path
stringlengths 13
17
| screenshot_names
sequencelengths 1
873
| code
stringlengths 0
40.4k
| cell_type
stringclasses 1
value |
---|---|---|---|
2023611/cell_5 | [
"text_plain_output_1.png"
] | import h5py
f = h5py.File('../input/LetterColorImages.h5', 'r')
keys = list(f.keys())
keys | code |
50224775/cell_9 | [
"text_plain_output_1.png"
] | def binary_search_recursive(array, element, start, end):
if start > end:
return -1
mid = (start + end) // 2
if element == array[mid]:
return mid
if element < array[mid]:
return binary_search_recursive(array, element, start, mid - 1)
else:
return binary_search_recursive(array, element, mid + 1, end)
element = 50
array = [10, 20, 30, 40, 50, 60, 70]
def selectionSort(array, size):
for step in range(size):
min_idx = step
for i in range(step + 1, size):
if array[i] < array[min_idx]:
min_idx = i
array[step], array[min_idx] = (array[min_idx], array[step])
data = [10, 5, 30, 15, 50, 6, 25]
size = len(data)
selectionSort(data, size)
print('Sorted Array in Ascending Order:')
print(data) | code |
50224775/cell_2 | [
"text_plain_output_1.png"
] | A = [1, 25, 35, 250, 500, 750, 1000]
print(A) | code |
50224775/cell_7 | [
"text_plain_output_1.png"
] | def binary_search_recursive(array, element, start, end):
if start > end:
return -1
mid = (start + end) // 2
if element == array[mid]:
return mid
if element < array[mid]:
return binary_search_recursive(array, element, start, mid - 1)
else:
return binary_search_recursive(array, element, mid + 1, end)
element = 50
array = [10, 20, 30, 40, 50, 60, 70]
print('Searching for {}'.format(element))
print('Index of {}: {}'.format(element, binary_search_recursive(array, element, 0, len(array)))) | code |
50224775/cell_3 | [
"text_plain_output_1.png"
] | A = [1, 25, 35, 250, 500, 750, 1000]
print(A.index(35)) | code |
50224775/cell_10 | [
"text_plain_output_1.png"
] | def binary_search_recursive(array, element, start, end):
if start > end:
return -1
mid = (start + end) // 2
if element == array[mid]:
return mid
if element < array[mid]:
return binary_search_recursive(array, element, start, mid - 1)
else:
return binary_search_recursive(array, element, mid + 1, end)
element = 50
array = [10, 20, 30, 40, 50, 60, 70]
def selectionSort(array, size):
for step in range(size):
min_idx = step
for i in range(step + 1, size):
if array[i] < array[min_idx]:
min_idx = i
array[step], array[min_idx] = (array[min_idx], array[step])
data = [10, 5, 30, 15, 50, 6, 25]
size = len(data)
selectionSort(data, size)
def insertionSort(array):
for step in range(1, len(array)):
key = array[step]
j = step - 1
while j >= 0 and key < array[j]:
array[j + 1] = array[j]
j = j - 1
array[j + 1] = key
data = [10, 5, 30, 15, 50, 6, 25]
insertionSort(data)
print('Sorted Array in Ascending Order:')
print(data) | code |
50224775/cell_5 | [
"text_plain_output_1.png"
] | def search(arr, n, x):
for i in range(0, n):
if arr[i] == x:
return i
return -1
arr = [10, 20, 30, 40, 50, 60, 70]
x = 50
n = len(arr)
result = search(arr, n, x)
if result == -1:
print('Elemen tidak ada di array')
else:
print('Elemen ada di indeks', result) | code |
1010259/cell_13 | [
"text_plain_output_1.png"
] | from scipy import sparse
from sklearn import model_selection, preprocessing, ensemble
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
import numpy as np
import pandas as pd
import xgboost as xgb
def runXGB(train_X, train_y, test_X, test_y=None, feature_names=None, seed_val=0, num_rounds=1000):
param = {}
param['objective'] = 'multi:softprob'
param['eta'] = 0.1
param['max_depth'] = 6
param['silent'] = 1
param['num_class'] = 3
param['eval_metric'] = 'mlogloss'
param['min_child_weight'] = 1
param['subsample'] = 0.7
param['colsample_bytree'] = 0.7
param['seed'] = 8088
num_rounds = num_rounds
plst = list(param.items())
xgtrain = xgb.DMatrix(train_X, label=train_y)
if test_y is not None:
xgtest = xgb.DMatrix(test_X, label=test_y)
watchlist = [(xgtrain, 'train'), (xgtest, 'test')]
model = xgb.train(plst, xgtrain, num_rounds, watchlist, early_stopping_rounds=20, verbose_eval=25)
else:
xgtest = xgb.DMatrix(test_X)
model = xgb.train(plst, xgtrain, num_rounds)
pred_test_y = model.predict(xgtest)
return (pred_test_y, model)
data_path = '../input/'
train_file = data_path + 'train.json'
test_file = data_path + 'test.json'
train_df = pd.read_json(train_file)
test_df = pd.read_json(test_file)
features_to_use = ['bathrooms', 'bedrooms', 'latitude', 'longitude', 'price']
train_df['num_photos'] = train_df['photos'].apply(len)
test_df['num_photos'] = test_df['photos'].apply(len)
train_df['num_features'] = train_df['features'].apply(len)
test_df['num_features'] = test_df['features'].apply(len)
train_df['num_description_words'] = train_df['description'].apply(lambda x: len(x.split(' ')))
test_df['num_description_words'] = test_df['description'].apply(lambda x: len(x.split(' ')))
train_df['created'] = pd.to_datetime(train_df['created'])
test_df['created'] = pd.to_datetime(test_df['created'])
train_df['created_year'] = train_df['created'].dt.year
test_df['created_year'] = test_df['created'].dt.year
train_df['created_month'] = train_df['created'].dt.month
test_df['created_month'] = test_df['created'].dt.month
train_df['created_day'] = train_df['created'].dt.day
test_df['created_day'] = test_df['created'].dt.day
train_df['created_hour'] = train_df['created'].dt.hour
test_df['created_hour'] = test_df['created'].dt.hour
train_df['price_per_bed'] = train_df['price'] / train_df['bedrooms'].clip(lower=1)
test_df['price_per_bed'] = test_df['price'] / test_df['bedrooms'].clip(lower=1)
train_df['created_date'] = np.array(train_df.created.values, dtype='datetime64[D]').astype(np.float32)
test_df['created_date'] = np.array(test_df.created.values, dtype='datetime64[D]').astype(np.float32)
features_to_use.extend(['num_photos', 'num_features', 'num_description_words', 'created_year', 'created_month', 'created_day', 'listing_id', 'created_hour', 'price_per_bed', 'created_date'])
categorical = ['display_address', 'manager_id', 'building_id', 'street_address']
for f in categorical:
if train_df[f].dtype == 'object':
lbl = preprocessing.LabelEncoder()
lbl.fit(list(train_df[f].values) + list(test_df[f].values))
train_df[f] = lbl.transform(list(train_df[f].values))
test_df[f] = lbl.transform(list(test_df[f].values))
features_to_use.append(f)
train_df['features'] = train_df['features'].apply(lambda x: ' '.join(['_'.join(i.split(' ')) for i in x]))
test_df['features'] = test_df['features'].apply(lambda x: ' '.join(['_'.join(i.split(' ')) for i in x]))
tfidf = CountVectorizer(stop_words='english', max_features=200)
tr_sparse = tfidf.fit_transform(train_df['features'])
te_sparse = tfidf.transform(test_df['features'])
features_to_use = [i for i in features_to_use if 'manager_id' not in i]
train_X = sparse.hstack([train_df[features_to_use], tr_sparse]).tocsr()
test_X = sparse.hstack([test_df[features_to_use], te_sparse]).tocsr()
features_sparse = ['features_' + str(i) for i in range(tr_sparse.shape[1])]
target_num_map = {'high': 0, 'medium': 1, 'low': 2}
train_y = np.array(train_df['interest_level'].apply(lambda x: target_num_map[x]))
fscores = model.get_fscore()
df_features = pd.DataFrame(fscores, index=['score']).T.reset_index()
df_features['f_index'] = df_features['index'].apply(lambda x: int(x[1:]))
df_features['f_name'] = np.array(features_to_use + features_sparse)[df_features['f_index'].values]
pd.Series(index=df_features['f_name'].values, data=df_features['score'].values).sort_values()[-30:].plot(kind='bar') | code |
1010259/cell_9 | [
"text_plain_output_1.png"
] | from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
import numpy as np
import pandas as pd
data_path = '../input/'
train_file = data_path + 'train.json'
test_file = data_path + 'test.json'
train_df = pd.read_json(train_file)
test_df = pd.read_json(test_file)
features_to_use = ['bathrooms', 'bedrooms', 'latitude', 'longitude', 'price']
train_df['num_photos'] = train_df['photos'].apply(len)
test_df['num_photos'] = test_df['photos'].apply(len)
train_df['num_features'] = train_df['features'].apply(len)
test_df['num_features'] = test_df['features'].apply(len)
train_df['num_description_words'] = train_df['description'].apply(lambda x: len(x.split(' ')))
test_df['num_description_words'] = test_df['description'].apply(lambda x: len(x.split(' ')))
train_df['created'] = pd.to_datetime(train_df['created'])
test_df['created'] = pd.to_datetime(test_df['created'])
train_df['created_year'] = train_df['created'].dt.year
test_df['created_year'] = test_df['created'].dt.year
train_df['created_month'] = train_df['created'].dt.month
test_df['created_month'] = test_df['created'].dt.month
train_df['created_day'] = train_df['created'].dt.day
test_df['created_day'] = test_df['created'].dt.day
train_df['created_hour'] = train_df['created'].dt.hour
test_df['created_hour'] = test_df['created'].dt.hour
train_df['price_per_bed'] = train_df['price'] / train_df['bedrooms'].clip(lower=1)
test_df['price_per_bed'] = test_df['price'] / test_df['bedrooms'].clip(lower=1)
train_df['created_date'] = np.array(train_df.created.values, dtype='datetime64[D]').astype(np.float32)
test_df['created_date'] = np.array(test_df.created.values, dtype='datetime64[D]').astype(np.float32)
features_to_use.extend(['num_photos', 'num_features', 'num_description_words', 'created_year', 'created_month', 'created_day', 'listing_id', 'created_hour', 'price_per_bed', 'created_date'])
train_df['features'] = train_df['features'].apply(lambda x: ' '.join(['_'.join(i.split(' ')) for i in x]))
test_df['features'] = test_df['features'].apply(lambda x: ' '.join(['_'.join(i.split(' ')) for i in x]))
print(train_df['features'].head())
tfidf = CountVectorizer(stop_words='english', max_features=200)
tr_sparse = tfidf.fit_transform(train_df['features'])
te_sparse = tfidf.transform(test_df['features']) | code |
1010259/cell_11 | [
"text_plain_output_1.png"
] | from scipy import sparse
from sklearn import model_selection, preprocessing, ensemble
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
import numpy as np
import pandas as pd
data_path = '../input/'
train_file = data_path + 'train.json'
test_file = data_path + 'test.json'
train_df = pd.read_json(train_file)
test_df = pd.read_json(test_file)
features_to_use = ['bathrooms', 'bedrooms', 'latitude', 'longitude', 'price']
train_df['num_photos'] = train_df['photos'].apply(len)
test_df['num_photos'] = test_df['photos'].apply(len)
train_df['num_features'] = train_df['features'].apply(len)
test_df['num_features'] = test_df['features'].apply(len)
train_df['num_description_words'] = train_df['description'].apply(lambda x: len(x.split(' ')))
test_df['num_description_words'] = test_df['description'].apply(lambda x: len(x.split(' ')))
train_df['created'] = pd.to_datetime(train_df['created'])
test_df['created'] = pd.to_datetime(test_df['created'])
train_df['created_year'] = train_df['created'].dt.year
test_df['created_year'] = test_df['created'].dt.year
train_df['created_month'] = train_df['created'].dt.month
test_df['created_month'] = test_df['created'].dt.month
train_df['created_day'] = train_df['created'].dt.day
test_df['created_day'] = test_df['created'].dt.day
train_df['created_hour'] = train_df['created'].dt.hour
test_df['created_hour'] = test_df['created'].dt.hour
train_df['price_per_bed'] = train_df['price'] / train_df['bedrooms'].clip(lower=1)
test_df['price_per_bed'] = test_df['price'] / test_df['bedrooms'].clip(lower=1)
train_df['created_date'] = np.array(train_df.created.values, dtype='datetime64[D]').astype(np.float32)
test_df['created_date'] = np.array(test_df.created.values, dtype='datetime64[D]').astype(np.float32)
features_to_use.extend(['num_photos', 'num_features', 'num_description_words', 'created_year', 'created_month', 'created_day', 'listing_id', 'created_hour', 'price_per_bed', 'created_date'])
categorical = ['display_address', 'manager_id', 'building_id', 'street_address']
for f in categorical:
if train_df[f].dtype == 'object':
lbl = preprocessing.LabelEncoder()
lbl.fit(list(train_df[f].values) + list(test_df[f].values))
