path
stringlengths 13
17
| screenshot_names
sequencelengths 1
873
| code
stringlengths 0
40.4k
| cell_type
stringclasses 1
value |
---|---|---|---|
90149707/cell_3 | [
"text_plain_output_1.png"
] | import pandas as pd
df = pd.read_csv('../input/housing-prices-dataset/Housing.csv')
df.head() | code |
90149707/cell_17 | [
"text_plain_output_1.png"
] | from sklearn.linear_model import LinearRegression
import pandas as pd
df = pd.read_csv('../input/housing-prices-dataset/Housing.csv')
df = df.drop(columns=['parking', 'bedrooms', 'bathrooms'])
X = df[['area', 'stories']]
y = df['price']
model = LinearRegression()
model.fit(X, y)
model.score(X, y)
model.intercept_ | code |
90149707/cell_14 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd
df = pd.read_csv('../input/housing-prices-dataset/Housing.csv')
df = df.drop(columns=['parking', 'bedrooms', 'bathrooms'])
X = df[['area', 'stories']]
y = df['price']
y.head() | code |
90149707/cell_5 | [
"text_plain_output_1.png"
] | import pandas as pd
import seaborn as sns
df = pd.read_csv('../input/housing-prices-dataset/Housing.csv')
sns.lmplot(x='stories', y='price', data=df, ci=None) | code |
1008271/cell_13 | [
"text_plain_output_1.png"
] | from sklearn.metrics import log_loss
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import DecisionTreeClassifier
clf = DecisionTreeClassifier(n_estimators=1000)
from sklearn.tree import DecisionTreeClassifier
clf.fit(X_train, y_train)
y_val_pred = clf.predict_proba(X_val)
log_loss(y_val, y_val_pred) | code |
1008271/cell_9 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
trn = pd.read_json(open('../input/train.json', 'r'))
tst = pd.read_json(open('../input/test.json', 'r'))
list(trn.columns.values)
list(trn.columns.values) | code |
1008271/cell_6 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
trn = pd.read_json(open('../input/train.json', 'r'))
tst = pd.read_json(open('../input/test.json', 'r'))
list(trn.columns.values) | code |
1008271/cell_1 | [
"text_plain_output_1.png"
] | from subprocess import check_output
import numpy as np
import pandas as pd
from subprocess import check_output
print(check_output(['ls', '../input']).decode('utf8')) | code |
1008271/cell_7 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
trn = pd.read_json(open('../input/train.json', 'r'))
tst = pd.read_json(open('../input/test.json', 'r'))
list(trn.columns.values)
trn.head() | code |
1008271/cell_5 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
trn = pd.read_json(open('../input/train.json', 'r'))
tst = pd.read_json(open('../input/test.json', 'r'))
print('Train set: ', trn.shape)
print('Test set: ', tst.shape) | code |
324967/cell_9 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import sqlite3
con = sqlite3.connect('../input/database.sqlite')
cursor = con.cursor()
cursor.execute("SELECT name FROM sqlite_master WHERE type='table';")
def load(what='NationalNames'):
assert what in ('NationalNames', 'StateNames')
cols = ['Name', 'Year', 'Gender', 'Count']
if what == 'StateNames':
cols.append('State')
df = pd.read_sql_query('SELECT {} from {}'.format(','.join(cols), what), con)
return df
df2 = load(what='StateNames')
tmp = df2.groupby(['Year', 'State']).agg({'Count': 'sum'}).reset_index()
largest_states = tmp.groupby('State').agg({'Count': 'sum'}).sort_values('Count', ascending=False).index[:5].tolist()
tmp.pivot(index='Year', columns='State', values='Count')[largest_states].plot() | code |
324967/cell_4 | [
"text_plain_output_1.png"
] | import sqlite3
con = sqlite3.connect('../input/database.sqlite')
cursor = con.cursor()
cursor.execute("SELECT name FROM sqlite_master WHERE type='table';")
print(cursor.fetchall()) | code |
324967/cell_2 | [
"text_plain_output_1.png"
] | from subprocess import check_output
import numpy as np
import pandas as pd
from subprocess import check_output
print(check_output(['ls', '../input']).decode('utf8')) | code |
324967/cell_7 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import sqlite3
con = sqlite3.connect('../input/database.sqlite')
cursor = con.cursor()
cursor.execute("SELECT name FROM sqlite_master WHERE type='table';")
def load(what='NationalNames'):
assert what in ('NationalNames', 'StateNames')
cols = ['Name', 'Year', 'Gender', 'Count']
if what == 'StateNames':
cols.append('State')
df = pd.read_sql_query('SELECT {} from {}'.format(','.join(cols), what), con)
return df
df = load(what='NationalNames')
df.query('Name=="Alice"')[['Year', 'Count']].groupby('Year').sum().plot() | code |
105177221/cell_21 | [
"text_plain_output_1.png"
] | from category_encoders import OneHotEncoder, WOEEncoder
from sklearn.base import clone, TransformerMixin, BaseEstimator
from sklearn.ensemble import AdaBoostClassifier, BaggingClassifier
from sklearn.ensemble import ExtraTreesClassifier, ExtraTreesRegressor
from sklearn.impute import SimpleImputer, IterativeImputer, KNNImputer, MissingIndicator
from sklearn.linear_model import BayesianRidge, Ridge, Lasso, HuberRegressor
from sklearn.metrics import roc_auc_score
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import RobustScaler, MinMaxScaler, StandardScaler
from sklearn.tree import DecisionTreeClassifier, ExtraTreeClassifier
import gc
import numpy as np
import pandas as pd
import time
RANDOM_SEED = 153
def prepreprocessing(df_train, df_test):
data = pd.concat([df_train, df_test])
data['m3_missing'] = data['measurement_3'].isnull().astype(np.int8)
data['m5_missing'] = data['measurement_5'].isnull().astype(np.int8)
data['area'] = data['attribute_2'] * data['attribute_3']
feature = [f for f in df_test.columns if f.startswith('measurement') or f == 'loading']
full_fill_dict = {}
full_fill_dict['measurement_17'] = {'A': ['measurement_5', 'measurement_6', 'measurement_8'], 'B': ['measurement_4', 'measurement_5', 'measurement_7'], 'C': ['measurement_5', 'measurement_7', 'measurement_8', 'measurement_9'], 'D': ['measurement_5', 'measurement_6', 'measurement_7', 'measurement_8'], 'E': ['measurement_4', 'measurement_5', 'measurement_6', 'measurement_8'], 'F': ['measurement_4', 'measurement_5', 'measurement_6', 'measurement_7'], 'G': ['measurement_4', 'measurement_6', 'measurement_8', 'measurement_9'], 'H': ['measurement_4', 'measurement_5', 'measurement_7', 'measurement_8', 'measurement_9'], 'I': ['measurement_3', 'measurement_7', 'measurement_8']}
col = [col for col in df_test.columns if 'measurement' not in col] + ['loading', 'm3_missing', 'm5_missing']
a = []
b = []
for x in range(3, 17):
corr = np.absolute(data.drop(col, axis=1).corr()[f'measurement_{x}']).sort_values(ascending=False)
a.append(np.round(np.sum(corr[1:4]), 3))
b.append(f'measurement_{x}')
c = pd.DataFrame()
c['Selected columns'] = b
c['correlation total'] = a
c = c.sort_values(by='correlation total', ascending=False).reset_index(drop=True)
for i in range(10):
measurement_col = 'measurement_' + c.iloc[i, 0][12:]
fill_dict = {}
for x in data.product_code.unique():
corr = np.absolute(data[data.product_code == x].drop(col, axis=1).corr()[measurement_col]).sort_values(ascending=False)
measurement_col_dic = {}
measurement_col_dic[measurement_col] = corr[1:5].index.tolist()
fill_dict[x] = measurement_col_dic[measurement_col]
full_fill_dict[measurement_col] = fill_dict
feature = [f for f in data.columns if f.startswith('measurement') or f == 'loading']
nullValue_cols = [col for col in df_train.columns if df_train[col].isnull().sum() != 0]
for code in data.product_code.unique():
for measurement_col in list(full_fill_dict.keys()):
tmp = data[data.product_code == code]
column = full_fill_dict[measurement_col][code]
tmp_train = tmp[column + [measurement_col]].dropna(how='any')
tmp_test = tmp[(tmp[column].isnull().sum(axis=1) == 0) & tmp[measurement_col].isnull()]
model = HuberRegressor(epsilon=1.9)
model.fit(tmp_train[column], tmp_train[measurement_col])
data.loc[(data.product_code == code) & (data[column].isnull().sum(axis=1) == 0) & data[measurement_col].isnull(), measurement_col] = model.predict(tmp_test[column])
NA = data.loc[data['product_code'] == code, nullValue_cols].isnull().sum().sum()
model1 = KNNImputer(n_neighbors=3)
data.loc[data.product_code == code, feature] = model1.fit_transform(data.loc[data.product_code == code, feature])
data['measurement_avg'] = data[[f'measurement_{i}' for i in range(3, 17)]].mean(axis=1)
df_train = data.iloc[:df_train.shape[0], :]
df_test = data.iloc[df_train.shape[0]:, :]
features = ['loading', 'attribute_0', 'measurement_17', 'measurement_0', 'measurement_1', 'measurement_2', 'area', 'm3_missing', 'm5_missing', 'measurement_avg']
encoder = WOEEncoder(cols=['attribute_0'])
df_train = encoder.fit_transform(df_train, target)
df_test = encoder.transform(df_test)
df_train['loading'] = np.log1p(df_train['loading'])
df_test['loading'] = np.log1p(df_test['loading'])
return (df_train, df_test, features)
submission = pd.read_csv('../input/tabular-playground-series-aug-2022/sample_submission.csv')
train = pd.read_csv('../input/tabular-playground-series-aug-2022/train.csv', index_col='id')
test = pd.read_csv('../input/tabular-playground-series-aug-2022/test.csv', index_col='id')
target = train['failure'].copy()
gc.collect()
class ProductSplitter3v2:
def split(self, X: pd.DataFrame, _y=None, _groups=None):
indices = list(X.groupby('product_code').indices.values())
for i in range(len(indices)):
for j in range(i + 1, len(indices)):
yield [np.concatenate([ix for k, ix in enumerate(indices) if k not in [i, j]]), np.concatenate([ix for k, ix in enumerate(indices) if k in [i, j]])]
cv = ProductSplitter3v2()
SPLITS = list(cv.split(train))
def score_pipeline(pipeline):
test_preds = np.zeros((test.shape[0],))
oof_preds = np.zeros((train.shape[0],))
scores = np.zeros(len(SPLITS))
start = time.time()
for fold, (train_idx, valid_idx) in enumerate(SPLITS):
X_train = train[columns].iloc[train_idx]
X_valid = train[columns].iloc[valid_idx]
y_train = target.iloc[train_idx]
y_valid = target.iloc[valid_idx]
model = clone(pipeline)
model.fit(X_train, y_train)
valid_preds = model.predict_proba(X_valid)[:, 1]
test_preds += model.predict_proba(test[columns])[:, 1] / len(SPLITS)
oof_preds[valid_idx] = valid_preds
scores[fold] = roc_auc_score(y_valid, valid_preds)
end = time.time()
temp = np.sort(scores)
stats = np.array([np.mean(temp[:3]), np.mean(scores), np.median(scores), np.mean(temp[-3:])])
return (np.array([*scores, *stats]), test_preds)
cv_scores = dict()
cv_scores['Scheme'] = [*[f'Split {i}' for i in range(len(SPLITS))], *['Worst 3', 'Average', 'Median', 'Best 3']]
model = AdaBoostClassifier(base_estimator=DecisionTreeClassifier(splitter='random', random_state=RANDOM_SEED), random_state=RANDOM_SEED)
pipeline = make_pipeline(RobustScaler(), model)
scores, preds = score_pipeline(pipeline)
cv_scores[f'AdaboostExtraTree'] = scores
model = BaggingClassifier(base_estimator=DecisionTreeClassifier(splitter='random', random_state=RANDOM_SEED), n_jobs=-1, random_state=RANDOM_SEED)
pipeline = make_pipeline(RobustScaler(), model)
scores, preds = score_pipeline(pipeline)
cv_scores[f'BaggingExtraTree'] = scores
model = ExtraTreesClassifier(n_jobs=-1, random_state=RANDOM_SEED, max_features=None)
pipeline = make_pipeline(RobustScaler(), model)
scores, preds = score_pipeline(pipeline)
cv_scores[f'ExtraTrees'] = scores | code |
105177221/cell_6 | [
"text_plain_output_1.png"
] | from category_encoders import OneHotEncoder, WOEEncoder
from sklearn.impute import SimpleImputer, IterativeImputer, KNNImputer, MissingIndicator
from sklearn.linear_model import BayesianRidge, Ridge, Lasso, HuberRegressor
import gc
import numpy as np
import pandas as pd
def prepreprocessing(df_train, df_test):
data = pd.concat([df_train, df_test])
data['m3_missing'] = data['measurement_3'].isnull().astype(np.int8)
data['m5_missing'] = data['measurement_5'].isnull().astype(np.int8)
data['area'] = data['attribute_2'] * data['attribute_3']
feature = [f for f in df_test.columns if f.startswith('measurement') or f == 'loading']
full_fill_dict = {}
full_fill_dict['measurement_17'] = {'A': ['measurement_5', 'measurement_6', 'measurement_8'], 'B': ['measurement_4', 'measurement_5', 'measurement_7'], 'C': ['measurement_5', 'measurement_7', 'measurement_8', 'measurement_9'], 'D': ['measurement_5', 'measurement_6', 'measurement_7', 'measurement_8'], 'E': ['measurement_4', 'measurement_5', 'measurement_6', 'measurement_8'], 'F': ['measurement_4', 'measurement_5', 'measurement_6', 'measurement_7'], 'G': ['measurement_4', 'measurement_6', 'measurement_8', 'measurement_9'], 'H': ['measurement_4', 'measurement_5', 'measurement_7', 'measurement_8', 'measurement_9'], 'I': ['measurement_3', 'measurement_7', 'measurement_8']}
col = [col for col in df_test.columns if 'measurement' not in col] + ['loading', 'm3_missing', 'm5_missing']
a = []
b = []
for x in range(3, 17):
corr = np.absolute(data.drop(col, axis=1).corr()[f'measurement_{x}']).sort_values(ascending=False)
a.append(np.round(np.sum(corr[1:4]), 3))
b.append(f'measurement_{x}')
c = pd.DataFrame()
c['Selected columns'] = b
c['correlation total'] = a
c = c.sort_values(by='correlation total', ascending=False).reset_index(drop=True)
for i in range(10):
measurement_col = 'measurement_' + c.iloc[i, 0][12:]
fill_dict = {}
for x in data.product_code.unique():
corr = np.absolute(data[data.product_code == x].drop(col, axis=1).corr()[measurement_col]).sort_values(ascending=False)
measurement_col_dic = {}
measurement_col_dic[measurement_col] = corr[1:5].index.tolist()
fill_dict[x] = measurement_col_dic[measurement_col]
full_fill_dict[measurement_col] = fill_dict
feature = [f for f in data.columns if f.startswith('measurement') or f == 'loading']
nullValue_cols = [col for col in df_train.columns if df_train[col].isnull().sum() != 0]
for code in data.product_code.unique():
for measurement_col in list(full_fill_dict.keys()):
tmp = data[data.product_code == code]
column = full_fill_dict[measurement_col][code]
tmp_train = tmp[column + [measurement_col]].dropna(how='any')
tmp_test = tmp[(tmp[column].isnull().sum(axis=1) == 0) & tmp[measurement_col].isnull()]
model = HuberRegressor(epsilon=1.9)
model.fit(tmp_train[column], tmp_train[measurement_col])
data.loc[(data.product_code == code) & (data[column].isnull().sum(axis=1) == 0) & data[measurement_col].isnull(), measurement_col] = model.predict(tmp_test[column])
