path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
2035143/cell_7
[ "text_plain_output_1.png" ]
from keras.layers import Dense from keras.models import Sequential from keras.utils import to_categorical from sklearn import preprocessing,cross_validation,neighbors from sklearn import tree from sklearn.model_selection import cross_val_score import numpy as np import pandas as pd import numpy as np import pandas as pd from sklearn import preprocessing, cross_validation, neighbors from keras.models import Sequential from keras.layers import Dense from keras.utils import to_categorical from sklearn import tree import graphviz from sklearn.model_selection import cross_val_score df = pd.read_csv('../input/glass.csv') X = np.array(df.drop(['Type'], 1).astype(float)) X = preprocessing.scale(X) y = np.array(df['Type']) y = to_categorical(y) X_train, X_test, y_train, y_test = cross_validation.train_test_split(X, y, test_size=0.2) clf = neighbors.KNeighborsClassifier() clf.fit(X_train, y_train) accuracy = clf.score(X_test, y_test) model = Sequential() model.add(Dense(50, activation='relu', input_shape=(X.shape[1],))) model.add(Dense(25, activation='relu')) model.add(Dense(y.shape[1], activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(X, y, epochs=50, batch_size=5, validation_split=0.2, verbose=True) scores = model.evaluate(X, y) trs = tree.DecisionTreeClassifier(max_depth=3) cross_val_score(trs, X, y, cv=5)
code
2035143/cell_3
[ "text_plain_output_1.png" ]
from keras.utils import to_categorical from sklearn import preprocessing,cross_validation,neighbors import numpy as np import pandas as pd import numpy as np import pandas as pd from sklearn import preprocessing, cross_validation, neighbors from keras.models import Sequential from keras.layers import Dense from keras.utils import to_categorical from sklearn import tree import graphviz from sklearn.model_selection import cross_val_score df = pd.read_csv('../input/glass.csv') X = np.array(df.drop(['Type'], 1).astype(float)) X = preprocessing.scale(X) y = np.array(df['Type']) y = to_categorical(y) X_train, X_test, y_train, y_test = cross_validation.train_test_split(X, y, test_size=0.2) clf = neighbors.KNeighborsClassifier() clf.fit(X_train, y_train) accuracy = clf.score(X_test, y_test) print('accuracy', accuracy)
code
2035143/cell_5
[ "text_plain_output_1.png" ]
from keras.layers import Dense from keras.models import Sequential from keras.utils import to_categorical from sklearn import preprocessing,cross_validation,neighbors import numpy as np import pandas as pd import numpy as np import pandas as pd from sklearn import preprocessing, cross_validation, neighbors from keras.models import Sequential from keras.layers import Dense from keras.utils import to_categorical from sklearn import tree import graphviz from sklearn.model_selection import cross_val_score df = pd.read_csv('../input/glass.csv') X = np.array(df.drop(['Type'], 1).astype(float)) X = preprocessing.scale(X) y = np.array(df['Type']) y = to_categorical(y) X_train, X_test, y_train, y_test = cross_validation.train_test_split(X, y, test_size=0.2) clf = neighbors.KNeighborsClassifier() clf.fit(X_train, y_train) accuracy = clf.score(X_test, y_test) model = Sequential() model.add(Dense(50, activation='relu', input_shape=(X.shape[1],))) model.add(Dense(25, activation='relu')) model.add(Dense(y.shape[1], activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(X, y, epochs=50, batch_size=5, validation_split=0.2, verbose=True) scores = model.evaluate(X, y) print('\n%s: %.2f%%' % (model.metrics_names[1], scores[1] * 100))
code
128048859/cell_13
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv') test = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv') original = pd.read_csv('/kaggle/input/originall/dataa.csv') desc = train.describe().T desc['nunique'] = train.nunique() desc['%unique'] = desc['nunique'] / len(train) * 100 desc['null'] = train.isna().sum() desc['type'] = train.dtypes desc.head(60) desc = test.describe().T desc['nunique'] = test.nunique() desc['%unique'] = desc['nunique'] / len(test) * 100 desc['null'] = test.isna().sum() desc['type'] = test.dtypes desc.head(60)
code
128048859/cell_9
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv') test = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv') original = pd.read_csv('/kaggle/input/originall/dataa.csv') test.head()
code
128048859/cell_20
[ "text_html_output_1.png" ]
import math import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns train = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv') test = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv') original = pd.read_csv('/kaggle/input/originall/dataa.csv') original = original.rename(columns={'Row': 'id'}) desc = train.describe().T desc['nunique'] = train.nunique() desc['%unique'] = desc['nunique'] / len(train) * 100 desc['null'] = train.isna().sum() desc['type'] = train.dtypes desc.head(60) desc = test.describe().T desc['nunique'] = test.nunique() desc['%unique'] = desc['nunique'] / len(test) * 100 desc['null'] = test.isna().sum() desc['type'] = test.dtypes desc.head(60) import math train_data=train.drop(columns=['id','yield'],axis=1) test_data=test.drop(columns='id',axis=1) original_data=original.drop(columns=['yield','id'],axis=1) numerical_columns = train_data.select_dtypes(include=['float64', 'int64']).columns.tolist() # calculate number of rows and columns needed for subplots num_plots = len(numerical_columns) num_rows = math.ceil(num_plots/3) num_cols = min(num_plots, 3) # create subplots fig, axes = plt.subplots(nrows=num_rows, ncols=num_cols, figsize=(12, 4*num_rows)) # loop over columns and plot distribution plot_idx = 0 for i in range(num_rows): for j in range(num_cols): if plot_idx >= num_plots: break if (train[numerical_columns[plot_idx]].count() > 0) and (test[numerical_columns[plot_idx]].count() > 0): sns.kdeplot(train_data[numerical_columns[plot_idx]], ax=axes[i][j], color='red', label='train') sns.kdeplot(test_data[numerical_columns[plot_idx]], ax=axes[i][j], color='green', label='test') sns.kdeplot(original_data[numerical_columns[plot_idx]], ax=axes[i][j], color='yellow', label='original') axes[i][j].set_xlabel(numerical_columns[plot_idx]) axes[i][j].legend() plot_idx += 1 else: # empty plot, no data to plot axes[i][j].axis('off') plt.tight_layout() plt.show() def heatmap(dataset, title): corr = dataset.corr() fig, axes = plt.subplots(figsize=(20, 10)) mask = np.zeros_like(corr) mask[np.triu_indices_from(mask)] = True sns.heatmap(corr, linewidths=0.5, mask=mask, cmap='plasma', annot=True) plt.title(title, fontsize=30) plt.show() heatmap(train_data, 'Train Dataset Correlation') heatmap(original_data, 'original data correlation') heatmap(test_data, 'test data correlation')
code
128048859/cell_26
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.metrics import mean_absolute_error from sklearn.model_selection import KFold, StratifiedKFold, train_test_split, GridSearchCV from xgboost import XGBRegressor import math import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns train = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv') test = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv') original = pd.read_csv('/kaggle/input/originall/dataa.csv') original = original.rename(columns={'Row': 'id'}) desc = train.describe().T desc['nunique'] = train.nunique() desc['%unique'] = desc['nunique'] / len(train) * 100 desc['null'] = train.isna().sum() desc['type'] = train.dtypes desc.head(60) desc = test.describe().T desc['nunique'] = test.nunique() desc['%unique'] = desc['nunique'] / len(test) * 100 desc['null'] = test.isna().sum() desc['type'] = test.dtypes desc.head(60) final_train = pd.concat([train, original]) import math train_data=train.drop(columns=['id','yield'],axis=1) test_data=test.drop(columns='id',axis=1) original_data=original.drop(columns=['yield','id'],axis=1) numerical_columns = train_data.select_dtypes(include=['float64', 'int64']).columns.tolist() # calculate number of rows and columns needed for subplots num_plots = len(numerical_columns) num_rows = math.ceil(num_plots/3) num_cols = min(num_plots, 3) # create subplots fig, axes = plt.subplots(nrows=num_rows, ncols=num_cols, figsize=(12, 4*num_rows)) # loop over columns and plot distribution plot_idx = 0 for i in range(num_rows): for j in range(num_cols): if plot_idx >= num_plots: break if (train[numerical_columns[plot_idx]].count() > 0) and (test[numerical_columns[plot_idx]].count() > 0): sns.kdeplot(train_data[numerical_columns[plot_idx]], ax=axes[i][j], color='red', label='train') sns.kdeplot(test_data[numerical_columns[plot_idx]], ax=axes[i][j], color='green', label='test') sns.kdeplot(original_data[numerical_columns[plot_idx]], ax=axes[i][j], color='yellow', label='original') axes[i][j].set_xlabel(numerical_columns[plot_idx]) axes[i][j].legend() plot_idx += 1 else: # empty plot, no data to plot axes[i][j].axis('off') plt.tight_layout() plt.show() def heatmap(dataset,title): corr = dataset.corr() fig, axes = plt.subplots(figsize=(20, 10)) mask = np.zeros_like(corr) mask[np.triu_indices_from(mask)] = True sns.heatmap(corr, linewidths=.5, mask=mask, cmap='plasma', annot=True,) plt.title(title, fontsize=30) plt.show() # plot_correlation_heatmap(original, 'Original Dataset Correlation') heatmap(train_data, 'Train Dataset Correlation') heatmap(original_data,'original data correlation') heatmap(test_data,'test data correlation') train.drop('id', axis=1, inplace=True) X = train.drop('yield', axis=1) Y = train['yield'] test.set_index('id', inplace=True) from sklearn.metrics import mean_absolute_error cv_scores = list() importance_xgb = list() preds = list() for i in range(3): skf = KFold(n_splits=3, random_state=1004, shuffle=True) for train_ix, test_ix in skf.split(X, Y): X_train, X_test = (X.iloc[train_ix], X.iloc[test_ix]) Y_train, Y_test = (Y.iloc[train_ix], Y.iloc[test_ix]) XGB_md = XGBRegressor(tree_method='gpu_hist', objective='reg:squarederror', colsample_bytree=0.8, gamma=0.8, learning_rate=0.01, max_depth=5, min_child_weight=10, n_estimators=1000, subsample=0.8).fit(X_train, Y_train) importance_xgb.append(XGB_md.feature_importances_) XGB_pred_1 = XGB_md.predict(X_test) cv_scores.append(mean_absolute_error(Y_test, XGB_pred_1)) scores = np.mean(cv_scores) preds = XGB_md.predict(test) preds_df = pd.DataFrame(preds, index=test.index, columns=['yield']) preds_df['id'] = test.index preds_df = preds_df[['id', 'yield']] preds_df.to_csv('submission.csv', index=False) preds_df
code
128048859/cell_2
