path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
73080198/cell_22
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv', low_memory=False) test = pd.read_csv('/kaggle/input/30-days-of-ml/test.csv', low_memory=False) fig, ax = plt.subplots(figsize=(12, 6)) bars = ax.hist(train["target"], bins=40, range=(0,11), color="orange", edgecolor="black") ax.set_title("Target distribution", fontsize=20, pad=15) ax.set_ylabel("Amount of values", fontsize=14, labelpad=15) ax.set_xlabel("Target value", fontsize=14, labelpad=10) ax.margins(0.025, 0.12) ax.grid(axis="y") plt.show(); fig, ax = plt.subplots(figsize=(24, 12)) bars = ax.hist(train["target"], bins=3500, range=(6.9,10.4), color="orange", edgecolor="orange") ax.set_title("Target distribution", fontsize=20, pad=15) ax.set_ylabel("Amount of values", fontsize=14, labelpad=15) ax.set_xlabel("Target value", fontsize=14, labelpad=10) ax.margins(0.025, 0.12) ax.grid(axis="y") plt.show(); fig, ax = plt.subplots(figsize=(24, 12)) bars = ax.hist(train["target"], bins=100, range=(8.05,8.15), color="orange", edgecolor="black") ax.set_title("Target distribution", fontsize=20, pad=15) ax.set_ylabel("Amount of values", fontsize=14, labelpad=15) ax.set_xlabel("Target value", fontsize=14, labelpad=10) ax.margins(0.025, 0.12) ax.grid(axis="y") plt.show(); inverse_log = np.exp(train['target']) fig, ax = plt.subplots(figsize=(24, 12)) bars = ax.hist(inverse_log, range=(0, 40000), bins=4000, color='orange', edgecolor='orange') ax.set_title('Target distribution', fontsize=20, pad=15) ax.set_ylabel('Amount of values', fontsize=14, labelpad=15) ax.set_xlabel('Target value', fontsize=14, labelpad=10) ax.margins(0.025, 0.12) ax.grid(axis='y') plt.show()
code
73080198/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv', low_memory=False) test = pd.read_csv('/kaggle/input/30-days-of-ml/test.csv', low_memory=False) train.describe()
code
73080198/cell_27
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv', low_memory=False) test = pd.read_csv('/kaggle/input/30-days-of-ml/test.csv', low_memory=False) predictions_base = pd.read_csv('/kaggle/input/submissionstevenferrercsv/submissionStevenFerrer.csv', low_memory=False) fig, ax = plt.subplots(figsize=(12, 6)) bars = ax.hist(train["target"], bins=40, range=(0,11), color="orange", edgecolor="black") ax.set_title("Target distribution", fontsize=20, pad=15) ax.set_ylabel("Amount of values", fontsize=14, labelpad=15) ax.set_xlabel("Target value", fontsize=14, labelpad=10) ax.margins(0.025, 0.12) ax.grid(axis="y") plt.show(); fig, ax = plt.subplots(figsize=(24, 12)) bars = ax.hist(train["target"], bins=3500, range=(6.9,10.4), color="orange", edgecolor="orange") ax.set_title("Target distribution", fontsize=20, pad=15) ax.set_ylabel("Amount of values", fontsize=14, labelpad=15) ax.set_xlabel("Target value", fontsize=14, labelpad=10) ax.margins(0.025, 0.12) ax.grid(axis="y") plt.show(); fig, ax = plt.subplots(figsize=(24, 12)) bars = ax.hist(train["target"], bins=100, range=(8.05,8.15), color="orange", edgecolor="black") ax.set_title("Target distribution", fontsize=20, pad=15) ax.set_ylabel("Amount of values", fontsize=14, labelpad=15) ax.set_xlabel("Target value", fontsize=14, labelpad=10) ax.margins(0.025, 0.12) ax.grid(axis="y") plt.show(); # inverse_log=np.power(10, train["target"]) inverse_log=np.exp(train["target"]) # comment this out, uncomment line above to see 10^train["target"] instead of e^train["target"] fig, ax = plt.subplots(figsize=(24, 12)) bars = ax.hist(inverse_log, range=(0,40000), bins=4000, color="orange", edgecolor="orange") ax.set_title("Target distribution", fontsize=20, pad=15) ax.set_ylabel("Amount of values", fontsize=14, labelpad=15) ax.set_xlabel("Target value", fontsize=14, labelpad=10) ax.margins(0.025, 0.12) ax.grid(axis="y") plt.show(); fig, ax = plt.subplots(figsize=(24, 12)) bars = ax.hist(predictions_base['target'], bins=3500, range=(6.9, 10.4), color='orange', edgecolor='orange') ax.set_title('Prediction distribution', fontsize=20, pad=15) ax.set_ylabel('Amount of values', fontsize=14, labelpad=15) ax.set_xlabel('Prediction value', fontsize=14, labelpad=10) ax.margins(0.025, 0.12) ax.grid(axis='y') plt.show()
code
73080198/cell_12
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv', low_memory=False) test = pd.read_csv('/kaggle/input/30-days-of-ml/test.csv', low_memory=False) fig, ax = plt.subplots(figsize=(12, 6)) bars = ax.hist(train['target'], bins=40, range=(0, 11), color='orange', edgecolor='black') ax.set_title('Target distribution', fontsize=20, pad=15) ax.set_ylabel('Amount of values', fontsize=14, labelpad=15) ax.set_xlabel('Target value', fontsize=14, labelpad=10) ax.margins(0.025, 0.12) ax.grid(axis='y') plt.show()
code
2041151/cell_6
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
from sklearn.model_selection import GridSearchCV, StratifiedKFold from sklearn.svm import SVC import numpy as np import pandas as pd import numpy as np import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') X_train = np.array(train[['Age', 'Fare', 'Parch', 'SibSp', 'Pclass', 'Sex', 'Alone', 'Family']]) y_train = np.array(train[['Survived']]).reshape(-1) X_test = np.array(test[['Age', 'Fare', 'Parch', 'SibSp', 'Pclass', 'Sex', 'Alone', 'Family']]) from sklearn.svm import SVC from sklearn.model_selection import GridSearchCV, StratifiedKFold splitter = StratifiedKFold(n_splits=5, shuffle=True, random_state=42) c_param = [1, 2, 5, 10, 20] param_grid = dict(C=c_param) svc = SVC() gs = GridSearchCV(svc, param_grid=param_grid, scoring='accuracy', verbose=1, cv=splitter) gs.fit(X_train, y_train) print('Best: %f using %s' % (gs.best_score_, gs.best_params_))
code
122250913/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd df_ = pd.read_csv('/kaggle/input/fast-food-marketing-campaign-ab-test/WA_Marketing-Campaign.csv') df = df_.copy() df.describe().T df.groupby('Promotion')['Promotion'].count() df_age_sales = df.groupby(['MarketID', 'LocationID']).agg({'AgeOfStore': 'mean', 'SalesInThousands': 'mean'}) df_age_sales df.groupby(['MarketID', 'Promotion'])['SalesInThousands'].mean() df['MarketSize'].unique()
code
122250913/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd df_ = pd.read_csv('/kaggle/input/fast-food-marketing-campaign-ab-test/WA_Marketing-Campaign.csv') df = df_.copy() df.describe().T df.groupby('Promotion')['Promotion'].count()
code
122250913/cell_25
[ "text_plain_output_1.png" ]
from scipy.stats import ttest_1samp, shapiro, levene, ttest_ind, mannwhitneyu, \ import pandas as pd import pandas as pd df_ = pd.read_csv('/kaggle/input/fast-food-marketing-campaign-ab-test/WA_Marketing-Campaign.csv') df = df_.copy() df.describe().T df.groupby('Promotion')['Promotion'].count() df_age_sales = df.groupby(['MarketID', 'LocationID']).agg({'AgeOfStore': 'mean', 'SalesInThousands': 'mean'}) df_age_sales df.groupby(['MarketID', 'Promotion'])['SalesInThousands'].mean() df_medium_week = df.groupby(['MarketSize', 'week', 'Promotion'])['SalesInThousands'].mean() df_medium_week df.groupby(['MarketSize', 'Promotion'])['SalesInThousands'].mean() small_market = df[df['MarketSize'] == 'Small'] medium_market = df[df['MarketSize'] == 'Medium'] large_market = df[df['MarketSize'] == 'Large'] small_market.describe().T for promo in list(small_market['Promotion'].unique()): pvalue = shapiro(small_market.loc[small_market['Promotion'] == promo, 'SalesInThousands'])[1] test_stat, pvalue = levene(small_market.loc[small_market['Promotion'] == 1, 'SalesInThousands'], small_market.loc[small_market['Promotion'] == 2, 'SalesInThousands'], small_market.loc[small_market['Promotion'] == 3, 'SalesInThousands']) print('Test Stat = %.4f, p-value = %.4f' % (test_stat, pvalue))
code
122250913/cell_23
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd df_ = pd.read_csv('/kaggle/input/fast-food-marketing-campaign-ab-test/WA_Marketing-Campaign.csv') df = df_.copy() df.describe().T df.groupby('Promotion')['Promotion'].count() df_age_sales = df.groupby(['MarketID', 'LocationID']).agg({'AgeOfStore': 'mean', 'SalesInThousands': 'mean'}) df_age_sales df.groupby(['MarketID', 'Promotion'])['SalesInThousands'].mean() df_medium_week = df.groupby(['MarketSize', 'week', 'Promotion'])['SalesInThousands'].mean() df_medium_week df.groupby(['MarketSize', 'Promotion'])['SalesInThousands'].mean() small_market = df[df['MarketSize'] == 'Small'] medium_market = df[df['MarketSize'] == 'Medium'] large_market = df[df['MarketSize'] == 'Large'] small_market.describe().T
code
122250913/cell_20
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd df_ = pd.read_csv('/kaggle/input/fast-food-marketing-campaign-ab-test/WA_Marketing-Campaign.csv') df = df_.copy() df.describe().T df.groupby('Promotion')['Promotion'].count() df_age_sales = df.groupby(['MarketID', 'LocationID']).agg({'AgeOfStore': 'mean', 'SalesInThousands': 'mean'}) df_age_sales df.groupby(['MarketID', 'Promotion'])['SalesInThousands'].mean() df_medium_week = df.groupby(['MarketSize', 'week', 'Promotion'])['SalesInThousands'].mean() df_medium_week df.groupby(['MarketSize', 'Promotion'])['SalesInThousands'].mean() small_market = df[df['MarketSize'] == 'Small'] medium_market = df[df['MarketSize'] == 'Medium'] large_market = df[df['MarketSize'] == 'Large'] large_market['MarketSize'].nunique()
code
122250913/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd df_ = pd.read_csv('/kaggle/input/fast-food-marketing-campaign-ab-test/WA_Marketing-Campaign.csv') df = df_.copy() df.head()
code
122250913/cell_26
[ "text_plain_output_1.png" ]
from scipy.stats import ttest_1samp, shapiro, levene, ttest_ind, mannwhitneyu, \ import pandas as pd import pandas as pd df_ = pd.read_csv('/kaggle/input/fast-food-marketing-campaign-ab-test/WA_Marketing-Campaign.csv') df = df_.copy() df.describe().T df.groupby('Promotion')['Promotion'].count() df_age_sales = df.groupby(['MarketID', 'LocationID']).agg({'AgeOfStore': 'mean', 'SalesInThousands': 'mean'}) df_age_sales df.groupby(['MarketID', 'Promotion'])['SalesInThousands'].mean() df_medium_week = df.groupby(['MarketSize', 'week', 'Promotion'])['SalesInThousands'].mean() df_medium_week df.groupby(['MarketSize', 'Promotion'])['SalesInThousands'].mean() small_market = df[df['MarketSize'] == 'Small'] medium_market = df[df['MarketSize'] == 'Medium'] large_market = df[df['MarketSize'] == 'Large'] small_market.describe().T for promo in list(small_market['Promotion'].unique()): pvalue = shapiro(small_market.loc[small_market['Promotion'] == promo, 'SalesInThousands'])[1] test_stat, pvalue = levene(small_market.loc[small_market['Promotion'] == 1, 'SalesInThousands'], small_market.loc[small_market['Promotion'] == 2, 'SalesInThousands'], small_market.loc[small_market['Promotion'] == 3, 'SalesInThousands']) f_oneway(small_market.loc[small_market['Promotion'] == 1, 'SalesInThousands'], small_market.loc[small_market['Promotion'] == 2, 'SalesInThousands'], small_market.loc[small_market['Promotion'] == 3, 'SalesInThousands'])
code
122250913/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd df_ = pd.read_csv('/kaggle/input/fast-food-marketing-campaign-ab-test/WA_Marketing-Campaign.csv') df = df_.copy() df.describe().T df.groupby('Promotion')['Promotion'].count() df_age_sales = df.groupby(['MarketID', 'LocationID']).agg({'AgeOfStore': 'mean', 'SalesInThousands': 'mean'}) df_age_sales df_age_sales.corr()
code
122250913/cell_19