NA = data.loc[data['product_code'] == code, nullValue_cols].isnull().sum().sum()
model1 = KNNImputer(n_neighbors=3)
data.loc[data.product_code == code, feature] = model1.fit_transform(data.loc[data.product_code == code, feature])
data['measurement_avg'] = data[[f'measurement_{i}' for i in range(3, 17)]].mean(axis=1)
df_train = data.iloc[:df_train.shape[0], :]
df_test = data.iloc[df_train.shape[0]:, :]
features = ['loading', 'attribute_0', 'measurement_17', 'measurement_0', 'measurement_1', 'measurement_2', 'area', 'm3_missing', 'm5_missing', 'measurement_avg']
encoder = WOEEncoder(cols=['attribute_0'])
df_train = encoder.fit_transform(df_train, target)
df_test = encoder.transform(df_test)
df_train['loading'] = np.log1p(df_train['loading'])
df_test['loading'] = np.log1p(df_test['loading'])
return (df_train, df_test, features)
submission = pd.read_csv('../input/tabular-playground-series-aug-2022/sample_submission.csv')
train = pd.read_csv('../input/tabular-playground-series-aug-2022/train.csv', index_col='id')
test = pd.read_csv('../input/tabular-playground-series-aug-2022/test.csv', index_col='id')
target = train['failure'].copy()
gc.collect()
train.head() | code |
105177221/cell_19 | [
"text_html_output_1.png"
] | from category_encoders import OneHotEncoder, WOEEncoder
from sklearn.base import clone, TransformerMixin, BaseEstimator
from sklearn.ensemble import AdaBoostClassifier, BaggingClassifier
from sklearn.impute import SimpleImputer, IterativeImputer, KNNImputer, MissingIndicator
from sklearn.linear_model import BayesianRidge, Ridge, Lasso, HuberRegressor
from sklearn.metrics import roc_auc_score
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import RobustScaler, MinMaxScaler, StandardScaler
from sklearn.tree import DecisionTreeClassifier, ExtraTreeClassifier
import gc
import numpy as np
import pandas as pd
import time
RANDOM_SEED = 153
def prepreprocessing(df_train, df_test):
data = pd.concat([df_train, df_test])
data['m3_missing'] = data['measurement_3'].isnull().astype(np.int8)
data['m5_missing'] = data['measurement_5'].isnull().astype(np.int8)
data['area'] = data['attribute_2'] * data['attribute_3']
feature = [f for f in df_test.columns if f.startswith('measurement') or f == 'loading']
full_fill_dict = {}
full_fill_dict['measurement_17'] = {'A': ['measurement_5', 'measurement_6', 'measurement_8'], 'B': ['measurement_4', 'measurement_5', 'measurement_7'], 'C': ['measurement_5', 'measurement_7', 'measurement_8', 'measurement_9'], 'D': ['measurement_5', 'measurement_6', 'measurement_7', 'measurement_8'], 'E': ['measurement_4', 'measurement_5', 'measurement_6', 'measurement_8'], 'F': ['measurement_4', 'measurement_5', 'measurement_6', 'measurement_7'], 'G': ['measurement_4', 'measurement_6', 'measurement_8', 'measurement_9'], 'H': ['measurement_4', 'measurement_5', 'measurement_7', 'measurement_8', 'measurement_9'], 'I': ['measurement_3', 'measurement_7', 'measurement_8']}
col = [col for col in df_test.columns if 'measurement' not in col] + ['loading', 'm3_missing', 'm5_missing']
a = []
b = []
for x in range(3, 17):
corr = np.absolute(data.drop(col, axis=1).corr()[f'measurement_{x}']).sort_values(ascending=False)
a.append(np.round(np.sum(corr[1:4]), 3))
b.append(f'measurement_{x}')
c = pd.DataFrame()
c['Selected columns'] = b
c['correlation total'] = a
c = c.sort_values(by='correlation total', ascending=False).reset_index(drop=True)
for i in range(10):
measurement_col = 'measurement_' + c.iloc[i, 0][12:]
fill_dict = {}
for x in data.product_code.unique():
corr = np.absolute(data[data.product_code == x].drop(col, axis=1).corr()[measurement_col]).sort_values(ascending=False)
measurement_col_dic = {}
measurement_col_dic[measurement_col] = corr[1:5].index.tolist()
fill_dict[x] = measurement_col_dic[measurement_col]
full_fill_dict[measurement_col] = fill_dict
feature = [f for f in data.columns if f.startswith('measurement') or f == 'loading']
nullValue_cols = [col for col in df_train.columns if df_train[col].isnull().sum() != 0]
for code in data.product_code.unique():
for measurement_col in list(full_fill_dict.keys()):
tmp = data[data.product_code == code]
column = full_fill_dict[measurement_col][code]
tmp_train = tmp[column + [measurement_col]].dropna(how='any')
tmp_test = tmp[(tmp[column].isnull().sum(axis=1) == 0) & tmp[measurement_col].isnull()]
model = HuberRegressor(epsilon=1.9)
model.fit(tmp_train[column], tmp_train[measurement_col])
data.loc[(data.product_code == code) & (data[column].isnull().sum(axis=1) == 0) & data[measurement_col].isnull(), measurement_col] = model.predict(tmp_test[column])
NA = data.loc[data['product_code'] == code, nullValue_cols].isnull().sum().sum()
model1 = KNNImputer(n_neighbors=3)
data.loc[data.product_code == code, feature] = model1.fit_transform(data.loc[data.product_code == code, feature])
data['measurement_avg'] = data[[f'measurement_{i}' for i in range(3, 17)]].mean(axis=1)
df_train = data.iloc[:df_train.shape[0], :]
df_test = data.iloc[df_train.shape[0]:, :]
features = ['loading', 'attribute_0', 'measurement_17', 'measurement_0', 'measurement_1', 'measurement_2', 'area', 'm3_missing', 'm5_missing', 'measurement_avg']
encoder = WOEEncoder(cols=['attribute_0'])
df_train = encoder.fit_transform(df_train, target)
df_test = encoder.transform(df_test)
df_train['loading'] = np.log1p(df_train['loading'])
df_test['loading'] = np.log1p(df_test['loading'])
return (df_train, df_test, features)
submission = pd.read_csv('../input/tabular-playground-series-aug-2022/sample_submission.csv')
train = pd.read_csv('../input/tabular-playground-series-aug-2022/train.csv', index_col='id')
test = pd.read_csv('../input/tabular-playground-series-aug-2022/test.csv', index_col='id')
target = train['failure'].copy()
gc.collect()
class ProductSplitter3v2:
def split(self, X: pd.DataFrame, _y=None, _groups=None):
indices = list(X.groupby('product_code').indices.values())
for i in range(len(indices)):
for j in range(i + 1, len(indices)):
yield [np.concatenate([ix for k, ix in enumerate(indices) if k not in [i, j]]), np.concatenate([ix for k, ix in enumerate(indices) if k in [i, j]])]
cv = ProductSplitter3v2()
SPLITS = list(cv.split(train))
def score_pipeline(pipeline):
test_preds = np.zeros((test.shape[0],))
oof_preds = np.zeros((train.shape[0],))
scores = np.zeros(len(SPLITS))
start = time.time()
for fold, (train_idx, valid_idx) in enumerate(SPLITS):
X_train = train[columns].iloc[train_idx]
X_valid = train[columns].iloc[valid_idx]
y_train = target.iloc[train_idx]
y_valid = target.iloc[valid_idx]
model = clone(pipeline)
model.fit(X_train, y_train)
valid_preds = model.predict_proba(X_valid)[:, 1]
test_preds += model.predict_proba(test[columns])[:, 1] / len(SPLITS)
oof_preds[valid_idx] = valid_preds
scores[fold] = roc_auc_score(y_valid, valid_preds)
end = time.time()
temp = np.sort(scores)
stats = np.array([np.mean(temp[:3]), np.mean(scores), np.median(scores), np.mean(temp[-3:])])
return (np.array([*scores, *stats]), test_preds)
cv_scores = dict()
cv_scores['Scheme'] = [*[f'Split {i}' for i in range(len(SPLITS))], *['Worst 3', 'Average', 'Median', 'Best 3']]
model = AdaBoostClassifier(base_estimator=DecisionTreeClassifier(splitter='random', random_state=RANDOM_SEED), random_state=RANDOM_SEED)
pipeline = make_pipeline(RobustScaler(), model)
scores, preds = score_pipeline(pipeline)
cv_scores[f'AdaboostExtraTree'] = scores
model = BaggingClassifier(base_estimator=DecisionTreeClassifier(splitter='random', random_state=RANDOM_SEED), n_jobs=-1, random_state=RANDOM_SEED)
pipeline = make_pipeline(RobustScaler(), model)
scores, preds = score_pipeline(pipeline)
cv_scores[f'BaggingExtraTree'] = scores | code |
105177221/cell_7 | [
"text_plain_output_1.png"
] | train, test, columns = prepreprocessing(train, test) | code |
105177221/cell_3 | [
"text_plain_output_1.png"
] | from sklearnex import patch_sklearn
import warnings
import numpy as np
import pandas as pd
import time
import gc
import warnings
warnings.filterwarnings('ignore')
from sklearnex import patch_sklearn
patch_sklearn()
import sklearn
from sklearn.experimental import enable_iterative_imputer
from sklearn.base import clone, TransformerMixin, BaseEstimator
from sklearn.metrics import roc_auc_score
from sklearn.utils.extmath import softmax
from sklearn.preprocessing import RobustScaler, MinMaxScaler, StandardScaler
from category_encoders import OneHotEncoder, WOEEncoder
from sklearn.impute import SimpleImputer, IterativeImputer, KNNImputer, MissingIndicator
from sklearn.pipeline import make_pipeline
from sklearn.compose import make_column_transformer, make_column_selector
from sklearn.preprocessing import FunctionTransformer
from sklearn.linear_model import LogisticRegression, PassiveAggressiveClassifier
from sklearn.linear_model import SGDClassifier, RidgeClassifier
from sklearn.linear_model import BayesianRidge, Ridge, Lasso, HuberRegressor
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.naive_bayes import BernoulliNB, GaussianNB, MultinomialNB
from sklearn.svm import LinearSVC
from sklearn.tree import DecisionTreeClassifier, ExtraTreeClassifier
from xgboost import XGBClassifier, XGBRegressor, XGBRFClassifier
from lightgbm import LGBMClassifier, LGBMRegressor
from catboost import CatBoostClassifier
from sklearn.ensemble import AdaBoostClassifier, BaggingClassifier
from sklearn.ensemble import GradientBoostingClassifier, GradientBoostingRegressor
from sklearn.ensemble import ExtraTreesClassifier, ExtraTreesRegressor
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
from sklearn.ensemble import HistGradientBoostingClassifier | code |
105177221/cell_17 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from category_encoders import OneHotEncoder, WOEEncoder
from sklearn.base import clone, TransformerMixin, BaseEstimator
from sklearn.ensemble import AdaBoostClassifier, BaggingClassifier
from sklearn.impute import SimpleImputer, IterativeImputer, KNNImputer, MissingIndicator
from sklearn.linear_model import BayesianRidge, Ridge, Lasso, HuberRegressor
from sklearn.metrics import roc_auc_score
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import RobustScaler, MinMaxScaler, StandardScaler
from sklearn.tree import DecisionTreeClassifier, ExtraTreeClassifier
import gc
import numpy as np
import pandas as pd
import time
RANDOM_SEED = 153
def prepreprocessing(df_train, df_test):
data = pd.concat([df_train, df_test])
data['m3_missing'] = data['measurement_3'].isnull().astype(np.int8)
data['m5_missing'] = data['measurement_5'].isnull().astype(np.int8)
data['area'] = data['attribute_2'] * data['attribute_3']
feature = [f for f in df_test.columns if f.startswith('measurement') or f == 'loading']
full_fill_dict = {}
full_fill_dict['measurement_17'] = {'A': ['measurement_5', 'measurement_6', 'measurement_8'], 'B': ['measurement_4', 'measurement_5', 'measurement_7'], 'C': ['measurement_5', 'measurement_7', 'measurement_8', 'measurement_9'], 'D': ['measurement_5', 'measurement_6', 'measurement_7', 'measurement_8'], 'E': ['measurement_4', 'measurement_5', 'measurement_6', 'measurement_8'], 'F': ['measurement_4', 'measurement_5', 'measurement_6', 'measurement_7'], 'G': ['measurement_4', 'measurement_6', 'measurement_8', 'measurement_9'], 'H': ['measurement_4', 'measurement_5', 'measurement_7', 'measurement_8', 'measurement_9'], 'I': ['measurement_3', 'measurement_7', 'measurement_8']}
col = [col for col in df_test.columns if 'measurement' not in col] + ['loading', 'm3_missing', 'm5_missing']
a = []
b = []
for x in range(3, 17):
corr = np.absolute(data.drop(col, axis=1).corr()[f'measurement_{x}']).sort_values(ascending=False)
a.append(np.round(np.sum(corr[1:4]), 3))
b.append(f'measurement_{x}')
c = pd.DataFrame()
c['Selected columns'] = b
c['correlation total'] = a
c = c.sort_values(by='correlation total', ascending=False).reset_index(drop=True)
for i in range(10):
measurement_col = 'measurement_' + c.iloc[i, 0][12:]
fill_dict = {}
for x in data.product_code.unique():
corr = np.absolute(data[data.product_code == x].drop(col, axis=1).corr()[measurement_col]).sort_values(ascending=False)
measurement_col_dic = {}
measurement_col_dic[measurement_col] = corr[1:5].index.tolist()
fill_dict[x] = measurement_col_dic[measurement_col]
full_fill_dict[measurement_col] = fill_dict
feature = [f for f in data.columns if f.startswith('measurement') or f == 'loading']
nullValue_cols = [col for col in df_train.columns if df_train[col].isnull().sum() != 0]
for code in data.product_code.unique():
for measurement_col in list(full_fill_dict.keys()):
tmp = data[data.product_code == code]
column = full_fill_dict[measurement_col][code]
tmp_train = tmp[column + [measurement_col]].dropna(how='any')
tmp_test = tmp[(tmp[column].isnull().sum(axis=1) == 0) & tmp[measurement_col].isnull()]
model = HuberRegressor(epsilon=1.9)
model.fit(tmp_train[column], tmp_train[measurement_col])
data.loc[(data.product_code == code) & (data[column].isnull().sum(axis=1) == 0) & data[measurement_col].isnull(), measurement_col] = model.predict(tmp_test[column])
NA = data.loc[data['product_code'] == code, nullValue_cols].isnull().sum().sum()
model1 = KNNImputer(n_neighbors=3)
data.loc[data.product_code == code, feature] = model1.fit_transform(data.loc[data.product_code == code, feature])
data['measurement_avg'] = data[[f'measurement_{i}' for i in range(3, 17)]].mean(axis=1)
df_train = data.iloc[:df_train.shape[0], :]
df_test = data.iloc[df_train.shape[0]:, :]
features = ['loading', 'attribute_0', 'measurement_17', 'measurement_0', 'measurement_1', 'measurement_2', 'area', 'm3_missing', 'm5_missing', 'measurement_avg']
encoder = WOEEncoder(cols=['attribute_0'])
df_train = encoder.fit_transform(df_train, target)
df_test = encoder.transform(df_test)
df_train['loading'] = np.log1p(df_train['loading'])
df_test['loading'] = np.log1p(df_test['loading'])
return (df_train, df_test, features)
submission = pd.read_csv('../input/tabular-playground-series-aug-2022/sample_submission.csv')
train = pd.read_csv('../input/tabular-playground-series-aug-2022/train.csv', index_col='id')
test = pd.read_csv('../input/tabular-playground-series-aug-2022/test.csv', index_col='id')
target = train['failure'].copy()
gc.collect()
class ProductSplitter3v2:
def split(self, X: pd.DataFrame, _y=None, _groups=None):
indices = list(X.groupby('product_code').indices.values())
for i in range(len(indices)):
for j in range(i + 1, len(indices)):
yield [np.concatenate([ix for k, ix in enumerate(indices) if k not in [i, j]]), np.concatenate([ix for k, ix in enumerate(indices) if k in [i, j]])]
cv = ProductSplitter3v2()
SPLITS = list(cv.split(train))
def score_pipeline(pipeline):
test_preds = np.zeros((test.shape[0],))
oof_preds = np.zeros((train.shape[0],))
scores = np.zeros(len(SPLITS))
start = time.time()
for fold, (train_idx, valid_idx) in enumerate(SPLITS):
X_train = train[columns].iloc[train_idx]
X_valid = train[columns].iloc[valid_idx]
y_train = target.iloc[train_idx]
y_valid = target.iloc[valid_idx]
model = clone(pipeline)
model.fit(X_train, y_train)
valid_preds = model.predict_proba(X_valid)[:, 1]
test_preds += model.predict_proba(test[columns])[:, 1] / len(SPLITS)
oof_preds[valid_idx] = valid_preds
scores[fold] = roc_auc_score(y_valid, valid_preds)
end = time.time()
temp = np.sort(scores)
stats = np.array([np.mean(temp[:3]), np.mean(scores), np.median(scores), np.mean(temp[-3:])])
return (np.array([*scores, *stats]), test_preds)
cv_scores = dict()
cv_scores['Scheme'] = [*[f'Split {i}' for i in range(len(SPLITS))], *['Worst 3', 'Average', 'Median', 'Best 3']]
model = AdaBoostClassifier(base_estimator=DecisionTreeClassifier(splitter='random', random_state=RANDOM_SEED), random_state=RANDOM_SEED)
pipeline = make_pipeline(RobustScaler(), model)
scores, preds = score_pipeline(pipeline)
cv_scores[f'AdaboostExtraTree'] = scores | code |
74054242/cell_13 | [
"text_html_output_1.png"
] | from warnings import simplefilter
import numpy as np
import numpy as np # linear algebra
import os
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import time
import numpy as np
import pandas as pd
import time
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pd.set_option('display.width', None)
pd.set_option('display.float_format', lambda x: '%.5f' % x)
from sklearn.utils import shuffle
from warnings import simplefilter
simplefilter(action='ignore', category=FutureWarning)
simplefilter(action='ignore', category=UserWarning)
pd.options.mode.chained_assignment = None
from math import radians, cos, sin, asin, sqrt
import seaborn as sns
import matplotlib.pyplot as plt
from haversine import haversine, Unit
from scipy import stats
from scipy.stats import spearmanr
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn import preprocessing
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score
from sklearn.metrics import mean_squared_log_error
from sklearn.metrics import mean_squared_error
from sklearn.metrics import jaccard_score
from sklearn.metrics import f1_score
from sklearn.ensemble import RandomForestRegressor
import lightgbm as lgbm
import xgboost as xgb
from sklearn.ensemble import VotingRegressor
from sklearn.metrics import roc_auc_score
import os
df = pd.read_csv('/kaggle/input/aapl10y/AAPL10Y.csv')
df['date'] = pd.to_datetime(df['date'])
df.sort_values('date', inplace=True)
df.set_index('date', inplace=True)
df_week = df.resample('w').mean()
df_week = df_week[['close']]
df_week['weekly_ret'] = np.log(df_week['close']).diff()
df_week.dropna(inplace=True)
df_week.weekly_ret.plot(kind='line', figsize=(12, 6)) | code |
74054242/cell_9 | [
"image_output_1.png"
] | from warnings import simplefilter
import os
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import time
import numpy as np
import pandas as pd
import time
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pd.set_option('display.width', None)
pd.set_option('display.float_format', lambda x: '%.5f' % x)
from sklearn.utils import shuffle
from warnings import simplefilter
simplefilter(action='ignore', category=FutureWarning)
simplefilter(action='ignore', category=UserWarning)
pd.options.mode.chained_assignment = None
from math import radians, cos, sin, asin, sqrt
import seaborn as sns
import matplotlib.pyplot as plt
from haversine import haversine, Unit
from scipy import stats
from scipy.stats import spearmanr
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn import preprocessing
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score
from sklearn.metrics import mean_squared_log_error
from sklearn.metrics import mean_squared_error
from sklearn.metrics import jaccard_score
from sklearn.metrics import f1_score
from sklearn.ensemble import RandomForestRegressor
import lightgbm as lgbm
import xgboost as xgb
from sklearn.ensemble import VotingRegressor
from sklearn.metrics import roc_auc_score
import os
df = pd.read_csv('/kaggle/input/aapl10y/AAPL10Y.csv')
df['date'] = pd.to_datetime(df['date'])
df.sort_values('date', inplace=True)
df.set_index('date', inplace=True)
df_week = df.resample('w').mean()
df_week = df_week[['close']]
df_week.head() | code |
74054242/cell_23 | [
"text_plain_output_1.png"
] | from statsmodels.graphics.tsaplots import plot_acf
from statsmodels.graphics.tsaplots import plot_pacf
from warnings import simplefilter
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
import numpy as np
import numpy as np # linear algebra
import os
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import statsmodels.api as sm
import time
import numpy as np
import pandas as pd
import time
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pd.set_option('display.width', None)
pd.set_option('display.float_format', lambda x: '%.5f' % x)
from sklearn.utils import shuffle
from warnings import simplefilter
simplefilter(action='ignore', category=FutureWarning)
simplefilter(action='ignore', category=UserWarning)
pd.options.mode.chained_assignment = None
from math import radians, cos, sin, asin, sqrt
import seaborn as sns
import matplotlib.pyplot as plt
from haversine import haversine, Unit
from scipy import stats
from scipy.stats import spearmanr
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn import preprocessing
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score
from sklearn.metrics import mean_squared_log_error
from sklearn.metrics import mean_squared_error
from sklearn.metrics import jaccard_score
from sklearn.metrics import f1_score
from sklearn.ensemble import RandomForestRegressor
import lightgbm as lgbm
import xgboost as xgb
from sklearn.ensemble import VotingRegressor
from sklearn.metrics import roc_auc_score
import os
df = pd.read_csv('/kaggle/input/aapl10y/AAPL10Y.csv')
df['date'] = pd.to_datetime(df['date'])
df.sort_values('date', inplace=True)
df.set_index('date', inplace=True)
df_week = df.resample('w').mean()
df_week = df_week[['close']]
df_week['weekly_ret'] = np.log(df_week['close']).diff()
df_week.dropna(inplace=True)
udiff = df_week.drop(['close'], axis=1)
rolmean = udiff.rolling(20).mean()
rolstd = udiff.rolling(20).std()
plt.figure(figsize=(12, 6))
orig = plt.plot(udiff, color='blue', label='Original')
mean = plt.plot(rolmean, color='red', label='Rolling Mean')
std = plt.plot(rolstd, color='black', label = 'Rolling Std Deviation')
plt.title('Rolling Mean & Standard Deviation')
plt.legend(loc='best')
plt.show(block=False)
dftest = sm.tsa.adfuller(udiff.weekly_ret, autolag='AIC')
dfoutput = pd.Series(dftest[0:4], index=['Test Statistic', 'p-value', '#Lags Used', 'Number of Observations Used'])
for key, value in dftest[4].items():
dfoutput['Critical Value ({0})'.format(key)] = value
dfoutput
from statsmodels.graphics.tsaplots import plot_acf
# the autocorrelation chart provides just the correlation at increasing lags
fig, ax = plt.subplots(figsize=(12,5))
plot_acf(udiff.values, lags=10, ax=ax)
plt.show()
from statsmodels.graphics.tsaplots import plot_pacf
fig, ax = plt.subplots(figsize=(12, 5))
plot_pacf(udiff.values, lags=10, ax=ax)
plt.show() | code |
74054242/cell_26 | [
"image_output_1.png"
] | from statsmodels.graphics.tsaplots import plot_acf
from statsmodels.graphics.tsaplots import plot_pacf
from statsmodels.tsa.arima_model import ARMA
from warnings import simplefilter
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
import numpy as np
import numpy as np # linear algebra
import os
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import statsmodels.api as sm
import time
import numpy as np
import pandas as pd
import time
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pd.set_option('display.width', None)
pd.set_option('display.float_format', lambda x: '%.5f' % x)
from sklearn.utils import shuffle
from warnings import simplefilter
simplefilter(action='ignore', category=FutureWarning)
simplefilter(action='ignore', category=UserWarning)
pd.options.mode.chained_assignment = None
from math import radians, cos, sin, asin, sqrt
import seaborn as sns
import matplotlib.pyplot as plt
from haversine import haversine, Unit
from scipy import stats
from scipy.stats import spearmanr
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn import preprocessing
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score
from sklearn.metrics import mean_squared_log_error
from sklearn.metrics import mean_squared_error
from sklearn.metrics import jaccard_score
from sklearn.metrics import f1_score
from sklearn.ensemble import RandomForestRegressor
import lightgbm as lgbm
import xgboost as xgb
from sklearn.ensemble import VotingRegressor
from sklearn.metrics import roc_auc_score
import os
df = pd.read_csv('/kaggle/input/aapl10y/AAPL10Y.csv')
df['date'] = pd.to_datetime(df['date'])
df.sort_values('date', inplace=True)
df.set_index('date', inplace=True)
df_week = df.resample('w').mean()
df_week = df_week[['close']]
df_week['weekly_ret'] = np.log(df_week['close']).diff()
df_week.dropna(inplace=True)
udiff = df_week.drop(['close'], axis=1)
rolmean = udiff.rolling(20).mean()
rolstd = udiff.rolling(20).std()
plt.figure(figsize=(12, 6))
orig = plt.plot(udiff, color='blue', label='Original')
mean = plt.plot(rolmean, color='red', label='Rolling Mean')
std = plt.plot(rolstd, color='black', label = 'Rolling Std Deviation')
plt.title('Rolling Mean & Standard Deviation')
plt.legend(loc='best')
plt.show(block=False)
dftest = sm.tsa.adfuller(udiff.weekly_ret, autolag='AIC')
dfoutput = pd.Series(dftest[0:4], index=['Test Statistic', 'p-value', '#Lags Used', 'Number of Observations Used'])
for key, value in dftest[4].items():
dfoutput['Critical Value ({0})'.format(key)] = value
dfoutput
from statsmodels.graphics.tsaplots import plot_acf
# the autocorrelation chart provides just the correlation at increasing lags
fig, ax = plt.subplots(figsize=(12,5))
plot_acf(udiff.values, lags=10, ax=ax)
plt.show()
from statsmodels.graphics.tsaplots import plot_pacf
fig, ax = plt.subplots(figsize=(12,5))
plot_pacf(udiff.values, lags=10, ax=ax)
plt.show()
from statsmodels.tsa.arima_model import ARMA
ar1 = ARMA(tuple(udiff.values), (3, 1)).fit()
ar1.summary() | code |
74054242/cell_11 | [
"text_html_output_1.png",
"text_plain_output_1.png"
] | from warnings import simplefilter
import numpy as np
import numpy as np # linear algebra
import os
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import time
import numpy as np
import pandas as pd
import time
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pd.set_option('display.width', None)
pd.set_option('display.float_format', lambda x: '%.5f' % x)
from sklearn.utils import shuffle
from warnings import simplefilter
simplefilter(action='ignore', category=FutureWarning)
simplefilter(action='ignore', category=UserWarning)
pd.options.mode.chained_assignment = None
from math import radians, cos, sin, asin, sqrt
import seaborn as sns
import matplotlib.pyplot as plt
from haversine import haversine, Unit
from scipy import stats
from scipy.stats import spearmanr
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn import preprocessing
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score
from sklearn.metrics import mean_squared_log_error
from sklearn.metrics import mean_squared_error
from sklearn.metrics import jaccard_score
from sklearn.metrics import f1_score
from sklearn.ensemble import RandomForestRegressor
import lightgbm as lgbm
import xgboost as xgb
from sklearn.ensemble import VotingRegressor
from sklearn.metrics import roc_auc_score
import os
df = pd.read_csv('/kaggle/input/aapl10y/AAPL10Y.csv')
df['date'] = pd.to_datetime(df['date'])
df.sort_values('date', inplace=True)
df.set_index('date', inplace=True)
df_week = df.resample('w').mean()
df_week = df_week[['close']]
df_week['weekly_ret'] = np.log(df_week['close']).diff()
df_week.head() | code |
74054242/cell_19 | [
"text_html_output_1.png"
] | from warnings import simplefilter
import numpy as np
import numpy as np # linear algebra
import os
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import statsmodels.api as sm
import time
import numpy as np
import pandas as pd
import time
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pd.set_option('display.width', None)
pd.set_option('display.float_format', lambda x: '%.5f' % x)
from sklearn.utils import shuffle
from warnings import simplefilter
simplefilter(action='ignore', category=FutureWarning)
simplefilter(action='ignore', category=UserWarning)
pd.options.mode.chained_assignment = None
from math import radians, cos, sin, asin, sqrt
import seaborn as sns
import matplotlib.pyplot as plt
from haversine import haversine, Unit
from scipy import stats
from scipy.stats import spearmanr
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn import preprocessing
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score
from sklearn.metrics import mean_squared_log_error
from sklearn.metrics import mean_squared_error
from sklearn.metrics import jaccard_score
from sklearn.metrics import f1_score
from sklearn.ensemble import RandomForestRegressor
import lightgbm as lgbm
import xgboost as xgb
from sklearn.ensemble import VotingRegressor
from sklearn.metrics import roc_auc_score
import os
df = pd.read_csv('/kaggle/input/aapl10y/AAPL10Y.csv')
df['date'] = pd.to_datetime(df['date'])
df.sort_values('date', inplace=True)
df.set_index('date', inplace=True)
df_week = df.resample('w').mean()
df_week = df_week[['close']]
df_week['weekly_ret'] = np.log(df_week['close']).diff()
df_week.dropna(inplace=True)
udiff = df_week.drop(['close'], axis=1)
rolmean = udiff.rolling(20).mean()
rolstd = udiff.rolling(20).std()
dftest = sm.tsa.adfuller(udiff.weekly_ret, autolag='AIC')
