path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
34120249/cell_4
[ "image_output_1.png" ]
import pandas as pd udemy_courses = pd.read_csv('/kaggle/input/udemy-courses/udemy_courses.csv', parse_dates=['published_timestamp']) udemy_courses.head(3)
code
34120249/cell_23
[ "text_html_output_1.png" ]
import pandas as pd udemy_courses = pd.read_csv('/kaggle/input/udemy-courses/udemy_courses.csv', parse_dates=['published_timestamp']) udemy_courses['price'] = udemy_courses['price'].str.replace('Free', '0').str.replace('TRUE', '0') udemy_courses['price'] = udemy_courses['price'].astype('float') udemy_courses['number_of_contents'] = udemy_courses['content_duration'].str.extract('([\\d\\.]+)\\s[\\w]+').astype('float') udemy_courses['content_duration_type'] = udemy_courses['content_duration'].str.extract('[\\d\\.]+\\s([\\w]+)') udemy_courses.drop('content_duration', axis=1, inplace=True) udemy_courses.dropna(inplace=True) udemy_courses[udemy_courses['is_paid'] == 'True'].groupby('level')['price'].mean().sort_values(ascending=False)
code
34120249/cell_30
[ "text_plain_output_1.png" ]
import pandas as pd udemy_courses = pd.read_csv('/kaggle/input/udemy-courses/udemy_courses.csv', parse_dates=['published_timestamp']) udemy_courses['price'] = udemy_courses['price'].str.replace('Free', '0').str.replace('TRUE', '0') udemy_courses['price'] = udemy_courses['price'].astype('float') udemy_courses['number_of_contents'] = udemy_courses['content_duration'].str.extract('([\\d\\.]+)\\s[\\w]+').astype('float') udemy_courses['content_duration_type'] = udemy_courses['content_duration'].str.extract('[\\d\\.]+\\s([\\w]+)') udemy_courses.drop('content_duration', axis=1, inplace=True) udemy_courses.dropna(inplace=True) udemy_courses.groupby('price_category')['num_lectures'].mean().sort_values(ascending=False) udemy_courses[udemy_courses['content_duration_type'] == 'questions']
code
34120249/cell_33
[ "image_output_1.png" ]
import pandas as pd udemy_courses = pd.read_csv('/kaggle/input/udemy-courses/udemy_courses.csv', parse_dates=['published_timestamp']) udemy_courses['price'] = udemy_courses['price'].str.replace('Free', '0').str.replace('TRUE', '0') udemy_courses['price'] = udemy_courses['price'].astype('float') udemy_courses['number_of_contents'] = udemy_courses['content_duration'].str.extract('([\\d\\.]+)\\s[\\w]+').astype('float') udemy_courses['content_duration_type'] = udemy_courses['content_duration'].str.extract('[\\d\\.]+\\s([\\w]+)') udemy_courses.drop('content_duration', axis=1, inplace=True) udemy_courses.dropna(inplace=True) pd.pivot_table(index='is_paid', values='num_subscribers', data=udemy_courses, aggfunc='mean') udemy_courses.groupby('price_category')['num_lectures'].mean().sort_values(ascending=False) udemy_courses['published_year'] = udemy_courses['published_timestamp'].dt.year pd.pivot_table(index='published_year', columns='subject', values='course_id', data=udemy_courses, aggfunc='count', fill_value=0)
code
34120249/cell_20
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns udemy_courses = pd.read_csv('/kaggle/input/udemy-courses/udemy_courses.csv', parse_dates=['published_timestamp']) udemy_courses['price'] = udemy_courses['price'].str.replace('Free', '0').str.replace('TRUE', '0') udemy_courses['price'] = udemy_courses['price'].astype('float') udemy_courses['number_of_contents'] = udemy_courses['content_duration'].str.extract('([\\d\\.]+)\\s[\\w]+').astype('float') udemy_courses['content_duration_type'] = udemy_courses['content_duration'].str.extract('[\\d\\.]+\\s([\\w]+)') udemy_courses.drop('content_duration', axis=1, inplace=True) udemy_courses.dropna(inplace=True) g=sns.catplot(x='subject', data=udemy_courses, kind='count', hue='is_paid') g.fig.suptitle('free/paid categories comparison', y=1.03) plt.xticks(rotation=90) plt.show() g = sns.catplot(x='level', data=udemy_courses, kind='count', hue='is_paid') g.fig.suptitle('free/paid lavel comparison', y=1.03) plt.xticks(rotation=90) plt.show()
code
34120249/cell_26
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd udemy_courses = pd.read_csv('/kaggle/input/udemy-courses/udemy_courses.csv', parse_dates=['published_timestamp']) udemy_courses['price'] = udemy_courses['price'].str.replace('Free', '0').str.replace('TRUE', '0') udemy_courses['price'] = udemy_courses['price'].astype('float') udemy_courses['number_of_contents'] = udemy_courses['content_duration'].str.extract('([\\d\\.]+)\\s[\\w]+').astype('float') udemy_courses['content_duration_type'] = udemy_courses['content_duration'].str.extract('[\\d\\.]+\\s([\\w]+)') udemy_courses.drop('content_duration', axis=1, inplace=True) udemy_courses.dropna(inplace=True) udemy_courses.groupby('price_category')['num_lectures'].mean().sort_values(ascending=False)
code
34120249/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd udemy_courses = pd.read_csv('/kaggle/input/udemy-courses/udemy_courses.csv', parse_dates=['published_timestamp']) udemy_courses['price'] = udemy_courses['price'].str.replace('Free', '0').str.replace('TRUE', '0') udemy_courses['price'] = udemy_courses['price'].astype('float') udemy_courses['number_of_contents'] = udemy_courses['content_duration'].str.extract('([\\d\\.]+)\\s[\\w]+').astype('float') udemy_courses['content_duration_type'] = udemy_courses['content_duration'].str.extract('[\\d\\.]+\\s([\\w]+)') udemy_courses.drop('content_duration', axis=1, inplace=True) udemy_courses.dropna(inplace=True) udemy_courses['is_paid'].value_counts()
code
34120249/cell_18
[ "text_plain_output_1.png" ]
import pandas as pd udemy_courses = pd.read_csv('/kaggle/input/udemy-courses/udemy_courses.csv', parse_dates=['published_timestamp']) udemy_courses['price'] = udemy_courses['price'].str.replace('Free', '0').str.replace('TRUE', '0') udemy_courses['price'] = udemy_courses['price'].astype('float') udemy_courses['number_of_contents'] = udemy_courses['content_duration'].str.extract('([\\d\\.]+)\\s[\\w]+').astype('float') udemy_courses['content_duration_type'] = udemy_courses['content_duration'].str.extract('[\\d\\.]+\\s([\\w]+)') udemy_courses.drop('content_duration', axis=1, inplace=True) udemy_courses.dropna(inplace=True) pd.pivot_table(index='is_paid', values='num_subscribers', data=udemy_courses, aggfunc='mean')
code
34120249/cell_32
