path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
89143018/cell_9
[ "image_output_1.png" ]
from pyspark.sql import SparkSession from pyspark.sql.functions import col from pyspark.sql.functions import split from pyspark.sql.types import IntegerType import numpy as np from pyspark import SparkContext, SparkFiles from pyspark.sql import SparkSession import string import matplotlib.pyplot as plt from pyspark.sql.functions import split from pyspark.sql.functions import col from pyspark.sql.types import IntegerType spark = SparkSession.builder.master('local').appName('NFL').getOrCreate() playerData = spark.read.csv('../input/nfl-big-data-bowl-2022/players.csv', header=True) playData = spark.read.csv('../input/nfl-big-data-bowl-2022/plays.csv', header=True) returnData = playData.filter(playData.kickReturnYardage != 'NA').filter(playData.returnerId != 'NA').drop('gameId', 'playId', 'quarter', 'possessionTeam', 'yardlineSide', 'yardlineNumber', 'gameClock', 'penaltyJerseyNumbers', 'preSnapHomeScore', 'preSnapVisitorScore', 'passResult', 'absoluteYardlineNumber') reducedPlayerData = playerData.drop('birthDate', 'collegeName', 'Position', 'displayName') returnData = returnData.withColumnRenamed('returnerId', 'nflId') merged3 = returnData.join(reducedPlayerData, returnData.nflId == reducedPlayerData.nflId) merged3 = merged3.filter(merged3.weight != 'NA').filter(merged3.height != 'NA') new_height = merged3.withColumn('height_feet', split(col('height'), '-').getItem(0)).withColumn('height_inch', split(col('height'), '-').getItem(1)) new_height = new_height.withColumn('height_feet', new_height['height_feet'].cast(IntegerType())) new_height = new_height.withColumn('height_inch', new_height['height_inch'].cast(IntegerType())) new_height = new_height.withColumn('weight', new_height['weight'].cast(IntegerType())) new_height = new_height.withColumn('kickReturnYardage', new_height['kickReturnYardage'].cast(IntegerType())) new_height.show(5)
code
89143018/cell_25
[ "text_plain_output_1.png" ]
from pyspark.sql import SparkSession from pyspark.sql.functions import col from pyspark.sql.functions import split from pyspark.sql.types import IntegerType import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np import numpy as np import numpy as np from pyspark import SparkContext, SparkFiles from pyspark.sql import SparkSession import string import matplotlib.pyplot as plt from pyspark.sql.functions import split from pyspark.sql.functions import col from pyspark.sql.types import IntegerType spark = SparkSession.builder.master('local').appName('NFL').getOrCreate() playerData = spark.read.csv('../input/nfl-big-data-bowl-2022/players.csv', header=True) playData = spark.read.csv('../input/nfl-big-data-bowl-2022/plays.csv', header=True) returnData = playData.filter(playData.kickReturnYardage != 'NA').filter(playData.returnerId != 'NA').drop('gameId', 'playId', 'quarter', 'possessionTeam', 'yardlineSide', 'yardlineNumber', 'gameClock', 'penaltyJerseyNumbers', 'preSnapHomeScore', 'preSnapVisitorScore', 'passResult', 'absoluteYardlineNumber') reducedPlayerData = playerData.drop('birthDate', 'collegeName', 'Position', 'displayName') returnData = returnData.withColumnRenamed('returnerId', 'nflId') merged3 = returnData.join(reducedPlayerData, returnData.nflId == reducedPlayerData.nflId) merged3 = merged3.filter(merged3.weight != 'NA').filter(merged3.height != 'NA') new_height = merged3.withColumn('height_feet', split(col('height'), '-').getItem(0)).withColumn('height_inch', split(col('height'), '-').getItem(1)) new_height = new_height.withColumn('height_feet', new_height['height_feet'].cast(IntegerType())) new_height = new_height.withColumn('height_inch', new_height['height_inch'].cast(IntegerType())) new_height = new_height.withColumn('weight', new_height['weight'].cast(IntegerType())) new_height = new_height.withColumn('kickReturnYardage', new_height['kickReturnYardage'].cast(IntegerType())) new_height = new_height.replace(4, 48, 'height_feet') new_height = new_height.replace(5, 60, 'height_feet') new_height = new_height.replace(6, 72, 'height_feet') new_height = new_height.replace(7, 84, 'height_feet') new_height = new_height.na.fill(value=0, subset=['height_inch']) fixedData = new_height.withColumn('totalHeight', col('height_feet') + col('height_inch')) import numpy as np import matplotlib.pyplot as plt from scipy.stats import gaussian_kde x = np.array(fixedData.select('weight').collect()) x = x[np.logical_not(np.isnan(x))] y = np.array(fixedData.select('kickReturnYardage').collect()) y = y[np.logical_not(np.isnan(y))] x = np.array(fixedData.select('totalHeight').collect()) x = x[np.logical_not(np.isnan(x))] y = np.array(fixedData.select('kickReturnYardage').collect()) y = y[np.logical_not(np.isnan(y))] plt.hist(x, bins=30, color='blue') plt.xlabel('Height (inches)', fontsize=16) plt.ylabel('counts', fontsize=16) plt.title('Distribution of Heights of Kick Returners', fontsize=16) plt.show()
code
89143018/cell_4
[ "text_plain_output_1.png" ]
!pip install pyspark !pip install -U -q PyDrive !apt install openjdk-8-jdk-headless -qq --yes import os os.environ["JAVA_HOME"] = "/usr/lib/jvm/java-8-openjdk-amd64"
code
89143018/cell_20
[ "text_plain_output_1.png" ]
from pyspark.ml.feature import VectorAssembler from pyspark.ml.feature import VectorAssembler from pyspark.ml.feature import VectorAssembler from pyspark.sql import SparkSession from pyspark.sql.functions import col from pyspark.sql.functions import split from pyspark.sql.types import IntegerType import numpy as np from pyspark import SparkContext, SparkFiles from pyspark.sql import SparkSession import string import matplotlib.pyplot as plt from pyspark.sql.functions import split from pyspark.sql.functions import col from pyspark.sql.types import IntegerType spark = SparkSession.builder.master('local').appName('NFL').getOrCreate() playerData = spark.read.csv('../input/nfl-big-data-bowl-2022/players.csv', header=True) playData = spark.read.csv('../input/nfl-big-data-bowl-2022/plays.csv', header=True) returnData = playData.filter(playData.kickReturnYardage != 'NA').filter(playData.returnerId != 'NA').drop('gameId', 'playId', 'quarter', 'possessionTeam', 'yardlineSide', 'yardlineNumber', 'gameClock', 'penaltyJerseyNumbers', 'preSnapHomeScore', 'preSnapVisitorScore', 'passResult', 'absoluteYardlineNumber') reducedPlayerData = playerData.drop('birthDate', 'collegeName', 'Position', 'displayName') returnData = returnData.withColumnRenamed('returnerId', 'nflId') merged3 = returnData.join(reducedPlayerData, returnData.nflId == reducedPlayerData.nflId) merged3 = merged3.filter(merged3.weight != 'NA').filter(merged3.height != 'NA') new_height = merged3.withColumn('height_feet', split(col('height'), '-').getItem(0)).withColumn('height_inch', split(col('height'), '-').getItem(1)) new_height = new_height.withColumn('height_feet', new_height['height_feet'].cast(IntegerType())) new_height = new_height.withColumn('height_inch', new_height['height_inch'].cast(IntegerType())) new_height = new_height.withColumn('weight', new_height['weight'].cast(IntegerType())) new_height = new_height.withColumn('kickReturnYardage', new_height['kickReturnYardage'].cast(IntegerType())) new_height = new_height.replace(4, 48, 'height_feet') new_height = new_height.replace(5, 60, 'height_feet') new_height = new_height.replace(6, 72, 'height_feet') new_height = new_height.replace(7, 84, 'height_feet') new_height = new_height.na.fill(value=0, subset=['height_inch']) fixedData = new_height.withColumn('totalHeight', col('height_feet') + col('height_inch')) from pyspark.ml.feature import VectorAssembler vectorAssembler = VectorAssembler(inputCols=['weight', 'totalHeight'], outputCol='features') regression_df = vectorAssembler.transform(fixedData) regression_df = regression_df.select(['features', 'kickReturnYardage']) from pyspark.ml.feature import VectorAssembler vectorAssembler = VectorAssembler(inputCols=['weight'], outputCol='features2') regression_df2 = vectorAssembler.transform(fixedData) regression_df2 = regression_df2.select(['features2', 'kickReturnYardage']) from pyspark.ml.feature import VectorAssembler vectorAssembler = VectorAssembler(inputCols=['totalHeight'], outputCol='features3') regression_df3 = vectorAssembler.transform(fixedData) regression_df3 = regression_df3.select(['features3', 'kickReturnYardage']) regression_df3.show(3)
code
89143018/cell_6
[ "image_output_1.png" ]
from pyspark.sql import SparkSession import numpy as np from pyspark import SparkContext, SparkFiles from pyspark.sql import SparkSession import string import matplotlib.pyplot as plt from pyspark.sql.functions import split from pyspark.sql.functions import col from pyspark.sql.types import IntegerType spark = SparkSession.builder.master('local').appName('NFL').getOrCreate() playerData = spark.read.csv('../input/nfl-big-data-bowl-2022/players.csv', header=True) playData = spark.read.csv('../input/nfl-big-data-bowl-2022/plays.csv', header=True)
code
89143018/cell_26
[ "text_plain_output_1.png" ]
from pyspark.sql import SparkSession from pyspark.sql.functions import col from pyspark.sql.functions import split from pyspark.sql.types import IntegerType import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np import numpy as np import numpy as np from pyspark import SparkContext, SparkFiles from pyspark.sql import SparkSession import string import matplotlib.pyplot as plt from pyspark.sql.functions import split from pyspark.sql.functions import col from pyspark.sql.types import IntegerType spark = SparkSession.builder.master('local').appName('NFL').getOrCreate() playerData = spark.read.csv('../input/nfl-big-data-bowl-2022/players.csv', header=True) playData = spark.read.csv('../input/nfl-big-data-bowl-2022/plays.csv', header=True) returnData = playData.filter(playData.kickReturnYardage != 'NA').filter(playData.returnerId != 'NA').drop('gameId', 'playId', 'quarter', 'possessionTeam', 'yardlineSide', 'yardlineNumber', 'gameClock', 'penaltyJerseyNumbers', 'preSnapHomeScore', 'preSnapVisitorScore', 'passResult', 'absoluteYardlineNumber') reducedPlayerData = playerData.drop('birthDate', 'collegeName', 'Position', 'displayName') returnData = returnData.withColumnRenamed('returnerId', 'nflId') merged3 = returnData.join(reducedPlayerData, returnData.nflId == reducedPlayerData.nflId) merged3 = merged3.filter(merged3.weight != 'NA').filter(merged3.height != 'NA') new_height = merged3.withColumn('height_feet', split(col('height'), '-').getItem(0)).withColumn('height_inch', split(col('height'), '-').getItem(1)) new_height = new_height.withColumn('height_feet', new_height['height_feet'].cast(IntegerType())) new_height = new_height.withColumn('height_inch', new_height['height_inch'].cast(IntegerType())) new_height = new_height.withColumn('weight', new_height['weight'].cast(IntegerType())) new_height = new_height.withColumn('kickReturnYardage', new_height['kickReturnYardage'].cast(IntegerType())) new_height = new_height.replace(4, 48, 'height_feet') new_height = new_height.replace(5, 60, 'height_feet') new_height = new_height.replace(6, 72, 'height_feet') new_height = new_height.replace(7, 84, 'height_feet') new_height = new_height.na.fill(value=0, subset=['height_inch']) fixedData = new_height.withColumn('totalHeight', col('height_feet') + col('height_inch')) import numpy as np import matplotlib.pyplot as plt from scipy.stats import gaussian_kde x = np.array(fixedData.select('weight').collect()) x = x[np.logical_not(np.isnan(x))] y = np.array(fixedData.select('kickReturnYardage').collect()) y = y[np.logical_not(np.isnan(y))] x = np.array(fixedData.select('totalHeight').collect()) x = x[np.logical_not(np.isnan(x))] y = np.array(fixedData.select('kickReturnYardage').collect()) y = y[np.logical_not(np.isnan(y))] x = np.array(fixedData.select('weight').collect()) x = x[np.logical_not(np.isnan(x))] y = np.array(fixedData.select('kickReturnYardage').collect()) y = y[np.logical_not(np.isnan(y))] plt.hist(y, bins=30, color='blue') plt.xlabel('Kick Return Yardage', fontsize=16) plt.ylabel('counts', fontsize=16) plt.title('Distribution of Kick Return Yardages', fontsize=16) plt.show()
code
89143018/cell_19