dfoutput = pd.Series(dftest[0:4], index=['Test Statistic', 'p-value', '#Lags Used', 'Number of Observations Used'])
for key, value in dftest[4].items():
dfoutput['Critical Value ({0})'.format(key)] = value
dfoutput | code |
74054242/cell_1 | [
"text_plain_output_1.png"
] | from warnings import simplefilter
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import time
import numpy as np
import pandas as pd
import time
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pd.set_option('display.width', None)
pd.set_option('display.float_format', lambda x: '%.5f' % x)
from sklearn.utils import shuffle
from warnings import simplefilter
simplefilter(action='ignore', category=FutureWarning)
simplefilter(action='ignore', category=UserWarning)
pd.options.mode.chained_assignment = None
from math import radians, cos, sin, asin, sqrt
import seaborn as sns
import matplotlib.pyplot as plt
from haversine import haversine, Unit
from scipy import stats
from scipy.stats import spearmanr
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn import preprocessing
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score
from sklearn.metrics import mean_squared_log_error
from sklearn.metrics import mean_squared_error
from sklearn.metrics import jaccard_score
from sklearn.metrics import f1_score
from sklearn.ensemble import RandomForestRegressor
import lightgbm as lgbm
import xgboost as xgb
from sklearn.ensemble import VotingRegressor
from sklearn.metrics import roc_auc_score
print('The Pacific Time', time.strftime('%H:%M:%S'))
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
74054242/cell_7 | [
"image_output_1.png"
] | from warnings import simplefilter
import os
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import time
import numpy as np
import pandas as pd
import time
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pd.set_option('display.width', None)
pd.set_option('display.float_format', lambda x: '%.5f' % x)
from sklearn.utils import shuffle
from warnings import simplefilter
simplefilter(action='ignore', category=FutureWarning)
simplefilter(action='ignore', category=UserWarning)
pd.options.mode.chained_assignment = None
from math import radians, cos, sin, asin, sqrt
import seaborn as sns
import matplotlib.pyplot as plt
from haversine import haversine, Unit
from scipy import stats
from scipy.stats import spearmanr
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn import preprocessing
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score
from sklearn.metrics import mean_squared_log_error
from sklearn.metrics import mean_squared_error
from sklearn.metrics import jaccard_score
from sklearn.metrics import f1_score
from sklearn.ensemble import RandomForestRegressor
import lightgbm as lgbm
import xgboost as xgb
from sklearn.ensemble import VotingRegressor
from sklearn.metrics import roc_auc_score
import os
df = pd.read_csv('/kaggle/input/aapl10y/AAPL10Y.csv')
df['date'] = pd.to_datetime(df['date'])
df.sort_values('date', inplace=True)
df.set_index('date', inplace=True)
print(df.shape)
df.head() | code |
74054242/cell_18 | [
"image_output_1.png"
] | from warnings import simplefilter
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
import numpy as np
import numpy as np # linear algebra
import os
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import time
import numpy as np
import pandas as pd
import time
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pd.set_option('display.width', None)
pd.set_option('display.float_format', lambda x: '%.5f' % x)
from sklearn.utils import shuffle
from warnings import simplefilter
simplefilter(action='ignore', category=FutureWarning)
simplefilter(action='ignore', category=UserWarning)
pd.options.mode.chained_assignment = None
from math import radians, cos, sin, asin, sqrt
import seaborn as sns
import matplotlib.pyplot as plt
from haversine import haversine, Unit
from scipy import stats
from scipy.stats import spearmanr
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn import preprocessing
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score
from sklearn.metrics import mean_squared_log_error
from sklearn.metrics import mean_squared_error
from sklearn.metrics import jaccard_score
from sklearn.metrics import f1_score
from sklearn.ensemble import RandomForestRegressor
import lightgbm as lgbm
import xgboost as xgb
from sklearn.ensemble import VotingRegressor
from sklearn.metrics import roc_auc_score
import os
df = pd.read_csv('/kaggle/input/aapl10y/AAPL10Y.csv')
df['date'] = pd.to_datetime(df['date'])
df.sort_values('date', inplace=True)
df.set_index('date', inplace=True)
df_week = df.resample('w').mean()
df_week = df_week[['close']]
df_week['weekly_ret'] = np.log(df_week['close']).diff()
df_week.dropna(inplace=True)
udiff = df_week.drop(['close'], axis=1)
rolmean = udiff.rolling(20).mean()
rolstd = udiff.rolling(20).std()
plt.figure(figsize=(12, 6))
orig = plt.plot(udiff, color='blue', label='Original')
mean = plt.plot(rolmean, color='red', label='Rolling Mean')
std = plt.plot(rolstd, color='black', label='Rolling Std Deviation')
plt.title('Rolling Mean & Standard Deviation')
plt.legend(loc='best')
plt.show(block=False) | code |
74054242/cell_28 | [
"image_output_1.png"
] | from statsmodels.graphics.tsaplots import plot_acf
from statsmodels.graphics.tsaplots import plot_pacf
from statsmodels.tsa.arima_model import ARMA
from warnings import simplefilter
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
import numpy as np
import numpy as np # linear algebra
import os
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import statsmodels.api as sm
import time
import numpy as np
import pandas as pd
import time
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pd.set_option('display.width', None)
pd.set_option('display.float_format', lambda x: '%.5f' % x)
from sklearn.utils import shuffle
from warnings import simplefilter
simplefilter(action='ignore', category=FutureWarning)
simplefilter(action='ignore', category=UserWarning)
pd.options.mode.chained_assignment = None
from math import radians, cos, sin, asin, sqrt
import seaborn as sns
import matplotlib.pyplot as plt
from haversine import haversine, Unit
from scipy import stats
from scipy.stats import spearmanr
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn import preprocessing
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score
from sklearn.metrics import mean_squared_log_error
from sklearn.metrics import mean_squared_error
from sklearn.metrics import jaccard_score
from sklearn.metrics import f1_score
from sklearn.ensemble import RandomForestRegressor
import lightgbm as lgbm
import xgboost as xgb
from sklearn.ensemble import VotingRegressor
from sklearn.metrics import roc_auc_score
import os
df = pd.read_csv('/kaggle/input/aapl10y/AAPL10Y.csv')
df['date'] = pd.to_datetime(df['date'])
df.sort_values('date', inplace=True)
df.set_index('date', inplace=True)
df_week = df.resample('w').mean()
df_week = df_week[['close']]
df_week['weekly_ret'] = np.log(df_week['close']).diff()
df_week.dropna(inplace=True)
udiff = df_week.drop(['close'], axis=1)
rolmean = udiff.rolling(20).mean()
rolstd = udiff.rolling(20).std()
plt.figure(figsize=(12, 6))
orig = plt.plot(udiff, color='blue', label='Original')
mean = plt.plot(rolmean, color='red', label='Rolling Mean')
std = plt.plot(rolstd, color='black', label = 'Rolling Std Deviation')
plt.title('Rolling Mean & Standard Deviation')
plt.legend(loc='best')
plt.show(block=False)
dftest = sm.tsa.adfuller(udiff.weekly_ret, autolag='AIC')
dfoutput = pd.Series(dftest[0:4], index=['Test Statistic', 'p-value', '#Lags Used', 'Number of Observations Used'])
for key, value in dftest[4].items():
dfoutput['Critical Value ({0})'.format(key)] = value
dfoutput
from statsmodels.graphics.tsaplots import plot_acf
# the autocorrelation chart provides just the correlation at increasing lags
fig, ax = plt.subplots(figsize=(12,5))
plot_acf(udiff.values, lags=10, ax=ax)
plt.show()
from statsmodels.graphics.tsaplots import plot_pacf
fig, ax = plt.subplots(figsize=(12,5))
plot_pacf(udiff.values, lags=10, ax=ax)
plt.show()
from statsmodels.tsa.arima_model import ARMA
ar1 = ARMA(tuple(udiff.values), (3, 1)).fit()
ar1.summary()
plt.figure(figsize=(12, 8))
plt.plot(udiff.values, color='blue')
preds = ar1.fittedvalues
plt.plot(preds, color='red')
plt.show() | code |
74054242/cell_14 | [
"text_html_output_1.png"
] | from warnings import simplefilter
import numpy as np
import numpy as np # linear algebra
import os
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import time
import numpy as np
import pandas as pd
import time
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pd.set_option('display.width', None)
pd.set_option('display.float_format', lambda x: '%.5f' % x)
from sklearn.utils import shuffle
from warnings import simplefilter
simplefilter(action='ignore', category=FutureWarning)
simplefilter(action='ignore', category=UserWarning)
pd.options.mode.chained_assignment = None
from math import radians, cos, sin, asin, sqrt
import seaborn as sns
import matplotlib.pyplot as plt
from haversine import haversine, Unit
from scipy import stats
from scipy.stats import spearmanr
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn import preprocessing
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score
from sklearn.metrics import mean_squared_log_error
from sklearn.metrics import mean_squared_error
from sklearn.metrics import jaccard_score
from sklearn.metrics import f1_score
from sklearn.ensemble import RandomForestRegressor
import lightgbm as lgbm
import xgboost as xgb
from sklearn.ensemble import VotingRegressor
from sklearn.metrics import roc_auc_score
import os
df = pd.read_csv('/kaggle/input/aapl10y/AAPL10Y.csv')
df['date'] = pd.to_datetime(df['date'])
df.sort_values('date', inplace=True)
df.set_index('date', inplace=True)
df_week = df.resample('w').mean()
df_week = df_week[['close']]
df_week['weekly_ret'] = np.log(df_week['close']).diff()
df_week.dropna(inplace=True)
udiff = df_week.drop(['close'], axis=1)
udiff.head() | code |
74054242/cell_22 | [
"image_output_1.png"
] | from statsmodels.graphics.tsaplots import plot_acf
from warnings import simplefilter
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
import numpy as np
import numpy as np # linear algebra
import os
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import statsmodels.api as sm
import time
import numpy as np
import pandas as pd
import time
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pd.set_option('display.width', None)
pd.set_option('display.float_format', lambda x: '%.5f' % x)
from sklearn.utils import shuffle
from warnings import simplefilter
simplefilter(action='ignore', category=FutureWarning)
simplefilter(action='ignore', category=UserWarning)
pd.options.mode.chained_assignment = None
from math import radians, cos, sin, asin, sqrt
import seaborn as sns
import matplotlib.pyplot as plt
from haversine import haversine, Unit
from scipy import stats
from scipy.stats import spearmanr
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn import preprocessing
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score
from sklearn.metrics import mean_squared_log_error
from sklearn.metrics import mean_squared_error
from sklearn.metrics import jaccard_score
from sklearn.metrics import f1_score
from sklearn.ensemble import RandomForestRegressor
import lightgbm as lgbm
import xgboost as xgb
from sklearn.ensemble import VotingRegressor
from sklearn.metrics import roc_auc_score
import os
df = pd.read_csv('/kaggle/input/aapl10y/AAPL10Y.csv')
df['date'] = pd.to_datetime(df['date'])
df.sort_values('date', inplace=True)
df.set_index('date', inplace=True)
df_week = df.resample('w').mean()
df_week = df_week[['close']]
df_week['weekly_ret'] = np.log(df_week['close']).diff()
df_week.dropna(inplace=True)
udiff = df_week.drop(['close'], axis=1)
rolmean = udiff.rolling(20).mean()
rolstd = udiff.rolling(20).std()
plt.figure(figsize=(12, 6))
orig = plt.plot(udiff, color='blue', label='Original')
mean = plt.plot(rolmean, color='red', label='Rolling Mean')
std = plt.plot(rolstd, color='black', label = 'Rolling Std Deviation')
plt.title('Rolling Mean & Standard Deviation')
plt.legend(loc='best')
plt.show(block=False)
dftest = sm.tsa.adfuller(udiff.weekly_ret, autolag='AIC')
dfoutput = pd.Series(dftest[0:4], index=['Test Statistic', 'p-value', '#Lags Used', 'Number of Observations Used'])
for key, value in dftest[4].items():
dfoutput['Critical Value ({0})'.format(key)] = value
dfoutput
from statsmodels.graphics.tsaplots import plot_acf
fig, ax = plt.subplots(figsize=(12, 5))
plot_acf(udiff.values, lags=10, ax=ax)
plt.show() | code |
32068244/cell_13 | [
"text_plain_output_1.png"
] | from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import seaborn as sns
tmp = data.drop('Id', axis=1)
g = sns.pairplot(tmp, hue='Species', markers='+')
plt.show()
X = data.drop(['Id', 'Species'], axis=1)
y = data['Species']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=5)
print(X_train.shape)
print(y_train.shape)
print(X_test.shape)
print(y_test.shape) | code |
32068244/cell_9 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import seaborn as sns
tmp = data.drop('Id', axis=1)
g = sns.pairplot(tmp, hue='Species', markers='+')
plt.show()
g = sns.violinplot(y='Species', x='SepalLengthCm', data=data, inner='quartile')
plt.show()
g = sns.violinplot(y='Species', x='SepalWidthCm', data=data, inner='quartile')
plt.show()
g = sns.violinplot(y='Species', x='PetalLengthCm', data=data, inner='quartile')
plt.show()
g = sns.violinplot(y='Species', x='PetalWidthCm', data=data, inner='quartile')
plt.show() | code |
32068244/cell_4 | [
"image_output_1.png"
] | data.head() | code |
32068244/cell_6 | [
"text_plain_output_1.png"
] | data.describe() | code |
32068244/cell_11 | [
"text_plain_output_1.png"
] | from sklearn import metrics
from sklearn.neighbors import KNeighborsClassifier
import matplotlib.pyplot as plt
import seaborn as sns
tmp = data.drop('Id', axis=1)
g = sns.pairplot(tmp, hue='Species', markers='+')
plt.show()
g = sns.violinplot(y='Species', x='SepalLengthCm', data=data, inner='quartile')
plt.show()
g = sns.violinplot(y='Species', x='SepalWidthCm', data=data, inner='quartile')
