path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
1008693/cell_34
[ "text_plain_output_1.png" ]
from scipy import interp from sklearn.metrics import confusion_matrix from sklearn.metrics import roc_curve, auc from sklearn.model_selection import KFold from sklearn.preprocessing import StandardScaler from sklearn.svm import SVC import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns employees.shape employees.mean() import seaborn as sns correlation_matrix = employees.corr() employees['salary'] = pd.factorize(employees['salary'])[0] employees['sales'] = pd.factorize(employees['sales'])[0] leave_result = employees['left'] y = np.where(leave_result == 1, 1, 0) y X = employees.drop('left', axis=1).as_matrix().astype(np.float) X from sklearn.preprocessing import StandardScaler scaler = StandardScaler() X = scaler.fit_transform(X) from sklearn.model_selection import KFold def run_cv(X, y, clf_class, **kwargs): kf = KFold(n_splits=3, shuffle=True) y_pred = y.copy() for train_index, test_index in kf.split(X): X_train, X_test = (X[train_index], X[test_index]) y_train = y[train_index] clf = clf_class(**kwargs) clf.fit(X_train, y_train) y_pred[test_index] = clf.predict(X_test) return y_pred from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier as RF from sklearn.neighbors import KNeighborsClassifier as KNN from sklearn.linear_model import LogisticRegression as LR from sklearn.ensemble import GradientBoostingClassifier as GBC from sklearn.metrics import average_precision_score def accuracy(y_true, y_pred): return np.mean(y_true == y_pred) from sklearn.metrics import confusion_matrix from sklearn.metrics import precision_score from sklearn.metrics import recall_score def draw_confusion_matrices(confusion_matricies, class_names): fig = plt.figure() class_names = class_names.tolist() for cm in confusion_matrices: classifier, cm, pos = cm[0], cm[1], cm[2] print("\n%s" % classifier) print(cm) ax = fig.add_subplot(pos, title = 'Confusion matrix for %s' % classifier, xlabel = 'Predicted', ylabel = 'True') cax = ax.matshow(cm) plt.title('Confusion matrix for %s' % classifier) fig.colorbar(cax) ax.set_xticklabels([''] + class_names) ax.set_yticklabels([''] + class_names) plt.tight_layout() plt.show() y = np.array(y) class_names = np.unique(y) confusion_matrices = [ ( "Support Vector Machines", confusion_matrix(y, run_cv(X, y, SVC)), 321 ), ( "Random Forest", confusion_matrix(y, run_cv(X, y, RF)), 322 ), ( "K-Nearest-Neighbors", confusion_matrix(y, run_cv(X, y, KNN)), 323 ), ( "Gradient Boosting Classifier", confusion_matrix(y, run_cv(X, y, GBC)), 324 ), ( "Logisitic Regression", confusion_matrix(y, run_cv(X, y, LR)), 325 ) ] draw_confusion_matrices(confusion_matrices, class_names) from sklearn.metrics import roc_curve, auc from scipy import interp def plot_roc(X, y, clf_class, clf_name, **kwargs): kf = KFold(n_splits=3, shuffle=True) y_prob = np.zeros((len(y), 2)) mean_tpr = 0.0 mean_fpr = np.linspace(0, 1, 100) all_tpr = [] for i, (train_index, test_index) in enumerate(kf.split(X)): X_train, X_test = (X[train_index], X[test_index]) y_train = y[train_index] clf = clf_class(**kwargs) clf.fit(X_train, y_train) y_prob[test_index] = clf.predict_proba(X_test) fpr, tpr, thresholds = roc_curve(y[test_index], y_prob[test_index, 1]) mean_tpr += interp(mean_fpr, fpr, tpr) mean_tpr[0] = 0.0 roc_auc = auc(fpr, tpr) mean_tpr /= kf.get_n_splits(X) mean_tpr[-1] = 1.0 mean_auc = auc(mean_fpr, mean_tpr) plt.plot(mean_fpr, mean_tpr, lw=2, label='%s (area = %0.3f)' % (clf_name, mean_auc)) def plot_all(title, max_x, min_y): plot_roc(X, y, SVC, 'Support vector machines', probability=True) plot_roc(X, y, RF, 'Random forests', n_estimators=18) plot_roc(X, y, KNN, 'K-nearest-neighbors') plot_roc(X, y, GBC, 'Gradient Boosting Classifier') plt.plot([-0.05, max_x], [min_y, 1.05], '--', color=(0.6, 0.6, 0.6), label='Random') plt.xlim(-0.05, max_x) plt.ylim(min_y, 1.05) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title(title) plt.legend(loc='lower right') plt.show() plt.figure(1) plot_all('Receiver operating characteristic', 1.05, -0.05) plt.figure(2) plot_all('ROC (zoomed in at top left corner)', 0.6, 0.7)
code
1008693/cell_29
[ "text_plain_output_1.png" ]
from sklearn.metrics import confusion_matrix from sklearn.model_selection import KFold from sklearn.preprocessing import StandardScaler from sklearn.svm import SVC import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns employees.shape employees.mean() import seaborn as sns correlation_matrix = employees.corr() employees['salary'] = pd.factorize(employees['salary'])[0] employees['sales'] = pd.factorize(employees['sales'])[0] leave_result = employees['left'] y = np.where(leave_result == 1, 1, 0) y X = employees.drop('left', axis=1).as_matrix().astype(np.float) X from sklearn.preprocessing import StandardScaler scaler = StandardScaler() X = scaler.fit_transform(X) from sklearn.model_selection import KFold def run_cv(X, y, clf_class, **kwargs): kf = KFold(n_splits=3, shuffle=True) y_pred = y.copy() for train_index, test_index in kf.split(X): X_train, X_test = (X[train_index], X[test_index]) y_train = y[train_index] clf = clf_class(**kwargs) clf.fit(X_train, y_train) y_pred[test_index] = clf.predict(X_test) return y_pred from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier as RF from sklearn.neighbors import KNeighborsClassifier as KNN from sklearn.linear_model import LogisticRegression as LR from sklearn.ensemble import GradientBoostingClassifier as GBC from sklearn.metrics import average_precision_score def accuracy(y_true, y_pred): return np.mean(y_true == y_pred) from sklearn.metrics import confusion_matrix from sklearn.metrics import precision_score from sklearn.metrics import recall_score def draw_confusion_matrices(confusion_matricies, class_names): fig = plt.figure() class_names = class_names.tolist() for cm in confusion_matrices: classifier, cm, pos = (cm[0], cm[1], cm[2]) print('\n%s' % classifier) print(cm) ax = fig.add_subplot(pos, title='Confusion matrix for %s' % classifier, xlabel='Predicted', ylabel='True') cax = ax.matshow(cm) plt.title('Confusion matrix for %s' % classifier) fig.colorbar(cax) ax.set_xticklabels([''] + class_names) ax.set_yticklabels([''] + class_names) plt.tight_layout() plt.show() y = np.array(y) class_names = np.unique(y) confusion_matrices = [('Support Vector Machines', confusion_matrix(y, run_cv(X, y, SVC)), 321), ('Random Forest', confusion_matrix(y, run_cv(X, y, RF)), 322), ('K-Nearest-Neighbors', confusion_matrix(y, run_cv(X, y, KNN)), 323), ('Gradient Boosting Classifier', confusion_matrix(y, run_cv(X, y, GBC)), 324), ('Logisitic Regression', confusion_matrix(y, run_cv(X, y, LR)), 325)] draw_confusion_matrices(confusion_matrices, class_names)