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from pyspark.ml.feature import VectorAssembler from pyspark.ml.feature import VectorAssembler from pyspark.ml.regression import LinearRegression from pyspark.ml.regression import LinearRegression from pyspark.sql import SparkSession from pyspark.sql.functions import col from pyspark.sql.functions import split from pyspark.sql.types import IntegerType import numpy as np from pyspark import SparkContext, SparkFiles from pyspark.sql import SparkSession import string import matplotlib.pyplot as plt from pyspark.sql.functions import split from pyspark.sql.functions import col from pyspark.sql.types import IntegerType spark = SparkSession.builder.master('local').appName('NFL').getOrCreate() playerData = spark.read.csv('../input/nfl-big-data-bowl-2022/players.csv', header=True) playData = spark.read.csv('../input/nfl-big-data-bowl-2022/plays.csv', header=True) returnData = playData.filter(playData.kickReturnYardage != 'NA').filter(playData.returnerId != 'NA').drop('gameId', 'playId', 'quarter', 'possessionTeam', 'yardlineSide', 'yardlineNumber', 'gameClock', 'penaltyJerseyNumbers', 'preSnapHomeScore', 'preSnapVisitorScore', 'passResult', 'absoluteYardlineNumber') reducedPlayerData = playerData.drop('birthDate', 'collegeName', 'Position', 'displayName') returnData = returnData.withColumnRenamed('returnerId', 'nflId') merged3 = returnData.join(reducedPlayerData, returnData.nflId == reducedPlayerData.nflId) merged3 = merged3.filter(merged3.weight != 'NA').filter(merged3.height != 'NA') new_height = merged3.withColumn('height_feet', split(col('height'), '-').getItem(0)).withColumn('height_inch', split(col('height'), '-').getItem(1)) new_height = new_height.withColumn('height_feet', new_height['height_feet'].cast(IntegerType())) new_height = new_height.withColumn('height_inch', new_height['height_inch'].cast(IntegerType())) new_height = new_height.withColumn('weight', new_height['weight'].cast(IntegerType())) new_height = new_height.withColumn('kickReturnYardage', new_height['kickReturnYardage'].cast(IntegerType())) new_height = new_height.replace(4, 48, 'height_feet') new_height = new_height.replace(5, 60, 'height_feet') new_height = new_height.replace(6, 72, 'height_feet') new_height = new_height.replace(7, 84, 'height_feet') new_height = new_height.na.fill(value=0, subset=['height_inch']) fixedData = new_height.withColumn('totalHeight', col('height_feet') + col('height_inch')) from pyspark.ml.feature import VectorAssembler vectorAssembler = VectorAssembler(inputCols=['weight', 'totalHeight'], outputCol='features') regression_df = vectorAssembler.transform(fixedData) regression_df = regression_df.select(['features', 'kickReturnYardage']) from pyspark.ml.regression import LinearRegression lr = LinearRegression(featuresCol='features', labelCol='kickReturnYardage') lr_model = lr.fit(regression_df) trainingSummary = lr_model.summary from pyspark.ml.feature import VectorAssembler vectorAssembler = VectorAssembler(inputCols=['weight'], outputCol='features2') regression_df2 = vectorAssembler.transform(fixedData) regression_df2 = regression_df2.select(['features2', 'kickReturnYardage']) from pyspark.ml.regression import LinearRegression lr = LinearRegression(featuresCol='features2', labelCol='kickReturnYardage') lr_model = lr.fit(regression_df2) trainingSummary = lr_model.summary print('RMSE: %f' % trainingSummary.rootMeanSquaredError) print('r2: %f' % trainingSummary.r2)
code
89143018/cell_18
[ "text_plain_output_1.png" ]
from pyspark.ml.feature import VectorAssembler from pyspark.ml.feature import VectorAssembler from pyspark.ml.regression import LinearRegression from pyspark.ml.regression import LinearRegression from pyspark.sql import SparkSession from pyspark.sql.functions import col from pyspark.sql.functions import split from pyspark.sql.types import IntegerType import numpy as np from pyspark import SparkContext, SparkFiles from pyspark.sql import SparkSession import string import matplotlib.pyplot as plt from pyspark.sql.functions import split from pyspark.sql.functions import col from pyspark.sql.types import IntegerType spark = SparkSession.builder.master('local').appName('NFL').getOrCreate() playerData = spark.read.csv('../input/nfl-big-data-bowl-2022/players.csv', header=True) playData = spark.read.csv('../input/nfl-big-data-bowl-2022/plays.csv', header=True) returnData = playData.filter(playData.kickReturnYardage != 'NA').filter(playData.returnerId != 'NA').drop('gameId', 'playId', 'quarter', 'possessionTeam', 'yardlineSide', 'yardlineNumber', 'gameClock', 'penaltyJerseyNumbers', 'preSnapHomeScore', 'preSnapVisitorScore', 'passResult', 'absoluteYardlineNumber') reducedPlayerData = playerData.drop('birthDate', 'collegeName', 'Position', 'displayName') returnData = returnData.withColumnRenamed('returnerId', 'nflId') merged3 = returnData.join(reducedPlayerData, returnData.nflId == reducedPlayerData.nflId) merged3 = merged3.filter(merged3.weight != 'NA').filter(merged3.height != 'NA') new_height = merged3.withColumn('height_feet', split(col('height'), '-').getItem(0)).withColumn('height_inch', split(col('height'), '-').getItem(1)) new_height = new_height.withColumn('height_feet', new_height['height_feet'].cast(IntegerType())) new_height = new_height.withColumn('height_inch', new_height['height_inch'].cast(IntegerType())) new_height = new_height.withColumn('weight', new_height['weight'].cast(IntegerType())) new_height = new_height.withColumn('kickReturnYardage', new_height['kickReturnYardage'].cast(IntegerType())) new_height = new_height.replace(4, 48, 'height_feet') new_height = new_height.replace(5, 60, 'height_feet') new_height = new_height.replace(6, 72, 'height_feet') new_height = new_height.replace(7, 84, 'height_feet') new_height = new_height.na.fill(value=0, subset=['height_inch']) fixedData = new_height.withColumn('totalHeight', col('height_feet') + col('height_inch')) from pyspark.ml.feature import VectorAssembler vectorAssembler = VectorAssembler(inputCols=['weight', 'totalHeight'], outputCol='features') regression_df = vectorAssembler.transform(fixedData) regression_df = regression_df.select(['features', 'kickReturnYardage']) from pyspark.ml.regression import LinearRegression lr = LinearRegression(featuresCol='features', labelCol='kickReturnYardage') lr_model = lr.fit(regression_df) trainingSummary = lr_model.summary from pyspark.ml.feature import VectorAssembler vectorAssembler = VectorAssembler(inputCols=['weight'], outputCol='features2') regression_df2 = vectorAssembler.transform(fixedData) regression_df2 = regression_df2.select(['features2', 'kickReturnYardage']) from pyspark.ml.regression import LinearRegression lr = LinearRegression(featuresCol='features2', labelCol='kickReturnYardage') lr_model = lr.fit(regression_df2) print('Coefficients: ' + str(lr_model.coefficients)) print('Intercept: ' + str(lr_model.intercept))
code
89143018/cell_8
[ "image_output_1.png" ]
from pyspark.sql import SparkSession import numpy as np from pyspark import SparkContext, SparkFiles from pyspark.sql import SparkSession import string import matplotlib.pyplot as plt from pyspark.sql.functions import split from pyspark.sql.functions import col from pyspark.sql.types import IntegerType spark = SparkSession.builder.master('local').appName('NFL').getOrCreate() playerData = spark.read.csv('../input/nfl-big-data-bowl-2022/players.csv', header=True) playData = spark.read.csv('../input/nfl-big-data-bowl-2022/plays.csv', header=True) returnData = playData.filter(playData.kickReturnYardage != 'NA').filter(playData.returnerId != 'NA').drop('gameId', 'playId', 'quarter', 'possessionTeam', 'yardlineSide', 'yardlineNumber', 'gameClock', 'penaltyJerseyNumbers', 'preSnapHomeScore', 'preSnapVisitorScore', 'passResult', 'absoluteYardlineNumber') reducedPlayerData = playerData.drop('birthDate', 'collegeName', 'Position', 'displayName') returnData = returnData.withColumnRenamed('returnerId', 'nflId') merged3 = returnData.join(reducedPlayerData, returnData.nflId == reducedPlayerData.nflId) merged3 = merged3.filter(merged3.weight != 'NA').filter(merged3.height != 'NA') merged3.show(5)
code
89143018/cell_15
[ "text_plain_output_1.png" ]
from pyspark.ml.feature import VectorAssembler from pyspark.ml.regression import LinearRegression from pyspark.sql import SparkSession from pyspark.sql.functions import col from pyspark.sql.functions import split from pyspark.sql.types import IntegerType import numpy as np from pyspark import SparkContext, SparkFiles from pyspark.sql import SparkSession import string import matplotlib.pyplot as plt from pyspark.sql.functions import split from pyspark.sql.functions import col from pyspark.sql.types import IntegerType spark = SparkSession.builder.master('local').appName('NFL').getOrCreate() playerData = spark.read.csv('../input/nfl-big-data-bowl-2022/players.csv', header=True) playData = spark.read.csv('../input/nfl-big-data-bowl-2022/plays.csv', header=True) returnData = playData.filter(playData.kickReturnYardage != 'NA').filter(playData.returnerId != 'NA').drop('gameId', 'playId', 'quarter', 'possessionTeam', 'yardlineSide', 'yardlineNumber', 'gameClock', 'penaltyJerseyNumbers', 'preSnapHomeScore', 'preSnapVisitorScore', 'passResult', 'absoluteYardlineNumber') reducedPlayerData = playerData.drop('birthDate', 'collegeName', 'Position', 'displayName') returnData = returnData.withColumnRenamed('returnerId', 'nflId') merged3 = returnData.join(reducedPlayerData, returnData.nflId == reducedPlayerData.nflId) merged3 = merged3.filter(merged3.weight != 'NA').filter(merged3.height != 'NA') new_height = merged3.withColumn('height_feet', split(col('height'), '-').getItem(0)).withColumn('height_inch', split(col('height'), '-').getItem(1)) new_height = new_height.withColumn('height_feet', new_height['height_feet'].cast(IntegerType())) new_height = new_height.withColumn('height_inch', new_height['height_inch'].cast(IntegerType())) new_height = new_height.withColumn('weight', new_height['weight'].cast(IntegerType())) new_height = new_height.withColumn('kickReturnYardage', new_height['kickReturnYardage'].cast(IntegerType())) new_height = new_height.replace(4, 48, 'height_feet') new_height = new_height.replace(5, 60, 'height_feet') new_height = new_height.replace(6, 72, 'height_feet') new_height = new_height.replace(7, 84, 'height_feet') new_height = new_height.na.fill(value=0, subset=['height_inch']) fixedData = new_height.withColumn('totalHeight', col('height_feet') + col('height_inch')) from pyspark.ml.feature import VectorAssembler vectorAssembler = VectorAssembler(inputCols=['weight', 'totalHeight'], outputCol='features') regression_df = vectorAssembler.transform(fixedData) regression_df = regression_df.select(['features', 'kickReturnYardage']) from pyspark.ml.regression import LinearRegression lr = LinearRegression(featuresCol='features', labelCol='kickReturnYardage') lr_model = lr.fit(regression_df) trainingSummary = lr_model.summary print('RMSE: %f' % trainingSummary.rootMeanSquaredError) print('r2: %f' % trainingSummary.r2)
code
89143018/cell_16
[ "text_plain_output_1.png" ]
from pyspark.ml.feature import VectorAssembler from pyspark.sql import SparkSession from pyspark.sql.functions import col from pyspark.sql.functions import split from pyspark.sql.types import IntegerType import numpy as np from pyspark import SparkContext, SparkFiles from pyspark.sql import SparkSession import string import matplotlib.pyplot as plt from pyspark.sql.functions import split from pyspark.sql.functions import col from pyspark.sql.types import IntegerType spark = SparkSession.builder.master('local').appName('NFL').getOrCreate() playerData = spark.read.csv('../input/nfl-big-data-bowl-2022/players.csv', header=True) playData = spark.read.csv('../input/nfl-big-data-bowl-2022/plays.csv', header=True) returnData = playData.filter(playData.kickReturnYardage != 'NA').filter(playData.returnerId != 'NA').drop('gameId', 'playId', 'quarter', 'possessionTeam', 'yardlineSide', 'yardlineNumber', 'gameClock', 'penaltyJerseyNumbers', 'preSnapHomeScore', 'preSnapVisitorScore', 'passResult', 'absoluteYardlineNumber') reducedPlayerData = playerData.drop('birthDate', 'collegeName', 'Position', 'displayName') returnData = returnData.withColumnRenamed('returnerId', 'nflId') merged3 = returnData.join(reducedPlayerData, returnData.nflId == reducedPlayerData.nflId) merged3 = merged3.filter(merged3.weight != 'NA').filter(merged3.height != 'NA') new_height = merged3.withColumn('height_feet', split(col('height'), '-').getItem(0)).withColumn('height_inch', split(col('height'), '-').getItem(1)) new_height = new_height.withColumn('height_feet', new_height['height_feet'].cast(IntegerType())) new_height = new_height.withColumn('height_inch', new_height['height_inch'].cast(IntegerType())) new_height = new_height.withColumn('weight', new_height['weight'].cast(IntegerType())) new_height = new_height.withColumn('kickReturnYardage', new_height['kickReturnYardage'].cast(IntegerType())) new_height = new_height.replace(4, 48, 'height_feet') new_height = new_height.replace(5, 60, 'height_feet') new_height = new_height.replace(6, 72, 'height_feet') new_height = new_height.replace(7, 84, 'height_feet') new_height = new_height.na.fill(value=0, subset=['height_inch']) fixedData = new_height.withColumn('totalHeight', col('height_feet') + col('height_inch')) from pyspark.ml.feature import VectorAssembler vectorAssembler = VectorAssembler(inputCols=['weight', 'totalHeight'], outputCol='features') regression_df = vectorAssembler.transform(fixedData) regression_df = regression_df.select(['features', 'kickReturnYardage']) regression_df.describe().show()
code
89143018/cell_17
[ "text_plain_output_1.png" ]
from pyspark.ml.feature import VectorAssembler from pyspark.ml.feature import VectorAssembler from pyspark.sql import SparkSession from pyspark.sql.functions import col from pyspark.sql.functions import split from pyspark.sql.types import IntegerType import numpy as np from pyspark import SparkContext, SparkFiles from pyspark.sql import SparkSession import string import matplotlib.pyplot as plt from pyspark.sql.functions import split from pyspark.sql.functions import col from pyspark.sql.types import IntegerType spark = SparkSession.builder.master('local').appName('NFL').getOrCreate() playerData = spark.read.csv('../input/nfl-big-data-bowl-2022/players.csv', header=True) playData = spark.read.csv('../input/nfl-big-data-bowl-2022/plays.csv', header=True) returnData = playData.filter(playData.kickReturnYardage != 'NA').filter(playData.returnerId != 'NA').drop('gameId', 'playId', 'quarter', 'possessionTeam', 'yardlineSide', 'yardlineNumber', 'gameClock', 'penaltyJerseyNumbers', 'preSnapHomeScore', 'preSnapVisitorScore', 'passResult', 'absoluteYardlineNumber') reducedPlayerData = playerData.drop('birthDate', 'collegeName', 'Position', 'displayName') returnData = returnData.withColumnRenamed('returnerId', 'nflId') merged3 = returnData.join(reducedPlayerData, returnData.nflId == reducedPlayerData.nflId) merged3 = merged3.filter(merged3.weight != 'NA').filter(merged3.height != 'NA') new_height = merged3.withColumn('height_feet', split(col('height'), '-').getItem(0)).withColumn('height_inch', split(col('height'), '-').getItem(1)) new_height = new_height.withColumn('height_feet', new_height['height_feet'].cast(IntegerType())) new_height = new_height.withColumn('height_inch', new_height['height_inch'].cast(IntegerType())) new_height = new_height.withColumn('weight', new_height['weight'].cast(IntegerType())) new_height = new_height.withColumn('kickReturnYardage', new_height['kickReturnYardage'].cast(IntegerType())) new_height = new_height.replace(4, 48, 'height_feet') new_height = new_height.replace(5, 60, 'height_feet') new_height = new_height.replace(6, 72, 'height_feet') new_height = new_height.replace(7, 84, 'height_feet') new_height = new_height.na.fill(value=0, subset=['height_inch']) fixedData = new_height.withColumn('totalHeight', col('height_feet') + col('height_inch')) from pyspark.ml.feature import VectorAssembler vectorAssembler = VectorAssembler(inputCols=['weight', 'totalHeight'], outputCol='features') regression_df = vectorAssembler.transform(fixedData) regression_df = regression_df.select(['features', 'kickReturnYardage']) from pyspark.ml.feature import VectorAssembler vectorAssembler = VectorAssembler(inputCols=['weight'], outputCol='features2') regression_df2 = vectorAssembler.transform(fixedData) regression_df2 = regression_df2.select(['features2', 'kickReturnYardage']) regression_df2.show(3)