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns udemy_courses = pd.read_csv('/kaggle/input/udemy-courses/udemy_courses.csv', parse_dates=['published_timestamp']) udemy_courses['price'] = udemy_courses['price'].str.replace('Free', '0').str.replace('TRUE', '0') udemy_courses['price'] = udemy_courses['price'].astype('float') udemy_courses['number_of_contents'] = udemy_courses['content_duration'].str.extract('([\\d\\.]+)\\s[\\w]+').astype('float') udemy_courses['content_duration_type'] = udemy_courses['content_duration'].str.extract('[\\d\\.]+\\s([\\w]+)') udemy_courses.drop('content_duration', axis=1, inplace=True) udemy_courses.dropna(inplace=True) g=sns.catplot(x='subject', data=udemy_courses, kind='count', hue='is_paid') g.fig.suptitle('free/paid categories comparison', y=1.03) plt.xticks(rotation=90) plt.show() g=sns.catplot(x='level', data=udemy_courses, kind='count', hue='is_paid') g.fig.suptitle('free/paid lavel comparison', y=1.03) plt.xticks(rotation=90) plt.show() # Box-plot, CDF, histogram def cdf(lst): x=np.sort(lst) y=np.arange(1, len(x)+1)/len(x) return x, y fig, ax=plt.subplots(1,3, figsize=(15,5)) x_price, y_price=cdf(udemy_courses['price']) ax[0].plot(x_price, y_price) ax[0].set_title('CDF of prices') ax[1].hist(udemy_courses['price']) ax[1].set_title('histogram distribution of prices') ax[2].boxplot(udemy_courses['price']) ax[2].set_title('boxplot of prices') plt.show() print('median: ',udemy_courses['price'].median()) print('mean: ',udemy_courses['price'].mean()) udemy_courses.groupby('price_category')['num_lectures'].mean().sort_values(ascending=False) mins_courses=udemy_courses[udemy_courses['content_duration_type']=='mins'] g=sns.catplot(x='price_category', data=mins_courses, kind='count', hue='level') g.fig.suptitle("price category (minutes courses) in each level.", y=1.03, x=0.4) plt.show() udemy_courses['published_timestamp'].dt.year.value_counts().plot.bar() plt.xlabel('published year') plt.ylabel('frequency') plt.title('number of courses published each year(2011-2017)') plt.show()
code
34120249/cell_28
[ "text_plain_output_1.png" ]
import pandas as pd udemy_courses = pd.read_csv('/kaggle/input/udemy-courses/udemy_courses.csv', parse_dates=['published_timestamp']) udemy_courses['price'] = udemy_courses['price'].str.replace('Free', '0').str.replace('TRUE', '0') udemy_courses['price'] = udemy_courses['price'].astype('float') udemy_courses['number_of_contents'] = udemy_courses['content_duration'].str.extract('([\\d\\.]+)\\s[\\w]+').astype('float') udemy_courses['content_duration_type'] = udemy_courses['content_duration'].str.extract('[\\d\\.]+\\s([\\w]+)') udemy_courses.drop('content_duration', axis=1, inplace=True) udemy_courses.dropna(inplace=True) udemy_courses.groupby('price_category')['num_lectures'].mean().sort_values(ascending=False) udemy_courses['content_duration_type'].value_counts()
code
34120249/cell_15
[ "text_html_output_1.png" ]
import pandas as pd udemy_courses = pd.read_csv('/kaggle/input/udemy-courses/udemy_courses.csv', parse_dates=['published_timestamp']) udemy_courses['price'] = udemy_courses['price'].str.replace('Free', '0').str.replace('TRUE', '0') udemy_courses['price'] = udemy_courses['price'].astype('float') udemy_courses['number_of_contents'] = udemy_courses['content_duration'].str.extract('([\\d\\.]+)\\s[\\w]+').astype('float') udemy_courses['content_duration_type'] = udemy_courses['content_duration'].str.extract('[\\d\\.]+\\s([\\w]+)') udemy_courses.drop('content_duration', axis=1, inplace=True) udemy_courses.dropna(inplace=True) udemy_courses['is_paid'].value_counts()
code
34120249/cell_16
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns udemy_courses = pd.read_csv('/kaggle/input/udemy-courses/udemy_courses.csv', parse_dates=['published_timestamp']) udemy_courses['price'] = udemy_courses['price'].str.replace('Free', '0').str.replace('TRUE', '0') udemy_courses['price'] = udemy_courses['price'].astype('float') udemy_courses['number_of_contents'] = udemy_courses['content_duration'].str.extract('([\\d\\.]+)\\s[\\w]+').astype('float') udemy_courses['content_duration_type'] = udemy_courses['content_duration'].str.extract('[\\d\\.]+\\s([\\w]+)') udemy_courses.drop('content_duration', axis=1, inplace=True) udemy_courses.dropna(inplace=True) g = sns.catplot(x='subject', data=udemy_courses, kind='count', hue='is_paid') g.fig.suptitle('free/paid categories comparison', y=1.03) plt.xticks(rotation=90) plt.show()
code
34120249/cell_3
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import datetime as dt import os import re plt.style.use('ggplot') sns.set(style='darkgrid', context='notebook') for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
34120249/cell_31
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns udemy_courses = pd.read_csv('/kaggle/input/udemy-courses/udemy_courses.csv', parse_dates=['published_timestamp']) udemy_courses['price'] = udemy_courses['price'].str.replace('Free', '0').str.replace('TRUE', '0') udemy_courses['price'] = udemy_courses['price'].astype('float') udemy_courses['number_of_contents'] = udemy_courses['content_duration'].str.extract('([\\d\\.]+)\\s[\\w]+').astype('float') udemy_courses['content_duration_type'] = udemy_courses['content_duration'].str.extract('[\\d\\.]+\\s([\\w]+)') udemy_courses.drop('content_duration', axis=1, inplace=True) udemy_courses.dropna(inplace=True) g=sns.catplot(x='subject', data=udemy_courses, kind='count', hue='is_paid') g.fig.suptitle('free/paid categories comparison', y=1.03) plt.xticks(rotation=90) plt.show() g=sns.catplot(x='level', data=udemy_courses, kind='count', hue='is_paid') g.fig.suptitle('free/paid lavel comparison', y=1.03) plt.xticks(rotation=90) plt.show() # Box-plot, CDF, histogram def cdf(lst): x=np.sort(lst) y=np.arange(1, len(x)+1)/len(x) return x, y fig, ax=plt.subplots(1,3, figsize=(15,5)) x_price, y_price=cdf(udemy_courses['price']) ax[0].plot(x_price, y_price) ax[0].set_title('CDF of prices') ax[1].hist(udemy_courses['price']) ax[1].set_title('histogram distribution of prices') ax[2].boxplot(udemy_courses['price']) ax[2].set_title('boxplot of prices') plt.show() print('median: ',udemy_courses['price'].median()) print('mean: ',udemy_courses['price'].mean()) udemy_courses.groupby('price_category')['num_lectures'].mean().sort_values(ascending=False) mins_courses = udemy_courses[udemy_courses['content_duration_type'] == 'mins'] g = sns.catplot(x='price_category', data=mins_courses, kind='count', hue='level') g.fig.suptitle('price category (minutes courses) in each level.', y=1.03, x=0.4) plt.show()
code
34120249/cell_5
[ "text_html_output_1.png" ]
import pandas as pd udemy_courses = pd.read_csv('/kaggle/input/udemy-courses/udemy_courses.csv', parse_dates=['published_timestamp']) udemy_courses.info()
code
329956/cell_9
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
