path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
129005932/cell_13
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import matplotlib.pyplot as plt import matplotlib.pyplot as plt import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import seaborn as sns import seaborn as sns import pandas as pd import matplotlib.pyplot as plt import seaborn as sns train = pd.read_csv('/kaggle/input/diamonds/diamonds.csv') train train.isnull().sum() import matplotlib.pyplot as plt import numpy as np import seaborn as sns data = train Q1 = train['carat'].quantile(0.25) Q3 = train['carat'].quantile(0.75) IQR = Q3 - Q1 train = train[(train['carat'] >= Q1 - 1.5 * IQR) & (train['carat'] <= Q3 + 1.5 * IQR)] import matplotlib.pyplot as plt import numpy as np import seaborn as sns data = train from sklearn.preprocessing import LabelEncoder labelencoder_cut = LabelEncoder() train['cut'] = labelencoder_cut.fit_transform(train['cut']) labelencoder_color = LabelEncoder() train['color'] = labelencoder_color.fit_transform(train['color']) labelencoder_clarity = LabelEncoder() train['clarity'] = labelencoder_clarity.fit_transform(train['clarity']) plt.figure(figsize=(20, 15)) correlations = train.corr() sns.heatmap(correlations, cmap='coolwarm', annot=True) plt.show()
code
129005932/cell_9
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import seaborn as sns import seaborn as sns import seaborn as sns import pandas as pd import matplotlib.pyplot as plt import seaborn as sns train = pd.read_csv('/kaggle/input/diamonds/diamonds.csv') train train.isnull().sum() import matplotlib.pyplot as plt import numpy as np import seaborn as sns data = train Q1 = train['carat'].quantile(0.25) Q3 = train['carat'].quantile(0.75) IQR = Q3 - Q1 train = train[(train['carat'] >= Q1 - 1.5 * IQR) & (train['carat'] <= Q3 + 1.5 * IQR)] import matplotlib.pyplot as plt import numpy as np import seaborn as sns data = train sns.boxplot(x=data['carat'])
code
129005932/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import matplotlib.pyplot as plt import seaborn as sns train = pd.read_csv('/kaggle/input/diamonds/diamonds.csv') train train.isnull().sum()
code
129005932/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd import matplotlib.pyplot as plt import seaborn as sns train = pd.read_csv('/kaggle/input/diamonds/diamonds.csv') train train.isnull().sum() plt.hist(train['price'])
code
129005932/cell_11
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import pandas as pd import pandas as pd import matplotlib.pyplot as plt import seaborn as sns train = pd.read_csv('/kaggle/input/diamonds/diamonds.csv') train train.isnull().sum() Q1 = train['carat'].quantile(0.25) Q3 = train['carat'].quantile(0.75) IQR = Q3 - Q1 train = train[(train['carat'] >= Q1 - 1.5 * IQR) & (train['carat'] <= Q3 + 1.5 * IQR)] from sklearn.preprocessing import LabelEncoder labelencoder_cut = LabelEncoder() train['cut'] = labelencoder_cut.fit_transform(train['cut']) labelencoder_color = LabelEncoder() train['color'] = labelencoder_color.fit_transform(train['color']) labelencoder_clarity = LabelEncoder() train['clarity'] = labelencoder_clarity.fit_transform(train['clarity']) train.info()
code
129005932/cell_1
[ "text_html_output_1.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import pandas as pd import matplotlib.pyplot as plt import seaborn as sns train = pd.read_csv('/kaggle/input/diamonds/diamonds.csv') train
code
129005932/cell_7
[ "image_output_1.png" ]
import pandas as pd import seaborn as sns import seaborn as sns import pandas as pd import matplotlib.pyplot as plt import seaborn as sns train = pd.read_csv('/kaggle/input/diamonds/diamonds.csv') train train.isnull().sum() import matplotlib.pyplot as plt import numpy as np import seaborn as sns data = train sns.boxplot(x=data['carat'])
code
129005932/cell_18
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import matplotlib.pyplot as plt import matplotlib.pyplot as plt import matplotlib.pyplot as plt import matplotlib.pyplot as plt import pandas as pd import pandas as pd import seaborn as sns import seaborn as sns import seaborn as sns import seaborn as sns import pandas as pd import matplotlib.pyplot as plt import seaborn as sns train = pd.read_csv('/kaggle/input/diamonds/diamonds.csv') train train.isnull().sum() import matplotlib.pyplot as plt import numpy as np import seaborn as sns data = train Q1 = train['carat'].quantile(0.25) Q3 = train['carat'].quantile(0.75) IQR = Q3 - Q1 train = train[(train['carat'] >= Q1 - 1.5 * IQR) & (train['carat'] <= Q3 + 1.5 * IQR)] import matplotlib.pyplot as plt import numpy as np import seaborn as sns data = train from sklearn.preprocessing import LabelEncoder labelencoder_cut = LabelEncoder() train['cut'] = labelencoder_cut.fit_transform(train['cut']) labelencoder_color = LabelEncoder() train['color'] = labelencoder_color.fit_transform(train['color']) labelencoder_clarity = LabelEncoder() train['clarity'] = labelencoder_clarity.fit_transform(train['clarity']) correlations = train.corr() sns.scatterplot(x=X.ravel(), y=y)
code
129005932/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd import matplotlib.pyplot as plt import seaborn as sns train = pd.read_csv('/kaggle/input/diamonds/diamonds.csv') train train.describe()
code
129005932/cell_10
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd import matplotlib.pyplot as plt import seaborn as sns train = pd.read_csv('/kaggle/input/diamonds/diamonds.csv') train train.isnull().sum() Q1 = train['carat'].quantile(0.25) Q3 = train['carat'].quantile(0.75) IQR = Q3 - Q1 train = train[(train['carat'] >= Q1 - 1.5 * IQR) & (train['carat'] <= Q3 + 1.5 * IQR)] train.info()
code
129005932/cell_12
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import pandas as pd import seaborn as sns import seaborn as sns import seaborn as sns import pandas as pd import matplotlib.pyplot as plt import seaborn as sns train = pd.read_csv('/kaggle/input/diamonds/diamonds.csv') train train.isnull().sum() import matplotlib.pyplot as plt import numpy as np import seaborn as sns data = train Q1 = train['carat'].quantile(0.25) Q3 = train['carat'].quantile(0.75) IQR = Q3 - Q1 train = train[(train['carat'] >= Q1 - 1.5 * IQR) & (train['carat'] <= Q3 + 1.5 * IQR)] import matplotlib.pyplot as plt import numpy as np import seaborn as sns data = train from sklearn.preprocessing import LabelEncoder labelencoder_cut = LabelEncoder() train['cut'] = labelencoder_cut.fit_transform(train['cut']) labelencoder_color = LabelEncoder() train['color'] = labelencoder_color.fit_transform(train['color']) labelencoder_clarity = LabelEncoder() train['clarity'] = labelencoder_clarity.fit_transform(train['clarity']) sns.barplot(data=train, x='color', y='price')