code
89143018/cell_24
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from pyspark.sql import SparkSession from pyspark.sql.functions import col from pyspark.sql.functions import split from pyspark.sql.types import IntegerType import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np import numpy as np import numpy as np from pyspark import SparkContext, SparkFiles from pyspark.sql import SparkSession import string import matplotlib.pyplot as plt from pyspark.sql.functions import split from pyspark.sql.functions import col from pyspark.sql.types import IntegerType spark = SparkSession.builder.master('local').appName('NFL').getOrCreate() playerData = spark.read.csv('../input/nfl-big-data-bowl-2022/players.csv', header=True) playData = spark.read.csv('../input/nfl-big-data-bowl-2022/plays.csv', header=True) returnData = playData.filter(playData.kickReturnYardage != 'NA').filter(playData.returnerId != 'NA').drop('gameId', 'playId', 'quarter', 'possessionTeam', 'yardlineSide', 'yardlineNumber', 'gameClock', 'penaltyJerseyNumbers', 'preSnapHomeScore', 'preSnapVisitorScore', 'passResult', 'absoluteYardlineNumber') reducedPlayerData = playerData.drop('birthDate', 'collegeName', 'Position', 'displayName') returnData = returnData.withColumnRenamed('returnerId', 'nflId') merged3 = returnData.join(reducedPlayerData, returnData.nflId == reducedPlayerData.nflId) merged3 = merged3.filter(merged3.weight != 'NA').filter(merged3.height != 'NA') new_height = merged3.withColumn('height_feet', split(col('height'), '-').getItem(0)).withColumn('height_inch', split(col('height'), '-').getItem(1)) new_height = new_height.withColumn('height_feet', new_height['height_feet'].cast(IntegerType())) new_height = new_height.withColumn('height_inch', new_height['height_inch'].cast(IntegerType())) new_height = new_height.withColumn('weight', new_height['weight'].cast(IntegerType())) new_height = new_height.withColumn('kickReturnYardage', new_height['kickReturnYardage'].cast(IntegerType())) new_height = new_height.replace(4, 48, 'height_feet') new_height = new_height.replace(5, 60, 'height_feet') new_height = new_height.replace(6, 72, 'height_feet') new_height = new_height.replace(7, 84, 'height_feet') new_height = new_height.na.fill(value=0, subset=['height_inch']) fixedData = new_height.withColumn('totalHeight', col('height_feet') + col('height_inch')) import numpy as np import matplotlib.pyplot as plt from scipy.stats import gaussian_kde x = np.array(fixedData.select('weight').collect()) x = x[np.logical_not(np.isnan(x))] y = np.array(fixedData.select('kickReturnYardage').collect()) y = y[np.logical_not(np.isnan(y))] plt.hist(x, bins=30, color='blue') plt.xlabel('Weight (lbs)', fontsize=16) plt.ylabel('counts', fontsize=16) plt.title('Distribution of Weights of Kick Returners', fontsize=16) plt.show()
code
89143018/cell_14
[ "application_vnd.jupyter.stderr_output_1.png" ]
from pyspark.ml.feature import VectorAssembler from pyspark.ml.regression import LinearRegression from pyspark.sql import SparkSession from pyspark.sql.functions import col from pyspark.sql.functions import split from pyspark.sql.types import IntegerType import numpy as np from pyspark import SparkContext, SparkFiles from pyspark.sql import SparkSession import string import matplotlib.pyplot as plt from pyspark.sql.functions import split from pyspark.sql.functions import col from pyspark.sql.types import IntegerType spark = SparkSession.builder.master('local').appName('NFL').getOrCreate() playerData = spark.read.csv('../input/nfl-big-data-bowl-2022/players.csv', header=True) playData = spark.read.csv('../input/nfl-big-data-bowl-2022/plays.csv', header=True) returnData = playData.filter(playData.kickReturnYardage != 'NA').filter(playData.returnerId != 'NA').drop('gameId', 'playId', 'quarter', 'possessionTeam', 'yardlineSide', 'yardlineNumber', 'gameClock', 'penaltyJerseyNumbers', 'preSnapHomeScore', 'preSnapVisitorScore', 'passResult', 'absoluteYardlineNumber') reducedPlayerData = playerData.drop('birthDate', 'collegeName', 'Position', 'displayName') returnData = returnData.withColumnRenamed('returnerId', 'nflId') merged3 = returnData.join(reducedPlayerData, returnData.nflId == reducedPlayerData.nflId) merged3 = merged3.filter(merged3.weight != 'NA').filter(merged3.height != 'NA') new_height = merged3.withColumn('height_feet', split(col('height'), '-').getItem(0)).withColumn('height_inch', split(col('height'), '-').getItem(1)) new_height = new_height.withColumn('height_feet', new_height['height_feet'].cast(IntegerType())) new_height = new_height.withColumn('height_inch', new_height['height_inch'].cast(IntegerType())) new_height = new_height.withColumn('weight', new_height['weight'].cast(IntegerType())) new_height = new_height.withColumn('kickReturnYardage', new_height['kickReturnYardage'].cast(IntegerType())) new_height = new_height.replace(4, 48, 'height_feet') new_height = new_height.replace(5, 60, 'height_feet') new_height = new_height.replace(6, 72, 'height_feet') new_height = new_height.replace(7, 84, 'height_feet') new_height = new_height.na.fill(value=0, subset=['height_inch']) fixedData = new_height.withColumn('totalHeight', col('height_feet') + col('height_inch')) from pyspark.ml.feature import VectorAssembler vectorAssembler = VectorAssembler(inputCols=['weight', 'totalHeight'], outputCol='features') regression_df = vectorAssembler.transform(fixedData) regression_df = regression_df.select(['features', 'kickReturnYardage']) from pyspark.ml.regression import LinearRegression lr = LinearRegression(featuresCol='features', labelCol='kickReturnYardage') lr_model = lr.fit(regression_df) print('Coefficients: ' + str(lr_model.coefficients)) print('Intercept: ' + str(lr_model.intercept))
code
89143018/cell_22
[ "text_plain_output_1.png" ]
from pyspark.ml.feature import VectorAssembler from pyspark.ml.feature import VectorAssembler from pyspark.ml.feature import VectorAssembler from pyspark.ml.regression import LinearRegression from pyspark.ml.regression import LinearRegression from pyspark.ml.regression import LinearRegression from pyspark.sql import SparkSession from pyspark.sql.functions import col from pyspark.sql.functions import split from pyspark.sql.types import IntegerType import numpy as np from pyspark import SparkContext, SparkFiles from pyspark.sql import SparkSession import string import matplotlib.pyplot as plt from pyspark.sql.functions import split from pyspark.sql.functions import col from pyspark.sql.types import IntegerType spark = SparkSession.builder.master('local').appName('NFL').getOrCreate() playerData = spark.read.csv('../input/nfl-big-data-bowl-2022/players.csv', header=True) playData = spark.read.csv('../input/nfl-big-data-bowl-2022/plays.csv', header=True) returnData = playData.filter(playData.kickReturnYardage != 'NA').filter(playData.returnerId != 'NA').drop('gameId', 'playId', 'quarter', 'possessionTeam', 'yardlineSide', 'yardlineNumber', 'gameClock', 'penaltyJerseyNumbers', 'preSnapHomeScore', 'preSnapVisitorScore', 'passResult', 'absoluteYardlineNumber') reducedPlayerData = playerData.drop('birthDate', 'collegeName', 'Position', 'displayName') returnData = returnData.withColumnRenamed('returnerId', 'nflId') merged3 = returnData.join(reducedPlayerData, returnData.nflId == reducedPlayerData.nflId) merged3 = merged3.filter(merged3.weight != 'NA').filter(merged3.height != 'NA') new_height = merged3.withColumn('height_feet', split(col('height'), '-').getItem(0)).withColumn('height_inch', split(col('height'), '-').getItem(1)) new_height = new_height.withColumn('height_feet', new_height['height_feet'].cast(IntegerType())) new_height = new_height.withColumn('height_inch', new_height['height_inch'].cast(IntegerType())) new_height = new_height.withColumn('weight', new_height['weight'].cast(IntegerType())) new_height = new_height.withColumn('kickReturnYardage', new_height['kickReturnYardage'].cast(IntegerType())) new_height = new_height.replace(4, 48, 'height_feet') new_height = new_height.replace(5, 60, 'height_feet') new_height = new_height.replace(6, 72, 'height_feet') new_height = new_height.replace(7, 84, 'height_feet') new_height = new_height.na.fill(value=0, subset=['height_inch']) fixedData = new_height.withColumn('totalHeight', col('height_feet') + col('height_inch')) from pyspark.ml.feature import VectorAssembler vectorAssembler = VectorAssembler(inputCols=['weight', 'totalHeight'], outputCol='features') regression_df = vectorAssembler.transform(fixedData) regression_df = regression_df.select(['features', 'kickReturnYardage']) from pyspark.ml.regression import LinearRegression lr = LinearRegression(featuresCol='features', labelCol='kickReturnYardage') lr_model = lr.fit(regression_df) trainingSummary = lr_model.summary from pyspark.ml.feature import VectorAssembler vectorAssembler = VectorAssembler(inputCols=['weight'], outputCol='features2') regression_df2 = vectorAssembler.transform(fixedData) regression_df2 = regression_df2.select(['features2', 'kickReturnYardage']) from pyspark.ml.regression import LinearRegression lr = LinearRegression(featuresCol='features2', labelCol='kickReturnYardage') lr_model = lr.fit(regression_df2) trainingSummary = lr_model.summary from pyspark.ml.feature import VectorAssembler vectorAssembler = VectorAssembler(inputCols=['totalHeight'], outputCol='features3') regression_df3 = vectorAssembler.transform(fixedData) regression_df3 = regression_df3.select(['features3', 'kickReturnYardage']) from pyspark.ml.regression import LinearRegression lr = LinearRegression(featuresCol='features3', labelCol='kickReturnYardage') lr_model = lr.fit(regression_df3) trainingSummary = lr_model.summary print('RMSE: %f' % trainingSummary.rootMeanSquaredError) print('r2: %f' % trainingSummary.r2)
code
89143018/cell_10
[ "text_plain_output_1.png" ]
from pyspark.sql import SparkSession from pyspark.sql.functions import col from pyspark.sql.functions import split from pyspark.sql.types import IntegerType import numpy as np from pyspark import SparkContext, SparkFiles from pyspark.sql import SparkSession import string import matplotlib.pyplot as plt from pyspark.sql.functions import split from pyspark.sql.functions import col from pyspark.sql.types import IntegerType spark = SparkSession.builder.master('local').appName('NFL').getOrCreate() playerData = spark.read.csv('../input/nfl-big-data-bowl-2022/players.csv', header=True) playData = spark.read.csv('../input/nfl-big-data-bowl-2022/plays.csv', header=True) returnData = playData.filter(playData.kickReturnYardage != 'NA').filter(playData.returnerId != 'NA').drop('gameId', 'playId', 'quarter', 'possessionTeam', 'yardlineSide', 'yardlineNumber', 'gameClock', 'penaltyJerseyNumbers', 'preSnapHomeScore', 'preSnapVisitorScore', 'passResult', 'absoluteYardlineNumber') reducedPlayerData = playerData.drop('birthDate', 'collegeName', 'Position', 'displayName') returnData = returnData.withColumnRenamed('returnerId', 'nflId') merged3 = returnData.join(reducedPlayerData, returnData.nflId == reducedPlayerData.nflId) merged3 = merged3.filter(merged3.weight != 'NA').filter(merged3.height != 'NA') new_height = merged3.withColumn('height_feet', split(col('height'), '-').getItem(0)).withColumn('height_inch', split(col('height'), '-').getItem(1)) new_height = new_height.withColumn('height_feet', new_height['height_feet'].cast(IntegerType())) new_height = new_height.withColumn('height_inch', new_height['height_inch'].cast(IntegerType())) new_height = new_height.withColumn('weight', new_height['weight'].cast(IntegerType())) new_height = new_height.withColumn('kickReturnYardage', new_height['kickReturnYardage'].cast(IntegerType())) new_height = new_height.replace(4, 48, 'height_feet') new_height = new_height.replace(5, 60, 'height_feet') new_height = new_height.replace(6, 72, 'height_feet') new_height = new_height.replace(7, 84, 'height_feet') new_height = new_height.na.fill(value=0, subset=['height_inch']) fixedData = new_height.withColumn('totalHeight', col('height_feet') + col('height_inch')) fixedData.show(10)
code
89143018/cell_5
[ "image_output_1.png" ]
from pyspark.sql import SparkSession import numpy as np from pyspark import SparkContext, SparkFiles from pyspark.sql import SparkSession import string import matplotlib.pyplot as plt from pyspark.sql.functions import split from pyspark.sql.functions import col from pyspark.sql.types import IntegerType spark = SparkSession.builder.master('local').appName('NFL').getOrCreate()
code
128047653/cell_4
[ "text_plain_output_1.png" ]