import numpy as np import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import trueskill as ts import pandas as pd import numpy as np import trueskill as ts pd.set_option('display.max_rows', len(dfRatings)) def cleanResults(raceColumns,dfResultsTemp,appendScore): for raceCol in raceColumns: dfResultsTemp.index = dfResultsTemp.index.str.replace(r"(\w)([A-Z])", r"\1 \2") dfResultsTemp.index = dfResultsTemp.index.str.title() dfResultsTemp.index = dfResultsTemp.index.str.replace('\([A-Z\ 0-9]*\)','') dfResultsTemp.index = dfResultsTemp.index.str.strip() dfResultsTemp.index = dfResultsTemp.index.str.replace('Riccardo Andrea Leccese','Rikki Leccese') dfResultsTemp.index = dfResultsTemp.index.str.replace('Nicolas Parlier','Nico Parlier') dfResultsTemp.index = dfResultsTemp.index.str.replace('Alejandro Climent Hernã¥_ Ndez', 'Alejandro Climent Hernandez') dfResultsTemp.index = dfResultsTemp.index.str.replace('Alexandre Caizergues','Alex Caizergues') dfResultsTemp.index = dfResultsTemp.index.str.replace('Florian Trittel Paul','Florian Trittel') dfResultsTemp.index = dfResultsTemp.index.str.replace('Jean Guillaume Rivaud','Jean-Guillaume Rivaud') dfResultsTemp.index = dfResultsTemp.index.str.replace('^Kieran Le$','Kieran Le Borgne') dfResultsTemp.index = dfResultsTemp.index.str.replace('Marvin Baumeisterschoenian','Marvin Baumeister Schoenian') dfResultsTemp.index = dfResultsTemp.index.str.replace('Theo De Ramecourt','Theo De-Ramecourt') dfResultsTemp.index = dfResultsTemp.index.str.replace('James Johnson','James Johnsen') dfResultsTemp[raceCol] = dfResultsTemp[raceCol].astype(str) dfResultsTemp[raceCol] = dfResultsTemp[raceCol].str.replace('D\+D|DSQ|D\+0|^-[A-Z0-9]*$|\([A-Z0-9\.-]*\)|UFD|SCP|RDG|RCT|DCT|DNS-[0-9]*|DNC-[0-9]*|OCS-[0-9]*|[0-9\.]*DNC|\/','') dfResultsTemp[raceCol] = dfResultsTemp[raceCol].str.replace('DNS','') #Count DNF or Retired as last place dfResultsTemp[raceCol] = dfResultsTemp[raceCol].str.replace('RET[0-9]*|DNF-[0-9]*|^DNF$|[0-9\.]*DNF',str(len(dfResultsTemp)+1)) dfResultsTemp[raceCol] = pd.to_numeric(dfResultsTemp[raceCol]) dfResultsTemp[raceCol] = dfResultsTemp[raceCol] + appendScore return dfResultsTemp def mergeResults(raceColumns, raceName, dfResultsTemp, dfResults): for raceCol in raceColumns: raceIndex = raceName + '-' + raceCol dfResultsTemp[raceIndex] = dfResultsTemp[raceCol] del dfResultsTemp[raceCol] dfResults = pd.merge(dfResults, dfResultsTemp[[raceIndex]], left_index=True, right_index=True, how='outer') return dfResults def doRating(dfResults, dfRatings): dfRatings = pd.merge(dfRatings, dfResults, left_on=['Name'], right_index=True, how='outer') dfRatings['Name'] = dfRatings.index ratingsColumns = ['Name', 'mu_minus_3sigma', 'NumRaces', 'Rating'] dfRatings = dfRatings[ratingsColumns] dfRatings['Rating'][dfRatings['Rating'].isnull()] = pd.Series(np.repeat(ts.Rating(), len(dfRatings['Rating'].isnull()))).T.values.tolist() for raceCol in dfResults: competed = dfRatings['Name'].isin(dfResults.index[dfResults[raceCol].notnull()]) rating_group = list(zip(dfRatings['Rating'][competed].T.values.tolist())) dfRatings['Rating'][competed] = ts.rate(rating_group, ranks=dfResults[raceCol][competed].T.values.tolist()) dfRatings = pd.DataFrame(dfRatings) dfRatings['mu_minus_3sigma'] = pd.Series(np.repeat(0.0, len(dfRatings))) for i in range(0, len(dfRatings['Rating'])): dfRatings['mu_minus_3sigma'][i] = float(dfRatings['Rating'][i].mu) - 3 * float(dfRatings['Rating'][i].sigma) dfRatings['Name'] = dfRatings.index dfRatings.index = dfRatings['mu_minus_3sigma'].rank(ascending=False).astype(int) dfRatings.index.names = ['Rank'] return dfRatings.sort('mu_minus_3sigma', ascending=False) ratingsColumns = ['Name', 'mu_minus_3sigma', 'NumRaces', 'Rating'] dfRatings = pd.DataFrame(columns=ratingsColumns) dfResults = pd.DataFrame() raceName = '20160323-LaVentana-HydrofoilProTour' raceColumns = ['Q1', 'Q2', 'R1', 'R2', 'R3', 'R4', 'R5', 'R6'] dfResultsTempGold = pd.read_csv('../input/' + raceName + '-Gold.csv') dfResultsTempGold = dfResultsTempGold.set_index(dfResultsTempGold['Name'] + ' ' + dfResultsTempGold['LastName']) dfResultsTempGold = cleanResults(raceColumns, dfResultsTempGold, 0) dfResultsTempSilver = pd.read_csv('../input/' + raceName + '-Silver.csv') dfResultsTempSilver = dfResultsTempSilver.set_index(dfResultsTempSilver['Name'] + ' ' + dfResultsTempSilver['LastName']) dfResultsTempSilver = cleanResults(raceColumns, dfResultsTempSilver, len(dfResultsTempGold)) dfResultsTemp = dfResultsTempGold.append(dfResultsTempSilver) dfResults = mergeResults(raceColumns, raceName, dfResultsTemp, dfResults) dfResults = pd.DataFrame() raceName = '20160516-MontPellier-IFKOSilverCup' raceColumns = ['CO 1', 'CO 2', 'CO 3', 'CO 4', 'CO 5', 'CO 6', 'CO 7', 'CO 8', 'CO 9', 'CO 10', 'CO 11', 'CO 12'] dfResultsTemp = pd.read_csv('../input/' + raceName + '.csv') for i in range(0, len(dfResultsTemp)): numNames = len(dfResultsTemp['Name'].str.split(' ')[i]) dfResultsTemp['Name'][i] = dfResultsTemp['Name'].str.split(' ')[i][numNames - 1] + ' ' + dfResultsTemp['Name'].str.split(' ')[i][0] dfResultsTemp = dfResultsTemp.set_index(dfResultsTemp['Name'].str.lower()) dfResultsTemp = cleanResults(raceColumns, dfResultsTemp, 0) for i in (dfResultsTemp[raceColumns].isnull().sum(axis=1) < 3).index: toDelete = 3 - dfResultsTemp[raceColumns][dfResultsTemp.index == i].isnull().sum(axis=1).values[0] if toDelete > 0: for j in range(1, toDelete + 1): maxToDelete = dfResultsTemp[raceColumns][dfResultsTemp.index == i].idxmax(axis=1).values[0] dfResultsTemp[maxToDelete][dfResultsTemp.index == i] = np.nan dfResults = mergeResults(raceColumns, raceName, dfResultsTemp, dfResults)
code
329956/cell_2
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd import numpy as np import trueskill as ts pd.set_option('display.max_rows', len(dfRatings))
code
329956/cell_8
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
import numpy as np import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import trueskill as ts import pandas as pd import numpy as np import trueskill as ts pd.set_option('display.max_rows', len(dfRatings)) def cleanResults(raceColumns,dfResultsTemp,appendScore): for raceCol in raceColumns: dfResultsTemp.index = dfResultsTemp.index.str.replace(r"(\w)([A-Z])", r"\1 \2") dfResultsTemp.index = dfResultsTemp.index.str.title() dfResultsTemp.index = dfResultsTemp.index.str.replace('\([A-Z\ 0-9]*\)','') dfResultsTemp.index = dfResultsTemp.index.str.strip() dfResultsTemp.index = dfResultsTemp.index.str.replace('Riccardo Andrea Leccese','Rikki Leccese') dfResultsTemp.index = dfResultsTemp.index.str.replace('Nicolas Parlier','Nico Parlier') dfResultsTemp.index = dfResultsTemp.index.str.replace('Alejandro Climent Hernã¥_ Ndez', 'Alejandro Climent Hernandez') dfResultsTemp.index = dfResultsTemp.index.str.replace('Alexandre Caizergues','Alex Caizergues') dfResultsTemp.index = dfResultsTemp.index.str.replace('Florian Trittel Paul','Florian Trittel') dfResultsTemp.index = dfResultsTemp.index.str.replace('Jean Guillaume Rivaud','Jean-Guillaume Rivaud') dfResultsTemp.index = dfResultsTemp.index.str.replace('^Kieran Le$','Kieran Le Borgne') dfResultsTemp.index = dfResultsTemp.index.str.replace('Marvin Baumeisterschoenian','Marvin Baumeister Schoenian') dfResultsTemp.index = dfResultsTemp.index.str.replace('Theo De Ramecourt','Theo De-Ramecourt') dfResultsTemp.index = dfResultsTemp.index.str.replace('James Johnson','James Johnsen') dfResultsTemp[raceCol] = dfResultsTemp[raceCol].astype(str) dfResultsTemp[raceCol] = dfResultsTemp[raceCol].str.replace('D\+D|DSQ|D\+0|^-[A-Z0-9]*$|\([A-Z0-9\.-]*\)|UFD|SCP|RDG|RCT|DCT|DNS-[0-9]*|DNC-[0-9]*|OCS-[0-9]*|[0-9\.]*DNC|\/','') dfResultsTemp[raceCol] = dfResultsTemp[raceCol].str.replace('DNS','') #Count DNF or Retired as last place dfResultsTemp[raceCol] = dfResultsTemp[raceCol].str.replace('RET[0-9]*|DNF-[0-9]*|^DNF$|[0-9\.]