, cbar_kws={"shrink": 0.8})
ax.set_title('Correlation Matrix Plot', fontsize=13);
# annot=True: annotate values into the corr matrix
# cbar_kws={"shrink": 0.8} : change the size of the colorbar to 0.8 of the plot πββοΈ
Group = np.repeat(np.array(['Q1', 'Q2', 'Q3']), [52, 52, 52], axis=0)
Group = pd.Series(Group)
pair_plot_data = data[['Social support', 'Healthy life expectancy', 'Score', 'GDP per capita']]
pair_plot_data['Group'] = Group
pair_plot_data.iloc[[0, 52, 104]]
grid = sns.PairGrid(data=pair_plot_data, size=2.5, hue='Group')
grid = grid.map_upper(plt.scatter, linewidths=0.3, edgecolor='black', alpha=0.7)
grid = grid.map_diag(sns.kdeplot, fill=True, bw=0.3)
grid = grid.map_lower(plt.hist2d, bins=30, lw=0.0)
scatter_matrix_data = data[['Social support', 'Healthy life expectancy', 'Score', 'GDP per capita']]
histogram_data = data[['Score', 'GDP per capita']]
# Histogram function with matplotlib π
fig,ax= plt.subplots(figsize=(10,4))
ax.hist(histogram_data['Score'], bins=30, color='darkblue',histtype='stepfilled',
edgecolor='black', label='Happiness Score')
ax.hist(histogram_data['GDP per capita'], bins=10, color='darkgreen',histtype='barstacked',
edgecolor='black', label='GDP')
ax.legend(prop ={'size': 10});
# Histogram function with seaborn π
sns.set(rc={'figure.figsize':(10,4)}) # set figure size
sns.set_theme(style='whitegrid') # theme of the graph
ax=sns.histplot(x='Score', data=histogram_data, bins=30,
color='darkgreen', edgecolor='black', kde=True)
ax=sns.histplot(x='GDP per capita', data=histogram_data, bins=10,
color='darkblue', edgecolor='black', kde=True)
Group = np.repeat(np.array(['H1', 'H2', 'H3']), [30, 50, 76], axis=0)
Group = pd.Series(Group)
countplot_data = data['Country or region']
countplot_data['Group'] = Group
sns.set(rc={'figure.figsize':(8,6)}) # set figure size
sns.set_theme(style='whitegrid')
# Count plot function in Seaborn
ax= sns.countplot(x='Group', data=countplot_data, palette='viridis', edgecolor='black')
ax.set_title('Count Plot of Groups', fontsize=15)
ax.set_xlabel('Groups of Countries');
boxplot_data = data.drop(['Overall rank', 'Country or region', 'Score'], axis=1)
props = dict(boxes='darkblue', whiskers='black', medians='red', caps='black')
boxplot_data.plot.box(color=props, patch_artist=True, rot=45, figsize=(10, 5))
group = np.repeat(np.array(['T1', 'T2', 'T3', 'T4']), [39, 39, 39, 39], axis=0).tolist()
df = boxplot_data.copy()
df['Group'] = group
fig, ax = plt.subplots(figsize=(10, 5))
ax.boxplot(boxplot_data.to_numpy(), widths=0.55, patch_artist=True, notch=True)
ax.set_title('Boxplot of Data', fontsize=17)
ax.set_xlabel('numeric variables', fontsize=12)
ax.set_ylabel('quantiles of values', fontsize=12) | code |
88099839/cell_43 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
data = pd.read_csv('../input/world-happiness/2019.csv')
correlation_matrix_data = data.corr()
# Correlation Matrix function in Matplotlib π©βπ
fig, ax= plt.subplots(figsize=(6,6))
cp=ax.matshow(correlation_matrix_data)
ax.set_title('Correlation Matrix Plot')
# Annotate the values into correlation plot
for (i, j), z in np.ndenumerate(correlation_matrix_data):
ax.text(j, i, '{:0.2f}'.format(z), ha='center', va='center')
fig.colorbar(cp, ax=ax,fraction=0.046, pad=0.04);
# fraction=0.046, pad=0.04 seem like a magical combination to keep the colorbar scaled to the plot all the time π
-Seaborn
-sns.heatmap(df.corr())
# Correlation Matrix function in Seaborn π¨βπ
fig, ax= plt.subplots(figsize=(8,8))
cmap = plt.get_cmap('magma',30)
ax= sns.heatmap(correlation_matrix_data, annot=True, fmt="0.3f", square=True
,cmap=cmap, cbar_kws={"shrink": 0.8})
ax.set_title('Correlation Matrix Plot', fontsize=13);
# annot=True: annotate values into the corr matrix
# cbar_kws={"shrink": 0.8} : change the size of the colorbar to 0.8 of the plot πββοΈ
Group = np.repeat(np.array(['Q1', 'Q2', 'Q3']), [52, 52, 52], axis=0)
Group = pd.Series(Group)
pair_plot_data = data[['Social support', 'Healthy life expectancy', 'Score', 'GDP per capita']]
pair_plot_data['Group'] = Group
pair_plot_data.iloc[[0, 52, 104]]
grid = sns.PairGrid(data=pair_plot_data, size=2.5, hue='Group')
grid = grid.map_upper(plt.scatter, linewidths=0.3, edgecolor='black', alpha=0.7)
grid = grid.map_diag(sns.kdeplot, fill=True, bw=0.3)
grid = grid.map_lower(plt.hist2d, bins=30, lw=0.0)
scatter_matrix_data = data[['Social support', 'Healthy life expectancy', 'Score', 'GDP per capita']]
histogram_data = data[['Score', 'GDP per capita']]
fig, ax = plt.subplots(figsize=(10, 4))
ax.hist(histogram_data['Score'], bins=30, color='darkblue', histtype='stepfilled', edgecolor='black', label='Happiness Score')
ax.hist(histogram_data['GDP per capita'], bins=10, color='darkgreen', histtype='barstacked', edgecolor='black', label='GDP')
ax.legend(prop={'size': 10}) | code |
88099839/cell_53 | [
"text_html_output_1.png"
] | import pandas as pd
data = pd.read_csv('../input/world-happiness/2019.csv')
correlation_matrix_data = data.corr()
boxplot_data = data.drop(['Overall rank', 'Country or region', 'Score'], axis=1)
boxplot_data.head(3) | code |
88099839/cell_27 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
data = pd.read_csv('../input/world-happiness/2019.csv')
correlation_matrix_data = data.corr()
# Correlation Matrix function in Matplotlib π©βπ
fig, ax= plt.subplots(figsize=(6,6))
cp=ax.matshow(correlation_matrix_data)
ax.set_title('Correlation Matrix Plot')
# Annotate the values into correlation plot
for (i, j), z in np.ndenumerate(correlation_matrix_data):
ax.text(j, i, '{:0.2f}'.format(z), ha='center', va='center')
fig.colorbar(cp, ax=ax,fraction=0.046, pad=0.04);
# fraction=0.046, pad=0.04 seem like a magical combination to keep the colorbar scaled to the plot all the time π
-Seaborn
-sns.heatmap(df.corr())
# Correlation Matrix function in Seaborn π¨βπ
fig, ax= plt.subplots(figsize=(8,8))
cmap = plt.get_cmap('magma',30)
ax= sns.heatmap(correlation_matrix_data, annot=True, fmt="0.3f", square=True
,cmap=cmap, cbar_kws={"shrink": 0.8})
ax.set_title('Correlation Matrix Plot', fontsize=13);
# annot=True: annotate values into the corr matrix
# cbar_kws={"shrink": 0.8} : change the size of the colorbar to 0.8 of the plot πββοΈ
Group = np.repeat(np.array(['Q1', 'Q2', 'Q3']), [52, 52, 52], axis=0)
Group = pd.Series(Group)
pair_plot_data = data[['Social support', 'Healthy life expectancy', 'Score', 'GDP per capita']]
pair_plot_data['Group'] = Group
pair_plot_data.iloc[[0, 52, 104]]
sns.pairplot(data=pair_plot_data, hue='Group', palette='magma', size=2.5) | code |
129028814/cell_4 | [
"text_plain_output_1.png",
"image_output_2.png",
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
import matplotlib.pyplot as plt
import seaborn as sns
df = pd.read_csv('/kaggle/input/covid19-dataset/Covid Data.csv')
df.loc[df.DATE_DIED != '9999-99-99', 'DATE_DIED'] = 1
df.loc[df.DATE_DIED == '9999-99-99', 'DATE_DIED'] = 2
age_range = [-float('inf'), 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, float('inf')]