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd df_ = pd.read_csv('/kaggle/input/fast-food-marketing-campaign-ab-test/WA_Marketing-Campaign.csv') df = df_.copy() df.describe().T df.groupby('Promotion')['Promotion'].count() df_age_sales = df.groupby(['MarketID', 'LocationID']).agg({'AgeOfStore': 'mean', 'SalesInThousands': 'mean'}) df_age_sales df.groupby(['MarketID', 'Promotion'])['SalesInThousands'].mean() df_medium_week = df.groupby(['MarketSize', 'week', 'Promotion'])['SalesInThousands'].mean() df_medium_week df.groupby(['MarketSize', 'Promotion'])['SalesInThousands'].mean() small_market = df[df['MarketSize'] == 'Small'] medium_market = df[df['MarketSize'] == 'Medium'] large_market = df[df['MarketSize'] == 'Large'] medium_market['MarketSize'].nunique()
code
122250913/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd df_ = pd.read_csv('/kaggle/input/fast-food-marketing-campaign-ab-test/WA_Marketing-Campaign.csv') df = df_.copy() df.info()
code
122250913/cell_18
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd df_ = pd.read_csv('/kaggle/input/fast-food-marketing-campaign-ab-test/WA_Marketing-Campaign.csv') df = df_.copy() df.describe().T df.groupby('Promotion')['Promotion'].count() df_age_sales = df.groupby(['MarketID', 'LocationID']).agg({'AgeOfStore': 'mean', 'SalesInThousands': 'mean'}) df_age_sales df.groupby(['MarketID', 'Promotion'])['SalesInThousands'].mean() df_medium_week = df.groupby(['MarketSize', 'week', 'Promotion'])['SalesInThousands'].mean() df_medium_week df.groupby(['MarketSize', 'Promotion'])['SalesInThousands'].mean() small_market = df[df['MarketSize'] == 'Small'] medium_market = df[df['MarketSize'] == 'Medium'] large_market = df[df['MarketSize'] == 'Large'] small_market['MarketSize'].nunique()
code
122250913/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd df_ = pd.read_csv('/kaggle/input/fast-food-marketing-campaign-ab-test/WA_Marketing-Campaign.csv') df = df_.copy() df.describe().T
code
122250913/cell_15
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd df_ = pd.read_csv('/kaggle/input/fast-food-marketing-campaign-ab-test/WA_Marketing-Campaign.csv') df = df_.copy() df.describe().T df.groupby('Promotion')['Promotion'].count() df_age_sales = df.groupby(['MarketID', 'LocationID']).agg({'AgeOfStore': 'mean', 'SalesInThousands': 'mean'}) df_age_sales df.groupby(['MarketID', 'Promotion'])['SalesInThousands'].mean() df_medium_week = df.groupby(['MarketSize', 'week', 'Promotion'])['SalesInThousands'].mean() df_medium_week
code
122250913/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd df_ = pd.read_csv('/kaggle/input/fast-food-marketing-campaign-ab-test/WA_Marketing-Campaign.csv') df = df_.copy() df.describe().T df.groupby('Promotion')['Promotion'].count() df_age_sales = df.groupby(['MarketID', 'LocationID']).agg({'AgeOfStore': 'mean', 'SalesInThousands': 'mean'}) df_age_sales df.groupby(['MarketID', 'Promotion'])['SalesInThousands'].mean() df_medium_week = df.groupby(['MarketSize', 'week', 'Promotion'])['SalesInThousands'].mean() df_medium_week df.groupby(['MarketSize', 'Promotion'])['SalesInThousands'].mean()
code
122250913/cell_24
[ "text_plain_output_1.png" ]
from scipy.stats import ttest_1samp, shapiro, levene, ttest_ind, mannwhitneyu, \ import pandas as pd import pandas as pd df_ = pd.read_csv('/kaggle/input/fast-food-marketing-campaign-ab-test/WA_Marketing-Campaign.csv') df = df_.copy() df.describe().T df.groupby('Promotion')['Promotion'].count() df_age_sales = df.groupby(['MarketID', 'LocationID']).agg({'AgeOfStore': 'mean', 'SalesInThousands': 'mean'}) df_age_sales df.groupby(['MarketID', 'Promotion'])['SalesInThousands'].mean() df_medium_week = df.groupby(['MarketSize', 'week', 'Promotion'])['SalesInThousands'].mean() df_medium_week df.groupby(['MarketSize', 'Promotion'])['SalesInThousands'].mean() small_market = df[df['MarketSize'] == 'Small'] medium_market = df[df['MarketSize'] == 'Medium'] large_market = df[df['MarketSize'] == 'Large'] small_market.describe().T for promo in list(small_market['Promotion'].unique()): pvalue = shapiro(small_market.loc[small_market['Promotion'] == promo, 'SalesInThousands'])[1] print('For the Small Markets Promotion : ' + str(promo), 'p-value: %.4f' % pvalue)
code
122250913/cell_14
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd df_ = pd.read_csv('/kaggle/input/fast-food-marketing-campaign-ab-test/WA_Marketing-Campaign.csv') df = df_.copy() df.describe().T df.groupby('Promotion')['Promotion'].count() df_age_sales = df.groupby(['MarketID', 'LocationID']).agg({'AgeOfStore': 'mean', 'SalesInThousands': 'mean'}) df_age_sales df.groupby(['MarketID', 'Promotion'])['SalesInThousands'].mean() df['MarketSize'].value_counts()
code
122250913/cell_10
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd df_ = pd.read_csv('/kaggle/input/fast-food-marketing-campaign-ab-test/WA_Marketing-Campaign.csv') df = df_.copy() df.describe().T df.groupby('Promotion')['Promotion'].count() df_age_sales = df.groupby(['MarketID', 'LocationID']).agg({'AgeOfStore': 'mean', 'SalesInThousands': 'mean'}) df_age_sales
code
122250913/cell_12
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd df_ = pd.read_csv('/kaggle/input/fast-food-marketing-campaign-ab-test/WA_Marketing-Campaign.csv') df = df_.copy() df.describe().T df.groupby('Promotion')['Promotion'].count() df_age_sales = df.groupby(['MarketID', 'LocationID']).agg({'AgeOfStore': 'mean', 'SalesInThousands': 'mean'}) df_age_sales df.groupby(['MarketID', 'Promotion'])['SalesInThousands'].mean()
code
2022426/cell_13
[ "text_plain_output_1.png" ]
from keras.preprocessing import text, sequence import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) max_features = 20000 maxlen = 100 train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') list_sentences_train = train['comment_text'].fillna('unknown').values list_classes = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate'] y = train[list_classes].values list_sentences_test = test['comment_text'].fillna('unknown').values test = ['This is your last warning. You will be blocked from editing the next time you vandalize a page, as you did with this edit to Geb. |Parlez ici '] tokenizer.fit_on_texts(list(test)) test_token = tokenizer.texts_to_sequences(test) test_2 = sequence.pad_sequences(test_token, maxlen=maxlen)
code
2022426/cell_9
[ "application_vnd.jupyter.stderr_output_1.png" ]
from keras.layers import Conv1D, MaxPooling1D, GlobalMaxPool1D, Dropout, concatenate from keras.layers import Dense, Embedding, Input,GRU from keras.models import Model max_features = 20000 maxlen = 100 def cnn_rnn(): embed_size = 256 inp = Input(shape=(maxlen,)) main = Embedding(max_features, embed_size)(inp) main = Dropout(0.2)(main) main = Conv1D(filters=32, kernel_size=2, padding='same', activation='relu')(main) main = MaxPooling1D(pool_size=2)(main) main = Conv1D(filters=32, kernel_size=2, padding='same', activation='relu')(main) main = MaxPooling1D(pool_size=2)(main) main = GRU(32)(main) main = Dense(16, activation='relu')(main) main = Dense(6, activation='sigmoid')(main) model = Model(inputs=inp, outputs=main) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.summary() return model model = cnn_rnn() model.summary()
code
2022426/cell_4
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') print(train.head(10)) list_sentences_train = train['comment_text'].fillna('unknown').values list_classes = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate'] y = train[list_classes].values list_sentences_test = test['comment_text'].fillna('unknown').values
code
2022426/cell_2
[ "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np import pandas as pd from keras.models import Model from keras.layers import Dense, Embedding, Input, GRU from keras.layers import Conv1D, MaxPooling1D, GlobalMaxPool1D, Dropout, concatenate from keras.preprocessing import text, sequence from keras.callbacks import EarlyStopping, ModelCheckpoint
code
2022426/cell_11
[ "text_plain_output_1.png" ]
from keras.callbacks import EarlyStopping, ModelCheckpoint from keras.layers import Conv1D, MaxPooling1D, GlobalMaxPool1D, Dropout, concatenate from keras.layers import Dense, Embedding, Input,GRU from keras.models import Model from sklearn.model_selection import train_test_split import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) max_features = 20000 maxlen = 100 train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') list_sentences_train = train['comment_text'].fillna('unknown').values list_classes = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate'] y = train[list_classes].values list_sentences_test = test['comment_text'].fillna('unknown').values def cnn_rnn(): embed_size = 256 inp = Input(shape=(maxlen,)) main = Embedding(max_features, embed_size)(inp) main = Dropout(0.2)(main) main = Conv1D(filters=32, kernel_size=2, padding='same', activation='relu')(main) main = MaxPooling1D(pool_size=2)(main) main = Conv1D(filters=32, kernel_size=2, padding='same', activation='relu')(main) main = MaxPooling1D(pool_size=2)(main) main = GRU(32)(main) main = Dense(16, activation='relu')(main) main = Dense(6, activation='sigmoid')(main) model = Model(inputs=inp, outputs=main) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.summary() return model model = cnn_rnn() model.summary() from sklearn.model_selection import train_test_split any_category_positive = np.sum(y, 1) X_t_train, X_t_test, y_train, y_test = train_test_split(X_t, y, test_size=0.1) batch_size = 128 epochs = 3 file_path = 'model_best.h5' checkpoint = ModelCheckpoint(file_path, monitor='val_loss', verbose=1, save_best_only=True, mode='min') early = EarlyStopping(monitor='val_loss', mode='min', patience=20) callbacks_list = [checkpoint, early] model.fit(X_t_train, y_train, validation_data=(X_t_test, y_test), batch_size=batch_size, epochs=epochs, shuffle=True, callbacks=callbacks_list) model.save('Whole_model.h5')
code
2022426/cell_1
[ "text_plain_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8'))
code
2022426/cell_15
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
from keras.callbacks import EarlyStopping, ModelCheckpoint from keras.layers import Conv1D, MaxPooling1D, GlobalMaxPool1D, Dropout, concatenate from keras.layers import Dense, Embedding, Input,GRU from keras.models import Model from keras.preprocessing import text, sequence from sklearn.model_selection import train_test_split import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) max_features = 20000 maxlen = 100 train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') list_sentences_train = train['comment_text'].fillna('unknown').values list_classes = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate'] y = train[list_classes].values list_sentences_test = test['comment_text'].fillna('unknown').values def cnn_rnn(): embed_size = 256 inp = Input(shape=(maxlen,)) main = Embedding(max_features, embed_size)(inp) main = Dropout(0.2)(main) main = Conv1D(filters=32, kernel_size=2, padding='same', activation='relu')(main) main = MaxPooling1D(pool_size=2)(main) main = Conv1D(filters=32, kernel_size=2, padding='same', activation='relu')(main) main = MaxPooling1D(pool_size=2)(main) main = GRU(32)(main) main = Dense(16, activation='relu')(main) main = Dense(6, activation='sigmoid')(main) model = Model(inputs=inp, outputs=main) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.summary() return model model = cnn_rnn() model.summary() from sklearn.model_selection import train_test_split any_category_positive = np.sum(y, 1) X_t_train, X_t_test, y_train, y_test = train_test_split(X_t, y, test_size=0.1) batch_size = 128 epochs = 3 file_path = 'model_best.h5' checkpoint = ModelCheckpoint(file_path, monitor='val_loss', verbose=1, save_best_only=True, mode='min') early = EarlyStopping(monitor='val_loss', mode='min', patience=20) callbacks_list = [checkpoint, early] model.fit(X_t_train, y_train, validation_data=(X_t_test, y_test), batch_size=batch_size, epochs=epochs, shuffle=True, callbacks=callbacks_list) model.save('Whole_model.h5') model.load_weights(file_path) y_test = model.predict(X_te) sample_submission = pd.read_csv('../input/sample_submission.csv') sample_submission[list_classes] = y_test sample_submission.to_csv('predictions.csv', index=False) test = ['This is your last warning. You will be blocked from editing the next time you vandalize a page, as you did with this edit to Geb. |Parlez ici '] tokenizer.fit_on_texts(list(test)) test_token = tokenizer.texts_to_sequences(test) test_2 = sequence.pad_sequences(test_token, maxlen=maxlen) np.argmax(model.predict(test_2))