*DNF',str(len(dfResultsTemp)+1)) dfResultsTemp[raceCol] = pd.to_numeric(dfResultsTemp[raceCol]) dfResultsTemp[raceCol] = dfResultsTemp[raceCol] + appendScore return dfResultsTemp def mergeResults(raceColumns, raceName, dfResultsTemp, dfResults): for raceCol in raceColumns: raceIndex = raceName + '-' + raceCol dfResultsTemp[raceIndex] = dfResultsTemp[raceCol] del dfResultsTemp[raceCol] dfResults = pd.merge(dfResults, dfResultsTemp[[raceIndex]], left_index=True, right_index=True, how='outer') return dfResults def doRating(dfResults, dfRatings): dfRatings = pd.merge(dfRatings, dfResults, left_on=['Name'], right_index=True, how='outer') dfRatings['Name'] = dfRatings.index ratingsColumns = ['Name', 'mu_minus_3sigma', 'NumRaces', 'Rating'] dfRatings = dfRatings[ratingsColumns] dfRatings['Rating'][dfRatings['Rating'].isnull()] = pd.Series(np.repeat(ts.Rating(), len(dfRatings['Rating'].isnull()))).T.values.tolist() for raceCol in dfResults: competed = dfRatings['Name'].isin(dfResults.index[dfResults[raceCol].notnull()]) rating_group = list(zip(dfRatings['Rating'][competed].T.values.tolist())) dfRatings['Rating'][competed] = ts.rate(rating_group, ranks=dfResults[raceCol][competed].T.values.tolist()) dfRatings = pd.DataFrame(dfRatings) dfRatings['mu_minus_3sigma'] = pd.Series(np.repeat(0.0, len(dfRatings))) for i in range(0, len(dfRatings['Rating'])): dfRatings['mu_minus_3sigma'][i] = float(dfRatings['Rating'][i].mu) - 3 * float(dfRatings['Rating'][i].sigma) dfRatings['Name'] = dfRatings.index dfRatings.index = dfRatings['mu_minus_3sigma'].rank(ascending=False).astype(int) dfRatings.index.names = ['Rank'] return dfRatings.sort('mu_minus_3sigma', ascending=False) ratingsColumns = ['Name', 'mu_minus_3sigma', 'NumRaces', 'Rating'] dfRatings = pd.DataFrame(columns=ratingsColumns) dfResults = pd.DataFrame() raceName = '20160323-LaVentana-HydrofoilProTour' raceColumns = ['Q1', 'Q2', 'R1', 'R2', 'R3', 'R4', 'R5', 'R6'] dfResultsTempGold = pd.read_csv('../input/' + raceName + '-Gold.csv') dfResultsTempGold = dfResultsTempGold.set_index(dfResultsTempGold['Name'] + ' ' + dfResultsTempGold['LastName']) dfResultsTempGold = cleanResults(raceColumns, dfResultsTempGold, 0) dfResultsTempSilver = pd.read_csv('../input/' + raceName + '-Silver.csv') dfResultsTempSilver = dfResultsTempSilver.set_index(dfResultsTempSilver['Name'] + ' ' + dfResultsTempSilver['LastName']) dfResultsTempSilver = cleanResults(raceColumns, dfResultsTempSilver, len(dfResultsTempGold)) dfResultsTemp = dfResultsTempGold.append(dfResultsTempSilver) dfResults = mergeResults(raceColumns, raceName, dfResultsTemp, dfResults) dfRatings = doRating(dfResults, dfRatings) dfRatings
code
329956/cell_10
[ "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import trueskill as ts import pandas as pd import numpy as np import trueskill as ts pd.set_option('display.max_rows', len(dfRatings)) def cleanResults(raceColumns,dfResultsTemp,appendScore): for raceCol in raceColumns: dfResultsTemp.index = dfResultsTemp.index.str.replace(r"(\w)([A-Z])", r"\1 \2") dfResultsTemp.index = dfResultsTemp.index.str.title() dfResultsTemp.index = dfResultsTemp.index.str.replace('\([A-Z\ 0-9]*\)','') dfResultsTemp.index = dfResultsTemp.index.str.strip() dfResultsTemp.index = dfResultsTemp.index.str.replace('Riccardo Andrea Leccese','Rikki Leccese') dfResultsTemp.index = dfResultsTemp.index.str.replace('Nicolas Parlier','Nico Parlier') dfResultsTemp.index = dfResultsTemp.index.str.replace('Alejandro Climent Hernã¥_ Ndez', 'Alejandro Climent Hernandez') dfResultsTemp.index = dfResultsTemp.index.str.replace('Alexandre Caizergues','Alex Caizergues') dfResultsTemp.index = dfResultsTemp.index.str.replace('Florian Trittel Paul','Florian Trittel') dfResultsTemp.index = dfResultsTemp.index.str.replace('Jean Guillaume Rivaud','Jean-Guillaume Rivaud') dfResultsTemp.index = dfResultsTemp.index.str.replace('^Kieran Le$','Kieran Le Borgne') dfResultsTemp.index = dfResultsTemp.index.str.replace('Marvin Baumeisterschoenian','Marvin Baumeister Schoenian') dfResultsTemp.index = dfResultsTemp.index.str.replace('Theo De Ramecourt','Theo De-Ramecourt') dfResultsTemp.index = dfResultsTemp.index.str.replace('James Johnson','James Johnsen') dfResultsTemp[raceCol] = dfResultsTemp[raceCol].astype(str) dfResultsTemp[raceCol] = dfResultsTemp[raceCol].str.replace('D\+D|DSQ|D\+0|^-[A-Z0-9]*$|\([A-Z0-9\.-]*\)|UFD|SCP|RDG|RCT|DCT|DNS-[0-9]*|DNC-[0-9]*|OCS-[0-9]*|[0-9\.]*DNC|\/','') dfResultsTemp[raceCol] = dfResultsTemp[raceCol].str.replace('DNS','') #Count DNF or Retired as last place dfResultsTemp[raceCol] = dfResultsTemp[raceCol].str.replace('RET[0-9]*|DNF-[0-9]*|^DNF$|[0-9\.]*DNF',str(len(dfResultsTemp)+1)) dfResultsTemp[raceCol] = pd.to_numeric(dfResultsTemp[raceCol]) dfResultsTemp[raceCol] = dfResultsTemp[raceCol] + appendScore return dfResultsTemp def mergeResults(raceColumns, raceName, dfResultsTemp, dfResults): for raceCol in raceColumns: raceIndex = raceName + '-' + raceCol dfResultsTemp[raceIndex] = dfResultsTemp[raceCol] del dfResultsTemp[raceCol] dfResults = pd.merge(dfResults, dfResultsTemp[[raceIndex]], left_index=True, right_index=True, how='outer') return dfResults def doRating(dfResults, dfRatings): dfRatings = pd.merge(dfRatings, dfResults, left_on=['Name'], right_index=True, how='outer') dfRatings['Name'] = dfRatings.index ratingsColumns = ['Name', 'mu_minus_3sigma', 'NumRaces', 'Rating'] dfRatings = dfRatings[ratingsColumns] dfRatings['Rating'][dfRatings['Rating'].isnull()] = pd.Series(np.repeat(ts.Rating(), len(dfRatings['Rating'].isnull()))).T.values.tolist() for raceCol in dfResults: competed = dfRatings['Name'].isin(dfResults.index[dfResults[raceCol].notnull()]) rating_group = list(zip(dfRatings['Rating'][competed].T.values.tolist())) dfRatings['Rating'][competed] = ts.rate(rating_group, ranks=dfResults[raceCol][competed].T.values.tolist()) dfRatings = pd.DataFrame(dfRatings) dfRatings['mu_minus_3sigma'] = pd.Series(np.repeat(0.0, len(dfRatings))) for i in range(0, len(dfRatings['Rating'])): dfRatings['mu_minus_3sigma'][i] = float(dfRatings['Rating'][i].mu) - 3 * float(dfRatings['Rating'][i].sigma) dfRatings['Name'] = dfRatings.index dfRatings.index = dfRatings['mu_minus_3sigma'].rank(ascending=False).astype(int) dfRatings.index.names = ['Rank'] return dfRatings.sort('mu_minus_3sigma', ascending=False) ratingsColumns = ['Name', 'mu_minus_3sigma', 'NumRaces', 'Rating'] dfRatings = pd.DataFrame(columns=ratingsColumns) dfResults = pd.DataFrame() raceName = '20160323-LaVentana-HydrofoilProTour' raceColumns = ['Q1', 'Q2', 'R1', 'R2', 'R3', 'R4', 'R5', 'R6'] dfResultsTempGold = pd.read_csv('../input/' + raceName + '-Gold.csv') dfResultsTempGold = dfResultsTempGold.set_index(dfResultsTempGold['Name'] + ' ' + dfResultsTempGold['LastName']) dfResultsTempGold = cleanResults(raceColumns, dfResultsTempGold, 0) dfResultsTempSilver = pd.read_csv('../input/' + raceName + '-Silver.csv') dfResultsTempSilver = dfResultsTempSilver.set_index(dfResultsTempSilver['Name'] + ' ' + dfResultsTempSilver['LastName']) dfResultsTempSilver = cleanResults(raceColumns, dfResultsTempSilver, len(dfResultsTempGold)) dfResultsTemp = dfResultsTempGold.append(dfResultsTempSilver) dfResults = mergeResults(raceColumns, raceName, dfResultsTemp, dfResults) dfRatings = doRating(dfResults, dfRatings) dfRatings dfResults = pd.DataFrame() raceName = '20160516-MontPellier-IFKOSilverCup' raceColumns = ['CO 1', 'CO 2', 'CO 3', 'CO 4', 'CO 5', 'CO 6', 'CO 7', 'CO 8', 'CO 9', 'CO 10', 'CO 11', 'CO 12'] dfResultsTemp = pd.read_csv('../input/' + raceName + '.csv') for i in range(0, len(dfResultsTemp)): numNames = len(dfResultsTemp['Name'].str.split(' ')[i]) dfResultsTemp['Name'][i] = dfResultsTemp['Name'].str.split(' ')[i][numNames - 1] + ' ' + dfResultsTemp['Name'].str.split(' ')[i][0] dfResultsTemp = dfResultsTemp.set_index(dfResultsTemp['Name'].str.lower()) dfResultsTemp = cleanResults(raceColumns, dfResultsTemp, 0) for i in (dfResultsTemp[raceColumns].isnull().sum(axis=1) < 3).index: toDelete = 3 - dfResultsTemp[raceColumns][dfResultsTemp.index == i].isnull().sum(axis=1).values[0] if toDelete > 0: for j in range(1, toDelete + 1): maxToDelete = dfResultsTemp[raceColumns][dfResultsTemp.index == i].idxmax(axis=1).values[0] dfResultsTemp[maxToDelete][dfResultsTemp.index == i] = np.nan dfResults = mergeResults(raceColumns, raceName, dfResultsTemp, dfResults) dfRatings = doRating(dfResults, dfRatings)
code
32063168/cell_21
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import RandomForestClassifier clf = RandomForestClassifier() clf.fit(X_train, y_train) pred = clf.predict(X_test) clf.feature_importances_
code
32063168/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/did-it-rain-in-seattle-19482017/seattleWeather_1948-2017.csv') df.shape df.info()
code
32063168/cell_20
[ "text_plain_output_1.png" ]
from sklearn import metrics from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import RandomForestClassifier clf = RandomForestClassifier() clf.fit(X_train, y_train) pred = clf.predict(X_test) from sklearn import metrics print(metrics.classification_report(y_test, pred))
code
32063168/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/did-it-rain-in-seattle-19482017/seattleWeather_1948-2017.csv') df.shape df[df['RAIN'].isnull()]
code
32063168/cell_2
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/did-it-rain-in-seattle-19482017/seattleWeather_1948-2017.csv') df.head()
code
32063168/cell_19
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import confusion_matrix from sklearn.ensemble import RandomForestClassifier clf = RandomForestClassifier() clf.fit(X_train, y_train) pred = clf.predict(X_test) from sklearn.metrics import confusion_matrix print(confusion_matrix(y_test, pred))
code
32063168/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
32063168/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/did-it-rain-in-seattle-19482017/seattleWeather_1948-2017.csv') df.shape df = df.dropna() df.shape
code
32063168/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/did-it-rain-in-seattle-19482017/seattleWeather_1948-2017.csv') df.shape
code
32063168/cell_17
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import RandomForestClassifier clf = RandomForestClassifier() clf.fit(X_train, y_train)
code
32063168/cell_10
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/did-it-rain-in-seattle-19482017/seattleWeather_1948-2017.csv') df.shape df = df.dropna() df.shape df['RAIN'].value_counts()
code
32063168/cell_12
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/did-it-rain-in-seattle-19482017/seattleWeather_1948-2017.csv') df.shape df = df.dropna() df.shape df = df.drop('DATE', axis=1) import seaborn as sns plt.figure(figsize=(8, 8)) sns.heatmap(df.corr(), annot=True)
code
32063168/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/did-it-rain-in-seattle-19482017/seattleWeather_1948-2017.csv') df.shape df['RAIN'].unique()
code
33118937/cell_21
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.style as style import numpy as np import pandas as pd import seaborn as sns Sample = pd.read_csv('/kaggle/input/home-data-for-ml-course/train.csv', index_col='Id') Test = pd.read_csv('/kaggle/input/home-data-for-ml-course/test.csv', index_col='Id') Sample.shape Tgt_Col = 'SalePrice' Num_Col = Sample.select_dtypes(exclude='object').drop(Tgt_Col, axis=1).columns Cat_Col = Sample.select_dtypes(include='object').columns plt.ticklabel_format(style='plain', axis='y') plt.ticklabel_format(style='plain', axis='y') fig = plt.figure(figsize=(12,18)) for idx,col in enumerate(Num_Col): fig.add_subplot(9,4,idx+1) sns.distplot(Sample[col].dropna(), kde_kws={'bw':0.1}) plt.xlabel(col) plt.tight_layout() plt.show() cor = Sample.corr() import matplotlib.style as style style.use('ggplot') sns.set_style('whitegrid') mask = np.zeros_like(cor, dtype=np.bool) mask[np.triu_indices_from(mask)] = True Sample[Num_Col].isna().sum().sort_values(ascending=False).head()
code
33118937/cell_13
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns Sample = pd.read_csv('/kaggle/input/home-data-for-ml-course/train.csv', index_col='Id') Test = pd.read_csv('/kaggle/input/home-data-for-ml-course/test.csv', index_col='Id') Sample.shape Tgt_Col = 'SalePrice' Num_Col = Sample.select_dtypes(exclude='object').drop(Tgt_Col, axis=1).columns Cat_Col = Sample.select_dtypes(include='object').columns sns.distplot(Sample[Tgt_Col]) plt.ticklabel_format(style='plain', axis='y') plt.title("SalePrice's Distribution") plt.show() print('Skewness : ', str(Sample[Tgt_Col].skew()))
code
33118937/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd Sample = pd.read_csv('/kaggle/input/home-data-for-ml-course/train.csv', index_col='Id') Test = pd.read_csv('/kaggle/input/home-data-for-ml-course/test.csv', index_col='Id') Sample.shape Sample.head()
code
33118937/cell_25
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.style as style import numpy as np import pandas as pd import seaborn as sns Sample = pd.read_csv('/kaggle/input/home-data-for-ml-course/train.csv', index_col='Id') Test = pd.read_csv('/kaggle/input/home-data-for-ml-course/test.csv', index_col='Id') Sample.shape Tgt_Col = 'SalePrice' Num_Col = Sample.select_dtypes(exclude='object').drop(Tgt_Col, axis=1).columns Cat_Col = Sample.select_dtypes(include='object').columns plt.ticklabel_format(style='plain', axis='y') plt.ticklabel_format(style='plain', axis='y') fig = plt.figure(figsize=(12,18)) for idx,col in enumerate(Num_Col): fig.add_subplot(9,4,idx+1) sns.distplot(Sample[col].dropna(), kde_kws={'bw':0.1}) plt.xlabel(col) plt.tight_layout() plt.show() cor = Sample.corr() import matplotlib.style as style style.use('ggplot') sns.set_style('whitegrid') mask = np.zeros_like(cor, dtype=np.bool) mask[np.triu_indices_from(mask)] = True for col in Sample[Cat_Col]: if Sample[col].isnull().sum() > 0: print(col, ' : ', Sample[col].isnull().sum(), Sample[col].unique())
code
33118937/cell_30
