path
stringlengths 13
17
| screenshot_names
sequencelengths 1
873
| code
stringlengths 0
40.4k
| cell_type
stringclasses 1
value |
---|---|---|---|
16121779/cell_7 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('../input/Big_Cities_Health_Data_Inventory.csv')
df.columns | code |
16121779/cell_15 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('../input/Big_Cities_Health_Data_Inventory.csv')
df.columns
df.isna().sum() | code |
16121779/cell_16 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('../input/Big_Cities_Health_Data_Inventory.csv')
df.columns
df.isna().sum()
df['Methods'].value_counts() | code |
16121779/cell_14 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('../input/Big_Cities_Health_Data_Inventory.csv')
df.columns
cols_to_Encode = ['Gender', 'Race/ Ethnicity', 'Indicator Category']
continuous_cols = ['Indicator', 'Year', 'Value']
encoded_cols = pd.get_dummies(df[cols_to_Encode])
df_final = pd.concat([encoded_cols, df[continuous_cols]], axis=1)
df_encoded = pd.get_dummies(df[cols_to_Encode])
df_encoded.head() | code |
16121779/cell_12 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('../input/Big_Cities_Health_Data_Inventory.csv')
df.columns
df['Methods'].value_counts() | code |
16121779/cell_5 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('../input/Big_Cities_Health_Data_Inventory.csv')
df['Notes'].value_counts() | code |
16154976/cell_9 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt # data visualsion
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns # data visualsion
df = pd.read_csv('../input/Mall_Customers.csv')
df.isnull().sum()
sns.set(style='whitegrid')
sns.set(style='whitegrid')
sns.distplot(df['Age'], color='red')
plt.title('Distribution of Age', fontsize=20)
plt.xlabel('Range of Age')
plt.ylabel('Count')
plt.show() | code |
16154976/cell_4 | [
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('../input/Mall_Customers.csv')
df.describe() | code |
16154976/cell_6 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt # data visualsion
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns # data visualsion
df = pd.read_csv('../input/Mall_Customers.csv')
df.isnull().sum()
plt.figure(1, figsize=(10, 5))
sns.countplot(x='Gender', data=df)
plt.show() | code |
16154976/cell_11 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt # data visualsion
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns # data visualsion
df = pd.read_csv('../input/Mall_Customers.csv')
df.isnull().sum()
sns.set(style='whitegrid')
sns.set(style='whitegrid')
sns.set(style='whitegrid')
sns.distplot(df['Spending Score (1-100)'], color='green')
plt.title('Spending Score (1-100)', fontsize=20)
plt.xlabel('Range of Spending Score (1-100)')
plt.ylabel('Count')
plt.show() | code |
16154976/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import os
print(os.listdir('../input')) | code |
16154976/cell_7 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt # data visualsion
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns # data visualsion
df = pd.read_csv('../input/Mall_Customers.csv')
df.isnull().sum()
sns.set(style='whitegrid')
sns.distplot(df['Annual Income (k$)'], color='blue')
plt.title('Distribution of Annual Income', fontsize=20)
plt.xlabel('Range of Annual Income')
plt.ylabel('Count') | code |
16154976/cell_15 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt # data visualsion
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns # data visualsion
df = pd.read_csv('../input/Mall_Customers.csv')
df.isnull().sum()
sns.set(style='whitegrid')
sns.set(style='whitegrid')
sns.set(style='whitegrid')
corr = df.corr()
colormap = sns.diverging_palette(220, 10, as_cmap=True)
plt.scatter(x='Age', y='Annual Income (k$)', data=df)