import os import shutil import numpy as np import pandas as pd import os basedir = '/kaggle/input/5-flower-types-classification-dataset/flower_images' source_path_orchid = os.path.join(basedir, 'Orchid') source_path_sunflower = os.path.join(basedir, 'Sunflower') source_path_tulip = os.path.join(basedir, 'Tulip') source_path_lotus = os.path.join(basedir, 'Lotus') source_path_lilly = os.path.join(basedir, 'Lilly') import shutil root_dir = '/kaggle/working/fiveflowers' if os.path.exists(root_dir): shutil.rmtree(root_dir) def create_train_val_dirs(root_path): os.makedirs(os.path.join(root_path, 'training')) os.makedirs(os.path.join(f'{root_path}/training', 'Lilly')) os.makedirs(os.path.join(f'{root_path}/training', 'Lotus')) os.makedirs(os.path.join(f'{root_path}/training', 'Orchid')) os.makedirs(os.path.join(f'{root_path}/training', 'Sunflower')) os.makedirs(os.path.join(f'{root_path}/training', 'Tulip')) os.makedirs(os.path.join(root_path, 'validation')) os.makedirs(os.path.join(f'{root_path}/validation', 'Lilly')) os.makedirs(os.path.join(f'{root_path}/validation', 'Lotus')) os.makedirs(os.path.join(f'{root_path}/validation', 'Orchid')) os.makedirs(os.path.join(f'{root_path}/validation', 'Sunflower')) os.makedirs(os.path.join(f'{root_path}/validation', 'Tulip')) try: create_train_val_dirs(root_path=root_dir) except FileExistsError: print('You should not be seeing this since the upper directory is removed beforehand') for rootdir, dirs, files in os.walk(root_dir): for subdir in dirs: print(os.path.join(rootdir, subdir))
code
128047653/cell_6
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
import os import random import shutil import numpy as np import pandas as pd import os basedir = '/kaggle/input/5-flower-types-classification-dataset/flower_images' source_path_orchid = os.path.join(basedir, 'Orchid') source_path_sunflower = os.path.join(basedir, 'Sunflower') source_path_tulip = os.path.join(basedir, 'Tulip') source_path_lotus = os.path.join(basedir, 'Lotus') source_path_lilly = os.path.join(basedir, 'Lilly') import shutil root_dir = '/kaggle/working/fiveflowers' if os.path.exists(root_dir): shutil.rmtree(root_dir) def create_train_val_dirs(root_path): os.makedirs(os.path.join(root_path, 'training')) os.makedirs(os.path.join(f'{root_path}/training', 'Lilly')) os.makedirs(os.path.join(f'{root_path}/training', 'Lotus')) os.makedirs(os.path.join(f'{root_path}/training', 'Orchid')) os.makedirs(os.path.join(f'{root_path}/training', 'Sunflower')) os.makedirs(os.path.join(f'{root_path}/training', 'Tulip')) os.makedirs(os.path.join(root_path, 'validation')) os.makedirs(os.path.join(f'{root_path}/validation', 'Lilly')) os.makedirs(os.path.join(f'{root_path}/validation', 'Lotus')) os.makedirs(os.path.join(f'{root_path}/validation', 'Orchid')) os.makedirs(os.path.join(f'{root_path}/validation', 'Sunflower')) os.makedirs(os.path.join(f'{root_path}/validation', 'Tulip')) try: create_train_val_dirs(root_path=root_dir) except FileExistsError: import random from shutil import copyfile def split_data(SOURCE_DIR, TRAINING_DIR, VALIDATION_DIR, SPLIT_SIZE): shuffled_source = random.sample(os.listdir(SOURCE_DIR), len(os.listdir(SOURCE_DIR))) training_number = int(len(shuffled_source)) * SPLIT_SIZE i = 0 Target = TRAINING_DIR for item in shuffled_source: item_path = os.path.join(SOURCE_DIR, item) shutil.copy(item_path, os.path.join(Target, item)) i += 1 if i == training_number: Target = VALIDATION_DIR Lilly_SOURCE_DIR = '/kaggle/input/5-flower-types-classification-dataset/flower_images/Lilly' Lotus_SOURCE_DIR = '/kaggle/input/5-flower-types-classification-dataset/flower_images/Lotus' Orchid_SOURCE_DIR = '/kaggle/input/5-flower-types-classification-dataset/flower_images/Orchid' Sunflower_SOURCE_DIR = '/kaggle/input/5-flower-types-classification-dataset/flower_images/Sunflower' Tulip_SOURCE_DIR = '/kaggle/input/5-flower-types-classification-dataset/flower_images/Tulip' TRAINING_DIR = 'kaggle/working/fiveflowers/training/' VALIDATION_DIR = 'kaggle/working/fiveflowers/validation/' TRAINING_Lilly_DIR = os.path.join(TRAINING_DIR, 'Lilly') VALIDATION_Lilly_DIR = os.path.join(VALIDATION_DIR, 'Lilly') TRAINING_Lotus_DIR = os.path.join(TRAINING_DIR, 'Lotus') VALIDATION_Lotus_DIR = os.path.join(VALIDATION_DIR, 'Lotus') TRAINING_Orchid_DIR = os.path.join(TRAINING_DIR, 'Orchid') VALIDATION_Orchid_DIR = os.path.join(VALIDATION_DIR, 'Orchid') TRAINING_Sunflower_DIR = os.path.join(TRAINING_DIR, 'Sunflower') VALIDATION_Sunflower_DIR = os.path.join(VALIDATION_DIR, 'Sunflower') TRAINING_Tulip_DIR = os.path.join(TRAINING_DIR, 'Tulip') VALIDATION_Tulip_DIR = os.path.join(VALIDATION_DIR, 'Tulip') print(TRAINING_Lilly_DIR) split_size = 0.9 split_data(Lilly_SOURCE_DIR, TRAINING_Lilly_DIR, VALIDATION_Lilly_DIR, split_size) split_data(Lotus_SOURCE_DIR, TRAINING_Lotus_DIR, VALIDATION_Lotus_DIR, split_size) split_data(Orchid_SOURCE_DIR, TRAINING_Orchid_DIR, VALIDATION_Orchid_DIR, split_size) split_data(Sunflower_SOURCE_DIR, TRAINING_Sunflower_DIR, VALIDATION_Sunflower_DIR, split_size) split_data(Tulip_SOURCE_DIR, TRAINING_Tulip_DIR, VALIDATION_Tulip_DIR, split_size) print(f"\n\nOriginal lilly's directory has {len(os.listdir(Lilly_SOURCE_DIR))} images") print(f"Original lotus's directory has {len(os.listdir(Lotus_SOURCE_DIR))} images") print(f"Original orchid's directory has {len(os.listdir(Orchid_SOURCE_DIR))} images") print(f"Original sunflower's directory has {len(os.listdir(Sunflower_SOURCE_DIR))} images") print(f"Original tulip's directory has {len(os.listdir(Tulip_SOURCE_DIR))} images") print(f'There are {len(os.listdir(TRAINING_Lilly_DIR))} images of lilly for training') print(f'There are {len(os.listdir(TRAINING_Lotus_DIR))} images of lotus for training') print(f'There are {len(os.listdir(VALIDATION_Lilly_DIR))} images of lilly for validation') print(f'There are {len(os.listdir(VALIDATION_Lotus_DIR))} images of lotus for validation')
code
128047653/cell_2
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os basedir = '/kaggle/input/5-flower-types-classification-dataset/flower_images' print('contents of base directory:') print(os.listdir(basedir))
code
128047653/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
128047653/cell_3
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os basedir = '/kaggle/input/5-flower-types-classification-dataset/flower_images' print(os.listdir(basedir)) source_path_orchid = os.path.join(basedir, 'Orchid') source_path_sunflower = os.path.join(basedir, 'Sunflower') source_path_tulip = os.path.join(basedir, 'Tulip') source_path_lotus = os.path.join(basedir, 'Lotus') source_path_lilly = os.path.join(basedir, 'Lilly') print(f'there are {len(os.listdir(source_path_orchid))} images of Orchid') print(f'there are {len(os.listdir(source_path_orchid))} images of Sunflower') print(f'there are {len(os.listdir(source_path_orchid))} images of Tulip') print(f'there are {len(os.listdir(source_path_orchid))} images of Lotus') print(f'there are {len(os.listdir(source_path_orchid))} images of Lilly')
code
130008924/cell_21
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/train.csv') test = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/test.csv') X_test.shape lr = LinearRegression() lr.fit(X_train, Y_train) lr.score(X_test, Y_test) test = test.fillna(0) numerical_test_cols = test.select_dtypes(include=['int64', 'float64']) numerical_test_cols.columns x_val = test[['Id', 'MSSubClass', 'LotFrontage', 'LotArea', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'MasVnrArea', 'BsmtFinSF1', 'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', '1stFlrSF', '2ndFlrSF', 'LowQualFinSF', 'GrLivArea', 'BsmtFullBath', 'BsmtHalfBath', 'FullBath', 'HalfBath', 'BedroomAbvGr', 'KitchenAbvGr', 'TotRmsAbvGrd', 'Fireplaces', 'GarageYrBlt', 'GarageCars', 'GarageArea', 'WoodDeckSF', 'OpenPorchSF', 'EnclosedPorch', '3SsnPorch', 'ScreenPorch', 'PoolArea', 'MiscVal', 'MoSold', 'YrSold']] x_val.fillna(0) SalePrice_pred = lr.predict(x_val) ids = test['Id'] fnl_df = pd.DataFrame({'ID': ids, 'SalePrice': SalePrice_pred}) fnl_df.head()
code
130008924/cell_13
[ "text_html_output_1.png" ]
X_test.shape
code
130008924/cell_9
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/train.csv') test = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/test.csv') train.columns train.drop(['Alley'], axis=1) train = train.fillna(0) numerical_cols = train.select_dtypes(include=['int64', 'float64']) train.columns
code
130008924/cell_4
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/train.csv') test = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/test.csv') train.head()
code
130008924/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/train.csv') test = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/test.csv') train.info()
code
130008924/cell_11
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/train.csv') test = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/test.csv') train.columns train.drop(['Alley'], axis=1) train = train.fillna(0) numerical_cols = train.select_dtypes(include=['int64', 'float64']) train.columns train.shape
code
130008924/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
130008924/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/train.csv') test = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/test.csv') train.columns
code
130008924/cell_18
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/train.csv') test = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/test.csv') test = test.fillna(0) numerical_test_cols = test.select_dtypes(include=['int64', 'float64']) numerical_test_cols.columns x_val = test[['Id', 'MSSubClass', 'LotFrontage', 'LotArea', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'MasVnrArea', 'BsmtFinSF1', 'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', '1stFlrSF', '2ndFlrSF', 'LowQualFinSF', 'GrLivArea', 'BsmtFullBath', 'BsmtHalfBath', 'FullBath', 'HalfBath', 'BedroomAbvGr', 'KitchenAbvGr', 'TotRmsAbvGrd', 'Fireplaces', 'GarageYrBlt', 'GarageCars', 'GarageArea', 'WoodDeckSF', 'OpenPorchSF', 'EnclosedPorch', '3SsnPorch', 'ScreenPorch', 'PoolArea', 'MiscVal', 'MoSold', 'YrSold']] x_val.fillna(0)
code
130008924/cell_8
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/train.csv') test = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/test.csv') train.columns train.drop(['Alley'], axis=1)
code
130008924/cell_15
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression X_test.shape lr = LinearRegression() lr.fit(X_train, Y_train) lr.score(X_test, Y_test)
code
130008924/cell_16
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/train.csv') test = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/test.csv') test.info()
code
130008924/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/train.csv') test = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/test.csv') test = test.fillna(0) numerical_test_cols = test.select_dtypes(include=['int64', 'float64']) numerical_test_cols.columns
code
130008924/cell_14
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression lr = LinearRegression() lr.fit(X_train, Y_train)
code
130008924/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/train.csv') test = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/test.csv') test.head()
code
105182734/cell_13
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import warnings import gc import warnings warnings.filterwarnings('ignore') import scipy as sp import numpy as np import pandas as pd pd.set_option('display.max_rows', 500) pd.set_option('display.max_columns', 500) pd.set_option('display.width', 1000) from tqdm.auto import tqdm import itertools from sklearn.preprocessing import StandardScaler, OrdinalEncoder, MinMaxScaler from sklearn.metrics import roc_auc_score, roc_curve import matplotlib.pyplot as plt df_train = pd.read_csv('../input/amazon-train/delivery time.csv') df_test = pd.read_csv('../input/amazon-train/delivery time Test.csv') test_id = df_test['ID'] df_train = df_train.set_index('Source.Name.1') df_test = df_test.set_index('Source.Name.1') target = df_train['Time_taken (min)'] df_test.isna().sum() cdata = pd.concat([df_train, df_test], axis=0) cdata = cdata.sort_index() cdata.replace('nan', np.nan, inplace=True) cdata2 = cdata.copy() cdata2.drop(['ID', 'Time_taken (min)', 'Order_Date'], axis=1, inplace=True) cat_features = cdata2.select_dtypes('O').columns numeric_features = cdata2.select_dtypes(np.number) na_numeric_features = [feat for feat in numeric_features if feat in cdata2.loc[:, cdata2.isna().sum() > 0].columns] cdata2.isna().sum() for i in range(cdata.shape[0]): tmp = cdata2.loc[i, 'Time_Orderd'] [hr, mint] = tmp.split(':', 2) hr = int(hr) mint = int(mint) mint = mint / 60 cdata2.loc[i, 'Time_Orderd'] = hr + mint for i in range(cdata.shape[0]): tmp = cdata2.loc[i, 'Time_Order_picked'] [hr, mint] = tmp.split(':', 2) hr = int(hr) mint = int(mint) mint = mint / 60 cdata2.loc[i, 'Time_Order_picked'] = hr + mint import geopy.distance for i in range(0, cdata2.shape[0]): cdata2.loc[i, 'distance'] = geopy.distance.geodesic((cdata2.loc[i, 'Restaurant_latitude'], cdata2.loc[i, 'Restaurant_longitude']), (cdata2.loc[i, 'Delivery_location_latitude'], cdata2.loc[i, 'Delivery_location_longitude'])).km cdata2.drop(['Restaurant_latitude', 'Restaurant_longitude', 'Delivery_location_longitude', 'Delivery_location_latitude', 'Delivery_person_ID'], axis=1, inplace=True) cdata2
code
105182734/cell_7
[ "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np import pandas as pd import warnings import gc import warnings warnings.filterwarnings('ignore') import scipy as sp import numpy as np import pandas as pd pd.set_option('display.max_rows', 500) pd.set_option('display.max_columns', 500) pd.set_option('display.width', 1000) from tqdm.auto import tqdm import itertools from sklearn.preprocessing import StandardScaler, OrdinalEncoder, MinMaxScaler from sklearn.metrics import roc_auc_score, roc_curve import matplotlib.pyplot as plt df_train = pd.read_csv('../input/amazon-train/delivery time.csv') df_test = pd.read_csv('../input/amazon-train/delivery time Test.csv') test_id = df_test['ID'] df_train = df_train.set_index('Source.Name.1') df_test = df_test.set_index('Source.Name.1') target = df_train['Time_taken (min)'] df_test.isna().sum() cdata = pd.concat([df_train, df_test], axis=0) cdata = cdata.sort_index() cdata.replace('nan', np.nan, inplace=True) cdata2 = cdata.copy() cdata2.drop(['ID', 'Time_taken (min)', 'Order_Date'], axis=1, inplace=True) cat_features = cdata2.select_dtypes('O').columns numeric_features = cdata2.select_dtypes(np.number) na_numeric_features = [feat for feat in numeric_features if feat in cdata2.loc[:, cdata2.isna().sum() > 0].columns] cdata2.isna().sum()