[ "text_html_output_1.png" ]
import warnings import numpy as np import pandas as pd import seaborn as sns import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.pylab as pylab from sklearn.model_selection import train_test_split from xgboost import XGBRegressor from sklearn.metrics import mean_squared_error from sklearn import metrics import warnings warnings.filterwarnings('ignore') import xgboost as xgb from xgboost.callback import EarlyStopping from sklearn import model_selection from sklearn import metrics from sklearn.model_selection import KFold, StratifiedKFold, train_test_split, GridSearchCV
code
128048859/cell_11
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv') test = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv') original = pd.read_csv('/kaggle/input/originall/dataa.csv') train.info()
code
128048859/cell_7
[ "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
import pandas as pd train = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv') test = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv') original = pd.read_csv('/kaggle/input/originall/dataa.csv') original.head()
code
128048859/cell_18
[ "text_plain_output_1.png" ]
import math import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv') test = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv') original = pd.read_csv('/kaggle/input/originall/dataa.csv') original = original.rename(columns={'Row': 'id'}) desc = train.describe().T desc['nunique'] = train.nunique() desc['%unique'] = desc['nunique'] / len(train) * 100 desc['null'] = train.isna().sum() desc['type'] = train.dtypes desc.head(60) desc = test.describe().T desc['nunique'] = test.nunique() desc['%unique'] = desc['nunique'] / len(test) * 100 desc['null'] = test.isna().sum() desc['type'] = test.dtypes desc.head(60) import math train_data = train.drop(columns=['id', 'yield'], axis=1) test_data = test.drop(columns='id', axis=1) original_data = original.drop(columns=['yield', 'id'], axis=1) numerical_columns = train_data.select_dtypes(include=['float64', 'int64']).columns.tolist() num_plots = len(numerical_columns) num_rows = math.ceil(num_plots / 3) num_cols = min(num_plots, 3) fig, axes = plt.subplots(nrows=num_rows, ncols=num_cols, figsize=(12, 4 * num_rows)) plot_idx = 0 for i in range(num_rows): for j in range(num_cols): if plot_idx >= num_plots: break if train[numerical_columns[plot_idx]].count() > 0 and test[numerical_columns[plot_idx]].count() > 0: sns.kdeplot(train_data[numerical_columns[plot_idx]], ax=axes[i][j], color='red', label='train') sns.kdeplot(test_data[numerical_columns[plot_idx]], ax=axes[i][j], color='green', label='test') sns.kdeplot(original_data[numerical_columns[plot_idx]], ax=axes[i][j], color='yellow', label='original') axes[i][j].set_xlabel(numerical_columns[plot_idx]) axes[i][j].legend() plot_idx += 1 else: axes[i][j].axis('off') plt.tight_layout() plt.show()
code
128048859/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv') test = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv') original = pd.read_csv('/kaggle/input/originall/dataa.csv') original = original.rename(columns={'Row': 'id'}) original.head()
code
128048859/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd import seaborn as sns train = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv') test = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv') original = pd.read_csv('/kaggle/input/originall/dataa.csv') desc = train.describe().T desc['nunique'] = train.nunique() desc['%unique'] = desc['nunique'] / len(train) * 100 desc['null'] = train.isna().sum() desc['type'] = train.dtypes desc.head(60) desc = test.describe().T desc['nunique'] = test.nunique() desc['%unique'] = desc['nunique'] / len(test) * 100 desc['null'] = test.isna().sum() desc['type'] = test.dtypes desc.head(60) sns.displot(train, x='yield', color='green')
code
128048859/cell_24
[ "text_plain_output_1.png" ]
from sklearn.metrics import mean_absolute_error from sklearn.model_selection import KFold, StratifiedKFold, train_test_split, GridSearchCV from xgboost import XGBRegressor import math import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns train = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv') test = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv') original = pd.read_csv('/kaggle/input/originall/dataa.csv') original = original.rename(columns={'Row': 'id'}) desc = train.describe().T desc['nunique'] = train.nunique() desc['%unique'] = desc['nunique'] / len(train) * 100 desc['null'] = train.isna().sum() desc['type'] = train.dtypes desc.head(60) desc = test.describe().T desc['nunique'] = test.nunique() desc['%unique'] = desc['nunique'] / len(test) * 100 desc['null'] = test.isna().sum() desc['type'] = test.dtypes desc.head(60) import math train_data=train.drop(columns=['id','yield'],axis=1) test_data=test.drop(columns='id',axis=1) original_data=original.drop(columns=['yield','id'],axis=1) numerical_columns = train_data.select_dtypes(include=['float64', 'int64']).columns.tolist() # calculate number of rows and columns needed for subplots num_plots = len(numerical_columns) num_rows = math.ceil(num_plots/3) num_cols = min(num_plots, 3) # create subplots fig, axes = plt.subplots(nrows=num_rows, ncols=num_cols, figsize=(12, 4*num_rows)) # loop over columns and plot distribution plot_idx = 0 for i in range(num_rows): for j in range(num_cols): if plot_idx >= num_plots: break if (train[numerical_columns[plot_idx]].count() > 0) and (test[numerical_columns[plot_idx]].count() > 0): sns.kdeplot(train_data[numerical_columns[plot_idx]], ax=axes[i][j], color='red', label='train') sns.kdeplot(test_data[numerical_columns[plot_idx]], ax=axes[i][j], color='green', label='test') sns.kdeplot(original_data[numerical_columns[plot_idx]], ax=axes[i][j], color='yellow', label='original') axes[i][j].set_xlabel(numerical_columns[plot_idx]) axes[i][j].legend() plot_idx += 1 else: # empty plot, no data to plot axes[i][j].axis('off') plt.tight_layout() plt.show() def heatmap(dataset,title): corr = dataset.corr() fig, axes = plt.subplots(figsize=(20, 10)) mask = np.zeros_like(corr) mask[np.triu_indices_from(mask)] = True sns.heatmap(corr, linewidths=.5, mask=mask, cmap='plasma', annot=True,) plt.title(title, fontsize=30) plt.show() # plot_correlation_heatmap(original, 'Original Dataset Correlation') heatmap(train_data, 'Train Dataset Correlation') heatmap(original_data,'original data correlation') heatmap(test_data,'test data correlation') train.drop('id', axis=1, inplace=True) X = train.drop('yield', axis=1) Y = train['yield'] from sklearn.metrics import mean_absolute_error cv_scores = list() importance_xgb = list() preds = list() for i in range(3): print(f'{i} fold cv begin') skf = KFold(n_splits=3, random_state=1004, shuffle=True) for train_ix, test_ix in skf.split(X, Y): X_train, X_test = (X.iloc[train_ix], X.iloc[test_ix]) Y_train, Y_test = (Y.iloc[train_ix], Y.iloc[test_ix]) XGB_md = XGBRegressor(tree_method='gpu_hist', objective='reg:squarederror', colsample_bytree=0.8, gamma=0.8, learning_rate=0.01, max_depth=5, min_child_weight=10, n_estimators=1000, subsample=0.8).fit(X_train, Y_train) importance_xgb.append(XGB_md.feature_importances_) XGB_pred_1 = XGB_md.predict(X_test) cv_scores.append(mean_absolute_error(Y_test, XGB_pred_1)) print(f'{i} fold cv done') scores = np.mean(cv_scores) print('The average RMSE over 3-folds (run 3 times) is:', scores)
code
128048859/cell_14
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv') test = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv') original = pd.read_csv('/kaggle/input/originall/dataa.csv') desc = train.describe().T desc['nunique'] = train.nunique() desc['%unique'] = desc['nunique'] / len(train) * 100 desc['null'] = train.isna().sum() desc['type'] = train.dtypes desc.head(60) desc = test.describe().T desc['nunique'] = test.nunique() desc['%unique'] = desc['nunique'] / len(test) * 100 desc['null'] = test.isna().sum() desc['type'] = test.dtypes desc.head(60) print(f'There are {train.duplicated(subset=list(train)[0:-1]).value_counts()[0]} non-duplicate values out of {train.count()[0]} rows in train dataset') print(f'There are {test.duplicated().value_counts()[0]} non-duplicate values out of {test.count()[0]} rows in test dataset')
code
128048859/cell_10
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd train = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv') test = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv') original = pd.read_csv('/kaggle/input/originall/dataa.csv') train['yield'].value_counts()
code
128048859/cell_12
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv') test = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv') original = pd.read_csv('/kaggle/input/originall/dataa.csv') desc = train.describe().T desc['nunique'] = train.nunique() desc['%unique'] = desc['nunique'] / len(train) * 100 desc['null'] = train.isna().sum() desc['type'] = train.dtypes desc.head(60)
code
128048859/cell_5
[ "image_output_1.png" ]
import pandas as pd train = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv') test = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv') original = pd.read_csv('/kaggle/input/originall/dataa.csv') train.head()
code
105186901/cell_4
[ "text_plain_output_1.png" ]
import os import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import os base_image_dir = os.path.join('..', 'input', 'diabetic-retinopathy-detection') retina_df = pd.read_csv(os.path.join(base_image_dir, 'trainLabels.csv.zip')) retina_df train = retina_df['image'] train
code
105186901/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
105186901/cell_7
[ "application_vnd.jupyter.stderr_output_1.png" ]
from keras.preprocessing.image import ImageDataGenerator train_datagen = ImageDataGenerator(rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True) x_train = train_datagen.flow_from_directory('../input/diabetic-retinopathy-detection/train.zip.001', batch_size=64)
code
105186901/cell_3
[ "text_html_output_1.png" ]
import os import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import os base_image_dir = os.path.join('..', 'input', 'diabetic-retinopathy-detection') retina_df = pd.read_csv(os.path.join(base_image_dir, 'trainLabels.csv.zip')) retina_df
code
105186901/cell_5
[ "text_plain_output_1.png" ]
import os import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import os base_image_dir = os.path.join('..', 'input', 'diabetic-retinopathy-detection') retina_df = pd.read_csv(os.path.join(base_image_dir, 'trainLabels.csv.zip')) retina_df test = retina_df['level'] test