train_df[f] = lbl.transform(list(train_df[f].values))
test_df[f] = lbl.transform(list(test_df[f].values))
features_to_use.append(f)
train_df['features'] = train_df['features'].apply(lambda x: ' '.join(['_'.join(i.split(' ')) for i in x]))
test_df['features'] = test_df['features'].apply(lambda x: ' '.join(['_'.join(i.split(' ')) for i in x]))
tfidf = CountVectorizer(stop_words='english', max_features=200)
tr_sparse = tfidf.fit_transform(train_df['features'])
te_sparse = tfidf.transform(test_df['features'])
features_to_use = [i for i in features_to_use if 'manager_id' not in i]
train_X = sparse.hstack([train_df[features_to_use], tr_sparse]).tocsr()
test_X = sparse.hstack([test_df[features_to_use], te_sparse]).tocsr()
features_sparse = ['features_' + str(i) for i in range(tr_sparse.shape[1])]
target_num_map = {'high': 0, 'medium': 1, 'low': 2}
train_y = np.array(train_df['interest_level'].apply(lambda x: target_num_map[x]))
print(train_X.shape, test_X.shape) | code |
1010259/cell_15 | [
"text_plain_output_1.png"
] | import numpy as np
import pandas as pd
data_path = '../input/'
train_file = data_path + 'train.json'
test_file = data_path + 'test.json'
train_df = pd.read_json(train_file)
test_df = pd.read_json(test_file)
features_to_use = ['bathrooms', 'bedrooms', 'latitude', 'longitude', 'price']
train_df['num_photos'] = train_df['photos'].apply(len)
test_df['num_photos'] = test_df['photos'].apply(len)
train_df['num_features'] = train_df['features'].apply(len)
test_df['num_features'] = test_df['features'].apply(len)
train_df['num_description_words'] = train_df['description'].apply(lambda x: len(x.split(' ')))
test_df['num_description_words'] = test_df['description'].apply(lambda x: len(x.split(' ')))
train_df['created'] = pd.to_datetime(train_df['created'])
test_df['created'] = pd.to_datetime(test_df['created'])
train_df['created_year'] = train_df['created'].dt.year
test_df['created_year'] = test_df['created'].dt.year
train_df['created_month'] = train_df['created'].dt.month
test_df['created_month'] = test_df['created'].dt.month
train_df['created_day'] = train_df['created'].dt.day
test_df['created_day'] = test_df['created'].dt.day
train_df['created_hour'] = train_df['created'].dt.hour
test_df['created_hour'] = test_df['created'].dt.hour
train_df['price_per_bed'] = train_df['price'] / train_df['bedrooms'].clip(lower=1)
test_df['price_per_bed'] = test_df['price'] / test_df['bedrooms'].clip(lower=1)
train_df['created_date'] = np.array(train_df.created.values, dtype='datetime64[D]').astype(np.float32)
test_df['created_date'] = np.array(test_df.created.values, dtype='datetime64[D]').astype(np.float32)
features_to_use.extend(['num_photos', 'num_features', 'num_description_words', 'created_year', 'created_month', 'created_day', 'listing_id', 'created_hour', 'price_per_bed', 'created_date'])
train_df.head() | code |
1010259/cell_16 | [
"text_plain_output_1.png",
"image_output_1.png"
] | """preds, model = runXGB(train_X, train_y, test_X, num_rounds=400)
out_df = pd.DataFrame(preds)
out_df.columns = ["high", "medium", "low"]
out_df["listing_id"] = test_df.listing_id.values
out_df.to_csv("0315.csv", index=False)""" | code |
1010259/cell_12 | [
"text_plain_output_1.png"
] | from scipy import sparse
from sklearn import model_selection, preprocessing, ensemble
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from sklearn.metrics import log_loss
import numpy as np
import pandas as pd
import xgboost as xgb
def runXGB(train_X, train_y, test_X, test_y=None, feature_names=None, seed_val=0, num_rounds=1000):
param = {}
param['objective'] = 'multi:softprob'
param['eta'] = 0.1
param['max_depth'] = 6
param['silent'] = 1
param['num_class'] = 3
param['eval_metric'] = 'mlogloss'
param['min_child_weight'] = 1
param['subsample'] = 0.7
param['colsample_bytree'] = 0.7
param['seed'] = 8088
num_rounds = num_rounds
plst = list(param.items())
xgtrain = xgb.DMatrix(train_X, label=train_y)
if test_y is not None:
xgtest = xgb.DMatrix(test_X, label=test_y)
watchlist = [(xgtrain, 'train'), (xgtest, 'test')]
model = xgb.train(plst, xgtrain, num_rounds, watchlist, early_stopping_rounds=20, verbose_eval=25)
else:
xgtest = xgb.DMatrix(test_X)
model = xgb.train(plst, xgtrain, num_rounds)
pred_test_y = model.predict(xgtest)
return (pred_test_y, model)
data_path = '../input/'
train_file = data_path + 'train.json'
test_file = data_path + 'test.json'
train_df = pd.read_json(train_file)
test_df = pd.read_json(test_file)
features_to_use = ['bathrooms', 'bedrooms', 'latitude', 'longitude', 'price']
train_df['num_photos'] = train_df['photos'].apply(len)
test_df['num_photos'] = test_df['photos'].apply(len)
train_df['num_features'] = train_df['features'].apply(len)
test_df['num_features'] = test_df['features'].apply(len)
train_df['num_description_words'] = train_df['description'].apply(lambda x: len(x.split(' ')))
test_df['num_description_words'] = test_df['description'].apply(lambda x: len(x.split(' ')))
train_df['created'] = pd.to_datetime(train_df['created'])
test_df['created'] = pd.to_datetime(test_df['created'])
train_df['created_year'] = train_df['created'].dt.year
test_df['created_year'] = test_df['created'].dt.year
train_df['created_month'] = train_df['created'].dt.month
test_df['created_month'] = test_df['created'].dt.month
train_df['created_day'] = train_df['created'].dt.day
test_df['created_day'] = test_df['created'].dt.day
train_df['created_hour'] = train_df['created'].dt.hour
test_df['created_hour'] = test_df['created'].dt.hour
train_df['price_per_bed'] = train_df['price'] / train_df['bedrooms'].clip(lower=1)
test_df['price_per_bed'] = test_df['price'] / test_df['bedrooms'].clip(lower=1)
train_df['created_date'] = np.array(train_df.created.values, dtype='datetime64[D]').astype(np.float32)
test_df['created_date'] = np.array(test_df.created.values, dtype='datetime64[D]').astype(np.float32)
features_to_use.extend(['num_photos', 'num_features', 'num_description_words', 'created_year', 'created_month', 'created_day', 'listing_id', 'created_hour', 'price_per_bed', 'created_date'])
categorical = ['display_address', 'manager_id', 'building_id', 'street_address']
for f in categorical:
if train_df[f].dtype == 'object':
lbl = preprocessing.LabelEncoder()
lbl.fit(list(train_df[f].values) + list(test_df[f].values))
train_df[f] = lbl.transform(list(train_df[f].values))
test_df[f] = lbl.transform(list(test_df[f].values))
features_to_use.append(f)
train_df['features'] = train_df['features'].apply(lambda x: ' '.join(['_'.join(i.split(' ')) for i in x]))
test_df['features'] = test_df['features'].apply(lambda x: ' '.join(['_'.join(i.split(' ')) for i in x]))
tfidf = CountVectorizer(stop_words='english', max_features=200)
tr_sparse = tfidf.fit_transform(train_df['features'])
te_sparse = tfidf.transform(test_df['features'])
features_to_use = [i for i in features_to_use if 'manager_id' not in i]
train_X = sparse.hstack([train_df[features_to_use], tr_sparse]).tocsr()
test_X = sparse.hstack([test_df[features_to_use], te_sparse]).tocsr()
features_sparse = ['features_' + str(i) for i in range(tr_sparse.shape[1])]
target_num_map = {'high': 0, 'medium': 1, 'low': 2}
train_y = np.array(train_df['interest_level'].apply(lambda x: target_num_map[x]))
cv_scores = []
kf = model_selection.KFold(n_splits=5, shuffle=True, random_state=2016)
for dev_index, val_index in kf.split(range(train_X.shape[0])):
dev_X, val_X = (train_X[dev_index, :], train_X[val_index, :])
dev_y, val_y = (train_y[dev_index], train_y[val_index])
preds, model = runXGB(dev_X, dev_y, val_X, val_y)
cv_scores.append(log_loss(val_y, preds))
print(cv_scores)
break | code |
1010259/cell_5 | [
"text_html_output_1.png"
] | import pandas as pd
data_path = '../input/'
train_file = data_path + 'train.json'
test_file = data_path + 'test.json'
train_df = pd.read_json(train_file)
test_df = pd.read_json(test_file)
print(train_df.shape)
print(test_df.shape) | code |
2011002/cell_19 | [
"text_html_output_1.png"
] | import numpy as np
import pandas as pd
import tensorflow as tf
dataset = pd.read_csv('../input/train.csv')
test = pd.read_csv('../input/test.csv')
def one_hot(num):
output = np.zeros([1, 10])
output[0, num] = 1
return output.astype(int)
labels_encoded = np.array([np.array([int(i == l) for i in range(10)]) for l in dataset.iloc[:, 0].values])
dataset = dataset.drop('label', axis=1)
(dataset.shape, labels_encoded.shape)
train_size = 40000
validation_size = 2000
train = dataset.iloc[:train_size]
train_targets = labels_encoded[:train_size]
validation = dataset.iloc[train_size:]
validation_targets = labels_encoded[train_size:]
(train.shape, train_targets.shape, validation.shape, validation_targets.shape, test.shape)
input_size = 784
output_size = 10
hidden_layer_size = 50
tf.reset_default_graph()
inputs = tf.placeholder(tf.float32, [None, input_size])
targets = tf.placeholder(tf.float32, [None, output_size])
w_1 = tf.get_variable('w_1', [input_size, hidden_layer_size])
b_1 = tf.get_variable('b_1', [hidden_layer_size])
o_1 = tf.nn.relu(tf.matmul(inputs, w_1) + b_1)
w_2 = tf.get_variable('w_2', [hidden_layer_size, hidden_layer_size])
b_2 = tf.get_variable('b_2', [hidden_layer_size])
o_2 = tf.nn.relu(tf.matmul(o_1, w_2) + b_2)
w_3 = tf.get_variable('w_3', [hidden_layer_size, output_size])
b_3 = tf.get_variable('b_3', [output_size])
outputs = tf.matmul(o_2, w_3) + b_3
loss = tf.nn.softmax_cross_entropy_with_logits(logits=outputs, labels=targets)
mean_loss = tf.reduce_mean(loss)
optimize = tf.train.AdamOptimizer(learning_rate=0.001).minimize(mean_loss)
out_equal_target = tf.equal(tf.argmax(outputs, 1), tf.argmax(targets, 1))
accuracy = tf.reduce_mean(tf.cast(out_equal_target, tf.float32))
sess = tf.InteractiveSession()
initializer = tf.global_variables_initializer()
sess.run(initializer)
batch_size = 100
batch_number = train.shape[0] // batch_size
max_epoch = 15
prev_validation_loss = 9999999.0
for epoch_counter in range(max_epoch):
curr_epoch_loss = 0
start = 0
end = start + batch_size
for batch_counter in range(batch_number):
input_batch = np.multiply(train.iloc[start:end].values.astype(np.float32), 1.0 / 255.0)
target_batch = train_targets[start:end]
start = end
end = start + batch_size
_, batch_loss = sess.run([optimize, mean_loss], feed_dict={inputs: input_batch, targets: target_batch})
curr_epoch_loss += batch_loss
curr_epoch_loss /= batch_number
input_batch = np.multiply(validation.values.astype(np.float32), 1.0 / 255.0)
target_batch = validation_targets
val_loss, val_accuracy = sess.run([mean_loss, accuracy], feed_dict={inputs: input_batch, targets: target_batch})
print('Epoch ' + str(epoch_counter + 1) + '. Training loss: ' + '{0:.3f}'.format(curr_epoch_loss) + '. Validation loss: ' + '{0:.3f}'.format(val_loss) + '. Validation accuracy: ' + '{0:.2f}'.format(val_accuracy * 100.0) + '%')
if val_loss > prev_validation_loss:
break
prev_validation_loss = val_loss
print('End of Training') | code |
2011002/cell_1 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OneHotEncoder
import tensorflow as tf | code |
2011002/cell_7 | [
"text_plain_output_1.png"
] | import numpy as np
import pandas as pd
dataset = pd.read_csv('../input/train.csv')
test = pd.read_csv('../input/test.csv')
def one_hot(num):
output = np.zeros([1, 10])
output[0, num] = 1
return output.astype(int)
labels_encoded = np.array([np.array([int(i == l) for i in range(10)]) for l in dataset.iloc[:, 0].values])
dataset = dataset.drop('label', axis=1)
(dataset.shape, labels_encoded.shape)
train_size = 40000
validation_size = 2000
train = dataset.iloc[:train_size]
train_targets = labels_encoded[:train_size]
validation = dataset.iloc[train_size:]
validation_targets = labels_encoded[train_size:]
(train.shape, train_targets.shape, validation.shape, validation_targets.shape, test.shape) | code |
2011002/cell_3 | [
"text_plain_output_1.png"
] | import pandas as pd
dataset = pd.read_csv('../input/train.csv')
test = pd.read_csv('../input/test.csv')
dataset.head() | code |
2011002/cell_5 | [
"text_plain_output_1.png"
] | import numpy as np
import pandas as pd
dataset = pd.read_csv('../input/train.csv')