df['AGE'] = pd.cut(df['AGE'], age_range, labels=False)
sns.catplot(x='AGE', y='CLASIFFICATION_FINAL', data=df, kind='bar')
sns.catplot(x='AGE', data=df, kind='count') | code |
129028814/cell_6 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import matplotlib.pyplot as plt
import seaborn as sns
df = pd.read_csv('/kaggle/input/covid19-dataset/Covid Data.csv')
df.loc[df.DATE_DIED != '9999-99-99', 'DATE_DIED'] = 1
df.loc[df.DATE_DIED == '9999-99-99', 'DATE_DIED'] = 2
columns = ['USMER', 'MEDICAL_UNIT', 'SEX', 'PATIENT_TYPE', 'DATE_DIED', 'INTUBED', 'PNEUMONIA', 'PREGNANT', 'DIABETES', 'COPD', 'ASTHMA', 'INMSUPR', 'HIPERTENSION', 'OTHER_DISEASE', 'CARDIOVASCULAR', 'OBESITY', 'RENAL_CHRONIC', 'TOBACCO', 'ICU']
for col in columns:
print(col, '= 1')
print('mean:', df[df[col] == 1]['CLASIFFICATION_FINAL'].count())
print(col, '= 2')
print('mean:', df[df[col] == 2]['CLASIFFICATION_FINAL'].count())
print('--------------------') | code |
129028814/cell_2 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import matplotlib.pyplot as plt
import seaborn as sns
df = pd.read_csv('/kaggle/input/covid19-dataset/Covid Data.csv')
df.head() | code |
129028814/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
129028814/cell_8 | [
"image_output_4.png",
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png",
"image_output_3.png",
"image_output_2.png",
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
import matplotlib.pyplot as plt
import seaborn as sns
df = pd.read_csv('/kaggle/input/covid19-dataset/Covid Data.csv')
df.loc[df.DATE_DIED != '9999-99-99', 'DATE_DIED'] = 1
df.loc[df.DATE_DIED == '9999-99-99', 'DATE_DIED'] = 2
age_range = [-float('inf'), 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, float('inf')]
df['AGE'] = pd.cut(df['AGE'], age_range, labels=False)
df_pos = df[df.CLASIFFICATION_FINAL < 4]
df_neg = df[df.CLASIFFICATION_FINAL >= 4]
age_range = [-float('inf'), 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, float('inf')]
df_pos['AGE'] = pd.cut(df_pos['AGE'], age_range, labels=False)
sns.catplot(x='AGE', y='CLASIFFICATION_FINAL', data=df_pos, kind='bar')
sns.catplot(x='AGE', data=df_pos, kind='count')
df_neg['AGE'] = pd.cut(df_neg['AGE'], age_range, labels=False)
sns.catplot(x='AGE', y='CLASIFFICATION_FINAL', data=df_neg, kind='bar')
sns.catplot(x='AGE', data=df_neg, kind='count') | code |
129028814/cell_3 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import matplotlib.pyplot as plt
import seaborn as sns
df = pd.read_csv('/kaggle/input/covid19-dataset/Covid Data.csv')
df.loc[df.DATE_DIED != '9999-99-99', 'DATE_DIED'] = 1
df.loc[df.DATE_DIED == '9999-99-99', 'DATE_DIED'] = 2
df.tail() | code |
129028814/cell_5 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import matplotlib.pyplot as plt
import seaborn as sns
df = pd.read_csv('/kaggle/input/covid19-dataset/Covid Data.csv')
df.loc[df.DATE_DIED != '9999-99-99', 'DATE_DIED'] = 1
df.loc[df.DATE_DIED == '9999-99-99', 'DATE_DIED'] = 2
columns = ['USMER', 'MEDICAL_UNIT', 'SEX', 'PATIENT_TYPE', 'DATE_DIED', 'INTUBED', 'PNEUMONIA', 'PREGNANT', 'DIABETES', 'COPD', 'ASTHMA', 'INMSUPR', 'HIPERTENSION', 'OTHER_DISEASE', 'CARDIOVASCULAR', 'OBESITY', 'RENAL_CHRONIC', 'TOBACCO', 'ICU']
for col in columns:
print(col, '= 1')
print('mean:', df[df[col] == 1]['CLASIFFICATION_FINAL'].mean())
print(col, '= 2')
print('mean:', df[df[col] == 2]['CLASIFFICATION_FINAL'].mean())
print('--------------------') | code |
90129087/cell_21 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
train = pd.read_csv('../input/titanic/train.csv')
test = pd.read_csv('../input/titanic/test.csv')
train.columns
train.isnull()
train['Age'].hist(bins=30, color='orange', alpha=0.7) | code |
90129087/cell_13 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
train = pd.read_csv('../input/titanic/train.csv')
test = pd.read_csv('../input/titanic/test.csv')
train.columns
train.isnull()
fig, ax = plt.subplots(1,2,figsize=(12,6))
train['Survived'].value_counts().plot.pie(explode=[0,0.1],autopct='%1.1f%%',ax=ax[0],shadow=True, startangle=90,colormap='OrRd_r')
sns.countplot('Survived', data=train, ax=ax[1], palette='OrRd')
ax[0].set_title('Pie plot - Survivrd')
ax[1].set_title('Count plot - Survived')
ax[0].set_ylabel('Survival')
plt.show()
sns.countplot(x='Survived', data=train, hue='Sex', palette='OrRd_r')
plt.legend(loc='upper right') | code |
90129087/cell_9 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train = pd.read_csv('../input/titanic/train.csv')
test = pd.read_csv('../input/titanic/test.csv')
train.columns
train.isnull() | code |
90129087/cell_25 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
train = pd.read_csv('../input/titanic/train.csv')
test = pd.read_csv('../input/titanic/test.csv')
train.columns
train.isnull()
fig, ax = plt.subplots(1,2,figsize=(12,6))
train['Survived'].value_counts().plot.pie(explode=[0,0.1],autopct='%1.1f%%',ax=ax[0],shadow=True, startangle=90,colormap='OrRd_r')
sns.countplot('Survived', data=train, ax=ax[1], palette='OrRd')
ax[0].set_title('Pie plot - Survivrd')
ax[1].set_title('Count plot - Survived')
ax[0].set_ylabel('Survival')
plt.show()
fig, axes = plt.subplots(1, 3, figsize=(15, 5), sharey=True)
fig.suptitle('Age distribution vs Survival')
sns.histplot(train[train['Survived']==0]['Age'], ax=axes[0], color='red')
axes[0].set_title('Not survived distibution')
sns.histplot(train[train['Survived']==1]['Age'], ax=axes[1], color='darkturquoise')
axes[1].set_title('Survived distibution')
sns.histplot(train[train['Survived']==0]['Age'], ax=axes[2], label ='Not survived', color='red')
sns.histplot(train[train['Survived']==1]['Age'], ax=axes[2], label ='Survived', color='darkturquoise')
axes[2].set_title('Survived and not Survived')
plt.legend()
sns.countplot(x='SibSp', hue='Survived', data=train, palette='OrRd_r')
plt.legend(loc='upper right') | code |
90129087/cell_23 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
train = pd.read_csv('../input/titanic/train.csv')
test = pd.read_csv('../input/titanic/test.csv')
train.columns
train.isnull()
fig, ax = plt.subplots(1,2,figsize=(12,6))
train['Survived'].value_counts().plot.pie(explode=[0,0.1],autopct='%1.1f%%',ax=ax[0],shadow=True, startangle=90,colormap='OrRd_r')
sns.countplot('Survived', data=train, ax=ax[1], palette='OrRd')
ax[0].set_title('Pie plot - Survivrd')
ax[1].set_title('Count plot - Survived')
ax[0].set_ylabel('Survival')
plt.show()
fig, axes = plt.subplots(1, 3, figsize=(15, 5), sharey=True)
fig.suptitle('Age distribution vs Survival')
sns.histplot(train[train['Survived'] == 0]['Age'], ax=axes[0], color='red')
axes[0].set_title('Not survived distibution')
sns.histplot(train[train['Survived'] == 1]['Age'], ax=axes[1], color='darkturquoise')
axes[1].set_title('Survived distibution')
sns.histplot(train[train['Survived'] == 0]['Age'], ax=axes[2], label='Not survived', color='red')
sns.histplot(train[train['Survived'] == 1]['Age'], ax=axes[2], label='Survived', color='darkturquoise')