plt.xlabel('Age')
plt.ylabel('Annual Income (k$)')
plt.title('Age vs Annual Income w.r.t Gender')
plt.legend()
plt.show() | code |
16154976/cell_3 | [
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('../input/Mall_Customers.csv')
df.info() | code |
16154976/cell_14 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt # data visualsion
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns # data visualsion
df = pd.read_csv('../input/Mall_Customers.csv')
df.isnull().sum()
sns.set(style='whitegrid')
sns.set(style='whitegrid')
sns.set(style='whitegrid')
corr = df.corr()
colormap = sns.diverging_palette(220, 10, as_cmap=True)
sns.pairplot(df)
plt.title('Pairplot for the Data', fontsize=20)
plt.show() | code |
16154976/cell_12 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt # data visualsion
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns # data visualsion
df = pd.read_csv('../input/Mall_Customers.csv')
df.isnull().sum()
sns.set(style='whitegrid')
sns.set(style='whitegrid')
sns.set(style='whitegrid')
corr = df.corr()
colormap = sns.diverging_palette(220, 10, as_cmap=True)
plt.figure(figsize=(8, 6))
sns.heatmap(corr, xticklabels=corr.columns.values, yticklabels=corr.columns.values, annot=True, fmt='.2f', linewidths=0.3, cmap=colormap, linecolor='white')
plt.title('Correlation of df Features', y=1.05, size=10) | code |
16154976/cell_5 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('../input/Mall_Customers.csv')
df.isnull().sum() | code |
121153361/cell_11 | [
"text_html_output_2.png",
"text_html_output_1.png"
] | from google.colab import drive
from transformers import AutoTokenizer, AutoConfig, AutoModel
import numpy as np
import pandas as pd
import torch
class Config(object):
competition_name = 'LECR'
seed = 2022
seeds = [1, 11, 111, 1111, 11111, 2, 22, 222, 2222]
env = 'kaggle'
ver = 'v17g'
if env == 'colab':
from google.colab import drive
drive.mount('/content/drive')
mode = 'infer'
use_tqdm = True
use_log = False
debug = False
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if env in ['colab', 'vastai']:
backbone = 'sentence-transformers/paraphrase-multilingual-mpnet-base-v2'
elif env == 'kaggle':
backbone = '/kaggle/input/paraphrasemultilingualmpnetbasev2'
tokenizer = AutoTokenizer.from_pretrained(backbone)
config = AutoConfig.from_pretrained(backbone)
sep_token = '[LECR]'
sep_token_id = tokenizer.vocab_size + 1
special_tokens_dict = {'additional_special_tokens': [sep_token]}
tokenizer.add_special_tokens(special_tokens_dict)
embedding_model = 'v17a'
nfolds = 5
languages_map = {'ar': 0, 'as': 1, 'bg': 2, 'bn': 3, 'en': 4, 'es': 5, 'fil': 6, 'fr': 7, 'gu': 8, 'hi': 9, 'it': 10, 'km': 11, 'kn': 12, 'mr': 13, 'mul': 14, 'my': 15, 'or': 16, 'pl': 17, 'pnb': 18, 'pt': 19, 'ru': 20, 'sw': 21, 'swa': 22, 'ta': 23, 'te': 24, 'tr': 25, 'ur': 26, 'zh': 27}
max_len = 128
batch_size = 128 if not debug else 4
num_workers = os.cpu_count()
apex = True
thres = {'cosine': None, 'num_k': 2000}
if env == 'colab':
comp_data_dir = f'/content/drive/My Drive/Kaggle competitions/{competition_name}/comp_data'
ext_data_dir = f'/content/drive/My Drive/Kaggle competitions/{competition_name}/ext_data'
model_dir = f'/content/drive/My Drive/Kaggle competitions/{competition_name}/model'
embedding_model_dir = f'{model_dir}/{embedding_model[:-1]}/{embedding_model[-1]}'
os.makedirs(os.path.join(model_dir, ver[:-1], ver[-1]), exist_ok=True)
elif env == 'kaggle':
comp_data_dir = '/kaggle/input/learning-equality-curriculum-recommendations'
ext_data_dir = '/kaggle/input/lecrext-data'
embedding_model_dir = f'/kaggle/input/lecr{embedding_model}'
model_dir = f'/kaggle/input/{competition_name.lower()}{ver.lower()}'
elif env == 'vastai':
comp_data_dir = 'data'