test = pd.read_csv('../input/test.csv')
def one_hot(num):
output = np.zeros([1, 10])
output[0, num] = 1
return output.astype(int)
labels_encoded = np.array([np.array([int(i == l) for i in range(10)]) for l in dataset.iloc[:, 0].values])
dataset = dataset.drop('label', axis=1)
(dataset.shape, labels_encoded.shape) | code |
130015070/cell_21 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from nltk.corpus import stopwords
from tensorflow.keras.callbacks import EarlyStopping
from tensorflow.keras.preprocessing.sequence import pad_sequences
import nltk
import pandas as pd
import tensorflow as tf
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.callbacks import EarlyStopping
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix
import nltk
nltk.download('stopwords')
nltk.download('punkt')
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
import functools, re
import random
df = pd.read_csv('/kaggle/input/cyberbullying-classification/cyberbullying_tweets.csv')
df
df.cyberbullying_type.value_counts().plot.barh(xlim=(7800, 8000))
stopwords = [i.lower() for i in nltk.corpus.stopwords.words('english') + [chr(i) for i in range(97, 123)]]
x = df.tweet_text.apply(lambda text: re.sub('\\s+', ' ', ' '.join([i for i in re.sub('[^9A-Za-z ]', '', re.sub('\\n', '', re.sub('\\s+', ' ', re.sub('http\\S+', '', text.lower())))).split(' ') if i not in stopwords]))).values.astype(str)
x
tokenizer = tf.keras.preprocessing.text.Tokenizer(num_words=2000, oov_token='<OOV>')
tokenizer.fit_on_texts(x)
word_index = tokenizer.word_index
x_train = pad_sequences(tokenizer.texts_to_sequences(x_train), maxlen=100, padding='post', truncating='post')
x_test = pad_sequences(tokenizer.texts_to_sequences(x_test), maxlen=100, padding='post', truncating='post')
x_val = pad_sequences(tokenizer.texts_to_sequences(x_val), maxlen=100, padding='post', truncating='post')
model = tf.keras.Sequential([tf.keras.layers.Embedding(2000, 64), tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64, dropout=0.2, recurrent_dropout=0.2)), tf.keras.layers.Dropout(rate=0.2), tf.keras.layers.Dense(64, activation='swish'), tf.keras.layers.Dense(1, activation='sigmoid')])
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy', 'AUC'])
model.summary()
early_stopping_monitor = EarlyStopping(patience=2)
history = model.fit(x_train, y_train, epochs=10, validation_data=(x_val, y_val), callbacks=[early_stopping_monitor]) | code |
130015070/cell_9 | [
"text_plain_output_1.png"
] | from nltk.corpus import stopwords
import nltk
import pandas as pd
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.callbacks import EarlyStopping
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix
import nltk
nltk.download('stopwords')
nltk.download('punkt')
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
import functools, re
import random
df = pd.read_csv('/kaggle/input/cyberbullying-classification/cyberbullying_tweets.csv')
df
df.cyberbullying_type.value_counts().plot.barh(xlim=(7800, 8000))
stopwords = [i.lower() for i in nltk.corpus.stopwords.words('english') + [chr(i) for i in range(97, 123)]]
x = df.tweet_text.apply(lambda text: re.sub('\\s+', ' ', ' '.join([i for i in re.sub('[^9A-Za-z ]', '', re.sub('\\n', '', re.sub('\\s+', ' ', re.sub('http\\S+', '', text.lower())))).split(' ') if i not in stopwords]))).values.astype(str)
x | code |
130015070/cell_25 | [
"text_plain_output_1.png"
] | from nltk.corpus import stopwords
from sklearn.metrics import classification_report, confusion_matrix
from tensorflow.keras.callbacks import EarlyStopping
from tensorflow.keras.preprocessing.sequence import pad_sequences
import nltk
import pandas as pd
import tensorflow as tf
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.callbacks import EarlyStopping
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix
import nltk
nltk.download('stopwords')
nltk.download('punkt')
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
import functools, re
import random
df = pd.read_csv('/kaggle/input/cyberbullying-classification/cyberbullying_tweets.csv')
df
df.cyberbullying_type.value_counts().plot.barh(xlim=(7800, 8000))
stopwords = [i.lower() for i in nltk.corpus.stopwords.words('english') + [chr(i) for i in range(97, 123)]]
x = df.tweet_text.apply(lambda text: re.sub('\\s+', ' ', ' '.join([i for i in re.sub('[^9A-Za-z ]', '', re.sub('\\n', '', re.sub('\\s+', ' ', re.sub('http\\S+', '', text.lower())))).split(' ') if i not in stopwords]))).values.astype(str)
x
tokenizer = tf.keras.preprocessing.text.Tokenizer(num_words=2000, oov_token='<OOV>')
tokenizer.fit_on_texts(x)
word_index = tokenizer.word_index
x_train = pad_sequences(tokenizer.texts_to_sequences(x_train), maxlen=100, padding='post', truncating='post')
x_test = pad_sequences(tokenizer.texts_to_sequences(x_test), maxlen=100, padding='post', truncating='post')
x_val = pad_sequences(tokenizer.texts_to_sequences(x_val), maxlen=100, padding='post', truncating='post')
model = tf.keras.Sequential([tf.keras.layers.Embedding(2000, 64), tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64, dropout=0.2, recurrent_dropout=0.2)), tf.keras.layers.Dropout(rate=0.2), tf.keras.layers.Dense(64, activation='swish'), tf.keras.layers.Dense(1, activation='sigmoid')])
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy', 'AUC'])
model.summary()
early_stopping_monitor = EarlyStopping(patience=2)
history = model.fit(x_train, y_train, epochs=10, validation_data=(x_val, y_val), callbacks=[early_stopping_monitor])
y_pred = model.predict(x_test).round().T[0]
y_pred
print(classification_report(y_test.astype(int), y_pred, digits=3)) | code |
130015070/cell_23 | [
"text_plain_output_1.png"
] | from nltk.corpus import stopwords
from tensorflow.keras.callbacks import EarlyStopping
from tensorflow.keras.preprocessing.sequence import pad_sequences
import nltk
import pandas as pd
import tensorflow as tf
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.callbacks import EarlyStopping
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix
import nltk
nltk.download('stopwords')
nltk.download('punkt')
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
import functools, re
import random
df = pd.read_csv('/kaggle/input/cyberbullying-classification/cyberbullying_tweets.csv')
df
df.cyberbullying_type.value_counts().plot.barh(xlim=(7800, 8000))
stopwords = [i.lower() for i in nltk.corpus.stopwords.words('english') + [chr(i) for i in range(97, 123)]]
x = df.tweet_text.apply(lambda text: re.sub('\\s+', ' ', ' '.join([i for i in re.sub('[^9A-Za-z ]', '', re.sub('\\n', '', re.sub('\\s+', ' ', re.sub('http\\S+', '', text.lower())))).split(' ') if i not in stopwords]))).values.astype(str)
x
tokenizer = tf.keras.preprocessing.text.Tokenizer(num_words=2000, oov_token='<OOV>')
tokenizer.fit_on_texts(x)
word_index = tokenizer.word_index
x_train = pad_sequences(tokenizer.texts_to_sequences(x_train), maxlen=100, padding='post', truncating='post')
x_test = pad_sequences(tokenizer.texts_to_sequences(x_test), maxlen=100, padding='post', truncating='post')
x_val = pad_sequences(tokenizer.texts_to_sequences(x_val), maxlen=100, padding='post', truncating='post')
model = tf.keras.Sequential([tf.keras.layers.Embedding(2000, 64), tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64, dropout=0.2, recurrent_dropout=0.2)), tf.keras.layers.Dropout(rate=0.2), tf.keras.layers.Dense(64, activation='swish'), tf.keras.layers.Dense(1, activation='sigmoid')])
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy', 'AUC'])
model.summary()
early_stopping_monitor = EarlyStopping(patience=2)
history = model.fit(x_train, y_train, epochs=10, validation_data=(x_val, y_val), callbacks=[early_stopping_monitor])
y_pred = model.predict(x_test).round().T[0]
y_pred | code |
130015070/cell_26 | [
"text_plain_output_1.png"
] | from nltk.corpus import stopwords
from sklearn.metrics import classification_report, confusion_matrix
from tensorflow.keras.callbacks import EarlyStopping
from tensorflow.keras.preprocessing.sequence import pad_sequences
import nltk
import numpy as np
import pandas as pd
import tensorflow as tf
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.callbacks import EarlyStopping
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix
import nltk
nltk.download('stopwords')
nltk.download('punkt')
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
import functools, re
import random
df = pd.read_csv('/kaggle/input/cyberbullying-classification/cyberbullying_tweets.csv')
df
df.cyberbullying_type.value_counts().plot.barh(xlim=(7800, 8000))
stopwords = [i.lower() for i in nltk.corpus.stopwords.words('english') + [chr(i) for i in range(97, 123)]]
x = df.tweet_text.apply(lambda text: re.sub('\\s+', ' ', ' '.join([i for i in re.sub('[^9A-Za-z ]', '', re.sub('\\n', '', re.sub('\\s+', ' ', re.sub('http\\S+', '', text.lower())))).split(' ') if i not in stopwords]))).values.astype(str)
x
tokenizer = tf.keras.preprocessing.text.Tokenizer(num_words=2000, oov_token='<OOV>')
tokenizer.fit_on_texts(x)
word_index = tokenizer.word_index
x_train = pad_sequences(tokenizer.texts_to_sequences(x_train), maxlen=100, padding='post', truncating='post')
x_test = pad_sequences(tokenizer.texts_to_sequences(x_test), maxlen=100, padding='post', truncating='post')
x_val = pad_sequences(tokenizer.texts_to_sequences(x_val), maxlen=100, padding='post', truncating='post')
model = tf.keras.Sequential([tf.keras.layers.Embedding(2000, 64), tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64, dropout=0.2, recurrent_dropout=0.2)), tf.keras.layers.Dropout(rate=0.2), tf.keras.layers.Dense(64, activation='swish'), tf.keras.layers.Dense(1, activation='sigmoid')])
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy', 'AUC'])
model.summary()
early_stopping_monitor = EarlyStopping(patience=2)
history = model.fit(x_train, y_train, epochs=10, validation_data=(x_val, y_val), callbacks=[early_stopping_monitor])
y_pred = model.predict(x_test).round().T[0]
y_pred
y_rand = np.random.random(*y_test.shape).round().astype(int)
(y_rand == y_test).mean() | code |
130015070/cell_11 | [
"text_plain_output_1.png"
] | from nltk.corpus import stopwords
import nltk
import pandas as pd
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.callbacks import EarlyStopping
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix
import nltk
nltk.download('stopwords')
nltk.download('punkt')
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
import functools, re
import random
df = pd.read_csv('/kaggle/input/cyberbullying-classification/cyberbullying_tweets.csv')
df
df.cyberbullying_type.value_counts().plot.barh(xlim=(7800, 8000))
stopwords = [i.lower() for i in nltk.corpus.stopwords.words('english') + [chr(i) for i in range(97, 123)]]
x = df.tweet_text.apply(lambda text: re.sub('\\s+', ' ', ' '.join([i for i in re.sub('[^9A-Za-z ]', '', re.sub('\\n', '', re.sub('\\s+', ' ', re.sub('http\\S+', '', text.lower())))).split(' ') if i not in stopwords]))).values.astype(str)
x
y = df.cyberbullying_type != 'not_cyberbullying'
y | code |
130015070/cell_19 | [
"text_html_output_1.png"
] | from nltk.corpus import stopwords
from tensorflow.keras.preprocessing.sequence import pad_sequences
import nltk
import pandas as pd
import tensorflow as tf
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.callbacks import EarlyStopping
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix
import nltk
nltk.download('stopwords')
nltk.download('punkt')
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
import functools, re
import random
df = pd.read_csv('/kaggle/input/cyberbullying-classification/cyberbullying_tweets.csv')
df
df.cyberbullying_type.value_counts().plot.barh(xlim=(7800, 8000))
stopwords = [i.lower() for i in nltk.corpus.stopwords.words('english') + [chr(i) for i in range(97, 123)]]
x = df.tweet_text.apply(lambda text: re.sub('\\s+', ' ', ' '.join([i for i in re.sub('[^9A-Za-z ]', '', re.sub('\\n', '', re.sub('\\s+', ' ', re.sub('http\\S+', '', text.lower())))).split(' ') if i not in stopwords]))).values.astype(str)
x
tokenizer = tf.keras.preprocessing.text.Tokenizer(num_words=2000, oov_token='<OOV>')