axes[2].set_title('Survived and not Survived')
plt.legend() | code |
90129087/cell_30 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
train = pd.read_csv('../input/titanic/train.csv')
test = pd.read_csv('../input/titanic/test.csv')
train.columns
train.isnull()
fig, ax = plt.subplots(1,2,figsize=(12,6))
train['Survived'].value_counts().plot.pie(explode=[0,0.1],autopct='%1.1f%%',ax=ax[0],shadow=True, startangle=90,colormap='OrRd_r')
sns.countplot('Survived', data=train, ax=ax[1], palette='OrRd')
ax[0].set_title('Pie plot - Survivrd')
ax[1].set_title('Count plot - Survived')
ax[0].set_ylabel('Survival')
plt.show()
fig, axes = plt.subplots(1, 3, figsize=(15, 5), sharey=True)
fig.suptitle('Age distribution vs Survival')
sns.histplot(train[train['Survived']==0]['Age'], ax=axes[0], color='red')
axes[0].set_title('Not survived distibution')
sns.histplot(train[train['Survived']==1]['Age'], ax=axes[1], color='darkturquoise')
axes[1].set_title('Survived distibution')
sns.histplot(train[train['Survived']==0]['Age'], ax=axes[2], label ='Not survived', color='red')
sns.histplot(train[train['Survived']==1]['Age'], ax=axes[2], label ='Survived', color='darkturquoise')
axes[2].set_title('Survived and not Survived')
plt.legend()
sns.countplot(x='Parch', hue='Survived', data=train, palette='OrRd_r')
plt.legend(loc='upper right') | code |
90129087/cell_6 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train = pd.read_csv('../input/titanic/train.csv')
test = pd.read_csv('../input/titanic/test.csv')
train.head(3) | code |
90129087/cell_11 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
train = pd.read_csv('../input/titanic/train.csv')
test = pd.read_csv('../input/titanic/test.csv')
train.columns
train.isnull()
fig, ax = plt.subplots(1, 2, figsize=(12, 6))
train['Survived'].value_counts().plot.pie(explode=[0, 0.1], autopct='%1.1f%%', ax=ax[0], shadow=True, startangle=90, colormap='OrRd_r')
sns.countplot('Survived', data=train, ax=ax[1], palette='OrRd')
ax[0].set_title('Pie plot - Survivrd')
ax[1].set_title('Count plot - Survived')
ax[0].set_ylabel('Survival')
plt.show() | code |
90129087/cell_19 | [
"application_vnd.jupyter.stderr_output_1.png",
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
train = pd.read_csv('../input/titanic/train.csv')
test = pd.read_csv('../input/titanic/test.csv')
train.columns
train.isnull()
fig, ax = plt.subplots(1,2,figsize=(12,6))
train['Survived'].value_counts().plot.pie(explode=[0,0.1],autopct='%1.1f%%',ax=ax[0],shadow=True, startangle=90,colormap='OrRd_r')
sns.countplot('Survived', data=train, ax=ax[1], palette='OrRd')
ax[0].set_title('Pie plot - Survivrd')
ax[1].set_title('Count plot - Survived')
ax[0].set_ylabel('Survival')
plt.show()
sns.countplot(x='Parch', hue='Survived', data=train, palette='OrRd_r')
plt.legend(loc='upper right') | code |
90129087/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
90129087/cell_7 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train = pd.read_csv('../input/titanic/train.csv')
test = pd.read_csv('../input/titanic/test.csv')
train.columns | code |
90129087/cell_32 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
train = pd.read_csv('../input/titanic/train.csv')
test = pd.read_csv('../input/titanic/test.csv')
train.columns
train.isnull()
fig, ax = plt.subplots(1,2,figsize=(12,6))
train['Survived'].value_counts().plot.pie(explode=[0,0.1],autopct='%1.1f%%',ax=ax[0],shadow=True, startangle=90,colormap='OrRd_r')
sns.countplot('Survived', data=train, ax=ax[1], palette='OrRd')
ax[0].set_title('Pie plot - Survivrd')
ax[1].set_title('Count plot - Survived')
ax[0].set_ylabel('Survival')
plt.show()
fig, axes = plt.subplots(1, 3, figsize=(15, 5), sharey=True)
fig.suptitle('Age distribution vs Survival')
sns.histplot(train[train['Survived']==0]['Age'], ax=axes[0], color='red')
axes[0].set_title('Not survived distibution')
sns.histplot(train[train['Survived']==1]['Age'], ax=axes[1], color='darkturquoise')
axes[1].set_title('Survived distibution')
sns.histplot(train[train['Survived']==0]['Age'], ax=axes[2], label ='Not survived', color='red')
sns.histplot(train[train['Survived']==1]['Age'], ax=axes[2], label ='Survived', color='darkturquoise')
axes[2].set_title('Survived and not Survived')
plt.legend()
sns.countplot(x='Embarked', hue='Survived', data=train, palette='OrRd_r')
plt.legend(loc='upper right') | code |
90129087/cell_28 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
train = pd.read_csv('../input/titanic/train.csv')
test = pd.read_csv('../input/titanic/test.csv')
train.columns
train.isnull()
fig, ax = plt.subplots(1,2,figsize=(12,6))
train['Survived'].value_counts().plot.pie(explode=[0,0.1],autopct='%1.1f%%',ax=ax[0],shadow=True, startangle=90,colormap='OrRd_r')
sns.countplot('Survived', data=train, ax=ax[1], palette='OrRd')
ax[0].set_title('Pie plot - Survivrd')
ax[1].set_title('Count plot - Survived')
ax[0].set_ylabel('Survival')
plt.show()
fig, axes = plt.subplots(1, 3, figsize=(15, 5), sharey=True)
fig.suptitle('Age distribution vs Survival')
sns.histplot(train[train['Survived']==0]['Age'], ax=axes[0], color='red')
axes[0].set_title('Not survived distibution')
sns.histplot(train[train['Survived']==1]['Age'], ax=axes[1], color='darkturquoise')
axes[1].set_title('Survived distibution')
sns.histplot(train[train['Survived']==0]['Age'], ax=axes[2], label ='Not survived', color='red')
sns.histplot(train[train['Survived']==1]['Age'], ax=axes[2], label ='Survived', color='darkturquoise')
axes[2].set_title('Survived and not Survived')
plt.legend()
train[train['Survived'] == 1]['Fare'].hist(bins=40, color='darkturquoise', alpha=0.7, figsize=(10, 4), label=0)
train[train['Survived'] == 0]['Fare'].hist(bins=40, color='red', alpha=0.7, figsize=(10, 4), label=0)
plt.xlabel('Fare')
plt.legend() | code |
90129087/cell_15 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
train = pd.read_csv('../input/titanic/train.csv')
test = pd.read_csv('../input/titanic/test.csv')
train.columns
train.isnull()
fig, ax = plt.subplots(1,2,figsize=(12,6))
train['Survived'].value_counts().plot.pie(explode=[0,0.1],autopct='%1.1f%%',ax=ax[0],shadow=True, startangle=90,colormap='OrRd_r')
sns.countplot('Survived', data=train, ax=ax[1], palette='OrRd')
ax[0].set_title('Pie plot - Survivrd')
ax[1].set_title('Count plot - Survived')
ax[0].set_ylabel('Survival')
plt.show()
sns.countplot(x='Survived', data=train, hue='Pclass', palette='OrRd_r')
plt.legend(loc='upper right') | code |
90129087/cell_10 | [
"text_html_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
train = pd.read_csv('../input/titanic/train.csv')
test = pd.read_csv('../input/titanic/test.csv')
train.columns
train.isnull()
sns.heatmap(train.isnull(), yticklabels=False, cbar=False, cmap='OrRd_r') | code |
90138335/cell_21 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from kaggle_datasets import KaggleDatasets
import matplotlib.pyplot as plt
import numpy as np
import re
import tensorflow as tf
HEIGHT = 256