ext_data_dir = 'ext_data'
model_dir = f'model'
embedding_model_dir = f'{model_dir}/{embedding_model[:-1]}/{embedding_model[-1]}'
os.makedirs(os.path.join(model_dir, ver[:-1], ver[-1]), exist_ok=True)
cfg = Config()
def set_random_seed(seed, use_cuda=True):
np.random.seed(seed)
torch.manual_seed(seed)
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
if use_cuda:
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
set_random_seed(cfg.seed)
def print_log(cfg, message):
pass
content_df = pd.read_csv(os.path.join(cfg.comp_data_dir, 'content.csv'))
display(content_df.head())
topic_df = pd.read_csv(os.path.join(cfg.comp_data_dir, 'topics.csv'))
display(topic_df.head()) | code |
121153361/cell_14 | [
"text_html_output_2.png",
"text_html_output_1.png"
] | from google.colab import drive
from transformers import AutoTokenizer, AutoConfig, AutoModel
import numpy as np
import pandas as pd
import torch
class Config(object):
competition_name = 'LECR'
seed = 2022
seeds = [1, 11, 111, 1111, 11111, 2, 22, 222, 2222]
env = 'kaggle'
ver = 'v17g'
if env == 'colab':
from google.colab import drive
drive.mount('/content/drive')
mode = 'infer'
use_tqdm = True
use_log = False
debug = False
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if env in ['colab', 'vastai']:
backbone = 'sentence-transformers/paraphrase-multilingual-mpnet-base-v2'
elif env == 'kaggle':
backbone = '/kaggle/input/paraphrasemultilingualmpnetbasev2'
tokenizer = AutoTokenizer.from_pretrained(backbone)
config = AutoConfig.from_pretrained(backbone)
sep_token = '[LECR]'
sep_token_id = tokenizer.vocab_size + 1
special_tokens_dict = {'additional_special_tokens': [sep_token]}
tokenizer.add_special_tokens(special_tokens_dict)
embedding_model = 'v17a'
nfolds = 5
languages_map = {'ar': 0, 'as': 1, 'bg': 2, 'bn': 3, 'en': 4, 'es': 5, 'fil': 6, 'fr': 7, 'gu': 8, 'hi': 9, 'it': 10, 'km': 11, 'kn': 12, 'mr': 13, 'mul': 14, 'my': 15, 'or': 16, 'pl': 17, 'pnb': 18, 'pt': 19, 'ru': 20, 'sw': 21, 'swa': 22, 'ta': 23, 'te': 24, 'tr': 25, 'ur': 26, 'zh': 27}
max_len = 128
batch_size = 128 if not debug else 4
num_workers = os.cpu_count()
apex = True
thres = {'cosine': None, 'num_k': 2000}
if env == 'colab':
comp_data_dir = f'/content/drive/My Drive/Kaggle competitions/{competition_name}/comp_data'
ext_data_dir = f'/content/drive/My Drive/Kaggle competitions/{competition_name}/ext_data'
model_dir = f'/content/drive/My Drive/Kaggle competitions/{competition_name}/model'
embedding_model_dir = f'{model_dir}/{embedding_model[:-1]}/{embedding_model[-1]}'
os.makedirs(os.path.join(model_dir, ver[:-1], ver[-1]), exist_ok=True)
elif env == 'kaggle':
comp_data_dir = '/kaggle/input/learning-equality-curriculum-recommendations'
ext_data_dir = '/kaggle/input/lecrext-data'
embedding_model_dir = f'/kaggle/input/lecr{embedding_model}'
model_dir = f'/kaggle/input/{competition_name.lower()}{ver.lower()}'
elif env == 'vastai':
comp_data_dir = 'data'
ext_data_dir = 'ext_data'
model_dir = f'model'
embedding_model_dir = f'{model_dir}/{embedding_model[:-1]}/{embedding_model[-1]}'
os.makedirs(os.path.join(model_dir, ver[:-1], ver[-1]), exist_ok=True)
cfg = Config()
def set_random_seed(seed, use_cuda=True):
np.random.seed(seed)
torch.manual_seed(seed)
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
if use_cuda:
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
set_random_seed(cfg.seed)
def print_log(cfg, message):
pass
content_df = pd.read_csv(os.path.join(cfg.comp_data_dir, 'content.csv'))
topic_df = pd.read_csv(os.path.join(cfg.comp_data_dir, 'topics.csv'))
def process_data(cfg, df, is_content=False):
df['title'] = df['title'].fillna(' ')
df['description'] = df['description'].fillna(' ')
if is_content:
df['text'] = df['text'].fillna(' ')