plt.show()
g = sns.violinplot(y='Species', x='PetalLengthCm', data=data, inner='quartile')
plt.show()
g = sns.violinplot(y='Species', x='PetalWidthCm', data=data, inner='quartile')
plt.show()
X = data.drop(['Id', 'Species'], axis=1)
y = data['Species']
k_range = list(range(1, 26))
scores = []
for k in k_range:
knn = KNeighborsClassifier(n_neighbors=k)
knn.fit(X, y)
y_pred = knn.predict(X)
scores.append(metrics.accuracy_score(y, y_pred))
plt.plot(k_range, scores)
plt.xlabel('Value of k for KNN')
plt.ylabel('Accuracy Score')
plt.title('Accuracy Scores for Values of k of k-Nearest-Neighbors')
plt.show() | code |
32068244/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
32068244/cell_7 | [
"image_output_1.png"
] | data['Species'].value_counts() | code |
32068244/cell_8 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import seaborn as sns
tmp = data.drop('Id', axis=1)
g = sns.pairplot(tmp, hue='Species', markers='+')
plt.show() | code |
32068244/cell_15 | [
"image_output_4.png",
"image_output_3.png",
"image_output_2.png",
"image_output_1.png"
] | from sklearn import metrics
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
import matplotlib.pyplot as plt
import seaborn as sns
tmp = data.drop('Id', axis=1)
g = sns.pairplot(tmp, hue='Species', markers='+')
plt.show()
g = sns.violinplot(y='Species', x='SepalLengthCm', data=data, inner='quartile')
plt.show()
g = sns.violinplot(y='Species', x='SepalWidthCm', data=data, inner='quartile')
plt.show()
g = sns.violinplot(y='Species', x='PetalLengthCm', data=data, inner='quartile')
plt.show()
g = sns.violinplot(y='Species', x='PetalWidthCm', data=data, inner='quartile')
plt.show()
X = data.drop(['Id', 'Species'], axis=1)
y = data['Species']
k_range = list(range(1, 26))
scores = []
for k in k_range:
knn = KNeighborsClassifier(n_neighbors=k)
knn.fit(X, y)
y_pred = knn.predict(X)
scores.append(metrics.accuracy_score(y, y_pred))
logreg = LogisticRegression()
logreg.fit(X, y)
y_pred = logreg.predict(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=5)
k_range = list(range(1, 26))
scores = []
for k in k_range:
knn = KNeighborsClassifier(n_neighbors=k)
knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)
scores.append(metrics.accuracy_score(y_test, y_pred))
logreg = LogisticRegression()
logreg.fit(X_train, y_train)
y_pred = logreg.predict(X_test)
print(metrics.accuracy_score(y_test, y_pred)) | code |
32068244/cell_16 | [
"text_plain_output_1.png"
] | from sklearn import metrics
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
import matplotlib.pyplot as plt
import seaborn as sns
tmp = data.drop('Id', axis=1)
g = sns.pairplot(tmp, hue='Species', markers='+')
plt.show()
g = sns.violinplot(y='Species', x='SepalLengthCm', data=data, inner='quartile')
plt.show()
g = sns.violinplot(y='Species', x='SepalWidthCm', data=data, inner='quartile')
plt.show()
g = sns.violinplot(y='Species', x='PetalLengthCm', data=data, inner='quartile')
plt.show()
g = sns.violinplot(y='Species', x='PetalWidthCm', data=data, inner='quartile')
plt.show()
X = data.drop(['Id', 'Species'], axis=1)
y = data['Species']
k_range = list(range(1, 26))
scores = []
for k in k_range:
knn = KNeighborsClassifier(n_neighbors=k)
knn.fit(X, y)
y_pred = knn.predict(X)
scores.append(metrics.accuracy_score(y, y_pred))
logreg = LogisticRegression()
logreg.fit(X, y)
y_pred = logreg.predict(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=5)
k_range = list(range(1, 26))
scores = []
for k in k_range:
knn = KNeighborsClassifier(n_neighbors=k)
knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)
scores.append(metrics.accuracy_score(y_test, y_pred))
knn = KNeighborsClassifier(n_neighbors=12)
knn.fit(X, y)
knn.predict([[6, 3, 4, 2]]) | code |
32068244/cell_14 | [
"image_output_1.png"
] | from sklearn import metrics
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
import matplotlib.pyplot as plt
import seaborn as sns
tmp = data.drop('Id', axis=1)
g = sns.pairplot(tmp, hue='Species', markers='+')
plt.show()
g = sns.violinplot(y='Species', x='SepalLengthCm', data=data, inner='quartile')
plt.show()
g = sns.violinplot(y='Species', x='SepalWidthCm', data=data, inner='quartile')
plt.show()
g = sns.violinplot(y='Species', x='PetalLengthCm', data=data, inner='quartile')
plt.show()
g = sns.violinplot(y='Species', x='PetalWidthCm', data=data, inner='quartile')
plt.show()
X = data.drop(['Id', 'Species'], axis=1)
y = data['Species']
k_range = list(range(1, 26))
scores = []
for k in k_range:
knn = KNeighborsClassifier(n_neighbors=k)
knn.fit(X, y)
y_pred = knn.predict(X)
scores.append(metrics.accuracy_score(y, y_pred))
logreg = LogisticRegression()
logreg.fit(X, y)
y_pred = logreg.predict(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=5)
k_range = list(range(1, 26))
scores = []
for k in k_range:
knn = KNeighborsClassifier(n_neighbors=k)
knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)
scores.append(metrics.accuracy_score(y_test, y_pred))
plt.plot(k_range, scores)
plt.xlabel('Value of k for KNN')
plt.ylabel('Accuracy Score')
plt.title('Accuracy Scores for Values of k of k-Nearest-Neighbors')
plt.show() | code |
32068244/cell_10 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import seaborn as sns
tmp = data.drop('Id', axis=1)
g = sns.pairplot(tmp, hue='Species', markers='+')
plt.show()
X = data.drop(['Id', 'Species'], axis=1)
y = data['Species']
print(X.shape)
print(y.shape) | code |
32068244/cell_12 | [
"text_html_output_1.png"
] | from sklearn import metrics
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
import matplotlib.pyplot as plt
import seaborn as sns
tmp = data.drop('Id', axis=1)
g = sns.pairplot(tmp, hue='Species', markers='+')
plt.show()
g = sns.violinplot(y='Species', x='SepalLengthCm', data=data, inner='quartile')
plt.show()
g = sns.violinplot(y='Species', x='SepalWidthCm', data=data, inner='quartile')
plt.show()
g = sns.violinplot(y='Species', x='PetalLengthCm', data=data, inner='quartile')
plt.show()
g = sns.violinplot(y='Species', x='PetalWidthCm', data=data, inner='quartile')
plt.show()
X = data.drop(['Id', 'Species'], axis=1)
y = data['Species']
k_range = list(range(1, 26))
scores = []
for k in k_range:
knn = KNeighborsClassifier(n_neighbors=k)
knn.fit(X, y)
y_pred = knn.predict(X)
scores.append(metrics.accuracy_score(y, y_pred))
logreg = LogisticRegression()
logreg.fit(X, y)
y_pred = logreg.predict(X)
print(metrics.accuracy_score(y, y_pred)) | code |
32068244/cell_5 | [
"text_plain_output_1.png"
] | data.info() | code |
33112043/cell_21 | [
"text_plain_output_1.png"
] | from keras import layers
from keras import losses
from keras import models
from keras import optimizers
from keras.utils import to_categorical
import pandas as pd
train_data = pd.read_csv('/kaggle/input/digit-recognizer/train.csv')
train_label = train_data['label']
train_data = train_data.drop('label', axis=1)
train_label_to_cat = to_categorical(train_label)
train_label_to_cat.shape
train_data.shape
train_data = train_data.values.reshape(-1, 28, 28, 1)
train_data.shape
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPool2D((2, 2)))
model.summary()
model.add(layers.Flatten())
model.add(layers.Dense(1024, activation='relu'))
model.add(layers.Dense(512, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))
model.summary()
model.compile(optimizer=optimizers.RMSprop(lr=0.001), loss=losses.categorical_crossentropy, metrics=['accuracy'])
model.fit(train_data, train_label_to_cat, epochs=60) | code |
33112043/cell_9 | [
"text_plain_output_1.png"
] | from keras.utils import to_categorical
import pandas as pd
train_data = pd.read_csv('/kaggle/input/digit-recognizer/train.csv')
train_label = train_data['label']
train_label_to_cat = to_categorical(train_label)
train_label_to_cat.shape | code |
33112043/cell_19 | [
"text_plain_output_1.png"
] | from keras import layers
from keras import models
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPool2D((2, 2)))
model.summary()
model.add(layers.Flatten())
model.add(layers.Dense(1024, activation='relu'))
model.add(layers.Dense(512, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))
model.summary() | code |
33112043/cell_1 | [
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png"
] | import os
import numpy as np
import pandas as pd
from keras import optimizers
from keras import models
from keras import layers
from keras import losses
from keras.utils import to_categorical
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
33112043/cell_3 | [
"text_plain_output_1.png"
] | import pandas as pd
train_data = pd.read_csv('/kaggle/input/digit-recognizer/train.csv')
train_data.head(2) | code |
33112043/cell_17 | [
"text_plain_output_1.png"
] | from keras import layers
from keras import models
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPool2D((2, 2)))
model.summary() | code |
33112043/cell_14 | [
"text_html_output_1.png"
] | import pandas as pd
train_data = pd.read_csv('/kaggle/input/digit-recognizer/train.csv')
train_data = train_data.drop('label', axis=1)
train_data.shape
train_data = train_data.values.reshape(-1, 28, 28, 1)
train_data.shape | code |
33112043/cell_10 | [
"text_html_output_1.png"
] | import pandas as pd
train_data = pd.read_csv('/kaggle/input/digit-recognizer/train.csv')
train_data = train_data.drop('label', axis=1)
train_data.shape | code |
33112043/cell_5 | [
"text_plain_output_1.png"
] | import pandas as pd
train_data = pd.read_csv('/kaggle/input/digit-recognizer/train.csv')
test_data = pd.read_csv('/kaggle/input/digit-recognizer/test.csv')
test_data.head(2) | code |
105210284/cell_33 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
pd.set_option('display.max_rows', 10)
pd.set_option('display.max_columns', 10)
games = pd.read_csv('../input/chess-games/games.csv')
games.columns
games.loc[:, 'first_move'] = games.moves.map(lambda x: x.split(' ')[0])
chosen_cols = ['winner', 'increment_code', 'white_rating', 'black_rating', 'opening_name', 'first_move']
increment_code_values = ['10+0', '15+0', '15+15']
rapid_games = games[games.increment_code.isin(increment_code_values)][chosen_cols]
rapid_games.set_index('opening_name', inplace=True)
appearances = rapid_games.groupby('opening_name').winner.count().rename('appearances')
rapid_games = rapid_games.merge(appearances, how='left', on='opening_name')
chosen_openings = rapid_games[rapid_games.appearances >= 20].index.unique()
chosen_games = rapid_games[rapid_games.appearances >= 20]
chosen_games
win_rate_all = rapid_games.winner.value_counts(normalize=True) * 100
fig, ax = plt.subplots(figsize=(10, 6))
patches, texts, pcts = ax.pie(x=win_rate_all, labels=win_rate_all.index, autopct='%.1f', wedgeprops={'linewidth': 3.0, 'edgecolor': 'white'}, startangle=90, counterclock=False)
for i, patch in enumerate(patches):
texts[i].set_color(patch.get_facecolor())
plt.setp(pcts, color='white')
plt.setp(texts, fontweight=600)
ax.set_title('General win rate', fontsize=18)
plt.tight_layout()
plt.show() | code |
105210284/cell_28 | [
"image_output_3.png",
"image_output_2.png",
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
pd.set_option('display.max_rows', 10)
pd.set_option('display.max_columns', 10)
games = pd.read_csv('../input/chess-games/games.csv')
games.columns
games.loc[:, 'first_move'] = games.moves.map(lambda x: x.split(' ')[0])
chosen_cols = ['winner', 'increment_code', 'white_rating', 'black_rating', 'opening_name', 'first_move']
increment_code_values = ['10+0', '15+0', '15+15']
rapid_games = games[games.increment_code.isin(increment_code_values)][chosen_cols]
rapid_games.set_index('opening_name', inplace=True)
appearances = rapid_games.groupby('opening_name').winner.count().rename('appearances')
rapid_games = rapid_games.merge(appearances, how='left', on='opening_name')
plt.subplots(figsize=[12, 5])
sns.violinplot(data=appearances, x=appearances.index, color='cornflowerblue')
plt.title('Violin Plot of Openings by Apperances')
plt.ylabel('openings')
plt.subplots(figsize=[12, 5])
sns.boxenplot(data=appearances, x=appearances.index, color='cornflowerblue')
plt.title('Boxen plot of Openings by Apperances')
plt.ylabel('openings')
plt.subplots(figsize=[12, 5])
sns.stripplot(data=appearances, x=appearances.index, color='cornflowerblue')
plt.title('Strip plot of Openings by Apperances')
plt.ylabel('openings')
plt.show() | code |
105210284/cell_15 | [
"text_html_output_1.png"
] | import pandas as pd
pd.set_option('display.max_rows', 10)
pd.set_option('display.max_columns', 10)
games = pd.read_csv('../input/chess-games/games.csv')
games.describe() | code |
105210284/cell_16 | [
"text_plain_output_1.png"
] | import pandas as pd
pd.set_option('display.max_rows', 10)
pd.set_option('display.max_columns', 10)
games = pd.read_csv('../input/chess-games/games.csv')
games.columns | code |
105210284/cell_43 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
pd.set_option('display.max_rows', 10)
pd.set_option('display.max_columns', 10)
games = pd.read_csv('../input/chess-games/games.csv')
games.columns
games.loc[:, 'first_move'] = games.moves.map(lambda x: x.split(' ')[0])
chosen_cols = ['winner', 'increment_code', 'white_rating', 'black_rating', 'opening_name', 'first_move']
increment_code_values = ['10+0', '15+0', '15+15']
rapid_games = games[games.increment_code.isin(increment_code_values)][chosen_cols]
rapid_games.set_index('opening_name', inplace=True)
appearances = rapid_games.groupby('opening_name').winner.count().rename('appearances')
rapid_games = rapid_games.merge(appearances, how='left', on='opening_name')
chosen_openings = rapid_games[rapid_games.appearances >= 20].index.unique()
chosen_games = rapid_games[rapid_games.appearances >= 20]
chosen_games
win_rate_all = rapid_games.winner.value_counts(normalize=True) * 100
fig, ax = plt.subplots(figsize=(10,6))
patches, texts, pcts = ax.pie(x=win_rate_all, labels=win_rate_all.index, autopct='%.1f',
wedgeprops={'linewidth': 3.0, 'edgecolor': 'white'},
startangle=90, counterclock=False)
# Format the pie chart
for i, patch in enumerate(patches):
texts[i].set_color(patch.get_facecolor())
plt.setp(pcts, color='white')
plt.setp(texts, fontweight=600)
ax.set_title('General win rate', fontsize=18)
plt.tight_layout()
plt.show()
opening_win_rate = chosen_games.groupby('opening_name').winner.value_counts(normalize=True) * 100