code
1008693/cell_19
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns employees.shape employees.mean() import seaborn as sns correlation_matrix = employees.corr() employees['salary'] = pd.factorize(employees['salary'])[0] employees['sales'] = pd.factorize(employees['sales'])[0] leave_result = employees['left'] y = np.where(leave_result == 1, 1, 0) y X = employees.drop('left', axis=1).as_matrix().astype(np.float) X from sklearn.preprocessing import StandardScaler scaler = StandardScaler() X = scaler.fit_transform(X) print('Feature space holds %d observations and %d features' % X.shape) print('Unique target labels: ', np.unique(y))
code
1008693/cell_18
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns employees.shape employees.mean() import seaborn as sns correlation_matrix = employees.corr() employees['salary'] = pd.factorize(employees['salary'])[0] employees['sales'] = pd.factorize(employees['sales'])[0] leave_result = employees['left'] y = np.where(leave_result == 1, 1, 0) y X = employees.drop('left', axis=1).as_matrix().astype(np.float) X
code
1008693/cell_8
[ "image_output_2.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import seaborn as sns employees.shape employees.mean() import seaborn as sns correlation_matrix = employees.corr() plt.subplots(figsize=(8, 8)) sns.heatmap(correlation_matrix, vmax=0.8, square=True) plt.show()
code
1008693/cell_15
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns employees.shape employees.mean() import seaborn as sns correlation_matrix = employees.corr() employees['salary'] = pd.factorize(employees['salary'])[0] employees['sales'] = pd.factorize(employees['sales'])[0] employees.head()
code
1008693/cell_3
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import matplotlib.pyplot as plt employees = pd.read_csv('../input/HR_comma_sep.csv') employees.head()
code
1008693/cell_17
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns employees.shape employees.mean() import seaborn as sns correlation_matrix = employees.corr() employees['salary'] = pd.factorize(employees['salary'])[0] employees['sales'] = pd.factorize(employees['sales'])[0] leave_result = employees['left'] y = np.where(leave_result == 1, 1, 0) y
code
1008693/cell_14
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import seaborn as sns employees.shape employees.mean() import seaborn as sns correlation_matrix = employees.corr() employees['sales'].unique()
code
1008693/cell_12
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import seaborn as sns employees.shape employees.mean() import seaborn as sns correlation_matrix = employees.corr() employees['salary'].unique()
code
1008693/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
employees.shape employees.mean()
code
128027378/cell_13
[ "text_html_output_1.png" ]
from sklearn import preprocessing import matplotlib.pyplot as plt import numpy as np import pandas as pd import pandas as pd df = pd.read_csv('/kaggle/input/diabetes-prediction-dataset/diabetes_prediction_dataset.csv') df = df[df.gender != 'Other'] df['gender'].replace(['Female', 'Male'], [0, 1], inplace=True) df.smoking_history.replace(['No Info', 'never', 'former', 'current', 'not current', 'ever'], [0.5, 0, 0.5, 1, 0.5, 0.5], inplace=True) corr = df.corr() corr.style.background_gradient(cmap='coolwarm') df.diabetes.value_counts() def plot_histogram(dataset: pd.DataFrame): unique_labels, counts = np.unique(dataset.diabetes, return_counts=True) import pandas as pd from sklearn import preprocessing x_unscaled = df.drop('diabetes', axis=1).values min_max_scaler = preprocessing.MinMaxScaler() X = min_max_scaler.fit_transform(x_unscaled) example = pd.DataFrame(X) example.head(10)
code
128027378/cell_9
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/diabetes-prediction-dataset/diabetes_prediction_dataset.csv') df = df[df.gender != 'Other'] df['gender'].replace(['Female', 'Male'], [0, 1], inplace=True) df.smoking_history.replace(['No Info', 'never', 'former', 'current', 'not current', 'ever'], [0.5, 0, 0.5, 1, 0.5, 0.5], inplace=True) corr = df.corr() corr.style.background_gradient(cmap='coolwarm') df.diabetes.value_counts()
code
128027378/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/diabetes-prediction-dataset/diabetes_prediction_dataset.csv') df.head()
code
128027378/cell_6
[ "image_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/diabetes-prediction-dataset/diabetes_prediction_dataset.csv') df = df[df.gender != 'Other'] df['gender'].replace(['Female', 'Male'], [0, 1], inplace=True) df.smoking_history.replace(['No Info', 'never', 'former', 'current', 'not current', 'ever'], [0.5, 0, 0.5, 1, 0.5, 0.5], inplace=True) df.head(20)
code
128027378/cell_11
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd df = pd.read_csv('/kaggle/input/diabetes-prediction-dataset/diabetes_prediction_dataset.csv') df = df[df.gender != 'Other'] df['gender'].replace(['Female', 'Male'], [0, 1], inplace=True) df.smoking_history.replace(['No Info', 'never', 'former', 'current', 'not current', 'ever'], [0.5, 0, 0.5, 1, 0.5, 0.5], inplace=True) corr = df.corr() corr.style.background_gradient(cmap='coolwarm') df.diabetes.value_counts() def plot_histogram(dataset: pd.DataFrame): unique_labels, counts = np.unique(dataset.diabetes, return_counts=True) plot_histogram(df)
code
128027378/cell_1
[ "text_plain_output_1.png" ]
import os import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
128027378/cell_7
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/diabetes-prediction-dataset/diabetes_prediction_dataset.csv') df = df[df.gender != 'Other'] df['gender'].replace(['Female', 'Male'], [0, 1], inplace=True) df.smoking_history.replace(['No Info', 'never', 'former', 'current', 'not current', 'ever'], [0.5, 0, 0.5, 1, 0.5, 0.5], inplace=True) corr = df.corr() corr.style.background_gradient(cmap='coolwarm')
code
128027378/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/diabetes-prediction-dataset/diabetes_prediction_dataset.csv') df = df[df.gender != 'Other'] df['gender'].replace(['Female', 'Male'], [0, 1], inplace=True) df.smoking_history.replace(['No Info', 'never', 'former', 'current', 'not current', 'ever'], [0.5, 0, 0.5, 1, 0.5, 0.5], inplace=True) corr = df.corr() corr.style.background_gradient(cmap='coolwarm') df.head(10)
code
128027378/cell_16
[ "text_html_output_1.png" ]
from sklearn.metrics import accuracy_score, recall_score from sklearn.svm import SVC from sklearn.svm import SVC from sklearn.metrics import accuracy_score, recall_score svm_clf = SVC() svm_clf.fit(X_train_res, y_train_res) svm_clf_preds = svm_clf.predict(X_test_res) print('SVM Classifier accuracy on validation data : ', recall_score(y_test_res, svm_clf_preds)) print('SVM Classifier accuracy on validation data : ', accuracy_score(y_test_res, svm_clf_preds))