code
129005932/cell_5
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd import matplotlib.pyplot as plt import seaborn as sns train = pd.read_csv('/kaggle/input/diamonds/diamonds.csv') train train.isnull().sum() plt.hist(train['carat'])
code
18102076/cell_21
[ "text_plain_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/daily_weather.csv') data.columns data[data.isnull().any(axis=1)] before_rows = data.shape[0] data = data.dropna() after_rows = data.shape[0] clean_data = data.copy() humidity_level = 24.99 clean_data['high_humidity_label'] = (clean_data['relative_humidity_3pm'] > humidity_level) * 1 y = clean_data[['high_humidity_label']].copy() y y.head()
code
18102076/cell_13
[ "text_html_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/daily_weather.csv') data.columns data[data.isnull().any(axis=1)] before_rows = data.shape[0] data = data.dropna() after_rows = data.shape[0] print(after_rows)
code
18102076/cell_25
[ "text_html_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/daily_weather.csv') data.columns data[data.isnull().any(axis=1)] before_rows = data.shape[0] data = data.dropna() after_rows = data.shape[0] clean_data = data.copy() humidity_level = 24.99 clean_data['high_humidity_label'] = (clean_data['relative_humidity_3pm'] > humidity_level) * 1 morning_features = ['air_pressure_9am', 'air_temp_9am', 'avg_wind_direction_9am', 'avg_wind_speed_9am', 'max_wind_direction_9am', 'max_wind_speed_9am', 'rain_accumulation_9am', 'rain_duration_9am'] X = clean_data[morning_features].copy() X.columns
code
18102076/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/daily_weather.csv') data.columns
code
18102076/cell_34
[ "text_html_output_1.png" ]
from sklearn.tree import DecisionTreeClassifier humidity_classifier = DecisionTreeClassifier(max_leaf_nodes=10, random_state=0) humidity_classifier.fit(X_train, y_train) type(humidity_classifier)
code
18102076/cell_30
[ "text_plain_output_1.png" ]
X_train.head()
code
18102076/cell_33
[ "text_plain_output_1.png" ]
from sklearn.tree import DecisionTreeClassifier humidity_classifier = DecisionTreeClassifier(max_leaf_nodes=10, random_state=0) humidity_classifier.fit(X_train, y_train)
code
18102076/cell_20
[ "text_plain_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/daily_weather.csv') data.columns data[data.isnull().any(axis=1)] before_rows = data.shape[0] data = data.dropna() after_rows = data.shape[0] clean_data = data.copy() humidity_level = 24.99 clean_data['high_humidity_label'] = (clean_data['relative_humidity_3pm'] > humidity_level) * 1 clean_data['relative_humidity_3pm'].head()
code
18102076/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/daily_weather.csv') data.columns data.head()
code
18102076/cell_40
[ "text_plain_output_1.png" ]
from sklearn.metrics import accuracy_score from sklearn.tree import DecisionTreeClassifier humidity_classifier = DecisionTreeClassifier(max_leaf_nodes=10, random_state=0) humidity_classifier.fit(X_train, y_train) predictions = humidity_classifier.predict(X_test) accuracy_score(y_true=y_test, y_pred=predictions)
code
18102076/cell_29
[ "text_html_output_1.png" ]
print(type(X_train), type(X_test), type(y_train), type(y_test))
code
18102076/cell_26
[ "text_plain_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/daily_weather.csv') data.columns data[data.isnull().any(axis=1)] before_rows = data.shape[0] data = data.dropna() after_rows = data.shape[0] clean_data = data.copy() humidity_level = 24.99 clean_data['high_humidity_label'] = (clean_data['relative_humidity_3pm'] > humidity_level) * 1 y = clean_data[['high_humidity_label']].copy() y y.columns
code
18102076/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/daily_weather.csv') data.columns data[data.isnull().any(axis=1)] before_rows = data.shape[0] print(before_rows)
code
18102076/cell_19
[ "text_plain_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/daily_weather.csv') data.columns data[data.isnull().any(axis=1)] before_rows = data.shape[0] data = data.dropna() after_rows = data.shape[0] clean_data = data.copy() humidity_level = 24.99 clean_data['high_humidity_label'] = (clean_data['relative_humidity_3pm'] > humidity_level) * 1 y = clean_data[['high_humidity_label']].copy() y
code
18102076/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/daily_weather.csv') data.columns data[data.isnull().any(axis=1)]
code
18102076/cell_15
[ "text_html_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/daily_weather.csv') data.columns data[data.isnull().any(axis=1)] before_rows = data.shape[0] data = data.dropna() after_rows = data.shape[0] before_rows - after_rows
code
18102076/cell_38
[ "text_plain_output_1.png" ]
y_test['high_humidity_label'][:10]
code
18102076/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/daily_weather.csv') data.columns data[data.isnull().any(axis=1)] before_rows = data.shape[0] data = data.dropna() after_rows = data.shape[0] clean_data = data.copy() humidity_level = 24.99 clean_data['high_humidity_label'] = (clean_data['relative_humidity_3pm'] > humidity_level) * 1 print(clean_data['high_humidity_label'])
code
18102076/cell_31
[ "text_plain_output_1.png" ]
y_train.head()
code
18102076/cell_37
[ "text_html_output_1.png" ]
from sklearn.tree import DecisionTreeClassifier humidity_classifier = DecisionTreeClassifier(max_leaf_nodes=10, random_state=0) humidity_classifier.fit(X_train, y_train) predictions = humidity_classifier.predict(X_test) predictions[:10]
code
329676/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd battles_df = pd.read_csv('../input/battles.csv') battles_df.info()
code
329676/cell_6
[ "text_html_output_1.png" ]
import pandas as pd import seaborn as sns battles_df = pd.read_csv('../input/battles.csv') sns.countplot(x='attacker_king', data=battles_df, hue='attacker_outcome')
code
329676/cell_11
[ "text_html_output_1.png" ]
import pandas as pd battles_df = pd.read_csv('../input/battles.csv') battles_df.drop('year', axis=1, inplace=True) battles_df.drop(['name', 'battle_number', 'note'], axis=1, inplace=True) battles_df.info()
code
329676/cell_19
[ "text_plain_output_1.png" ]