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.style as style import numpy as np import pandas as pd import seaborn as sns Sample = pd.read_csv('/kaggle/input/home-data-for-ml-course/train.csv', index_col='Id') Test = pd.read_csv('/kaggle/input/home-data-for-ml-course/test.csv', index_col='Id') Sample.shape Tgt_Col = 'SalePrice' Num_Col = Sample.select_dtypes(exclude='object').drop(Tgt_Col, axis=1).columns Cat_Col = Sample.select_dtypes(include='object').columns plt.ticklabel_format(style='plain', axis='y') plt.ticklabel_format(style='plain', axis='y') fig = plt.figure(figsize=(12,18)) for idx,col in enumerate(Num_Col): fig.add_subplot(9,4,idx+1) sns.distplot(Sample[col].dropna(), kde_kws={'bw':0.1}) plt.xlabel(col) plt.tight_layout() plt.show() cor = Sample.corr() import matplotlib.style as style style.use('ggplot') sns.set_style('whitegrid') mask = np.zeros_like(cor, dtype=np.bool) mask[np.triu_indices_from(mask)] = True Sample_copy = Sample.copy() Sample_copy['MasVnrArea'] = Sample['MasVnrArea'].fillna(0) Cat_Cols_Fill_NA = ['PoolQC', 'MiscFeature', 'Alley', 'Fence', 'FireplaceQu', 'MasVnrType', 'BsmtFinType2', 'BsmtExposure', 'BsmtFinType1', 'BsmtQual', 'BsmtCond', 'GarageQual', 'GarageFinish', 'GarageType', 'GarageCond'] for cat in Cat_Cols_Fill_NA: Sample_copy[cat] = Sample_copy[cat].fillna('NA') Sample_copy.isna().sum().sort_values(ascending=False).head()
code
33118937/cell_20
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.style as style import numpy as np import pandas as pd import seaborn as sns Sample = pd.read_csv('/kaggle/input/home-data-for-ml-course/train.csv', index_col='Id') Test = pd.read_csv('/kaggle/input/home-data-for-ml-course/test.csv', index_col='Id') Sample.shape Tgt_Col = 'SalePrice' Num_Col = Sample.select_dtypes(exclude='object').drop(Tgt_Col, axis=1).columns Cat_Col = Sample.select_dtypes(include='object').columns plt.ticklabel_format(style='plain', axis='y') plt.ticklabel_format(style='plain', axis='y') fig = plt.figure(figsize=(12,18)) for idx,col in enumerate(Num_Col): fig.add_subplot(9,4,idx+1) sns.distplot(Sample[col].dropna(), kde_kws={'bw':0.1}) plt.xlabel(col) plt.tight_layout() plt.show() cor = Sample.corr() import matplotlib.style as style style.use('ggplot') sns.set_style('whitegrid') mask = np.zeros_like(cor, dtype=np.bool) mask[np.triu_indices_from(mask)] = True fig = plt.figure(figsize=(12, 18)) for idx, col in enumerate(Num_Col): fig.add_subplot(9, 4, idx + 1) if abs(cor.iloc[-1, idx]) < 0.1: sns.scatterplot(Sample[col], Sample[Tgt_Col], color='red') elif abs(cor.iloc[-1, idx]) >= 0.5: sns.scatterplot(Sample[col], Sample[Tgt_Col], color='green') else: sns.scatterplot(Sample[col], Sample[Tgt_Col], color='blue') plt.title('Corr to SalePrice : ' + np.round(cor.iloc[-1, idx], decimals=2).astype(str)) plt.tight_layout() plt.show()
code
33118937/cell_19
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.style as style import numpy as np import pandas as pd import seaborn as sns Sample = pd.read_csv('/kaggle/input/home-data-for-ml-course/train.csv', index_col='Id') Test = pd.read_csv('/kaggle/input/home-data-for-ml-course/test.csv', index_col='Id') Sample.shape Tgt_Col = 'SalePrice' Num_Col = Sample.select_dtypes(exclude='object').drop(Tgt_Col, axis=1).columns Cat_Col = Sample.select_dtypes(include='object').columns plt.ticklabel_format(style='plain', axis='y') plt.ticklabel_format(style='plain', axis='y') fig = plt.figure(figsize=(12,18)) for idx,col in enumerate(Num_Col): fig.add_subplot(9,4,idx+1) sns.distplot(Sample[col].dropna(), kde_kws={'bw':0.1}) plt.xlabel(col) plt.tight_layout() plt.show() cor = Sample.corr() import matplotlib.style as style style.use('ggplot') sns.set_style('whitegrid') plt.subplots(figsize=(30, 20)) mask = np.zeros_like(cor, dtype=np.bool) mask[np.triu_indices_from(mask)] = True sns.heatmap(cor, cmap=sns.diverging_palette(8, 150, n=10), mask=mask, annot=True, vmin=-1, vmax=1) plt.title('Heatmap of all the Features', fontsize=30)
code
33118937/cell_18
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns Sample = pd.read_csv('/kaggle/input/home-data-for-ml-course/train.csv', index_col='Id') Test = pd.read_csv('/kaggle/input/home-data-for-ml-course/test.csv', index_col='Id') Sample.shape Tgt_Col = 'SalePrice' Num_Col = Sample.select_dtypes(exclude='object').drop(Tgt_Col, axis=1).columns Cat_Col = Sample.select_dtypes(include='object').columns plt.ticklabel_format(style='plain', axis='y') plt.ticklabel_format(style='plain', axis='y') fig = plt.figure(figsize=(12, 18)) for idx, col in enumerate(Num_Col): fig.add_subplot(9, 4, idx + 1) sns.distplot(Sample[col].dropna(), kde_kws={'bw': 0.1}) plt.xlabel(col) plt.tight_layout() plt.show()
code
33118937/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd Sample = pd.read_csv('/kaggle/input/home-data-for-ml-course/train.csv', index_col='Id') Test = pd.read_csv('/kaggle/input/home-data-for-ml-course/test.csv', index_col='Id') Sample.shape
code
33118937/cell_17
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd Sample = pd.read_csv('/kaggle/input/home-data-for-ml-course/train.csv', index_col='Id') Test = pd.read_csv('/kaggle/input/home-data-for-ml-course/test.csv', index_col='Id') Sample.shape Tgt_Col = 'SalePrice' Num_Col = Sample.select_dtypes(exclude='object').drop(Tgt_Col, axis=1).columns Cat_Col = Sample.select_dtypes(include='object').columns Sample[Num_Col].describe().round(decimals=2)
code
33118937/cell_24
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.style as style import numpy as np import pandas as pd import seaborn as sns Sample = pd.read_csv('/kaggle/input/home-data-for-ml-course/train.csv', index_col='Id') Test = pd.read_csv('/kaggle/input/home-data-for-ml-course/test.csv', index_col='Id') Sample.shape Tgt_Col = 'SalePrice' Num_Col = Sample.select_dtypes(exclude='object').drop(Tgt_Col, axis=1).columns Cat_Col = Sample.select_dtypes(include='object').columns plt.ticklabel_format(style='plain', axis='y') plt.ticklabel_format(style='plain', axis='y') fig = plt.figure(figsize=(12,18)) for idx,col in enumerate(Num_Col): fig.add_subplot(9,4,idx+1) sns.distplot(Sample[col].dropna(), kde_kws={'bw':0.1}) plt.xlabel(col) plt.tight_layout() plt.show() cor = Sample.corr() import matplotlib.style as style style.use('ggplot') sns.set_style('whitegrid') mask = np.zeros_like(cor, dtype=np.bool) mask[np.triu_indices_from(mask)] = True Sample[Cat_Col].describe()
code
33118937/cell_14
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns Sample = pd.read_csv('/kaggle/input/home-data-for-ml-course/train.csv', index_col='Id') Test = pd.read_csv('/kaggle/input/home-data-for-ml-course/test.csv', index_col='Id') Sample.shape Tgt_Col = 'SalePrice' Num_Col = Sample.select_dtypes(exclude='object').drop(Tgt_Col, axis=1).columns Cat_Col = Sample.select_dtypes(include='object').columns plt.ticklabel_format(style='plain', axis='y') sns.distplot(np.log(Sample[Tgt_Col] + 1)) plt.ticklabel_format(style='plain', axis='y') plt.title("SalePrice's Distribution") plt.show() print('Skewness : ', str(np.log(Sample[Tgt_Col] + 1).skew()))
code
33118937/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd Sample = pd.read_csv('/kaggle/input/home-data-for-ml-course/train.csv', index_col='Id') Test = pd.read_csv('/kaggle/input/home-data-for-ml-course/test.csv', index_col='Id') Sample.shape Tgt_Col = 'SalePrice' Num_Col = Sample.select_dtypes(exclude='object').drop(Tgt_Col, axis=1).columns Cat_Col = Sample.select_dtypes(include='object').columns print('Numerical Columns : ', len(Num_Col)) print('Categorical Columns : ', len(Cat_Col))