code
128027378/cell_17
[ "text_html_output_1.png" ]
from sklearn.metrics import accuracy_score, recall_score from xgboost import XGBClassifier from xgboost import XGBClassifier xgb_clf = XGBClassifier(early_stopping_rounds=3) xgb_clf.fit(X_train_res, y_train_res, eval_set=[(X_test_res, y_test_res)]) xgb_clf_preds = xgb_clf.predict(X_test_res) print('Accuracy of XGBoost on validation data : ', recall_score(y_test_res, xgb_clf_preds)) print('XGBoost accuracy on validation data : ', recall_score(y_test, xgb_clf_preds))
code
34124545/cell_25
[ "image_output_1.png" ]
import pandas as pd import pandas as pd data = pd.read_csv('../input/udemy-courses/clean_dataset.csv') data.shape data_paid = data[data['is_paid'] == True] data_paid.shape data_paid.sort_values(by='num_subscribers', ascending=False) data_paid[data_paid['price'] == '200']['subject'].value_counts()
code
34124545/cell_4
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd data = pd.read_csv('../input/udemy-courses/clean_dataset.csv') data.describe()
code
34124545/cell_34
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd data = pd.read_csv('../input/udemy-courses/clean_dataset.csv') data.shape data_paid = data[data['is_paid'] == True] data_paid.shape data_paid.sort_values(by='num_subscribers', ascending=False) data_paid[data_paid['engagement'] == 1.0]
code
34124545/cell_23
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import pandas as pd data = pd.read_csv('../input/udemy-courses/clean_dataset.csv') data.shape data_paid = data[data['is_paid'] == True] data_paid.shape data_paid.sort_values(by='num_subscribers', ascending=False) sns.set_style('ticks') fig, ax = plt.subplots() fig.set_size_inches(11.7, 8.27) fig.set sns.scatterplot(x="price", y="num_subscribers",hue="num_subscribers",ax=ax ,data=data_paid).set(title = 'price vs subscribers(paid)') ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) sns.set_style('ticks') fig, ax = plt.subplots() fig.set_size_inches(11.7, 8.27) fig.set sns.scatterplot(x='price', y='num_lectures', hue='num_lectures', ax=ax, data=data_paid).set(title='price vs number of lectures(paid)', xlabel='price') ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False)
code
34124545/cell_30
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import pandas as pd data = pd.read_csv('../input/udemy-courses/clean_dataset.csv') data.shape data_paid = data[data['is_paid'] == True] data_paid.shape data_free = data[data['is_paid'] == False] data_free.shape data_free.sort_values(by='num_subscribers', ascending=False) data_paid.sort_values(by='num_subscribers', ascending=False) sns.set_style('ticks') fig, ax = plt.subplots() fig.set_size_inches(11.7, 8.27) fig.set sns.scatterplot(x="price", y="num_subscribers",hue="num_subscribers",ax=ax ,data=data_paid).set(title = 'price vs subscribers(paid)') ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) sns.set_style('ticks') fig, ax = plt.subplots() fig.set_size_inches(11.7, 8.27) fig.set sns.scatterplot(x="price", y="num_lectures",hue="num_lectures",ax=ax ,data=data_paid).set(title = 'price vs number of lectures(paid)',xlabel= "price") ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) sns.countplot(x='subject', data=data_free)
code
34124545/cell_20
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import pandas as pd data = pd.read_csv('../input/udemy-courses/clean_dataset.csv') data.shape data_paid = data[data['is_paid'] == True] data_paid.shape data_paid.sort_values(by='num_subscribers', ascending=False) sns.set_style('ticks') fig, ax = plt.subplots() fig.set_size_inches(11.7, 8.27) fig.set sns.scatterplot(x='price', y='num_subscribers', hue='num_subscribers', ax=ax, data=data_paid).set(title='price vs subscribers(paid)') ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False)
code
34124545/cell_6
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd data = pd.read_csv('../input/udemy-courses/clean_dataset.csv') len(data['course_title'].value_counts())
code
34124545/cell_39
[ "image_output_1.png" ]
import pandas as pd import pandas as pd data = pd.read_csv('../input/udemy-courses/clean_dataset.csv') data.shape data_paid = data[data['is_paid'] == True] data_paid.shape data_paid.sort_values(by='num_subscribers', ascending=False) data_paid_10 = data_paid.sort_values(by='num_subscribers', ascending=False)[0:10].sort_values('num_subscribers', ascending=False).reset_index(drop=True).reset_index()[['course_id', 'course_title', 'num_subscribers', 'num_reviews', 'price']] data_paid_10
code
34124545/cell_26
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd data = pd.read_csv('../input/udemy-courses/clean_dataset.csv') data.shape data_free = data[data['is_paid'] == False] data_free.shape data_free.sort_values(by='num_subscribers', ascending=False) data_free['subject'].value_counts()
code
34124545/cell_11
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd data = pd.read_csv('../input/udemy-courses/clean_dataset.csv') data.shape data_paid = data[data['is_paid'] == True] data_paid.shape data_paid.head()
code
34124545/cell_7
[ "image_output_1.png" ]
import pandas as pd import pandas as pd data = pd.read_csv('../input/udemy-courses/clean_dataset.csv') data.shape
code
34124545/cell_18
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd data = pd.read_csv('../input/udemy-courses/clean_dataset.csv') data.shape data_paid = data[data['is_paid'] == True] data_paid.shape data_paid.sort_values(by='num_subscribers', ascending=False)
code
34124545/cell_32
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import pandas as pd data = pd.read_csv('../input/udemy-courses/clean_dataset.csv') data.shape data_paid = data[data['is_paid'] == True] data_paid.shape data_free = data[data['is_paid'] == False] data_free.shape data_free.sort_values(by='num_subscribers', ascending=False) data_paid.sort_values(by='num_subscribers', ascending=False) sns.set_style('ticks') fig, ax = plt.subplots() fig.set_size_inches(11.7, 8.27) fig.set sns.scatterplot(x="price", y="num_subscribers",hue="num_subscribers",ax=ax ,data=data_paid).set(title = 'price vs subscribers(paid)') ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) sns.set_style('ticks') fig, ax = plt.subplots() fig.set_size_inches(11.7, 8.27) fig.set sns.scatterplot(x="price", y="num_lectures",hue="num_lectures",ax=ax ,data=data_paid).set(title = 'price vs number of lectures(paid)',xlabel= "price") ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) sns.set_style('ticks') fig, ax = plt.subplots() fig.set_size_inches(11.7, 8.27) fig.set sns.scatterplot(x='price', y='engagement', hue='num_lectures', ax=ax, data=data_paid).set(title='price vs engagement(paid)') ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False)