import pandas as pd battles_df = pd.read_csv('../input/battles.csv') battles_df.drop('year', axis=1, inplace=True) battles_df.drop(['name', 'battle_number', 'note'], axis=1, inplace=True) pattern = '[a-z][0-9]' test = battles_df[~battles_df.attacker_2.isnull()].attacker_2.replace(pattern, 1, regex=True) battles_df.attacker_2.fillna(0, inplace=True) battles_df.attacker_3.fillna(0, inplace=True) battles_df.attacker_4.fillna(0, inplace=True) def find_attacker_allies(my_data): col2 = my_data['attacker_2'] col3 = my_data['attacker_3'] col4 = my_data['attacker_4'] number = 0 if col2 != 0: number = number + 1 if col3 != 0: number = number + 1 if col4 != 0: number = number + 1 return number battles_df['attacker_allies'] = battles_df.apply(find_attacker_allies, axis=1) battles_df.drop(['attacker_2', 'attacker_3', 'attacker_4'], axis=1, inplace=True) battles_df.defender_2.fillna(0, inplace=True) battles_df.defender_3.fillna(0, inplace=True) battles_df.defender_4.fillna(0, inplace=True) def find_defender_allies(my_data): col2 = my_data['defender_2'] col3 = my_data['defender_3'] col4 = my_data['defender_4'] number = 0 if col2 != 0: number = number + 1 if col3 != 0: number = number + 1 if col4 != 0: number = number + 1 return number battles_df['defender_allies'] = battles_df.apply(find_defender_allies, axis=1) battles_df.drop(['defender_2', 'defender_3', 'defender_4'], axis=1, inplace=True) battles_df.head()
code
329676/cell_8
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import seaborn as sns battles_df = pd.read_csv('../input/battles.csv') sns.barplot(x='year', y='attacker_outcome', data=battles_df)
code
329676/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd battles_df = pd.read_csv('../input/battles.csv') battles_df.head()
code
329676/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd battles_df = pd.read_csv('../input/battles.csv') battles_df.drop('year', axis=1, inplace=True) battles_df.drop(['name', 'battle_number', 'note'], axis=1, inplace=True) battles_df.attacker_2.head()
code
329676/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd battles_df = pd.read_csv('../input/battles.csv') battles_df.attacker_outcome.head()
code
129017471/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd import matplotlib.pyplot as plt import seaborn as sns train = pd.read_csv('/kaggle/input/mobile-price-classification/train.csv') train train.isnull().sum()
code
129017471/cell_2
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd import matplotlib.pyplot as plt import seaborn as sns train = pd.read_csv('/kaggle/input/mobile-price-classification/train.csv') train
code
129017471/cell_11
[ "text_html_output_1.png", "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.tree import DecisionTreeClassifier clf = tree.DecisionTreeClassifier(random_state=8, max_depth=3) clf.fit(X_train, y_train) clf.score(X_test, y_test)
code
129017471/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
129017471/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import seaborn as sns import seaborn as sns import pandas as pd import matplotlib.pyplot as plt import seaborn as sns train = pd.read_csv('/kaggle/input/mobile-price-classification/train.csv') train train.isnull().sum() import matplotlib.pyplot as plt import numpy as np import seaborn as sns data = train Q1 = train['fc'].quantile(0.25) Q3 = train['fc'].quantile(0.75) IQR = Q3 - Q1 train = train[(train['fc'] >= Q1 - 1.5 * IQR) & (train['fc'] <= Q3 + 1.5 * IQR)] import matplotlib.pyplot as plt import numpy as np import seaborn as sns data = train sns.boxplot(x=data['fc'])
code
129017471/cell_8
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd import matplotlib.pyplot as plt import seaborn as sns train = pd.read_csv('/kaggle/input/mobile-price-classification/train.csv') train train.isnull().sum() Q1 = train['fc'].quantile(0.25) Q3 = train['fc'].quantile(0.75) IQR = Q3 - Q1 train = train[(train['fc'] >= Q1 - 1.5 * IQR) & (train['fc'] <= Q3 + 1.5 * IQR)] train.info()
code
129017471/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd import matplotlib.pyplot as plt import seaborn as sns train = pd.read_csv('/kaggle/input/mobile-price-classification/train.csv') train train.describe()
code
129017471/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import seaborn as sns import pandas as pd import matplotlib.pyplot as plt import seaborn as sns train = pd.read_csv('/kaggle/input/mobile-price-classification/train.csv') train train.isnull().sum() import matplotlib.pyplot as plt import numpy as np import seaborn as sns data = train sns.boxplot(x=data['fc'])
code
88105260/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
88105260/cell_5
[ "application_vnd.jupyter.stderr_output_1.png" ]
csv = pandas.read_csv('../input/hourly-dataset-of-vehicle-for-traffic-analysis/data.csv')
code
73065634/cell_2
[ "text_plain_output_1.png" ]
import urllib.request url = urllib.request.urlopen('https://www.reddit.com/r/todayilearned/top.json?limit=100') text = url.read().decode() destination = open('json_data.json', 'w') destination.write(text)
code
73065634/cell_3
[ "text_plain_output_1.png" ]
import json import json f = open('json_data.json', 'r') copy_from_disk = json.load(f) for index in range(len(copy_from_disk['data']['children'])): print(copy_from_disk['data']['children'][index]['data']['title'])
code
16154305/cell_21
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns brazil = pd.read_csv('../input/BRAZIL_CITIES.csv', sep=';', decimal=',') features = ['CITY', 'STATE', 'CAPITAL', 'IDHM', 'IDHM_Longevidade', 'IDHM_Educacao', 'LONG', 'LAT', 'ALT', 'AREA', 'RURAL_URBAN', 'GVA_AGROPEC', 'GVA_INDUSTRY', 'GVA_SERVICES', 'GVA_PUBLIC', 'GDP', 'POP_GDP', 'GDP_CAPITA', 'GVA_MAIN'] df = brazil[features] pd.isnull(df).sum() df.dropna(inplace=True) df.columns = ['city', 'state', 'capital', 'HDI', 'life_expect_index', 'education_index', 'longitude', 'latitude', 'altitude', 'area', 'typology', 'GVA_agriculture', 'GVA_industry', 'GVA_services', 'GVA_public_services', 'GDP', 'population', 'GDP_per_capita', 'GVA_main'] GVA_main_dict = {'Administração, defesa, educação e saúde públicas e seguridade social': 'Public Services', 'Demais serviços': 'Other services', 'Agricultura, inclusive apoio à agricultura e a pós colheita': 'Agriculture', 'Indústrias de transformação': 'Manufacturing Industries', 'Pecuária, inclusive apoio à pecuária': 'Livestock', 'Eletricidade e gás, água, esgoto, atividades de gestão de resíduos e descontaminação': 'Public Utilities', 'Comércio e reparação de veículos automotores e motocicletas': 'Vehicle sales & repair', 'Indústrias extrativas': 'Extractive Industries', 'Produção florestal, pesca e aquicultura': 'Forestry & Aquaculture', 'Construção': 'Construction'} df.GVA_main = df.GVA_main.map(GVA_main_dict) typology_dict = {'Rural Adjacente': 'Adjacent Rural', 'Urbano': 'Urban', 'Intermediário Adjacente': 'Adjacent Intermediate', 'Rural Remoto': 'Remote Rural', 'Intermediário Remoto': 'Remote Intermediate'} df.typology = df.typology.map(typology_dict) plt.figure(figsize=(10, 10)) sns.jointplot('population', 'GDP', data=df, kind='reg', color='green')
code