code
104131103/cell_6
[ "image_output_11.png", "image_output_24.png", "image_output_25.png", "image_output_17.png", "image_output_30.png", "image_output_14.png", "image_output_28.png", "image_output_23.png", "image_output_13.png", "image_output_5.png", "image_output_18.png", "image_output_21.png", "image_output_7.png", "image_output_20.png", "image_output_4.png", "image_output_8.png", "image_output_16.png", "image_output_27.png", "image_output_6.png", "image_output_12.png", "image_output_22.png", "image_output_3.png", "image_output_29.png", "image_output_2.png", "image_output_1.png", "image_output_10.png", "image_output_15.png", "image_output_9.png", "image_output_19.png", "image_output_26.png" ]
from sklearn.metrics import mean_absolute_error from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import StandardScaler from sklearn.svm import SVR import matplotlib.pyplot as plt import numpy as np import pandas as pd import pandas as pd import numpy as np from sklearn.model_selection import train_test_split df = pd.read_csv('../input/california-housing-value/housing.csv') X = df.drop(columns=['median_house_value']) y = df['median_house_value'] def preprocess_features(X): total_bedrooms_mean = round(X['total_bedrooms'].mean(), 3) X = X.fillna(total_bedrooms_mean) from sklearn.preprocessing import LabelEncoder le = LabelEncoder() le.fit(X['ocean_proximity']) transformed = le.transform(X['ocean_proximity']) X['ocean_proximity'] = transformed from sklearn.preprocessing import StandardScaler scale = StandardScaler() X = scale.fit_transform(X) return X def run_reg(regressor, x_train, x_test, y_train, y_test): regressor.fit(x_train, y_train) prediction = regressor.predict(x_test) prediction = np.clip(prediction, 15000, 500000) from sklearn.metrics import mean_absolute_error mae = mean_absolute_error(y_test, prediction) import matplotlib.pyplot as plt return mae from sklearn.svm import SVR mae_array = np.zeros((5, 6)) cost = [1000, 10000, 100000, 1000000, 10000000] epsilon = [2000, 5000, 10000, 20000, 50000, 100000] row = 0 column = 0 for i in cost: column = 0 for j in epsilon: svr_reg = SVR(kernel='rbf', C=i, epsilon=j) mae = run_reg(svr_reg, X_train, X_test, y_train, y_test) mae_array[row][column] = mae column = column + 1 row = row + 1
code
104131103/cell_8
[ "image_output_1.png" ]
from sklearn.metrics import mean_absolute_error from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import StandardScaler from sklearn.svm import SVR import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np import pandas as pd import pandas as pd import numpy as np from sklearn.model_selection import train_test_split df = pd.read_csv('../input/california-housing-value/housing.csv') X = df.drop(columns=['median_house_value']) y = df['median_house_value'] def preprocess_features(X): total_bedrooms_mean = round(X['total_bedrooms'].mean(), 3) X = X.fillna(total_bedrooms_mean) from sklearn.preprocessing import LabelEncoder le = LabelEncoder() le.fit(X['ocean_proximity']) transformed = le.transform(X['ocean_proximity']) X['ocean_proximity'] = transformed from sklearn.preprocessing import StandardScaler scale = StandardScaler() X = scale.fit_transform(X) return X def run_reg(regressor, x_train, x_test, y_train, y_test): regressor.fit(x_train, y_train) prediction = regressor.predict(x_test) prediction = np.clip(prediction, 15000, 500000) from sklearn.metrics import mean_absolute_error mae = mean_absolute_error(y_test, prediction) import matplotlib.pyplot as plt return mae from sklearn.svm import SVR mae_array = np.zeros((5, 6)) cost = [1000, 10000, 100000, 1000000, 10000000] epsilon = [2000, 5000, 10000, 20000, 50000, 100000] row = 0 column = 0 for i in cost: column = 0 for j in epsilon: svr_reg = SVR(kernel='rbf', C=i, epsilon=j) mae = run_reg(svr_reg, X_train, X_test, y_train, y_test) mae_array[row][column] = mae column = column + 1 row = row + 1 import matplotlib.pyplot as plt plt.contourf([2000, 5000, 10000, 20000, 50000, 100000], [1000, 10000, 100000, 1000000, 10000000], mae_array, 100, cmap='pink') plt.yscale('log') plt.xscale('log') plt.colorbar() plt.xlabel('Epsilon') plt.ylabel('Cost') plt.show()
code
128020186/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
1008497/cell_13
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns # plotting data = pd.read_csv('../input/Iris.csv') data.drop('Id', axis=1).corr() feature_columns = ['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm'] X = data[feature_columns] y = data['Species'] y.head()
code
1008497/cell_9
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns # plotting data = pd.read_csv('../input/Iris.csv') data.drop('Id', axis=1).corr() sns.violinplot(x='Species', y='PetalWidthCm', data=data)
code
1008497/cell_4
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns # plotting data = pd.read_csv('../input/Iris.csv') sns.pairplot(data.drop('Id', axis=1), hue='Species', size=2)
code
1008497/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns # plotting data = pd.read_csv('../input/Iris.csv') data.drop('Id', axis=1).corr()
code
1008497/cell_2
[ "text_plain_output_1.png", "image_output_1.png" ]
from subprocess import check_output , # This Python 3 environment comes with many helpful analytics libraries installed # It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python # For example, here's several helpful packages to load in import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list the files in the input directory from subprocess import check_output print(check_output(["ls", "../input"]).decode("utf8")) # Any results you write to the current directory are saved as output. # ^^^ DEFAULT SETUP ABOVE HERE. EVERYTHING BELOW MUST BE ADDED import seaborn as sns # plotting from sklearn import tree # classification tree, see http://scikit-learn.org/stable/modules/tree.html
code
1008497/cell_8
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns # plotting data = pd.read_csv('../input/Iris.csv') data.drop('Id', axis=1).corr() sns.violinplot(x='Species', y='PetalLengthCm', data=data)
code
1008497/cell_16
[ "text_html_output_1.png" ]
from IPython.display import Image import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pydotplus import seaborn as sns # plotting data = pd.read_csv('../input/Iris.csv') data.drop('Id', axis=1).corr() feature_columns = ['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm'] X = data[feature_columns] y = data['Species'] X.corr() clf = tree.DecisionTreeClassifier() clf = clf.fit(X, y) with open('iris.dot', 'w') as f: f = tree.export_graphviz(clf, out_file=f) import os os.unlink('iris.dot') import pydotplus dot_data = tree.export_graphviz(clf, out_file=None) graph = pydotplus.graph_from_dot_data(dot_data) graph.write_pdf('iris.pdf') from IPython.display import Image dot_data = tree.export_graphviz(clf, out_file=None, feature_names=X.columns, class_names=['setosa', 'versicolor', 'virginica'], filled=True, rounded=True, special_characters=True) graph = pydotplus.graph_from_dot_data(dot_data) Image(graph.create_png())
code
1008497/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/Iris.csv') data.head()
code
1008497/cell_14
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns # plotting data = pd.read_csv('../input/Iris.csv') data.drop('Id', axis=1).corr() feature_columns = ['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm'] X = data[feature_columns] y = data['Species'] X.corr()
code
1008497/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns # plotting data = pd.read_csv('../input/Iris.csv') data.drop('Id', axis=1).corr() feature_columns = ['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm'] X = data[feature_columns] y = data['Species'] X.head()
code
122256289/cell_21
[ "image_output_1.png" ]
import matplotlib.pyplot as plt # create blank figure fig, ax = plt.subplots() plt.show() # resize figure fig, ax = plt.subplots(figsize=(10,10)) plt.show() # set axis with xlim and ylim, title, labels fig,ax = plt.subplots() ax.set(xlim=[0.5, 4.5], ylim=[-2, 8], title='An Example Axes', ylabel='Y-Axis', xlabel='X-Axis') plt.show() # create multiple subplots along rows fig, ax = plt.subplots(nrows=2) # create multiple subplots along columns fig, ax = plt.subplots(ncols=2) # create multiple subplots along rows and columns fig, ax = plt.subplots(nrows=2,ncols=2) plt.show() # create multiple subplots without overlapping fig, ax = plt.subplots(nrows=2,ncols=2) plt.tight_layout() # avoid overlapping plt.show() # define the index of subplots fig, axes = plt.subplots(nrows=2, ncols=2) axes[0,0].set(title='Upper Left [0,0]') axes[0,1].set(title='Upper Right [0,1]') axes[1,0].set(title='Lower Left [1,0]') axes[1,1].set(title='Lower Right [1,1]') plt.tight_layout() plt.show() x = [10, 15, 20, 25, 30, 35, 40] y = [20, 24, 28, 32, 36, 40, 44] fig, ax = plt.subplots(nrows=2, ncols=2, figsize=(10, 10)) ax[0, 0].plot(x, y) ax[0, 0].bar(x, y) ax[0, 1].scatter(x, y) ax[1, 0].bar(x, y) ax[1, 1].barh(x, y) plt.show()
code
122256289/cell_25
[ "image_output_1.png" ]
import matplotlib.pyplot as plt # create blank figure fig, ax = plt.subplots() plt.show() # resize figure fig, ax = plt.subplots(figsize=(10,10)) plt.show() # set axis with xlim and ylim, title, labels fig,ax = plt.subplots() ax.set(xlim=[0.5, 4.5], ylim=[-2, 8], title='An Example Axes', ylabel='Y-Axis', xlabel='X-Axis') plt.show() # create multiple subplots along rows fig, ax = plt.subplots(nrows=2) # create multiple subplots along columns fig, ax = plt.subplots(ncols=2) # create multiple subplots along rows and columns fig, ax = plt.subplots(nrows=2,ncols=2) plt.show() # create multiple subplots without overlapping fig, ax = plt.subplots(nrows=2,ncols=2) plt.tight_layout() # avoid overlapping plt.show() # define the index of subplots fig, axes = plt.subplots(nrows=2, ncols=2) axes[0,0].set(title='Upper Left [0,0]') axes[0,1].set(title='Upper Right [0,1]') axes[1,0].set(title='Lower Left [1,0]') axes[1,1].set(title='Lower Right [1,1]') plt.tight_layout() plt.show() x = [10, 15, 20, 25, 30, 35, 40] y = [20, 24, 28, 32, 36, 40, 44] fig, ax = plt.subplots(nrows=2,ncols=2,figsize=(10,10)) ax[0,0].plot(x,y) ax[0,0].bar(x,y) # can create multiple plots in same subplot ax[0,1].scatter(x,y) ax[1,0].bar(x,y) ax[1,1].barh(x,y) plt.show() # line plot with artist element fig, ax = plt.subplots() ax.plot(x,y, color='red',linewidth=2, marker='o', linestyle='--', label = 'sales') ax.set(xlim=[0, 50], ylim=[0, 60], title='Line Chart', ylabel='Y-Axis', xlabel='X-Axis') ax.legend() plt.show() fig, ax = plt.subplots() ax.bar(x, y, color='green', label='sales') ax.set(xlim=[0, 50], ylim=[0, 60], title='Bar Chart', ylabel='Y-Axis', xlabel='X-Axis') ax.legend() plt.show()