top_appearances = appearances.sort_values(ascending=False)[:10].to_frame()
top_appearances = top_appearances.merge(opening_win_rate.unstack(), how='inner', on='opening_name')
# Top appearances
fig, ax = plt.subplots(figsize=(15, 9))
ax2 = ax.twinx()
# Plot charts
sns.barplot(data=top_appearances, x=top_appearances.index, y='appearances',
ax=ax, palette="Greys")
sns.lineplot(data=top_appearances, x=top_appearances.index, y='white',
ax=ax2, label='white_win_rate', color='#e4e4a1')
sns.lineplot(data=top_appearances, x=top_appearances.index, y='black',
ax=ax2, label='black_win_rate', color='#484848')
# Add title, labels
ax.set_title("Top 10 Most Played Openings at All Level", fontsize=20)
ax.set_xlabel("Opening", fontsize=14)
ax.set_ylabel("Apperances", fontsize=14)
ax2.set_ylabel("Win rate (%)", fontsize=14)
ax.set_xticklabels(labels=top_appearances.index, rotation=60, ha='right') # rotate xticks
fig.tight_layout()
fig.savefig("most_played.png", bbox_inches="tight") # save the barplot
opening_win_rate_white = opening_win_rate[:, 'white']
opening_win_rate_white.name = 'white_win_rate'
opening_win_rate_white = opening_win_rate_white.to_frame()
opening_win_rate_white.insert(loc=len(opening_win_rate_white.columns), column='appearances', value=chosen_games.index.value_counts()[opening_win_rate_white.index].values)
plt.subplots(figsize=(12, 4))
sns.scatterplot(data=opening_win_rate_white, x='white_win_rate', y='appearances', hue='white_win_rate', size='appearances', palette='crest', legend=False)
plt.title('Apperances by White Win Rate at All Level', fontsize=14)
plt.show() | code |
105210284/cell_24 | [
"text_html_output_1.png"
] | import pandas as pd
pd.set_option('display.max_rows', 10)
pd.set_option('display.max_columns', 10)
games = pd.read_csv('../input/chess-games/games.csv')
games.columns
games.loc[:, 'first_move'] = games.moves.map(lambda x: x.split(' ')[0])
chosen_cols = ['winner', 'increment_code', 'white_rating', 'black_rating', 'opening_name', 'first_move']
increment_code_values = ['10+0', '15+0', '15+15']
rapid_games = games[games.increment_code.isin(increment_code_values)][chosen_cols]
rapid_games.set_index('opening_name', inplace=True)
appearances = rapid_games.groupby('opening_name').winner.count().rename('appearances')
rapid_games = rapid_games.merge(appearances, how='left', on='opening_name')
chosen_openings = rapid_games[rapid_games.appearances >= 20].index.unique()
chosen_games = rapid_games[rapid_games.appearances >= 20]
chosen_games | code |
105210284/cell_14 | [
"text_html_output_1.png"
] | import pandas as pd
pd.set_option('display.max_rows', 10)
pd.set_option('display.max_columns', 10)
games = pd.read_csv('../input/chess-games/games.csv')
games.head() | code |
105210284/cell_22 | [
"text_html_output_1.png"
] | import pandas as pd
pd.set_option('display.max_rows', 10)
pd.set_option('display.max_columns', 10)
games = pd.read_csv('../input/chess-games/games.csv')
games.columns
games.loc[:, 'first_move'] = games.moves.map(lambda x: x.split(' ')[0])
chosen_cols = ['winner', 'increment_code', 'white_rating', 'black_rating', 'opening_name', 'first_move']
increment_code_values = ['10+0', '15+0', '15+15']
rapid_games = games[games.increment_code.isin(increment_code_values)][chosen_cols]
rapid_games.set_index('opening_name', inplace=True)
appearances = rapid_games.groupby('opening_name').winner.count().rename('appearances')
rapid_games = rapid_games.merge(appearances, how='left', on='opening_name')
rapid_games | code |
105210284/cell_37 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
pd.set_option('display.max_rows', 10)
pd.set_option('display.max_columns', 10)
games = pd.read_csv('../input/chess-games/games.csv')
games.columns
games.loc[:, 'first_move'] = games.moves.map(lambda x: x.split(' ')[0])
chosen_cols = ['winner', 'increment_code', 'white_rating', 'black_rating', 'opening_name', 'first_move']
increment_code_values = ['10+0', '15+0', '15+15']
rapid_games = games[games.increment_code.isin(increment_code_values)][chosen_cols]
rapid_games.set_index('opening_name', inplace=True)
appearances = rapid_games.groupby('opening_name').winner.count().rename('appearances')
rapid_games = rapid_games.merge(appearances, how='left', on='opening_name')
chosen_openings = rapid_games[rapid_games.appearances >= 20].index.unique()
chosen_games = rapid_games[rapid_games.appearances >= 20]
chosen_games
win_rate_all = rapid_games.winner.value_counts(normalize=True) * 100
fig, ax = plt.subplots(figsize=(10,6))
patches, texts, pcts = ax.pie(x=win_rate_all, labels=win_rate_all.index, autopct='%.1f',
wedgeprops={'linewidth': 3.0, 'edgecolor': 'white'},
startangle=90, counterclock=False)
# Format the pie chart
for i, patch in enumerate(patches):
texts[i].set_color(patch.get_facecolor())
plt.setp(pcts, color='white')
plt.setp(texts, fontweight=600)
ax.set_title('General win rate', fontsize=18)
plt.tight_layout()
plt.show()
opening_win_rate = chosen_games.groupby('opening_name').winner.value_counts(normalize=True) * 100
top_appearances = appearances.sort_values(ascending=False)[:10].to_frame()
top_appearances = top_appearances.merge(opening_win_rate.unstack(), how='inner', on='opening_name')
fig, ax = plt.subplots(figsize=(15, 9))
ax2 = ax.twinx()
sns.barplot(data=top_appearances, x=top_appearances.index, y='appearances', ax=ax, palette='Greys')
sns.lineplot(data=top_appearances, x=top_appearances.index, y='white', ax=ax2, label='white_win_rate', color='#e4e4a1')
sns.lineplot(data=top_appearances, x=top_appearances.index, y='black', ax=ax2, label='black_win_rate', color='#484848')
ax.set_title('Top 10 Most Played Openings at All Level', fontsize=20)
ax.set_xlabel('Opening', fontsize=14)
ax.set_ylabel('Apperances', fontsize=14)
ax2.set_ylabel('Win rate (%)', fontsize=14)
ax.set_xticklabels(labels=top_appearances.index, rotation=60, ha='right')
fig.tight_layout()
fig.savefig('most_played.png', bbox_inches='tight') | code |
33111160/cell_4 | [
"text_plain_output_1.png"
] | import os
import pandas as pd
import numpy as np
import pandas as pd
import glob
import os
def list_columns_in_folder(file_path):
"""List out every column for every file in a folder"""
for dirname, _, filenames in os.walk(file_path):
for filename in filenames:
df = pd.read_csv(os.path.join(dirname, filename))
columns = df.columns.values[1:]
list_columns_in_folder('/kaggle/input/aipowered-literature-review-csvs/kaggle/working/Key Scientific Questions/') | code |
33111160/cell_3 | [
"text_plain_output_1.png"
] | import os
import pandas as pd
import numpy as np
import pandas as pd
import glob
import os
def list_columns_in_folder(file_path):
"""List out every column for every file in a folder"""
for dirname, _, filenames in os.walk(file_path):
for filename in filenames:
df = pd.read_csv(os.path.join(dirname, filename))
columns = df.columns.values[1:]
list_columns_in_folder('/kaggle/input/aipowered-literature-review-csvs/kaggle/working/Risk Factors/') | code |
329777/cell_4 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('../input/StateNames.csv')
df2 = pd.read_csv('../input/NationalNames.csv')
df[df['Name'] == 'Mary'] | code |
329777/cell_2 | [
"text_plain_output_1.png"
] | from subprocess import check_output
import numpy as np
import pandas as pd
from sklearn.linear_model import LinearRegression
import seaborn as sns
import matplotlib.pyplot as plt
from subprocess import check_output
print(check_output(['ls', '../input']).decode('utf8')) | code |
17132170/cell_9 | [
"text_plain_output_1.png"
] | from clustergrammer2 import net
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('../input/ccle.txt/CCLE.txt', index_col=0)
from ast import literal_eval as make_tuple
cols = df.columns.tolist()
new_cols = [make_tuple(x) for x in cols]
df.columns = new_cols
df.shape
net.load_df(df.round(2))
net.filter_N_top(inst_rc='row', N_top=1000, rank_type='var')
net.widget() | code |
17132170/cell_6 | [
"text_plain_output_1.png"
] | from clustergrammer2 import net
show_widget = False
from clustergrammer2 import net
if show_widget == False:
print('\n-----------------------------------------------------')
print('>>> <<<')
print('>>> Please set show_widget to True to see widgets <<<')
print('>>> <<<')
print('-----------------------------------------------------\n')
delattr(net, 'widget_class') | code |
17132170/cell_2 | [
"text_plain_output_1.png"
] | from IPython.display import HTML
import warnings
from IPython.display import HTML
import warnings
warnings.filterwarnings('ignore')
HTML('<iframe width="560" height="315" src="https://www.youtube.com/embed/9vqLO6McFwQ?rel=0&controls=0&showinfo=0" frameborder="0" allowfullscreen></iframe>') | code |
17132170/cell_11 | [
"text_html_output_1.png"
] | from clustergrammer2 import net
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('../input/ccle.txt/CCLE.txt', index_col=0)
from ast import literal_eval as make_tuple
cols = df.columns.tolist()
new_cols = [make_tuple(x) for x in cols]
df.columns = new_cols
df.shape
net.load_df(df.round(2))
net.filter_N_top(inst_rc='row', N_top=1000, rank_type='var')
net.widget()
net.load_df(df)
net.filter_N_top(inst_rc='row', N_top=1000, rank_type='var')
net.normalize(axis='row', norm_type='zscore')
df = net.export_df().round(2)
net.load_df(df)
net.widget() | code |
17132170/cell_7 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('../input/ccle.txt/CCLE.txt', index_col=0)
from ast import literal_eval as make_tuple
cols = df.columns.tolist()
new_cols = [make_tuple(x) for x in cols]
df.columns = new_cols
df.shape | code |
17132170/cell_3 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
print(os.listdir('../input')) | code |
90148768/cell_2 | [
"text_plain_output_1.png"
] | import numpy as np
from ast import increment_lineno
import numpy as np
import os
import pandas as pd
import matplotlib.pyplot as plt
dataset = np.loadtxt('../input/ex1data1/ex1data1.txt', delimiter=',')
X = dataset[:, 0]
Y = dataset[:, 1]
m = Y.size
print(m) | code |
90148768/cell_3 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
from ast import increment_lineno
import numpy as np
import os
import pandas as pd
import matplotlib.pyplot as plt
dataset = np.loadtxt('../input/ex1data1/ex1data1.txt', delimiter=',')
X = dataset[:, 0]
Y = dataset[:, 1]
m = Y.size
X = dataset[:, 0]
Y = dataset[:, 1]
plt.scatter(X, Y, marker='x', color='red')
plt.ylabel('profit in $10,000s')
plt.xlabel('population of city in 10,000s') | code |
18149936/cell_13 | [
"image_output_1.png"
] | from statsmodels.tsa.seasonal import seasonal_decompose
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/a10.csv', parse_dates=['date'])
df['year'] = [d.year for d in df.date]
df['month'] = [d.month for d in df.date]
years = df['year'].unique()
np.random.seed(100)
mycolors = np.random.choice(list(mpl.colors.XKCD_COLORS.keys()), len(years.tolist()), replace=False)
for i, y in enumerate(years):
if i > 0:
plt.text(df.loc[df.year == y, :].shape[0] - 0.9, df.loc[df.year == y, 'value'][-1:].values[0], y, fontsize=12, color=mycolors[i])
plt.gca().set(xlim=(-0.3, 11), ylim=(2, 30), ylabel='$Drug Sales$', xlabel='$Month$')
plt.yticks(fontsize=12, alpha=0.7)
# Draw Plot
# plt.subplot(nrows, ncols)
fig, axes = plt.subplots(1, 2, figsize=(20,7), dpi= 80)
sns.boxplot(x='year', y='value', data=df, ax=axes[0])
sns.boxplot(x='month', y='value', data=df.loc[~df.year.isin([1991, 2008]), :])
# Set Title
axes[0].set_title('Year-wise Box Plot\n(The Trend)', fontsize=18);
axes[1].set_title('Month-wise Box Plot\n(The Seasonality)', fontsize=18)
plt.show()
fig, axes = plt.subplots(1,3, figsize=(20,4), dpi=100)
pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/guinearice.csv',
parse_dates=['date'],
index_col='date').plot(title='Trend Only', legend=False, ax=axes[0])
pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/sunspotarea.csv',
parse_dates=['date'],
index_col='date').plot(title='Seasonality Only', legend=False, ax=axes[1])
pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/AirPassengers.csv',
parse_dates=['date'],
index_col='date').plot(title='Trend and Seasonality', legend=False, ax=axes[2])
from statsmodels.tsa.seasonal import seasonal_decompose
from dateutil.parser import parse
df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/a10.csv', parse_dates=['date'], index_col='date')
result_mul = seasonal_decompose(df['value'], model='multiplicative', extrapolate_trend='freq')
result_add = seasonal_decompose(df['value'], model='additive', extrapolate_trend='freq')
df_reconstructed = pd.concat([result_mul.seasonal, result_mul.trend, result_mul.resid, result_mul.observed], axis=1)
df_reconstructed.columns = ['seas', 'trend', 'resid', 'actual_values']
df_reconstructed.head() | code |
18149936/cell_9 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/a10.csv', parse_dates=['date'])
df['year'] = [d.year for d in df.date]
df['month'] = [d.month for d in df.date]
years = df['year'].unique()
np.random.seed(100)
mycolors = np.random.choice(list(mpl.colors.XKCD_COLORS.keys()), len(years.tolist()), replace=False)
for i, y in enumerate(years):
if i > 0:
plt.text(df.loc[df.year == y, :].shape[0] - 0.9, df.loc[df.year == y, 'value'][-1:].values[0], y, fontsize=12, color=mycolors[i])
plt.gca().set(xlim=(-0.3, 11), ylim=(2, 30), ylabel='$Drug Sales$', xlabel='$Month$')
plt.yticks(fontsize=12, alpha=0.7)
# Draw Plot
# plt.subplot(nrows, ncols)
fig, axes = plt.subplots(1, 2, figsize=(20,7), dpi= 80)
sns.boxplot(x='year', y='value', data=df, ax=axes[0])
sns.boxplot(x='month', y='value', data=df.loc[~df.year.isin([1991, 2008]), :])
# Set Title
axes[0].set_title('Year-wise Box Plot\n(The Trend)', fontsize=18);
axes[1].set_title('Month-wise Box Plot\n(The Seasonality)', fontsize=18)
plt.show()
fig, axes = plt.subplots(1, 3, figsize=(20, 4), dpi=100)
pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/guinearice.csv', parse_dates=['date'], index_col='date').plot(title='Trend Only', legend=False, ax=axes[0])
pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/sunspotarea.csv', parse_dates=['date'], index_col='date').plot(title='Seasonality Only', legend=False, ax=axes[1])
pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/AirPassengers.csv', parse_dates=['date'], index_col='date').plot(title='Trend and Seasonality', legend=False, ax=axes[2]) | code |