16154305/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd brazil = pd.read_csv('../input/BRAZIL_CITIES.csv', sep=';', decimal=',') features = ['CITY', 'STATE', 'CAPITAL', 'IDHM', 'IDHM_Longevidade', 'IDHM_Educacao', 'LONG', 'LAT', 'ALT', 'AREA', 'RURAL_URBAN', 'GVA_AGROPEC', 'GVA_INDUSTRY', 'GVA_SERVICES', 'GVA_PUBLIC', 'GDP', 'POP_GDP', 'GDP_CAPITA', 'GVA_MAIN'] df = brazil[features] pd.isnull(df).sum() df.dropna(inplace=True) df.columns = ['city', 'state', 'capital', 'HDI', 'life_expect_index', 'education_index', 'longitude', 'latitude', 'altitude', 'area', 'typology', 'GVA_agriculture', 'GVA_industry', 'GVA_services', 'GVA_public_services', 'GDP', 'population', 'GDP_per_capita', 'GVA_main'] GVA_main_dict = {'Administração, defesa, educação e saúde públicas e seguridade social': 'Public Services', 'Demais serviços': 'Other services', 'Agricultura, inclusive apoio à agricultura e a pós colheita': 'Agriculture', 'Indústrias de transformação': 'Manufacturing Industries', 'Pecuária, inclusive apoio à pecuária': 'Livestock', 'Eletricidade e gás, água, esgoto, atividades de gestão de resíduos e descontaminação': 'Public Utilities', 'Comércio e reparação de veículos automotores e motocicletas': 'Vehicle sales & repair', 'Indústrias extrativas': 'Extractive Industries', 'Produção florestal, pesca e aquicultura': 'Forestry & Aquaculture', 'Construção': 'Construction'} df.GVA_main = df.GVA_main.map(GVA_main_dict) typology_dict = {'Rural Adjacente': 'Adjacent Rural', 'Urbano': 'Urban', 'Intermediário Adjacente': 'Adjacent Intermediate', 'Rural Remoto': 'Remote Rural', 'Intermediário Remoto': 'Remote Intermediate'} df.typology = df.typology.map(typology_dict) df.GVA_main.value_counts().iplot(kind='bar', colors='green')
code
16154305/cell_25
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns brazil = pd.read_csv('../input/BRAZIL_CITIES.csv', sep=';', decimal=',') features = ['CITY', 'STATE', 'CAPITAL', 'IDHM', 'IDHM_Longevidade', 'IDHM_Educacao', 'LONG', 'LAT', 'ALT', 'AREA', 'RURAL_URBAN', 'GVA_AGROPEC', 'GVA_INDUSTRY', 'GVA_SERVICES', 'GVA_PUBLIC', 'GDP', 'POP_GDP', 'GDP_CAPITA', 'GVA_MAIN'] df = brazil[features] pd.isnull(df).sum() df.dropna(inplace=True) df.columns = ['city', 'state', 'capital', 'HDI', 'life_expect_index', 'education_index', 'longitude', 'latitude', 'altitude', 'area', 'typology', 'GVA_agriculture', 'GVA_industry', 'GVA_services', 'GVA_public_services', 'GDP', 'population', 'GDP_per_capita', 'GVA_main'] GVA_main_dict = {'Administração, defesa, educação e saúde públicas e seguridade social': 'Public Services', 'Demais serviços': 'Other services', 'Agricultura, inclusive apoio à agricultura e a pós colheita': 'Agriculture', 'Indústrias de transformação': 'Manufacturing Industries', 'Pecuária, inclusive apoio à pecuária': 'Livestock', 'Eletricidade e gás, água, esgoto, atividades de gestão de resíduos e descontaminação': 'Public Utilities', 'Comércio e reparação de veículos automotores e motocicletas': 'Vehicle sales & repair', 'Indústrias extrativas': 'Extractive Industries', 'Produção florestal, pesca e aquicultura': 'Forestry & Aquaculture', 'Construção': 'Construction'} df.GVA_main = df.GVA_main.map(GVA_main_dict) typology_dict = {'Rural Adjacente': 'Adjacent Rural', 'Urbano': 'Urban', 'Intermediário Adjacente': 'Adjacent Intermediate', 'Rural Remoto': 'Remote Rural', 'Intermediário Remoto': 'Remote Intermediate'} df.typology = df.typology.map(typology_dict) plt.figure(figsize=(10, 8)) sns.boxplot(x='GDP_per_capita', y='GVA_main', palette=p, data=df)
code
16154305/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd brazil = pd.read_csv('../input/BRAZIL_CITIES.csv', sep=';', decimal=',') brazil['GVA_MAIN'].value_counts()
code
16154305/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd brazil = pd.read_csv('../input/BRAZIL_CITIES.csv', sep=';', decimal=',') features = ['CITY', 'STATE', 'CAPITAL', 'IDHM', 'IDHM_Longevidade', 'IDHM_Educacao', 'LONG', 'LAT', 'ALT', 'AREA', 'RURAL_URBAN', 'GVA_AGROPEC', 'GVA_INDUSTRY', 'GVA_SERVICES', 'GVA_PUBLIC', 'GDP', 'POP_GDP', 'GDP_CAPITA', 'GVA_MAIN'] df = brazil[features] pd.isnull(df).sum()
code
16154305/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd brazil = pd.read_csv('../input/BRAZIL_CITIES.csv', sep=';', decimal=',') features = ['CITY', 'STATE', 'CAPITAL', 'IDHM', 'IDHM_Longevidade', 'IDHM_Educacao', 'LONG', 'LAT', 'ALT', 'AREA', 'RURAL_URBAN', 'GVA_AGROPEC', 'GVA_INDUSTRY', 'GVA_SERVICES', 'GVA_PUBLIC', 'GDP', 'POP_GDP', 'GDP_CAPITA', 'GVA_MAIN'] df = brazil[features] pd.isnull(df).sum() df.dropna(inplace=True) df.columns = ['city', 'state', 'capital', 'HDI', 'life_expect_index', 'education_index', 'longitude', 'latitude', 'altitude', 'area', 'typology', 'GVA_agriculture', 'GVA_industry', 'GVA_services', 'GVA_public_services', 'GDP', 'population', 'GDP_per_capita', 'GVA_main'] GVA_main_dict = {'Administração, defesa, educação e saúde públicas e seguridade social': 'Public Services', 'Demais serviços': 'Other services', 'Agricultura, inclusive apoio à agricultura e a pós colheita': 'Agriculture', 'Indústrias de transformação': 'Manufacturing Industries', 'Pecuária, inclusive apoio à pecuária': 'Livestock', 'Eletricidade e gás, água, esgoto, atividades de gestão de resíduos e descontaminação': 'Public Utilities', 'Comércio e reparação de veículos automotores e motocicletas': 'Vehicle sales & repair', 'Indústrias extrativas': 'Extractive Industries', 'Produção florestal, pesca e aquicultura': 'Forestry & Aquaculture', 'Construção': 'Construction'} df.GVA_main = df.GVA_main.map(GVA_main_dict) typology_dict = {'Rural Adjacente': 'Adjacent Rural', 'Urbano': 'Urban', 'Intermediário Adjacente': 'Adjacent Intermediate', 'Rural Remoto': 'Remote Rural', 'Intermediário Remoto': 'Remote Intermediate'} df.typology = df.typology.map(typology_dict) df.head()
code
16154305/cell_19
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns brazil = pd.read_csv('../input/BRAZIL_CITIES.csv', sep=';', decimal=',') features = ['CITY', 'STATE', 'CAPITAL', 'IDHM', 'IDHM_Longevidade', 'IDHM_Educacao', 'LONG', 'LAT', 'ALT', 'AREA', 'RURAL_URBAN', 'GVA_AGROPEC', 'GVA_INDUSTRY', 'GVA_SERVICES', 'GVA_PUBLIC', 'GDP', 'POP_GDP', 'GDP_CAPITA', 'GVA_MAIN'] df = brazil[features] pd.isnull(df).sum() df.dropna(inplace=True) df.columns = ['city', 'state', 'capital', 'HDI', 'life_expect_index', 'education_index', 'longitude', 'latitude', 'altitude', 'area', 'typology', 'GVA_agriculture', 'GVA_industry', 'GVA_services', 'GVA_public_services', 'GDP', 'population', 'GDP_per_capita', 'GVA_main'] GVA_main_dict = {'Administração, defesa, educação e saúde públicas e seguridade social': 'Public Services', 'Demais serviços': 'Other services', 'Agricultura, inclusive apoio à agricultura e a pós colheita': 'Agriculture', 'Indústrias de transformação': 'Manufacturing Industries', 'Pecuária, inclusive apoio à pecuária': 'Livestock', 'Eletricidade e gás, água, esgoto, atividades de gestão de resíduos e descontaminação': 'Public Utilities', 'Comércio e reparação de veículos automotores e motocicletas': 'Vehicle sales & repair', 'Indústrias extrativas': 'Extractive Industries', 'Produção florestal, pesca e aquicultura': 'Forestry & Aquaculture', 'Construção': 'Construction'} df.GVA_main = df.GVA_main.map(GVA_main_dict) typology_dict = {'Rural Adjacente': 'Adjacent Rural', 'Urbano': 'Urban', 'Intermediário Adjacente': 'Adjacent Intermediate', 'Rural Remoto': 'Remote Rural', 'Intermediário Remoto': 'Remote Intermediate'} df.typology = df.typology.map(typology_dict) plt.figure(figsize=(9, 6)) sns.distplot(df.HDI, color='lightseagreen')