code
16111026/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os print(os.listdir('../input'))
code
16111026/cell_3
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) file = '../input/COTAHIST_A2009_to_A2018P.csv' df = pd.read_csv(file) df.head(2)
code
73077140/cell_4
[ "text_html_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.DataFrame(np.array([['Species 1', np.nan, np.nan, np.nan], ['Species 1', 'Ocotber 2011', np.nan, np.nan], ['Species 1', np.nan, np.nan, 'Decmber 2011'], ['Species 2', 'Ocotber 2011', np.nan, np.nan], ['Species 2', np.nan, 'November 2011', np.nan], ['Species 2', np.nan, np.nan, 'Decmber 2011'], ['Species 3', 'Ocotber 2011', np.nan, np.nan], ['Species 3', np.nan, 'Novermber 2011', np.nan]]), columns=['Species', 'Oct-11', 'Nov-11', 'Dec-11']) df df2 = pd.DataFrame(np.array([['Gene 1', '100001ABC', 0], ['Gene 2', '100001ABC', 0], ['Gene 2', '100001ABC', 1], ['Gene 3', '100001ABC', 0], ['Gene 3', '100001ABC', 0], ['Gene 3', '100001ABC', -1], ['Gene 4', '100001ABC', -1], ['Gene 4', '100001ABC', 1], ['Gene 5', '999999XYZ', 0], ['Gene 6', '999999XYZ', -1], ['Gene 7', '999999XYZ', 1]]), columns=['Gene', 'nip', 'PathInf']) df2
code
73077140/cell_2
[ "text_html_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.DataFrame(np.array([['Species 1', np.nan, np.nan, np.nan], ['Species 1', 'Ocotber 2011', np.nan, np.nan], ['Species 1', np.nan, np.nan, 'Decmber 2011'], ['Species 2', 'Ocotber 2011', np.nan, np.nan], ['Species 2', np.nan, 'November 2011', np.nan], ['Species 2', np.nan, np.nan, 'Decmber 2011'], ['Species 3', 'Ocotber 2011', np.nan, np.nan], ['Species 3', np.nan, 'Novermber 2011', np.nan]]), columns=['Species', 'Oct-11', 'Nov-11', 'Dec-11']) df
code
73077140/cell_3
[ "text_html_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.DataFrame(np.array([['Species 1', np.nan, np.nan, np.nan], ['Species 1', 'Ocotber 2011', np.nan, np.nan], ['Species 1', np.nan, np.nan, 'Decmber 2011'], ['Species 2', 'Ocotber 2011', np.nan, np.nan], ['Species 2', np.nan, 'November 2011', np.nan], ['Species 2', np.nan, np.nan, 'Decmber 2011'], ['Species 3', 'Ocotber 2011', np.nan, np.nan], ['Species 3', np.nan, 'Novermber 2011', np.nan]]), columns=['Species', 'Oct-11', 'Nov-11', 'Dec-11']) df agg_funcs = {} for col in df.columns: agg_funcs[col] = 'min' agg_funcs df.groupby(['Species'], as_index=False).agg(agg_funcs)
code
73077140/cell_5
[ "text_html_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.DataFrame(np.array([['Species 1', np.nan, np.nan, np.nan], ['Species 1', 'Ocotber 2011', np.nan, np.nan], ['Species 1', np.nan, np.nan, 'Decmber 2011'], ['Species 2', 'Ocotber 2011', np.nan, np.nan], ['Species 2', np.nan, 'November 2011', np.nan], ['Species 2', np.nan, np.nan, 'Decmber 2011'], ['Species 3', 'Ocotber 2011', np.nan, np.nan], ['Species 3', np.nan, 'Novermber 2011', np.nan]]), columns=['Species', 'Oct-11', 'Nov-11', 'Dec-11']) df df2 = pd.DataFrame(np.array([['Gene 1', '100001ABC', 0], ['Gene 2', '100001ABC', 0], ['Gene 2', '100001ABC', 1], ['Gene 3', '100001ABC', 0], ['Gene 3', '100001ABC', 0], ['Gene 3', '100001ABC', -1], ['Gene 4', '100001ABC', -1], ['Gene 4', '100001ABC', 1], ['Gene 5', '999999XYZ', 0], ['Gene 6', '999999XYZ', -1], ['Gene 7', '999999XYZ', 1]]), columns=['Gene', 'nip', 'PathInf']) df2 df2.groupby(['Gene', 'nip'], as_index=False).agg(lambda x: x[x != '0'].max()).fillna(0)
code
50238455/cell_6
[ "text_plain_output_1.png" ]
from sklearn import tree import pandas as pd DATA_DIR = '/kaggle/input/mds-misis-test/' train = pd.read_csv(DATA_DIR + 'train.csv') X = train.drop(['Outcome'], axis=1) y = train.Outcome clf = tree.DecisionTreeClassifier(criterion='entropy', max_depth=6) clf.fit(X, y)
code
50238455/cell_11
[ "text_html_output_1.png" ]
import pandas as pd DATA_DIR = '/kaggle/input/mds-misis-test/' train = pd.read_csv(DATA_DIR + 'train.csv') test = pd.read_csv(DATA_DIR + 'test.csv') sample_submission = pd.read_csv(DATA_DIR + 'sample_submission.csv') sample_submission.head()
code
50238455/cell_1
[ "text_plain_output_1.png" ]
import os from sklearn import tree import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
50238455/cell_7
[ "text_html_output_1.png" ]
from IPython.display import SVG from IPython.display import display from graphviz import Source from sklearn import tree import pandas as pd DATA_DIR = '/kaggle/input/mds-misis-test/' train = pd.read_csv(DATA_DIR + 'train.csv') X = train.drop(['Outcome'], axis=1) y = train.Outcome clf = tree.DecisionTreeClassifier(criterion='entropy', max_depth=6) clf.fit(X, y) graph = Source(tree.export_graphviz(clf, out_file=None, feature_names=list(X), class_names=['1', '0'], filled=True)) display(SVG(graph.pipe(format='svg')))
code
50238455/cell_8
[ "text_html_output_1.png" ]
import pandas as pd DATA_DIR = '/kaggle/input/mds-misis-test/' train = pd.read_csv(DATA_DIR + 'train.csv') test = pd.read_csv(DATA_DIR + 'test.csv') test.head()
code
50238455/cell_3
[ "text_html_output_1.png" ]
import pandas as pd DATA_DIR = '/kaggle/input/mds-misis-test/' train = pd.read_csv(DATA_DIR + 'train.csv') train.head()
code
50238455/cell_10
[ "text_html_output_1.png" ]
from sklearn import tree import pandas as pd DATA_DIR = '/kaggle/input/mds-misis-test/' train = pd.read_csv(DATA_DIR + 'train.csv') X = train.drop(['Outcome'], axis=1) y = train.Outcome clf = tree.DecisionTreeClassifier(criterion='entropy', max_depth=6) clf.fit(X, y) test = pd.read_csv(DATA_DIR + 'test.csv') submission = clf.predict(test) submission
code
50238455/cell_12
[ "text_plain_output_1.png" ]
from sklearn import tree import pandas as pd DATA_DIR = '/kaggle/input/mds-misis-test/' train = pd.read_csv(DATA_DIR + 'train.csv') X = train.drop(['Outcome'], axis=1) y = train.Outcome clf = tree.DecisionTreeClassifier(criterion='entropy', max_depth=6) clf.fit(X, y) test = pd.read_csv(DATA_DIR + 'test.csv') submission = clf.predict(test) sample_submission = pd.read_csv(DATA_DIR + 'sample_submission.csv') sample_submission['Outcome'] = submission sample_submission.to_csv('submission.csv', index=False) sample_submission.head(10)
code
1008790/cell_1
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import xgboost from sklearn import cross_validation from sklearn.metrics import accuracy_score from sklearn.linear_model import LogisticRegression
code
1008790/cell_7
[ "text_plain_output_1.png" ]
from sklearn.metrics import accuracy_score import xgboost clf = xgboost.XGBClassifier() clf.fit(xtrain, ytrain) pred = clf.predict(xtest) acc = accuracy_score(ytest, pred) print('%0.2f%%' % (acc * 100.0))
code
1008790/cell_5
[ "text_plain_output_1.png" ]
import xgboost clf = xgboost.XGBClassifier() clf.fit(xtrain, ytrain)
code
34126020/cell_13
[ "text_plain_output_1.png" ]
stack = [3, 4, 5] stack.append(6) stack.append(7) stack
code
34126020/cell_9
[ "text_plain_output_1.png" ]
fruits = ['orange', 'apple', 'pear', 'banana', 'kiwi', 'apple', 'banana'] fruits.count('apple') fruits.count('tangerine') fruits.index('banana') fruits.index('banana', 4) fruits.reverse() fruits fruits.append('grape') fruits
code
34126020/cell_25