code
105182734/cell_18
[ "text_plain_output_1.png" ]
import pandas as pd import warnings import gc import warnings warnings.filterwarnings('ignore') import scipy as sp import numpy as np import pandas as pd pd.set_option('display.max_rows', 500) pd.set_option('display.max_columns', 500) pd.set_option('display.width', 1000) from tqdm.auto import tqdm import itertools from sklearn.preprocessing import StandardScaler, OrdinalEncoder, MinMaxScaler from sklearn.metrics import roc_auc_score, roc_curve import matplotlib.pyplot as plt df_train = pd.read_csv('../input/amazon-train/delivery time.csv') df_test = pd.read_csv('../input/amazon-train/delivery time Test.csv') test_id = df_test['ID'] df_train = df_train.set_index('Source.Name.1') df_test = df_test.set_index('Source.Name.1') target = df_train['Time_taken (min)'] x_train = cdata3.iloc[:df_train.shape[0], :] x_test = cdata3.iloc[df_train.shape[0]:, :]
code
105182734/cell_3
[ "text_html_output_1.png" ]
import pandas as pd import warnings import gc import warnings warnings.filterwarnings('ignore') import scipy as sp import numpy as np import pandas as pd pd.set_option('display.max_rows', 500) pd.set_option('display.max_columns', 500) pd.set_option('display.width', 1000) from tqdm.auto import tqdm import itertools from sklearn.preprocessing import StandardScaler, OrdinalEncoder, MinMaxScaler from sklearn.metrics import roc_auc_score, roc_curve import matplotlib.pyplot as plt df_train = pd.read_csv('../input/amazon-train/delivery time.csv') df_test = pd.read_csv('../input/amazon-train/delivery time Test.csv') test_id = df_test['ID'] df_train = df_train.set_index('Source.Name.1') df_test = df_test.set_index('Source.Name.1') target = df_train['Time_taken (min)'] df_test.isna().sum()
code
16112556/cell_21
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_absolute_error, mean_squared_error model = LinearRegression() model.fit(train_X, train_Y) model.intercept_ model.coef_ train_predict = model.predict(train_X) test_predict = model.predict(test_X) print('MAE for train', mean_absolute_error(test_Y, test_predict))
code
16112556/cell_13
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression model = LinearRegression() model.fit(train_X, train_Y) model.intercept_
code
16112556/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) bike_df = pd.read_csv('../input/bike_share.csv') bike_df.shape
code
16112556/cell_20
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_absolute_error, mean_squared_error model = LinearRegression() model.fit(train_X, train_Y) model.intercept_ model.coef_ train_predict = model.predict(train_X) print('MAE for train', mean_absolute_error(train_Y, train_predict))
code
16112556/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) bike_df = pd.read_csv('../input/bike_share.csv') bike_df.shape bike_df.isna().sum()
code
16112556/cell_2
[ "text_plain_output_1.png" ]
import os import os import numpy as np import pandas as pd import os import numpy as np import pandas as pd import os print(os.listdir('../input'))
code
16112556/cell_19
[ "text_html_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_absolute_error, mean_squared_error model = LinearRegression() model.fit(train_X, train_Y) model.intercept_ model.coef_ train_predict = model.predict(train_X) test_predict = model.predict(test_X) print('MSE for test', mean_squared_error(test_Y, test_predict))
code
16112556/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os print(os.listdir('../input'))
code
16112556/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) bike_df = pd.read_csv('../input/bike_share.csv') bike_df.shape bike_df.isna().sum() bike_df.corr()
code
16112556/cell_18
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_absolute_error, mean_squared_error model = LinearRegression() model.fit(train_X, train_Y) model.intercept_ model.coef_ train_predict = model.predict(train_X) print('MSE', mean_squared_error(train_Y, train_predict))
code
16112556/cell_14
[ "text_html_output_1.png" ]
from sklearn.linear_model import LinearRegression model = LinearRegression() model.fit(train_X, train_Y) model.intercept_ model.coef_
code
16112556/cell_12
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression model = LinearRegression() model.fit(train_X, train_Y)
code
16112556/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) bike_df = pd.read_csv('../input/bike_share.csv') bike_df.shape bike_df.head()
code
50212949/cell_13
[ "text_plain_output_1.png" ]
from collections import defaultdict from nltk.corpus import stopwords from nltk.corpus import stopwords import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np import numpy as np import pandas as pd import pandas as pd import seaborn as sns import seaborn as sns import warnings import pandas as pd import nltk from nltk.stem import PorterStemmer from nltk.tokenize import sent_tokenize, word_tokenize import re import string from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split from sklearn.feature_extraction.text import CountVectorizer from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, f1_score from sklearn.svm import LinearSVC from sklearn.metrics import classification_report from nltk.corpus import stopwords import seaborn as sns from sklearn.naive_bayes import MultinomialNB from sklearn.naive_bayes import BernoulliNB from nltk.stem import WordNetLemmatizer from sklearn.linear_model import SGDClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.feature_extraction.text import TfidfVectorizer from keras.models import Sequential from keras.layers import Dense from keras.layers import Dropout from tensorflow.keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from keras.layers import Flatten from keras.layers.embeddings import Embedding from keras.layers.convolutional import Conv1D from keras.layers.convolutional import MaxPooling1D from gensim.models import Word2Vec from numpy import asarray from numpy import zeros from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.naive_bayes import GaussianNB from nltk.tokenize import RegexpTokenizer import plotly import plotly.graph_objs as go import matplotlib.pyplot as plt from wordcloud import WordCloud, STOPWORDS import math from bs4 import BeautifulSoup import tensorflow as tf import numpy as np import skimage from sklearn.metrics import classification_report, confusion_matrix, accuracy_score, f1_score import missingno as msno import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np from nltk.corpus import stopwords from nltk.util import ngrams from sklearn.feature_extraction.text import CountVectorizer from collections import defaultdict from collections import Counter plt.style.use('ggplot') stop = set(stopwords.words('english')) import re from nltk.tokenize import word_tokenize import gensim import string from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from tqdm import tqdm from keras.models import Sequential from keras.layers import Embedding, LSTM, Dense, SpatialDropout1D from keras.initializers import Constant from sklearn.model_selection import train_test_split from keras.optimizers import Adam import warnings warnings.filterwarnings('ignore') tweet = pd.read_csv('../input/analytics-vidhya-identify-the-sentiments/train.csv') test = pd.read_csv('../input/analytics-vidhya-identify-the-sentiments/test.csv') x = tweet.label.value_counts() #Number of characters in tweets fig,(ax1,ax2)=plt.subplots(1,2,figsize=(10,5)) tweet_len=tweet[tweet['label']==1]['tweet'].str.len() ax1.hist(tweet_len,color='red') ax1.set_title('Negative tweets') tweet_len=tweet[tweet['label']==0]['tweet'].str.len() ax2.hist(tweet_len,color='green') ax2.set_title('Positive tweets') fig.suptitle('Characters in tweets') plt.show() #Number of words in a tweet fig,(ax1,ax2)=plt.subplots(1,2,figsize=(10,5)) tweet_len=tweet[tweet['label']==1]['tweet'].str.split().map(lambda x: len(x)) ax1.hist(tweet_len,color='red') ax1.set_title('Negative tweets') tweet_len=tweet[tweet['label']==0]['tweet'].str.split().map(lambda x: len(x)) ax2.hist(tweet_len,color='green') ax2.set_title('Positive tweets') fig.suptitle('Words in a tweet') plt.show() #Average word length in a tweet fig,(ax1,ax2)=plt.subplots(1,2,figsize=(10,5)) word=tweet[tweet['label']==1]['tweet'].str.split().apply(lambda x : [len(i) for i in x]) sns.distplot(word.map(lambda x: np.mean(x)),ax=ax1,color='red') ax1.set_title('Negative') word=tweet[tweet['label']==0]['tweet'].str.split().apply(lambda x : [len(i) for i in x]) sns.distplot(word.map(lambda x: np.mean(x)),ax=ax2,color='green') ax2.set_title('Positive') fig.suptitle('Average word length in each tweet') def create_corpus(target): corpus = [] for x in tweet[tweet['label'] == target]['tweet'].str.split(): for i in x: corpus.append(i) return corpus corpus = create_corpus(0) dic = defaultdict(int) for word in corpus: if word in stop: dic[word] += 1 top = sorted(dic.items(), key=lambda x: x[1], reverse=True)[:10] x, y = zip(*top) corpus = create_corpus(1) dic = defaultdict(int) for word in corpus: if word in stop: dic[word] += 1 top = sorted(dic.items(), key=lambda x: x[1], reverse=True)[:10] x, y = zip(*top) plt.bar(x, y)
code
50212949/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
from nltk.corpus import stopwords from nltk.corpus import stopwords import matplotlib.pyplot as plt import matplotlib.pyplot as plt import pandas as pd import pandas as pd import seaborn as sns import seaborn as sns import warnings import pandas as pd import nltk from nltk.stem import PorterStemmer from nltk.tokenize import sent_tokenize, word_tokenize import re import string from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split from sklearn.feature_extraction.text import CountVectorizer from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, f1_score from sklearn.svm import LinearSVC from sklearn.metrics import classification_report from nltk.corpus import stopwords import seaborn as sns from sklearn.naive_bayes import MultinomialNB from sklearn.naive_bayes import BernoulliNB from nltk.stem import WordNetLemmatizer from sklearn.linear_model import SGDClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.feature_extraction.text import TfidfVectorizer from keras.models import Sequential from keras.layers import Dense from keras.layers import Dropout from tensorflow.keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from keras.layers import Flatten from keras.layers.embeddings import Embedding from keras.layers.convolutional import Conv1D from keras.layers.convolutional import MaxPooling1D from gensim.models import Word2Vec from numpy import asarray from numpy import zeros from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.naive_bayes import GaussianNB from nltk.tokenize import RegexpTokenizer import plotly import plotly.graph_objs as go import matplotlib.pyplot as plt from wordcloud import WordCloud, STOPWORDS import math from bs4 import BeautifulSoup import tensorflow as tf import numpy as np import skimage from sklearn.metrics import classification_report, confusion_matrix, accuracy_score, f1_score import missingno as msno import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np from nltk.corpus import stopwords from nltk.util import ngrams from sklearn.feature_extraction.text import CountVectorizer from collections import defaultdict from collections import Counter plt.style.use('ggplot') stop = set(stopwords.words('english')) import re from nltk.tokenize import word_tokenize import gensim import string from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from tqdm import tqdm from keras.models import Sequential from keras.layers import Embedding, LSTM, Dense, SpatialDropout1D from keras.initializers import Constant from sklearn.model_selection import train_test_split from keras.optimizers import Adam import warnings warnings.filterwarnings('ignore') tweet = pd.read_csv('../input/analytics-vidhya-identify-the-sentiments/train.csv') test = pd.read_csv('../input/analytics-vidhya-identify-the-sentiments/test.csv') x = tweet.label.value_counts() #Number of characters in tweets fig,(ax1,ax2)=plt.subplots(1,2,figsize=(10,5)) tweet_len=tweet[tweet['label']==1]['tweet'].str.len() ax1.hist(tweet_len,color='red') ax1.set_title('Negative tweets') tweet_len=tweet[tweet['label']==0]['tweet'].str.len() ax2.hist(tweet_len,color='green') ax2.set_title('Positive tweets') fig.suptitle('Characters in tweets') plt.show() fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 5)) tweet_len = tweet[tweet['label'] == 1]['tweet'].str.split().map(lambda x: len(x)) ax1.hist(tweet_len, color='red') ax1.set_title('Negative tweets') tweet_len = tweet[tweet['label'] == 0]['tweet'].str.split().map(lambda x: len(x)) ax2.hist(tweet_len, color='green') ax2.set_title('Positive tweets') fig.suptitle('Words in a tweet') plt.show()
code
50212949/cell_4
[ "image_output_1.png" ]
import pandas as pd import pandas as pd tweet = pd.read_csv('../input/analytics-vidhya-identify-the-sentiments/train.csv') tweet.head(5)
code
50212949/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd tweet = pd.read_csv('../input/analytics-vidhya-identify-the-sentiments/train.csv') test = pd.read_csv('../input/analytics-vidhya-identify-the-sentiments/test.csv') print('There are {} rows and {} columns in train'.format(tweet.shape[0], tweet.shape[1])) print('There are {} rows and {} columns in test'.format(test.shape[0], test.shape[1]))
code
50212949/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