code
16154305/cell_1
[ "text_html_output_3.png" ]
import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import plotly.tools as tls import plotly.plotly as py from plotly.offline import init_notebook_mode import plotly.graph_objs as go import cufflinks as cf import colorlover as cl from IPython.display import HTML import folium init_notebook_mode(connected=True) cf.go_offline() p = 'BuGn_r' cls = cl.scales['9']['seq']['BuGn'] sns.set() HTML(cl.to_html(cls))
code
16154305/cell_15
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns brazil = pd.read_csv('../input/BRAZIL_CITIES.csv', sep=';', decimal=',') features = ['CITY', 'STATE', 'CAPITAL', 'IDHM', 'IDHM_Longevidade', 'IDHM_Educacao', 'LONG', 'LAT', 'ALT', 'AREA', 'RURAL_URBAN', 'GVA_AGROPEC', 'GVA_INDUSTRY', 'GVA_SERVICES', 'GVA_PUBLIC', 'GDP', 'POP_GDP', 'GDP_CAPITA', 'GVA_MAIN'] df = brazil[features] pd.isnull(df).sum() df.dropna(inplace=True) df.columns = ['city', 'state', 'capital', 'HDI', 'life_expect_index', 'education_index', 'longitude', 'latitude', 'altitude', 'area', 'typology', 'GVA_agriculture', 'GVA_industry', 'GVA_services', 'GVA_public_services', 'GDP', 'population', 'GDP_per_capita', 'GVA_main'] GVA_main_dict = {'Administração, defesa, educação e saúde públicas e seguridade social': 'Public Services', 'Demais serviços': 'Other services', 'Agricultura, inclusive apoio à agricultura e a pós colheita': 'Agriculture', 'Indústrias de transformação': 'Manufacturing Industries', 'Pecuária, inclusive apoio à pecuária': 'Livestock', 'Eletricidade e gás, água, esgoto, atividades de gestão de resíduos e descontaminação': 'Public Utilities', 'Comércio e reparação de veículos automotores e motocicletas': 'Vehicle sales & repair', 'Indústrias extrativas': 'Extractive Industries', 'Produção florestal, pesca e aquicultura': 'Forestry & Aquaculture', 'Construção': 'Construction'} df.GVA_main = df.GVA_main.map(GVA_main_dict) typology_dict = {'Rural Adjacente': 'Adjacent Rural', 'Urbano': 'Urban', 'Intermediário Adjacente': 'Adjacent Intermediate', 'Rural Remoto': 'Remote Rural', 'Intermediário Remoto': 'Remote Intermediate'} df.typology = df.typology.map(typology_dict) plt.figure(figsize=(9, 6)) sns.distplot(df.education_index, color='seagreen')
code
16154305/cell_3
[ "text_plain_output_2.png", "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd brazil = pd.read_csv('../input/BRAZIL_CITIES.csv', sep=';', decimal=',') brazil.head()
code
16154305/cell_17
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns brazil = pd.read_csv('../input/BRAZIL_CITIES.csv', sep=';', decimal=',') features = ['CITY', 'STATE', 'CAPITAL', 'IDHM', 'IDHM_Longevidade', 'IDHM_Educacao', 'LONG', 'LAT', 'ALT', 'AREA', 'RURAL_URBAN', 'GVA_AGROPEC', 'GVA_INDUSTRY', 'GVA_SERVICES', 'GVA_PUBLIC', 'GDP', 'POP_GDP', 'GDP_CAPITA', 'GVA_MAIN'] df = brazil[features] pd.isnull(df).sum() df.dropna(inplace=True) df.columns = ['city', 'state', 'capital', 'HDI', 'life_expect_index', 'education_index', 'longitude', 'latitude', 'altitude', 'area', 'typology', 'GVA_agriculture', 'GVA_industry', 'GVA_services', 'GVA_public_services', 'GDP', 'population', 'GDP_per_capita', 'GVA_main'] GVA_main_dict = {'Administração, defesa, educação e saúde públicas e seguridade social': 'Public Services', 'Demais serviços': 'Other services', 'Agricultura, inclusive apoio à agricultura e a pós colheita': 'Agriculture', 'Indústrias de transformação': 'Manufacturing Industries', 'Pecuária, inclusive apoio à pecuária': 'Livestock', 'Eletricidade e gás, água, esgoto, atividades de gestão de resíduos e descontaminação': 'Public Utilities', 'Comércio e reparação de veículos automotores e motocicletas': 'Vehicle sales & repair', 'Indústrias extrativas': 'Extractive Industries', 'Produção florestal, pesca e aquicultura': 'Forestry & Aquaculture', 'Construção': 'Construction'} df.GVA_main = df.GVA_main.map(GVA_main_dict) typology_dict = {'Rural Adjacente': 'Adjacent Rural', 'Urbano': 'Urban', 'Intermediário Adjacente': 'Adjacent Intermediate', 'Rural Remoto': 'Remote Rural', 'Intermediário Remoto': 'Remote Intermediate'} df.typology = df.typology.map(typology_dict) plt.figure(figsize=(9, 6)) sns.distplot(df.life_expect_index, color='mediumseagreen')
code
16154305/cell_22
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns brazil = pd.read_csv('../input/BRAZIL_CITIES.csv', sep=';', decimal=',') features = ['CITY', 'STATE', 'CAPITAL', 'IDHM', 'IDHM_Longevidade', 'IDHM_Educacao', 'LONG', 'LAT', 'ALT', 'AREA', 'RURAL_URBAN', 'GVA_AGROPEC', 'GVA_INDUSTRY', 'GVA_SERVICES', 'GVA_PUBLIC', 'GDP', 'POP_GDP', 'GDP_CAPITA', 'GVA_MAIN'] df = brazil[features] pd.isnull(df).sum() df.dropna(inplace=True) df.columns = ['city', 'state', 'capital', 'HDI', 'life_expect_index', 'education_index', 'longitude', 'latitude', 'altitude', 'area', 'typology', 'GVA_agriculture', 'GVA_industry', 'GVA_services', 'GVA_public_services', 'GDP', 'population', 'GDP_per_capita', 'GVA_main'] GVA_main_dict = {'Administração, defesa, educação e saúde públicas e seguridade social': 'Public Services', 'Demais serviços': 'Other services', 'Agricultura, inclusive apoio à agricultura e a pós colheita': 'Agriculture', 'Indústrias de transformação': 'Manufacturing Industries', 'Pecuária, inclusive apoio à pecuária': 'Livestock', 'Eletricidade e gás, água, esgoto, atividades de gestão de resíduos e descontaminação': 'Public Utilities', 'Comércio e reparação de veículos automotores e motocicletas': 'Vehicle sales & repair', 'Indústrias extrativas': 'Extractive Industries', 'Produção florestal, pesca e aquicultura': 'Forestry & Aquaculture', 'Construção': 'Construction'} df.GVA_main = df.GVA_main.map(GVA_main_dict) typology_dict = {'Rural Adjacente': 'Adjacent Rural', 'Urbano': 'Urban', 'Intermediário Adjacente': 'Adjacent Intermediate', 'Rural Remoto': 'Remote Rural', 'Intermediário Remoto': 'Remote Intermediate'} df.typology = df.typology.map(typology_dict) plt.figure(figsize=(10, 10)) sns.pairplot(df[['GDP', 'HDI', 'education_index', 'life_expect_index', 'GVA_main']], hue='GVA_main', palette=p)
code
16154305/cell_10