code
2022426/cell_16
[ "application_vnd.jupyter.stderr_output_1.png" ]
from keras.callbacks import EarlyStopping, ModelCheckpoint from keras.layers import Conv1D, MaxPooling1D, GlobalMaxPool1D, Dropout, concatenate from keras.layers import Dense, Embedding, Input,GRU from keras.models import Model from keras.preprocessing import text, sequence from sklearn.model_selection import train_test_split import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) max_features = 20000 maxlen = 100 train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') list_sentences_train = train['comment_text'].fillna('unknown').values list_classes = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate'] y = train[list_classes].values list_sentences_test = test['comment_text'].fillna('unknown').values def cnn_rnn(): embed_size = 256 inp = Input(shape=(maxlen,)) main = Embedding(max_features, embed_size)(inp) main = Dropout(0.2)(main) main = Conv1D(filters=32, kernel_size=2, padding='same', activation='relu')(main) main = MaxPooling1D(pool_size=2)(main) main = Conv1D(filters=32, kernel_size=2, padding='same', activation='relu')(main) main = MaxPooling1D(pool_size=2)(main) main = GRU(32)(main) main = Dense(16, activation='relu')(main) main = Dense(6, activation='sigmoid')(main) model = Model(inputs=inp, outputs=main) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.summary() return model model = cnn_rnn() model.summary() from sklearn.model_selection import train_test_split any_category_positive = np.sum(y, 1) X_t_train, X_t_test, y_train, y_test = train_test_split(X_t, y, test_size=0.1) batch_size = 128 epochs = 3 file_path = 'model_best.h5' checkpoint = ModelCheckpoint(file_path, monitor='val_loss', verbose=1, save_best_only=True, mode='min') early = EarlyStopping(monitor='val_loss', mode='min', patience=20) callbacks_list = [checkpoint, early] model.fit(X_t_train, y_train, validation_data=(X_t_test, y_test), batch_size=batch_size, epochs=epochs, shuffle=True, callbacks=callbacks_list) model.save('Whole_model.h5') model.load_weights(file_path) y_test = model.predict(X_te) sample_submission = pd.read_csv('../input/sample_submission.csv') sample_submission[list_classes] = y_test sample_submission.to_csv('predictions.csv', index=False) test = ['This is your last warning. You will be blocked from editing the next time you vandalize a page, as you did with this edit to Geb. |Parlez ici '] tokenizer.fit_on_texts(list(test)) test_token = tokenizer.texts_to_sequences(test) test_2 = sequence.pad_sequences(test_token, maxlen=maxlen) np.argmax(model.predict(test_2)) model.predict(test_2)
code
2022426/cell_17
[ "application_vnd.jupyter.stderr_output_1.png" ]
from keras.callbacks import EarlyStopping, ModelCheckpoint from keras.layers import Conv1D, MaxPooling1D, GlobalMaxPool1D, Dropout, concatenate from keras.layers import Dense, Embedding, Input,GRU from keras.models import Model from sklearn.model_selection import train_test_split import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) max_features = 20000 maxlen = 100 train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') list_sentences_train = train['comment_text'].fillna('unknown').values list_classes = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate'] y = train[list_classes].values list_sentences_test = test['comment_text'].fillna('unknown').values def cnn_rnn(): embed_size = 256 inp = Input(shape=(maxlen,)) main = Embedding(max_features, embed_size)(inp) main = Dropout(0.2)(main) main = Conv1D(filters=32, kernel_size=2, padding='same', activation='relu')(main) main = MaxPooling1D(pool_size=2)(main) main = Conv1D(filters=32, kernel_size=2, padding='same', activation='relu')(main) main = MaxPooling1D(pool_size=2)(main) main = GRU(32)(main) main = Dense(16, activation='relu')(main) main = Dense(6, activation='sigmoid')(main) model = Model(inputs=inp, outputs=main) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.summary() return model model = cnn_rnn() model.summary() from sklearn.model_selection import train_test_split any_category_positive = np.sum(y, 1) X_t_train, X_t_test, y_train, y_test = train_test_split(X_t, y, test_size=0.1) batch_size = 128 epochs = 3 file_path = 'model_best.h5' checkpoint = ModelCheckpoint(file_path, monitor='val_loss', verbose=1, save_best_only=True, mode='min') early = EarlyStopping(monitor='val_loss', mode='min', patience=20) callbacks_list = [checkpoint, early] model.fit(X_t_train, y_train, validation_data=(X_t_test, y_test), batch_size=batch_size, epochs=epochs, shuffle=True, callbacks=callbacks_list) model.save('Whole_model.h5') model.load_weights(file_path) y_test = model.predict(X_te) sample_submission = pd.read_csv('../input/sample_submission.csv') sample_submission[list_classes] = y_test sample_submission.to_csv('predictions.csv', index=False) pred = pd.read_csv('predictions.csv') pred.head()
code
2022426/cell_10
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.model_selection import train_test_split import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') list_sentences_train = train['comment_text'].fillna('unknown').values list_classes = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate'] y = train[list_classes].values list_sentences_test = test['comment_text'].fillna('unknown').values from sklearn.model_selection import train_test_split print('Positive Labels ') any_category_positive = np.sum(y, 1) print(pd.value_counts(any_category_positive)) X_t_train, X_t_test, y_train, y_test = train_test_split(X_t, y, test_size=0.1) print('Training:', X_t_train.shape) print('Testing:', X_t_test.shape)
code
2022426/cell_12
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
from keras.callbacks import EarlyStopping, ModelCheckpoint from keras.layers import Conv1D, MaxPooling1D, GlobalMaxPool1D, Dropout, concatenate from keras.layers import Dense, Embedding, Input,GRU from keras.models import Model from sklearn.model_selection import train_test_split import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) max_features = 20000 maxlen = 100 train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') list_sentences_train = train['comment_text'].fillna('unknown').values list_classes = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate'] y = train[list_classes].values list_sentences_test = test['comment_text'].fillna('unknown').values def cnn_rnn(): embed_size = 256 inp = Input(shape=(maxlen,)) main = Embedding(max_features, embed_size)(inp) main = Dropout(0.2)(main) main = Conv1D(filters=32, kernel_size=2, padding='same', activation='relu')(main) main = MaxPooling1D(pool_size=2)(main) main = Conv1D(filters=32, kernel_size=2, padding='same', activation='relu')(main) main = MaxPooling1D(pool_size=2)(main) main = GRU(32)(main) main = Dense(16, activation='relu')(main) main = Dense(6, activation='sigmoid')(main) model = Model(inputs=inp, outputs=main) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.summary() return model model = cnn_rnn() model.summary() from sklearn.model_selection import train_test_split any_category_positive = np.sum(y, 1) X_t_train, X_t_test, y_train, y_test = train_test_split(X_t, y, test_size=0.1) batch_size = 128 epochs = 3 file_path = 'model_best.h5' checkpoint = ModelCheckpoint(file_path, monitor='val_loss', verbose=1, save_best_only=True, mode='min') early = EarlyStopping(monitor='val_loss', mode='min', patience=20) callbacks_list = [checkpoint, early] model.fit(X_t_train, y_train, validation_data=(X_t_test, y_test), batch_size=batch_size, epochs=epochs, shuffle=True, callbacks=callbacks_list) model.save('Whole_model.h5') model.load_weights(file_path) y_test = model.predict(X_te) sample_submission = pd.read_csv('../input/sample_submission.csv') sample_submission[list_classes] = y_test sample_submission.to_csv('predictions.csv', index=False)
code
2022426/cell_5
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') list_sentences_train = train['comment_text'].fillna('unknown').values list_classes = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate'] y = train[list_classes].values list_sentences_test = test['comment_text'].fillna('unknown').values print(list_sentences_train[0]) y[0]
code
122262044/cell_21
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier import xgboost as xgb from sklearn.model_selection import cross_val_predict from sklearn.metrics import accuracy_score, classification_report, confusion_matrix sns.set_style('whitegrid') df = pd.read_csv('/kaggle/input/predicting-credit-card-customer-attrition-with-m/BankChurners.csv') df = df.rename(columns={'CLIENTNUM': 'Client_Num', 'Dependent_count': 'Dependent_Count', 'Months_on_book': 'Months_on_Book', 'Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mon_Dependent_count_Education_Level_Months_Inactive_12_mon_1': 'Naive_Bayes_Classifier_1', 'Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mon_Dependent_count_Education_Level_Months_Inactive_12_mon_2': 'Naive_Bayes_Classifier_2'}) df.corr() df.isnull().sum() df = df.drop(['Client_Num'], axis=1) df['Gender'] = df['Gender'].replace({'M': 0, 'F': 1}) df = pd.get_dummies(df, columns=['Education_Level', 'Marital_Status', 'Income_Category', 'Card_Category'], drop_first=True) scaler = StandardScaler() scaled_features = scaler.fit_transform(df[['Customer_Age', 'Dependent_Count', 'Months_on_Book', 'Total_Relationship_Count', 'Months_Inactive_12_mon', 'Contacts_Count_12_mon', 'Credit_Limit', 'Total_Revolving_Bal', 'Avg_Open_To_Buy', 'Total_Amt_Chng_Q4_Q1', 'Total_Trans_Amt', 'Total_Trans_Ct', 'Total_Ct_Chng_Q4_Q1', 'Avg_Utilization_Ratio']]) df_scaled = pd.DataFrame(scaled_features, columns=['Customer_Age', 'Dependent_Count', 'Months_on_Book', 'Total_Relationship_Count', 'Months_Inactive_12_mon', 'Contacts_Count_12_mon', 'Credit_Limit', 'Total_Revolving_Bal', 'Avg_Open_To_Buy', 'Total_Amt_Chng_Q4_Q1', 'Total_Trans_Amt', 'Total_Trans_Ct', 'Total_Ct_Chng_Q4_Q1', 'Avg_Utilization_Ratio']) df.drop(['Customer_Age', 'Dependent_Count', 'Months_on_Book', 'Total_Relationship_Count', 'Months_Inactive_12_mon', 'Contacts_Count_12_mon', 'Credit_Limit', 'Total_Revolving_Bal', 'Avg_Open_To_Buy', 'Total_Amt_Chng_Q4_Q1', 'Total_Trans_Amt', 'Total_Trans_Ct', 'Total_Ct_Chng_Q4_Q1', 'Avg_Utilization_Ratio'], axis=1, inplace=True) df = pd.concat([df_scaled, df], axis=1) df.head()
code
122262044/cell_13