code
122256289/cell_23
[ "image_output_1.png" ]
import matplotlib.pyplot as plt # create blank figure fig, ax = plt.subplots() plt.show() # resize figure fig, ax = plt.subplots(figsize=(10,10)) plt.show() # set axis with xlim and ylim, title, labels fig,ax = plt.subplots() ax.set(xlim=[0.5, 4.5], ylim=[-2, 8], title='An Example Axes', ylabel='Y-Axis', xlabel='X-Axis') plt.show() # create multiple subplots along rows fig, ax = plt.subplots(nrows=2) # create multiple subplots along columns fig, ax = plt.subplots(ncols=2) # create multiple subplots along rows and columns fig, ax = plt.subplots(nrows=2,ncols=2) plt.show() # create multiple subplots without overlapping fig, ax = plt.subplots(nrows=2,ncols=2) plt.tight_layout() # avoid overlapping plt.show() # define the index of subplots fig, axes = plt.subplots(nrows=2, ncols=2) axes[0,0].set(title='Upper Left [0,0]') axes[0,1].set(title='Upper Right [0,1]') axes[1,0].set(title='Lower Left [1,0]') axes[1,1].set(title='Lower Right [1,1]') plt.tight_layout() plt.show() x = [10, 15, 20, 25, 30, 35, 40] y = [20, 24, 28, 32, 36, 40, 44] fig, ax = plt.subplots(nrows=2,ncols=2,figsize=(10,10)) ax[0,0].plot(x,y) ax[0,0].bar(x,y) # can create multiple plots in same subplot ax[0,1].scatter(x,y) ax[1,0].bar(x,y) ax[1,1].barh(x,y) plt.show() fig, ax = plt.subplots() ax.plot(x, y, color='red', linewidth=2, marker='o', linestyle='--', label='sales') ax.set(xlim=[0, 50], ylim=[0, 60], title='Line Chart', ylabel='Y-Axis', xlabel='X-Axis') ax.legend() plt.show()
code
122256289/cell_6
[ "image_output_1.png" ]
import matplotlib.pyplot as plt fig, ax = plt.subplots() plt.show()
code
122256289/cell_18
[ "image_output_1.png" ]
import matplotlib.pyplot as plt # create blank figure fig, ax = plt.subplots() plt.show() # resize figure fig, ax = plt.subplots(figsize=(10,10)) plt.show() # set axis with xlim and ylim, title, labels fig,ax = plt.subplots() ax.set(xlim=[0.5, 4.5], ylim=[-2, 8], title='An Example Axes', ylabel='Y-Axis', xlabel='X-Axis') plt.show() # create multiple subplots along rows fig, ax = plt.subplots(nrows=2) # create multiple subplots along columns fig, ax = plt.subplots(ncols=2) # create multiple subplots along rows and columns fig, ax = plt.subplots(nrows=2,ncols=2) plt.show() # create multiple subplots without overlapping fig, ax = plt.subplots(nrows=2,ncols=2) plt.tight_layout() # avoid overlapping plt.show() fig, axes = plt.subplots(nrows=2, ncols=2) axes[0, 0].set(title='Upper Left [0,0]') axes[0, 1].set(title='Upper Right [0,1]') axes[1, 0].set(title='Lower Left [1,0]') axes[1, 1].set(title='Lower Right [1,1]') plt.tight_layout() plt.show()
code
122256289/cell_8
[ "image_output_1.png" ]
import matplotlib.pyplot as plt # create blank figure fig, ax = plt.subplots() plt.show() fig, ax = plt.subplots(figsize=(10, 10)) plt.show()
code
122256289/cell_15
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt # create blank figure fig, ax = plt.subplots() plt.show() # resize figure fig, ax = plt.subplots(figsize=(10,10)) plt.show() # set axis with xlim and ylim, title, labels fig,ax = plt.subplots() ax.set(xlim=[0.5, 4.5], ylim=[-2, 8], title='An Example Axes', ylabel='Y-Axis', xlabel='X-Axis') plt.show() # create multiple subplots along rows fig, ax = plt.subplots(nrows=2) fig, ax = plt.subplots(ncols=2)
code
122256289/cell_16
[ "image_output_1.png" ]
import matplotlib.pyplot as plt # create blank figure fig, ax = plt.subplots() plt.show() # resize figure fig, ax = plt.subplots(figsize=(10,10)) plt.show() # set axis with xlim and ylim, title, labels fig,ax = plt.subplots() ax.set(xlim=[0.5, 4.5], ylim=[-2, 8], title='An Example Axes', ylabel='Y-Axis', xlabel='X-Axis') plt.show() # create multiple subplots along rows fig, ax = plt.subplots(nrows=2) # create multiple subplots along columns fig, ax = plt.subplots(ncols=2) fig, ax = plt.subplots(nrows=2, ncols=2) plt.show()
code
122256289/cell_17
[ "image_output_1.png" ]
import matplotlib.pyplot as plt # create blank figure fig, ax = plt.subplots() plt.show() # resize figure fig, ax = plt.subplots(figsize=(10,10)) plt.show() # set axis with xlim and ylim, title, labels fig,ax = plt.subplots() ax.set(xlim=[0.5, 4.5], ylim=[-2, 8], title='An Example Axes', ylabel='Y-Axis', xlabel='X-Axis') plt.show() # create multiple subplots along rows fig, ax = plt.subplots(nrows=2) # create multiple subplots along columns fig, ax = plt.subplots(ncols=2) # create multiple subplots along rows and columns fig, ax = plt.subplots(nrows=2,ncols=2) plt.show() fig, ax = plt.subplots(nrows=2, ncols=2) plt.tight_layout() plt.show()
code
122256289/cell_14
[ "image_output_1.png" ]
import matplotlib.pyplot as plt # create blank figure fig, ax = plt.subplots() plt.show() # resize figure fig, ax = plt.subplots(figsize=(10,10)) plt.show() # set axis with xlim and ylim, title, labels fig,ax = plt.subplots() ax.set(xlim=[0.5, 4.5], ylim=[-2, 8], title='An Example Axes', ylabel='Y-Axis', xlabel='X-Axis') plt.show() fig, ax = plt.subplots(nrows=2)
code
122256289/cell_10
[ "image_output_1.png" ]
import matplotlib.pyplot as plt # create blank figure fig, ax = plt.subplots() plt.show() # resize figure fig, ax = plt.subplots(figsize=(10,10)) plt.show() fig, ax = plt.subplots() ax.set(xlim=[0.5, 4.5], ylim=[-2, 8], title='An Example Axes', ylabel='Y-Axis', xlabel='X-Axis') plt.show()
code
122256289/cell_12
[ "image_output_1.png" ]
import matplotlib.pyplot as plt # create blank figure fig, ax = plt.subplots() plt.show() # resize figure fig, ax = plt.subplots(figsize=(10,10)) plt.show() # set axis with xlim and ylim, title, labels fig,ax = plt.subplots() ax.set(xlim=[0.5, 4.5], ylim=[-2, 8], title='An Example Axes', ylabel='Y-Axis', xlabel='X-Axis') plt.show() plt.savefig('chart1.png') plt.savefig('chart2.png', transparent=True)
code
32067582/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/nlp-getting-started/train.csv') df.shape df.isnull().sum() df.target.value_counts() print('Number of unique keywords : ', df.keyword.nunique())
code
32067582/cell_9
[ "image_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/nlp-getting-started/train.csv') df.shape
code
32067582/cell_20
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/nlp-getting-started/train.csv') df.shape df.isnull().sum() df.target.value_counts() df.keyword.value_counts() df.drop('location', axis=1, inplace=True) df.dropna(inplace=True) df.shape df.isnull().sum()
code
32067582/cell_55
[ "text_plain_output_1.png" ]
from nltk.corpus import stopwords from nltk.corpus import wordnet from nltk.stem import WordNetLemmatizer import nltk import pandas as pd import re df = pd.read_csv('/kaggle/input/nlp-getting-started/train.csv') df.shape df.isnull().sum() df.target.value_counts() df.keyword.value_counts() df.drop('location', axis=1, inplace=True) df.dropna(inplace=True) df.shape df.isnull().sum() df.reset_index(drop=True, inplace=True) nltk.download('punkt') nltk.download('stopwords') nltk.download('averaged_perceptron_tagger') nltk.download('wordnet') def Lower(text): return text.lower() def Tokenisation(text): return nltk.word_tokenize(text) Stpwrd_List = stopwords.words('english') def StopWordsAlphaText(tokenized_text): filtred_text = [] for word in tokenized_text: word = word.strip('!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~') val = re.search('^[a-zA-Z][a-zA-Z0-9]*$', word) if word not in Stpwrd_List and val is not None: filtred_text.append(word) return filtred_text tag_dict = {'J': wordnet.ADJ, 'N': wordnet.NOUN, 'V': wordnet.VERB, 'R': wordnet.ADV} def get_wordnet_pos(word): tag = nltk.pos_tag([word])[0][1][0].upper() return tag_dict.get(tag, wordnet.NOUN) lemmatizer = WordNetLemmatizer() def Lemmetizer(tokens): lemmetized_text = [] for word in tokens: word = lemmatizer.lemmatize(word, get_wordnet_pos(word)) lemmetized_text.append(word) return lemmetized_text df.text = df.text.apply(Lower) df.text = df.text.apply(Tokenisation) df.text = df.text.apply(StopWordsAlphaText) df.text = df.text.apply(Lemmetizer) df.head()
code
32067582/cell_29
[ "text_plain_output_1.png" ]
import nltk nltk.download('punkt') nltk.download('stopwords') nltk.download('averaged_perceptron_tagger') nltk.download('wordnet')
code
32067582/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/nlp-getting-started/train.csv') df.shape df.isnull().sum() df.target.value_counts()
code
32067582/cell_19
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/nlp-getting-started/train.csv') df.shape df.isnull().sum() df.target.value_counts() df.keyword.value_counts() df.drop('location', axis=1, inplace=True) df.dropna(inplace=True) df.shape
code
32067582/cell_8
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/nlp-getting-started/train.csv') df.head()
code
32067582/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/nlp-getting-started/train.csv') df.shape df.isnull().sum() df.target.value_counts() df.keyword.value_counts() print('Number of unique locations :', df.location.nunique())
code
32067582/cell_38
[ "text_plain_output_1.png", "image_output_1.png" ]
from nltk.corpus import stopwords import nltk import re nltk.download('punkt') nltk.download('stopwords') nltk.download('averaged_perceptron_tagger') nltk.download('wordnet') def Lower(text): return text.lower() def Tokenisation(text): return nltk.word_tokenize(text) test = Tokenisation('Hello there. How! are you ? this super notebook is about nlp') Stpwrd_List = stopwords.words('english') def StopWordsAlphaText(tokenized_text): filtred_text = [] for word in tokenized_text: word = word.strip('!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~') val = re.search('^[a-zA-Z][a-zA-Z0-9]*$', word) if word not in Stpwrd_List and val is not None: filtred_text.append(word) return filtred_text StopWordsAlphaText(test)
code
32067582/cell_24
[ "text_plain_output_1.png" ]
import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/nlp-getting-started/train.csv') df.shape df.isnull().sum() df.target.value_counts() df.keyword.value_counts() df.drop('location', axis=1, inplace=True) df.dropna(inplace=True) df.shape df.isnull().sum() df.reset_index(drop=True, inplace=True) sns.countplot(data=df, x='target')
code
32067582/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/nlp-getting-started/train.csv') df.shape df.isnull().sum() df.target.value_counts() df.keyword.value_counts()
code
32067582/cell_53
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