[ "text_plain_output_1.png" ]
t = (12345, 54321, 'hello!') t[0]
code
34126020/cell_4
[ "application_vnd.jupyter.stderr_output_1.png" ]
fruits = ['orange', 'apple', 'pear', 'banana', 'kiwi', 'apple', 'banana'] fruits.count('apple')
code
34126020/cell_6
[ "text_plain_output_1.png" ]
fruits = ['orange', 'apple', 'pear', 'banana', 'kiwi', 'apple', 'banana'] fruits.count('apple') fruits.count('tangerine') fruits.index('banana')
code
34126020/cell_40
[ "text_plain_output_1.png" ]
a = set('abracadabra') b = set('alacazam') a
code
34126020/cell_29
[ "text_plain_output_1.png" ]
v = ([1, 2, 3], [3, 2, 1]) v
code
34126020/cell_39
[ "text_plain_output_1.png" ]
basket = {'apple', 'orange', 'apple', 'pear', 'orange', 'banana'} 'crabgrass' in basket
code
34126020/cell_26
[ "text_plain_output_1.png" ]
t = (12345, 54321, 'hello!') t[0] t
code
34126020/cell_48
[ "text_plain_output_1.png" ]
tel = {'jack': 4098, 'sape': 4139} tel['guido'] = 4127 tel del tel['sape'] tel
code
34126020/cell_11
[ "text_plain_output_1.png" ]
fruits = ['orange', 'apple', 'pear', 'banana', 'kiwi', 'apple', 'banana'] fruits.count('apple') fruits.count('tangerine') fruits.index('banana') fruits.index('banana', 4) fruits.reverse() fruits fruits.append('grape') fruits fruits.sort() fruits fruits.pop()
code
34126020/cell_7
[ "text_plain_output_1.png" ]
fruits = ['orange', 'apple', 'pear', 'banana', 'kiwi', 'apple', 'banana'] fruits.count('apple') fruits.count('tangerine') fruits.index('banana') fruits.index('banana', 4)
code
34126020/cell_28
[ "text_plain_output_1.png" ]
t = (12345, 54321, 'hello!') t[0] t[0] = 88888
code
34126020/cell_8
[ "text_plain_output_1.png" ]
fruits = ['orange', 'apple', 'pear', 'banana', 'kiwi', 'apple', 'banana'] fruits.count('apple') fruits.count('tangerine') fruits.index('banana') fruits.index('banana', 4) fruits.reverse() fruits
code
34126020/cell_15
[ "text_plain_output_1.png" ]
stack = [3, 4, 5] stack.append(6) stack.append(7) stack stack.pop() stack
code
34126020/cell_16
[ "text_plain_output_1.png" ]
stack = [3, 4, 5] stack.append(6) stack.append(7) stack stack.pop() stack.pop() stack.pop() stack
code
34126020/cell_38
[ "text_plain_output_1.png" ]
basket = {'apple', 'orange', 'apple', 'pear', 'orange', 'banana'} 'orange' in basket
code
34126020/cell_47
[ "text_plain_output_1.png" ]
tel = {'jack': 4098, 'sape': 4139} tel['guido'] = 4127 tel tel['jack']
code
34126020/cell_35
[ "text_plain_output_1.png" ]
t = (12345, 54321, 'hello!') t[0] x, y, z = t print(x, y, z)
code
34126020/cell_46
[ "text_plain_output_1.png" ]
tel = {'jack': 4098, 'sape': 4139} tel['guido'] = 4127 tel
code
34126020/cell_14
[ "text_plain_output_1.png" ]
stack = [3, 4, 5] stack.append(6) stack.append(7) stack stack.pop()
code
34126020/cell_10
[ "text_plain_output_1.png" ]
fruits = ['orange', 'apple', 'pear', 'banana', 'kiwi', 'apple', 'banana'] fruits.count('apple') fruits.count('tangerine') fruits.index('banana') fruits.index('banana', 4) fruits.reverse() fruits fruits.append('grape') fruits fruits.sort() fruits
code
34126020/cell_27
[ "text_plain_output_1.png" ]
t = (12345, 54321, 'hello!') t[0] u = (t, (1, 2, 3, 4, 5)) u
code
34126020/cell_37
[ "text_plain_output_1.png" ]
basket = {'apple', 'orange', 'apple', 'pear', 'orange', 'banana'} print(basket)
code
34126020/cell_5
[ "text_plain_output_1.png" ]
fruits = ['orange', 'apple', 'pear', 'banana', 'kiwi', 'apple', 'banana'] fruits.count('apple') fruits.count('tangerine')
code
90149707/cell_21
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression import pandas as pd df = pd.read_csv('../input/housing-prices-dataset/Housing.csv') df = df.drop(columns=['parking', 'bedrooms', 'bathrooms']) X = df[['area', 'stories']] y = df['price'] model = LinearRegression() model.fit(X, y) model.score(X, y) model.intercept_ model.coef_ model.predict([[6000, 3]]) model.predict([[6000, 4]]) model.predict([[10000, 3]])
code
90149707/cell_13
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/housing-prices-dataset/Housing.csv') df = df.drop(columns=['parking', 'bedrooms', 'bathrooms']) X = df[['area', 'stories']] y = df['price'] X.head()
code
90149707/cell_9
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/housing-prices-dataset/Housing.csv') df = df.drop(columns=['parking', 'bedrooms', 'bathrooms']) df.head()
code
90149707/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd import seaborn as sns df = pd.read_csv('../input/housing-prices-dataset/Housing.csv') sns.lmplot(x='area', y='price', data=df, ci=None)
code
90149707/cell_20
[ "text_html_output_1.png" ]
from sklearn.linear_model import LinearRegression import pandas as pd df = pd.read_csv('../input/housing-prices-dataset/Housing.csv') df = df.drop(columns=['parking', 'bedrooms', 'bathrooms']) X = df[['area', 'stories']] y = df['price'] model = LinearRegression() model.fit(X, y) model.score(X, y) model.intercept_ model.coef_ model.predict([[6000, 3]]) model.predict([[6000, 4]])
code
90149707/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd import seaborn as sns df = pd.read_csv('../input/housing-prices-dataset/Housing.csv') sns.kdeplot(x='area', data=df)
code
90149707/cell_11
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/housing-prices-dataset/Housing.csv') df = df.drop(columns=['parking', 'bedrooms', 'bathrooms']) len(df)
code
90149707/cell_19
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression import pandas as pd df = pd.read_csv('../input/housing-prices-dataset/Housing.csv') df = df.drop(columns=['parking', 'bedrooms', 'bathrooms']) X = df[['area', 'stories']] y = df['price'] model = LinearRegression() model.fit(X, y) model.score(X, y) model.intercept_ model.coef_ model.predict([[6000, 3]])
code
90149707/cell_7
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import seaborn as sns df = pd.read_csv('../input/housing-prices-dataset/Housing.csv') sns.kdeplot(x='stories', data=df)
code
90149707/cell_18
[ "text_html_output_1.png" ]
from sklearn.linear_model import LinearRegression import pandas as pd df = pd.read_csv('../input/housing-prices-dataset/Housing.csv') df = df.drop(columns=['parking', 'bedrooms', 'bathrooms']) X = df[['area', 'stories']] y = df['price'] model = LinearRegression() model.fit(X, y) model.score(X, y) model.intercept_ model.coef_
code
90149707/cell_8
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/housing-prices-dataset/Housing.csv') df.info()
code
90149707/cell_15
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.linear_model import LinearRegression import pandas as pd df = pd.read_csv('../input/housing-prices-dataset/Housing.csv') df = df.drop(columns=['parking', 'bedrooms', 'bathrooms']) X = df[['area', 'stories']] y = df['price'] model = LinearRegression() model.fit(X, y)
code
90149707/cell_16
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.linear_model import LinearRegression import pandas as pd df = pd.read_csv('../input/housing-prices-dataset/Housing.csv') df = df.drop(columns=['parking', 'bedrooms', 'bathrooms']) X = df[['area', 'stories']] y = df['price'] model = LinearRegression() model.fit(X, y) model.score(X, y)
code