18149936/cell_4 | [
"text_plain_output_2.png",
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd
df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/a10.csv', parse_dates=['date'])
df.head() | code |
18149936/cell_20 | [
"text_html_output_1.png"
] | from pandas.plotting import autocorrelation_plot
from statsmodels.tsa.seasonal import seasonal_decompose
from statsmodels.tsa.seasonal import seasonal_decompose
from statsmodels.tsa.stattools import adfuller, kpss
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/a10.csv', parse_dates=['date'])
df['year'] = [d.year for d in df.date]
df['month'] = [d.month for d in df.date]
years = df['year'].unique()
np.random.seed(100)
mycolors = np.random.choice(list(mpl.colors.XKCD_COLORS.keys()), len(years.tolist()), replace=False)
for i, y in enumerate(years):
if i > 0:
plt.text(df.loc[df.year == y, :].shape[0] - 0.9, df.loc[df.year == y, 'value'][-1:].values[0], y, fontsize=12, color=mycolors[i])
plt.gca().set(xlim=(-0.3, 11), ylim=(2, 30), ylabel='$Drug Sales$', xlabel='$Month$')
plt.yticks(fontsize=12, alpha=0.7)
# Draw Plot
# plt.subplot(nrows, ncols)
fig, axes = plt.subplots(1, 2, figsize=(20,7), dpi= 80)
sns.boxplot(x='year', y='value', data=df, ax=axes[0])
sns.boxplot(x='month', y='value', data=df.loc[~df.year.isin([1991, 2008]), :])
# Set Title
axes[0].set_title('Year-wise Box Plot\n(The Trend)', fontsize=18);
axes[1].set_title('Month-wise Box Plot\n(The Seasonality)', fontsize=18)
plt.show()
fig, axes = plt.subplots(1,3, figsize=(20,4), dpi=100)
pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/guinearice.csv',
parse_dates=['date'],
index_col='date').plot(title='Trend Only', legend=False, ax=axes[0])
pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/sunspotarea.csv',
parse_dates=['date'],
index_col='date').plot(title='Seasonality Only', legend=False, ax=axes[1])
pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/AirPassengers.csv',
parse_dates=['date'],
index_col='date').plot(title='Trend and Seasonality', legend=False, ax=axes[2])
from statsmodels.tsa.seasonal import seasonal_decompose
from dateutil.parser import parse
df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/a10.csv', parse_dates=['date'], index_col='date')
result_mul = seasonal_decompose(df['value'], model='multiplicative', extrapolate_trend='freq')
result_add = seasonal_decompose(df['value'], model='additive', extrapolate_trend='freq')
df_reconstructed = pd.concat([result_mul.seasonal, result_mul.trend, result_mul.resid, result_mul.observed], axis=1)
df_reconstructed.columns = ['seas', 'trend', 'resid', 'actual_values']
from statsmodels.tsa.stattools import adfuller, kpss
df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/a10.csv', parse_dates=['date'])
result = adfuller(df.value.values, autolag='AIC')
result = kpss(df.value.values, regression='c')
from statsmodels.tsa.seasonal import seasonal_decompose
df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/a10.csv', parse_dates=['date'], index_col='date')
result_mul = seasonal_decompose(df['value'], model='multiplicative', extrapolate_trend='freq')
detrended = df.value.values - result_mul.trend
from pandas.plotting import autocorrelation_plot
df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/a10.csv')
plt.rcParams.update({'figure.figsize': (9, 5), 'figure.dpi': 120})
autocorrelation_plot(df.value.tolist()) | code |
18149936/cell_6 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/a10.csv', parse_dates=['date'])
df['year'] = [d.year for d in df.date]
df['month'] = [d.month for d in df.date]
years = df['year'].unique()
np.random.seed(100)
mycolors = np.random.choice(list(mpl.colors.XKCD_COLORS.keys()), len(years.tolist()), replace=False)
for i, y in enumerate(years):
if i > 0:
plt.text(df.loc[df.year == y, :].shape[0] - 0.9, df.loc[df.year == y, 'value'][-1:].values[0], y, fontsize=12, color=mycolors[i])
plt.gca().set(xlim=(-0.3, 11), ylim=(2, 30), ylabel='$Drug Sales$', xlabel='$Month$')
plt.yticks(fontsize=12, alpha=0.7)
fig, axes = plt.subplots(1, 2, figsize=(20, 7), dpi=80)
sns.boxplot(x='year', y='value', data=df, ax=axes[0])
sns.boxplot(x='month', y='value', data=df.loc[~df.year.isin([1991, 2008]), :])
axes[0].set_title('Year-wise Box Plot\n(The Trend)', fontsize=18)
axes[1].set_title('Month-wise Box Plot\n(The Seasonality)', fontsize=18)
plt.show() | code |
18149936/cell_11 | [
"text_html_output_1.png"
] | from statsmodels.tsa.seasonal import seasonal_decompose
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/a10.csv', parse_dates=['date'])
df['year'] = [d.year for d in df.date]
df['month'] = [d.month for d in df.date]
years = df['year'].unique()
np.random.seed(100)
mycolors = np.random.choice(list(mpl.colors.XKCD_COLORS.keys()), len(years.tolist()), replace=False)
for i, y in enumerate(years):
if i > 0:
plt.text(df.loc[df.year == y, :].shape[0] - 0.9, df.loc[df.year == y, 'value'][-1:].values[0], y, fontsize=12, color=mycolors[i])
plt.gca().set(xlim=(-0.3, 11), ylim=(2, 30), ylabel='$Drug Sales$', xlabel='$Month$')
plt.yticks(fontsize=12, alpha=0.7)
# Draw Plot
# plt.subplot(nrows, ncols)
fig, axes = plt.subplots(1, 2, figsize=(20,7), dpi= 80)
sns.boxplot(x='year', y='value', data=df, ax=axes[0])
sns.boxplot(x='month', y='value', data=df.loc[~df.year.isin([1991, 2008]), :])
# Set Title
axes[0].set_title('Year-wise Box Plot\n(The Trend)', fontsize=18);
axes[1].set_title('Month-wise Box Plot\n(The Seasonality)', fontsize=18)
plt.show()
fig, axes = plt.subplots(1,3, figsize=(20,4), dpi=100)
pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/guinearice.csv',
parse_dates=['date'],
index_col='date').plot(title='Trend Only', legend=False, ax=axes[0])
pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/sunspotarea.csv',
parse_dates=['date'],
index_col='date').plot(title='Seasonality Only', legend=False, ax=axes[1])
pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/AirPassengers.csv',
parse_dates=['date'],
index_col='date').plot(title='Trend and Seasonality', legend=False, ax=axes[2])
from statsmodels.tsa.seasonal import seasonal_decompose
from dateutil.parser import parse
df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/a10.csv', parse_dates=['date'], index_col='date')
result_mul = seasonal_decompose(df['value'], model='multiplicative', extrapolate_trend='freq')
result_add = seasonal_decompose(df['value'], model='additive', extrapolate_trend='freq')
result_mul.plot().suptitle('Multiplicative Decompose', fontsize=22)
result_add.plot().suptitle('Additive Decompose', fontsize=22)
plt.show() | code |
18149936/cell_18 | [
"image_output_2.png",
"image_output_1.png"
] | from statsmodels.tsa.seasonal import seasonal_decompose
from statsmodels.tsa.seasonal import seasonal_decompose
from statsmodels.tsa.stattools import adfuller, kpss
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/a10.csv', parse_dates=['date'])
df['year'] = [d.year for d in df.date]
df['month'] = [d.month for d in df.date]
years = df['year'].unique()
np.random.seed(100)
mycolors = np.random.choice(list(mpl.colors.XKCD_COLORS.keys()), len(years.tolist()), replace=False)
for i, y in enumerate(years):
if i > 0:
plt.text(df.loc[df.year == y, :].shape[0] - 0.9, df.loc[df.year == y, 'value'][-1:].values[0], y, fontsize=12, color=mycolors[i])
plt.gca().set(xlim=(-0.3, 11), ylim=(2, 30), ylabel='$Drug Sales$', xlabel='$Month$')
plt.yticks(fontsize=12, alpha=0.7)
# Draw Plot
# plt.subplot(nrows, ncols)
fig, axes = plt.subplots(1, 2, figsize=(20,7), dpi= 80)
sns.boxplot(x='year', y='value', data=df, ax=axes[0])
sns.boxplot(x='month', y='value', data=df.loc[~df.year.isin([1991, 2008]), :])
# Set Title
axes[0].set_title('Year-wise Box Plot\n(The Trend)', fontsize=18);
axes[1].set_title('Month-wise Box Plot\n(The Seasonality)', fontsize=18)
plt.show()
fig, axes = plt.subplots(1,3, figsize=(20,4), dpi=100)
pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/guinearice.csv',
parse_dates=['date'],
index_col='date').plot(title='Trend Only', legend=False, ax=axes[0])
pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/sunspotarea.csv',
parse_dates=['date'],
index_col='date').plot(title='Seasonality Only', legend=False, ax=axes[1])
pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/AirPassengers.csv',
parse_dates=['date'],
index_col='date').plot(title='Trend and Seasonality', legend=False, ax=axes[2])
from statsmodels.tsa.seasonal import seasonal_decompose
from dateutil.parser import parse
df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/a10.csv', parse_dates=['date'], index_col='date')
result_mul = seasonal_decompose(df['value'], model='multiplicative', extrapolate_trend='freq')
result_add = seasonal_decompose(df['value'], model='additive', extrapolate_trend='freq')
df_reconstructed = pd.concat([result_mul.seasonal, result_mul.trend, result_mul.resid, result_mul.observed], axis=1)
df_reconstructed.columns = ['seas', 'trend', 'resid', 'actual_values']
from statsmodels.tsa.stattools import adfuller, kpss
df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/a10.csv', parse_dates=['date'])
result = adfuller(df.value.values, autolag='AIC')
result = kpss(df.value.values, regression='c')
from statsmodels.tsa.seasonal import seasonal_decompose
df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/a10.csv', parse_dates=['date'], index_col='date')
result_mul = seasonal_decompose(df['value'], model='multiplicative', extrapolate_trend='freq')
detrended = df.value.values - result_mul.trend
print(df.value.values, result_mul.trend)
plt.plot(detrended)
plt.title('Drug Sales detrended by subtracting the trend component', fontsize=16) | code |
18149936/cell_16 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from statsmodels.tsa.seasonal import seasonal_decompose
from statsmodels.tsa.stattools import adfuller, kpss
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/a10.csv', parse_dates=['date'])
df['year'] = [d.year for d in df.date]
df['month'] = [d.month for d in df.date]
years = df['year'].unique()
np.random.seed(100)
mycolors = np.random.choice(list(mpl.colors.XKCD_COLORS.keys()), len(years.tolist()), replace=False)
for i, y in enumerate(years):
if i > 0:
plt.text(df.loc[df.year == y, :].shape[0] - 0.9, df.loc[df.year == y, 'value'][-1:].values[0], y, fontsize=12, color=mycolors[i])
plt.gca().set(xlim=(-0.3, 11), ylim=(2, 30), ylabel='$Drug Sales$', xlabel='$Month$')
plt.yticks(fontsize=12, alpha=0.7)
# Draw Plot
# plt.subplot(nrows, ncols)
fig, axes = plt.subplots(1, 2, figsize=(20,7), dpi= 80)
sns.boxplot(x='year', y='value', data=df, ax=axes[0])
sns.boxplot(x='month', y='value', data=df.loc[~df.year.isin([1991, 2008]), :])
# Set Title
axes[0].set_title('Year-wise Box Plot\n(The Trend)', fontsize=18);
axes[1].set_title('Month-wise Box Plot\n(The Seasonality)', fontsize=18)
plt.show()
fig, axes = plt.subplots(1,3, figsize=(20,4), dpi=100)
pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/guinearice.csv',
parse_dates=['date'],
index_col='date').plot(title='Trend Only', legend=False, ax=axes[0])
pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/sunspotarea.csv',
parse_dates=['date'],
index_col='date').plot(title='Seasonality Only', legend=False, ax=axes[1])
pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/AirPassengers.csv',
parse_dates=['date'],
index_col='date').plot(title='Trend and Seasonality', legend=False, ax=axes[2])
from statsmodels.tsa.seasonal import seasonal_decompose
from dateutil.parser import parse
df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/a10.csv', parse_dates=['date'], index_col='date')
result_mul = seasonal_decompose(df['value'], model='multiplicative', extrapolate_trend='freq')
result_add = seasonal_decompose(df['value'], model='additive', extrapolate_trend='freq')
df_reconstructed = pd.concat([result_mul.seasonal, result_mul.trend, result_mul.resid, result_mul.observed], axis=1)
df_reconstructed.columns = ['seas', 'trend', 'resid', 'actual_values']
from statsmodels.tsa.stattools import adfuller, kpss
df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/a10.csv', parse_dates=['date'])
result = adfuller(df.value.values, autolag='AIC')
print(f'ADF Statistic: {result[0]}')
print(f'p-value: {result[1]}')
for key, value in result[4].items():
print('Critial Values:')
print(f' {key}, {value}')
result = kpss(df.value.values, regression='c')
print('\nKPSS Statistic: %f' % result[0])
print('p-value: %f' % result[1])
for key, value in result[3].items():
print('Critial Values:')
print(f' {key}, {value}') | code |
18149936/cell_14 | [
"image_output_1.png"
] | from statsmodels.tsa.seasonal import seasonal_decompose
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/a10.csv', parse_dates=['date'])
df['year'] = [d.year for d in df.date]
df['month'] = [d.month for d in df.date]
years = df['year'].unique()
np.random.seed(100)
mycolors = np.random.choice(list(mpl.colors.XKCD_COLORS.keys()), len(years.tolist()), replace=False)
for i, y in enumerate(years):
if i > 0:
plt.text(df.loc[df.year == y, :].shape[0] - 0.9, df.loc[df.year == y, 'value'][-1:].values[0], y, fontsize=12, color=mycolors[i])
plt.gca().set(xlim=(-0.3, 11), ylim=(2, 30), ylabel='$Drug Sales$', xlabel='$Month$')
plt.yticks(fontsize=12, alpha=0.7)
# Draw Plot
# plt.subplot(nrows, ncols)
fig, axes = plt.subplots(1, 2, figsize=(20,7), dpi= 80)
sns.boxplot(x='year', y='value', data=df, ax=axes[0])
sns.boxplot(x='month', y='value', data=df.loc[~df.year.isin([1991, 2008]), :])
# Set Title
axes[0].set_title('Year-wise Box Plot\n(The Trend)', fontsize=18);
axes[1].set_title('Month-wise Box Plot\n(The Seasonality)', fontsize=18)
plt.show()
fig, axes = plt.subplots(1,3, figsize=(20,4), dpi=100)
pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/guinearice.csv',
parse_dates=['date'],
index_col='date').plot(title='Trend Only', legend=False, ax=axes[0])
pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/sunspotarea.csv',
parse_dates=['date'],
index_col='date').plot(title='Seasonality Only', legend=False, ax=axes[1])
pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/AirPassengers.csv',
parse_dates=['date'],
index_col='date').plot(title='Trend and Seasonality', legend=False, ax=axes[2])
from statsmodels.tsa.seasonal import seasonal_decompose
from dateutil.parser import parse