code
34124545/cell_28
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import pandas as pd data = pd.read_csv('../input/udemy-courses/clean_dataset.csv') data.shape data_paid = data[data['is_paid'] == True] data_paid.shape data_paid.sort_values(by='num_subscribers', ascending=False) sns.set_style('ticks') fig, ax = plt.subplots() fig.set_size_inches(11.7, 8.27) fig.set sns.scatterplot(x="price", y="num_subscribers",hue="num_subscribers",ax=ax ,data=data_paid).set(title = 'price vs subscribers(paid)') ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) sns.set_style('ticks') fig, ax = plt.subplots() fig.set_size_inches(11.7, 8.27) fig.set sns.scatterplot(x="price", y="num_lectures",hue="num_lectures",ax=ax ,data=data_paid).set(title = 'price vs number of lectures(paid)',xlabel= "price") ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) sns.countplot(x='subject', data=data_paid)
code
34124545/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd data = pd.read_csv('../input/udemy-courses/clean_dataset.csv') data.shape data_free = data[data['is_paid'] == False] data_free.shape data_free.head()
code
34124545/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd data = pd.read_csv('../input/udemy-courses/clean_dataset.csv') data.head()
code
34124545/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd data = pd.read_csv('../input/udemy-courses/clean_dataset.csv') data.shape data_free = data[data['is_paid'] == False] data_free.shape data_free.sort_values(by='num_subscribers', ascending=False)
code
34124545/cell_35
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import pandas as pd data = pd.read_csv('../input/udemy-courses/clean_dataset.csv') data.shape data_paid = data[data['is_paid'] == True] data_paid.shape data_free = data[data['is_paid'] == False] data_free.shape data_free.sort_values(by='num_subscribers', ascending=False) data_paid.sort_values(by='num_subscribers', ascending=False) sns.set_style('ticks') fig, ax = plt.subplots() fig.set_size_inches(11.7, 8.27) fig.set sns.scatterplot(x="price", y="num_subscribers",hue="num_subscribers",ax=ax ,data=data_paid).set(title = 'price vs subscribers(paid)') ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) sns.set_style('ticks') fig, ax = plt.subplots() fig.set_size_inches(11.7, 8.27) fig.set sns.scatterplot(x="price", y="num_lectures",hue="num_lectures",ax=ax ,data=data_paid).set(title = 'price vs number of lectures(paid)',xlabel= "price") ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) sns.set_style('ticks') fig, ax = plt.subplots() fig.set_size_inches(11.7, 8.27) fig.set sns.scatterplot(x="price", y="engagement",hue="num_lectures",ax=ax ,data=data_paid).set(title = 'price vs engagement(paid)') ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) sns.set_style('ticks') fig, ax = plt.subplots() fig.set_size_inches(11.7, 8.27) sns.set_palette('Blues_d') sns.scatterplot(x='num_lectures', y='engagement', hue='num_lectures', ax=ax, data=data_paid).set(title='engagement vs number of lectures(paid)') ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False)
code
34124545/cell_31
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd data = pd.read_csv('../input/udemy-courses/clean_dataset.csv') data.shape import re data[data['course_title'].str.contains('Data') == True]
code
34124545/cell_24
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd data = pd.read_csv('../input/udemy-courses/clean_dataset.csv') data.shape data_paid = data[data['is_paid'] == True] data_paid.shape data_paid.sort_values(by='num_subscribers', ascending=False) data_paid['subject'].value_counts()
code
34124545/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd data = pd.read_csv('../input/udemy-courses/clean_dataset.csv') data.shape data_free = data[data['is_paid'] == False] data_free.shape
code
34124545/cell_22
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd data = pd.read_csv('../input/udemy-courses/clean_dataset.csv') data.shape data_paid = data[data['is_paid'] == True] data_paid.shape data_paid.sort_values(by='num_subscribers', ascending=False) data_paid[data_paid['num_subscribers'] == max(data_paid['num_subscribers'])]
code
34124545/cell_10
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd data = pd.read_csv('../input/udemy-courses/clean_dataset.csv') data.shape data_paid = data[data['is_paid'] == True] data_paid.shape
code
34124545/cell_37
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import pandas as pd data = pd.read_csv('../input/udemy-courses/clean_dataset.csv') data.shape data_paid = data[data['is_paid'] == True] data_paid.shape data_free = data[data['is_paid'] == False] data_free.shape data_free.sort_values(by='num_subscribers', ascending=False) data_paid.sort_values(by='num_subscribers', ascending=False) sns.set_style('ticks') fig, ax = plt.subplots() fig.set_size_inches(11.7, 8.27) fig.set sns.scatterplot(x="price", y="num_subscribers",hue="num_subscribers",ax=ax ,data=data_paid).set(title = 'price vs subscribers(paid)') ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) sns.set_style('ticks') fig, ax = plt.subplots() fig.set_size_inches(11.7, 8.27) fig.set sns.scatterplot(x="price", y="num_lectures",hue="num_lectures",ax=ax ,data=data_paid).set(title = 'price vs number of lectures(paid)',xlabel= "price") ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) sns.set_style('ticks') fig, ax = plt.subplots() fig.set_size_inches(11.7, 8.27) fig.set sns.scatterplot(x="price", y="engagement",hue="num_lectures",ax=ax ,data=data_paid).set(title = 'price vs engagement(paid)') ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) sns.set_style('ticks') fig, ax = plt.subplots() fig.set_size_inches(11.7, 8.27) sns.set_palette("Blues_d") sns.scatterplot(x="num_lectures", y="engagement",hue="num_lectures",ax=ax ,data=data_paid).set(title = 'engagement vs number of lectures(paid)') ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) sns.set_style('ticks') fig, ax = plt.subplots() fig.set_size_inches(11.7, 8.27) fig.set sns.scatterplot(x='num_subscribers', y='num_reviews', hue='num_reviews', ax=ax, data=data_paid).set(title='price vs number of lectures(paid)') ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False)
code
34124545/cell_36
[ "image_output_1.png" ]
import pandas as pd import pandas as pd data = pd.read_csv('../input/udemy-courses/clean_dataset.csv') data.shape data_paid = data[data['is_paid'] == True] data_paid.shape data_paid.sort_values(by='num_subscribers', ascending=False) data_paid[data_paid['num_lectures'] == max(data_paid['num_lectures'])]