from nltk.corpus import stopwords from nltk.corpus import stopwords import matplotlib.pyplot as plt import matplotlib.pyplot as plt import pandas as pd import pandas as pd import seaborn as sns import seaborn as sns import warnings import pandas as pd import nltk from nltk.stem import PorterStemmer from nltk.tokenize import sent_tokenize, word_tokenize import re import string from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split from sklearn.feature_extraction.text import CountVectorizer from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, f1_score from sklearn.svm import LinearSVC from sklearn.metrics import classification_report from nltk.corpus import stopwords import seaborn as sns from sklearn.naive_bayes import MultinomialNB from sklearn.naive_bayes import BernoulliNB from nltk.stem import WordNetLemmatizer from sklearn.linear_model import SGDClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.feature_extraction.text import TfidfVectorizer from keras.models import Sequential from keras.layers import Dense from keras.layers import Dropout from tensorflow.keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from keras.layers import Flatten from keras.layers.embeddings import Embedding from keras.layers.convolutional import Conv1D from keras.layers.convolutional import MaxPooling1D from gensim.models import Word2Vec from numpy import asarray from numpy import zeros from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.naive_bayes import GaussianNB from nltk.tokenize import RegexpTokenizer import plotly import plotly.graph_objs as go import matplotlib.pyplot as plt from wordcloud import WordCloud, STOPWORDS import math from bs4 import BeautifulSoup import tensorflow as tf import numpy as np import skimage from sklearn.metrics import classification_report, confusion_matrix, accuracy_score, f1_score import missingno as msno import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np from nltk.corpus import stopwords from nltk.util import ngrams from sklearn.feature_extraction.text import CountVectorizer from collections import defaultdict from collections import Counter plt.style.use('ggplot') stop = set(stopwords.words('english')) import re from nltk.tokenize import word_tokenize import gensim import string from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from tqdm import tqdm from keras.models import Sequential from keras.layers import Embedding, LSTM, Dense, SpatialDropout1D from keras.initializers import Constant from sklearn.model_selection import train_test_split from keras.optimizers import Adam import warnings warnings.filterwarnings('ignore') tweet = pd.read_csv('../input/analytics-vidhya-identify-the-sentiments/train.csv') test = pd.read_csv('../input/analytics-vidhya-identify-the-sentiments/test.csv') x = tweet.label.value_counts() sns.barplot(x.index, x) plt.gca().set_ylabel('samples')
code
50212949/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
from nltk.corpus import stopwords from nltk.corpus import stopwords import matplotlib.pyplot as plt import matplotlib.pyplot as plt import pandas as pd import pandas as pd import seaborn as sns import seaborn as sns import warnings import pandas as pd import nltk from nltk.stem import PorterStemmer from nltk.tokenize import sent_tokenize, word_tokenize import re import string from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split from sklearn.feature_extraction.text import CountVectorizer from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, f1_score from sklearn.svm import LinearSVC from sklearn.metrics import classification_report from nltk.corpus import stopwords import seaborn as sns from sklearn.naive_bayes import MultinomialNB from sklearn.naive_bayes import BernoulliNB from nltk.stem import WordNetLemmatizer from sklearn.linear_model import SGDClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.feature_extraction.text import TfidfVectorizer from keras.models import Sequential from keras.layers import Dense from keras.layers import Dropout from tensorflow.keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from keras.layers import Flatten from keras.layers.embeddings import Embedding from keras.layers.convolutional import Conv1D from keras.layers.convolutional import MaxPooling1D from gensim.models import Word2Vec from numpy import asarray from numpy import zeros from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.naive_bayes import GaussianNB from nltk.tokenize import RegexpTokenizer import plotly import plotly.graph_objs as go import matplotlib.pyplot as plt from wordcloud import WordCloud, STOPWORDS import math from bs4 import BeautifulSoup import tensorflow as tf import numpy as np import skimage from sklearn.metrics import classification_report, confusion_matrix, accuracy_score, f1_score import missingno as msno import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np from nltk.corpus import stopwords from nltk.util import ngrams from sklearn.feature_extraction.text import CountVectorizer from collections import defaultdict from collections import Counter plt.style.use('ggplot') stop = set(stopwords.words('english')) import re from nltk.tokenize import word_tokenize import gensim import string from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from tqdm import tqdm from keras.models import Sequential from keras.layers import Embedding, LSTM, Dense, SpatialDropout1D from keras.initializers import Constant from sklearn.model_selection import train_test_split from keras.optimizers import Adam import warnings warnings.filterwarnings('ignore') tweet = pd.read_csv('../input/analytics-vidhya-identify-the-sentiments/train.csv') test = pd.read_csv('../input/analytics-vidhya-identify-the-sentiments/test.csv') x = tweet.label.value_counts() fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 5)) tweet_len = tweet[tweet['label'] == 1]['tweet'].str.len() ax1.hist(tweet_len, color='red') ax1.set_title('Negative tweets') tweet_len = tweet[tweet['label'] == 0]['tweet'].str.len() ax2.hist(tweet_len, color='green') ax2.set_title('Positive tweets') fig.suptitle('Characters in tweets') plt.show()
code
50212949/cell_10
[ "text_html_output_1.png" ]
from nltk.corpus import stopwords from nltk.corpus import stopwords import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np import numpy as np import pandas as pd import pandas as pd import seaborn as sns import seaborn as sns import warnings import pandas as pd import nltk from nltk.stem import PorterStemmer from nltk.tokenize import sent_tokenize, word_tokenize import re import string from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split from sklearn.feature_extraction.text import CountVectorizer from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, f1_score from sklearn.svm import LinearSVC from sklearn.metrics import classification_report from nltk.corpus import stopwords import seaborn as sns from sklearn.naive_bayes import MultinomialNB from sklearn.naive_bayes import BernoulliNB from nltk.stem import WordNetLemmatizer from sklearn.linear_model import SGDClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.feature_extraction.text import TfidfVectorizer from keras.models import Sequential from keras.layers import Dense from keras.layers import Dropout from tensorflow.keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from keras.layers import Flatten from keras.layers.embeddings import Embedding from keras.layers.convolutional import Conv1D from keras.layers.convolutional import MaxPooling1D from gensim.models import Word2Vec from numpy import asarray from numpy import zeros from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.naive_bayes import GaussianNB from nltk.tokenize import RegexpTokenizer import plotly import plotly.graph_objs as go import matplotlib.pyplot as plt from wordcloud import WordCloud, STOPWORDS import math from bs4 import BeautifulSoup import tensorflow as tf import numpy as np import skimage from sklearn.metrics import classification_report, confusion_matrix, accuracy_score, f1_score import missingno as msno import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np from nltk.corpus import stopwords from nltk.util import ngrams from sklearn.feature_extraction.text import CountVectorizer from collections import defaultdict from collections import Counter plt.style.use('ggplot') stop = set(stopwords.words('english')) import re from nltk.tokenize import word_tokenize import gensim import string from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from tqdm import tqdm from keras.models import Sequential from keras.layers import Embedding, LSTM, Dense, SpatialDropout1D from keras.initializers import Constant from sklearn.model_selection import train_test_split from keras.optimizers import Adam import warnings warnings.filterwarnings('ignore') tweet = pd.read_csv('../input/analytics-vidhya-identify-the-sentiments/train.csv') test = pd.read_csv('../input/analytics-vidhya-identify-the-sentiments/test.csv') x = tweet.label.value_counts() #Number of characters in tweets fig,(ax1,ax2)=plt.subplots(1,2,figsize=(10,5)) tweet_len=tweet[tweet['label']==1]['tweet'].str.len() ax1.hist(tweet_len,color='red') ax1.set_title('Negative tweets') tweet_len=tweet[tweet['label']==0]['tweet'].str.len() ax2.hist(tweet_len,color='green') ax2.set_title('Positive tweets') fig.suptitle('Characters in tweets') plt.show() #Number of words in a tweet fig,(ax1,ax2)=plt.subplots(1,2,figsize=(10,5)) tweet_len=tweet[tweet['label']==1]['tweet'].str.split().map(lambda x: len(x)) ax1.hist(tweet_len,color='red') ax1.set_title('Negative tweets') tweet_len=tweet[tweet['label']==0]['tweet'].str.split().map(lambda x: len(x)) ax2.hist(tweet_len,color='green') ax2.set_title('Positive tweets') fig.suptitle('Words in a tweet') plt.show() fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 5)) word = tweet[tweet['label'] == 1]['tweet'].str.split().apply(lambda x: [len(i) for i in x]) sns.distplot(word.map(lambda x: np.mean(x)), ax=ax1, color='red') ax1.set_title('Negative') word = tweet[tweet['label'] == 0]['tweet'].str.split().apply(lambda x: [len(i) for i in x]) sns.distplot(word.map(lambda x: np.mean(x)), ax=ax2, color='green') ax2.set_title('Positive') fig.suptitle('Average word length in each tweet')
code
50212949/cell_12
[ "text_html_output_1.png" ]
from collections import defaultdict from nltk.corpus import stopwords from nltk.corpus import stopwords import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np import numpy as np import pandas as pd import pandas as pd import seaborn as sns import seaborn as sns import warnings import pandas as pd import nltk from nltk.stem import PorterStemmer from nltk.tokenize import sent_tokenize, word_tokenize import re import string from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split from sklearn.feature_extraction.text import CountVectorizer from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, f1_score from sklearn.svm import LinearSVC from sklearn.metrics import classification_report from nltk.corpus import stopwords import seaborn as sns from sklearn.naive_bayes import MultinomialNB from sklearn.naive_bayes import BernoulliNB from nltk.stem import WordNetLemmatizer from sklearn.linear_model import SGDClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.feature_extraction.text import TfidfVectorizer from keras.models import Sequential from keras.layers import Dense from keras.layers import Dropout from tensorflow.keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from keras.layers import Flatten from keras.layers.embeddings import Embedding from keras.layers.convolutional import Conv1D from keras.layers.convolutional import MaxPooling1D from gensim.models import Word2Vec from numpy import asarray from numpy import zeros from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.naive_bayes import GaussianNB from nltk.tokenize import RegexpTokenizer import plotly import plotly.graph_objs as go import matplotlib.pyplot as plt from wordcloud import WordCloud, STOPWORDS import math from bs4 import BeautifulSoup import tensorflow as tf import numpy as np import skimage from sklearn.metrics import classification_report, confusion_matrix, accuracy_score, f1_score import missingno as msno import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np from nltk.corpus import stopwords from nltk.util import ngrams from sklearn.feature_extraction.text import CountVectorizer from collections import defaultdict from collections import Counter plt.style.use('ggplot') stop = set(stopwords.words('english')) import re from nltk.tokenize import word_tokenize import gensim import string from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from tqdm import tqdm from keras.models import Sequential from keras.layers import Embedding, LSTM, Dense, SpatialDropout1D from keras.initializers import Constant from sklearn.model_selection import train_test_split from keras.optimizers import Adam import warnings warnings.filterwarnings('ignore') tweet = pd.read_csv('../input/analytics-vidhya-identify-the-sentiments/train.csv') test = pd.read_csv('../input/analytics-vidhya-identify-the-sentiments/test.csv') x = tweet.label.value_counts() #Number of characters in tweets fig,(ax1,ax2)=plt.subplots(1,2,figsize=(10,5)) tweet_len=tweet[tweet['label']==1]['tweet'].str.len() ax1.hist(tweet_len,color='red') ax1.set_title('Negative tweets') tweet_len=tweet[tweet['label']==0]['tweet'].str.len() ax2.hist(tweet_len,color='green') ax2.set_title('Positive tweets') fig.suptitle('Characters in tweets') plt.show() #Number of words in a tweet fig,(ax1,ax2)=plt.subplots(1,2,figsize=(10,5)) tweet_len=tweet[tweet['label']==1]['tweet'].str.split().map(lambda x: len(x)) ax1.hist(tweet_len,color='red') ax1.set_title('Negative tweets') tweet_len=tweet[tweet['label']==0]['tweet'].str.split().map(lambda x: len(x)) ax2.hist(tweet_len,color='green') ax2.set_title('Positive tweets') fig.suptitle('Words in a tweet') plt.show() #Average word length in a tweet fig,(ax1,ax2)=plt.subplots(1,2,figsize=(10,5)) word=tweet[tweet['label']==1]['tweet'].str.split().apply(lambda x : [len(i) for i in x]) sns.distplot(word.map(lambda x: np.mean(x)),ax=ax1,color='red') ax1.set_title('Negative') word=tweet[tweet['label']==0]['tweet'].str.split().apply(lambda x : [len(i) for i in x]) sns.distplot(word.map(lambda x: np.mean(x)),ax=ax2,color='green') ax2.set_title('Positive') fig.suptitle('Average word length in each tweet') def create_corpus(target): corpus = [] for x in tweet[tweet['label'] == target]['tweet'].str.split(): for i in x: corpus.append(i) return corpus corpus = create_corpus(0) dic = defaultdict(int) for word in corpus: if word in stop: dic[word] += 1 top = sorted(dic.items(), key=lambda x: x[1], reverse=True)[:10] x, y = zip(*top) plt.bar(x, y)