WIDTH = 256
BATCH_SIZE = 1
CHANNELS = 3
LAMBDA = 10
EPOCHS = 250
GCS_PATH = KaggleDatasets().get_gcs_path('gan-getting-started')
try:
tpu = tf.distribute.cluster_resolver.TPUClusterResolver()
except ValueError:
tpu = None
if tpu:
tf.config.experimental_connect_to_cluster(tpu)
tf.tpu.experimental.initialize_tpu_system(tpu)
strategy = tf.distribute.experimental.TPUStrategy(tpu)
else:
strategy = tf.distribute.get_strategy()
REPLICAS = strategy.num_replicas_in_sync
AUTOTUNE = tf.data.AUTOTUNE
MONET_FILENAMES = tf.io.gfile.glob(str(GCS_PATH + '/monet_tfrec/*.tfrec'))
PHOTO_FILENAMES = tf.io.gfile.glob(str(GCS_PATH + '/photo_tfrec/*.tfrec'))
def count_data_items(filenames):
n = [int(re.compile('-([0-9]*)\\.').search(filename).group(1)) for filename in filenames]
return np.sum(n)
n_monet_samples = count_data_items(MONET_FILENAMES)
n_photo_samples = count_data_items(PHOTO_FILENAMES)
def decode_image(image):
image = tf.image.decode_jpeg(image, channels=CHANNELS)
image = tf.cast(image, tf.float32) / 127.5 - 1
image = tf.reshape(image, [HEIGHT, WIDTH, CHANNELS])
return image
def read_tfrecord(example):
tfrecord_format = {'image_name': tf.io.FixedLenFeature([], tf.string), 'image': tf.io.FixedLenFeature([], tf.string), 'target': tf.io.FixedLenFeature([], tf.string)}
example = tf.io.parse_single_example(example, tfrecord_format)
image = decode_image(example['image'])
return image
def load_dataset(filenames, labeled=True, ordered=False):
dataset = tf.data.TFRecordDataset(filenames)
dataset = dataset.map(read_tfrecord, num_parallel_calls=AUTOTUNE)
return dataset
def display_samples(dataset, row, col):
dataset_iter = iter(dataset)
for j in range(row * col):
example_sample = next(dataset_iter)
plt.axis('off')
display_samples(load_dataset(PHOTO_FILENAMES).shuffle(30).batch(1), 4, 4) | code |
90138335/cell_20 | [
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png"
] | from kaggle_datasets import KaggleDatasets
import matplotlib.pyplot as plt
import numpy as np
import re
import tensorflow as tf
HEIGHT = 256
WIDTH = 256
BATCH_SIZE = 1
CHANNELS = 3
LAMBDA = 10
EPOCHS = 250
GCS_PATH = KaggleDatasets().get_gcs_path('gan-getting-started')
try:
tpu = tf.distribute.cluster_resolver.TPUClusterResolver()
except ValueError:
tpu = None
if tpu:
tf.config.experimental_connect_to_cluster(tpu)
tf.tpu.experimental.initialize_tpu_system(tpu)
strategy = tf.distribute.experimental.TPUStrategy(tpu)
else:
strategy = tf.distribute.get_strategy()
REPLICAS = strategy.num_replicas_in_sync
AUTOTUNE = tf.data.AUTOTUNE
MONET_FILENAMES = tf.io.gfile.glob(str(GCS_PATH + '/monet_tfrec/*.tfrec'))
PHOTO_FILENAMES = tf.io.gfile.glob(str(GCS_PATH + '/photo_tfrec/*.tfrec'))
def count_data_items(filenames):
n = [int(re.compile('-([0-9]*)\\.').search(filename).group(1)) for filename in filenames]
return np.sum(n)
n_monet_samples = count_data_items(MONET_FILENAMES)
n_photo_samples = count_data_items(PHOTO_FILENAMES)
def decode_image(image):
image = tf.image.decode_jpeg(image, channels=CHANNELS)
image = tf.cast(image, tf.float32) / 127.5 - 1
image = tf.reshape(image, [HEIGHT, WIDTH, CHANNELS])
return image
def read_tfrecord(example):
tfrecord_format = {'image_name': tf.io.FixedLenFeature([], tf.string), 'image': tf.io.FixedLenFeature([], tf.string), 'target': tf.io.FixedLenFeature([], tf.string)}
example = tf.io.parse_single_example(example, tfrecord_format)
image = decode_image(example['image'])
return image
def load_dataset(filenames, labeled=True, ordered=False):
dataset = tf.data.TFRecordDataset(filenames)
dataset = dataset.map(read_tfrecord, num_parallel_calls=AUTOTUNE)
return dataset
def display_samples(dataset, row, col):
dataset_iter = iter(dataset)
for j in range(row * col):
example_sample = next(dataset_iter)
plt.axis('off')
display_samples(load_dataset(MONET_FILENAMES).shuffle(30).batch(1), 4, 4) | code |
90138335/cell_6 | [
"image_output_1.png"
] | import tensorflow as tf
try:
tpu = tf.distribute.cluster_resolver.TPUClusterResolver()
print(f'Running on TPU {tpu.master()}')
except ValueError:
tpu = None
if tpu:
tf.config.experimental_connect_to_cluster(tpu)
tf.tpu.experimental.initialize_tpu_system(tpu)
strategy = tf.distribute.experimental.TPUStrategy(tpu)
else:
strategy = tf.distribute.get_strategy()
REPLICAS = strategy.num_replicas_in_sync
print(f'REPLICAS: {REPLICAS}')
AUTOTUNE = tf.data.AUTOTUNE | code |
90138335/cell_8 | [
"application_vnd.jupyter.stderr_output_2.png",
"application_vnd.jupyter.stderr_output_4.png",
"text_plain_output_3.png",
"text_plain_output_1.png"
] | from kaggle_datasets import KaggleDatasets
import numpy as np
import re
import tensorflow as tf
HEIGHT = 256
WIDTH = 256
BATCH_SIZE = 1
CHANNELS = 3
LAMBDA = 10
EPOCHS = 250
GCS_PATH = KaggleDatasets().get_gcs_path('gan-getting-started')
try:
tpu = tf.distribute.cluster_resolver.TPUClusterResolver()
except ValueError:
tpu = None
if tpu:
tf.config.experimental_connect_to_cluster(tpu)
tf.tpu.experimental.initialize_tpu_system(tpu)
strategy = tf.distribute.experimental.TPUStrategy(tpu)
else:
strategy = tf.distribute.get_strategy()
REPLICAS = strategy.num_replicas_in_sync
AUTOTUNE = tf.data.AUTOTUNE
MONET_FILENAMES = tf.io.gfile.glob(str(GCS_PATH + '/monet_tfrec/*.tfrec'))
PHOTO_FILENAMES = tf.io.gfile.glob(str(GCS_PATH + '/photo_tfrec/*.tfrec'))
def count_data_items(filenames):
n = [int(re.compile('-([0-9]*)\\.').search(filename).group(1)) for filename in filenames]
return np.sum(n)
n_monet_samples = count_data_items(MONET_FILENAMES)
n_photo_samples = count_data_items(PHOTO_FILENAMES)
print(f'Monet TFRecord files: {len(MONET_FILENAMES)}')
print(f'Monet image files: {n_monet_samples}')
print(f'Photo TFRecord files: {len(PHOTO_FILENAMES)}')
print(f'Photo image files: {n_photo_samples}') | code |
90138335/cell_16 | [
"text_plain_output_1.png"
] | from kaggle_datasets import KaggleDatasets
from tensorflow.keras import layers, Model, losses, optimizers
import numpy as np
import re
import tensorflow as tf
HEIGHT = 256
WIDTH = 256
BATCH_SIZE = 1
CHANNELS = 3
LAMBDA = 10
EPOCHS = 250
GCS_PATH = KaggleDatasets().get_gcs_path('gan-getting-started')
try:
tpu = tf.distribute.cluster_resolver.TPUClusterResolver()
except ValueError:
tpu = None
if tpu:
tf.config.experimental_connect_to_cluster(tpu)
tf.tpu.experimental.initialize_tpu_system(tpu)
strategy = tf.distribute.experimental.TPUStrategy(tpu)
else:
strategy = tf.distribute.get_strategy()
REPLICAS = strategy.num_replicas_in_sync
AUTOTUNE = tf.data.AUTOTUNE
MONET_FILENAMES = tf.io.gfile.glob(str(GCS_PATH + '/monet_tfrec/*.tfrec'))
PHOTO_FILENAMES = tf.io.gfile.glob(str(GCS_PATH + '/photo_tfrec/*.tfrec'))
def count_data_items(filenames):
n = [int(re.compile('-([0-9]*)\\.').search(filename).group(1)) for filename in filenames]
return np.sum(n)
n_monet_samples = count_data_items(MONET_FILENAMES)
n_photo_samples = count_data_items(PHOTO_FILENAMES)
def decode_image(image):
image = tf.image.decode_jpeg(image, channels=CHANNELS)
image = tf.cast(image, tf.float32) / 127.5 - 1