code
32069437/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) menu = pd.read_csv('/kaggle/input/nutrition-facts/menu.csv') menu.shape
code
32069437/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) menu = pd.read_csv('/kaggle/input/nutrition-facts/menu.csv') menu.shape menu.sort_values('Serving Size').tail(10)
code
32069437/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input/'): for filename in filenames: print(os.path.join(dirname, filename))
code
32069437/cell_18
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) menu = pd.read_csv('/kaggle/input/nutrition-facts/menu.csv') menu.shape menu.sort_values('Serving Size').tail(10) menu.loc[menu.Sugars.idxmax()].Item menu.set_index('Item').loc['Egg McMuffin', 'Calories'] menu.Category.value_counts() menu.groupby('Category').Calories.mean().round(2) menu.Category.value_counts().plot.pie()
code
32069437/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) menu = pd.read_csv('/kaggle/input/nutrition-facts/menu.csv') menu.shape menu.sort_values('Serving Size').tail(10) menu.loc[menu.Sugars.idxmax()].Item
code
32069437/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) menu = pd.read_csv('/kaggle/input/nutrition-facts/menu.csv') menu.shape menu.sort_values('Serving Size').tail(10) menu.loc[menu.Sugars.idxmax()].Item menu.set_index('Item').loc['Egg McMuffin', 'Calories'] menu.Category.value_counts() menu.groupby('Category').Calories.mean().round(2) menu.plot.scatter(x='Carbohydrates', y='Total Fat')
code
32069437/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) menu = pd.read_csv('/kaggle/input/nutrition-facts/menu.csv') menu.shape menu.sort_values('Serving Size').tail(10) menu.loc[menu.Sugars.idxmax()].Item menu.set_index('Item').loc['Egg McMuffin', 'Calories'] menu.Category.value_counts() menu.groupby('Category').Calories.mean().round(2)
code
32069437/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) menu = pd.read_csv('/kaggle/input/nutrition-facts/menu.csv') menu.shape menu.sort_values('Serving Size').tail(10) menu.loc[menu.Sugars.idxmax()].Item menu.set_index('Item').loc['Egg McMuffin', 'Calories']
code
32069437/cell_12
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) menu = pd.read_csv('/kaggle/input/nutrition-facts/menu.csv') menu.shape menu.sort_values('Serving Size').tail(10) menu.loc[menu.Sugars.idxmax()].Item menu.set_index('Item').loc['Egg McMuffin', 'Calories'] menu.Category.value_counts()
code
72066220/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd path = '../input/iris/Iris.csv' data = pd.read_csv(path) y = data.Species data.drop(['Id', 'Species'], axis=1, inplace=True) data.shape
code
72066220/cell_25
[ "image_output_1.png" ]
from sklearn.cluster import KMeans import matplotlib.pyplot as plt import pandas as pd path = '../input/iris/Iris.csv' data = pd.read_csv(path) y = data.Species data.drop(['Id', 'Species'], axis=1, inplace=True) data.shape x = data.iloc[:].values from sklearn.cluster import KMeans wcss = [] for i in range(1, 11): kmeans = KMeans(n_clusters=i, init='k-means++', n_init=10, max_iter=300, random_state=0) kmeans.fit(x) wcss.append(kmeans.inertia_) kmeans = KMeans(n_clusters=3, init='k-means++', n_init=10, max_iter=300, random_state=0) y = kmeans.fit_predict(x) plt.scatter(x[y == 0, 0], x[y == 0, 1], s=60, c='b', label='Iris-setosa') plt.scatter(x[y == 1, 0], x[y == 1, 1], s=60, c='r', label='Iris-versicolour') plt.scatter(x[y == 2, 0], x[y == 2, 1], s=60, c='g', label='Iris-virginica') plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s=100, c='yellow', label='Centroid') plt.title('Cluster with centroids') plt.legend() plt.show()
code
72066220/cell_20
[ "text_plain_output_1.png" ]
from sklearn.cluster import KMeans import pandas as pd path = '../input/iris/Iris.csv' data = pd.read_csv(path) y = data.Species data.drop(['Id', 'Species'], axis=1, inplace=True) data.shape x = data.iloc[:].values from sklearn.cluster import KMeans wcss = [] for i in range(1, 11): kmeans = KMeans(n_clusters=i, init='k-means++', n_init=10, max_iter=300, random_state=0) kmeans.fit(x) wcss.append(kmeans.inertia_) for i in range(0, 10): print('{} : {}'.format(i + 1, wcss[i]))
code
72066220/cell_6
[ "image_output_1.png" ]
import pandas as pd path = '../input/iris/Iris.csv' data = pd.read_csv(path) print('Total Species: ', data.Species.nunique()) print(data.Species.unique())
code
72066220/cell_19
[ "text_html_output_1.png" ]
from sklearn.cluster import KMeans import matplotlib.pyplot as plt import pandas as pd path = '../input/iris/Iris.csv' data = pd.read_csv(path) y = data.Species data.drop(['Id', 'Species'], axis=1, inplace=True) data.shape x = data.iloc[:].values from sklearn.cluster import KMeans wcss = [] for i in range(1, 11): kmeans = KMeans(n_clusters=i, init='k-means++', n_init=10, max_iter=300, random_state=0) kmeans.fit(x) wcss.append(kmeans.inertia_) plt.plot(range(1, 11), wcss, marker='o') plt.title('Elbow method') plt.xlabel('No. of clusters') plt.ylabel('WCSS') plt.grid(True) plt.show()
code
72066220/cell_10
[ "text_html_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import pandas as pd path = '../input/iris/Iris.csv' data = pd.read_csv(path) y = data.Species from sklearn.preprocessing import LabelEncoder encoder = LabelEncoder() y_data = encoder.fit_transform(y) y_data
code
72066220/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd path = '../input/iris/Iris.csv' data = pd.read_csv(path) y = data.Species data.drop(['Id', 'Species'], axis=1, inplace=True) data.head()
code
72066220/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd path = '../input/iris/Iris.csv' data = pd.read_csv(path) data.head()
code
130026088/cell_9
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.pyplot as plt import seaborn as sns import seaborn as sns sns.set() (sns.get_dataset_names(), len(sns.get_dataset_names())) healthexp = sns.load_dataset('healthexp') healthexp top_spending_countrys = healthexp[['Country', 'Life_Expectancy']] top_spending_countrys Spending_USD_by_year = healthexp.groupby('Year')['Spending_USD'].sum() Spending_USD_by_year plt.figure(figsize=(12, 6)) sns.lineplot(x=Spending_USD_by_year.index, y=Spending_USD_by_year.values, color='blue') plt.title('Spending_USD_by_year') plt.xlabel('Year') plt.ylabel('Spending_USD') plt.show()
code
130026088/cell_4
[ "text_html_output_1.png" ]
import seaborn as sns import seaborn as sns sns.set() (sns.get_dataset_names(), len(sns.get_dataset_names()))
code
130026088/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
130026088/cell_8