from nltk.corpus import stopwords from nltk.corpus import wordnet from nltk.stem import WordNetLemmatizer import nltk import pandas as pd import re df = pd.read_csv('/kaggle/input/nlp-getting-started/train.csv') df.shape df.isnull().sum() df.target.value_counts() df.keyword.value_counts() df.drop('location', axis=1, inplace=True) df.dropna(inplace=True) df.shape df.isnull().sum() df.reset_index(drop=True, inplace=True) nltk.download('punkt') nltk.download('stopwords') nltk.download('averaged_perceptron_tagger') nltk.download('wordnet') def Lower(text): return text.lower() def Tokenisation(text): return nltk.word_tokenize(text) Stpwrd_List = stopwords.words('english') def StopWordsAlphaText(tokenized_text): filtred_text = [] for word in tokenized_text: word = word.strip('!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~') val = re.search('^[a-zA-Z][a-zA-Z0-9]*$', word) if word not in Stpwrd_List and val is not None: filtred_text.append(word) return filtred_text tag_dict = {'J': wordnet.ADJ, 'N': wordnet.NOUN, 'V': wordnet.VERB, 'R': wordnet.ADV} def get_wordnet_pos(word): tag = nltk.pos_tag([word])[0][1][0].upper() return tag_dict.get(tag, wordnet.NOUN) lemmatizer = WordNetLemmatizer() def Lemmetizer(tokens): lemmetized_text = [] for word in tokens: word = lemmatizer.lemmatize(word, get_wordnet_pos(word)) lemmetized_text.append(word) return lemmetized_text df.text = df.text.apply(Lower) df.text = df.text.apply(Tokenisation) df.text = df.text.apply(StopWordsAlphaText) df.text = df.text.apply(Lemmetizer) df.head()
code
32067582/cell_10
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/nlp-getting-started/train.csv') df.shape df.isnull().sum()
code
105207855/cell_34
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd df = pd.read_csv('/kaggle/input/time-series-datasets/monthly-beer-production-in-austr.csv') df.Month = pd.to_datetime(df.Month) df = df.set_index('Month') rolling_mean = df.rolling(window=12).mean() rolling_std = df.rolling(window=12).std() plt.xlabel = 'Dates' plt.ylabel = 'Total Production' train_data = df[:len(df) - 12] test_data = df[len(df) - 12:] test_data
code
105207855/cell_30
[ "text_plain_output_1.png" ]
from statsmodels.tools.eval_measures import rmse from statsmodels.tsa.statespace.sarimax import SARIMAX import matplotlib.pyplot as plt import pandas as pd df = pd.read_csv('/kaggle/input/time-series-datasets/monthly-beer-production-in-austr.csv') df.Month = pd.to_datetime(df.Month) df = df.set_index('Month') rolling_mean = df.rolling(window=12).mean() rolling_std = df.rolling(window=12).std() plt.xlabel = 'Dates' plt.ylabel = 'Total Production' train_data = df[:len(df) - 12] test_data = df[len(df) - 12:] arima_model = SARIMAX(train_data['Monthly beer production'], order=(2, 1, 1), seasonal_order=(4, 0, 3, 12)) arima_result = arima_model.fit() arima_result.summary() arima_pred = arima_result.predict(start=len(train_data), end=len(df) - 1, typ='levels').rename('ARIMA Predictions') arima_pred arima_rmse_error = rmse(test_data['Monthly beer production'], arima_pred) arima_mse_error = arima_rmse_error ** 2 mean_value = df['Monthly beer production'].mean() print(f'MSE Error: {arima_mse_error}\nRMSE Error: {arima_rmse_error}\nMean: {mean_value}')
code
105207855/cell_33
[ "text_plain_output_1.png" ]
from statsmodels.tsa.statespace.sarimax import SARIMAX import matplotlib.pyplot as plt import pandas as pd df = pd.read_csv('/kaggle/input/time-series-datasets/monthly-beer-production-in-austr.csv') df.Month = pd.to_datetime(df.Month) df = df.set_index('Month') rolling_mean = df.rolling(window=12).mean() rolling_std = df.rolling(window=12).std() plt.xlabel = 'Dates' plt.ylabel = 'Total Production' train_data = df[:len(df) - 12] test_data = df[len(df) - 12:] arima_model = SARIMAX(train_data['Monthly beer production'], order=(2, 1, 1), seasonal_order=(4, 0, 3, 12)) arima_result = arima_model.fit() arima_result.summary() arima_pred = arima_result.predict(start=len(train_data), end=len(df) - 1, typ='levels').rename('ARIMA Predictions') arima_pred test_data['ARIMA_Predictions'] = arima_pred
code
105207855/cell_6
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd from pandas.plotting import autocorrelation_plot from pandas import DataFrame from pandas import concat import numpy as np from math import sqrt from sklearn.metrics import mean_squared_error from statsmodels.tsa.seasonal import seasonal_decompose from statsmodels.tsa.stattools import adfuller from statsmodels.tsa.stattools import acf from statsmodels.tsa.stattools import pacf from statsmodels.tsa.arima_model import ARIMA from scipy.stats import boxcox import seaborn as sns sns.set_style('whitegrid') import matplotlib.pyplot as plt from matplotlib.pylab import rcParams from matplotlib import colors import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
105207855/cell_26
[ "image_output_1.png" ]
from statsmodels.tsa.statespace.sarimax import SARIMAX import matplotlib.pyplot as plt import pandas as pd df = pd.read_csv('/kaggle/input/time-series-datasets/monthly-beer-production-in-austr.csv') df.Month = pd.to_datetime(df.Month) df = df.set_index('Month') rolling_mean = df.rolling(window=12).mean() rolling_std = df.rolling(window=12).std() plt.xlabel = 'Dates' plt.ylabel = 'Total Production' train_data = df[:len(df) - 12] test_data = df[len(df) - 12:] arima_model = SARIMAX(train_data['Monthly beer production'], order=(2, 1, 1), seasonal_order=(4, 0, 3, 12)) arima_result = arima_model.fit() arima_result.summary() arima_pred = arima_result.predict(start=len(train_data), end=len(df) - 1, typ='levels').rename('ARIMA Predictions') arima_pred
code
105207855/cell_18
[ "image_output_1.png" ]
from matplotlib.pylab import rcParams from statsmodels.tsa.seasonal import seasonal_decompose import matplotlib.pyplot as plt import pandas as pd df = pd.read_csv('/kaggle/input/time-series-datasets/monthly-beer-production-in-austr.csv') df.Month = pd.to_datetime(df.Month) df = df.set_index('Month') rolling_mean = df.rolling(window=12).mean() rolling_std = df.rolling(window=12).std() plt.xlabel = 'Dates' plt.ylabel = 'Total Production' rcParams['figure.figsize'] = (12, 8) a = seasonal_decompose(df['Monthly beer production'], model='add') plt.figure(figsize=(25, 5)) a = seasonal_decompose(df['Monthly beer production'], model='add') plt.subplot(1, 3, 1) plt.plot(a.seasonal) plt.subplot(1, 3, 2) plt.plot(a.trend) plt.subplot(1, 3, 3) plt.plot(a.resid) plt.show()
code
105207855/cell_32
[ "image_output_1.png" ]
from matplotlib.pylab import rcParams from statsmodels.tsa.seasonal import seasonal_decompose from statsmodels.tsa.statespace.sarimax import SARIMAX import matplotlib.pyplot as plt import pandas as pd df = pd.read_csv('/kaggle/input/time-series-datasets/monthly-beer-production-in-austr.csv') df.Month = pd.to_datetime(df.Month) df = df.set_index('Month') rolling_mean = df.rolling(window=12).mean() rolling_std = df.rolling(window=12).std() plt.xlabel = 'Dates' plt.ylabel = 'Total Production' rcParams['figure.figsize'] = (12, 8) a = seasonal_decompose(df['Monthly beer production'], model='add') a = seasonal_decompose(df['Monthly beer production'], model='add') train_data = df[:len(df) - 12] test_data = df[len(df) - 12:] arima_model = SARIMAX(train_data['Monthly beer production'], order=(2, 1, 1), seasonal_order=(4, 0, 3, 12)) arima_result = arima_model.fit() arima_result.summary() arima_pred = arima_result.predict(start=len(train_data), end=len(df) - 1, typ='levels').rename('ARIMA Predictions') arima_pred plt.figure(figsize=(10, 6)) plt.plot(test_data, label='true values', color='blue') plt.plot(arima_pred, label='forecasts', color='orange') plt.title('ARIMA Model', size=14) plt.legend(loc='upper left') plt.show()
code
105207855/cell_8
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/time-series-datasets/monthly-beer-production-in-austr.csv') df.head()
code
105207855/cell_17
[ "image_output_1.png" ]
from matplotlib.pylab import rcParams from statsmodels.tsa.seasonal import seasonal_decompose import matplotlib.pyplot as plt import pandas as pd df = pd.read_csv('/kaggle/input/time-series-datasets/monthly-beer-production-in-austr.csv') df.Month = pd.to_datetime(df.Month) df = df.set_index('Month') rolling_mean = df.rolling(window=12).mean() rolling_std = df.rolling(window=12).std() plt.xlabel = 'Dates' plt.ylabel = 'Total Production' rcParams['figure.figsize'] = (12, 8) a = seasonal_decompose(df['Monthly beer production'], model='add') a.plot()
code
105207855/cell_24
[ "image_output_1.png" ]
from statsmodels.tsa.statespace.sarimax import SARIMAX import matplotlib.pyplot as plt import pandas as pd df = pd.read_csv('/kaggle/input/time-series-datasets/monthly-beer-production-in-austr.csv') df.Month = pd.to_datetime(df.Month) df = df.set_index('Month') rolling_mean = df.rolling(window=12).mean() rolling_std = df.rolling(window=12).std() plt.xlabel = 'Dates' plt.ylabel = 'Total Production' train_data = df[:len(df) - 12] test_data = df[len(df) - 12:] arima_model = SARIMAX(train_data['Monthly beer production'], order=(2, 1, 1), seasonal_order=(4, 0, 3, 12)) arima_result = arima_model.fit() arima_result.summary()
code
105207855/cell_14
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd df = pd.read_csv('/kaggle/input/time-series-datasets/monthly-beer-production-in-austr.csv') df.Month = pd.to_datetime(df.Month) df = df.set_index('Month') rolling_mean = df.rolling(window=12).mean() rolling_std = df.rolling(window=12).std() plt.figure(figsize=(18, 9)) plt.plot(df.index, df['Monthly beer production'], linestyle='-') plt.xlabel = 'Dates' plt.ylabel = 'Total Production' plt.show()
code
105207855/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/time-series-datasets/monthly-beer-production-in-austr.csv') df.Month = pd.to_datetime(df.Month) df = df.set_index('Month') df.head()
code
105207855/cell_27
[ "text_plain_output_4.png", "application_vnd.jupyter.stderr_output_3.png", "application_vnd.jupyter.stderr_output_5.png", "text_html_output_1.png", "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from statsmodels.tsa.statespace.sarimax import SARIMAX import matplotlib.pyplot as plt import pandas as pd df = pd.read_csv('/kaggle/input/time-series-datasets/monthly-beer-production-in-austr.csv') df.Month = pd.to_datetime(df.Month) df = df.set_index('Month') rolling_mean = df.rolling(window=12).mean() rolling_std = df.rolling(window=12).std() plt.xlabel = 'Dates' plt.ylabel = 'Total Production' train_data = df[:len(df) - 12] test_data = df[len(df) - 12:] arima_model = SARIMAX(train_data['Monthly beer production'], order=(2, 1, 1), seasonal_order=(4, 0, 3, 12)) arima_result = arima_model.fit() arima_result.summary() arima_pred = arima_result.predict(start=len(train_data), end=len(df) - 1, typ='levels').rename('ARIMA Predictions') arima_pred test_data['Monthly beer production'].plot(figsize=(16, 5), legend=True) arima_pred.plot(legend=True)