[ "text_html_output_1.png" ]
import pandas as pd brazil = pd.read_csv('../input/BRAZIL_CITIES.csv', sep=';', decimal=',') features = ['CITY', 'STATE', 'CAPITAL', 'IDHM', 'IDHM_Longevidade', 'IDHM_Educacao', 'LONG', 'LAT', 'ALT', 'AREA', 'RURAL_URBAN', 'GVA_AGROPEC', 'GVA_INDUSTRY', 'GVA_SERVICES', 'GVA_PUBLIC', 'GDP', 'POP_GDP', 'GDP_CAPITA', 'GVA_MAIN'] df = brazil[features] pd.isnull(df).sum() df.dropna(inplace=True) df.columns = ['city', 'state', 'capital', 'HDI', 'life_expect_index', 'education_index', 'longitude', 'latitude', 'altitude', 'area', 'typology', 'GVA_agriculture', 'GVA_industry', 'GVA_services', 'GVA_public_services', 'GDP', 'population', 'GDP_per_capita', 'GVA_main'] GVA_main_dict = {'Administração, defesa, educação e saúde públicas e seguridade social': 'Public Services', 'Demais serviços': 'Other services', 'Agricultura, inclusive apoio à agricultura e a pós colheita': 'Agriculture', 'Indústrias de transformação': 'Manufacturing Industries', 'Pecuária, inclusive apoio à pecuária': 'Livestock', 'Eletricidade e gás, água, esgoto, atividades de gestão de resíduos e descontaminação': 'Public Utilities', 'Comércio e reparação de veículos automotores e motocicletas': 'Vehicle sales & repair', 'Indústrias extrativas': 'Extractive Industries', 'Produção florestal, pesca e aquicultura': 'Forestry & Aquaculture', 'Construção': 'Construction'} df.GVA_main = df.GVA_main.map(GVA_main_dict) typology_dict = {'Rural Adjacente': 'Adjacent Rural', 'Urbano': 'Urban', 'Intermediário Adjacente': 'Adjacent Intermediate', 'Rural Remoto': 'Remote Rural', 'Intermediário Remoto': 'Remote Intermediate'} df.typology = df.typology.map(typology_dict) df.info()
code
73075985/cell_9
[ "image_output_1.png" ]
from sklearn import model_selection import pandas as pd import seaborn as sns import numpy as np import pandas as pd import seaborn as sns from sklearn.preprocessing import OrdinalEncoder, OneHotEncoder from sklearn.model_selection import train_test_split from sklearn import pipeline from sklearn import model_selection from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_squared_error from matplotlib import pyplot as plt plt.rcParams.update({'figure.figsize': (8.0, 6.0)}) plt.rcParams.update({'font.size': 11}) train = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0) test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0) sum(train.isnull().sum()) train['kfold'] = -1 kf = model_selection.KFold(n_splits=5, shuffle=True, random_state=42) for fold, (train_indices, valid_indices) in enumerate(kf.split(X=train)): train.iloc[valid_indices, -1] = fold def plot_folds(fold, data): pass sns.set_style('whitegrid') fig, ax = plt.subplots(1, 5, figsize=(20, 4), sharey=True) for i in range(0, 5): plot_folds(i, train[train.kfold == i].target) plt.show()
code
73075985/cell_4
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0) test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0) train.head()
code
73075985/cell_6
[ "image_output_1.png" ]
import pandas as pd import numpy as np import pandas as pd import seaborn as sns from sklearn.preprocessing import OrdinalEncoder, OneHotEncoder from sklearn.model_selection import train_test_split from sklearn import pipeline from sklearn import model_selection from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_squared_error from matplotlib import pyplot as plt plt.rcParams.update({'figure.figsize': (8.0, 6.0)}) plt.rcParams.update({'font.size': 11}) train = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0) test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0) sum(train.isnull().sum()) train['target'].hist() plt.title('Target value distribution') plt.show()
code
73075985/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0) test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0) sum(train.isnull().sum())
code
2009464/cell_1
[ "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np # linear algebra import pandas as pd import numpy as np import pandas as pd from sklearn.cluster import KMeans from sklearn import preprocessing, cross_validation, neighbors def handle_non_numeric(df): columns = df.columns.values for col in columns: text_digit_vals = {} def convert_to_int(val): return text_digit_vals[val] if df[col].dtype != np.int64 and df[col].dtype != np.float64: column_contents = df[col].values.tolist() unique_elements = set(column_contents) x = 0 for unique in unique_elements: if unique not in text_digit_vals: text_digit_vals[unique] = x x += 1 df[col] = list(map(convert_to_int, df[col])) return df df_o = pd.read_csv('../input/mushrooms.csv')
code
2009464/cell_3
[ "text_plain_output_1.png" ]
from sklearn import preprocessing,cross_validation,neighbors from sklearn.cluster import KMeans import numpy as np # linear algebra import pandas as pd import numpy as np import pandas as pd from sklearn.cluster import KMeans from sklearn import preprocessing, cross_validation, neighbors def handle_non_numeric(df): columns = df.columns.values for col in columns: text_digit_vals = {} def convert_to_int(val): return text_digit_vals[val] if df[col].dtype != np.int64 and df[col].dtype != np.float64: column_contents = df[col].values.tolist() unique_elements = set(column_contents) x = 0 for unique in unique_elements: if unique not in text_digit_vals: text_digit_vals[unique] = x x += 1 df[col] = list(map(convert_to_int, df[col])) return df df_o = pd.read_csv('../input/mushrooms.csv') df = handle_non_numeric(df_o) X = np.array(df.drop(['class'], 1).astype(float)) X = preprocessing.scale(X) y = np.array(df['class']) clf = KMeans(n_clusters=2) clf.fit(X) correct = 0 for i in range(len(X)): predict_me = np.array(X[i].astype(float)) predict_me = predict_me.reshape(-1, len(predict_me)) prediction = clf.predict(predict_me) if prediction[0] == y[i]: correct += 1 print('accuracy', correct / len(X))
code
2009464/cell_5
[ "text_plain_output_1.png" ]
from sklearn import preprocessing,cross_validation,neighbors from sklearn.cluster import KMeans import numpy as np # linear algebra import pandas as pd import numpy as np import pandas as pd from sklearn.cluster import KMeans from sklearn import preprocessing, cross_validation, neighbors def handle_non_numeric(df): columns = df.columns.values for col in columns: text_digit_vals = {} def convert_to_int(val): return text_digit_vals[val] if df[col].dtype != np.int64 and df[col].dtype != np.float64: column_contents = df[col].values.tolist() unique_elements = set(column_contents) x = 0 for unique in unique_elements: if unique not in text_digit_vals: text_digit_vals[unique] = x x += 1 df[col] = list(map(convert_to_int, df[col])) return df df_o = pd.read_csv('../input/mushrooms.csv') df = handle_non_numeric(df_o) X = np.array(df.drop(['class'], 1).astype(float)) X = preprocessing.scale(X) y = np.array(df['class']) clf = KMeans(n_clusters=2) clf.fit(X) correct = 0 for i in range(len(X)): predict_me = np.array(X[i].astype(float)) predict_me = predict_me.reshape(-1, len(predict_me)) prediction = clf.predict(predict_me) if prediction[0] == y[i]: correct += 1 df = handle_non_numeric(df_o) X = np.array(df.drop(['class'], 1).astype(float)) X = preprocessing.scale(X) y = np.array(df['class']) X_train, X_test, y_train, y_test = cross_validation.train_test_split(X, y, test_size=0.2) clf = neighbors.KNeighborsClassifier() clf.fit(X_train, y_train) accuracy = clf.score(X_test, y_test) print('accuracy', accuracy)