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.pyplot as plt import seaborn as sns import seaborn as sns sns.set() (sns.get_dataset_names(), len(sns.get_dataset_names())) healthexp = sns.load_dataset('healthexp') healthexp top_spending_countrys = healthexp[['Country', 'Life_Expectancy']] top_spending_countrys plt.figure(figsize=(10, 6)) sns.barplot(x='Life_Expectancy', y='Country', data=top_spending_countrys, palette='viridis') plt.title('Life_Expectancy') plt.xlabel('Life_Expectancy') plt.ylabel('Year') plt.show()
code
130026088/cell_3
[ "text_plain_output_1.png" ]
import seaborn as sns import seaborn as sns sns.set()
code
130026088/cell_10
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.pyplot as plt import seaborn as sns import seaborn as sns sns.set() (sns.get_dataset_names(), len(sns.get_dataset_names())) healthexp = sns.load_dataset('healthexp') healthexp top_spending_countrys = healthexp[['Country', 'Life_Expectancy']] top_spending_countrys Spending_USD_by_year = healthexp.groupby('Year')['Spending_USD'].sum() Spending_USD_by_year regional_Spending_and_Life_Expectancy = healthexp.groupby('Country')[['Year', 'Spending_USD', 'Life_Expectancy']].sum() plt.figure(figsize=(10, 6)) sns.heatmap(data=regional_Spending_and_Life_Expectancy, cmap='YlGnBu', annot=True, fmt='.1f') plt.title('regional_Spending_and_Life_Expectancy') plt.xlabel('Features') plt.ylabel('Country') plt.show()
code
130026088/cell_5
[ "image_output_1.png" ]
import seaborn as sns import seaborn as sns sns.set() (sns.get_dataset_names(), len(sns.get_dataset_names())) healthexp = sns.load_dataset('healthexp') healthexp
code
72070182/cell_4
[ "text_html_output_1.png" ]
import pandas as pd train_data_file_path = '../input/30-days-of-ml/train.csv' test_data_file_path = '../input/30-days-of-ml/test.csv' df_train = pd.read_csv(train_data_file_path, index_col=0) df_test = pd.read_csv(test_data_file_path, index_col=0) df_train.head()
code
72070182/cell_6
[ "text_html_output_1.png" ]
from sklearn.preprocessing import OrdinalEncoder import pandas as pd train_data_file_path = '../input/30-days-of-ml/train.csv' test_data_file_path = '../input/30-days-of-ml/test.csv' df_train = pd.read_csv(train_data_file_path, index_col=0) df_test = pd.read_csv(test_data_file_path, index_col=0) y = df_train['target'] features = df_train.drop(['target'], axis=1) object_cols = [col for col in features.columns if 'cat' in col] X = features.copy() X_test = df_test.copy() ordinal_encoder = OrdinalEncoder() X[object_cols] = ordinal_encoder.fit_transform(features[object_cols]) X_test[object_cols] = ordinal_encoder.transform(df_test[object_cols]) X.head()
code
72070182/cell_8
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_squared_error model = RandomForestRegressor(random_state=1) model.fit(X_train, y_train) preds_valid = model.predict(X_valid) print(mean_squared_error(y_valid, preds_valid, squared=False))
code
72070182/cell_5
[ "text_html_output_1.png" ]
import pandas as pd train_data_file_path = '../input/30-days-of-ml/train.csv' test_data_file_path = '../input/30-days-of-ml/test.csv' df_train = pd.read_csv(train_data_file_path, index_col=0) df_test = pd.read_csv(test_data_file_path, index_col=0) y = df_train['target'] features = df_train.drop(['target'], axis=1) features.head()
code
105189181/cell_13
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('/kaggle/input/world-wide-unicorn-startups/World_Wide_Unicorn_Startups.csv') data.shape data.columns data.isnull().sum() data.duplicated().sum() data.dropna(inplace=True) data.isnull().sum() data.shape import seaborn as sns import matplotlib.pyplot as plt plt.figure(figsize=(20, 10), facecolor='w') sns.boxplot(data=data) plt.show()
code
105189181/cell_9
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/world-wide-unicorn-startups/World_Wide_Unicorn_Startups.csv') data.shape data.columns data.isnull().sum()
code
105189181/cell_4
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/world-wide-unicorn-startups/World_Wide_Unicorn_Startups.csv') data.shape
code
105189181/cell_34
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('/kaggle/input/world-wide-unicorn-startups/World_Wide_Unicorn_Startups.csv') data.shape data.columns data.isnull().sum() data.duplicated().sum() data.dropna(inplace=True) data.isnull().sum() data.shape import seaborn as sns import matplotlib.pyplot as plt data.Industry.unique() dfvalued = data.groupby('Country', as_index=False).Valuation.count() dfvalued.sort_values(by='Valuation', ascending=False).head(10) dfcom = data.groupby('Company', as_index=False).Valuation.max() dfcom.sort_values(by='Valuation', ascending=False).head(1) dfcity = data.groupby('City', as_index=False).Valuation.count() print('Based on valuation Which city has most valuation startups in world') dfcity.sort_values(by='Valuation', ascending=False).head(1)
code
105189181/cell_23
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('/kaggle/input/world-wide-unicorn-startups/World_Wide_Unicorn_Startups.csv') data.shape data.columns data.isnull().sum() data.duplicated().sum() data.dropna(inplace=True) data.isnull().sum() data.shape import seaborn as sns import matplotlib.pyplot as plt data.Industry.unique() USData = data[data['Country'] == 'United States'] print('Number of US startups count is:') USData['Company'].count()
code
105189181/cell_30
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('/kaggle/input/world-wide-unicorn-startups/World_Wide_Unicorn_Startups.csv') data.shape data.columns data.isnull().sum() data.duplicated().sum() data.dropna(inplace=True) data.isnull().sum() data.shape import seaborn as sns import matplotlib.pyplot as plt data.Industry.unique() dfvalued = data.groupby('Country', as_index=False).Valuation.count() print(' top 10 most valued unicorn based country ') dfvalued.sort_values(by='Valuation', ascending=False).head(10)
code
105189181/cell_20
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('/kaggle/input/world-wide-unicorn-startups/World_Wide_Unicorn_Startups.csv') data.shape data.columns data.isnull().sum() data.duplicated().sum() data.dropna(inplace=True) data.isnull().sum() data.shape import seaborn as sns import matplotlib.pyplot as plt data.Industry.unique() data.year.value_counts().plot(kind='bar', figsize=(20, 3)) plt.title('Yearly companies joined unicorn club', fontdict={'fontsize': 20})
code
105189181/cell_6
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/world-wide-unicorn-startups/World_Wide_Unicorn_Startups.csv') data.shape data.columns
code
105189181/cell_40