df['encoded_language'] = df['language'].map(cfg.languages_map)
return df
topic_df = process_data(cfg, topic_df)
content_df = process_data(cfg, content_df, is_content=True)
display(topic_df)
display(content_df) | code |
32064607/cell_13 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from scipy.special import erfc
import matplotlib.pyplot as plt
import numpy as np
def Dirichlet1(T0, dT, t, x, alpha):
T = T0 + dT * erfc(abs(x) / (2.0 * np.sqrt(alpha * t)))
return T
T0 = 0.2
dT = 15.0
t1 = 10.0
t2 = 1000.0
xs = np.arange(0, 0.1, 0.001)
alpha_m = 9.19e-08
T = Dirichlet1(T0, dT, t1, xs, alpha_m)
T2 = Dirichlet1(T0, dT, t2, xs, alpha_m)
fig0,ax0 = plt.subplots(1);
# Gráfico. Definimos una figura fig0 y sus ejes ax0
fig0.set_size_inches((5,5)); #tamaño de la figura
ax0.plot(xs,T,label='t=%.0f'%t1) # plot sobre los ejes
ax0.plot(xs,T2,label='t=%.0f'%t2)
ax0.set_xlim([min(xs),max(xs)]);#definimos límites
ax0.set_xlabel('distancia (m)',fontsize=18); #nombre para ordenadas
ax0.set_ylabel('Temperature ($^\circ$C)',fontsize=18); #nombre para abcisas
ax0.grid(True); #grilla de coordenadas
ax0.legend()
def Dirichlet_armonica(T0, Ta, t, x, omega, alpha=1e-06):
T = T0 + Ta * np.exp(-x * np.sqrt(np.pi * omega / alpha)) * np.sin(2.0 * np.pi * omega * t - x * np.sqrt(np.pi * omega / alpha))
return T
# Constantes y parámetros
T0 = 10. # temperatura media
Ta = 1. # amplitud de la variación de temperatura
ts = np.linspace(0,1e1,200) # tiempo
xs = np.arange(0,40e-3,1e-4) # distancias
omega = 0.2 # frecuencia (2 pi freq)
alpha_l = 1.5e-5 #difusividad térmica del latón
n_profiles = 5 # número de perfiles a plotear
#########################################################################################
fig1,ax1 = plt.subplots(1)
# Graficamos la condición de borde
fig1.set_size_inches((4,4))
#plt.title(r'Condición de borde')
ax1.plot(ts,T0+Ta*np.sin(2.*np.pi*omega*ts),'k');
ax1.set_ylabel('Temperatura en la superficie ($^\circ$C)',fontsize=12)
ax1.set_xlabel('Tiempo',fontsize=12);
#plt.tight_layout()
fig2, ax2 = plt.subplots(1, 2, figsize=(10, 4))
for t in ts[::len(ts) // n_profiles]:
T = Dirichlet_armonica(T0, Ta, t, xs, omega, alpha_l)
ax2[0].plot(xs, T, label='%.2f' % t)
ax2[0].legend(title='Tiempos (s)')
ax2[0].set_xlabel('Distancia (mm)')
ax2[0].set_ylabel('Temperature ($^\\circ$C)')
ax2[0].set_xlim([min(xs), max(xs)])
ax2[0].set_title('Perfiles para un tiempo dado')
for x in xs[::len(xs) // n_profiles]:
T = Dirichlet_armonica(T0, Ta, ts, x, omega, alpha_l)
ax2[1].plot(T, ts, label='%0d' % (x * 1000))
ax2[1].legend(title='Distancias (mm)', bbox_to_anchor=(1, 1))
ax2[1].set_xlabel('Temperatura ($^\\circ$C)')
ax2[1].set_ylabel('Tiempo')
ax2[1].set_title('Series temporales para una distancia') | code |
32064607/cell_9 | [
"text_plain_output_1.png"
] | from scipy.special import erfc
import matplotlib.pyplot as plt
import numpy as np
def Dirichlet1(T0, dT, t, x, alpha):
T = T0 + dT * erfc(abs(x) / (2.0 * np.sqrt(alpha * t)))
return T
T0 = 0.2
dT = 15.0
t1 = 10.0
t2 = 1000.0
xs = np.arange(0, 0.1, 0.001)
alpha_m = 9.19e-08
T = Dirichlet1(T0, dT, t1, xs, alpha_m)
T2 = Dirichlet1(T0, dT, t2, xs, alpha_m)
fig0, ax0 = plt.subplots(1)
fig0.set_size_inches((5, 5))
ax0.plot(xs, T, label='t=%.0f' % t1)
ax0.plot(xs, T2, label='t=%.0f' % t2)
ax0.set_xlim([min(xs), max(xs)])
ax0.set_xlabel('distancia (m)', fontsize=18)
ax0.set_ylabel('Temperature ($^\\circ$C)', fontsize=18)
ax0.grid(True)
ax0.legend() | code |
32064607/cell_4 | [
"image_output_1.png"
] | !pip install ht; | code |
32064607/cell_15 | [
"image_output_1.png"
] | import ht as ht
madera = ht.nearest_material('wood')
acero = ht.nearest_material('steel')
print('El coeficiente de conducción de la madera es %.3f W/m K' % ht.k_material(madera))