tokenizer.fit_on_texts(x)
word_index = tokenizer.word_index
x_train = pad_sequences(tokenizer.texts_to_sequences(x_train), maxlen=100, padding='post', truncating='post')
x_test = pad_sequences(tokenizer.texts_to_sequences(x_test), maxlen=100, padding='post', truncating='post')
x_val = pad_sequences(tokenizer.texts_to_sequences(x_val), maxlen=100, padding='post', truncating='post')
model = tf.keras.Sequential([tf.keras.layers.Embedding(2000, 64), tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64, dropout=0.2, recurrent_dropout=0.2)), tf.keras.layers.Dropout(rate=0.2), tf.keras.layers.Dense(64, activation='swish'), tf.keras.layers.Dense(1, activation='sigmoid')])
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy', 'AUC'])
model.summary() | code |
130015070/cell_7 | [
"text_plain_output_1.png"
] | import pandas as pd
df = pd.read_csv('/kaggle/input/cyberbullying-classification/cyberbullying_tweets.csv')
df
df.cyberbullying_type.value_counts().plot.barh(xlim=(7800, 8000)) | code |
130015070/cell_3 | [
"text_plain_output_1.png"
] | import nltk
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.callbacks import EarlyStopping
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix
import nltk
nltk.download('stopwords')
nltk.download('punkt')
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
import functools, re
import random | code |
130015070/cell_24 | [
"text_plain_output_1.png"
] | from nltk.corpus import stopwords
from tensorflow.keras.callbacks import EarlyStopping
from tensorflow.keras.preprocessing.sequence import pad_sequences
import nltk
import pandas as pd
import tensorflow as tf
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.callbacks import EarlyStopping
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix
import nltk
nltk.download('stopwords')
nltk.download('punkt')
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
import functools, re
import random
df = pd.read_csv('/kaggle/input/cyberbullying-classification/cyberbullying_tweets.csv')
df
df.cyberbullying_type.value_counts().plot.barh(xlim=(7800, 8000))
stopwords = [i.lower() for i in nltk.corpus.stopwords.words('english') + [chr(i) for i in range(97, 123)]]
x = df.tweet_text.apply(lambda text: re.sub('\\s+', ' ', ' '.join([i for i in re.sub('[^9A-Za-z ]', '', re.sub('\\n', '', re.sub('\\s+', ' ', re.sub('http\\S+', '', text.lower())))).split(' ') if i not in stopwords]))).values.astype(str)
x
tokenizer = tf.keras.preprocessing.text.Tokenizer(num_words=2000, oov_token='<OOV>')
tokenizer.fit_on_texts(x)
word_index = tokenizer.word_index
x_train = pad_sequences(tokenizer.texts_to_sequences(x_train), maxlen=100, padding='post', truncating='post')
x_test = pad_sequences(tokenizer.texts_to_sequences(x_test), maxlen=100, padding='post', truncating='post')
x_val = pad_sequences(tokenizer.texts_to_sequences(x_val), maxlen=100, padding='post', truncating='post')
model = tf.keras.Sequential([tf.keras.layers.Embedding(2000, 64), tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64, dropout=0.2, recurrent_dropout=0.2)), tf.keras.layers.Dropout(rate=0.2), tf.keras.layers.Dense(64, activation='swish'), tf.keras.layers.Dense(1, activation='sigmoid')])
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy', 'AUC'])
model.summary()
early_stopping_monitor = EarlyStopping(patience=2)
history = model.fit(x_train, y_train, epochs=10, validation_data=(x_val, y_val), callbacks=[early_stopping_monitor])
y_pred = model.predict(x_test).round().T[0]
y_pred
(y_pred == y_test).mean() | code |
130015070/cell_27 | [
"text_plain_output_1.png"
] | from nltk.corpus import stopwords
from sklearn.metrics import classification_report, confusion_matrix
from tensorflow.keras.callbacks import EarlyStopping
from tensorflow.keras.preprocessing.sequence import pad_sequences
import nltk
import numpy as np
import pandas as pd
import tensorflow as tf
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.callbacks import EarlyStopping
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix
import nltk
nltk.download('stopwords')
nltk.download('punkt')
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
import functools, re
import random
df = pd.read_csv('/kaggle/input/cyberbullying-classification/cyberbullying_tweets.csv')
df
df.cyberbullying_type.value_counts().plot.barh(xlim=(7800, 8000))
stopwords = [i.lower() for i in nltk.corpus.stopwords.words('english') + [chr(i) for i in range(97, 123)]]
x = df.tweet_text.apply(lambda text: re.sub('\\s+', ' ', ' '.join([i for i in re.sub('[^9A-Za-z ]', '', re.sub('\\n', '', re.sub('\\s+', ' ', re.sub('http\\S+', '', text.lower())))).split(' ') if i not in stopwords]))).values.astype(str)
x
tokenizer = tf.keras.preprocessing.text.Tokenizer(num_words=2000, oov_token='<OOV>')
tokenizer.fit_on_texts(x)
word_index = tokenizer.word_index
x_train = pad_sequences(tokenizer.texts_to_sequences(x_train), maxlen=100, padding='post', truncating='post')
x_test = pad_sequences(tokenizer.texts_to_sequences(x_test), maxlen=100, padding='post', truncating='post')
x_val = pad_sequences(tokenizer.texts_to_sequences(x_val), maxlen=100, padding='post', truncating='post')
model = tf.keras.Sequential([tf.keras.layers.Embedding(2000, 64), tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64, dropout=0.2, recurrent_dropout=0.2)), tf.keras.layers.Dropout(rate=0.2), tf.keras.layers.Dense(64, activation='swish'), tf.keras.layers.Dense(1, activation='sigmoid')])
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy', 'AUC'])
model.summary()
early_stopping_monitor = EarlyStopping(patience=2)
history = model.fit(x_train, y_train, epochs=10, validation_data=(x_val, y_val), callbacks=[early_stopping_monitor])
y_pred = model.predict(x_test).round().T[0]
y_pred
y_rand = np.random.random(*y_test.shape).round().astype(int)
(y_rand == y_test).mean()
print(classification_report(y_test.astype(int), y_rand, digits=3)) | code |
130015070/cell_5 | [
"text_plain_output_1.png"
] | import pandas as pd
df = pd.read_csv('/kaggle/input/cyberbullying-classification/cyberbullying_tweets.csv')
df | code |
88102154/cell_9 | [
"text_plain_output_1.png"
] | from tensorflow import keras
from tensorflow.keras.utils import plot_model
def build_model():
inputs = keras.layers.Input(shape=(28, 28, 1))
conv1 = keras.layers.Conv2D(32, (3, 3), strides=1, activation='relu')(inputs)
conv2 = keras.layers.Conv2D(64, (3, 3), strides=1, activation='relu')(conv1)
maxpool1 = keras.layers.MaxPool2D((2, 2))(conv2)
conv3 = keras.layers.Conv2D(64, (3, 3), strides=1, activation='relu')(maxpool1)
conv4 = keras.layers.Conv2D(32, (3, 3), strides=1, activation='relu')(conv3)
maxpool2 = keras.layers.MaxPool2D((2, 2))(conv4)
flat = keras.layers.Flatten()(maxpool2)
x1 = keras.layers.Dense(1024, activation='relu')(flat)
x1 = keras.layers.Dropout(0.1)(x1)
x = keras.layers.Concatenate(axis=1)([flat, x1])
x2 = keras.layers.Dense(512, activation='relu')(x)
x2 = keras.layers.Dropout(0.1)(x2)
x = keras.layers.Concatenate(axis=1)([flat, x1, x2])
x3 = keras.layers.Dense(256, activation='relu')(x)
x3 = keras.layers.Dropout(0.1)(x3)
x = keras.layers.Concatenate(axis=1)([flat, x1, x2, x3])
x4 = keras.layers.Dense(128, activation='relu')(x)
x4 = keras.layers.Dropout(0.1)(x4)
x = keras.layers.Concatenate(axis=1)([flat, x1, x2, x3, x4])
x = keras.layers.Dense(64, activation='relu')(x)
x = keras.layers.Dense(10, activation='softmax')(x)
model = keras.models.Model(inputs=inputs, outputs=x)
model.compile(optimizer=keras.optimizers.Adam(learning_rate=0.001), loss=keras.losses.SparseCategoricalCrossentropy(), metrics=['accuracy'])
return model
build_model().summary()
from tensorflow.keras.utils import plot_model
plot_model(build_model(), show_shapes=True) | code |
88102154/cell_4 | [
"text_plain_output_5.png",
"text_plain_output_9.png",
"text_plain_output_4.png",
"image_output_5.png",
"text_plain_output_10.png",
"text_plain_output_6.png",
"image_output_7.png",
"text_plain_output_3.png",
"image_output_4.png",
"text_plain_output_7.png",
"image_output_8.png",
"text_plain_output_8.png",
"image_output_6.png",
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png",
"image_output_3.png",
"image_output_2.png",
"image_output_1.png",
"image_output_10.png",
"text_plain_output_11.png",
"image_output_9.png"
] | from tensorflow.keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array
import pandas as pd
train = pd.read_csv('../input/digit-recognizer/train.csv')
test = pd.read_csv('../input/digit-recognizer/test.csv')
sample = pd.read_csv('../input/digit-recognizer/sample_submission.csv')
y = train.pop('label')
plt.rcParams['figure.figsize'] = (12, 18)
_ = plt.imshow(array_to_img(train.values.reshape(-1, 28, 28, 1)[10]), cmap='gray')
plt.axis('off')
print(y[10]) | code |
88102154/cell_10 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from sklearn.model_selection import KFold, train_test_split, StratifiedKFold
from tensorflow import keras
from tensorflow.keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array
from tqdm.keras import TqdmCallback
import numpy as np
import pandas as pd
train = pd.read_csv('../input/digit-recognizer/train.csv')
test = pd.read_csv('../input/digit-recognizer/test.csv')
sample = pd.read_csv('../input/digit-recognizer/sample_submission.csv')
y = train.pop('label')
plt.rcParams['figure.figsize'] = (12, 18)
_ = plt.imshow(array_to_img(train.values.reshape(-1, 28, 28, 1)[10]), cmap = 'gray')
plt.axis('off')
print(y[10])
kf = StratifiedKFold(n_splits=10, shuffle=True, random_state=4)
def build_model():
inputs = keras.layers.Input(shape=(28, 28, 1))
conv1 = keras.layers.Conv2D(32, (3, 3), strides=1, activation='relu')(inputs)
conv2 = keras.layers.Conv2D(64, (3, 3), strides=1, activation='relu')(conv1)
maxpool1 = keras.layers.MaxPool2D((2, 2))(conv2)
conv3 = keras.layers.Conv2D(64, (3, 3), strides=1, activation='relu')(maxpool1)
conv4 = keras.layers.Conv2D(32, (3, 3), strides=1, activation='relu')(conv3)
maxpool2 = keras.layers.MaxPool2D((2, 2))(conv4)
flat = keras.layers.Flatten()(maxpool2)
x1 = keras.layers.Dense(1024, activation='relu')(flat)
x1 = keras.layers.Dropout(0.1)(x1)
x = keras.layers.Concatenate(axis=1)([flat, x1])
x2 = keras.layers.Dense(512, activation='relu')(x)
x2 = keras.layers.Dropout(0.1)(x2)
x = keras.layers.Concatenate(axis=1)([flat, x1, x2])
x3 = keras.layers.Dense(256, activation='relu')(x)
x3 = keras.layers.Dropout(0.1)(x3)
x = keras.layers.Concatenate(axis=1)([flat, x1, x2, x3])
x4 = keras.layers.Dense(128, activation='relu')(x)
x4 = keras.layers.Dropout(0.1)(x4)
x = keras.layers.Concatenate(axis=1)([flat, x1, x2, x3, x4])
x = keras.layers.Dense(64, activation='relu')(x)
x = keras.layers.Dense(10, activation='softmax')(x)
model = keras.models.Model(inputs=inputs, outputs=x)
model.compile(optimizer=keras.optimizers.Adam(learning_rate=0.001), loss=keras.losses.SparseCategoricalCrossentropy(), metrics=['accuracy'])
return model
def build_model2():
inputs = keras.layers.Input(shape=(28, 28, 1))
conv = keras.layers.Conv2D(32, (3, 3), strides=1, activation='relu')(inputs)
conv = keras.layers.Conv2D(64, (3, 3), strides=1, activation='relu')(conv)
maxpool = keras.layers.MaxPool2D((2, 2))(conv)
conv = keras.layers.Conv2D(64, (3, 3), strides=1, activation='relu')(maxpool)
conv = keras.layers.Conv2D(32, (3, 3), strides=1, activation='relu')(conv)
maxpool = keras.layers.MaxPool2D((2, 2))(conv)
flat = keras.layers.Flatten()(maxpool)
x1 = keras.layers.Dense(1024, activation='relu')(flat)
x1 = keras.layers.Dropout(0.1)(x1)
x2 = keras.layers.Dense(512, activation='relu')(x1)
x2 = keras.layers.Dropout(0.1)(x2)
x3 = keras.layers.Dense(256, activation='relu')(x2)
x3 = keras.layers.Dropout(0.1)(x3)
x4 = keras.layers.Dense(128, activation='relu')(x3)
x4 = keras.layers.Dropout(0.1)(x4)
x1_ = keras.layers.Dense(1024, activation='relu')(flat)
x1_ = keras.layers.Dropout(0.1)(x1_)
x2_ = keras.layers.Dense(512, activation='relu')(x1_)
x2_ = keras.layers.Dropout(0.1)(x2_)
x3_ = keras.layers.Dense(256, activation='relu')(x2_)
x3_ = keras.layers.Dropout(0.1)(x3_)