image = tf.reshape(image, [HEIGHT, WIDTH, CHANNELS])
return image
def read_tfrecord(example):
tfrecord_format = {'image_name': tf.io.FixedLenFeature([], tf.string), 'image': tf.io.FixedLenFeature([], tf.string), 'target': tf.io.FixedLenFeature([], tf.string)}
example = tf.io.parse_single_example(example, tfrecord_format)
image = decode_image(example['image'])
return image
def load_dataset(filenames, labeled=True, ordered=False):
dataset = tf.data.TFRecordDataset(filenames)
dataset = dataset.map(read_tfrecord, num_parallel_calls=AUTOTUNE)
return dataset
data_augmentation = tf.keras.Sequential([layers.RandomFlip('horizontal'), layers.RandomZoom(0.1)]) | code |
122255609/cell_21 | [
"text_html_output_1.png"
] | import pandas as pd
db = 'new_db'
user = 'postgres'
passwd = '1234'
port = 5432
host = 'ec2-44-201-58-213.compute-1.amazonaws.com'
credentials = 'postgresql://{}:{}@{}:{}/{}'.format(user, passwd, host, port, db)
credentials
def schemaGen(dataframe, schemaName):
localSchema = pd.io.sql.get_schema(dataframe, schemaName)
localSchema = localSchema.replace('TEXT', 'VARCHAR(255)').replace('INTEGER', 'NUMERIC').replace('\n', '').replace('"', '')
return ''.join(localSchema)
def getSchema(tableName, credentials):
schema = pd.read_sql("SELECT * FROM information_schema.columns where table_name='{}'".format(tableName), con=credentials)
return schema
def queryCreate(query):
try:
requiredTable = pd.read_sql(query, con=credentials)
except Exception as e:
def queryBase(query):
requiredTable = pd.read_sql(query, con=credentials)
return requiredTable
introCTE = '\nwith cte_review as(\n select rd.listing_id ,rd."date" as review_date,\n rd.reviewer_name ,rd.reviewer_id \n from reviews_details rd \n)\nselect cr.listing_id, cr.review_date\nfrom cte_review as cr\nlimit 5\n'
queryBase(introCTE) | code |
122255609/cell_13 | [
"text_plain_output_1.png"
] | import pandas as pd
db = 'new_db'
user = 'postgres'
passwd = '1234'
port = 5432
host = 'ec2-44-201-58-213.compute-1.amazonaws.com'
credentials = 'postgresql://{}:{}@{}:{}/{}'.format(user, passwd, host, port, db)
credentials
def schemaGen(dataframe, schemaName):
localSchema = pd.io.sql.get_schema(dataframe, schemaName)
localSchema = localSchema.replace('TEXT', 'VARCHAR(255)').replace('INTEGER', 'NUMERIC').replace('\n', '').replace('"', '')
return ''.join(localSchema)
def getSchema(tableName, credentials):
schema = pd.read_sql("SELECT * FROM information_schema.columns where table_name='{}'".format(tableName), con=credentials)
return schema
def queryCreate(query):
try:
requiredTable = pd.read_sql(query, con=credentials)
except Exception as e:
def queryBase(query):
requiredTable = pd.read_sql(query, con=credentials)
return requiredTable
table_list = "select *\nfrom information_schema.tables\nwhere table_schema = 'public'\n"
queryBase(table_list) | code |
122255609/cell_25 | [
"text_html_output_1.png"
] | import pandas as pd
db = 'new_db'
user = 'postgres'
passwd = '1234'
port = 5432
host = 'ec2-44-201-58-213.compute-1.amazonaws.com'
credentials = 'postgresql://{}:{}@{}:{}/{}'.format(user, passwd, host, port, db)
credentials
def schemaGen(dataframe, schemaName):
localSchema = pd.io.sql.get_schema(dataframe, schemaName)
localSchema = localSchema.replace('TEXT', 'VARCHAR(255)').replace('INTEGER', 'NUMERIC').replace('\n', '').replace('"', '')
return ''.join(localSchema)
def getSchema(tableName, credentials):
schema = pd.read_sql("SELECT * FROM information_schema.columns where table_name='{}'".format(tableName), con=credentials)
return schema
def queryCreate(query):
try:
requiredTable = pd.read_sql(query, con=credentials)
except Exception as e:
def queryBase(query):
requiredTable = pd.read_sql(query, con=credentials)
return requiredTable
selectRD = 'select rd.listing_id , rd.reviewer_id ,rd.reviewer_name \n from reviews_details rd \n limit 5\n '
selectLD = 'select ld.id ,ld.host_id ,ld."name" as listing_name\n from listing_details ld \n limit 5\n '
queryBase(selectRD) | code |
122255609/cell_4 | [
"text_html_output_1.png"
] | db = 'new_db'
user = 'postgres'
passwd = '1234'
port = 5432
host = 'ec2-44-201-58-213.compute-1.amazonaws.com'
credentials = 'postgresql://{}:{}@{}:{}/{}'.format(user, passwd, host, port, db)
credentials | code |
122255609/cell_23 | [
"text_html_output_1.png"
] | import pandas as pd
db = 'new_db'
user = 'postgres'
passwd = '1234'
port = 5432
host = 'ec2-44-201-58-213.compute-1.amazonaws.com'
credentials = 'postgresql://{}:{}@{}:{}/{}'.format(user, passwd, host, port, db)
credentials
def schemaGen(dataframe, schemaName):
localSchema = pd.io.sql.get_schema(dataframe, schemaName)
localSchema = localSchema.replace('TEXT', 'VARCHAR(255)').replace('INTEGER', 'NUMERIC').replace('\n', '').replace('"', '')
return ''.join(localSchema)
def getSchema(tableName, credentials):
schema = pd.read_sql("SELECT * FROM information_schema.columns where table_name='{}'".format(tableName), con=credentials)
return schema
def queryCreate(query):
try:
requiredTable = pd.read_sql(query, con=credentials)
except Exception as e:
def queryBase(query):
requiredTable = pd.read_sql(query, con=credentials)
return requiredTable
anotherSQ = '\nselect count(*) as daily_booking, cq.day_date \nfrom (\n select to_date(c."date",\'YYYY-MM-DD\') as day_date, c.listing_id, \n c.available, c.price\n from calendar c\n where c.available = \'f\'\n) cq\ngroup by cq.day_date\norder by count(*) desc\nlimit 5\n'
queryBase(anotherSQ) | code |
122255609/cell_20 | [
"text_html_output_1.png"
] | import pandas as pd
db = 'new_db'
user = 'postgres'
passwd = '1234'
port = 5432
host = 'ec2-44-201-58-213.compute-1.amazonaws.com'
credentials = 'postgresql://{}:{}@{}:{}/{}'.format(user, passwd, host, port, db)
credentials
def schemaGen(dataframe, schemaName):
localSchema = pd.io.sql.get_schema(dataframe, schemaName)
localSchema = localSchema.replace('TEXT', 'VARCHAR(255)').replace('INTEGER', 'NUMERIC').replace('\n', '').replace('"', '')
return ''.join(localSchema)
def getSchema(tableName, credentials):
schema = pd.read_sql("SELECT * FROM information_schema.columns where table_name='{}'".format(tableName), con=credentials)
return schema
def queryCreate(query):
try:
requiredTable = pd.read_sql(query, con=credentials)
except Exception as e:
def queryBase(query):
requiredTable = pd.read_sql(query, con=credentials)
return requiredTable
ctasSelect = '\nselect ln2.id , ln2.description \nfrom listing_neigh ln2 \nlimit 5\n'
queryBase(ctasSelect) | code |
122255609/cell_26 | [
"text_html_output_1.png"
] | import pandas as pd
db = 'new_db'
user = 'postgres'
passwd = '1234'
port = 5432
host = 'ec2-44-201-58-213.compute-1.amazonaws.com'
credentials = 'postgresql://{}:{}@{}:{}/{}'.format(user, passwd, host, port, db)
credentials
def schemaGen(dataframe, schemaName):
localSchema = pd.io.sql.get_schema(dataframe, schemaName)
localSchema = localSchema.replace('TEXT', 'VARCHAR(255)').replace('INTEGER', 'NUMERIC').replace('\n', '').replace('"', '')
return ''.join(localSchema)