code
128018504/cell_21
[ "text_plain_output_1.png" ]
import pandas as pd import seaborn as sns wdi_data = pd.read_csv('/kaggle/input/world-demographic-indicators-extract/wdi_wide.csv') wdi_data features = ['Internet use', 'International tourism', 'Life expectancy, female', 'Life expectancy, male', 'Physicians', 'Population', 'Women in national parliament', 'Tertiary education, female', 'Tertiary education, male', 'Greenhouse gas emissions', 'High Income Economy', 'GNI per capita'] wdi_data.groupby('High Income Economy')[features].mean().round(2) sns.displot(data=wdi_data, x='Life expectancy, female', aspect=2)
code
128018504/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd wdi_data = pd.read_csv('/kaggle/input/world-demographic-indicators-extract/wdi_wide.csv') wdi_data wdi_data['High Income Economy'].value_counts()
code
128018504/cell_9
[ "image_output_1.png" ]
import pandas as pd wdi_data = pd.read_csv('/kaggle/input/world-demographic-indicators-extract/wdi_wide.csv') wdi_data wdi_data['GNI per capita'] = (wdi_data['GNI'] / wdi_data['Population']).round(2) wdi_data['GNI per capita']
code
128018504/cell_25
[ "text_html_output_1.png" ]
import pandas as pd import seaborn as sns wdi_data = pd.read_csv('/kaggle/input/world-demographic-indicators-extract/wdi_wide.csv') wdi_data features = ['Internet use', 'International tourism', 'Life expectancy, female', 'Life expectancy, male', 'Physicians', 'Population', 'Women in national parliament', 'Tertiary education, female', 'Tertiary education, male', 'Greenhouse gas emissions', 'High Income Economy', 'GNI per capita'] wdi_data.groupby('High Income Economy')[features].mean().round(2) sns.displot(data=wdi_data, kind='kde', x='Life expectancy, female', hue='High Income Economy', aspect=2)
code
128018504/cell_4
[ "image_output_1.png" ]
import pandas as pd wdi_data = pd.read_csv('/kaggle/input/world-demographic-indicators-extract/wdi_wide.csv') wdi_data
code
128018504/cell_23
[ "text_html_output_1.png" ]
import pandas as pd import seaborn as sns wdi_data = pd.read_csv('/kaggle/input/world-demographic-indicators-extract/wdi_wide.csv') wdi_data features = ['Internet use', 'International tourism', 'Life expectancy, female', 'Life expectancy, male', 'Physicians', 'Population', 'Women in national parliament', 'Tertiary education, female', 'Tertiary education, male', 'Greenhouse gas emissions', 'High Income Economy', 'GNI per capita'] wdi_data.groupby('High Income Economy')[features].mean().round(2) sns.displot(data=wdi_data, x='Life expectancy, female', col='Region')
code
128018504/cell_44
[ "image_output_1.png" ]
import pandas as pd import seaborn as sns wdi_data = pd.read_csv('/kaggle/input/world-demographic-indicators-extract/wdi_wide.csv') wdi_data features = ['Internet use', 'International tourism', 'Life expectancy, female', 'Life expectancy, male', 'Physicians', 'Population', 'Women in national parliament', 'Tertiary education, female', 'Tertiary education, male', 'Greenhouse gas emissions', 'High Income Economy', 'GNI per capita'] wdi_data.groupby('High Income Economy')[features].mean().round(2) sns.relplot(data=wdi_data, x='GNI per capita', y='Life expectancy, female', aspect=2)
code
128018504/cell_6
[ "image_output_1.png" ]
import pandas as pd wdi_data = pd.read_csv('/kaggle/input/world-demographic-indicators-extract/wdi_wide.csv') wdi_data wdi_data.info()
code
128018504/cell_29
[ "image_output_1.png" ]
import pandas as pd import seaborn as sns wdi_data = pd.read_csv('/kaggle/input/world-demographic-indicators-extract/wdi_wide.csv') wdi_data features = ['Internet use', 'International tourism', 'Life expectancy, female', 'Life expectancy, male', 'Physicians', 'Population', 'Women in national parliament', 'Tertiary education, female', 'Tertiary education, male', 'Greenhouse gas emissions', 'High Income Economy', 'GNI per capita'] wdi_data.groupby('High Income Economy')[features].mean().round(2) sns.catplot(data=wdi_data, kind='box', x='Life expectancy, female', y='Region', hue='High Income Economy', aspect=2)
code
128018504/cell_48
[ "image_output_1.png" ]
import pandas as pd import seaborn as sns wdi_data = pd.read_csv('/kaggle/input/world-demographic-indicators-extract/wdi_wide.csv') wdi_data features = ['Internet use', 'International tourism', 'Life expectancy, female', 'Life expectancy, male', 'Physicians', 'Population', 'Women in national parliament', 'Tertiary education, female', 'Tertiary education, male', 'Greenhouse gas emissions', 'High Income Economy', 'GNI per capita'] wdi_data.groupby('High Income Economy')[features].mean().round(2) sns.jointplot(kind='hex', data=wdi_data, x='Physicians', y='Life expectancy, female')
code
128018504/cell_11
[ "text_html_output_1.png" ]
import pandas as pd wdi_data = pd.read_csv('/kaggle/input/world-demographic-indicators-extract/wdi_wide.csv') wdi_data wdi_data['Region'].value_counts()
code
128018504/cell_50
[ "image_output_1.png" ]
import pandas as pd import seaborn as sns wdi_data = pd.read_csv('/kaggle/input/world-demographic-indicators-extract/wdi_wide.csv') wdi_data features = ['Internet use', 'International tourism', 'Life expectancy, female', 'Life expectancy, male', 'Physicians', 'Population', 'Women in national parliament', 'Tertiary education, female', 'Tertiary education, male', 'Greenhouse gas emissions', 'High Income Economy', 'GNI per capita'] wdi_data.groupby('High Income Economy')[features].mean().round(2) sns.pairplot(data=wdi_data, x_vars=['Women in national parliament', 'Tertiary education, female', 'Greenhouse gas emissions'], y_vars='Life expectancy, female', aspect=2)
code
128018504/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd wdi_data = pd.read_csv('/kaggle/input/world-demographic-indicators-extract/wdi_wide.csv') wdi_data pd.crosstab(wdi_data['High Income Economy'], wdi_data['Region'])
code