df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/a10.csv', parse_dates=['date'], index_col='date')
result_mul = seasonal_decompose(df['value'], model='multiplicative', extrapolate_trend='freq')
result_add = seasonal_decompose(df['value'], model='additive', extrapolate_trend='freq')
df_reconstructed = pd.concat([result_mul.seasonal, result_mul.trend, result_mul.resid, result_mul.observed], axis=1)
df_reconstructed.columns = ['seas', 'trend', 'resid', 'actual_values']
df_reconstructed['seas'].iloc[0] * df_reconstructed['trend'].iloc[0] * df_reconstructed['resid'].iloc[0] | code |
18149936/cell_22 | [
"text_plain_output_1.png"
] | from pandas.plotting import autocorrelation_plot
from statsmodels.tsa.seasonal import seasonal_decompose
from statsmodels.tsa.seasonal import seasonal_decompose
from statsmodels.tsa.stattools import adfuller, kpss
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/a10.csv', parse_dates=['date'])
df['year'] = [d.year for d in df.date]
df['month'] = [d.month for d in df.date]
years = df['year'].unique()
np.random.seed(100)
mycolors = np.random.choice(list(mpl.colors.XKCD_COLORS.keys()), len(years.tolist()), replace=False)
for i, y in enumerate(years):
if i > 0:
plt.text(df.loc[df.year == y, :].shape[0] - 0.9, df.loc[df.year == y, 'value'][-1:].values[0], y, fontsize=12, color=mycolors[i])
plt.gca().set(xlim=(-0.3, 11), ylim=(2, 30), ylabel='$Drug Sales$', xlabel='$Month$')
plt.yticks(fontsize=12, alpha=0.7)
# Draw Plot
# plt.subplot(nrows, ncols)
fig, axes = plt.subplots(1, 2, figsize=(20,7), dpi= 80)
sns.boxplot(x='year', y='value', data=df, ax=axes[0])
sns.boxplot(x='month', y='value', data=df.loc[~df.year.isin([1991, 2008]), :])
# Set Title
axes[0].set_title('Year-wise Box Plot\n(The Trend)', fontsize=18);
axes[1].set_title('Month-wise Box Plot\n(The Seasonality)', fontsize=18)
plt.show()
fig, axes = plt.subplots(1,3, figsize=(20,4), dpi=100)
pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/guinearice.csv',
parse_dates=['date'],
index_col='date').plot(title='Trend Only', legend=False, ax=axes[0])
pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/sunspotarea.csv',
parse_dates=['date'],
index_col='date').plot(title='Seasonality Only', legend=False, ax=axes[1])
pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/AirPassengers.csv',
parse_dates=['date'],
index_col='date').plot(title='Trend and Seasonality', legend=False, ax=axes[2])
from statsmodels.tsa.seasonal import seasonal_decompose
from dateutil.parser import parse
df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/a10.csv', parse_dates=['date'], index_col='date')
result_mul = seasonal_decompose(df['value'], model='multiplicative', extrapolate_trend='freq')
result_add = seasonal_decompose(df['value'], model='additive', extrapolate_trend='freq')
df_reconstructed = pd.concat([result_mul.seasonal, result_mul.trend, result_mul.resid, result_mul.observed], axis=1)
df_reconstructed.columns = ['seas', 'trend', 'resid', 'actual_values']
from statsmodels.tsa.stattools import adfuller, kpss
df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/a10.csv', parse_dates=['date'])
result = adfuller(df.value.values, autolag='AIC')
result = kpss(df.value.values, regression='c')
from statsmodels.tsa.seasonal import seasonal_decompose
df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/a10.csv', parse_dates=['date'], index_col='date')
result_mul = seasonal_decompose(df['value'], model='multiplicative', extrapolate_trend='freq')
detrended = df.value.values - result_mul.trend
from pandas.plotting import autocorrelation_plot
df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/a10.csv')
plt.rcParams.update({'figure.figsize': (9, 5), 'figure.dpi': 120})
df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/a10.csv', parse_dates=['date'], index_col='date')
result_mul = seasonal_decompose(df['value'], model='multiplicative', extrapolate_trend='freq')
deseasonalized = df.value.values / result_mul.seasonal
plt.plot(deseasonalized)
plt.title('Drug Sales Deseasonalized', fontsize=16)
plt.plot() | code |
18149936/cell_5 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/a10.csv', parse_dates=['date'])
df['year'] = [d.year for d in df.date]
df['month'] = [d.month for d in df.date]
years = df['year'].unique()
np.random.seed(100)
mycolors = np.random.choice(list(mpl.colors.XKCD_COLORS.keys()), len(years.tolist()), replace=False)
plt.figure(figsize=(16, 12), dpi=80)
for i, y in enumerate(years):
if i > 0:
plt.plot('month', 'value', data=df.loc[df.year == y, :], color=mycolors[i], label=y)
plt.text(df.loc[df.year == y, :].shape[0] - 0.9, df.loc[df.year == y, 'value'][-1:].values[0], y, fontsize=12, color=mycolors[i])
plt.gca().set(xlim=(-0.3, 11), ylim=(2, 30), ylabel='$Drug Sales$', xlabel='$Month$')
plt.yticks(fontsize=12, alpha=0.7)
plt.title('Seasonal Plot of Drug Sales Time Series', fontsize=20)
plt.show() | code |
16147938/cell_13 | [
"text_plain_output_1.png"
] | import pandas as pd
df = pd.read_csv('../input/churn-prediction/Churn.csv')
df.shape
df.isna().sum()
df.dtypes
df['TotalCharges'] = df.TotalCharges.convert_objects(convert_numeric=True) | code |
16147938/cell_9 | [
"image_output_1.png"
] | import pandas as pd
df = pd.read_csv('../input/churn-prediction/Churn.csv')
df.shape
df.isna().sum() | code |
16147938/cell_4 | [
"image_output_1.png"
] | import os
import os
print(os.listdir('../input/churn-prediction')) | code |
16147938/cell_23 | [
"text_plain_output_1.png"
] | import matplotlib.ticker as mtick
import pandas as pd
df = pd.read_csv('../input/churn-prediction/Churn.csv')
df.shape
df.isna().sum()
df.dtypes
df['TotalCharges'] = df.TotalCharges.convert_objects(convert_numeric=True)
df['tenure_range'] = pd.cut(df.tenure, [0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75], right=True)
df.dropna(inplace=True)
df = df.drop('tenure', axis=1)
gender_dis = (df['gender'].value_counts() * 100 / len(df)).plot(kind='bar', stacked=True)
gender_dis.set_ylabel('% Customers')
gender_dis.set_xlabel('Gender')
gender_dis.yaxis.set_major_formatter(mtick.PercentFormatter())
totals = []
for i in gender_dis.patches:
totals.append(i.get_width())
total = sum(totals)
for i in gender_dis.patches:
gender_dis.text(i.get_x() + 0.15, i.get_height() + 3.9, str(round(i.get_height() / total, 1)) + '%', fontsize=12, color='black') | code |
16147938/cell_6 | [
"image_output_1.png"
] | import pandas as pd
df = pd.read_csv('../input/churn-prediction/Churn.csv')
df.head() | code |
16147938/cell_29 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import matplotlib.ticker as mtick
import pandas as pd
df = pd.read_csv('../input/churn-prediction/Churn.csv')
df.shape
df.isna().sum()
df.dtypes
df['TotalCharges'] = df.TotalCharges.convert_objects(convert_numeric=True)
df['tenure_range'] = pd.cut(df.tenure, [0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75], right=True)
df.dropna(inplace=True)
df = df.drop('tenure', axis=1)
gender_dis=(df['gender'].value_counts()*100/len(df)).plot(kind='bar',stacked=True)
gender_dis.set_ylabel('% Customers')
gender_dis.set_xlabel('Gender')
gender_dis.yaxis.set_major_formatter(mtick.PercentFormatter())
totals = []
for i in gender_dis.patches:
totals.append(i.get_width())
total = sum(totals)
#to print the values on top of the bars
for i in gender_dis.patches:
gender_dis.text(i.get_x()+.15, i.get_height()+3.9, \
str(round((i.get_height()/total), 1))+'%',
fontsize=12,
color='black')
sc_dis=(df['SeniorCitizen'].value_counts()*100/len(df)).plot(kind='bar',stacked=True)
sc_dis.set_ylabel('% Customers')
sc_dis.set_xlabel('Senior Citizen')
sc_dis.yaxis.set_major_formatter(mtick.PercentFormatter())
totals = []
for i in sc_dis.patches:
totals.append(i.get_width())
total = sum(totals)
for i in sc_dis.patches:
sc_dis.text(i.get_x()+.15, i.get_height()+5, \
str(round((i.get_height()/total), 1))+'%',
fontsize=12,
color='black')
sc_dependents = df.groupby(['SeniorCitizen', 'Dependents']).size().unstack()
sc_dependents = (sc_dependents.T * 100 / sc_dependents.T.sum()).T.plot(kind='bar', stacked=True)
sc_dependents.set_ylabel('% Customers')
sc_dependents.set_xlabel('Senior Citizens')
sc_dependents.yaxis.set_major_formatter(mtick.PercentFormatter())
for i in sc_dependents.patches:
width, height = (i.get_width(), i.get_height())
x, y = i.get_xy()
sc_dependents.annotate('{:.0f}%'.format(height), (i.get_x() + 0.4 * width, i.get_y() + 0.3 * height), color='black') | code |
16147938/cell_26 | [
"text_plain_output_1.png"
] | import matplotlib.ticker as mtick
import pandas as pd
df = pd.read_csv('../input/churn-prediction/Churn.csv')
df.shape
df.isna().sum()
df.dtypes
df['TotalCharges'] = df.TotalCharges.convert_objects(convert_numeric=True)
df['tenure_range'] = pd.cut(df.tenure, [0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75], right=True)
df.dropna(inplace=True)
df = df.drop('tenure', axis=1)
gender_dis=(df['gender'].value_counts()*100/len(df)).plot(kind='bar',stacked=True)
gender_dis.set_ylabel('% Customers')
gender_dis.set_xlabel('Gender')
gender_dis.yaxis.set_major_formatter(mtick.PercentFormatter())
totals = []
for i in gender_dis.patches:
totals.append(i.get_width())
total = sum(totals)
#to print the values on top of the bars
for i in gender_dis.patches:
gender_dis.text(i.get_x()+.15, i.get_height()+3.9, \
str(round((i.get_height()/total), 1))+'%',
fontsize=12,
color='black')
sc_dis = (df['SeniorCitizen'].value_counts() * 100 / len(df)).plot(kind='bar', stacked=True)
sc_dis.set_ylabel('% Customers')
sc_dis.set_xlabel('Senior Citizen')
sc_dis.yaxis.set_major_formatter(mtick.PercentFormatter())
totals = []
for i in sc_dis.patches:
totals.append(i.get_width())
total = sum(totals)
for i in sc_dis.patches:
sc_dis.text(i.get_x() + 0.15, i.get_height() + 5, str(round(i.get_height() / total, 1)) + '%', fontsize=12, color='black') | code |
16147938/cell_11 | [
"text_html_output_1.png"
] | import pandas as pd
df = pd.read_csv('../input/churn-prediction/Churn.csv')
df.shape
df.isna().sum()
df.dtypes
df['Churn'].value_counts() | code |
16147938/cell_32 | [
"text_plain_output_1.png"
] | import matplotlib.ticker as mtick
import pandas as pd
df = pd.read_csv('../input/churn-prediction/Churn.csv')
df.shape
df.isna().sum()
df.dtypes
df['TotalCharges'] = df.TotalCharges.convert_objects(convert_numeric=True)
df['tenure_range'] = pd.cut(df.tenure, [0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75], right=True)
df.dropna(inplace=True)
df = df.drop('tenure', axis=1)
gender_dis=(df['gender'].value_counts()*100/len(df)).plot(kind='bar',stacked=True)
gender_dis.set_ylabel('% Customers')
gender_dis.set_xlabel('Gender')
gender_dis.yaxis.set_major_formatter(mtick.PercentFormatter())
totals = []
for i in gender_dis.patches:
totals.append(i.get_width())
total = sum(totals)
#to print the values on top of the bars
for i in gender_dis.patches:
gender_dis.text(i.get_x()+.15, i.get_height()+3.9, \
str(round((i.get_height()/total), 1))+'%',
fontsize=12,
color='black')
sc_dis=(df['SeniorCitizen'].value_counts()*100/len(df)).plot(kind='bar',stacked=True)
sc_dis.set_ylabel('% Customers')
sc_dis.set_xlabel('Senior Citizen')
sc_dis.yaxis.set_major_formatter(mtick.PercentFormatter())
totals = []
for i in sc_dis.patches:
totals.append(i.get_width())
total = sum(totals)
for i in sc_dis.patches:
sc_dis.text(i.get_x()+.15, i.get_height()+5, \
str(round((i.get_height()/total), 1))+'%',
fontsize=12,
color='black')
sc_dependents=df.groupby(['SeniorCitizen','Dependents']).size().unstack()
sc_dependents=(sc_dependents.T*100/sc_dependents.T.sum()).T.plot(kind='bar',stacked=True)
sc_dependents.set_ylabel('% Customers')
sc_dependents.set_xlabel('Senior Citizens')
sc_dependents.yaxis.set_major_formatter(mtick.PercentFormatter())
for i in sc_dependents.patches:
width, height = i.get_width(), i.get_height()
x, y =i.get_xy()
sc_dependents.annotate('{:.0f}%'.format(height), (i.get_x()+.40*width, i.get_y()+.3*height),
color = 'black')
sc_dependents = df.groupby(['Partner', 'Dependents']).size().unstack()
sc_dependents = (sc_dependents.T * 100 / sc_dependents.T.sum()).T.plot(kind='bar', stacked=True)
sc_dependents.set_ylabel('% Customers')
sc_dependents.set_xlabel('Partners')
sc_dependents.yaxis.set_major_formatter(mtick.PercentFormatter())
for i in sc_dependents.patches:
width, height = (i.get_width(), i.get_height())
x, y = i.get_xy()
sc_dependents.annotate('{:.0f}%'.format(height), (i.get_x() + 0.4 * width, i.get_y() + 0.3 * height), color='black') | code |
16147938/cell_8 | [
"image_output_1.png"
] | import pandas as pd
df = pd.read_csv('../input/churn-prediction/Churn.csv')
df.shape | code |
16147938/cell_15 | [
"text_plain_output_1.png"
] | import pandas as pd
df = pd.read_csv('../input/churn-prediction/Churn.csv')
df.shape
df.isna().sum()
df.dtypes
df['TotalCharges'] = df.TotalCharges.convert_objects(convert_numeric=True)
df['tenure_range'] = pd.cut(df.tenure, [0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75], right=True)
df['tenure_range'].value_counts() | code |
16147938/cell_10 | [
"text_plain_output_1.png"
] | import pandas as pd
df = pd.read_csv('../input/churn-prediction/Churn.csv')
df.shape
df.isna().sum()
df.dtypes | code |
88091003/cell_4 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from sklearn.model_selection import StratifiedKFold, GroupKFold
import numpy as np
import os
import pandas as pd
SEED = 42
DATA_PATH = '../input/birdclef-2022/'
AUDIO_PATH = '../input/birdclef-2022/train_audio'
MEAN = np.array([0.485, 0.456, 0.406])
STD = np.array([0.229, 0.224, 0.225])
NUM_WORKERS = 4
CLASSES = sorted(os.listdir(AUDIO_PATH))
NUM_CLASSES = len(CLASSES)
class AudioParams:
"""
Parameters used for the audio data
"""
sr = 32000
duration = 5
n_mels = 224
fmin = 20
fmax = 16000
train = pd.read_csv('../input/birdclef-2022/train_metadata.csv')
train['file_path'] = AUDIO_PATH + '/' + train['filename']
paths = train['file_path'].values
Fold = StratifiedKFold(n_splits=5, shuffle=True, random_state=SEED)
for n, (trn_index, val_index) in enumerate(Fold.split(train, train['primary_label'])):
train.loc[val_index, 'kfold'] = int(n)
train['kfold'] = train['kfold'].astype(int)
train.to_csv('train_folds.csv', index=False)
print(train.shape)
train.head() | code |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.