code
50212949/cell_5
[ "image_output_1.png" ]
import pandas as pd import pandas as pd tweet = pd.read_csv('../input/analytics-vidhya-identify-the-sentiments/train.csv') test = pd.read_csv('../input/analytics-vidhya-identify-the-sentiments/test.csv') test.head(5)
code
104123576/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd data = sklearn.datasets.load_boston() df = pd.DataFrame(data.data, columns=data.feature_names) df['price'] = data.target df.info()
code
104123576/cell_2
[ "text_plain_output_1.png" ]
import pandas as pd data = sklearn.datasets.load_boston() df = pd.DataFrame(data.data, columns=data.feature_names) df['price'] = data.target df.head()
code
104123576/cell_11
[ "text_html_output_1.png" ]
from sklearn import metrics from xgboost import XGBRegressor model = XGBRegressor(objective='reg:squarederror') model.fit(x_train, y_train) pred = model.predict(x_test) metrics.r2_score(y_test, pred) metrics.mean_absolute_error(y_test, pred)
code
104123576/cell_8
[ "text_plain_output_1.png" ]
from xgboost import XGBRegressor model = XGBRegressor(objective='reg:squarederror') model.fit(x_train, y_train)
code
104123576/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd data = sklearn.datasets.load_boston() df = pd.DataFrame(data.data, columns=data.feature_names) df['price'] = data.target df.describe()
code
104123576/cell_10
[ "text_html_output_1.png", "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn import metrics from xgboost import XGBRegressor model = XGBRegressor(objective='reg:squarederror') model.fit(x_train, y_train) pred = model.predict(x_test) metrics.r2_score(y_test, pred)
code
104123576/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd data = sklearn.datasets.load_boston() df = pd.DataFrame(data.data, columns=data.feature_names) df['price'] = data.target df['price'].value_counts
code
90124333/cell_3
[ "text_plain_output_1.png" ]
import tensorflow as tf def auto_select_accelerator(): try: tpu = tf.distribute.cluster_resolver.TPUClusterResolver() tf.config.experimental_connect_to_cluster(tpu) tf.tpu.experimental.initialize_tpu_system(tpu) strategy = tf.distribute.experimental.TPUStrategy(tpu) except ValueError: strategy = tf.distribute.get_strategy() return strategy strategy = auto_select_accelerator()
code
90124333/cell_5
[ "application_vnd.jupyter.stderr_output_1.png" ]
from tensorflow import keras import tensorflow as tf def auto_select_accelerator(): try: tpu = tf.distribute.cluster_resolver.TPUClusterResolver() tf.config.experimental_connect_to_cluster(tpu) tf.tpu.experimental.initialize_tpu_system(tpu) strategy = tf.distribute.experimental.TPUStrategy(tpu) except ValueError: strategy = tf.distribute.get_strategy() return strategy strategy = auto_select_accelerator() with strategy.scope(): DistilBERTmodel = TFDistilBertModel.from_pretrained('distilbert-base-uncased', config=config) model = create_model(DistilBERTmodel) model.compile(keras.optimizers.Adam(lr), loss='binary_crossentropy', metrics=['accuracy'])
code
2005556/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) ufo = pd.read_csv('../input/scrubbed.csv') countryFreq = ufo['country'].value_counts() labels = list(countryFreq.index) positionsForBars = list(range(len(labels))) plt.xticks(positionsForBars, labels) stateFreq = ufo['state'][ufo.country == 'us'].value_counts() labels = list(stateFreq.index) positionsForBars = list(range(len(labels))) plt.figure(figsize=(18, 8)) plt.bar(positionsForBars, stateFreq.values) plt.xticks(positionsForBars, labels) plt.title('state found ufo')
code
2005556/cell_6
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns ufo = pd.read_csv('../input/scrubbed.csv') countryFreq = ufo['country'].value_counts() labels = list(countryFreq.index) positionsForBars = list(range(len(labels))) plt.xticks(positionsForBars, labels) stateFreq = ufo['state'][ufo.country == 'us'].value_counts() labels = list(stateFreq.index) positionsForBars = list(range(len(labels))) plt.xticks(positionsForBars, labels) plt.figure(figsize=(18, 8)) ax = sns.countplot(ufo['state'][ufo.country == 'us']).set_title('State found ufo')
code
2005556/cell_2
[ "text_html_output_1.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) ufo = pd.read_csv('../input/scrubbed.csv') ufo.head()
code
2005556/cell_1
[ "text_plain_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8'))
code
2005556/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) ufo = pd.read_csv('../input/scrubbed.csv') countryFreq = ufo['country'].value_counts() labels = list(countryFreq.index) positionsForBars = list(range(len(labels))) plt.bar(positionsForBars, countryFreq.values) plt.xticks(positionsForBars, labels) plt.title('countries found ufo')
code
2005556/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns ufo = pd.read_csv('../input/scrubbed.csv') countryFreq = ufo['country'].value_counts() labels = list(countryFreq.index) positionsForBars = list(range(len(labels))) plt.xticks(positionsForBars, labels) stateFreq = ufo['state'][ufo.country == 'us'].value_counts() labels = list(stateFreq.index) positionsForBars = list(range(len(labels))) plt.xticks(positionsForBars, labels) sns.countplot(ufo['country']).set_title('Country found ufo')
code
1007671/cell_6
[ "image_output_1.png" ]
import pandas as pd import seaborn as sns df = pd.read_csv('../input/fivethirtyeight_ncaa_forecasts (2).csv') matchups = [[str(x + 1), str(16 - x)] for x in range(8)] df = df[df.gender == 'mens'] pre = df[df.playin_flag == 1] data = [] for region in pre.team_region.unique(): for seed in range(2, 17): res = pre[(pre.team_region == region) & pre.team_seed.isin([str(seed) + 'a', str(seed) + 'b'])] if res.shape[0] > 1: data.append([]) for _, row in res.iterrows(): data[-1].extend([row.team_rating, row.rd1_win]) post = df[df.playin_flag == 0] for region in post.team_region.unique(): for matchup in matchups: res = post[(post.team_region == region) & post.team_seed.isin(matchup)] if res.shape[0] > 1: data.append([]) for _, row in res.iterrows(): data[-1].extend([row.team_rating, row.rd2_win]) match = pd.DataFrame(data, columns=['Team1_Rating', 'Team1_Prob', 'Team2_Rating', 'Team2_Prob']) match['delta'] = match.Team1_Rating - match.Team2_Rating match['win_extra'] = match.Team1_Prob - 0.5 sns.regplot('delta', 'win_extra', data=match, order=2)
code
1007671/cell_19
[ "text_plain_output_1.png" ]
from itertools import combinations import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/fivethirtyeight_ncaa_forecasts (2).csv') matchups = [[str(x + 1), str(16 - x)] for x in range(8)] df = df[df.gender == 'mens'] pre = df[df.playin_flag == 1] data = [] for region in pre.team_region.unique(): for seed in range(2, 17): res = pre[(pre.team_region == region) & pre.team_seed.isin([str(seed) + 'a', str(seed) + 'b'])] if res.shape[0] > 1: data.append([]) for _, row in res.iterrows(): data[-1].extend([row.team_rating, row.rd1_win]) post = df[df.playin_flag == 0] for region in post.team_region.unique(): for matchup in matchups: res = post[(post.team_region == region) & post.team_seed.isin(matchup)] if res.shape[0] > 1: data.append([]) for _, row in res.iterrows(): data[-1].extend([row.team_rating, row.rd2_win]) match = pd.DataFrame(data, columns=['Team1_Rating', 'Team1_Prob', 'Team2_Rating', 'Team2_Prob']) match['delta'] = match.Team1_Rating - match.Team2_Rating match['win_extra'] = match.Team1_Prob - 0.5 poly = np.polyfit(match.delta, match.win_extra, 2) poly data = [] for region in df.team_region.unique(): for matchup in matchups: res = post[(post.team_region == region) & post.team_seed.isin(matchup)] if res.shape[0] > 1: data.append([]) for _, row in res.iterrows(): data[-1].extend([row.team_name, row.team_rating, int(row.team_seed)]) else: seeds = matchup + [x + 'a' for x in matchup] + [x + 'b' for x in matchup] res = df[(df.team_region == region) & df.team_seed.isin(seeds)] for t1, t2 in combinations(res.team_name.tolist(), 2): res2 = res[res.team_name.isin([t1, t2])] data.append([]) for _, row in res2.iterrows(): seed = row.team_seed if len(row.team_seed) < 3 else row.team_seed[:-1] data[-1].extend([row.team_name, row.team_rating, int(seed)]) rd2 = pd.DataFrame(data, columns=['Team1', 'Rank1', 'Seed1', 'Team2', 'Rank2', 'Seed2']) def upset(row): top_rank = max(row.Rank1, row.Rank2) top_num = '1' if top_rank == row.Rank1 else '2' low_num = '1' if top_num == '2' else '2' seed_delta = row['Seed' + top_num] - row['Seed' + low_num] rank_delta = row['Rank' + top_num] - row['Rank' + low_num] prob = np.polyval([-0.00116991, 0.0461334, 0.01831479], np.abs(rank_delta)) return (prob * np.sign(seed_delta), top_num) def matchup_str(x, direc='l'): if direc == 'l': top_num = '2' if x.Seed1 > x.Seed2 else '1' else: top_num = '1' if x.Seed1 > x.Seed2 else '2' low_num = '1' if top_num == '2' else '2' return '{} {}'.format(x['Seed' + top_num], x['Team' + top_num]) rd2.shape rd2['upset_data'] = rd2.apply(upset, axis=1) rd2['upset'] = rd2.upset_data.apply(lambda x: x[0]) rd2['matchup_left'] = rd2.apply(matchup_str, axis=1, args=['l']) rd2['matchup_right'] = rd2.apply(matchup_str, axis=1, args=['r']) rd2['matchup'] = rd2.apply(lambda x: x.matchup_left + ' v ' + x.matchup_right, axis=1) rd2 = rd2[(np.abs(rd2.Seed1 - rd2.Seed2) >= 2) & (rd2.upset > -0.2)] rd2.sort_values('upset', inplace=True, ascending=False) sns.set(style="white", context="talk") f, ax = plt.subplots(figsize=(6, 10)) sns.barplot(x="upset", y="matchup", data=rd2, label="Win Probability", palette="RdBu_r") ax.set_xlabel("Win Probability Above 50/50 (Postive = upset)") ax.plot([0, 0], [-1, rd2.shape[0]], '-k'); ax.set_ylabel(""); new_matchups = [[str(a) for a in x] for x in combinations(range(1, 17), 2)] data = [] for region in df.team_region.unique(): for matchup in new_matchups: res = post[(post.team_region == region) & post.team_seed.isin(matchup)] if res.shape[0] > 1: data.append([]) for _, row in res.iterrows(): data[-1].extend([row.team_name, row.team_rating, int(row.team_seed)]) else: seeds = matchup + [x + 'a' for x in matchup] + [x + 'b' for x in matchup] res = df[(df.team_region == region) & df.team_seed.isin(seeds)] for t1, t2 in combinations(res.team_name.tolist(), 2): res2 = res[res.team_name.isin([t1, t2])] data.append([]) for _, row in res2.iterrows(): seed = row.team_seed if len(row.team_seed) < 3 else row.team_seed[:-1] data[-1].extend([row.team_name, row.team_rating, int(seed)]) rdall = pd.DataFrame(data, columns=['Team1', 'Rank1', 'Seed1', 'Team2', 'Rank2', 'Seed2']) rdall['upset_data'] = rdall.apply(upset, axis=1) rdall['upset'] = rdall.upset_data.apply(lambda x: x[0]) rdall['matchup_left'] = rdall.apply(matchup_str, axis=1, args=['l']) rdall['matchup_right'] = rdall.apply(matchup_str, axis=1, args=['r']) rdall['matchup'] = rdall.apply(lambda x: x.matchup_left + ' v ' + x.matchup_right, axis=1) rdall = rdall[(np.abs(rdall.Seed1 - rdall.Seed2) >= 2) & (rdall.upset >= -0.05)] rdall.sort_values('upset', inplace=True, ascending=False) f, ax = plt.subplots(figsize=(6, 15)) sns.barplot(x='upset', y='matchup', data=rdall, label='Win Probability', palette='RdBu_r') ax.set_xlabel('Win Probability Above 50/50 (Postive = upset)') ax.plot([0, 0], [-1, rdall.shape[0]], '-k') ax.set_ylabel('')
code
1007671/cell_7
[ "image_output_1.png" ]
import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/fivethirtyeight_ncaa_forecasts (2).csv') matchups = [[str(x + 1), str(16 - x)] for x in range(8)] df = df[df.gender == 'mens'] pre = df[df.playin_flag == 1] data = [] for region in pre.team_region.unique(): for seed in range(2, 17): res = pre[(pre.team_region == region) & pre.team_seed.isin([str(seed) + 'a', str(seed) + 'b'])] if res.shape[0] > 1: data.append([]) for _, row in res.iterrows(): data[-1].extend([row.team_rating, row.rd1_win]) post = df[df.playin_flag == 0] for region in post.team_region.unique(): for matchup in matchups: res = post[(post.team_region == region) & post.team_seed.isin(matchup)] if res.shape[0] > 1: data.append([]) for _, row in res.iterrows(): data[-1].extend([row.team_rating, row.rd2_win]) match = pd.DataFrame(data, columns=['Team1_Rating', 'Team1_Prob', 'Team2_Rating', 'Team2_Prob']) match['delta'] = match.Team1_Rating - match.Team2_Rating match['win_extra'] = match.Team1_Prob - 0.5 poly = np.polyfit(match.delta, match.win_extra, 2) poly
code
1007671/cell_15
[ "image_output_1.png" ]