code
105207855/cell_12
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd df = pd.read_csv('/kaggle/input/time-series-datasets/monthly-beer-production-in-austr.csv') df.Month = pd.to_datetime(df.Month) df = df.set_index('Month') rolling_mean = df.rolling(window=12).mean() rolling_std = df.rolling(window=12).std() plt.figure(figsize=(10, 6)) plt.plot(df, color='cornflowerblue', label='Original') plt.plot(rolling_mean, color='firebrick', label='Rolling Mean') plt.plot(rolling_std, color='limegreen', label='Rolling Std') plt.xlabel('Date', size=12) plt.ylabel('Monthly Beer Production', size=12) plt.legend(loc='upper left') plt.title('Rolling Statistics', size=14) plt.show()
code
1005562/cell_13
[ "image_output_1.png" ]
import matplotlib import numpy as np import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') matplotlib.rcParams['figure.figsize'] = (12.0, 6.0) prices = pd.DataFrame({'price': train['SalePrice'], 'log(price + 1)': np.log1p(train['SalePrice'])}) all_data = pd.concat((train.loc[:, 'MSSubClass':'SaleCondition'], test.loc[:, 'MSSubClass':'SaleCondition'])) print('Skewness: %f' % train['SalePrice'].skew()) print('Kurtosis: %f' % train['SalePrice'].kurt())
code
1005562/cell_57
[ "text_plain_output_1.png", "image_output_1.png" ]
from scipy.stats import skew from sklearn.linear_model import Ridge, RidgeCV, ElasticNet, LassoCV, LassoLarsCV from sklearn.model_selection import cross_val_score import matplotlib import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') matplotlib.rcParams['figure.figsize'] = (12.0, 6.0) prices = pd.DataFrame({'price': train['SalePrice'], 'log(price + 1)': np.log1p(train['SalePrice'])}) all_data = pd.concat((train.loc[:, 'MSSubClass':'SaleCondition'], test.loc[:, 'MSSubClass':'SaleCondition'])) train['SalePrice'] = np.log1p(train['SalePrice']) numeric_feats = all_data.dtypes[all_data.dtypes != 'object'].index skewed_feats = train[numeric_feats].apply(lambda x: skew(x.dropna())) skewed_feats = skewed_feats[skewed_feats > 0.75] skewed_feats = skewed_feats.index all_data[skewed_feats] = np.log1p(all_data[skewed_feats]) all_data = pd.get_dummies(all_data) total = train.isnull().sum().sort_values(ascending=False) percent = (train.isnull().sum() / train.isnull().count()).sort_values(ascending=False) missing_data = pd.concat([total, percent], axis=1, keys=['Total', 'Percent']) all_data = all_data.fillna(all_data.mean()) X_train = all_data[:train.shape[0]] X_test = all_data[train.shape[0]:] y = train.SalePrice from sklearn.linear_model import Ridge, RidgeCV, ElasticNet, LassoCV, LassoLarsCV from sklearn.model_selection import cross_val_score def rmse_cv(model): rmse = np.sqrt(-cross_val_score(model, X_train, y, scoring='neg_mean_squared_error', cv=5)) return rmse model_elasticnet = ElasticNet() alphas_en = [0.001, 0.005, 0.1, 0.2, 0.3] cv_rmse_en = [rmse_cv(ElasticNet(alpha=alpha)).mean() for alpha in alphas_en] cv_en = pd.Series(cv_rmse_en, index=alphas_en) model_elasticnet = ElasticNet(alpha=0.026).fit(X_train, y) matplotlib.rcParams['figure.figsize'] = (6.0, 6.0) preds_en = pd.DataFrame({'preds EN': model_elasticnet.predict(X_train), 'true': y}) preds_en['residuals'] = preds_en['true'] - preds_en['preds EN'] alphas = [0.05, 0.1, 0.3, 1, 3, 5, 10, 15, 30, 50, 75] cv_ridge = [rmse_cv(Ridge(alpha=alpha)).mean() for alpha in alphas] cv_ridge = pd.Series(cv_ridge, index=alphas) corr = train.select_dtypes(include=['float64', 'int64']).iloc[:, 1:].corr() cor_dict = corr['SalePrice'].to_dict() del cor_dict['SalePrice'] print('List the numerical features decendingly by their correlation with Sale Price:\n') for ele in sorted(cor_dict.items(), key=lambda x: -abs(x[1])): print('{0}: \t{1}'.format(*ele))
code
1005562/cell_56
[ "text_plain_output_1.png" ]
from scipy.stats import skew from sklearn.linear_model import Ridge, RidgeCV, ElasticNet, LassoCV, LassoLarsCV from sklearn.model_selection import cross_val_score import matplotlib import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') matplotlib.rcParams['figure.figsize'] = (12.0, 6.0) prices = pd.DataFrame({'price': train['SalePrice'], 'log(price + 1)': np.log1p(train['SalePrice'])}) all_data = pd.concat((train.loc[:, 'MSSubClass':'SaleCondition'], test.loc[:, 'MSSubClass':'SaleCondition'])) train['SalePrice'] = np.log1p(train['SalePrice']) numeric_feats = all_data.dtypes[all_data.dtypes != 'object'].index skewed_feats = train[numeric_feats].apply(lambda x: skew(x.dropna())) skewed_feats = skewed_feats[skewed_feats > 0.75] skewed_feats = skewed_feats.index all_data[skewed_feats] = np.log1p(all_data[skewed_feats]) all_data = pd.get_dummies(all_data) total = train.isnull().sum().sort_values(ascending=False) percent = (train.isnull().sum() / train.isnull().count()).sort_values(ascending=False) missing_data = pd.concat([total, percent], axis=1, keys=['Total', 'Percent']) all_data = all_data.fillna(all_data.mean()) X_train = all_data[:train.shape[0]] X_test = all_data[train.shape[0]:] y = train.SalePrice from sklearn.linear_model import Ridge, RidgeCV, ElasticNet, LassoCV, LassoLarsCV from sklearn.model_selection import cross_val_score def rmse_cv(model): rmse = np.sqrt(-cross_val_score(model, X_train, y, scoring='neg_mean_squared_error', cv=5)) return rmse model_elasticnet = ElasticNet() alphas_en = [0.001, 0.005, 0.1, 0.2, 0.3] cv_rmse_en = [rmse_cv(ElasticNet(alpha=alpha)).mean() for alpha in alphas_en] cv_en = pd.Series(cv_rmse_en, index=alphas_en) model_elasticnet = ElasticNet(alpha=0.026).fit(X_train, y) matplotlib.rcParams['figure.figsize'] = (6.0, 6.0) preds_en = pd.DataFrame({'preds EN': model_elasticnet.predict(X_train), 'true': y}) preds_en['residuals'] = preds_en['true'] - preds_en['preds EN'] alphas = [0.05, 0.1, 0.3, 1, 3, 5, 10, 15, 30, 50, 75] cv_ridge = [rmse_cv(Ridge(alpha=alpha)).mean() for alpha in alphas] cv_ridge = pd.Series(cv_ridge, index=alphas) corr = train.select_dtypes(include=['float64', 'int64']).iloc[:, 1:].corr() plt.figure(figsize=(12, 12)) sns.heatmap(corr, vmax=1, square=True)
code
1005562/cell_33
[ "text_plain_output_1.png", "image_output_1.png" ]
from scipy.stats import skew from sklearn.linear_model import Ridge, RidgeCV, ElasticNet, LassoCV, LassoLarsCV from sklearn.model_selection import cross_val_score import matplotlib import matplotlib.pyplot as plt import numpy as np import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') matplotlib.rcParams['figure.figsize'] = (12.0, 6.0) prices = pd.DataFrame({'price': train['SalePrice'], 'log(price + 1)': np.log1p(train['SalePrice'])}) all_data = pd.concat((train.loc[:, 'MSSubClass':'SaleCondition'], test.loc[:, 'MSSubClass':'SaleCondition'])) train['SalePrice'] = np.log1p(train['SalePrice']) numeric_feats = all_data.dtypes[all_data.dtypes != 'object'].index skewed_feats = train[numeric_feats].apply(lambda x: skew(x.dropna())) skewed_feats = skewed_feats[skewed_feats > 0.75] skewed_feats = skewed_feats.index all_data[skewed_feats] = np.log1p(all_data[skewed_feats]) all_data = pd.get_dummies(all_data) total = train.isnull().sum().sort_values(ascending=False) percent = (train.isnull().sum() / train.isnull().count()).sort_values(ascending=False) missing_data = pd.concat([total, percent], axis=1, keys=['Total', 'Percent']) all_data = all_data.fillna(all_data.mean()) X_train = all_data[:train.shape[0]] X_test = all_data[train.shape[0]:] y = train.SalePrice from sklearn.linear_model import Ridge, RidgeCV, ElasticNet, LassoCV, LassoLarsCV from sklearn.model_selection import cross_val_score def rmse_cv(model): rmse = np.sqrt(-cross_val_score(model, X_train, y, scoring='neg_mean_squared_error', cv=5)) return rmse model_elasticnet = ElasticNet() alphas_en = [0.001, 0.005, 0.1, 0.2, 0.3] cv_rmse_en = [rmse_cv(ElasticNet(alpha=alpha)).mean() for alpha in alphas_en] cv_en = pd.Series(cv_rmse_en, index=alphas_en) model_elasticnet = ElasticNet(alpha=0.026).fit(X_train, y) matplotlib.rcParams['figure.figsize'] = (6.0, 6.0) preds_en = pd.DataFrame({'preds EN': model_elasticnet.predict(X_train), 'true': y}) preds_en['residuals'] = preds_en['true'] - preds_en['preds EN'] alphas = [0.05, 0.1, 0.3, 1, 3, 5, 10, 15, 30, 50, 75] cv_ridge = [rmse_cv(Ridge(alpha=alpha)).mean() for alpha in alphas] cv_ridge = pd.Series(cv_ridge, index=alphas) cv_ridge.max()
code
1005562/cell_55
[ "text_plain_output_1.png" ]
from scipy.stats import skew import matplotlib import numpy as np import pandas as pd import seaborn as sns train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') matplotlib.rcParams['figure.figsize'] = (12.0, 6.0) prices = pd.DataFrame({'price': train['SalePrice'], 'log(price + 1)': np.log1p(train['SalePrice'])}) all_data = pd.concat((train.loc[:, 'MSSubClass':'SaleCondition'], test.loc[:, 'MSSubClass':'SaleCondition'])) train['SalePrice'] = np.log1p(train['SalePrice']) numeric_feats = all_data.dtypes[all_data.dtypes != 'object'].index skewed_feats = train[numeric_feats].apply(lambda x: skew(x.dropna())) skewed_feats = skewed_feats[skewed_feats > 0.75] skewed_feats = skewed_feats.index all_data[skewed_feats] = np.log1p(all_data[skewed_feats]) all_data = pd.get_dummies(all_data) total = train.isnull().sum().sort_values(ascending=False) percent = (train.isnull().sum() / train.isnull().count()).sort_values(ascending=False) missing_data = pd.concat([total, percent], axis=1, keys=['Total', 'Percent']) all_data = all_data.fillna(all_data.mean()) X_train = all_data[:train.shape[0]] X_test = all_data[train.shape[0]:] y = train.SalePrice sns.regplot(x='OverallQual', y='SalePrice', data=train, color='Orange')
code
1005562/cell_26
[ "text_plain_output_1.png", "image_output_1.png" ]