def getSchema(tableName, credentials):
schema = pd.read_sql("SELECT * FROM information_schema.columns where table_name='{}'".format(tableName), con=credentials)
return schema
def queryCreate(query):
try:
requiredTable = pd.read_sql(query, con=credentials)
except Exception as e:
def queryBase(query):
requiredTable = pd.read_sql(query, con=credentials)
return requiredTable
selectRD = 'select rd.listing_id , rd.reviewer_id ,rd.reviewer_name \n from reviews_details rd \n limit 5\n '
selectLD = 'select ld.id ,ld.host_id ,ld."name" as listing_name\n from listing_details ld \n limit 5\n '
queryBase(selectLD) | code |
122255609/cell_2 | [
"text_html_output_1.png"
] | !pip install psycopg2-binary | code |
122255609/cell_19 | [
"text_plain_output_1.png"
] | import pandas as pd
db = 'new_db'
user = 'postgres'
passwd = '1234'
port = 5432
host = 'ec2-44-201-58-213.compute-1.amazonaws.com'
credentials = 'postgresql://{}:{}@{}:{}/{}'.format(user, passwd, host, port, db)
credentials
def schemaGen(dataframe, schemaName):
localSchema = pd.io.sql.get_schema(dataframe, schemaName)
localSchema = localSchema.replace('TEXT', 'VARCHAR(255)').replace('INTEGER', 'NUMERIC').replace('\n', '').replace('"', '')
return ''.join(localSchema)
def getSchema(tableName, credentials):
schema = pd.read_sql("SELECT * FROM information_schema.columns where table_name='{}'".format(tableName), con=credentials)
return schema
def queryCreate(query):
try:
requiredTable = pd.read_sql(query, con=credentials)
except Exception as e:
def queryBase(query):
requiredTable = pd.read_sql(query, con=credentials)
return requiredTable
roundingData = '\nselect round(avg(rl.review_scores_rating)::numeric ,1) as avg_rating, \ncount(rl.review_scores_accuracy) as num_reviews,\nrl.host_id\nfrom review_listing rl \ngroup by rl.host_id\nhaving count(rl.review_scores_accuracy) > 10\nlimit 5\n'
queryBase(roundingData) | code |
122255609/cell_18 | [
"text_plain_output_1.png"
] | import pandas as pd
db = 'new_db'
user = 'postgres'
passwd = '1234'
port = 5432
host = 'ec2-44-201-58-213.compute-1.amazonaws.com'
credentials = 'postgresql://{}:{}@{}:{}/{}'.format(user, passwd, host, port, db)
credentials
def schemaGen(dataframe, schemaName):
localSchema = pd.io.sql.get_schema(dataframe, schemaName)
localSchema = localSchema.replace('TEXT', 'VARCHAR(255)').replace('INTEGER', 'NUMERIC').replace('\n', '').replace('"', '')
return ''.join(localSchema)
def getSchema(tableName, credentials):
schema = pd.read_sql("SELECT * FROM information_schema.columns where table_name='{}'".format(tableName), con=credentials)
return schema
def queryCreate(query):
try:
requiredTable = pd.read_sql(query, con=credentials)
except Exception as e:
def queryBase(query):
requiredTable = pd.read_sql(query, con=credentials)
return requiredTable
selectView = '\nselect avg(rl.review_scores_rating) as avg_rating, \n count(rl.review_scores_accuracy) as num_reviews,\n rl.host_id\nfrom review_listing rl \ngroup by rl.host_id\nhaving count(rl.review_scores_accuracy) > 10\nlimit 5\n'
queryBase(selectView) | code |
122255609/cell_28 | [
"text_html_output_1.png"
] | import pandas as pd
db = 'new_db'
user = 'postgres'
passwd = '1234'
port = 5432
host = 'ec2-44-201-58-213.compute-1.amazonaws.com'
credentials = 'postgresql://{}:{}@{}:{}/{}'.format(user, passwd, host, port, db)
credentials
def schemaGen(dataframe, schemaName):
localSchema = pd.io.sql.get_schema(dataframe, schemaName)
localSchema = localSchema.replace('TEXT', 'VARCHAR(255)').replace('INTEGER', 'NUMERIC').replace('\n', '').replace('"', '')
return ''.join(localSchema)
def getSchema(tableName, credentials):
schema = pd.read_sql("SELECT * FROM information_schema.columns where table_name='{}'".format(tableName), con=credentials)
return schema
def queryCreate(query):
try:
requiredTable = pd.read_sql(query, con=credentials)
except Exception as e:
def queryBase(query):
requiredTable = pd.read_sql(query, con=credentials)
return requiredTable
introJoin = '\nselect rd.listing_id ,rd.reviewer_id ,rd.reviewer_name ,\nld.host_id ,ld."name" as listing_name\nfrom reviews_details rd \ninner join listing_details ld \non rd.listing_id = ld.id \nlimit 5\n'
queryBase(introJoin) | code |
122255609/cell_15 | [
"text_html_output_1.png"
] | import pandas as pd
db = 'new_db'
user = 'postgres'
passwd = '1234'
port = 5432
host = 'ec2-44-201-58-213.compute-1.amazonaws.com'
credentials = 'postgresql://{}:{}@{}:{}/{}'.format(user, passwd, host, port, db)
credentials
def schemaGen(dataframe, schemaName):
localSchema = pd.io.sql.get_schema(dataframe, schemaName)
localSchema = localSchema.replace('TEXT', 'VARCHAR(255)').replace('INTEGER', 'NUMERIC').replace('\n', '').replace('"', '')
return ''.join(localSchema)
def getSchema(tableName, credentials):
schema = pd.read_sql("SELECT * FROM information_schema.columns where table_name='{}'".format(tableName), con=credentials)
return schema
def queryCreate(query):
try:
requiredTable = pd.read_sql(query, con=credentials)
except Exception as e:
introCTAS = '\ncreate table if not exists listing_neigh as\nselect ld.id, ld.summary, ld.description ,ld.neighborhood_overview \nfrom listing_details ld\n'
queryCreate(introCTAS) | code |
122255609/cell_16 | [
"text_plain_output_1.png"
] | import pandas as pd
db = 'new_db'
user = 'postgres'
passwd = '1234'
port = 5432
host = 'ec2-44-201-58-213.compute-1.amazonaws.com'
credentials = 'postgresql://{}:{}@{}:{}/{}'.format(user, passwd, host, port, db)
credentials
def schemaGen(dataframe, schemaName):
localSchema = pd.io.sql.get_schema(dataframe, schemaName)
localSchema = localSchema.replace('TEXT', 'VARCHAR(255)').replace('INTEGER', 'NUMERIC').replace('\n', '').replace('"', '')
return ''.join(localSchema)
def getSchema(tableName, credentials):
schema = pd.read_sql("SELECT * FROM information_schema.columns where table_name='{}'".format(tableName), con=credentials)
return schema
def queryCreate(query):
try:
requiredTable = pd.read_sql(query, con=credentials)
except Exception as e:
dropview = 'DROP VIEW IF EXISTS review_listing'
queryCreate(dropview) | code |
122255609/cell_17 | [
"text_plain_output_1.png"
] | import pandas as pd
db = 'new_db'
user = 'postgres'
passwd = '1234'
port = 5432
host = 'ec2-44-201-58-213.compute-1.amazonaws.com'
credentials = 'postgresql://{}:{}@{}:{}/{}'.format(user, passwd, host, port, db)
credentials
def schemaGen(dataframe, schemaName):
localSchema = pd.io.sql.get_schema(dataframe, schemaName)
localSchema = localSchema.replace('TEXT', 'VARCHAR(255)').replace('INTEGER', 'NUMERIC').replace('\n', '').replace('"', '')
return ''.join(localSchema)
def getSchema(tableName, credentials):
schema = pd.read_sql("SELECT * FROM information_schema.columns where table_name='{}'".format(tableName), con=credentials)
return schema
def queryCreate(query):
try:
requiredTable = pd.read_sql(query, con=credentials)
except Exception as e:
introView = '\ncreate view review_listing as\nselect ld.id ,ld.host_id ,ld.review_scores_rating , ld.review_scores_accuracy ,\nld.review_scores_checkin , ld.review_scores_value ,\nld.review_scores_communication , ld.review_scores_location \nfrom listing_details ld \n'
queryCreate(introView) | code |
122255609/cell_14 | [
"text_plain_output_1.png"
] | import pandas as pd
db = 'new_db'
user = 'postgres'
passwd = '1234'
port = 5432
host = 'ec2-44-201-58-213.compute-1.amazonaws.com'
credentials = 'postgresql://{}:{}@{}:{}/{}'.format(user, passwd, host, port, db)
credentials
def schemaGen(dataframe, schemaName):
localSchema = pd.io.sql.get_schema(dataframe, schemaName)
localSchema = localSchema.replace('TEXT', 'VARCHAR(255)').replace('INTEGER', 'NUMERIC').replace('\n', '').replace('"', '')
return ''.join(localSchema)
def getSchema(tableName, credentials):
schema = pd.read_sql("SELECT * FROM information_schema.columns where table_name='{}'".format(tableName), con=credentials)
return schema
def queryCreate(query):
try:
requiredTable = pd.read_sql(query, con=credentials)
except Exception as e:
droptab = 'DROP TABLE IF EXISTS listing_neigh'
queryCreate(droptab) | code |
122255609/cell_22 | [
"text_html_output_1.png"
] | import pandas as pd
db = 'new_db'
user = 'postgres'
passwd = '1234'
port = 5432
host = 'ec2-44-201-58-213.compute-1.amazonaws.com'
credentials = 'postgresql://{}:{}@{}:{}/{}'.format(user, passwd, host, port, db)
credentials
def schemaGen(dataframe, schemaName):
localSchema = pd.io.sql.get_schema(dataframe, schemaName)
localSchema = localSchema.replace('TEXT', 'VARCHAR(255)').replace('INTEGER', 'NUMERIC').replace('\n', '').replace('"', '')
return ''.join(localSchema)
def getSchema(tableName, credentials):
schema = pd.read_sql("SELECT * FROM information_schema.columns where table_name='{}'".format(tableName), con=credentials)
return schema
def queryCreate(query):
try:
requiredTable = pd.read_sql(query, con=credentials)
except Exception as e:
def queryBase(query):
requiredTable = pd.read_sql(query, con=credentials)
return requiredTable
introSQ = '\nselect * from (\n select l.id , l.host_id ,l.host_name ,l.price \n from listings l \n where l.id > 2800\n) as sq\nwhere sq.host_id = 59484\n'
queryBase(introSQ) | code |
73080198/cell_13 | [
"text_plain_output_1.png"
] | import pandas as pd
train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv', low_memory=False)
test = pd.read_csv('/kaggle/input/30-days-of-ml/test.csv', low_memory=False)
cutoff = 5
print(f"{(train['target'] < cutoff).sum() / len(train) * 100:.3f}% of the target values are less than {cutoff}") | code |
73080198/cell_9 | [
"image_output_1.png"
] | from scipy import stats
from scipy import stats
import pandas as pd
train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv', low_memory=False)
test = pd.read_csv('/kaggle/input/30-days-of-ml/test.csv', low_memory=False)
from scipy import stats
stats.mstats.skew(train['target']).data
from scipy import stats
stats.mstats.kurtosis(train['target']) | code |
73080198/cell_25 | [
"text_plain_output_1.png"
] | import pandas as pd
train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv', low_memory=False)
test = pd.read_csv('/kaggle/input/30-days-of-ml/test.csv', low_memory=False)
predictions_base = pd.read_csv('/kaggle/input/submissionstevenferrercsv/submissionStevenFerrer.csv', low_memory=False)
predictions_base.head() | code |
73080198/cell_23 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv', low_memory=False)
test = pd.read_csv('/kaggle/input/30-days-of-ml/test.csv', low_memory=False)
fig, ax = plt.subplots(figsize=(12, 6))
bars = ax.hist(train["target"],
bins=40,
range=(0,11),
color="orange",
edgecolor="black")
ax.set_title("Target distribution", fontsize=20, pad=15)
ax.set_ylabel("Amount of values", fontsize=14, labelpad=15)
ax.set_xlabel("Target value", fontsize=14, labelpad=10)
ax.margins(0.025, 0.12)
ax.grid(axis="y")
plt.show();
fig, ax = plt.subplots(figsize=(24, 12))
bars = ax.hist(train["target"],
bins=3500,
range=(6.9,10.4),
color="orange",
edgecolor="orange")
ax.set_title("Target distribution", fontsize=20, pad=15)
ax.set_ylabel("Amount of values", fontsize=14, labelpad=15)
ax.set_xlabel("Target value", fontsize=14, labelpad=10)
ax.margins(0.025, 0.12)
ax.grid(axis="y")
plt.show();
cuts = [i / 1000 for i in range(6940, 10400)]
train['target'].value_counts(bins=cuts)
fig, ax = plt.subplots(figsize=(24, 12))
bars = ax.hist(train["target"],
bins=100,
range=(8.05,8.15),
color="orange",
edgecolor="black")
ax.set_title("Target distribution", fontsize=20, pad=15)
ax.set_ylabel("Amount of values", fontsize=14, labelpad=15)
ax.set_xlabel("Target value", fontsize=14, labelpad=10)
ax.margins(0.025, 0.12)
ax.grid(axis="y")
plt.show();
cuts = [i / 1000 for i in range(8050, 8150)]
train['target'].value_counts(bins=cuts).sort_index()[60:75]
# inverse_log=np.power(10, train["target"])
inverse_log=np.exp(train["target"]) # comment this out, uncomment line above to see 10^train["target"] instead of e^train["target"]
fig, ax = plt.subplots(figsize=(24, 12))
bars = ax.hist(inverse_log,
range=(0,40000),
bins=4000,
color="orange",
edgecolor="orange")
ax.set_title("Target distribution", fontsize=20, pad=15)
ax.set_ylabel("Amount of values", fontsize=14, labelpad=15)
ax.set_xlabel("Target value", fontsize=14, labelpad=10)
ax.margins(0.025, 0.12)
ax.grid(axis="y")
plt.show();
cuts = [i for i in range(0, 40000, 10)]
inverse_log.value_counts(bins=cuts) | code |
73080198/cell_20 | [
"image_output_1.png"
] | import pandas as pd
train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv', low_memory=False)
test = pd.read_csv('/kaggle/input/30-days-of-ml/test.csv', low_memory=False)
cuts = [i / 1000 for i in range(6940, 10400)]
train['target'].value_counts(bins=cuts)
cuts = [i / 1000 for i in range(8050, 8150)]
train['target'].value_counts(bins=cuts).sort_index()[60:75] | code |
73080198/cell_6 | [
"text_plain_output_1.png"
] | import pandas as pd
train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv', low_memory=False)
test = pd.read_csv('/kaggle/input/30-days-of-ml/test.csv', low_memory=False)
predictions_base = pd.read_csv('/kaggle/input/submissionstevenferrercsv/submissionStevenFerrer.csv', low_memory=False)
predictions_base.head() | code |
73080198/cell_29 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv', low_memory=False)
test = pd.read_csv('/kaggle/input/30-days-of-ml/test.csv', low_memory=False)
fig, ax = plt.subplots(figsize=(12, 6))
bars = ax.hist(train["target"],
bins=40,
range=(0,11),
color="orange",
edgecolor="black")
ax.set_title("Target distribution", fontsize=20, pad=15)
ax.set_ylabel("Amount of values", fontsize=14, labelpad=15)
ax.set_xlabel("Target value", fontsize=14, labelpad=10)
ax.margins(0.025, 0.12)
ax.grid(axis="y")
plt.show();
fig, ax = plt.subplots(figsize=(24, 12))
bars = ax.hist(train["target"],
bins=3500,
range=(6.9,10.4),
color="orange",
edgecolor="orange")
ax.set_title("Target distribution", fontsize=20, pad=15)
ax.set_ylabel("Amount of values", fontsize=14, labelpad=15)