from itertools import combinations import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/fivethirtyeight_ncaa_forecasts (2).csv') matchups = [[str(x + 1), str(16 - x)] for x in range(8)] df = df[df.gender == 'mens'] pre = df[df.playin_flag == 1] data = [] for region in pre.team_region.unique(): for seed in range(2, 17): res = pre[(pre.team_region == region) & pre.team_seed.isin([str(seed) + 'a', str(seed) + 'b'])] if res.shape[0] > 1: data.append([]) for _, row in res.iterrows(): data[-1].extend([row.team_rating, row.rd1_win]) post = df[df.playin_flag == 0] for region in post.team_region.unique(): for matchup in matchups: res = post[(post.team_region == region) & post.team_seed.isin(matchup)] if res.shape[0] > 1: data.append([]) for _, row in res.iterrows(): data[-1].extend([row.team_rating, row.rd2_win]) match = pd.DataFrame(data, columns=['Team1_Rating', 'Team1_Prob', 'Team2_Rating', 'Team2_Prob']) match['delta'] = match.Team1_Rating - match.Team2_Rating match['win_extra'] = match.Team1_Prob - 0.5 poly = np.polyfit(match.delta, match.win_extra, 2) poly data = [] for region in df.team_region.unique(): for matchup in matchups: res = post[(post.team_region == region) & post.team_seed.isin(matchup)] if res.shape[0] > 1: data.append([]) for _, row in res.iterrows(): data[-1].extend([row.team_name, row.team_rating, int(row.team_seed)]) else: seeds = matchup + [x + 'a' for x in matchup] + [x + 'b' for x in matchup] res = df[(df.team_region == region) & df.team_seed.isin(seeds)] for t1, t2 in combinations(res.team_name.tolist(), 2): res2 = res[res.team_name.isin([t1, t2])] data.append([]) for _, row in res2.iterrows(): seed = row.team_seed if len(row.team_seed) < 3 else row.team_seed[:-1] data[-1].extend([row.team_name, row.team_rating, int(seed)]) rd2 = pd.DataFrame(data, columns=['Team1', 'Rank1', 'Seed1', 'Team2', 'Rank2', 'Seed2']) def upset(row): top_rank = max(row.Rank1, row.Rank2) top_num = '1' if top_rank == row.Rank1 else '2' low_num = '1' if top_num == '2' else '2' seed_delta = row['Seed' + top_num] - row['Seed' + low_num] rank_delta = row['Rank' + top_num] - row['Rank' + low_num] prob = np.polyval([-0.00116991, 0.0461334, 0.01831479], np.abs(rank_delta)) return (prob * np.sign(seed_delta), top_num) def matchup_str(x, direc='l'): if direc == 'l': top_num = '2' if x.Seed1 > x.Seed2 else '1' else: top_num = '1' if x.Seed1 > x.Seed2 else '2' low_num = '1' if top_num == '2' else '2' return '{} {}'.format(x['Seed' + top_num], x['Team' + top_num]) rd2.shape rd2['upset_data'] = rd2.apply(upset, axis=1) rd2['upset'] = rd2.upset_data.apply(lambda x: x[0]) rd2['matchup_left'] = rd2.apply(matchup_str, axis=1, args=['l']) rd2['matchup_right'] = rd2.apply(matchup_str, axis=1, args=['r']) rd2['matchup'] = rd2.apply(lambda x: x.matchup_left + ' v ' + x.matchup_right, axis=1) rd2 = rd2[(np.abs(rd2.Seed1 - rd2.Seed2) >= 2) & (rd2.upset > -0.2)] rd2.sort_values('upset', inplace=True, ascending=False) sns.set(style='white', context='talk') f, ax = plt.subplots(figsize=(6, 10)) sns.barplot(x='upset', y='matchup', data=rd2, label='Win Probability', palette='RdBu_r') ax.set_xlabel('Win Probability Above 50/50 (Postive = upset)') ax.plot([0, 0], [-1, rd2.shape[0]], '-k') ax.set_ylabel('')
code
1007671/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/fivethirtyeight_ncaa_forecasts (2).csv') df.head()
code
1007671/cell_12
[ "text_html_output_1.png" ]
from itertools import combinations import pandas as pd import seaborn as sns df = pd.read_csv('../input/fivethirtyeight_ncaa_forecasts (2).csv') matchups = [[str(x + 1), str(16 - x)] for x in range(8)] df = df[df.gender == 'mens'] pre = df[df.playin_flag == 1] data = [] for region in pre.team_region.unique(): for seed in range(2, 17): res = pre[(pre.team_region == region) & pre.team_seed.isin([str(seed) + 'a', str(seed) + 'b'])] if res.shape[0] > 1: data.append([]) for _, row in res.iterrows(): data[-1].extend([row.team_rating, row.rd1_win]) post = df[df.playin_flag == 0] for region in post.team_region.unique(): for matchup in matchups: res = post[(post.team_region == region) & post.team_seed.isin(matchup)] if res.shape[0] > 1: data.append([]) for _, row in res.iterrows(): data[-1].extend([row.team_rating, row.rd2_win]) match = pd.DataFrame(data, columns=['Team1_Rating', 'Team1_Prob', 'Team2_Rating', 'Team2_Prob']) match['delta'] = match.Team1_Rating - match.Team2_Rating match['win_extra'] = match.Team1_Prob - 0.5 data = [] for region in df.team_region.unique(): for matchup in matchups: res = post[(post.team_region == region) & post.team_seed.isin(matchup)] if res.shape[0] > 1: data.append([]) for _, row in res.iterrows(): data[-1].extend([row.team_name, row.team_rating, int(row.team_seed)]) else: seeds = matchup + [x + 'a' for x in matchup] + [x + 'b' for x in matchup] res = df[(df.team_region == region) & df.team_seed.isin(seeds)] for t1, t2 in combinations(res.team_name.tolist(), 2): res2 = res[res.team_name.isin([t1, t2])] data.append([]) for _, row in res2.iterrows(): seed = row.team_seed if len(row.team_seed) < 3 else row.team_seed[:-1] data[-1].extend([row.team_name, row.team_rating, int(seed)]) rd2 = pd.DataFrame(data, columns=['Team1', 'Rank1', 'Seed1', 'Team2', 'Rank2', 'Seed2']) rd2.shape
code
18142557/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd path = '../input/data.csv' df = pd.read_csv(path) df.columns df = df.drop(['Unnamed: 0', 'ID', 'Position', 'Name', 'Photo', 'Nationality', 'Potential', 'Flag', 'Club', 'Club Logo', 'Value', 'Wage', 'Special', 'Preferred Foot', 'International Reputation', 'Weak Foot', 'Skill Moves', 'Work Rate', 'Body Type', 'Real Face', 'Jersey Number', 'Joined', 'Loaned From', 'Contract Valid Until', 'Release Clause', 'LS', 'ST', 'RS', 'LW', 'LF', 'CF', 'RF', 'RW', 'LAM', 'CAM', 'RAM', 'LM', 'LCM', 'CM', 'RCM', 'RM', 'LWB', 'LDM', 'CDM', 'RDM', 'RWB', 'LB', 'LCB', 'CB', 'RCB', 'RB', 'Height', 'Weight'], 1) df.columns df = df.dropna() df.isnull().sum()
code
18142557/cell_4
[ "text_html_output_1.png" ]
import pandas as pd path = '../input/data.csv' df = pd.read_csv(path) df.head() df.columns
code
18142557/cell_20
[ "text_plain_output_1.png", "image_output_1.png" ]
import numpy as np import pandas as pd path = '../input/data.csv' df = pd.read_csv(path) df.columns df = df.drop(['Unnamed: 0', 'ID', 'Position', 'Name', 'Photo', 'Nationality', 'Potential', 'Flag', 'Club', 'Club Logo', 'Value', 'Wage', 'Special', 'Preferred Foot', 'International Reputation', 'Weak Foot', 'Skill Moves', 'Work Rate', 'Body Type', 'Real Face', 'Jersey Number', 'Joined', 'Loaned From', 'Contract Valid Until', 'Release Clause', 'LS', 'ST', 'RS', 'LW', 'LF', 'CF', 'RF', 'RW', 'LAM', 'CAM', 'RAM', 'LM', 'LCM', 'CM', 'RCM', 'RM', 'LWB', 'LDM', 'CDM', 'RDM', 'RWB', 'LB', 'LCB', 'CB', 'RCB', 'RB', 'Height', 'Weight'], 1) df.columns df = df.dropna() df.isnull().sum() train, validate, test = np.split(df.sample(frac=1), [int(0.6 * len(df)), int(0.8 * len(df))]) x_train = np.array(train.drop(['Overall'], axis=1)) y_train = np.array(train['Overall']) x_validate = np.array(validate.drop(['Overall'], axis=1)) y_validate = np.array(validate['Overall']) x_test = np.array(test.drop(['Overall'], axis=1)) y_test = np.array(test['Overall']) (len(x_train), len(x_validate), len(x_test))
code
18142557/cell_6
[ "text_html_output_1.png" ]
import pandas as pd path = '../input/data.csv' df = pd.read_csv(path) df.columns df = df.drop(['Unnamed: 0', 'ID', 'Position', 'Name', 'Photo', 'Nationality', 'Potential', 'Flag', 'Club', 'Club Logo', 'Value', 'Wage', 'Special', 'Preferred Foot', 'International Reputation', 'Weak Foot', 'Skill Moves', 'Work Rate', 'Body Type', 'Real Face', 'Jersey Number', 'Joined', 'Loaned From', 'Contract Valid Until', 'Release Clause', 'LS', 'ST', 'RS', 'LW', 'LF', 'CF', 'RF', 'RW', 'LAM', 'CAM', 'RAM', 'LM', 'LCM', 'CM', 'RCM', 'RM', 'LWB', 'LDM', 'CDM', 'RDM', 'RWB', 'LB', 'LCB', 'CB', 'RCB', 'RB', 'Height', 'Weight'], 1) df.columns
code
18142557/cell_2
[ "text_plain_output_1.png", "image_output_1.png" ]
import os import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt from sklearn import linear_model import os print(os.listdir('../input'))
code
18142557/cell_11
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns path = '../input/data.csv' df = pd.read_csv(path) df.columns df = df.drop(['Unnamed: 0', 'ID', 'Position', 'Name', 'Photo', 'Nationality', 'Potential', 'Flag', 'Club', 'Club Logo', 'Value', 'Wage', 'Special', 'Preferred Foot', 'International Reputation', 'Weak Foot', 'Skill Moves', 'Work Rate', 'Body Type', 'Real Face', 'Jersey Number', 'Joined', 'Loaned From', 'Contract Valid Until', 'Release Clause', 'LS', 'ST', 'RS', 'LW', 'LF', 'CF', 'RF', 'RW', 'LAM', 'CAM', 'RAM', 'LM', 'LCM', 'CM', 'RCM', 'RM', 'LWB', 'LDM', 'CDM', 'RDM', 'RWB', 'LB', 'LCB', 'CB', 'RCB', 'RB', 'Height', 'Weight'], 1) df.columns df = df.dropna() df.isnull().sum() f, axes = plt.subplots(figsize=(10, 5)) ax = sns.countplot('Age', data=df) plt.ylabel('Number of players')
code
18142557/cell_7
[ "text_html_output_1.png" ]
import pandas as pd path = '../input/data.csv' df = pd.read_csv(path) df.columns df = df.drop(['Unnamed: 0', 'ID', 'Position', 'Name', 'Photo', 'Nationality', 'Potential', 'Flag', 'Club', 'Club Logo', 'Value', 'Wage', 'Special', 'Preferred Foot', 'International Reputation', 'Weak Foot', 'Skill Moves', 'Work Rate', 'Body Type', 'Real Face', 'Jersey Number', 'Joined', 'Loaned From', 'Contract Valid Until', 'Release Clause', 'LS', 'ST', 'RS', 'LW', 'LF', 'CF', 'RF', 'RW', 'LAM', 'CAM', 'RAM', 'LM', 'LCM', 'CM', 'RCM', 'RM', 'LWB', 'LDM', 'CDM', 'RDM', 'RWB', 'LB', 'LCB', 'CB', 'RCB', 'RB', 'Height', 'Weight'], 1) df.columns df.describe()
code
18142557/cell_18
[ "text_plain_output_1.png" ]
train.describe()
code
18142557/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd path = '../input/data.csv' df = pd.read_csv(path) df.columns df = df.drop(['Unnamed: 0', 'ID', 'Position', 'Name', 'Photo', 'Nationality', 'Potential', 'Flag', 'Club', 'Club Logo', 'Value', 'Wage', 'Special', 'Preferred Foot', 'International Reputation', 'Weak Foot', 'Skill Moves', 'Work Rate', 'Body Type', 'Real Face', 'Jersey Number', 'Joined', 'Loaned From', 'Contract Valid Until', 'Release Clause', 'LS', 'ST', 'RS', 'LW', 'LF', 'CF', 'RF', 'RW', 'LAM', 'CAM', 'RAM', 'LM', 'LCM', 'CM', 'RCM', 'RM', 'LWB', 'LDM', 'CDM', 'RDM', 'RWB', 'LB', 'LCB', 'CB', 'RCB', 'RB', 'Height', 'Weight'], 1) df.columns len(df)
code
18142557/cell_15
[ "text_html_output_1.png" ]
train.head()
code
18142557/cell_16
[ "text_plain_output_1.png" ]
validate.head()
code
18142557/cell_17
[ "text_plain_output_1.png" ]
test.head()
code
18142557/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd path = '../input/data.csv' df = pd.read_csv(path) df.columns df = df.drop(['Unnamed: 0', 'ID', 'Position', 'Name', 'Photo', 'Nationality', 'Potential', 'Flag', 'Club', 'Club Logo', 'Value', 'Wage', 'Special', 'Preferred Foot', 'International Reputation', 'Weak Foot', 'Skill Moves', 'Work Rate', 'Body Type', 'Real Face', 'Jersey Number', 'Joined', 'Loaned From', 'Contract Valid Until', 'Release Clause', 'LS', 'ST', 'RS', 'LW', 'LF', 'CF', 'RF', 'RW', 'LAM', 'CAM', 'RAM', 'LM', 'LCM', 'CM', 'RCM', 'RM', 'LWB', 'LDM', 'CDM', 'RDM', 'RWB', 'LB', 'LCB', 'CB', 'RCB', 'RB', 'Height', 'Weight'], 1) df.columns df = df.dropna() df.isnull().sum() len(df)
code
18142557/cell_12
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns path = '../input/data.csv' df = pd.read_csv(path) df.columns df = df.drop(['Unnamed: 0', 'ID', 'Position', 'Name', 'Photo', 'Nationality', 'Potential', 'Flag', 'Club', 'Club Logo', 'Value', 'Wage', 'Special', 'Preferred Foot', 'International Reputation', 'Weak Foot', 'Skill Moves', 'Work Rate', 'Body Type', 'Real Face', 'Jersey Number', 'Joined', 'Loaned From', 'Contract Valid Until', 'Release Clause', 'LS', 'ST', 'RS', 'LW', 'LF', 'CF', 'RF', 'RW', 'LAM', 'CAM', 'RAM', 'LM', 'LCM', 'CM', 'RCM', 'RM', 'LWB', 'LDM', 'CDM', 'RDM', 'RWB', 'LB', 'LCB', 'CB', 'RCB', 'RB', 'Height', 'Weight'], 1) df.columns df = df.dropna() df.isnull().sum() f , axes = plt.subplots(figsize = (10,5)) ax = sns.countplot('Age', data = df) plt.ylabel('Number of players') f, axes = plt.subplots(figsize=(20, 5)) ax = sns.countplot('Overall', data=df) plt.ylabel('Number of players') plt.xlabel('Overall Score')
code
34120249/cell_21
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns udemy_courses = pd.read_csv('/kaggle/input/udemy-courses/udemy_courses.csv', parse_dates=['published_timestamp']) udemy_courses['price'] = udemy_courses['price'].str.replace('Free', '0').str.replace('TRUE', '0') udemy_courses['price'] = udemy_courses['price'].astype('float') udemy_courses['number_of_contents'] = udemy_courses['content_duration'].str.extract('([\\d\\.]+)\\s[\\w]+').astype('float') udemy_courses['content_duration_type'] = udemy_courses['content_duration'].str.extract('[\\d\\.]+\\s([\\w]+)') udemy_courses.drop('content_duration', axis=1, inplace=True) udemy_courses.dropna(inplace=True) g=sns.catplot(x='subject', data=udemy_courses, kind='count', hue='is_paid') g.fig.suptitle('free/paid categories comparison', y=1.03) plt.xticks(rotation=90) plt.show() g=sns.catplot(x='level', data=udemy_courses, kind='count', hue='is_paid') g.fig.suptitle('free/paid lavel comparison', y=1.03) plt.xticks(rotation=90) plt.show() def cdf(lst): x = np.sort(lst) y = np.arange(1, len(x) + 1) / len(x) return (x, y) fig, ax = plt.subplots(1, 3, figsize=(15, 5)) x_price, y_price = cdf(udemy_courses['price']) ax[0].plot(x_price, y_price) ax[0].set_title('CDF of prices') ax[1].hist(udemy_courses['price']) ax[1].set_title('histogram distribution of prices') ax[2].boxplot(udemy_courses['price']) ax[2].set_title('boxplot of prices') plt.show() print('median: ', udemy_courses['price'].median()) print('mean: ', udemy_courses['price'].mean())
code
34120249/cell_25
[ "image_output_1.png" ]
import pandas as pd udemy_courses = pd.read_csv('/kaggle/input/udemy-courses/udemy_courses.csv', parse_dates=['published_timestamp']) udemy_courses['price'] = udemy_courses['price'].str.replace('Free', '0').str.replace('TRUE', '0') udemy_courses['price'] = udemy_courses['price'].astype('float') udemy_courses['number_of_contents'] = udemy_courses['content_duration'].str.extract('([\\d\\.]+)\\s[\\w]+').astype('float') udemy_courses['content_duration_type'] = udemy_courses['content_duration'].str.extract('[\\d\\.]+\\s([\\w]+)') udemy_courses.drop('content_duration', axis=1, inplace=True) udemy_courses.dropna(inplace=True) udemy_courses['price_category'].value_counts()
code