print('El coeficiente de conducción del acero es %.3f W/ m K' % ht.k_material(acero))
a_madera = ht.k_material(madera) / (ht.rho_material(madera) * ht.Cp_material(madera))
a_acero = ht.k_material(acero) / (ht.rho_material(acero) * ht.Cp_material(acero))
print('La difusividad térmica de la madera es %.2g m2/s' % a_madera)
print('La difusividad térmica del acero es %.2g m2/s' % a_acero) | code |
32064607/cell_12 | [
"text_plain_output_1.png"
] | from scipy.special import erfc
import matplotlib.pyplot as plt
import numpy as np
def Dirichlet1(T0, dT, t, x, alpha):
T = T0 + dT * erfc(abs(x) / (2.0 * np.sqrt(alpha * t)))
return T
T0 = 0.2
dT = 15.0
t1 = 10.0
t2 = 1000.0
xs = np.arange(0, 0.1, 0.001)
alpha_m = 9.19e-08
T = Dirichlet1(T0, dT, t1, xs, alpha_m)
T2 = Dirichlet1(T0, dT, t2, xs, alpha_m)
fig0,ax0 = plt.subplots(1);
# Gráfico. Definimos una figura fig0 y sus ejes ax0
fig0.set_size_inches((5,5)); #tamaño de la figura
ax0.plot(xs,T,label='t=%.0f'%t1) # plot sobre los ejes
ax0.plot(xs,T2,label='t=%.0f'%t2)
ax0.set_xlim([min(xs),max(xs)]);#definimos límites
ax0.set_xlabel('distancia (m)',fontsize=18); #nombre para ordenadas
ax0.set_ylabel('Temperature ($^\circ$C)',fontsize=18); #nombre para abcisas
ax0.grid(True); #grilla de coordenadas
ax0.legend()
def Dirichlet_armonica(T0, Ta, t, x, omega, alpha=1e-06):
T = T0 + Ta * np.exp(-x * np.sqrt(np.pi * omega / alpha)) * np.sin(2.0 * np.pi * omega * t - x * np.sqrt(np.pi * omega / alpha))
return T
T0 = 10.0
Ta = 1.0
ts = np.linspace(0, 10.0, 200)
xs = np.arange(0, 0.04, 0.0001)
omega = 0.2
alpha_l = 1.5e-05
n_profiles = 5
fig1, ax1 = plt.subplots(1)
fig1.set_size_inches((4, 4))
ax1.plot(ts, T0 + Ta * np.sin(2.0 * np.pi * omega * ts), 'k')
ax1.set_ylabel('Temperatura en la superficie ($^\\circ$C)', fontsize=12)
ax1.set_xlabel('Tiempo', fontsize=12) | code |
2030627/cell_2 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train = pd.read_csv('../input/train.csv')
holdout = pd.read_csv('../input/test.csv')
train['SalePrice'].describe() | code |
2030627/cell_1 | [
"text_plain_output_1.png"
] | from subprocess import check_output
import numpy as np
import pandas as pd
import seaborn as sns
import numpy as np
from scipy.stats import norm
from sklearn.preprocessing import StandardScaler
from scipy import stats
import matplotlib.pyplot as plt
from scipy.stats import skew
from subprocess import check_output
print(check_output(['ls', '../input']).decode('utf8')) | code |
2030627/cell_3 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train = pd.read_csv('../input/train.csv')
holdout = pd.read_csv('../input/test.csv')
saleprice = pd.DataFrame({'saleprice_skewed': train['SalePrice']})
saleprice.hist() | code |
73073991/cell_15 | [
"image_output_1.png"
] | from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
import numpy as np
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from sklearn.linear_model import LinearRegression
sns.set_theme()
class LinearRegression:
def __init__(self, learning_rate=0.1, n_iters=100):
self.lr = learning_rate
self.n_iters = n_iters
self.weights = None
self.bias = None
def fit(self, X, y):
n_samples, n_features = X.shape
self.weights = np.zeros(n_features)
self.bias = 0
for _ in range(self.n_iters):
y_predicted = self.predict(X)
dw = (X.T * (y_predicted - y)).T.mean(axis=0)
db = (y_predicted - y).mean(axis=0)
self.weights -= self.lr * dw
self.bias -= self.lr * db
def predict(self, X):
return X @ self.weights + self.bias
fig, ax = plt.subplots(figsize=(14, 7))
sns.scatterplot(x=X_train[:, 0], y=y_train, ax=ax);
model = LinearRegression(n_iters=10000)
model.fit(X_train, y_train)
MSE = mean_squared_error(y_test, model.predict(X_test))
x_values = np.linspace(-0.1, 0.2, 100)