ax.set_xlabel("Target value", fontsize=14, labelpad=10)
ax.margins(0.025, 0.12)
ax.grid(axis="y")
plt.show();
cuts = [i / 1000 for i in range(6940, 10400)]
train['target'].value_counts(bins=cuts)
fig, ax = plt.subplots(figsize=(24, 12))
bars = ax.hist(train["target"],
bins=100,
range=(8.05,8.15),
color="orange",
edgecolor="black")
ax.set_title("Target distribution", fontsize=20, pad=15)
ax.set_ylabel("Amount of values", fontsize=14, labelpad=15)
ax.set_xlabel("Target value", fontsize=14, labelpad=10)
ax.margins(0.025, 0.12)
ax.grid(axis="y")
plt.show();
cuts = [i / 1000 for i in range(8050, 8150)]
train['target'].value_counts(bins=cuts).sort_index()[60:75]
# inverse_log=np.power(10, train["target"])
inverse_log=np.exp(train["target"]) # comment this out, uncomment line above to see 10^train["target"] instead of e^train["target"]
fig, ax = plt.subplots(figsize=(24, 12))
bars = ax.hist(inverse_log,
range=(0,40000),
bins=4000,
color="orange",
edgecolor="orange")
ax.set_title("Target distribution", fontsize=20, pad=15)
ax.set_ylabel("Amount of values", fontsize=14, labelpad=15)
ax.set_xlabel("Target value", fontsize=14, labelpad=10)
ax.margins(0.025, 0.12)
ax.grid(axis="y")
plt.show();
cuts = [i for i in range(0, 40000, 10)]
inverse_log.value_counts(bins=cuts)
cuts = [i / 1000 for i in range(8050, 8150)]
train['target'].value_counts(bins=cuts).sort_index()[35:95] | code |
73080198/cell_2 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import OrdinalEncoder
from xgboost import XGBRegressor
import random
from sklearn.model_selection import KFold
from sklearn.metrics import mean_squared_error
import os
for dirname, _, filenames in os.walk('/kaggle/input/'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
73080198/cell_19 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv', low_memory=False)
test = pd.read_csv('/kaggle/input/30-days-of-ml/test.csv', low_memory=False)
fig, ax = plt.subplots(figsize=(12, 6))
bars = ax.hist(train["target"],
bins=40,
range=(0,11),
color="orange",
edgecolor="black")
ax.set_title("Target distribution", fontsize=20, pad=15)
ax.set_ylabel("Amount of values", fontsize=14, labelpad=15)
ax.set_xlabel("Target value", fontsize=14, labelpad=10)
ax.margins(0.025, 0.12)
ax.grid(axis="y")
plt.show();
fig, ax = plt.subplots(figsize=(24, 12))
bars = ax.hist(train["target"],
bins=3500,
range=(6.9,10.4),
color="orange",
edgecolor="orange")
ax.set_title("Target distribution", fontsize=20, pad=15)
ax.set_ylabel("Amount of values", fontsize=14, labelpad=15)
ax.set_xlabel("Target value", fontsize=14, labelpad=10)
ax.margins(0.025, 0.12)
ax.grid(axis="y")
plt.show();
fig, ax = plt.subplots(figsize=(24, 12))
bars = ax.hist(train['target'], bins=100, range=(8.05, 8.15), color='orange', edgecolor='black')
ax.set_title('Target distribution', fontsize=20, pad=15)
ax.set_ylabel('Amount of values', fontsize=14, labelpad=15)
ax.set_xlabel('Target value', fontsize=14, labelpad=10)
ax.margins(0.025, 0.12)
ax.grid(axis='y')
plt.show() | code |
73080198/cell_8 | [
"text_plain_output_1.png"
] | from scipy import stats
import pandas as pd
train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv', low_memory=False)
test = pd.read_csv('/kaggle/input/30-days-of-ml/test.csv', low_memory=False)
from scipy import stats
stats.mstats.skew(train['target']).data | code |
73080198/cell_15 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv', low_memory=False)
test = pd.read_csv('/kaggle/input/30-days-of-ml/test.csv', low_memory=False)
fig, ax = plt.subplots(figsize=(12, 6))
bars = ax.hist(train["target"],
bins=40,
range=(0,11),
color="orange",
edgecolor="black")
ax.set_title("Target distribution", fontsize=20, pad=15)
ax.set_ylabel("Amount of values", fontsize=14, labelpad=15)
ax.set_xlabel("Target value", fontsize=14, labelpad=10)
ax.margins(0.025, 0.12)
ax.grid(axis="y")
plt.show();
fig, ax = plt.subplots(figsize=(24, 12))
bars = ax.hist(train['target'], bins=3500, range=(6.9, 10.4), color='orange', edgecolor='orange')
ax.set_title('Target distribution', fontsize=20, pad=15)
ax.set_ylabel('Amount of values', fontsize=14, labelpad=15)
ax.set_xlabel('Target value', fontsize=14, labelpad=10)
ax.margins(0.025, 0.12)
ax.grid(axis='y')
plt.show() | code |
73080198/cell_17 | [
"text_html_output_1.png"
] | import pandas as pd
train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv', low_memory=False)
test = pd.read_csv('/kaggle/input/30-days-of-ml/test.csv', low_memory=False)
cuts = [i / 1000 for i in range(6940, 10400)]
train['target'].value_counts(bins=cuts) | code |
73080198/cell_31 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv', low_memory=False)
test = pd.read_csv('/kaggle/input/30-days-of-ml/test.csv', low_memory=False)
predictions_base = pd.read_csv('/kaggle/input/submissionstevenferrercsv/submissionStevenFerrer.csv', low_memory=False)
fig, ax = plt.subplots(figsize=(12, 6))
bars = ax.hist(train["target"],
bins=40,
range=(0,11),
color="orange",
edgecolor="black")
ax.set_title("Target distribution", fontsize=20, pad=15)
ax.set_ylabel("Amount of values", fontsize=14, labelpad=15)
ax.set_xlabel("Target value", fontsize=14, labelpad=10)
ax.margins(0.025, 0.12)
ax.grid(axis="y")
plt.show();
fig, ax = plt.subplots(figsize=(24, 12))
bars = ax.hist(train["target"],
bins=3500,
range=(6.9,10.4),
color="orange",
edgecolor="orange")
ax.set_title("Target distribution", fontsize=20, pad=15)
ax.set_ylabel("Amount of values", fontsize=14, labelpad=15)
ax.set_xlabel("Target value", fontsize=14, labelpad=10)
ax.margins(0.025, 0.12)
ax.grid(axis="y")
plt.show();
cuts = [i / 1000 for i in range(6940, 10400)]
train['target'].value_counts(bins=cuts)
fig, ax = plt.subplots(figsize=(24, 12))
bars = ax.hist(train["target"],
bins=100,
range=(8.05,8.15),
color="orange",
edgecolor="black")
ax.set_title("Target distribution", fontsize=20, pad=15)
ax.set_ylabel("Amount of values", fontsize=14, labelpad=15)
ax.set_xlabel("Target value", fontsize=14, labelpad=10)
ax.margins(0.025, 0.12)
ax.grid(axis="y")
plt.show();
cuts = [i / 1000 for i in range(8050, 8150)]
train['target'].value_counts(bins=cuts).sort_index()[60:75]
# inverse_log=np.power(10, train["target"])
inverse_log=np.exp(train["target"]) # comment this out, uncomment line above to see 10^train["target"] instead of e^train["target"]
fig, ax = plt.subplots(figsize=(24, 12))
bars = ax.hist(inverse_log,
range=(0,40000),
bins=4000,
color="orange",
edgecolor="orange")
ax.set_title("Target distribution", fontsize=20, pad=15)
ax.set_ylabel("Amount of values", fontsize=14, labelpad=15)
ax.set_xlabel("Target value", fontsize=14, labelpad=10)
ax.margins(0.025, 0.12)
ax.grid(axis="y")
plt.show();
cuts = [i for i in range(0, 40000, 10)]
inverse_log.value_counts(bins=cuts)
cuts = [i / 1000 for i in range(8050, 8150)]
train['target'].value_counts(bins=cuts).sort_index()[35:95]
predictions_base['target'].value_counts(bins=cuts).sort_index().tail(50) | code |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.