128018504/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd wdi_data = pd.read_csv('/kaggle/input/world-demographic-indicators-extract/wdi_wide.csv') wdi_data features = ['Internet use', 'International tourism', 'Life expectancy, female', 'Life expectancy, male', 'Physicians', 'Population', 'Women in national parliament', 'Tertiary education, female', 'Tertiary education, male', 'Greenhouse gas emissions', 'High Income Economy', 'GNI per capita'] wdi_data.groupby('High Income Economy')[features].mean().round(2)
code
128018504/cell_31
[ "image_output_1.png" ]
import pandas as pd import seaborn as sns wdi_data = pd.read_csv('/kaggle/input/world-demographic-indicators-extract/wdi_wide.csv') wdi_data features = ['Internet use', 'International tourism', 'Life expectancy, female', 'Life expectancy, male', 'Physicians', 'Population', 'Women in national parliament', 'Tertiary education, female', 'Tertiary education, male', 'Greenhouse gas emissions', 'High Income Economy', 'GNI per capita'] wdi_data.groupby('High Income Economy')[features].mean().round(2) sns.catplot(data=wdi_data, kind='violin', x='Life expectancy, female', y='Region', hue='High Income Economy', split=True, aspect=2)
code
128018504/cell_46
[ "image_output_1.png" ]
import pandas as pd import seaborn as sns wdi_data = pd.read_csv('/kaggle/input/world-demographic-indicators-extract/wdi_wide.csv') wdi_data features = ['Internet use', 'International tourism', 'Life expectancy, female', 'Life expectancy, male', 'Physicians', 'Population', 'Women in national parliament', 'Tertiary education, female', 'Tertiary education, male', 'Greenhouse gas emissions', 'High Income Economy', 'GNI per capita'] wdi_data.groupby('High Income Economy')[features].mean().round(2) sns.relplot(data=wdi_data, x='GNI per capita', y='Life expectancy, female', hue='Region', aspect=2)
code
128018504/cell_27
[ "image_output_1.png" ]
import pandas as pd import seaborn as sns wdi_data = pd.read_csv('/kaggle/input/world-demographic-indicators-extract/wdi_wide.csv') wdi_data features = ['Internet use', 'International tourism', 'Life expectancy, female', 'Life expectancy, male', 'Physicians', 'Population', 'Women in national parliament', 'Tertiary education, female', 'Tertiary education, male', 'Greenhouse gas emissions', 'High Income Economy', 'GNI per capita'] wdi_data.groupby('High Income Economy')[features].mean().round(2) sns.catplot(data=wdi_data, kind='box', x='Life expectancy, female', y='Region', aspect=2)
code
32065949/cell_9
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_excel('/kaggle/input/social-profile-of-customers/Social profile of customers_without header.xlsx') df.columns = [c.replace(' ', '_') for c in df.columns] df.drop(columns=['Name_', 'Profile', 'Profession_', 'Location', 'Prority__level_1', 'Priority_level_2', 'Priority_level_3'], inplace=True) df['Type_of_Location_'][0] = 1 df['Type_of_Location_'] = pd.to_numeric(df['Type_of_Location_']) df.info()
code
32065949/cell_6
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_excel('/kaggle/input/social-profile-of-customers/Social profile of customers_without header.xlsx') df.columns = [c.replace(' ', '_') for c in df.columns] df.head(1)
code
32065949/cell_11
[ "text_plain_output_1.png" ]
from sklearn.cluster import KMeans import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_excel('/kaggle/input/social-profile-of-customers/Social profile of customers_without header.xlsx') df.columns = [c.replace(' ', '_') for c in df.columns] df.drop(columns=['Name_', 'Profile', 'Profession_', 'Location', 'Prority__level_1', 'Priority_level_2', 'Priority_level_3'], inplace=True) df['Type_of_Location_'][0] = 1 df['Type_of_Location_'] = pd.to_numeric(df['Type_of_Location_']) from sklearn.cluster import KMeans k_means = KMeans(n_clusters=3).fit(df) df1 = pd.read_excel('/kaggle/input/social-profile-of-customers/Social profile of customers_without header.xlsx') clustering = pd.DataFrame({'Name': df1['Name '], 'Clusters': k_means.labels_}) clustering.to_csv('/kaggle/working/clustering_output.csv', index=False) cl = pd.read_csv('/kaggle/working/clustering_output.csv') cl.head()
code
32065949/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_excel('/kaggle/input/social-profile-of-customers/Social profile of customers_without header.xlsx') df.columns = [c.replace(' ', '_') for c in df.columns] df.drop(columns=['Name_', 'Profile', 'Profession_', 'Location', 'Prority__level_1', 'Priority_level_2', 'Priority_level_3'], inplace=True) df.head(2)
code
32065949/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_excel('/kaggle/input/social-profile-of-customers/Social profile of customers_without header.xlsx') df.columns = [c.replace(' ', '_') for c in df.columns] df.drop(columns=['Name_', 'Profile', 'Profession_', 'Location', 'Prority__level_1', 'Priority_level_2', 'Priority_level_3'], inplace=True) df.info()
code
32065949/cell_3
[ "text_html_output_1.png" ]
import os import warnings import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename)) import warnings warnings.filterwarnings('ignore')
code
32065949/cell_5
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_excel('/kaggle/input/social-profile-of-customers/Social profile of customers_without header.xlsx') df.head()
code
16146132/cell_13
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns plt.rcParams['figure.figsize'] = (12, 10) df_train = pd.read_csv('../input/train.csv') df_train['dataset'] = 'train' df_test = pd.read_csv('../input/test.csv') df_test['dataset'] = 'test' df = pd.concat([df_train, df_test], sort=True) df_train.nunique().min() num_features = df_train.select_dtypes(['float64', 'int64']).columns.tolist() cat_features = df_train.select_dtypes(['object']).columns.tolist() corrplot = sns.heatmap(df_train.corr(), cmap=plt.cm.Reds, annot=True)
code
16146132/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd df_train = pd.read_csv('../input/train.csv') df_train['dataset'] = 'train' df_test = pd.read_csv('../input/test.csv') df_test['dataset'] = 'test' df = pd.concat([df_train, df_test], sort=True) df_train.info()
code
16146132/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd df_train = pd.read_csv('../input/train.csv') df_train['dataset'] = 'train' df_test = pd.read_csv('../input/test.csv') df_test['dataset'] = 'test' df = pd.concat([df_train, df_test], sort=True) df_train.nunique().min()
code
16146132/cell_8
[ "image_output_1.png" ]
import pandas as pd df_train = pd.read_csv('../input/train.csv') df_train['dataset'] = 'train' df_test = pd.read_csv('../input/test.csv') df_test['dataset'] = 'test' df = pd.concat([df_train, df_test], sort=True) df_train.nunique().min() num_features = df_train.select_dtypes(['float64', 'int64']).columns.tolist() cat_features = df_train.select_dtypes(['object']).columns.tolist() print('{} numerical features:\n{} \nand {} categorical features:\n{}'.format(len(num_features), num_features, len(cat_features), cat_features))
code