x4_ = keras.layers.Dense(128, activation='relu')(x3_)
x4_ = keras.layers.Dropout(0.1)(x4_)
x = keras.layers.Concatenate(axis=1)([flat, x4, x4_])
x = keras.layers.Dense(64, activation='relu')(x)
x = keras.layers.Dense(10, activation='softmax')(x)
model = keras.models.Model(inputs=inputs, outputs=x)
model.compile(optimizer='adam', loss=keras.losses.SparseCategoricalCrossentropy(), metrics=['accuracy'])
return model
def build_model3():
inputs = keras.layers.Input(shape=(28, 28, 1))
conv = keras.layers.Conv2D(32, (3, 3), strides=1, activation='relu')(inputs)
conv = keras.layers.Conv2D(64, (3, 3), strides=1, activation='relu')(conv)
maxpool = keras.layers.MaxPool2D((2, 2))(conv)
conv = keras.layers.Conv2D(64, (3, 3), strides=1, activation='relu')(maxpool)
conv = keras.layers.Conv2D(32, (3, 3), strides=1, activation='relu')(conv)
maxpool = keras.layers.MaxPool2D((2, 2))(conv)
flat = keras.layers.Flatten()(maxpool)
x1 = keras.layers.Dense(1024, activation='relu')(flat)
x1 = keras.layers.Dropout(0.1)(x1)
x2 = keras.layers.Dense(512, activation='relu')(x1)
x2 = keras.layers.Dropout(0.1)(x2)
x3 = keras.layers.Dense(256, activation='relu')(x2)
x3 = keras.layers.Dropout(0.1)(x3)
x4 = keras.layers.Dense(128, activation='relu')(x3)
x4 = keras.layers.Dropout(0.1)(x4)
x1_ = keras.layers.Dense(1024, activation='relu')(flat)
x1_ = keras.layers.Dropout(0.1)(x1_)
x2_ = keras.layers.Dense(512, activation='relu')(x1_)
x2_ = keras.layers.Dropout(0.1)(x2_)
x3_ = keras.layers.Dense(256, activation='relu')(x2_)
x3_ = keras.layers.Dropout(0.1)(x3_)
x4_ = keras.layers.Dense(128, activation='relu')(x3_)
x4_ = keras.layers.Dropout(0.1)(x4_)
x = keras.layers.Concatenate(axis=1)([x1, x2, x3, x4, x1_, x2_, x3_, x4_, flat])
x = keras.layers.Dense(64, activation='relu')(x)
x = keras.layers.Dense(10, activation='softmax')(x)
model = keras.models.Model(inputs=inputs, outputs=x)
model.compile(optimizer='adam', loss=keras.losses.SparseCategoricalCrossentropy(), metrics=['accuracy'])
return model
scores = []
test_preds = []
for i, (t, v) in enumerate(kf.split(train, y)):
K.clear_session()
xtrain = train.iloc[t, :].values.reshape(-1, 28, 28, 1)
xval = train.iloc[v, :].values.reshape(-1, 28, 28, 1)
xtest = test.copy().values.reshape(-1, 28, 28, 1)
ytrain = y[t]
yval = y[v]
train_gen = ImageDataGenerator(rescale=1.0 / 255, rotation_range=20, width_shift_range=0.3, height_shift_range=0.3)
val_gen = ImageDataGenerator(rescale=1.0 / 255)
train_datagen = train_gen.flow(xtrain, ytrain, batch_size=64, seed=4)
val_datagen = val_gen.flow(xval, yval, batch_size=64, seed=4)
test_datagen = val_gen.flow(xtest, batch_size=64, shuffle=False)
callbacks = [keras.callbacks.EarlyStopping(patience=28, mode='min', monitor='val_loss', restore_best_weights=True), keras.callbacks.ReduceLROnPlateau(patience=5, mode='min', monitor='val_loss', factor=0.5, min_lr=1e-05), TqdmCallback(verbose=1)]
model = build_model()
history = model.fit(train_datagen, validation_data=val_datagen, epochs=150, callbacks=callbacks, verbose=0)
history = pd.DataFrame(history.history)
_ = history.loc[4:, ['val_loss', 'loss']].plot()
plt.show()
loss, accu = model.evaluate(val_datagen)
ypred = model.predict(test_datagen)
test_preds.append(ypred)
scores.append(accu)
print(f'{i} : {accu}')
del xtrain
del xval
del xtest
del ytrain
del yval
del train_gen
del val_gen
del train_datagen
del val_datagen
del test_datagen
del model
del history
print(np.mean(scores), np.std(scores)) | code |
90142889/cell_13 | [
"text_plain_output_1.png"
] | import itertools
import keras
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('/kaggle/input/demand-forecast-abal2/demand_forecast.csv', parse_dates=['date'])
df
df.groupby(['store', 'item']).size()
input_df = df.set_index(['date', 'store', 'item'])
def train_test_split(dataframe, train_size=0.9):
index_df = input_df.index.levels[0]
train_cnt = int(len(index_df) * train_size)
pivot = index_df[train_cnt]
train = dataframe.iloc[dataframe.index.get_level_values('date') <= pivot]
test = dataframe.iloc[dataframe.index.get_level_values('date') > pivot]
return (train, test)
train_df.index.levels[1:][0]
train_df.iloc[(train_df.index.get_level_values('store') == 1) & (train_df.index.get_level_values('item') == 1)]
def create_dataset(input_df, time_steps=1):
Xs, ys = ([], [])
stores = train_df.index.levels[1]
items = train_df.index.levels[2]
store_items = list(itertools.product(stores, items))
for store, item in store_items:
curr_df = input_df.iloc[(input_df.index.get_level_values('store') == store) & (input_df.index.get_level_values('item') == item)]
for i in range(len(curr_df) - time_steps):
v = curr_df.iloc[i:i + time_steps].values
Xs.append(v)
ys.append(curr_df.iloc[i + time_steps].values)
return (np.array(Xs), np.array(ys))
time_steps = 10
X_train, y_train = create_dataset(train_df, time_steps)
X_test, y_test = create_dataset(test_df, time_steps)
model = keras.Sequential()
model.add(keras.layers.Bidirectional(keras.layers.LSTM(units=128, input_shape=(X_train.shape[1], X_train.shape[2]))))
model.add(keras.layers.Dropout(rate=0.2))
model.add(keras.layers.Dense(units=1))
model.compile(loss='mean_squared_error', optimizer='adam') | code |
90142889/cell_9 | [
"image_output_1.png"
] | train_df.index.levels[1:][0] | code |
90142889/cell_4 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from statsmodels.graphics.tsaplots import plot_acf
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('/kaggle/input/demand-forecast-abal2/demand_forecast.csv', parse_dates=['date'])
df
def plot_autocorrelation(store_num, item_num, lag=50):
filtered_df = df[(df['store'] == store_num) & (df['item'] == item_num)]
for store_num in range(1, 3):
for item_num in range(12, 17):
plot_autocorrelation(store_num, item_num, 21) | code |
90142889/cell_2 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('/kaggle/input/demand-forecast-abal2/demand_forecast.csv', parse_dates=['date'])
df | code |
90142889/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
from statsmodels.graphics.tsaplots import plot_acf
import matplotlib.pyplot as plt
import tensorflow as tf
import keras
import itertools
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
90142889/cell_15 | [
"text_plain_output_1.png"
] | import itertools
import keras
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import tensorflow as tf
df = pd.read_csv('/kaggle/input/demand-forecast-abal2/demand_forecast.csv', parse_dates=['date'])
df
df.groupby(['store', 'item']).size()
input_df = df.set_index(['date', 'store', 'item'])
def train_test_split(dataframe, train_size=0.9):
index_df = input_df.index.levels[0]
train_cnt = int(len(index_df) * train_size)
pivot = index_df[train_cnt]
train = dataframe.iloc[dataframe.index.get_level_values('date') <= pivot]
test = dataframe.iloc[dataframe.index.get_level_values('date') > pivot]
return (train, test)
train_df.index.levels[1:][0]
train_df.iloc[(train_df.index.get_level_values('store') == 1) & (train_df.index.get_level_values('item') == 1)]
def create_dataset(input_df, time_steps=1):
Xs, ys = ([], [])
stores = train_df.index.levels[1]
items = train_df.index.levels[2]
store_items = list(itertools.product(stores, items))
for store, item in store_items:
curr_df = input_df.iloc[(input_df.index.get_level_values('store') == store) & (input_df.index.get_level_values('item') == item)]
for i in range(len(curr_df) - time_steps):
v = curr_df.iloc[i:i + time_steps].values
Xs.append(v)
ys.append(curr_df.iloc[i + time_steps].values)
return (np.array(Xs), np.array(ys))
time_steps = 10
X_train, y_train = create_dataset(train_df, time_steps)
X_test, y_test = create_dataset(test_df, time_steps)
model = keras.Sequential()
model.add(keras.layers.Bidirectional(keras.layers.LSTM(units=128, input_shape=(X_train.shape[1], X_train.shape[2]))))
model.add(keras.layers.Dropout(rate=0.2))
model.add(keras.layers.Dense(units=1))
model.compile(loss='mean_squared_error', optimizer='adam')
X_train = tf.cast(X_train, dtype='float64')
y_train = tf.cast(y_train, dtype='float64')
X_test = tf.cast(X_test, dtype='float64')
y_test = tf.cast(y_test, dtype='float64')
history = model.fit(X_train, y_train, epochs=30, batch_size=32, validation_split=0.1, shuffle=False) | code |
90142889/cell_17 | [
"text_html_output_1.png"
] | import itertools
import keras
import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import tensorflow as tf
df = pd.read_csv('/kaggle/input/demand-forecast-abal2/demand_forecast.csv', parse_dates=['date'])
df
df.groupby(['store', 'item']).size()
input_df = df.set_index(['date', 'store', 'item'])
def train_test_split(dataframe, train_size=0.9):
index_df = input_df.index.levels[0]
train_cnt = int(len(index_df) * train_size)
pivot = index_df[train_cnt]
train = dataframe.iloc[dataframe.index.get_level_values('date') <= pivot]
test = dataframe.iloc[dataframe.index.get_level_values('date') > pivot]
return (train, test)
train_df.index.levels[1:][0]
train_df.iloc[(train_df.index.get_level_values('store') == 1) & (train_df.index.get_level_values('item') == 1)]
def create_dataset(input_df, time_steps=1):
Xs, ys = ([], [])
stores = train_df.index.levels[1]
items = train_df.index.levels[2]
store_items = list(itertools.product(stores, items))
for store, item in store_items:
curr_df = input_df.iloc[(input_df.index.get_level_values('store') == store) & (input_df.index.get_level_values('item') == item)]
for i in range(len(curr_df) - time_steps):
v = curr_df.iloc[i:i + time_steps].values
Xs.append(v)
ys.append(curr_df.iloc[i + time_steps].values)
return (np.array(Xs), np.array(ys))
time_steps = 10
X_train, y_train = create_dataset(train_df, time_steps)
X_test, y_test = create_dataset(test_df, time_steps)
model = keras.Sequential()
model.add(keras.layers.Bidirectional(keras.layers.LSTM(units=128, input_shape=(X_train.shape[1], X_train.shape[2]))))
model.add(keras.layers.Dropout(rate=0.2))
model.add(keras.layers.Dense(units=1))
model.compile(loss='mean_squared_error', optimizer='adam')
X_train = tf.cast(X_train, dtype='float64')
y_train = tf.cast(y_train, dtype='float64')
X_test = tf.cast(X_test, dtype='float64')
y_test = tf.cast(y_test, dtype='float64')
history = model.fit(X_train, y_train, epochs=30, batch_size=32, validation_split=0.1, shuffle=False)
plt.plot(history.history['loss'], label='train')
plt.plot(history.history['val_loss'], label='test')
plt.legend() | code |
90142889/cell_10 | [
"text_html_output_1.png"
] | train_df.index.levels[1:][0]
train_df.iloc[(train_df.index.get_level_values('store') == 1) & (train_df.index.get_level_values('item') == 1)] | code |
90142889/cell_12 | [
"image_output_5.png",
"image_output_7.png",
"image_output_4.png",
"image_output_8.png",
"image_output_6.png",
"image_output_3.png",
"image_output_2.png",
"image_output_1.png",
"image_output_10.png",
"image_output_9.png"
] | import itertools
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('/kaggle/input/demand-forecast-abal2/demand_forecast.csv', parse_dates=['date'])
df
df.groupby(['store', 'item']).size()
input_df = df.set_index(['date', 'store', 'item'])
def train_test_split(dataframe, train_size=0.9):
index_df = input_df.index.levels[0]
train_cnt = int(len(index_df) * train_size)
pivot = index_df[train_cnt]
train = dataframe.iloc[dataframe.index.get_level_values('date') <= pivot]
test = dataframe.iloc[dataframe.index.get_level_values('date') > pivot]
return (train, test)
train_df.index.levels[1:][0]
train_df.iloc[(train_df.index.get_level_values('store') == 1) & (train_df.index.get_level_values('item') == 1)]
def create_dataset(input_df, time_steps=1):
Xs, ys = ([], [])
stores = train_df.index.levels[1]
items = train_df.index.levels[2]
store_items = list(itertools.product(stores, items))
for store, item in store_items:
curr_df = input_df.iloc[(input_df.index.get_level_values('store') == store) & (input_df.index.get_level_values('item') == item)]
for i in range(len(curr_df) - time_steps):
v = curr_df.iloc[i:i + time_steps].values
Xs.append(v)
ys.append(curr_df.iloc[i + time_steps].values)
return (np.array(Xs), np.array(ys))
time_steps = 10
X_train, y_train = create_dataset(train_df, time_steps)