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier import xgboost as xgb from sklearn.model_selection import cross_val_predict from sklearn.metrics import accuracy_score, classification_report, confusion_matrix sns.set_style('whitegrid') df = pd.read_csv('/kaggle/input/predicting-credit-card-customer-attrition-with-m/BankChurners.csv') df = df.rename(columns={'CLIENTNUM': 'Client_Num', 'Dependent_count': 'Dependent_Count', 'Months_on_book': 'Months_on_Book', 'Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mon_Dependent_count_Education_Level_Months_Inactive_12_mon_1': 'Naive_Bayes_Classifier_1', 'Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mon_Dependent_count_Education_Level_Months_Inactive_12_mon_2': 'Naive_Bayes_Classifier_2'}) import seaborn as sns sns.scatterplot(x='Total_Trans_Amt', y='Total_Trans_Ct', data=df)
code
122262044/cell_9
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier import xgboost as xgb from sklearn.model_selection import cross_val_predict from sklearn.metrics import accuracy_score, classification_report, confusion_matrix sns.set_style('whitegrid') df = pd.read_csv('/kaggle/input/predicting-credit-card-customer-attrition-with-m/BankChurners.csv') df = df.rename(columns={'CLIENTNUM': 'Client_Num', 'Dependent_count': 'Dependent_Count', 'Months_on_book': 'Months_on_Book', 'Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mon_Dependent_count_Education_Level_Months_Inactive_12_mon_1': 'Naive_Bayes_Classifier_1', 'Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mon_Dependent_count_Education_Level_Months_Inactive_12_mon_2': 'Naive_Bayes_Classifier_2'}) plt.figure(figsize=(10, 6)) sns.countplot(data=df, x='Attrition_Flag', hue='Education_Level') plt.title('Count of Attrition Flag by Education Level') plt.xlabel('Attrition Flag') plt.ylabel('Count') plt.show()
code
122262044/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/predicting-credit-card-customer-attrition-with-m/BankChurners.csv') df = df.rename(columns={'CLIENTNUM': 'Client_Num', 'Dependent_count': 'Dependent_Count', 'Months_on_book': 'Months_on_Book', 'Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mon_Dependent_count_Education_Level_Months_Inactive_12_mon_1': 'Naive_Bayes_Classifier_1', 'Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mon_Dependent_count_Education_Level_Months_Inactive_12_mon_2': 'Naive_Bayes_Classifier_2'}) df.head()
code
122262044/cell_11
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier import xgboost as xgb from sklearn.model_selection import cross_val_predict from sklearn.metrics import accuracy_score, classification_report, confusion_matrix sns.set_style('whitegrid') df = pd.read_csv('/kaggle/input/predicting-credit-card-customer-attrition-with-m/BankChurners.csv') df = df.rename(columns={'CLIENTNUM': 'Client_Num', 'Dependent_count': 'Dependent_Count', 'Months_on_book': 'Months_on_Book', 'Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mon_Dependent_count_Education_Level_Months_Inactive_12_mon_1': 'Naive_Bayes_Classifier_1', 'Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mon_Dependent_count_Education_Level_Months_Inactive_12_mon_2': 'Naive_Bayes_Classifier_2'}) import seaborn as sns sns.countplot(x='Attrition_Flag', data=df)
code
122262044/cell_7
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier import xgboost as xgb from sklearn.model_selection import cross_val_predict from sklearn.metrics import accuracy_score, classification_report, confusion_matrix sns.set_style('whitegrid') df = pd.read_csv('/kaggle/input/predicting-credit-card-customer-attrition-with-m/BankChurners.csv') df = df.rename(columns={'CLIENTNUM': 'Client_Num', 'Dependent_count': 'Dependent_Count', 'Months_on_book': 'Months_on_Book', 'Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mon_Dependent_count_Education_Level_Months_Inactive_12_mon_1': 'Naive_Bayes_Classifier_1', 'Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mon_Dependent_count_Education_Level_Months_Inactive_12_mon_2': 'Naive_Bayes_Classifier_2'}) plt.figure(figsize=(10, 6)) sns.kdeplot(data=df, x='Customer_Age', hue='Attrition_Flag', shade=True, alpha=0.8) plt.title('Distribution of Age by Attrition Flag') plt.xlabel('Age') plt.ylabel('Density') plt.show()
code
122262044/cell_8
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier import xgboost as xgb from sklearn.model_selection import cross_val_predict from sklearn.metrics import accuracy_score, classification_report, confusion_matrix sns.set_style('whitegrid') df = pd.read_csv('/kaggle/input/predicting-credit-card-customer-attrition-with-m/BankChurners.csv') df = df.rename(columns={'CLIENTNUM': 'Client_Num', 'Dependent_count': 'Dependent_Count', 'Months_on_book': 'Months_on_Book', 'Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mon_Dependent_count_Education_Level_Months_Inactive_12_mon_1': 'Naive_Bayes_Classifier_1', 'Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mon_Dependent_count_Education_Level_Months_Inactive_12_mon_2': 'Naive_Bayes_Classifier_2'}) plt.figure(figsize=(10, 6)) sns.countplot(data=df, x='Attrition_Flag', hue='Gender') plt.title('Count of Attrition Flag by Gender') plt.xlabel('Attrition Flag') plt.ylabel('Count') plt.show()
code
122262044/cell_15
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier import xgboost as xgb from sklearn.model_selection import cross_val_predict from sklearn.metrics import accuracy_score, classification_report, confusion_matrix sns.set_style('whitegrid') df = pd.read_csv('/kaggle/input/predicting-credit-card-customer-attrition-with-m/BankChurners.csv') df = df.rename(columns={'CLIENTNUM': 'Client_Num', 'Dependent_count': 'Dependent_Count', 'Months_on_book': 'Months_on_Book', 'Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mon_Dependent_count_Education_Level_Months_Inactive_12_mon_1': 'Naive_Bayes_Classifier_1', 'Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mon_Dependent_count_Education_Level_Months_Inactive_12_mon_2': 'Naive_Bayes_Classifier_2'}) df.corr()
code
122262044/cell_16
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier import xgboost as xgb from sklearn.model_selection import cross_val_predict from sklearn.metrics import accuracy_score, classification_report, confusion_matrix sns.set_style('whitegrid') df = pd.read_csv('/kaggle/input/predicting-credit-card-customer-attrition-with-m/BankChurners.csv') df = df.rename(columns={'CLIENTNUM': 'Client_Num', 'Dependent_count': 'Dependent_Count', 'Months_on_book': 'Months_on_Book', 'Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mon_Dependent_count_Education_Level_Months_Inactive_12_mon_1': 'Naive_Bayes_Classifier_1', 'Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mon_Dependent_count_Education_Level_Months_Inactive_12_mon_2': 'Naive_Bayes_Classifier_2'}) df.corr() df.isnull().sum()
code
122262044/cell_17
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier import xgboost as xgb from sklearn.model_selection import cross_val_predict from sklearn.metrics import accuracy_score, classification_report, confusion_matrix sns.set_style('whitegrid') df = pd.read_csv('/kaggle/input/predicting-credit-card-customer-attrition-with-m/BankChurners.csv') df = df.rename(columns={'CLIENTNUM': 'Client_Num', 'Dependent_count': 'Dependent_Count', 'Months_on_book': 'Months_on_Book', 'Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mon_Dependent_count_Education_Level_Months_Inactive_12_mon_1': 'Naive_Bayes_Classifier_1', 'Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mon_Dependent_count_Education_Level_Months_Inactive_12_mon_2': 'Naive_Bayes_Classifier_2'}) df.corr() df.isnull().sum() df.head()
code
122262044/cell_24
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, classification_report, confusion_matrix from sklearn.model_selection import cross_val_predict from sklearn.tree import DecisionTreeClassifier dt = DecisionTreeClassifier(random_state=42) dt.fit(X_train, y_train) y_predtrain_dt = cross_val_predict(estimator=dt, X=X_train, y=y_train, cv=10) y_pred_dt = dt.predict(X_test) rf = RandomForestClassifier(random_state=42) rf.fit(X_train, y_train) y_predtrain_rf = cross_val_predict(estimator=rf, X=X_train, y=y_train, cv=10) y_pred_rf = rf.predict(X_test) print('Accuracy Score (Decision Tree):', accuracy_score(y_test, y_pred_dt)) print('Validation Report (Decision Tree):\n ', classification_report(y_train, y_predtrain_dt)) print('Evaluation Report (Decision Tree):\n', classification_report(y_test, y_pred_dt)) print('Confusion Matrix (Decision Tree):\n', confusion_matrix(y_test, y_pred_dt)) print('\nAccuracy Score (Random Forest):', accuracy_score(y_test, y_pred_rf)) print('Validation Report (Decision Tree):\n ', classification_report(y_train, y_predtrain_rf)) print('Evaluation Report (Random Forest):\n', classification_report(y_test, y_pred_rf)) print('Confusion Matrix (Random Forest):\n', confusion_matrix(y_test, y_pred_rf))
code
122262044/cell_14
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier import xgboost as xgb from sklearn.model_selection import cross_val_predict from sklearn.metrics import accuracy_score, classification_report, confusion_matrix sns.set_style('whitegrid') df = pd.read_csv('/kaggle/input/predicting-credit-card-customer-attrition-with-m/BankChurners.csv') df = df.rename(columns={'CLIENTNUM': 'Client_Num', 'Dependent_count': 'Dependent_Count', 'Months_on_book': 'Months_on_Book', 'Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mon_Dependent_count_Education_Level_Months_Inactive_12_mon_1': 'Naive_Bayes_Classifier_1', 'Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mon_Dependent_count_Education_Level_Months_Inactive_12_mon_2': 'Naive_Bayes_Classifier_2'}) import seaborn as sns sns.boxplot(x='Attrition_Flag', y='Total_Relationship_Count', data=df)
code
122262044/cell_10
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier import xgboost as xgb from sklearn.model_selection import cross_val_predict from sklearn.metrics import accuracy_score, classification_report, confusion_matrix sns.set_style('whitegrid') df = pd.read_csv('/kaggle/input/predicting-credit-card-customer-attrition-with-m/BankChurners.csv') df = df.rename(columns={'CLIENTNUM': 'Client_Num', 'Dependent_count': 'Dependent_Count', 'Months_on_book': 'Months_on_Book', 'Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mon_Dependent_count_Education_Level_Months_Inactive_12_mon_1': 'Naive_Bayes_Classifier_1', 'Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mon_Dependent_count_Education_Level_Months_Inactive_12_mon_2': 'Naive_Bayes_Classifier_2'}) plt.figure(figsize=(12, 8)) sns.heatmap(df.corr(), annot=True, cmap='coolwarm') plt.title('Correlation Matrix') plt.show()
code
122262044/cell_12
[ "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier import xgboost as xgb from sklearn.model_selection import cross_val_predict from sklearn.metrics import accuracy_score, classification_report, confusion_matrix sns.set_style('whitegrid') df = pd.read_csv('/kaggle/input/predicting-credit-card-customer-attrition-with-m/BankChurners.csv') df = df.rename(columns={'CLIENTNUM': 'Client_Num', 'Dependent_count': 'Dependent_Count', 'Months_on_book': 'Months_on_Book', 'Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mon_Dependent_count_Education_Level_Months_Inactive_12_mon_1': 'Naive_Bayes_Classifier_1', 'Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mon_Dependent_count_Education_Level_Months_Inactive_12_mon_2': 'Naive_Bayes_Classifier_2'}) import matplotlib.pyplot as plt plt.hist(x='Customer_Age', data=df, bins=10) plt.show()