from scipy.stats import skew from sklearn.linear_model import Ridge, RidgeCV, ElasticNet, LassoCV, LassoLarsCV from sklearn.model_selection import cross_val_score import matplotlib import matplotlib.pyplot as plt import numpy as np import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') matplotlib.rcParams['figure.figsize'] = (12.0, 6.0) prices = pd.DataFrame({'price': train['SalePrice'], 'log(price + 1)': np.log1p(train['SalePrice'])}) all_data = pd.concat((train.loc[:, 'MSSubClass':'SaleCondition'], test.loc[:, 'MSSubClass':'SaleCondition'])) train['SalePrice'] = np.log1p(train['SalePrice']) numeric_feats = all_data.dtypes[all_data.dtypes != 'object'].index skewed_feats = train[numeric_feats].apply(lambda x: skew(x.dropna())) skewed_feats = skewed_feats[skewed_feats > 0.75] skewed_feats = skewed_feats.index all_data[skewed_feats] = np.log1p(all_data[skewed_feats]) all_data = pd.get_dummies(all_data) total = train.isnull().sum().sort_values(ascending=False) percent = (train.isnull().sum() / train.isnull().count()).sort_values(ascending=False) missing_data = pd.concat([total, percent], axis=1, keys=['Total', 'Percent']) all_data = all_data.fillna(all_data.mean()) X_train = all_data[:train.shape[0]] X_test = all_data[train.shape[0]:] y = train.SalePrice from sklearn.linear_model import Ridge, RidgeCV, ElasticNet, LassoCV, LassoLarsCV from sklearn.model_selection import cross_val_score def rmse_cv(model): rmse = np.sqrt(-cross_val_score(model, X_train, y, scoring='neg_mean_squared_error', cv=5)) return rmse model_elasticnet = ElasticNet() alphas_en = [0.001, 0.005, 0.1, 0.2, 0.3] cv_rmse_en = [rmse_cv(ElasticNet(alpha=alpha)).mean() for alpha in alphas_en] cv_en = pd.Series(cv_rmse_en, index=alphas_en) cv_en.plot(title='Validation - Elastic Net') plt.xlabel('alphas') plt.ylabel('rmse')
code
1005562/cell_41
[ "text_plain_output_1.png", "image_output_1.png" ]
from scipy.stats import skew from sklearn.linear_model import Ridge, RidgeCV, ElasticNet, LassoCV, LassoLarsCV from sklearn.model_selection import cross_val_score import matplotlib import matplotlib.pyplot as plt import numpy as np import pandas as pd import xgboost as xgb train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') matplotlib.rcParams['figure.figsize'] = (12.0, 6.0) prices = pd.DataFrame({'price': train['SalePrice'], 'log(price + 1)': np.log1p(train['SalePrice'])}) all_data = pd.concat((train.loc[:, 'MSSubClass':'SaleCondition'], test.loc[:, 'MSSubClass':'SaleCondition'])) train['SalePrice'] = np.log1p(train['SalePrice']) numeric_feats = all_data.dtypes[all_data.dtypes != 'object'].index skewed_feats = train[numeric_feats].apply(lambda x: skew(x.dropna())) skewed_feats = skewed_feats[skewed_feats > 0.75] skewed_feats = skewed_feats.index all_data[skewed_feats] = np.log1p(all_data[skewed_feats]) all_data = pd.get_dummies(all_data) total = train.isnull().sum().sort_values(ascending=False) percent = (train.isnull().sum() / train.isnull().count()).sort_values(ascending=False) missing_data = pd.concat([total, percent], axis=1, keys=['Total', 'Percent']) all_data = all_data.fillna(all_data.mean()) X_train = all_data[:train.shape[0]] X_test = all_data[train.shape[0]:] y = train.SalePrice from sklearn.linear_model import Ridge, RidgeCV, ElasticNet, LassoCV, LassoLarsCV from sklearn.model_selection import cross_val_score def rmse_cv(model): rmse = np.sqrt(-cross_val_score(model, X_train, y, scoring='neg_mean_squared_error', cv=5)) return rmse model_elasticnet = ElasticNet() alphas_en = [0.001, 0.005, 0.1, 0.2, 0.3] cv_rmse_en = [rmse_cv(ElasticNet(alpha=alpha)).mean() for alpha in alphas_en] cv_en = pd.Series(cv_rmse_en, index=alphas_en) model_elasticnet = ElasticNet(alpha=0.026).fit(X_train, y) matplotlib.rcParams['figure.figsize'] = (6.0, 6.0) preds_en = pd.DataFrame({'preds EN': model_elasticnet.predict(X_train), 'true': y}) preds_en['residuals'] = preds_en['true'] - preds_en['preds EN'] alphas = [0.05, 0.1, 0.3, 1, 3, 5, 10, 15, 30, 50, 75] cv_ridge = [rmse_cv(Ridge(alpha=alpha)).mean() for alpha in alphas] cv_ridge = pd.Series(cv_ridge, index=alphas) dtrain = xgb.DMatrix(X_train, label=y) dtest = xgb.DMatrix(X_test) params = {'max_depth': 2, 'eta': 0.1} model = xgb.cv(params, dtrain, num_boost_round=500, early_stopping_rounds=100) model_xgb = xgb.XGBRegressor(n_estimators=360, max_depth=2, learning_rate=0.1) model_xgb.fit(X_train, y) xgb_preds = np.expm1(model_xgb.predict(X_test)) en_preds = np.expm1(model_elasticnet.predict(X_test)) predictions = pd.DataFrame({'en': xgb_preds, 'xgb': xgb_preds}) predictions.plot(x='en', y='xgb', kind='scatter')
code
1005562/cell_54
[ "application_vnd.jupyter.stderr_output_1.png" ]
from scipy.stats import skew import matplotlib import numpy as np import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') matplotlib.rcParams['figure.figsize'] = (12.0, 6.0) prices = pd.DataFrame({'price': train['SalePrice'], 'log(price + 1)': np.log1p(train['SalePrice'])}) all_data = pd.concat((train.loc[:, 'MSSubClass':'SaleCondition'], test.loc[:, 'MSSubClass':'SaleCondition'])) train['SalePrice'] = np.log1p(train['SalePrice']) numeric_feats = all_data.dtypes[all_data.dtypes != 'object'].index skewed_feats = train[numeric_feats].apply(lambda x: skew(x.dropna())) skewed_feats = skewed_feats[skewed_feats > 0.75] skewed_feats = skewed_feats.index all_data[skewed_feats] = np.log1p(all_data[skewed_feats]) all_data = pd.get_dummies(all_data) total = train.isnull().sum().sort_values(ascending=False) percent = (train.isnull().sum() / train.isnull().count()).sort_values(ascending=False) missing_data = pd.concat([total, percent], axis=1, keys=['Total', 'Percent']) all_data = all_data.fillna(all_data.mean()) X_train = all_data[:train.shape[0]] X_test = all_data[train.shape[0]:] y = train.SalePrice print(train.select_dtypes(include=['object']).columns.values)
code
1005562/cell_11
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib import numpy as np import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') matplotlib.rcParams['figure.figsize'] = (12.0, 6.0) prices = pd.DataFrame({'price': train['SalePrice'], 'log(price + 1)': np.log1p(train['SalePrice'])}) all_data = pd.concat((train.loc[:, 'MSSubClass':'SaleCondition'], test.loc[:, 'MSSubClass':'SaleCondition'])) train['SalePrice'].describe()
code
1005562/cell_50
[ "text_plain_output_1.png", "image_output_1.png" ]
from keras.layers import Dense from keras.models import Sequential from keras.regularizers import l1 from scipy.stats import skew from sklearn.preprocessing import StandardScaler import matplotlib import numpy as np import pandas as pd import xgboost as xgb train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') matplotlib.rcParams['figure.figsize'] = (12.0, 6.0) prices = pd.DataFrame({'price': train['SalePrice'], 'log(price + 1)': np.log1p(train['SalePrice'])}) all_data = pd.concat((train.loc[:, 'MSSubClass':'SaleCondition'], test.loc[:, 'MSSubClass':'SaleCondition'])) train['SalePrice'] = np.log1p(train['SalePrice']) numeric_feats = all_data.dtypes[all_data.dtypes != 'object'].index skewed_feats = train[numeric_feats].apply(lambda x: skew(x.dropna())) skewed_feats = skewed_feats[skewed_feats > 0.75] skewed_feats = skewed_feats.index all_data[skewed_feats] = np.log1p(all_data[skewed_feats]) all_data = pd.get_dummies(all_data) total = train.isnull().sum().sort_values(ascending=False) percent = (train.isnull().sum() / train.isnull().count()).sort_values(ascending=False) missing_data = pd.concat([total, percent], axis=1, keys=['Total', 'Percent']) all_data = all_data.fillna(all_data.mean()) X_train = all_data[:train.shape[0]] X_test = all_data[train.shape[0]:] y = train.SalePrice dtrain = xgb.DMatrix(X_train, label=y) dtest = xgb.DMatrix(X_test) params = {'max_depth': 2, 'eta': 0.1} model = xgb.cv(params, dtrain, num_boost_round=500, early_stopping_rounds=100) X_train = StandardScaler().fit_transform(X_train) model = Sequential() model.add(Dense(1, input_dim=X_train.shape[1], W_regularizer=l1(0.001))) model.compile(loss='mse', optimizer='adam') model.summary()
code
1005562/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train.head()
code
1005562/cell_18
[ "text_plain_output_1.png" ]
from scipy.stats import skew import matplotlib import numpy as np import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') matplotlib.rcParams['figure.figsize'] = (12.0, 6.0) prices = pd.DataFrame({'price': train['SalePrice'], 'log(price + 1)': np.log1p(train['SalePrice'])}) all_data = pd.concat((train.loc[:, 'MSSubClass':'SaleCondition'], test.loc[:, 'MSSubClass':'SaleCondition'])) train['SalePrice'] = np.log1p(train['SalePrice']) numeric_feats = all_data.dtypes[all_data.dtypes != 'object'].index skewed_feats = train[numeric_feats].apply(lambda x: skew(x.dropna())) skewed_feats = skewed_feats[skewed_feats > 0.75] skewed_feats = skewed_feats.index all_data[skewed_feats] = np.log1p(all_data[skewed_feats]) all_data = pd.get_dummies(all_data) total = train.isnull().sum().sort_values(ascending=False) percent = (train.isnull().sum() / train.isnull().count()).sort_values(ascending=False) missing_data = pd.concat([total, percent], axis=1, keys=['Total', 'Percent']) missing_data.head(20)
code
1005562/cell_32
[ "text_plain_output_1.png", "image_output_1.png" ]
from scipy.stats import skew from sklearn.linear_model import Ridge, RidgeCV, ElasticNet, LassoCV, LassoLarsCV from sklearn.model_selection import cross_val_score import matplotlib import matplotlib.pyplot as plt import numpy as np import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') matplotlib.rcParams['figure.figsize'] = (12.0, 6.0) prices = pd.DataFrame({'price': train['SalePrice'], 'log(price + 1)': np.log1p(train['SalePrice'])}) all_data = pd.concat((train.loc[:, 'MSSubClass':'SaleCondition'], test.loc[:, 'MSSubClass':'SaleCondition'])) train['SalePrice'] = np.log1p(train['SalePrice']) numeric_feats = all_data.dtypes[all_data.dtypes != 'object'].index skewed_feats = train[numeric_feats].apply(lambda x: skew(x.dropna())) skewed_feats = skewed_feats[skewed_feats > 0.75] skewed_feats = skewed_feats.index all_data[skewed_feats] = np.log1p(all_data[skewed_feats]) all_data = pd.get_dummies(all_data) total = train.isnull().sum().sort_values(ascending=False) percent = (train.isnull().sum() / train.isnull().count()).sort_values(ascending=False) missing_data = pd.concat([total, percent], axis=1, keys=['Total', 'Percent']) all_data = all_data.fillna(all_data.mean()) X_train = all_data[:train.shape[0]] X_test = all_data[train.shape[0]:] y = train.SalePrice from sklearn.linear_model import Ridge, RidgeCV, ElasticNet, LassoCV, LassoLarsCV from sklearn.model_selection import cross_val_score def rmse_cv(model): rmse = np.sqrt(-cross_val_score(model, X_train, y, scoring='neg_mean_squared_error', cv=5)) return rmse model_elasticnet = ElasticNet() alphas_en = [0.001, 0.005, 0.1, 0.2, 0.3] cv_rmse_en = [rmse_cv(ElasticNet(alpha=alpha)).mean() for alpha in alphas_en] cv_en = pd.Series(cv_rmse_en, index=alphas_en) model_elasticnet = ElasticNet(alpha=0.026).fit(X_train, y) matplotlib.rcParams['figure.figsize'] = (6.0, 6.0) preds_en = pd.DataFrame({'preds EN': model_elasticnet.predict(X_train), 'true': y}) preds_en['residuals'] = preds_en['true'] - preds_en['preds EN'] alphas = [0.05, 0.1, 0.3, 1, 3, 5, 10, 15, 30, 50, 75] cv_ridge = [rmse_cv(Ridge(alpha=alpha)).mean() for alpha in alphas] cv_ridge = pd.Series(cv_ridge, index=alphas) cv_ridge.plot(title='Validation - Ridge model') plt.xlabel('alpha') plt.ylabel('rmse')