X_test, y_test = create_dataset(test_df, time_steps)
print(X_train.shape, y_train.shape) | code |
90142889/cell_5 | [
"text_plain_output_4.png",
"application_vnd.jupyter.stderr_output_3.png",
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('/kaggle/input/demand-forecast-abal2/demand_forecast.csv', parse_dates=['date'])
df
df.groupby(['store', 'item']).size() | code |
121153356/cell_4 | [
"text_plain_output_1.png"
] | dictionary = {'Doğan': 23, 'Efe': 22}
print(dictionary)
print(type(dictionary))
print(dictionary.values())
keys = dictionary.keys()
if 'Doğan' in keys:
print('Yes')
else:
print('No') | code |
121153356/cell_2 | [
"text_plain_output_1.png"
] | var1 = 10
var2 = 20
var3 = 30
list1 = [10, 20, 30]
type(list1)
print(list1[-1])
print(list1[0:2])
list1.append(40)
print(list1)
list1.remove(40)
print(list1)
list1.reverse()
print(list1)
list1.sort()
print(list1) | code |
121153356/cell_1 | [
"text_plain_output_1.png"
] | number = 5
day = 'Monday'
print(number) | code |
121153356/cell_3 | [
"text_plain_output_1.png"
] | def circle_perimeter(r, pi=3.14):
result = 2 * pi * r
return result
print(circle_perimeter(3))
def calculate(x):
result = x * x
return result
result = calculate(3)
print(result)
result2 = lambda x: x * x
print(result2(4)) | code |
2001660/cell_9 | [
"text_plain_output_1.png"
] | from pathlib import Path
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
input_path = Path('../input')
train_path = input_path / 'train'
test_path = input_path / 'test'
cameras = os.listdir(train_path)
train_images = []
for camera in cameras:
for fname in sorted(os.listdir(train_path / camera)):
train_images.append((camera, fname))
train = pd.DataFrame(train_images, columns=['camera', 'fname'])
train.sample(5)
random_images = train.sample(100)
random_images[:5] | code |
2001660/cell_23 | [
"text_html_output_1.png"
] | from pathlib import Path
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
input_path = Path('../input')
train_path = input_path / 'train'
test_path = input_path / 'test'
cameras = os.listdir(train_path)
train_images = []
for camera in cameras:
for fname in sorted(os.listdir(train_path / camera)):
train_images.append((camera, fname))
train = pd.DataFrame(train_images, columns=['camera', 'fname'])
train.sample(5)
test_images = []
for fname in sorted(os.listdir(test_path)):
test_images.append(fname)
test = pd.DataFrame(test_images, columns=['fname'])
random_images = train.sample(100)
random_images[:5]
cols = ['pca1', 'pca2']
for col in cols:
train[col] = None
test[col] = None
cols | code |
2001660/cell_20 | [
"text_plain_output_1.png"
] | from pathlib import Path
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
input_path = Path('../input')
train_path = input_path / 'train'
test_path = input_path / 'test'
cameras = os.listdir(train_path)
train_images = []
for camera in cameras:
for fname in sorted(os.listdir(train_path / camera)):
train_images.append((camera, fname))
train = pd.DataFrame(train_images, columns=['camera', 'fname'])
train.sample(5)
test_images = []
for fname in sorted(os.listdir(test_path)):
test_images.append(fname)
test = pd.DataFrame(test_images, columns=['fname'])
test.sample(5) | code |
2001660/cell_6 | [
"text_plain_output_1.png"
] | from pathlib import Path
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
input_path = Path('../input')
train_path = input_path / 'train'
test_path = input_path / 'test'
cameras = os.listdir(train_path)
train_images = []
for camera in cameras:
for fname in sorted(os.listdir(train_path / camera)):
train_images.append((camera, fname))
train = pd.DataFrame(train_images, columns=['camera', 'fname'])
train.sample(5)
test_images = []
for fname in sorted(os.listdir(test_path)):
test_images.append(fname)
test = pd.DataFrame(test_images, columns=['fname'])
print(test.shape)
test.head(5) | code |
2001660/cell_11 | [
"text_html_output_1.png",
"text_plain_output_1.png"
] | from pathlib import Path
from sklearn.decomposition import PCA
import cv2
import numpy as np # linear algebra
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
input_path = Path('../input')
train_path = input_path / 'train'
test_path = input_path / 'test'
def get_center_crop(img, d=250):
cy = img.shape[0] // 2
cx = img.shape[1] // 2
return img[cy - d:cy + d, cx - d:cx + d]
def get_blurring(img):
return np.max(cv2.convertScaleAbs(cv2.Laplacian(img, 3)))
cameras = os.listdir(train_path)
train_images = []
for camera in cameras:
for fname in sorted(os.listdir(train_path / camera)):
train_images.append((camera, fname))
train = pd.DataFrame(train_images, columns=['camera', 'fname'])
train.sample(5)
n_components = 5
pca = PCA(n_components=n_components, svd_solver='randomized', whiten=True)
def get_pca_feature(img_channel):
return pca.fit(img_channel)
random_images = train.sample(100)
random_images[:5]
img_set_reds = []
for i, r in random_images.iterrows():
x = get_center_crop(cv2.imread('../input/train/' + r['camera'] + '/' + r['fname']))
img_set_reds.append(np.ravel(x))
img_set_reds = np.asarray(img_set_reds)
pf = pca.fit(np.asarray(img_set_reds))
x = pf.transform(np.ravel(get_center_crop(cv2.imread('../input/train/' + r['camera'] + '/' + r['fname']))).reshape(1, -1))
x | code |
2001660/cell_19 | [
"text_plain_output_1.png"
] | from pathlib import Path
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
input_path = Path('../input')
train_path = input_path / 'train'
test_path = input_path / 'test'
cameras = os.listdir(train_path)
train_images = []
for camera in cameras:
for fname in sorted(os.listdir(train_path / camera)):
train_images.append((camera, fname))
train = pd.DataFrame(train_images, columns=['camera', 'fname'])
train.sample(5)
random_images = train.sample(100)
random_images[:5]
train.sample(5) | code |
2001660/cell_1 | [
"text_plain_output_1.png"
] | from subprocess import check_output
import os
from pathlib import Path
import multiprocessing as mp
import numpy as np
import pandas as pd
from skimage.data import imread
from sklearn.ensemble import RandomForestClassifier
import time
import cv2
from sklearn.decomposition import PCA
from sklearn.svm import SVC
from subprocess import check_output
print(check_output(['ls', '../input']).decode('utf8')) | code |
2001660/cell_22 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from pathlib import Path
from sklearn.ensemble import RandomForestClassifier
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
input_path = Path('../input')
train_path = input_path / 'train'
test_path = input_path / 'test'
cameras = os.listdir(train_path)
train_images = []
for camera in cameras:
for fname in sorted(os.listdir(train_path / camera)):
train_images.append((camera, fname))
train = pd.DataFrame(train_images, columns=['camera', 'fname'])
train.sample(5)
test_images = []
for fname in sorted(os.listdir(test_path)):
test_images.append(fname)
test = pd.DataFrame(test_images, columns=['fname'])
random_images = train.sample(100)
random_images[:5]
cols = ['pca1', 'pca2']
for col in cols:
train[col] = None
test[col] = None
train.sample(5)
test.sample(5)
def get_random_forest_clf(df_train, cols):
y = df_train['camera'].values
X_train = df_train[cols].values
return RandomForestClassifier(n_estimators=200).fit(train, y)
y = train['camera'].values
X_train = train[cols].values
X_test = test[cols].values
clf = RandomForestClassifier(n_estimators=5)
clf.fit(X_train, y) | code |
2001660/cell_10 | [
"text_html_output_1.png",
"text_plain_output_1.png"
] | from pathlib import Path
from sklearn.decomposition import PCA
import cv2
import numpy as np # linear algebra
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
input_path = Path('../input')
train_path = input_path / 'train'
test_path = input_path / 'test'
def get_center_crop(img, d=250):
cy = img.shape[0] // 2
cx = img.shape[1] // 2
return img[cy - d:cy + d, cx - d:cx + d]
def get_blurring(img):
return np.max(cv2.convertScaleAbs(cv2.Laplacian(img, 3)))
cameras = os.listdir(train_path)
train_images = []
for camera in cameras:
for fname in sorted(os.listdir(train_path / camera)):
train_images.append((camera, fname))
train = pd.DataFrame(train_images, columns=['camera', 'fname'])
train.sample(5)
n_components = 5
pca = PCA(n_components=n_components, svd_solver='randomized', whiten=True)
def get_pca_feature(img_channel):
return pca.fit(img_channel)
random_images = train.sample(100)
random_images[:5]
img_set_reds = []
for i, r in random_images.iterrows():
x = get_center_crop(cv2.imread('../input/train/' + r['camera'] + '/' + r['fname']))
img_set_reds.append(np.ravel(x))
img_set_reds = np.asarray(img_set_reds)
print(img_set_reds.shape)
print([img_set_reds[i].shape for i in range(10)])
pf = pca.fit(np.asarray(img_set_reds)) | code |
2001660/cell_12 | [
"text_html_output_1.png"
] | from pathlib import Path
from sklearn.decomposition import PCA
import cv2
import numpy as np # linear algebra
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
input_path = Path('../input')
train_path = input_path / 'train'
test_path = input_path / 'test'
def get_center_crop(img, d=250):
cy = img.shape[0] // 2
cx = img.shape[1] // 2
return img[cy - d:cy + d, cx - d:cx + d]
def get_blurring(img):
return np.max(cv2.convertScaleAbs(cv2.Laplacian(img, 3)))
cameras = os.listdir(train_path)
train_images = []
for camera in cameras:
for fname in sorted(os.listdir(train_path / camera)):
train_images.append((camera, fname))
train = pd.DataFrame(train_images, columns=['camera', 'fname'])
train.sample(5)
n_components = 5
pca = PCA(n_components=n_components, svd_solver='randomized', whiten=True)
def get_pca_feature(img_channel):
return pca.fit(img_channel)
random_images = train.sample(100)
random_images[:5]
img_set_reds = []
for i, r in random_images.iterrows():
x = get_center_crop(cv2.imread('../input/train/' + r['camera'] + '/' + r['fname']))
img_set_reds.append(np.ravel(x))
img_set_reds = np.asarray(img_set_reds)
pf = pca.fit(np.asarray(img_set_reds))
x = pf.transform(np.ravel(get_center_crop(cv2.imread('../input/train/' + r['camera'] + '/' + r['fname']))).reshape(1, -1))
x
t = get_pca_features(get_center_crop(cv2.imread('../input/train/' + r['camera'] + '/' + r['fname'])))
t[0][1] | code |
2001660/cell_5 | [
"text_html_output_1.png"
] | from pathlib import Path
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
input_path = Path('../input')
train_path = input_path / 'train'
test_path = input_path / 'test'
cameras = os.listdir(train_path)
train_images = []
for camera in cameras:
for fname in sorted(os.listdir(train_path / camera)):
train_images.append((camera, fname))
train = pd.DataFrame(train_images, columns=['camera', 'fname'])
print(train.shape)
train.sample(5) | code |
128043510/cell_21 | [
"image_output_1.png"
] | from sklearn.linear_model import LinearRegression
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
lr.fit(X_train, Y_train)
predictions = lr.predict(X_test)
print('Actual value of the house:- ', Y_test[0])
print('model Predicted values:- ', predictions[0]) | code |
128043510/cell_13 | [
"text_plain_output_1.png"
] | from sklearn.datasets import load_boston
import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
from sklearn.datasets import load_boston
load_boston = load_boston()
x = load_boston.data
y = load_boston.target
data = pd.DataFrame(x, columns=load_boston.feature_names)
data['SalePrice'] = y
data.isnull().sum()
plt.tight_layout()
fig, ax = plt.subplots()
ax.scatter(x = data["CRIM"], y = data["SalePrice"])
plt.ylabel("SalesPrice", fontsize = 13)
plt.xlabel("CRIM", fontsize = 13)
plt.show()
fig, ax = plt.subplots()
ax.scatter(x=data['AGE'], y=data['SalePrice'])
plt.ylabel('SalesPrice', fontsize=13)
plt.xlabel('AGE', fontsize=13)
plt.show() | code |
128043510/cell_9 | [
"text_plain_output_1.png"
] | from sklearn.datasets import load_boston
import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
from sklearn.datasets import load_boston
load_boston = load_boston()
x = load_boston.data
y = load_boston.target
data = pd.DataFrame(x, columns=load_boston.feature_names)
data['SalePrice'] = y
data.isnull().sum()