code
122262044/cell_5
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/predicting-credit-card-customer-attrition-with-m/BankChurners.csv') df.info()
code
129016882/cell_13
[ "text_html_output_1.png" ]
import pandas as pd dataset = pd.read_csv('/kaggle/input/arrests-for-marijuana-possession/Arrests.csv') dataset.drop(dataset.columns[0], axis=1, inplace=True) dataset['year'] = pd.to_datetime(dataset['year'], format='%Y').dt.year dataset.isna().sum() duplicated_entries_df = dataset[dataset.duplicated()] cat_cols = dataset.select_dtypes(include=['object']).columns.tolist() value_counts_df = pd.DataFrame(columns=['Column Name', 'Value', 'Count']) for col in cat_cols: value_counts = dataset[col].value_counts().reset_index() value_counts.columns = ['Value', 'Count'] value_counts['Column Name'] = col value_counts_df = pd.concat([value_counts_df, value_counts], ignore_index=True) quartiles = dataset['year'].describe()[['min', '25%', '50%', '75%', 'max']] print(quartiles)
code
129016882/cell_9
[ "image_output_1.png" ]
import pandas as pd dataset = pd.read_csv('/kaggle/input/arrests-for-marijuana-possession/Arrests.csv') dataset.drop(dataset.columns[0], axis=1, inplace=True) dataset['year'] = pd.to_datetime(dataset['year'], format='%Y').dt.year dataset.isna().sum() duplicated_entries_df = dataset[dataset.duplicated()] dataset.describe()
code
129016882/cell_4
[ "image_output_1.png" ]
import pandas as pd dataset = pd.read_csv('/kaggle/input/arrests-for-marijuana-possession/Arrests.csv') dataset.drop(dataset.columns[0], axis=1, inplace=True) dataset['year'] = pd.to_datetime(dataset['year'], format='%Y').dt.year dataset.head()
code
129016882/cell_6
[ "image_output_1.png" ]
import pandas as pd dataset = pd.read_csv('/kaggle/input/arrests-for-marijuana-possession/Arrests.csv') dataset.drop(dataset.columns[0], axis=1, inplace=True) dataset['year'] = pd.to_datetime(dataset['year'], format='%Y').dt.year dataset.isna().sum() duplicated_entries_df = dataset[dataset.duplicated()] print(f'number of duplicate entries : {dataset.duplicated().sum()}')
code
129016882/cell_2
[ "image_output_1.png" ]
import pandas as pd dataset = pd.read_csv('/kaggle/input/arrests-for-marijuana-possession/Arrests.csv') dataset.head()
code
129016882/cell_11
[ "text_html_output_1.png" ]
import pandas as pd dataset = pd.read_csv('/kaggle/input/arrests-for-marijuana-possession/Arrests.csv') dataset.drop(dataset.columns[0], axis=1, inplace=True) dataset['year'] = pd.to_datetime(dataset['year'], format='%Y').dt.year dataset.isna().sum() duplicated_entries_df = dataset[dataset.duplicated()] cat_cols = dataset.select_dtypes(include=['object']).columns.tolist() value_counts_df = pd.DataFrame(columns=['Column Name', 'Value', 'Count']) for col in cat_cols: value_counts = dataset[col].value_counts().reset_index() value_counts.columns = ['Value', 'Count'] value_counts['Column Name'] = col value_counts_df = pd.concat([value_counts_df, value_counts], ignore_index=True) print(value_counts_df)
code
129016882/cell_1
[ "application_vnd.jupyter.stderr_output_1.png" ]
import warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings('ignore')
code
129016882/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd dataset = pd.read_csv('/kaggle/input/arrests-for-marijuana-possession/Arrests.csv') dataset.drop(dataset.columns[0], axis=1, inplace=True) dataset['year'] = pd.to_datetime(dataset['year'], format='%Y').dt.year dataset.isna().sum() duplicated_entries_df = dataset[dataset.duplicated()] print(f'number of records in dataset : {len(dataset)}')
code
129016882/cell_18
[ "text_html_output_1.png" ]
import pandas as pd dataset = pd.read_csv('/kaggle/input/arrests-for-marijuana-possession/Arrests.csv') dataset.drop(dataset.columns[0], axis=1, inplace=True) dataset['year'] = pd.to_datetime(dataset['year'], format='%Y').dt.year dataset.isna().sum() duplicated_entries_df = dataset[dataset.duplicated()] cat_cols = dataset.select_dtypes(include=['object']).columns.tolist() value_counts_df = pd.DataFrame(columns=['Column Name', 'Value', 'Count']) for col in cat_cols: value_counts = dataset[col].value_counts().reset_index() value_counts.columns = ['Value', 'Count'] value_counts['Column Name'] = col value_counts_df = pd.concat([value_counts_df, value_counts], ignore_index=True) q1 = dataset['age'].quantile(0.25) q3 = dataset['age'].quantile(0.75) iqr = q3 - q1 lower_bound = q1 - 1.5 * iqr upper_bound = q3 + 1.5 * iqr outliers = dataset[(dataset['age'] < lower_bound) | (dataset['age'] > upper_bound)] print('Outliers:\n', outliers)
code
129016882/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd dataset = pd.read_csv('/kaggle/input/arrests-for-marijuana-possession/Arrests.csv') dataset.drop(dataset.columns[0], axis=1, inplace=True) dataset['year'] = pd.to_datetime(dataset['year'], format='%Y').dt.year dataset.isna().sum() duplicated_entries_df = dataset[dataset.duplicated()] dataset.info()
code
129016882/cell_15
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns dataset = pd.read_csv('/kaggle/input/arrests-for-marijuana-possession/Arrests.csv') dataset.drop(dataset.columns[0], axis=1, inplace=True) dataset['year'] = pd.to_datetime(dataset['year'], format='%Y').dt.year dataset.isna().sum() duplicated_entries_df = dataset[dataset.duplicated()] cat_cols = dataset.select_dtypes(include=['object']).columns.tolist() value_counts_df = pd.DataFrame(columns=['Column Name', 'Value', 'Count']) for col in cat_cols: value_counts = dataset[col].value_counts().reset_index() value_counts.columns = ['Value', 'Count'] value_counts['Column Name'] = col value_counts_df = pd.concat([value_counts_df, value_counts], ignore_index=True) # pie chart to display percentage of each class of features fig, ax = plt.subplots(2, 3, figsize = (12, 8)) ax[0][0].pie(dataset['released'].value_counts().values, labels=dataset['released'].value_counts().index, autopct='%1.1f%%') ax[0][0].set_title('released counts') ax[0][1].pie(dataset['colour'].value_counts().values, labels=dataset['colour'].value_counts().index, autopct='%1.1f%%') ax[0][1].set_title('colour counts') ax[0][2].pie(dataset['sex'].value_counts().values, labels=dataset['sex'].value_counts().index, autopct='%1.1f%%') ax[0][2].set_title('sex counts') ax[1][0].pie(dataset['employed'].value_counts().values, labels=dataset['employed'].value_counts().index, autopct='%1.1f%%') ax[1][0].set_title('employed counts') ax[1][1].pie(dataset['citizen'].value_counts().values, labels=dataset['citizen'].value_counts().index, autopct='%1.1f%%') ax[1][1].set_title('citizen counts') ax[1][2].axis('off') plt.suptitle('value counts of each category') plt.show() plt.close() sns.histplot(data=dataset, x='age') plt.show() plt.close()
code
129016882/cell_16
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns dataset = pd.read_csv('/kaggle/input/arrests-for-marijuana-possession/Arrests.csv') dataset.drop(dataset.columns[0], axis=1, inplace=True) dataset['year'] = pd.to_datetime(dataset['year'], format='%Y').dt.year dataset.isna().sum() duplicated_entries_df = dataset[dataset.duplicated()] cat_cols = dataset.select_dtypes(include=['object']).columns.tolist() value_counts_df = pd.DataFrame(columns=['Column Name', 'Value', 'Count']) for col in cat_cols: value_counts = dataset[col].value_counts().reset_index() value_counts.columns = ['Value', 'Count'] value_counts['Column Name'] = col value_counts_df = pd.concat([value_counts_df, value_counts], ignore_index=True) # pie chart to display percentage of each class of features fig, ax = plt.subplots(2, 3, figsize = (12, 8)) ax[0][0].pie(dataset['released'].value_counts().values, labels=dataset['released'].value_counts().index, autopct='%1.1f%%') ax[0][0].set_title('released counts') ax[0][1].pie(dataset['colour'].value_counts().values, labels=dataset['colour'].value_counts().index, autopct='%1.1f%%') ax[0][1].set_title('colour counts') ax[0][2].pie(dataset['sex'].value_counts().values, labels=dataset['sex'].value_counts().index, autopct='%1.1f%%') ax[0][2].set_title('sex counts') ax[1][0].pie(dataset['employed'].value_counts().values, labels=dataset['employed'].value_counts().index, autopct='%1.1f%%') ax[1][0].set_title('employed counts') ax[1][1].pie(dataset['citizen'].value_counts().values, labels=dataset['citizen'].value_counts().index, autopct='%1.1f%%') ax[1][1].set_title('citizen counts') ax[1][2].axis('off') plt.suptitle('value counts of each category') plt.show() plt.close() plt.close() sns.displot(data=dataset, x='age', kind='kde') sns.rugplot(data=dataset, x='age') plt.show() plt.close()
code
129016882/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd dataset = pd.read_csv('/kaggle/input/arrests-for-marijuana-possession/Arrests.csv') dataset.drop(dataset.columns[0], axis=1, inplace=True) dataset.head()
code
129016882/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd dataset = pd.read_csv('/kaggle/input/arrests-for-marijuana-possession/Arrests.csv') dataset.drop(dataset.columns[0], axis=1, inplace=True) dataset['year'] = pd.to_datetime(dataset['year'], format='%Y').dt.year dataset.isna().sum() duplicated_entries_df = dataset[dataset.duplicated()] cat_cols = dataset.select_dtypes(include=['object']).columns.tolist() value_counts_df = pd.DataFrame(columns=['Column Name', 'Value', 'Count']) for col in cat_cols: value_counts = dataset[col].value_counts().reset_index() value_counts.columns = ['Value', 'Count'] value_counts['Column Name'] = col value_counts_df = pd.concat([value_counts_df, value_counts], ignore_index=True) # quartiles of year quartiles = dataset['year'].describe()[['min', '25%', '50%', '75%', 'max']] print(quartiles) quartiles = dataset['age'].describe()[['min', '25%', '50%', '75%', 'max']] print(quartiles)
code
129016882/cell_14
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns dataset = pd.read_csv('/kaggle/input/arrests-for-marijuana-possession/Arrests.csv') dataset.drop(dataset.columns[0], axis=1, inplace=True) dataset['year'] = pd.to_datetime(dataset['year'], format='%Y').dt.year dataset.isna().sum() duplicated_entries_df = dataset[dataset.duplicated()] cat_cols = dataset.select_dtypes(include=['object']).columns.tolist() value_counts_df = pd.DataFrame(columns=['Column Name', 'Value', 'Count']) for col in cat_cols: value_counts = dataset[col].value_counts().reset_index() value_counts.columns = ['Value', 'Count'] value_counts['Column Name'] = col value_counts_df = pd.concat([value_counts_df, value_counts], ignore_index=True) # pie chart to display percentage of each class of features fig, ax = plt.subplots(2, 3, figsize = (12, 8)) ax[0][0].pie(dataset['released'].value_counts().values, labels=dataset['released'].value_counts().index, autopct='%1.1f%%') ax[0][0].set_title('released counts') ax[0][1].pie(dataset['colour'].value_counts().values, labels=dataset['colour'].value_counts().index, autopct='%1.1f%%') ax[0][1].set_title('colour counts') ax[0][2].pie(dataset['sex'].value_counts().values, labels=dataset['sex'].value_counts().index, autopct='%1.1f%%') ax[0][2].set_title('sex counts') ax[1][0].pie(dataset['employed'].value_counts().values, labels=dataset['employed'].value_counts().index, autopct='%1.1f%%') ax[1][0].set_title('employed counts') ax[1][1].pie(dataset['citizen'].value_counts().values, labels=dataset['citizen'].value_counts().index, autopct='%1.1f%%') ax[1][1].set_title('citizen counts') ax[1][2].axis('off') plt.suptitle('value counts of each category') plt.show() sns.boxplot(data=dataset, x='year') plt.title('box plot for year feature') plt.show() plt.close()