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('/kaggle/input/world-wide-unicorn-startups/World_Wide_Unicorn_Startups.csv') data.shape data.columns data.isnull().sum() data.duplicated().sum() data.dropna(inplace=True) data.isnull().sum() data.shape import seaborn as sns import matplotlib.pyplot as plt data.Industry.unique() dfvalued = data.groupby('Country', as_index=False).Valuation.count() dfvalued.sort_values(by='Valuation', ascending=False).head(10) dfcom = data.groupby('Company', as_index=False).Valuation.max() dfcom.sort_values(by='Valuation', ascending=False).head(1) dfcity = data.groupby('City', as_index=False).Valuation.count() dfcity.sort_values(by='Valuation', ascending=False).head(1) dfcity = data.groupby('City', as_index=False).Valuation.count() dfcity.sort_values(by='Valuation', ascending=True) print('Total number of companies in all cities') data.groupby('City', as_index=False).Valuation.count()
code
105189181/cell_11
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/world-wide-unicorn-startups/World_Wide_Unicorn_Startups.csv') data.shape data.columns data.isnull().sum() data.duplicated().sum() data.dropna(inplace=True) data.isnull().sum()
code
105189181/cell_19
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('/kaggle/input/world-wide-unicorn-startups/World_Wide_Unicorn_Startups.csv') data.shape data.columns data.isnull().sum() data.duplicated().sum() data.dropna(inplace=True) data.isnull().sum() data.shape import seaborn as sns import matplotlib.pyplot as plt data.Industry.unique() data.Industry.value_counts().plot(kind='bar', figsize=(20, 3)) plt.title('Industry with their Unicorn Stauts', fontdict={'fontsize': 20})
code
105189181/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
105189181/cell_7
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/world-wide-unicorn-startups/World_Wide_Unicorn_Startups.csv') data.shape data.columns data.info()
code
105189181/cell_32
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('/kaggle/input/world-wide-unicorn-startups/World_Wide_Unicorn_Startups.csv') data.shape data.columns data.isnull().sum() data.duplicated().sum() data.dropna(inplace=True) data.isnull().sum() data.shape import seaborn as sns import matplotlib.pyplot as plt data.Industry.unique() dfvalued = data.groupby('Country', as_index=False).Valuation.count() dfvalued.sort_values(by='Valuation', ascending=False).head(10) dfcom = data.groupby('Company', as_index=False).Valuation.max() print('Based on valuation which company has most valuation') dfcom.sort_values(by='Valuation', ascending=False).head(1)
code
105189181/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/world-wide-unicorn-startups/World_Wide_Unicorn_Startups.csv') data.shape data.columns data.isnull().sum() data.duplicated().sum() data.dropna(inplace=True) data.isnull().sum() data.shape data.describe()
code
105189181/cell_38
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('/kaggle/input/world-wide-unicorn-startups/World_Wide_Unicorn_Startups.csv') data.shape data.columns data.isnull().sum() data.duplicated().sum() data.dropna(inplace=True) data.isnull().sum() data.shape import seaborn as sns import matplotlib.pyplot as plt data.Industry.unique() dfvalued = data.groupby('Country', as_index=False).Valuation.count() dfvalued.sort_values(by='Valuation', ascending=False).head(10) dfcom = data.groupby('Company', as_index=False).Valuation.max() dfcom.sort_values(by='Valuation', ascending=False).head(1) dfcity = data.groupby('City', as_index=False).Valuation.count() dfcity.sort_values(by='Valuation', ascending=False).head(1) dfcity = data.groupby('City', as_index=False).Valuation.count() dfcity.sort_values(by='Valuation', ascending=True) SFData = data[data['City'] == 'San Francisco'] SFData.head(10)
code
105189181/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/world-wide-unicorn-startups/World_Wide_Unicorn_Startups.csv') data.shape data.columns data.isnull().sum() data.duplicated().sum() data.dropna(inplace=True) data.isnull().sum() data.shape data.Industry.unique()
code
105189181/cell_24
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('/kaggle/input/world-wide-unicorn-startups/World_Wide_Unicorn_Startups.csv') data.shape data.columns data.isnull().sum() data.duplicated().sum() data.dropna(inplace=True) data.isnull().sum() data.shape import seaborn as sns import matplotlib.pyplot as plt data.Industry.unique() USData = data[data['Country'] == 'United States'] USData.plot(kind='line')
code
105189181/cell_22
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('/kaggle/input/world-wide-unicorn-startups/World_Wide_Unicorn_Startups.csv') data.shape data.columns data.isnull().sum() data.duplicated().sum() data.dropna(inplace=True) data.isnull().sum() data.shape import seaborn as sns import matplotlib.pyplot as plt data.Industry.unique() USData = data[data['Country'] == 'United States'] USData.head(10)
code
105189181/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/world-wide-unicorn-startups/World_Wide_Unicorn_Startups.csv') data.shape data.columns data.isnull().sum() data.duplicated().sum()
code
105189181/cell_27
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('/kaggle/input/world-wide-unicorn-startups/World_Wide_Unicorn_Startups.csv') data.shape data.columns data.isnull().sum() data.duplicated().sum() data.dropna(inplace=True) data.isnull().sum() data.shape import seaborn as sns import matplotlib.pyplot as plt data.Industry.unique() USData = data[data['Country'] == 'United States'] print('Number of fintech comapny in ths US:', USData['Industry'].value_counts().Fintech)
code
105189181/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/world-wide-unicorn-startups/World_Wide_Unicorn_Startups.csv') data.shape data.columns data.isnull().sum() data.duplicated().sum() data.dropna(inplace=True) data.isnull().sum() data.shape
code
105189181/cell_5
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/world-wide-unicorn-startups/World_Wide_Unicorn_Startups.csv') data.shape data.head(5)
code
105189181/cell_36
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('/kaggle/input/world-wide-unicorn-startups/World_Wide_Unicorn_Startups.csv') data.shape data.columns data.isnull().sum() data.duplicated().sum() data.dropna(inplace=True) data.isnull().sum() data.shape import seaborn as sns import matplotlib.pyplot as plt data.Industry.unique() dfvalued = data.groupby('Country', as_index=False).Valuation.count() dfvalued.sort_values(by='Valuation', ascending=False).head(10) dfcom = data.groupby('Company', as_index=False).Valuation.max() dfcom.sort_values(by='Valuation', ascending=False).head(1) dfcity = data.groupby('City', as_index=False).Valuation.count() dfcity.sort_values(by='Valuation', ascending=False).head(1) dfcity = data.groupby('City', as_index=False).Valuation.count() print('Total number of valuation startups in all cities') dfcity.sort_values(by='Valuation', ascending=True)