sns.pairplot(data, height=2.5)
plt.tight_layout() | code |
128043510/cell_4 | [
"image_output_1.png"
] | from sklearn.datasets import load_boston
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
from sklearn.datasets import load_boston
load_boston = load_boston()
x = load_boston.data
y = load_boston.target
data = pd.DataFrame(x, columns=load_boston.feature_names)
data['SalePrice'] = y
print(data.shape) | code |
128043510/cell_20 | [
"text_plain_output_1.png"
] | from sklearn.linear_model import LinearRegression
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
lr.fit(X_train, Y_train) | code |
128043510/cell_6 | [
"text_plain_output_1.png"
] | from sklearn.datasets import load_boston
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
from sklearn.datasets import load_boston
load_boston = load_boston()
x = load_boston.data
y = load_boston.target
data = pd.DataFrame(x, columns=load_boston.feature_names)
data['SalePrice'] = y
data.describe() | code |
128043510/cell_2 | [
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png",
"image_output_1.png"
] | from sklearn.datasets import load_boston
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
from sklearn.datasets import load_boston
load_boston = load_boston()
x = load_boston.data
y = load_boston.target
data = pd.DataFrame(x, columns=load_boston.feature_names)
print(data)
data['SalePrice'] = y
data.head() | code |
128043510/cell_11 | [
"text_plain_output_1.png"
] | from sklearn.datasets import load_boston
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
from sklearn.datasets import load_boston
load_boston = load_boston()
x = load_boston.data
y = load_boston.target
data = pd.DataFrame(x, columns=load_boston.feature_names)
data['SalePrice'] = y
data.isnull().sum()
print('Skewness: %f' % data['SalePrice'].skew())
print('Kurtosis: %f' % data['SalePrice'].kurt()) | code |
128043510/cell_19 | [
"image_output_1.png"
] | print(X_train.shape)
print(X_test.shape)
print(Y_train.shape)
print(Y_test.shape) | code |
128043510/cell_8 | [
"text_plain_output_1.png"
] | from sklearn.datasets import load_boston
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
from sklearn.datasets import load_boston
load_boston = load_boston()
x = load_boston.data
y = load_boston.target
data = pd.DataFrame(x, columns=load_boston.feature_names)
data['SalePrice'] = y
data.isnull().sum() | code |
128043510/cell_16 | [
"text_plain_output_1.png"
] | from scipy import stats
from scipy.stats import norm, skew # for some statistics
from sklearn.datasets import load_boston
import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
from sklearn.datasets import load_boston
load_boston = load_boston()
x = load_boston.data
y = load_boston.target
data = pd.DataFrame(x, columns=load_boston.feature_names)
data['SalePrice'] = y
data.isnull().sum()
plt.tight_layout()
fig, ax = plt.subplots()
ax.scatter(x = data["CRIM"], y = data["SalePrice"])
plt.ylabel("SalesPrice", fontsize = 13)
plt.xlabel("CRIM", fontsize = 13)
plt.show()
fig, ax = plt.subplots()
ax.scatter(x = data["AGE"], y = data["SalePrice"])
plt.ylabel("SalesPrice", fontsize = 13)
plt.xlabel("AGE", fontsize = 13)
plt.show()
from scipy import stats
from scipy.stats import norm, skew # for some statistics
sns.distplot(data["SalePrice"], fit = norm)
(mu, sigma) = norm.fit(data["SalePrice"])
print("\n mu = {:.2f} and sigma = {:.2f}\n".format(mu, sigma))
plt.legend(["Normal dist. ($\mu=$ {:.2f})".format(mu, sigma)],loc = "best") #loc is mean and scale is standard deviation
plt.ylabel("Frequency")
plt.title("Saleprice distribution")
# Get also the QQ - plot quardrant quartiles
fig = plt.figure()
res = stats.probplot(data["SalePrice"], plot = plt)
plt.show()
plt.figure(figsize=(10, 10))
cor = data.corr()
sns.heatmap(cor, annot=True, cmap=plt.cm.PuBu)
plt.show() | code |
128043510/cell_3 | [
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png",
"image_output_2.png",
"image_output_1.png"
] | from sklearn.datasets import load_boston
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
from sklearn.datasets import load_boston
load_boston = load_boston()
x = load_boston.data
y = load_boston.target
data = pd.DataFrame(x, columns=load_boston.feature_names)
data['SalePrice'] = y
print(load_boston.DESCR) | code |
128043510/cell_14 | [
"text_html_output_1.png"
] | from scipy import stats
from scipy.stats import norm, skew # for some statistics
from sklearn.datasets import load_boston
import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
from sklearn.datasets import load_boston
load_boston = load_boston()
x = load_boston.data
y = load_boston.target
data = pd.DataFrame(x, columns=load_boston.feature_names)
data['SalePrice'] = y
data.isnull().sum()
plt.tight_layout()
fig, ax = plt.subplots()
ax.scatter(x = data["CRIM"], y = data["SalePrice"])
plt.ylabel("SalesPrice", fontsize = 13)
plt.xlabel("CRIM", fontsize = 13)
plt.show()
fig, ax = plt.subplots()
ax.scatter(x = data["AGE"], y = data["SalePrice"])
plt.ylabel("SalesPrice", fontsize = 13)
plt.xlabel("AGE", fontsize = 13)
plt.show()
from scipy import stats
from scipy.stats import norm, skew
sns.distplot(data['SalePrice'], fit=norm)
mu, sigma = norm.fit(data['SalePrice'])
print('\n mu = {:.2f} and sigma = {:.2f}\n'.format(mu, sigma))
plt.legend(['Normal dist. ($\\mu=$ {:.2f})'.format(mu, sigma)], loc='best')
plt.ylabel('Frequency')
plt.title('Saleprice distribution')
fig = plt.figure()
res = stats.probplot(data['SalePrice'], plot=plt)
plt.show() | code |
128043510/cell_22 | [
"image_output_1.png"
] | from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
import numpy as np # linear algebra
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
lr.fit(X_train, Y_train)
predictions = lr.predict(X_test)
from sklearn.metrics import mean_squared_error
mse = mean_squared_error(Y_test, predictions)
rmse = np.sqrt(mse)
print(rmse) | code |
128043510/cell_10 | [
"application_vnd.jupyter.stderr_output_2.png",
"text_html_output_1.png",
"text_plain_output_1.png"
] | from sklearn.datasets import load_boston
import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
from sklearn.datasets import load_boston
load_boston = load_boston()
x = load_boston.data
y = load_boston.target
data = pd.DataFrame(x, columns=load_boston.feature_names)
data['SalePrice'] = y
data.isnull().sum()
plt.tight_layout()
sns.distplot(data['SalePrice']) | code |
128043510/cell_12 | [
"text_plain_output_1.png"
] | from sklearn.datasets import load_boston
import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
from sklearn.datasets import load_boston
load_boston = load_boston()
x = load_boston.data
y = load_boston.target
data = pd.DataFrame(x, columns=load_boston.feature_names)
data['SalePrice'] = y
data.isnull().sum()
plt.tight_layout()
fig, ax = plt.subplots()
ax.scatter(x=data['CRIM'], y=data['SalePrice'])
plt.ylabel('SalesPrice', fontsize=13)
plt.xlabel('CRIM', fontsize=13)
plt.show() | code |
128043510/cell_5 | [
"text_plain_output_1.png"
] | from sklearn.datasets import load_boston
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
from sklearn.datasets import load_boston
load_boston = load_boston()
x = load_boston.data
y = load_boston.target
data = pd.DataFrame(x, columns=load_boston.feature_names)
data['SalePrice'] = y
data.info() | code |
17132944/cell_6 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from gensim.models import KeyedVectors
from gensim.models import Word2Vec
from nltk.tokenize import RegexpTokenizer
import pandas as pd
import gensim
from gensim.models import Word2Vec
from gensim.models import KeyedVectors
import pandas as pd
from nltk.tokenize import RegexpTokenizer
forum_posts = pd.read_csv('../input/meta-kaggle/ForumMessages.csv')
sentences = forum_posts.Message.astype('str').tolist()
tokenizer = RegexpTokenizer('\\w+')
sentences_tokenized = [w.lower() for w in sentences]
sentences_tokenized = [tokenizer.tokenize(i) for i in sentences_tokenized]
model = KeyedVectors.load_word2vec_format('../input/word2vec-google/GoogleNews-vectors-negative300.bin', binary=True)
model_2 = Word2Vec(size=300, min_count=1)
model_2.build_vocab(sentences_tokenized)
total_examples = model_2.corpus_count
model_2.build_vocab([list(model.vocab.keys())], update=True)
model_2.intersect_word2vec_format('../input/word2vec-google/GoogleNews-vectors-negative300.bin', binary=True)
model_2.train(sentences_tokenized, total_examples=total_examples, epochs=model_2.iter)
model.similarity('kaggle', 'google') | code |
17132944/cell_7 | [
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png"
] | from gensim.models import KeyedVectors
from gensim.models import Word2Vec
from nltk.tokenize import RegexpTokenizer
import pandas as pd
import gensim
from gensim.models import Word2Vec
from gensim.models import KeyedVectors
import pandas as pd
from nltk.tokenize import RegexpTokenizer
forum_posts = pd.read_csv('../input/meta-kaggle/ForumMessages.csv')
sentences = forum_posts.Message.astype('str').tolist()
tokenizer = RegexpTokenizer('\\w+')
sentences_tokenized = [w.lower() for w in sentences]
sentences_tokenized = [tokenizer.tokenize(i) for i in sentences_tokenized]
model = KeyedVectors.load_word2vec_format('../input/word2vec-google/GoogleNews-vectors-negative300.bin', binary=True)
model_2 = Word2Vec(size=300, min_count=1)
model_2.build_vocab(sentences_tokenized)
total_examples = model_2.corpus_count
model_2.build_vocab([list(model.vocab.keys())], update=True)
model_2.intersect_word2vec_format('../input/word2vec-google/GoogleNews-vectors-negative300.bin', binary=True)
model_2.train(sentences_tokenized, total_examples=total_examples, epochs=model_2.iter)
model_2.similarity('kaggle', 'google') | code |
17132944/cell_5 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from gensim.models import KeyedVectors
from gensim.models import Word2Vec
from nltk.tokenize import RegexpTokenizer
import pandas as pd
import gensim
from gensim.models import Word2Vec
from gensim.models import KeyedVectors
import pandas as pd
from nltk.tokenize import RegexpTokenizer
forum_posts = pd.read_csv('../input/meta-kaggle/ForumMessages.csv')
sentences = forum_posts.Message.astype('str').tolist()
tokenizer = RegexpTokenizer('\\w+')
sentences_tokenized = [w.lower() for w in sentences]
sentences_tokenized = [tokenizer.tokenize(i) for i in sentences_tokenized]
model = KeyedVectors.load_word2vec_format('../input/word2vec-google/GoogleNews-vectors-negative300.bin', binary=True)
model_2 = Word2Vec(size=300, min_count=1)
model_2.build_vocab(sentences_tokenized)
total_examples = model_2.corpus_count
model_2.build_vocab([list(model.vocab.keys())], update=True)
model_2.intersect_word2vec_format('../input/word2vec-google/GoogleNews-vectors-negative300.bin', binary=True)
model_2.train(sentences_tokenized, total_examples=total_examples, epochs=model_2.iter) | code |
2016332/cell_9 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd
import plotly.graph_objs as go
import plotly.offline as pyo
data_df = pd.read_csv('../input/mushrooms.csv')
data_df['y'] = data_df['class'].map({'p': 1, 'e': 0})
feature_columns = [c for c in data_df.columns if not c in ('class', 'y')]
stats_df = []
single_val_c = {}
for i, c in enumerate(feature_columns):
if data_df[c].nunique() == 1:
single_val_c[c] = data_df[c].unique()[0]
continue
gb = data_df.groupby(c)
m = gb['y'].mean()
s = gb.size()
df = pd.DataFrame(index=range(len(m)))
df['col'] = c
df['val'] = m.index.values
df['positive_percentage'] = m.values
df['quantity_percentage'] = s.values / s.sum()
stats_df.append(df)
trace_prate = go.Bar(x=df['val'], y=df['positive_percentage'] * 100, name='positive percentage')
trace_cnt = go.Bar(x=df['val'], y=df['quantity_percentage'] * 100, name='quantity percentage')
layout = go.Layout(xaxis=dict(title=c), yaxis=dict(title='positive and quantity percentage'))
fig = go.Figure(data=[trace_prate, trace_cnt], layout=layout)
stats_df = pd.concat(stats_df, axis=0)
for c in single_val_c.keys():
print('The column %s only has one unique value with %r.' % (c, single_val_c[c]))
print('It does work for the classification, which will be removed.')