code
1005562/cell_28
[ "text_html_output_1.png" ]
from scipy.stats import skew from sklearn.linear_model import Ridge, RidgeCV, ElasticNet, LassoCV, LassoLarsCV from sklearn.model_selection import cross_val_score import matplotlib import matplotlib.pyplot as plt import numpy as np import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') matplotlib.rcParams['figure.figsize'] = (12.0, 6.0) prices = pd.DataFrame({'price': train['SalePrice'], 'log(price + 1)': np.log1p(train['SalePrice'])}) all_data = pd.concat((train.loc[:, 'MSSubClass':'SaleCondition'], test.loc[:, 'MSSubClass':'SaleCondition'])) train['SalePrice'] = np.log1p(train['SalePrice']) numeric_feats = all_data.dtypes[all_data.dtypes != 'object'].index skewed_feats = train[numeric_feats].apply(lambda x: skew(x.dropna())) skewed_feats = skewed_feats[skewed_feats > 0.75] skewed_feats = skewed_feats.index all_data[skewed_feats] = np.log1p(all_data[skewed_feats]) all_data = pd.get_dummies(all_data) total = train.isnull().sum().sort_values(ascending=False) percent = (train.isnull().sum() / train.isnull().count()).sort_values(ascending=False) missing_data = pd.concat([total, percent], axis=1, keys=['Total', 'Percent']) all_data = all_data.fillna(all_data.mean()) X_train = all_data[:train.shape[0]] X_test = all_data[train.shape[0]:] y = train.SalePrice from sklearn.linear_model import Ridge, RidgeCV, ElasticNet, LassoCV, LassoLarsCV from sklearn.model_selection import cross_val_score def rmse_cv(model): rmse = np.sqrt(-cross_val_score(model, X_train, y, scoring='neg_mean_squared_error', cv=5)) return rmse model_elasticnet = ElasticNet() alphas_en = [0.001, 0.005, 0.1, 0.2, 0.3] cv_rmse_en = [rmse_cv(ElasticNet(alpha=alpha)).mean() for alpha in alphas_en] cv_en = pd.Series(cv_rmse_en, index=alphas_en) model_elasticnet = ElasticNet(alpha=0.026).fit(X_train, y) matplotlib.rcParams['figure.figsize'] = (6.0, 6.0) preds_en = pd.DataFrame({'preds EN': model_elasticnet.predict(X_train), 'true': y}) preds_en['residuals'] = preds_en['true'] - preds_en['preds EN'] preds_en.plot(x='preds EN', y='residuals', kind='scatter')
code
1005562/cell_8
[ "image_output_1.png" ]
import matplotlib import numpy as np import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') matplotlib.rcParams['figure.figsize'] = (12.0, 6.0) prices = pd.DataFrame({'price': train['SalePrice'], 'log(price + 1)': np.log1p(train['SalePrice'])}) prices.hist()
code
1005562/cell_38
[ "text_plain_output_1.png" ]
from scipy.stats import skew import matplotlib import numpy as np import pandas as pd import xgboost as xgb train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') matplotlib.rcParams['figure.figsize'] = (12.0, 6.0) prices = pd.DataFrame({'price': train['SalePrice'], 'log(price + 1)': np.log1p(train['SalePrice'])}) all_data = pd.concat((train.loc[:, 'MSSubClass':'SaleCondition'], test.loc[:, 'MSSubClass':'SaleCondition'])) train['SalePrice'] = np.log1p(train['SalePrice']) numeric_feats = all_data.dtypes[all_data.dtypes != 'object'].index skewed_feats = train[numeric_feats].apply(lambda x: skew(x.dropna())) skewed_feats = skewed_feats[skewed_feats > 0.75] skewed_feats = skewed_feats.index all_data[skewed_feats] = np.log1p(all_data[skewed_feats]) all_data = pd.get_dummies(all_data) total = train.isnull().sum().sort_values(ascending=False) percent = (train.isnull().sum() / train.isnull().count()).sort_values(ascending=False) missing_data = pd.concat([total, percent], axis=1, keys=['Total', 'Percent']) all_data = all_data.fillna(all_data.mean()) X_train = all_data[:train.shape[0]] X_test = all_data[train.shape[0]:] y = train.SalePrice dtrain = xgb.DMatrix(X_train, label=y) dtest = xgb.DMatrix(X_test) params = {'max_depth': 2, 'eta': 0.1} model = xgb.cv(params, dtrain, num_boost_round=500, early_stopping_rounds=100) model_xgb = xgb.XGBRegressor(n_estimators=360, max_depth=2, learning_rate=0.1) model_xgb.fit(X_train, y)
code
1005562/cell_46
[ "text_plain_output_1.png" ]
from keras.layers import Dense from keras.models import Sequential from keras.regularizers import l1 from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split
code
1005562/cell_14
[ "text_plain_output_1.png" ]
import matplotlib import numpy as np import pandas as pd import seaborn as sns train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') matplotlib.rcParams['figure.figsize'] = (12.0, 6.0) prices = pd.DataFrame({'price': train['SalePrice'], 'log(price + 1)': np.log1p(train['SalePrice'])}) all_data = pd.concat((train.loc[:, 'MSSubClass':'SaleCondition'], test.loc[:, 'MSSubClass':'SaleCondition'])) sns.distplot(train['SalePrice'], kde=False, color='b', hist_kws={'alpha': 0.9})
code
1005562/cell_10
[ "text_html_output_1.png" ]
import matplotlib import numpy as np import pandas as pd import seaborn as sns train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') matplotlib.rcParams['figure.figsize'] = (12.0, 6.0) prices = pd.DataFrame({'price': train['SalePrice'], 'log(price + 1)': np.log1p(train['SalePrice'])}) all_data = pd.concat((train.loc[:, 'MSSubClass':'SaleCondition'], test.loc[:, 'MSSubClass':'SaleCondition'])) sns.distplot(train['SalePrice'])
code
1005562/cell_37
[ "text_plain_output_1.png", "image_output_1.png" ]
from scipy.stats import skew import matplotlib import numpy as np import pandas as pd import xgboost as xgb train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') matplotlib.rcParams['figure.figsize'] = (12.0, 6.0) prices = pd.DataFrame({'price': train['SalePrice'], 'log(price + 1)': np.log1p(train['SalePrice'])}) all_data = pd.concat((train.loc[:, 'MSSubClass':'SaleCondition'], test.loc[:, 'MSSubClass':'SaleCondition'])) train['SalePrice'] = np.log1p(train['SalePrice']) numeric_feats = all_data.dtypes[all_data.dtypes != 'object'].index skewed_feats = train[numeric_feats].apply(lambda x: skew(x.dropna())) skewed_feats = skewed_feats[skewed_feats > 0.75] skewed_feats = skewed_feats.index all_data[skewed_feats] = np.log1p(all_data[skewed_feats]) all_data = pd.get_dummies(all_data) total = train.isnull().sum().sort_values(ascending=False) percent = (train.isnull().sum() / train.isnull().count()).sort_values(ascending=False) missing_data = pd.concat([total, percent], axis=1, keys=['Total', 'Percent']) all_data = all_data.fillna(all_data.mean()) X_train = all_data[:train.shape[0]] X_test = all_data[train.shape[0]:] y = train.SalePrice dtrain = xgb.DMatrix(X_train, label=y) dtest = xgb.DMatrix(X_test) params = {'max_depth': 2, 'eta': 0.1} model = xgb.cv(params, dtrain, num_boost_round=500, early_stopping_rounds=100) model.loc[30:, ['test-rmse-mean', 'train-rmse-mean']].plot()
code
129012051/cell_33
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np # linear algebra x_train = x_train.T x_test = x_test.T y_train = y_train.T y_test = y_test.T def initialize_weights_and_bias(dimension): w = np.full((dimension, 1), 0.01) b = 0.0 return (w, b) def sigmoid(z): y_head = 1 / (1 + np.exp(-z)) return y_head def forward_backward_propagation(w, b, x_train, y_train): z = np.dot(w.T, x_train) + b y_head = sigmoid(z) loss = -y_train * np.log(y_head) - (1 - y_train) * np.log(1 - y_head) cost = np.sum(loss) / x_train.shape[1] derivative_weight = np.dot(x_train, (y_head - y_train).T) / x_train.shape[1] derivative_bias = np.sum(y_head - y_train) / x_train.shape[1] gradients = {'derivative_weight': derivative_weight, 'derivative_bias': derivative_bias} return (cost, gradients) def update(w, b, x_train, y_train, learning_rate, number_of_iterarion): cost_list = [] cost_list2 = [] index = [] for i in range(number_of_iterarion): cost, gradients = forward_backward_propagation(w, b, x_train, y_train) cost_list.append(cost) w = w - learning_rate * gradients['derivative_weight'] b = b - learning_rate * gradients['derivative_bias'] if i % 10 == 0: cost_list2.append(cost) index.append(i) parameters = {'weight': w, 'bias': b} plt.xticks(index, rotation='vertical') return (parameters, gradients, cost_list) def predict(w, b, x_test): z = sigmoid(np.dot(w.T, x_test) + b) Y_prediction = np.zeros((1, x_test.shape[1])) for i in range(z.shape[1]): if z[0, i] <= 0.5: Y_prediction[0, i] = 0 else: Y_prediction[0, i] = 1 return Y_prediction def logistic_regression(x_train, y_train, x_test, y_test, learning_rate, num_iterations): dimension = x_train.shape[0] w, b = initialize_weights_and_bias(dimension) parameters, gradients, cost_list = update(w, b, x_train, y_train, learning_rate, num_iterations) y_prediction_test = predict(parameters['weight'], parameters['bias'], x_test) print('test accuracy: {} %'.format(100 - np.mean(np.abs(y_prediction_test - y_test)) * 100)) logistic_regression(x_train, y_train, x_test, y_test, learning_rate=1, num_iterations=300)
code
129012051/cell_2
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import os import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler import matplotlib.pyplot as plt from PIL import Image import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
129012051/cell_7
[ "text_plain_output_2.png", "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/datacsv/data.csv') data.info()
code
128047268/cell_9
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns GM_df = pd.read_excel('/kaggle/input/juan-anyang/GM.xlsx') Mining_df = pd.read_excel('/kaggle/input/juan-anyang/Mining.xlsx') GM_df.fillna(0, inplace=True) Mining_df.fillna(0, inplace=True) GM_df['Reading No'] = GM_df['Reading No'].astype(str) Mining_df['Reading No'] = Mining_df['Reading No'].astype(str) dummies_GM = pd.get_dummies(GM_df['Type']) GM_df = pd.concat([GM_df, dummies_GM], axis=1) GM_df.columns dummies_Mining = pd.get_dummies(Mining_df['Type']) Mining_df = pd.concat([Mining_df, dummies_Mining], axis=1) Mining_df.columns Mining_df[['A', 'B', 'C', 'D']] = Mining_df[['A', 'B', 'C', 'D']].astype(int) corr_Mining = Mining_df[['Level', 'Type', 'A', 'B', 'C', 'D', 'Sn', 'Pb', 'Cu', 'P', 'Cl', 'S']].corr() f, ax = plt.subplots(figsize=(9, 9)) mask = np.zeros_like(corr_Mining, dtype=np.bool) mask[np.triu_indices_from(mask)] = True cmap = sns.diverging_palette(220, 10, as_cmap=True) sns.heatmap(corr_Mining, mask=mask, cmap=cmap, square=True, annot=True, linewidths=0.5, fmt='.1f', ax=ax)
code