code
129016882/cell_12
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd dataset = pd.read_csv('/kaggle/input/arrests-for-marijuana-possession/Arrests.csv') dataset.drop(dataset.columns[0], axis=1, inplace=True) dataset['year'] = pd.to_datetime(dataset['year'], format='%Y').dt.year dataset.isna().sum() duplicated_entries_df = dataset[dataset.duplicated()] cat_cols = dataset.select_dtypes(include=['object']).columns.tolist() value_counts_df = pd.DataFrame(columns=['Column Name', 'Value', 'Count']) for col in cat_cols: value_counts = dataset[col].value_counts().reset_index() value_counts.columns = ['Value', 'Count'] value_counts['Column Name'] = col value_counts_df = pd.concat([value_counts_df, value_counts], ignore_index=True) fig, ax = plt.subplots(2, 3, figsize=(12, 8)) ax[0][0].pie(dataset['released'].value_counts().values, labels=dataset['released'].value_counts().index, autopct='%1.1f%%') ax[0][0].set_title('released counts') ax[0][1].pie(dataset['colour'].value_counts().values, labels=dataset['colour'].value_counts().index, autopct='%1.1f%%') ax[0][1].set_title('colour counts') ax[0][2].pie(dataset['sex'].value_counts().values, labels=dataset['sex'].value_counts().index, autopct='%1.1f%%') ax[0][2].set_title('sex counts') ax[1][0].pie(dataset['employed'].value_counts().values, labels=dataset['employed'].value_counts().index, autopct='%1.1f%%') ax[1][0].set_title('employed counts') ax[1][1].pie(dataset['citizen'].value_counts().values, labels=dataset['citizen'].value_counts().index, autopct='%1.1f%%') ax[1][1].set_title('citizen counts') ax[1][2].axis('off') plt.suptitle('value counts of each category') plt.show()
code
129016882/cell_5
[ "image_output_1.png" ]
import pandas as pd dataset = pd.read_csv('/kaggle/input/arrests-for-marijuana-possession/Arrests.csv') dataset.drop(dataset.columns[0], axis=1, inplace=True) dataset['year'] = pd.to_datetime(dataset['year'], format='%Y').dt.year print('number of empty records in each features : ') dataset.isna().sum()
code
18110097/cell_4
[ "application_vnd.jupyter.stderr_output_2.png" ]
import datetime as dt import pandas as pd def astype_cat(dd, cols): for col in cols: if isinstance(col, tuple): col, idx1, idx2 = col for idx in range(idx1, idx2 + 1): full_col = col + str(idx) dd[full_col] = dd[full_col].astype('category') else: dd[col] = dd[col].astype('category') dd = pd.read_csv('../input/train_transaction.csv') astype_cat(dd, ['ProductCD', ('card', 1, 6), 'addr1', 'addr2', 'P_emaildomain', 'R_emaildomain', ('M', 1, 9)]) ddid = pd.read_csv('../input/train_identity.csv') astype_cat(ddid, ['DeviceType', 'DeviceInfo', ('id_', 12, 38)]) dd = dd.merge(ddid, 'left', 'TransactionID') dd['datetime'] = dd['TransactionDT'].apply(lambda x: dt.timedelta(seconds=x) + pd.Timestamp('2017-11-30')) del ddid dd.head()
code
18110097/cell_2
[ "application_vnd.jupyter.stderr_output_2.png", "text_html_output_1.png", "image_output_1.png" ]
import os import numpy as np import pandas as pd import datetime as dt import matplotlib.pyplot as plt from sklearn.metrics import normalized_mutual_info_score, mutual_info_score from tqdm import tqdm_notebook as tqdm from itertools import combinations import seaborn as sns from functools import partial import os print(os.listdir('../input'))
code
18110097/cell_11
[ "text_html_output_1.png" ]
from functools import partial from itertools import combinations from sklearn.metrics import normalized_mutual_info_score, mutual_info_score import datetime as dt import pandas as pd import seaborn as sns def astype_cat(dd, cols): for col in cols: if isinstance(col, tuple): col, idx1, idx2 = col for idx in range(idx1, idx2 + 1): full_col = col + str(idx) dd[full_col] = dd[full_col].astype('category') else: dd[col] = dd[col].astype('category') dd = pd.read_csv('../input/train_transaction.csv') astype_cat(dd, ['ProductCD', ('card', 1, 6), 'addr1', 'addr2', 'P_emaildomain', 'R_emaildomain', ('M', 1, 9)]) ddid = pd.read_csv('../input/train_identity.csv') astype_cat(ddid, ['DeviceType', 'DeviceInfo', ('id_', 12, 38)]) dd = dd.merge(ddid, 'left', 'TransactionID') dd['datetime'] = dd['TransactionDT'].apply(lambda x: dt.timedelta(seconds=x) + pd.Timestamp('2017-11-30')) del ddid cat_cols = dd.dtypes.loc[lambda x: x == 'category'].index def calc_scores(score_func): scores = [] for col1, col2 in tqdm(list(combinations(cat_cols, 2))): score = score_func(dd[col1].cat.codes, dd[col2].cat.codes) scores.append((col1, col2, score)) scores = pd.DataFrame(scores, columns=['col1', 'col2', 'score']) scores_sym = pd.concat([scores, scores.rename(columns={'col1': 'col2', 'col2': 'col1'})]) return scores_sym scores1 = calc_scores(partial(normalized_mutual_info_score, average_method='arithmetic')) sns.clustermap(scores1.pivot('col1', 'col2', 'score').fillna(scores1['score'].max()), figsize=(15, 15)) scores2 = calc_scores(mutual_info_score) sns.clustermap(scores2.pivot('col1', 'col2', 'score').fillna(scores2['score'].max()) ** (1 / 3), figsize=(15, 15)) display(scores2.sort_values('score', ascending=False).iloc[:20])
code
18110097/cell_8
[ "text_html_output_1.png", "image_output_1.png" ]
from functools import partial from itertools import combinations from sklearn.metrics import normalized_mutual_info_score, mutual_info_score import datetime as dt import pandas as pd import seaborn as sns def astype_cat(dd, cols): for col in cols: if isinstance(col, tuple): col, idx1, idx2 = col for idx in range(idx1, idx2 + 1): full_col = col + str(idx) dd[full_col] = dd[full_col].astype('category') else: dd[col] = dd[col].astype('category') dd = pd.read_csv('../input/train_transaction.csv') astype_cat(dd, ['ProductCD', ('card', 1, 6), 'addr1', 'addr2', 'P_emaildomain', 'R_emaildomain', ('M', 1, 9)]) ddid = pd.read_csv('../input/train_identity.csv') astype_cat(ddid, ['DeviceType', 'DeviceInfo', ('id_', 12, 38)]) dd = dd.merge(ddid, 'left', 'TransactionID') dd['datetime'] = dd['TransactionDT'].apply(lambda x: dt.timedelta(seconds=x) + pd.Timestamp('2017-11-30')) del ddid cat_cols = dd.dtypes.loc[lambda x: x == 'category'].index def calc_scores(score_func): scores = [] for col1, col2 in tqdm(list(combinations(cat_cols, 2))): score = score_func(dd[col1].cat.codes, dd[col2].cat.codes) scores.append((col1, col2, score)) scores = pd.DataFrame(scores, columns=['col1', 'col2', 'score']) scores_sym = pd.concat([scores, scores.rename(columns={'col1': 'col2', 'col2': 'col1'})]) return scores_sym scores1 = calc_scores(partial(normalized_mutual_info_score, average_method='arithmetic')) sns.clustermap(scores1.pivot('col1', 'col2', 'score').fillna(scores1['score'].max()), figsize=(15, 15)) display(scores1.sort_values('score', ascending=False).iloc[:20])
code
18110097/cell_10
[ "text_plain_output_1.png" ]
from itertools import combinations from sklearn.metrics import normalized_mutual_info_score, mutual_info_score import datetime as dt import pandas as pd def astype_cat(dd, cols): for col in cols: if isinstance(col, tuple): col, idx1, idx2 = col for idx in range(idx1, idx2 + 1): full_col = col + str(idx) dd[full_col] = dd[full_col].astype('category') else: dd[col] = dd[col].astype('category') dd = pd.read_csv('../input/train_transaction.csv') astype_cat(dd, ['ProductCD', ('card', 1, 6), 'addr1', 'addr2', 'P_emaildomain', 'R_emaildomain', ('M', 1, 9)]) ddid = pd.read_csv('../input/train_identity.csv') astype_cat(ddid, ['DeviceType', 'DeviceInfo', ('id_', 12, 38)]) dd = dd.merge(ddid, 'left', 'TransactionID') dd['datetime'] = dd['TransactionDT'].apply(lambda x: dt.timedelta(seconds=x) + pd.Timestamp('2017-11-30')) del ddid cat_cols = dd.dtypes.loc[lambda x: x == 'category'].index def calc_scores(score_func): scores = [] for col1, col2 in tqdm(list(combinations(cat_cols, 2))): score = score_func(dd[col1].cat.codes, dd[col2].cat.codes) scores.append((col1, col2, score)) scores = pd.DataFrame(scores, columns=['col1', 'col2', 'score']) scores_sym = pd.concat([scores, scores.rename(columns={'col1': 'col2', 'col2': 'col1'})]) return scores_sym scores2 = calc_scores(mutual_info_score)
code
105213782/cell_42
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
from sklearn import metrics from sklearn.linear_model import LogisticRegression import matplotlib.pyplot as plt #plotting import numpy as np import pandas as pd import seaborn as sns #visualization data = pd.read_csv('../input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv') data.drop(['id'], axis=1, inplace=True) data.isnull().sum() data.isnull().sum() strokes = len(data[data['stroke'] == 1]) no_strokes = data[data.stroke == 0].index random_indices = np.random.choice(no_strokes, strokes, replace=False) stroke_indices = data[data.stroke == 1].index under_sample_indices = np.concatenate([stroke_indices, random_indices]) udata = data.loc[under_sample_indices] from sklearn.linear_model import LogisticRegression lr = LogisticRegression() lr.fit(X_train, Y_train) Y_pred = lr.predict(X_test) features = np.array([[0, 78, 0, 0, 1, 3, 0, 60, 28.8, 1]]) prediction = lr.predict(features) y_pred_proba = lr.predict_proba(X_test)[:, 1] fpr, tpr, _ = metrics.roc_curve(Y_test, y_pred_proba) plt.plot(fpr, tpr) plt.ylabel('True Positive Rate') plt.xlabel('False Positive Rate') plt.title('ROC for Logistic Regression') plt.show()
code
105213782/cell_21
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt #plotting import pandas as pd import seaborn as sns #visualization data = pd.read_csv('../input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv') data.drop(['id'], axis=1, inplace=True) data.isnull().sum() data.isnull().sum() sns.countplot(data=data, x='stroke') plt.show()
code
105213782/cell_13
[ "text_plain_output_1.png" ]
from sklearn import preprocessing import pandas as pd data = pd.read_csv('../input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv') data.drop(['id'], axis=1, inplace=True) data.isnull().sum() data.isnull().sum() from sklearn import preprocessing label_encoder = preprocessing.LabelEncoder() data['gender'] = label_encoder.fit_transform(data['gender']) data['gender'].unique()
code
105213782/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv') data.drop(['id'], axis=1, inplace=True) data.isnull().sum()
code
105213782/cell_56
[ "image_output_1.png" ]
from sklearn import tree dt_classifier = DecisionTreeClassifier() dt_classifier.fit(X_train, Y_train)
code
105213782/cell_34
[ "text_html_output_1.png" ]
Y_test
code
105213782/cell_33
[ "text_html_output_1.png" ]
Y_train
code
105213782/cell_76
[ "image_output_1.png" ]
from sklearn.svm import SVC from sklearn.svm import SVC svm_classifier = SVC() svm_classifier.fit(X_train, Y_train)
code
105213782/cell_40
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import precision_score, recall_score, f1_score,accuracy_score #metrics from sklearn.metrics import roc_auc_score, roc_curve #metrics import numpy as np import pandas as pd data = pd.read_csv('../input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv') data.drop(['id'], axis=1, inplace=True) data.isnull().sum() data.isnull().sum() strokes = len(data[data['stroke'] == 1]) no_strokes = data[data.stroke == 0].index random_indices = np.random.choice(no_strokes, strokes, replace=False) stroke_indices = data[data.stroke == 1].index under_sample_indices = np.concatenate([stroke_indices, random_indices]) udata = data.loc[under_sample_indices] from sklearn.linear_model import LogisticRegression lr = LogisticRegression() lr.fit(X_train, Y_train) Y_pred = lr.predict(X_test) features = np.array([[0, 78, 0, 0, 1, 3, 0, 60, 28.8, 1]]) prediction = lr.predict(features) print('Accuracy:', accuracy_score(Y_test, Y_pred)) print('Precision', precision_score(Y_test, Y_pred)) print('Recall', recall_score(Y_test, Y_pred)) print('F1 score', f1_score(Y_test, Y_pred)) print('ROC score', roc_auc_score(Y_test, Y_pred))