code
89143018/cell_21
[ "text_plain_output_1.png" ]
from pyspark.ml.feature import VectorAssembler from pyspark.ml.feature import VectorAssembler from pyspark.ml.feature import VectorAssembler from pyspark.ml.regression import LinearRegression from pyspark.ml.regression import LinearRegression from pyspark.ml.regression import LinearRegression from pyspark.sql import SparkSession from pyspark.sql.functions import col from pyspark.sql.functions import split from pyspark.sql.types import IntegerType import numpy as np from pyspark import SparkContext, SparkFiles from pyspark.sql import SparkSession import string import matplotlib.pyplot as plt from pyspark.sql.functions import split from pyspark.sql.functions import col from pyspark.sql.types import IntegerType spark = SparkSession.builder.master('local').appName('NFL').getOrCreate() playerData = spark.read.csv('../input/nfl-big-data-bowl-2022/players.csv', header=True) playData = spark.read.csv('../input/nfl-big-data-bowl-2022/plays.csv', header=True) returnData = playData.filter(playData.kickReturnYardage != 'NA').filter(playData.returnerId != 'NA').drop('gameId', 'playId', 'quarter', 'possessionTeam', 'yardlineSide', 'yardlineNumber', 'gameClock', 'penaltyJerseyNumbers', 'preSnapHomeScore', 'preSnapVisitorScore', 'passResult', 'absoluteYardlineNumber') reducedPlayerData = playerData.drop('birthDate', 'collegeName', 'Position', 'displayName') returnData = returnData.withColumnRenamed('returnerId', 'nflId') merged3 = returnData.join(reducedPlayerData, returnData.nflId == reducedPlayerData.nflId) merged3 = merged3.filter(merged3.weight != 'NA').filter(merged3.height != 'NA') new_height = merged3.withColumn('height_feet', split(col('height'), '-').getItem(0)).withColumn('height_inch', split(col('height'), '-').getItem(1)) new_height = new_height.withColumn('height_feet', new_height['height_feet'].cast(IntegerType())) new_height = new_height.withColumn('height_inch', new_height['height_inch'].cast(IntegerType())) new_height = new_height.withColumn('weight', new_height['weight'].cast(IntegerType())) new_height = new_height.withColumn('kickReturnYardage', new_height['kickReturnYardage'].cast(IntegerType())) new_height = new_height.replace(4, 48, 'height_feet') new_height = new_height.replace(5, 60, 'height_feet') new_height = new_height.replace(6, 72, 'height_feet') new_height = new_height.replace(7, 84, 'height_feet') new_height = new_height.na.fill(value=0, subset=['height_inch']) fixedData = new_height.withColumn('totalHeight', col('height_feet') + col('height_inch')) from pyspark.ml.feature import VectorAssembler vectorAssembler = VectorAssembler(inputCols=['weight', 'totalHeight'], outputCol='features') regression_df = vectorAssembler.transform(fixedData) regression_df = regression_df.select(['features', 'kickReturnYardage']) from pyspark.ml.regression import LinearRegression lr = LinearRegression(featuresCol='features', labelCol='kickReturnYardage') lr_model = lr.fit(regression_df) trainingSummary = lr_model.summary from pyspark.ml.feature import VectorAssembler vectorAssembler = VectorAssembler(inputCols=['weight'], outputCol='features2') regression_df2 = vectorAssembler.transform(fixedData) regression_df2 = regression_df2.select(['features2', 'kickReturnYardage']) from pyspark.ml.regression import LinearRegression lr = LinearRegression(featuresCol='features2', labelCol='kickReturnYardage') lr_model = lr.fit(regression_df2) trainingSummary = lr_model.summary from pyspark.ml.feature import VectorAssembler vectorAssembler = VectorAssembler(inputCols=['totalHeight'], outputCol='features3') regression_df3 = vectorAssembler.transform(fixedData) regression_df3 = regression_df3.select(['features3', 'kickReturnYardage']) from pyspark.ml.regression import LinearRegression lr = LinearRegression(featuresCol='features3', labelCol='kickReturnYardage') lr_model = lr.fit(regression_df3) print('Coefficients: ' + str(lr_model.coefficients)) print('Intercept: ' + str(lr_model.intercept))
code
89143018/cell_13
[ "application_vnd.jupyter.stderr_output_1.png" ]
from pyspark.ml.feature import VectorAssembler from pyspark.sql import SparkSession from pyspark.sql.functions import col from pyspark.sql.functions import split from pyspark.sql.types import IntegerType import numpy as np from pyspark import SparkContext, SparkFiles from pyspark.sql import SparkSession import string import matplotlib.pyplot as plt from pyspark.sql.functions import split from pyspark.sql.functions import col from pyspark.sql.types import IntegerType spark = SparkSession.builder.master('local').appName('NFL').getOrCreate() playerData = spark.read.csv('../input/nfl-big-data-bowl-2022/players.csv', header=True) playData = spark.read.csv('../input/nfl-big-data-bowl-2022/plays.csv', header=True) returnData = playData.filter(playData.kickReturnYardage != 'NA').filter(playData.returnerId != 'NA').drop('gameId', 'playId', 'quarter', 'possessionTeam', 'yardlineSide', 'yardlineNumber', 'gameClock', 'penaltyJerseyNumbers', 'preSnapHomeScore', 'preSnapVisitorScore', 'passResult', 'absoluteYardlineNumber') reducedPlayerData = playerData.drop('birthDate', 'collegeName', 'Position', 'displayName') returnData = returnData.withColumnRenamed('returnerId', 'nflId') merged3 = returnData.join(reducedPlayerData, returnData.nflId == reducedPlayerData.nflId) merged3 = merged3.filter(merged3.weight != 'NA').filter(merged3.height != 'NA') new_height = merged3.withColumn('height_feet', split(col('height'), '-').getItem(0)).withColumn('height_inch', split(col('height'), '-').getItem(1)) new_height = new_height.withColumn('height_feet', new_height['height_feet'].cast(IntegerType())) new_height = new_height.withColumn('height_inch', new_height['height_inch'].cast(IntegerType())) new_height = new_height.withColumn('weight', new_height['weight'].cast(IntegerType())) new_height = new_height.withColumn('kickReturnYardage', new_height['kickReturnYardage'].cast(IntegerType())) new_height = new_height.replace(4, 48, 'height_feet') new_height = new_height.replace(5, 60, 'height_feet') new_height = new_height.replace(6, 72, 'height_feet') new_height = new_height.replace(7, 84, 'height_feet') new_height = new_height.na.fill(value=0, subset=['height_inch']) fixedData = new_height.withColumn('totalHeight', col('height_feet') + col('height_inch')) from pyspark.ml.feature import VectorAssembler vectorAssembler = VectorAssembler(inputCols=['weight', 'totalHeight'], outputCol='features') regression_df = vectorAssembler.transform(fixedData) regression_df = regression_df.select(['features', 'kickReturnYardage']) regression_df.show(3)
code