y_values = [model.bias + model.weights[0] * x for x in x_values]
fig, ax = plt.subplots(figsize=(14, 7))
sns.scatterplot(x=X_train[:, 0], y=y_train, ax=ax)
sns.lineplot(x=x_values, y=y_values) | code |
73073991/cell_14 | [
"text_plain_output_1.png"
] | from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
model = LinearRegression(n_iters=10000)
model.fit(X_train, y_train)
MSE = mean_squared_error(y_test, model.predict(X_test))
print('MSE: {}'.format(MSE)) | code |
73073991/cell_12 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from sklearn.linear_model import LinearRegression
sns.set_theme()
fig, ax = plt.subplots(figsize=(14, 7))
sns.scatterplot(x=X_train[:, 0], y=y_train, ax=ax) | code |
130012223/cell_63 | [
"text_plain_output_1.png"
] | from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import SelectKBest, f_classif
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
import time
k = 15
selector = SelectKBest(score_func=f_classif, k=k)
X_train_selected = selector.fit_transform(X_train, y_train)
X_test_selected = selector.transform(X_test)
from sklearn.neighbors import KNeighborsClassifier
res1 = time.time()
knn = KNeighborsClassifier()
knn = knn.fit(X_train_selected, y_train)
knn
res2 = time.time()
res1 = time.time()
rf = RandomForestClassifier()
rf.fit(X_train_selected, y_train)
res2 = time.time()
from sklearn.naive_bayes import GaussianNB
res1 = time.time()
gnb = GaussianNB()
gnb.fit(X_train_selected, y_train)
res2 = time.time()
print('GNB took ', res2 - res1, 'seconds') | code |
130012223/cell_25 | [
"text_plain_output_1.png"
] | import numpy as np
import pandas as pd
df = pd.read_csv('/kaggle/input/ddos-dataset/Friday-WorkingHours-Afternoon-DDos.pcap_ISCX.csv')
df.columns
columns_to_drop = ['Flow ID', ' Source IP', ' Destination IP', ' Timestamp']
df = df.drop(columns_to_drop, axis=1)
df.columns
df = df[~np.isinf(df['Flow Bytes/s'])]
df.dropna(inplace=True)
X = df.drop(' Label', axis=1)
y = df[' Label']
num_columns = X.shape[1]
print(num_columns) | code |
130012223/cell_4 | [
"text_plain_output_1.png"
] | import pandas as pd
import numpy as np
import time
from sklearn.feature_selection import SelectKBest, f_classif
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.metrics import accuracy_score
from sklearn.metrics import f1_score
from sklearn.metrics import recall_score
from sklearn.metrics import precision_score | code |
130012223/cell_56 | [
"text_plain_output_1.png"
] | from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import SelectKBest, f_classif
from sklearn.metrics import accuracy_score
from sklearn.metrics import recall_score
from sklearn.neighbors import KNeighborsClassifier
import time
k = 15
selector = SelectKBest(score_func=f_classif, k=k)
X_train_selected = selector.fit_transform(X_train, y_train)
X_test_selected = selector.transform(X_test)
from sklearn.neighbors import KNeighborsClassifier
res1 = time.time()
knn = KNeighborsClassifier()
knn = knn.fit(X_train_selected, y_train)
knn
res2 = time.time()
y_pred1 = knn.predict(X_test_selected)
recall = recall_score(y_test, y_pred1, pos_label='DDoS')
res1 = time.time()
rf = RandomForestClassifier()
rf.fit(X_train_selected, y_train)
res2 = time.time()
y_pred1 = rf.predict(X_test_selected)
accuracy = accuracy_score(y_test, y_pred1)
recall = recall_score(y_test, y_pred1, pos_label='DDoS')
print('Recall:', recall) | code |
130012223/cell_30 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from sklearn.feature_selection import SelectKBest, f_classif
import numpy as np
import pandas as pd
df = pd.read_csv('/kaggle/input/ddos-dataset/Friday-WorkingHours-Afternoon-DDos.pcap_ISCX.csv')
df.columns
columns_to_drop = ['Flow ID', ' Source IP', ' Destination IP', ' Timestamp']