code
105213782/cell_29
[ "text_html_output_1.png" ]
import numpy as np import pandas as pd data = pd.read_csv('../input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv') data.drop(['id'], axis=1, inplace=True) data.isnull().sum() data.isnull().sum() strokes = len(data[data['stroke'] == 1]) no_strokes = data[data.stroke == 0].index random_indices = np.random.choice(no_strokes, strokes, replace=False) stroke_indices = data[data.stroke == 1].index under_sample_indices = np.concatenate([stroke_indices, random_indices]) udata = data.loc[under_sample_indices] X = udata.iloc[:, :-1] Y = udata.iloc[:, -1] Y
code
105213782/cell_26
[ "image_output_1.png" ]
import numpy as np import pandas as pd data = pd.read_csv('../input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv') data.drop(['id'], axis=1, inplace=True) data.isnull().sum() data.isnull().sum() strokes = len(data[data['stroke'] == 1]) no_strokes = data[data.stroke == 0].index random_indices = np.random.choice(no_strokes, strokes, replace=False) stroke_indices = data[data.stroke == 1].index under_sample_indices = np.concatenate([stroke_indices, random_indices]) udata = data.loc[under_sample_indices] udata
code
105213782/cell_48
[ "image_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.neighbors import KNeighborsClassifier import numpy as np import pandas as pd data = pd.read_csv('../input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv') data.drop(['id'], axis=1, inplace=True) data.isnull().sum() data.isnull().sum() strokes = len(data[data['stroke'] == 1]) no_strokes = data[data.stroke == 0].index random_indices = np.random.choice(no_strokes, strokes, replace=False) stroke_indices = data[data.stroke == 1].index under_sample_indices = np.concatenate([stroke_indices, random_indices]) udata = data.loc[under_sample_indices] from sklearn.linear_model import LogisticRegression lr = LogisticRegression() lr.fit(X_train, Y_train) Y_pred = lr.predict(X_test) features = np.array([[0, 78, 0, 0, 1, 3, 0, 60, 28.8, 1]]) prediction = lr.predict(features) from sklearn.neighbors import KNeighborsClassifier knn_classifier = KNeighborsClassifier(n_neighbors=3, metric='minkowski', p=3) knn_classifier.fit(X_train, Y_train) Y_pred_knn = knn_classifier.predict(X_test) features = np.array([[0, 78, 0, 0, 1, 3, 0, 60, 28.8, 1]]) prediction = knn_classifier.predict(features) print('Prediction: {}'.format(prediction))
code
105213782/cell_72
[ "text_plain_output_1.png" ]
from sklearn import metrics from sklearn.linear_model import LogisticRegression from sklearn.metrics import roc_auc_score, roc_curve #metrics from sklearn.metrics import roc_curve, roc_auc_score from sklearn.metrics import roc_curve, roc_auc_score from sklearn.naive_bayes import GaussianNB from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier import matplotlib.pyplot as plt #plotting import numpy as np import pandas as pd import seaborn as sns #visualization data = pd.read_csv('../input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv') data.drop(['id'], axis=1, inplace=True) data.isnull().sum() data.isnull().sum() strokes = len(data[data['stroke'] == 1]) no_strokes = data[data.stroke == 0].index random_indices = np.random.choice(no_strokes, strokes, replace=False) stroke_indices = data[data.stroke == 1].index under_sample_indices = np.concatenate([stroke_indices, random_indices]) udata = data.loc[under_sample_indices] from sklearn.linear_model import LogisticRegression lr = LogisticRegression() lr.fit(X_train, Y_train) Y_pred = lr.predict(X_test) features = np.array([[0, 78, 0, 0, 1, 3, 0, 60, 28.8, 1]]) prediction = lr.predict(features) y_pred_proba = lr.predict_proba(X_test)[:, 1] fpr, tpr, _ = metrics.roc_curve(Y_test, y_pred_proba) from sklearn.neighbors import KNeighborsClassifier knn_classifier = KNeighborsClassifier(n_neighbors=3, metric='minkowski', p=3) knn_classifier.fit(X_train, Y_train) Y_pred_knn = knn_classifier.predict(X_test) features = np.array([[0, 78, 0, 0, 1, 3, 0, 60, 28.8, 1]]) prediction = knn_classifier.predict(features) y_pred_proba = knn_classifier.predict_proba(X_test)[:, 1] fpr, tpr, _ = metrics.roc_curve(Y_test, y_pred_proba) from sklearn import tree dt_classifier = DecisionTreeClassifier() dt_classifier.fit(X_train, Y_train) Y_pred_dtc = dt_classifier.predict(X_test) features = np.array([[0, 78, 0, 0, 1, 3, 0, 60, 28.8, 1]]) prediction = dt_classifier.predict(features) from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import roc_curve, roc_auc_score from matplotlib import pyplot as plt dstree = DecisionTreeClassifier() dstree.fit(X_train, Y_train) dtree_prob = [0 for _ in range(len(Y_test))] dstree = dstree.predict_proba(X_test) dstree_prob = dt_classifier.predict_proba(X_test) dstree_prob = dstree_prob[:, 1] dtree_auc = roc_auc_score(Y_test, dtree_prob) fpr, tpr, _ = roc_curve(Y_test, dstree_prob) from sklearn.naive_bayes import GaussianNB gnb_classifier = GaussianNB() gnb_classifier.fit(X_train, Y_train) Y_pred_gnb = gnb_classifier.predict(X_test) features = np.array([[0, 78, 0, 0, 1, 3, 0, 60, 28.8, 1]]) prediction = gnb_classifier.predict(features) from sklearn.naive_bayes import GaussianNB from sklearn.metrics import roc_curve, roc_auc_score from matplotlib import pyplot as plt nb = GaussianNB(var_smoothing=0.15) nb.fit(X_train, Y_train) n_prob = [0 for _ in range(len(Y_test))] nb = nb.predict_proba(X_test) nb_prob = gnb_classifier.predict_proba(X_test) nb_prob = nb_prob[:, 1] n_auc = roc_auc_score(Y_test, n_prob) fpr, tpr, _ = roc_curve(Y_test, nb_prob) plt.plot(fpr, tpr) plt.ylabel('True Positive Rate') plt.xlabel('False Positive Rate') plt.title('ROC curve For Naive Bayes') plt.show()
code
105213782/cell_11
[ "text_html_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv') data.drop(['id'], axis=1, inplace=True) data.isnull().sum() data.isnull().sum()
code
105213782/cell_60
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import precision_score, recall_score, f1_score,accuracy_score #metrics from sklearn.metrics import roc_auc_score, roc_curve #metrics from sklearn.neighbors import KNeighborsClassifier import numpy as np import pandas as pd data = pd.read_csv('../input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv') data.drop(['id'], axis=1, inplace=True) data.isnull().sum() data.isnull().sum() strokes = len(data[data['stroke'] == 1]) no_strokes = data[data.stroke == 0].index random_indices = np.random.choice(no_strokes, strokes, replace=False) stroke_indices = data[data.stroke == 1].index under_sample_indices = np.concatenate([stroke_indices, random_indices]) udata = data.loc[under_sample_indices] from sklearn.linear_model import LogisticRegression lr = LogisticRegression() lr.fit(X_train, Y_train) Y_pred = lr.predict(X_test) features = np.array([[0, 78, 0, 0, 1, 3, 0, 60, 28.8, 1]]) prediction = lr.predict(features) from sklearn.neighbors import KNeighborsClassifier knn_classifier = KNeighborsClassifier(n_neighbors=3, metric='minkowski', p=3) knn_classifier.fit(X_train, Y_train) Y_pred_knn = knn_classifier.predict(X_test) features = np.array([[0, 78, 0, 0, 1, 3, 0, 60, 28.8, 1]]) prediction = knn_classifier.predict(features) from sklearn import tree dt_classifier = DecisionTreeClassifier() dt_classifier.fit(X_train, Y_train) Y_pred_dtc = dt_classifier.predict(X_test) features = np.array([[0, 78, 0, 0, 1, 3, 0, 60, 28.8, 1]]) prediction = dt_classifier.predict(features) print('Accuracy:', accuracy_score(Y_test, Y_pred_dtc)) print('Precision', precision_score(Y_test, Y_pred_dtc)) print('Recall', recall_score(Y_test, Y_pred_dtc)) print('F1 score', f1_score(Y_test, Y_pred_dtc)) print('ROC score', roc_auc_score(Y_test, Y_pred_dtc))
code
105213782/cell_19
[ "text_plain_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv') data.drop(['id'], axis=1, inplace=True) data.isnull().sum() data.isnull().sum() data.info()
code
105213782/cell_50
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import precision_score, recall_score, f1_score,accuracy_score #metrics from sklearn.metrics import roc_auc_score, roc_curve #metrics from sklearn.neighbors import KNeighborsClassifier import numpy as np import pandas as pd data = pd.read_csv('../input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv') data.drop(['id'], axis=1, inplace=True) data.isnull().sum() data.isnull().sum() strokes = len(data[data['stroke'] == 1]) no_strokes = data[data.stroke == 0].index random_indices = np.random.choice(no_strokes, strokes, replace=False) stroke_indices = data[data.stroke == 1].index under_sample_indices = np.concatenate([stroke_indices, random_indices]) udata = data.loc[under_sample_indices] from sklearn.linear_model import LogisticRegression lr = LogisticRegression() lr.fit(X_train, Y_train) Y_pred = lr.predict(X_test) features = np.array([[0, 78, 0, 0, 1, 3, 0, 60, 28.8, 1]]) prediction = lr.predict(features) from sklearn.neighbors import KNeighborsClassifier knn_classifier = KNeighborsClassifier(n_neighbors=3, metric='minkowski', p=3) knn_classifier.fit(X_train, Y_train) Y_pred_knn = knn_classifier.predict(X_test) features = np.array([[0, 78, 0, 0, 1, 3, 0, 60, 28.8, 1]]) prediction = knn_classifier.predict(features) print('Accuracy:', accuracy_score(Y_test, Y_pred_knn)) print('Precision', precision_score(Y_test, Y_pred_knn)) print('Recall', recall_score(Y_test, Y_pred_knn)) print('F1 score', f1_score(Y_test, Y_pred_knn)) print('ROC score', roc_auc_score(Y_test, Y_pred_knn))
code
105213782/cell_52
[ "text_plain_output_1.png" ]
from sklearn import metrics from sklearn.linear_model import LogisticRegression from sklearn.neighbors import KNeighborsClassifier import matplotlib.pyplot as plt #plotting import numpy as np import pandas as pd import seaborn as sns #visualization data = pd.read_csv('../input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv') data.drop(['id'], axis=1, inplace=True) data.isnull().sum() data.isnull().sum() strokes = len(data[data['stroke'] == 1]) no_strokes = data[data.stroke == 0].index random_indices = np.random.choice(no_strokes, strokes, replace=False) stroke_indices = data[data.stroke == 1].index under_sample_indices = np.concatenate([stroke_indices, random_indices]) udata = data.loc[under_sample_indices] from sklearn.linear_model import LogisticRegression lr = LogisticRegression() lr.fit(X_train, Y_train) Y_pred = lr.predict(X_test) features = np.array([[0, 78, 0, 0, 1, 3, 0, 60, 28.8, 1]]) prediction = lr.predict(features) y_pred_proba = lr.predict_proba(X_test)[:, 1] fpr, tpr, _ = metrics.roc_curve(Y_test, y_pred_proba) from sklearn.neighbors import KNeighborsClassifier knn_classifier = KNeighborsClassifier(n_neighbors=3, metric='minkowski', p=3) knn_classifier.fit(X_train, Y_train) Y_pred_knn = knn_classifier.predict(X_test) features = np.array([[0, 78, 0, 0, 1, 3, 0, 60, 28.8, 1]]) prediction = knn_classifier.predict(features) y_pred_proba = knn_classifier.predict_proba(X_test)[:, 1] fpr, tpr, _ = metrics.roc_curve(Y_test, y_pred_proba) plt.plot(fpr, tpr) plt.ylabel('True Positive Rate') plt.xlabel('False Positive Rate') plt.title('ROC for KNN') plt.show()