feature_columns.remove(c) | code |
2016332/cell_4 | [
"text_html_output_1.png"
] | import pandas as pd
data_df = pd.read_csv('../input/mushrooms.csv')
data_df.info() | code |
2016332/cell_7 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd
import plotly.graph_objs as go
import plotly.offline as pyo
data_df = pd.read_csv('../input/mushrooms.csv')
data_df['y'] = data_df['class'].map({'p': 1, 'e': 0})
feature_columns = [c for c in data_df.columns if not c in ('class', 'y')]
stats_df = []
single_val_c = {}
for i, c in enumerate(feature_columns):
if data_df[c].nunique() == 1:
single_val_c[c] = data_df[c].unique()[0]
continue
gb = data_df.groupby(c)
m = gb['y'].mean()
s = gb.size()
df = pd.DataFrame(index=range(len(m)))
df['col'] = c
df['val'] = m.index.values
df['positive_percentage'] = m.values
df['quantity_percentage'] = s.values / s.sum()
stats_df.append(df)
trace_prate = go.Bar(x=df['val'], y=df['positive_percentage'] * 100, name='positive percentage')
trace_cnt = go.Bar(x=df['val'], y=df['quantity_percentage'] * 100, name='quantity percentage')
layout = go.Layout(xaxis=dict(title=c), yaxis=dict(title='positive and quantity percentage'))
fig = go.Figure(data=[trace_prate, trace_cnt], layout=layout)
pyo.iplot(fig)
stats_df = pd.concat(stats_df, axis=0) | code |
2016332/cell_18 | [
"text_html_output_1.png"
] | from sklearn.linear_model import RidgeClassifier
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
from sklearn.model_selection import GridSearchCV, train_test_split
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import LabelEncoder, PolynomialFeatures
from time import time
import numpy as np
import pandas as pd
import plotly.graph_objs as go
import plotly.offline as pyo
data_df = pd.read_csv('../input/mushrooms.csv')
data_df['y'] = data_df['class'].map({'p': 1, 'e': 0})
feature_columns = [c for c in data_df.columns if not c in ('class', 'y')]
stats_df = []
single_val_c = {}
for i, c in enumerate(feature_columns):
if data_df[c].nunique() == 1:
single_val_c[c] = data_df[c].unique()[0]
continue
gb = data_df.groupby(c)
m = gb['y'].mean()
s = gb.size()
df = pd.DataFrame(index=range(len(m)))
df['col'] = c
df['val'] = m.index.values
df['positive_percentage'] = m.values
df['quantity_percentage'] = s.values / s.sum()
stats_df.append(df)
trace_prate = go.Bar(x=df['val'], y=df['positive_percentage'] * 100, name='positive percentage')
trace_cnt = go.Bar(x=df['val'], y=df['quantity_percentage'] * 100, name='quantity percentage')
layout = go.Layout(xaxis=dict(title=c), yaxis=dict(title='positive and quantity percentage'))
fig = go.Figure(data=[trace_prate, trace_cnt], layout=layout)
stats_df = pd.concat(stats_df, axis=0)
for c in single_val_c.keys():
feature_columns.remove(c)
data_all = pd.get_dummies(data=data_df, columns=x_columns, prefix=x_columns).drop(list(single_val_c.keys()) + ['class'], axis=1)
def ridge_model(X_train, y_train):
r_c = Pipeline([('poly', PolynomialFeatures(interaction_only=True)), ('clf', RidgeClassifier())])
params_pool = {'poly__degree': [2, 3], 'clf__alpha': np.logspace(-1, 3, num=6)}
gs_c = GridSearchCV(r_c, param_grid=params_pool, n_jobs=-1, cv=4)
gs_c.fit(X_train, y_train)
return gs_c
def do_model_train(model_name, X_train, y_train, X_test, y_test):
bg = time()
if 'Ridge' == model_name:
model = ridge_model(X_train, y_train)
y_hat = model.predict(X_train)
y_hat = model.predict(X_test)
X_all, y_all = (data_all[[c for c in data_all.columns if c != 'y']], data_all['y'])
X_train, X_test, y_train, y_test = train_test_split(X_all, y_all, test_size=0.33, random_state=1)
do_model_train('Ridge', X_train, y_train, X_test, y_test) | code |
2016332/cell_8 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd
import plotly.graph_objs as go
import plotly.offline as pyo
data_df = pd.read_csv('../input/mushrooms.csv')
data_df['y'] = data_df['class'].map({'p': 1, 'e': 0})
feature_columns = [c for c in data_df.columns if not c in ('class', 'y')]
stats_df = []
single_val_c = {}
for i, c in enumerate(feature_columns):
if data_df[c].nunique() == 1:
single_val_c[c] = data_df[c].unique()[0]
continue
gb = data_df.groupby(c)
m = gb['y'].mean()
s = gb.size()
df = pd.DataFrame(index=range(len(m)))
df['col'] = c
df['val'] = m.index.values
df['positive_percentage'] = m.values
df['quantity_percentage'] = s.values / s.sum()
stats_df.append(df)
trace_prate = go.Bar(x=df['val'], y=df['positive_percentage'] * 100, name='positive percentage')
trace_cnt = go.Bar(x=df['val'], y=df['quantity_percentage'] * 100, name='quantity percentage')
layout = go.Layout(xaxis=dict(title=c), yaxis=dict(title='positive and quantity percentage'))
fig = go.Figure(data=[trace_prate, trace_cnt], layout=layout)
stats_df = pd.concat(stats_df, axis=0)
stats_df.describe() | code |
2016332/cell_15 | [
"text_plain_output_1.png"
] | import pandas as pd
import plotly.graph_objs as go
import plotly.offline as pyo
data_df = pd.read_csv('../input/mushrooms.csv')
data_df['y'] = data_df['class'].map({'p': 1, 'e': 0})
feature_columns = [c for c in data_df.columns if not c in ('class', 'y')]
stats_df = []
single_val_c = {}
for i, c in enumerate(feature_columns):
if data_df[c].nunique() == 1:
single_val_c[c] = data_df[c].unique()[0]
continue
gb = data_df.groupby(c)
m = gb['y'].mean()
s = gb.size()
df = pd.DataFrame(index=range(len(m)))
df['col'] = c
df['val'] = m.index.values
df['positive_percentage'] = m.values
df['quantity_percentage'] = s.values / s.sum()
stats_df.append(df)
trace_prate = go.Bar(x=df['val'], y=df['positive_percentage'] * 100, name='positive percentage')
trace_cnt = go.Bar(x=df['val'], y=df['quantity_percentage'] * 100, name='quantity percentage')
layout = go.Layout(xaxis=dict(title=c), yaxis=dict(title='positive and quantity percentage'))
fig = go.Figure(data=[trace_prate, trace_cnt], layout=layout)
stats_df = pd.concat(stats_df, axis=0)
for c in single_val_c.keys():
feature_columns.remove(c)
data_all = pd.get_dummies(data=data_df, columns=x_columns, prefix=x_columns).drop(list(single_val_c.keys()) + ['class'], axis=1)
data_all.head() | code |
2016332/cell_3 | [
"text_html_output_10.png",
"text_html_output_16.png",
"text_html_output_4.png",
"text_html_output_6.png",
"text_html_output_2.png",
"text_html_output_15.png",
"text_html_output_5.png",
"text_html_output_14.png",
"text_html_output_19.png",
"text_html_output_9.png",
"text_html_output_13.png",
"text_html_output_20.png",
"text_html_output_21.png",
"text_html_output_1.png",
"text_html_output_17.png",
"text_html_output_18.png",
"text_html_output_12.png",
"text_html_output_11.png",
"text_html_output_8.png",
"text_html_output_3.png",
"text_html_output_7.png"
] | from subprocess import check_output
np.set_printoptions(suppress=True, linewidth=300)
pd.options.display.float_format = lambda x: '%0.6f' % x
pyo.init_notebook_mode(connected=True)
print(check_output(['ls', '../input']).decode('utf-8')) | code |
2016332/cell_14 | [
"text_plain_output_1.png"
] | import pandas as pd
import plotly.graph_objs as go
import plotly.offline as pyo
data_df = pd.read_csv('../input/mushrooms.csv')
data_df['y'] = data_df['class'].map({'p': 1, 'e': 0})
feature_columns = [c for c in data_df.columns if not c in ('class', 'y')]
stats_df = []
single_val_c = {}
for i, c in enumerate(feature_columns):
if data_df[c].nunique() == 1:
single_val_c[c] = data_df[c].unique()[0]
continue
gb = data_df.groupby(c)
m = gb['y'].mean()
s = gb.size()
df = pd.DataFrame(index=range(len(m)))
df['col'] = c
df['val'] = m.index.values
df['positive_percentage'] = m.values
df['quantity_percentage'] = s.values / s.sum()
stats_df.append(df)
trace_prate = go.Bar(x=df['val'], y=df['positive_percentage'] * 100, name='positive percentage')
trace_cnt = go.Bar(x=df['val'], y=df['quantity_percentage'] * 100, name='quantity percentage')
layout = go.Layout(xaxis=dict(title=c), yaxis=dict(title='positive and quantity percentage'))
fig = go.Figure(data=[trace_prate, trace_cnt], layout=layout)
stats_df = pd.concat(stats_df, axis=0)
for c in single_val_c.keys():
feature_columns.remove(c)
data_all = pd.get_dummies(data=data_df, columns=x_columns, prefix=x_columns).drop(list(single_val_c.keys()) + ['class'], axis=1)
data_all.info() | code |
2016332/cell_5 | [
"text_plain_output_1.png"
] | import pandas as pd
data_df = pd.read_csv('../input/mushrooms.csv')
data_df.head() | code |
16116423/cell_6 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train = pd.read_csv('../input/train.csv')
test = pd.read_csv('../input/test.csv')
sample_sub = pd.read_csv('../input/sample_submission.csv')
from copy import copy
X_train = train.drop(columns=['scalar_coupling_constant']).copy()
y_train = train['scalar_coupling_constant'].copy()
X_test = test.copy()
X_train = X_train.drop(columns=['id'])
X_test = X_test.drop(columns=['id'])
print(f'X_train.shape: {X_train.shape}')
print(f'X_test.shape: {X_test.shape}') | code |
16116423/cell_1 | [
"text_plain_output_1.png"
] | # This Python 3 environment comes with many helpful analytics libraries installed
# It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python
# For example, here's several helpful packages to load in
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
!pip install category_encoders
!pip install LightGBM
import category_encoders as ce
import lightgbm as lgbm
# Input data files are available in the "../input/" directory.
# For example, running this (by clicking run or pressing Shift+Enter) will list the files in the input directory
import os
print(os.listdir("../input"))
# Any results you write to the current directory are saved as output. | code |
16116423/cell_10 | [
"text_plain_output_1.png"
] | from sklearn.model_selection import KFold
import lightgbm as lgbm
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train = pd.read_csv('../input/train.csv')
test = pd.read_csv('../input/test.csv')
sample_sub = pd.read_csv('../input/sample_submission.csv')
from copy import copy
X_train = train.drop(columns=['scalar_coupling_constant']).copy()
y_train = train['scalar_coupling_constant'].copy()
X_test = test.copy()
X_train = X_train.drop(columns=['id'])
X_test = X_test.drop(columns=['id'])
from sklearn.model_selection import KFold
from sklearn.metrics import mean_absolute_error as mae
kf = KFold(n_splits=5)
fold = 0
for train_index, val_index in kf.split(X_train):
fold += 1
lgbm_model = lgbm.LGBMRegressor()
lgbm_model.fit(X_train.loc[train_index, :], y_train[train_index])
y_val = lgbm_model.predict(X_train.loc[val_index, :])
print(f'fold{fold} score: {mae(y_train[val_index], y_val)}') | code |
16116423/cell_5 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train = pd.read_csv('../input/train.csv')
test = pd.read_csv('../input/test.csv')
sample_sub = pd.read_csv('../input/sample_submission.csv')
from copy import copy
X_train = train.drop(columns=['scalar_coupling_constant']).copy()
y_train = train['scalar_coupling_constant'].copy()
X_test = test.copy()
print(f'X_train.shape: {X_train.shape}')
print(f'X_test.shape: {X_test.shape}') | code |
122263646/cell_2 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import setuptools
from transformers import pipeline
import pandas as pd | code |
122263646/cell_1 | [
"text_plain_output_1.png"
] | #!pip install transformers==2.10.0
#!pip install simpletransformers
!pip install pyopenssl | code |
122263646/cell_3 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd
data = pd.read_csv('/kaggle/input/large-quotes/Quotes_Large.csv')
data.head() | code |
16121779/cell_4 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('../input/Big_Cities_Health_Data_Inventory.csv')
df.head() | code |
16121779/cell_6 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('../input/Big_Cities_Health_Data_Inventory.csv')
df['Year'] | code |
16121779/cell_2 | [
"text_plain_output_1.png"
] | import os
import os
import numpy as np
import pandas as pd
import os
import numpy as np
import pandas as pd
import os
print(os.listdir('../input')) | code |
16121779/cell_11 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('../input/Big_Cities_Health_Data_Inventory.csv')
df.columns
df['Methods'].nunique() | code |
16121779/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
print(os.listdir('../input')) | code |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.