code
105213782/cell_32
[ "text_plain_output_1.png" ]
X_test
code
105213782/cell_68
[ "image_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier import numpy as np import pandas as pd data = pd.read_csv('../input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv') data.drop(['id'], axis=1, inplace=True) data.isnull().sum() data.isnull().sum() strokes = len(data[data['stroke'] == 1]) no_strokes = data[data.stroke == 0].index random_indices = np.random.choice(no_strokes, strokes, replace=False) stroke_indices = data[data.stroke == 1].index under_sample_indices = np.concatenate([stroke_indices, random_indices]) udata = data.loc[under_sample_indices] from sklearn.linear_model import LogisticRegression lr = LogisticRegression() lr.fit(X_train, Y_train) Y_pred = lr.predict(X_test) features = np.array([[0, 78, 0, 0, 1, 3, 0, 60, 28.8, 1]]) prediction = lr.predict(features) from sklearn.neighbors import KNeighborsClassifier knn_classifier = KNeighborsClassifier(n_neighbors=3, metric='minkowski', p=3) knn_classifier.fit(X_train, Y_train) Y_pred_knn = knn_classifier.predict(X_test) features = np.array([[0, 78, 0, 0, 1, 3, 0, 60, 28.8, 1]]) prediction = knn_classifier.predict(features) from sklearn import tree dt_classifier = DecisionTreeClassifier() dt_classifier.fit(X_train, Y_train) Y_pred_dtc = dt_classifier.predict(X_test) features = np.array([[0, 78, 0, 0, 1, 3, 0, 60, 28.8, 1]]) prediction = dt_classifier.predict(features) from sklearn.naive_bayes import GaussianNB gnb_classifier = GaussianNB() gnb_classifier.fit(X_train, Y_train) Y_pred_gnb = gnb_classifier.predict(X_test) features = np.array([[0, 78, 0, 0, 1, 3, 0, 60, 28.8, 1]]) prediction = gnb_classifier.predict(features) print('Prediction: {}'.format(prediction))
code
105213782/cell_62
[ "text_plain_output_1.png" ]
from sklearn import metrics from sklearn.linear_model import LogisticRegression from sklearn.metrics import roc_auc_score, roc_curve #metrics from sklearn.metrics import roc_curve, roc_auc_score from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier import matplotlib.pyplot as plt #plotting import numpy as np import pandas as pd import seaborn as sns #visualization data = pd.read_csv('../input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv') data.drop(['id'], axis=1, inplace=True) data.isnull().sum() data.isnull().sum() strokes = len(data[data['stroke'] == 1]) no_strokes = data[data.stroke == 0].index random_indices = np.random.choice(no_strokes, strokes, replace=False) stroke_indices = data[data.stroke == 1].index under_sample_indices = np.concatenate([stroke_indices, random_indices]) udata = data.loc[under_sample_indices] from sklearn.linear_model import LogisticRegression lr = LogisticRegression() lr.fit(X_train, Y_train) Y_pred = lr.predict(X_test) features = np.array([[0, 78, 0, 0, 1, 3, 0, 60, 28.8, 1]]) prediction = lr.predict(features) y_pred_proba = lr.predict_proba(X_test)[:, 1] fpr, tpr, _ = metrics.roc_curve(Y_test, y_pred_proba) from sklearn.neighbors import KNeighborsClassifier knn_classifier = KNeighborsClassifier(n_neighbors=3, metric='minkowski', p=3) knn_classifier.fit(X_train, Y_train) Y_pred_knn = knn_classifier.predict(X_test) features = np.array([[0, 78, 0, 0, 1, 3, 0, 60, 28.8, 1]]) prediction = knn_classifier.predict(features) y_pred_proba = knn_classifier.predict_proba(X_test)[:, 1] fpr, tpr, _ = metrics.roc_curve(Y_test, y_pred_proba) from sklearn import tree dt_classifier = DecisionTreeClassifier() dt_classifier.fit(X_train, Y_train) Y_pred_dtc = dt_classifier.predict(X_test) features = np.array([[0, 78, 0, 0, 1, 3, 0, 60, 28.8, 1]]) prediction = dt_classifier.predict(features) from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import roc_curve, roc_auc_score from matplotlib import pyplot as plt dstree = DecisionTreeClassifier() dstree.fit(X_train, Y_train) dtree_prob = [0 for _ in range(len(Y_test))] dstree = dstree.predict_proba(X_test) dstree_prob = dt_classifier.predict_proba(X_test) dstree_prob = dstree_prob[:, 1] dtree_auc = roc_auc_score(Y_test, dtree_prob) fpr, tpr, _ = roc_curve(Y_test, dstree_prob) plt.plot(fpr, tpr) plt.ylabel('True Positive Rate') plt.xlabel('False Positive Rate') plt.title('ROC curve for Decision Tree') plt.show()
code
105213782/cell_58
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.neighbors import KNeighborsClassifier import numpy as np import pandas as pd data = pd.read_csv('../input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv') data.drop(['id'], axis=1, inplace=True) data.isnull().sum() data.isnull().sum() strokes = len(data[data['stroke'] == 1]) no_strokes = data[data.stroke == 0].index random_indices = np.random.choice(no_strokes, strokes, replace=False) stroke_indices = data[data.stroke == 1].index under_sample_indices = np.concatenate([stroke_indices, random_indices]) udata = data.loc[under_sample_indices] from sklearn.linear_model import LogisticRegression lr = LogisticRegression() lr.fit(X_train, Y_train) Y_pred = lr.predict(X_test) features = np.array([[0, 78, 0, 0, 1, 3, 0, 60, 28.8, 1]]) prediction = lr.predict(features) from sklearn.neighbors import KNeighborsClassifier knn_classifier = KNeighborsClassifier(n_neighbors=3, metric='minkowski', p=3) knn_classifier.fit(X_train, Y_train) Y_pred_knn = knn_classifier.predict(X_test) features = np.array([[0, 78, 0, 0, 1, 3, 0, 60, 28.8, 1]]) prediction = knn_classifier.predict(features) from sklearn import tree dt_classifier = DecisionTreeClassifier() dt_classifier.fit(X_train, Y_train) Y_pred_dtc = dt_classifier.predict(X_test) features = np.array([[0, 78, 0, 0, 1, 3, 0, 60, 28.8, 1]]) prediction = dt_classifier.predict(features) print('Prediction: {}'.format(prediction))
code
105213782/cell_28
[ "image_output_1.png" ]
import numpy as np import pandas as pd data = pd.read_csv('../input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv') data.drop(['id'], axis=1, inplace=True) data.isnull().sum() data.isnull().sum() strokes = len(data[data['stroke'] == 1]) no_strokes = data[data.stroke == 0].index random_indices = np.random.choice(no_strokes, strokes, replace=False) stroke_indices = data[data.stroke == 1].index under_sample_indices = np.concatenate([stroke_indices, random_indices]) udata = data.loc[under_sample_indices] X = udata.iloc[:, :-1] Y = udata.iloc[:, -1] X
code
105213782/cell_78
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier import numpy as np import pandas as pd data = pd.read_csv('../input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv') data.drop(['id'], axis=1, inplace=True) data.isnull().sum() data.isnull().sum() strokes = len(data[data['stroke'] == 1]) no_strokes = data[data.stroke == 0].index random_indices = np.random.choice(no_strokes, strokes, replace=False) stroke_indices = data[data.stroke == 1].index under_sample_indices = np.concatenate([stroke_indices, random_indices]) udata = data.loc[under_sample_indices] from sklearn.linear_model import LogisticRegression lr = LogisticRegression() lr.fit(X_train, Y_train) Y_pred = lr.predict(X_test) features = np.array([[0, 78, 0, 0, 1, 3, 0, 60, 28.8, 1]]) prediction = lr.predict(features) from sklearn.neighbors import KNeighborsClassifier knn_classifier = KNeighborsClassifier(n_neighbors=3, metric='minkowski', p=3) knn_classifier.fit(X_train, Y_train) Y_pred_knn = knn_classifier.predict(X_test) features = np.array([[0, 78, 0, 0, 1, 3, 0, 60, 28.8, 1]]) prediction = knn_classifier.predict(features) from sklearn import tree dt_classifier = DecisionTreeClassifier() dt_classifier.fit(X_train, Y_train) Y_pred_dtc = dt_classifier.predict(X_test) features = np.array([[0, 78, 0, 0, 1, 3, 0, 60, 28.8, 1]]) prediction = dt_classifier.predict(features) from sklearn.naive_bayes import GaussianNB gnb_classifier = GaussianNB() gnb_classifier.fit(X_train, Y_train) Y_pred_gnb = gnb_classifier.predict(X_test) features = np.array([[0, 78, 0, 0, 1, 3, 0, 60, 28.8, 1]]) prediction = gnb_classifier.predict(features) from sklearn.svm import SVC svm_classifier = SVC() svm_classifier.fit(X_train, Y_train) Y_pred_svm = svm_classifier.predict(X_test) features = np.array([[0, 78, 0, 0, 1, 3, 0, 60, 28.8, 1]]) prediction = svm_classifier.predict(features) print('Prediction: {}'.format(prediction))
code
105213782/cell_15
[ "text_plain_output_1.png" ]
from sklearn import preprocessing import pandas as pd data = pd.read_csv('../input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv') data.drop(['id'], axis=1, inplace=True) data.isnull().sum() data.isnull().sum() from sklearn import preprocessing label_encoder = preprocessing.LabelEncoder() data['gender'] = label_encoder.fit_transform(data['gender']) data['gender'].unique() data['ever_married'] = label_encoder.fit_transform(data['ever_married']) data['ever_married'].unique() data['work_type'] = label_encoder.fit_transform(data['work_type']) data['work_type'].unique()
code
105213782/cell_16
[ "text_plain_output_1.png" ]
from sklearn import preprocessing import pandas as pd data = pd.read_csv('../input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv') data.drop(['id'], axis=1, inplace=True) data.isnull().sum() data.isnull().sum() from sklearn import preprocessing label_encoder = preprocessing.LabelEncoder() data['gender'] = label_encoder.fit_transform(data['gender']) data['gender'].unique() data['ever_married'] = label_encoder.fit_transform(data['ever_married']) data['ever_married'].unique() data['work_type'] = label_encoder.fit_transform(data['work_type']) data['work_type'].unique() data['Residence_type'] = label_encoder.fit_transform(data['Residence_type']) data['Residence_type'].unique()
code
105213782/cell_38
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression import numpy as np import pandas as pd data = pd.read_csv('../input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv') data.drop(['id'], axis=1, inplace=True) data.isnull().sum() data.isnull().sum() strokes = len(data[data['stroke'] == 1]) no_strokes = data[data.stroke == 0].index random_indices = np.random.choice(no_strokes, strokes, replace=False) stroke_indices = data[data.stroke == 1].index under_sample_indices = np.concatenate([stroke_indices, random_indices]) udata = data.loc[under_sample_indices] from sklearn.linear_model import LogisticRegression lr = LogisticRegression() lr.fit(X_train, Y_train) Y_pred = lr.predict(X_test) features = np.array([[0, 78, 0, 0, 1, 3, 0, 60, 28.8, 1]]) prediction = lr.predict(features) print('Prediction: {}'.format(prediction))
code
105213782/cell_17
[ "text_plain_output_1.png" ]
from sklearn import preprocessing import pandas as pd data = pd.read_csv('../input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv') data.drop(['id'], axis=1, inplace=True) data.isnull().sum() data.isnull().sum() from sklearn import preprocessing label_encoder = preprocessing.LabelEncoder() data['gender'] = label_encoder.fit_transform(data['gender']) data['gender'].unique() data['ever_married'] = label_encoder.fit_transform(data['ever_married']) data['ever_married'].unique() data['work_type'] = label_encoder.fit_transform(data['work_type']) data['work_type'].unique() data['Residence_type'] = label_encoder.fit_transform(data['Residence_type']) data['Residence_type'].unique() data['smoking_status'] = label_encoder.fit_transform(data['smoking_status']) data['smoking_status'].unique()
code