df = df.drop(columns_to_drop, axis=1)
df.columns
df = df[~np.isinf(df['Flow Bytes/s'])]
df.dropna(inplace=True)
X = df.drop(' Label', axis=1)
y = df[' Label']
num_columns = X.shape[1]
k = 15
selector = SelectKBest(score_func=f_classif, k=k)
X_train_selected = selector.fit_transform(X_train, y_train)
X_test_selected = selector.transform(X_test)
selected_feature_names = X.columns[selector.get_support()]
selected_feature_names | code |
130012223/cell_33 | [
"text_plain_output_1.png"
] | from sklearn.feature_selection import SelectKBest, f_classif
from sklearn.neighbors import KNeighborsClassifier
import time
k = 15
selector = SelectKBest(score_func=f_classif, k=k)
X_train_selected = selector.fit_transform(X_train, y_train)
X_test_selected = selector.transform(X_test)
from sklearn.neighbors import KNeighborsClassifier
res1 = time.time()
knn = KNeighborsClassifier()
knn = knn.fit(X_train_selected, y_train)
knn
res2 = time.time()
print('KNN took ', res2 - res1, 'seconds') | code |
130012223/cell_39 | [
"text_plain_output_1.png"
] | from sklearn.feature_selection import SelectKBest, f_classif
from sklearn.metrics import precision_score
from sklearn.neighbors import KNeighborsClassifier
import time
k = 15
selector = SelectKBest(score_func=f_classif, k=k)
X_train_selected = selector.fit_transform(X_train, y_train)
X_test_selected = selector.transform(X_test)
from sklearn.neighbors import KNeighborsClassifier
res1 = time.time()
knn = KNeighborsClassifier()
knn = knn.fit(X_train_selected, y_train)
knn
res2 = time.time()
y_pred1 = knn.predict(X_test_selected)
precision = precision_score(y_test, y_pred1, average='weighted')
print('Precision score:', precision) | code |
130012223/cell_65 | [
"text_plain_output_1.png"
] | from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import SelectKBest, f_classif
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
import numpy as np
import pandas as pd
import time
df = pd.read_csv('/kaggle/input/ddos-dataset/Friday-WorkingHours-Afternoon-DDos.pcap_ISCX.csv')
df.columns
columns_to_drop = ['Flow ID', ' Source IP', ' Destination IP', ' Timestamp']
df = df.drop(columns_to_drop, axis=1)
df.columns
df = df[~np.isinf(df['Flow Bytes/s'])]
df.dropna(inplace=True)
k = 15
selector = SelectKBest(score_func=f_classif, k=k)
X_train_selected = selector.fit_transform(X_train, y_train)
X_test_selected = selector.transform(X_test)
from sklearn.neighbors import KNeighborsClassifier
res1 = time.time()
knn = KNeighborsClassifier()
knn = knn.fit(X_train_selected, y_train)
knn
res2 = time.time()
k = 5
kf = KFold(n_splits=k)
scores = cross_val_score(knn, X_train_selected, y_train, cv=kf)
mean_accuracy = np.mean(scores)
res1 = time.time()
rf = RandomForestClassifier()
rf.fit(X_train_selected, y_train)
res2 = time.time()
k = 5
kf = KFold(n_splits=k)
scores = cross_val_score(rf, X_train_selected, y_train, cv=kf)
mean_accuracy = np.mean(scores)
from sklearn.naive_bayes import GaussianNB
res1 = time.time()
gnb = GaussianNB()
gnb.fit(X_train_selected, y_train)
res2 = time.time()
k = 5
kf = KFold(n_splits=k)
scores = cross_val_score(gnb, X_train_selected, y_train, cv=kf)
for fold_idx, score in enumerate(scores):
print(f'Fold {fold_idx + 1} accuracy: {score}')
mean_accuracy = np.mean(scores)
print(f'\nMean accuracy: {mean_accuracy}') | code |
130012223/cell_48 | [
"text_plain_output_1.png"
] | from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import SelectKBest, f_classif
from sklearn.neighbors import KNeighborsClassifier
import time
k = 15
selector = SelectKBest(score_func=f_classif, k=k)
X_train_selected = selector.fit_transform(X_train, y_train)
X_test_selected = selector.transform(X_test)
from sklearn.neighbors import KNeighborsClassifier
res1 = time.time()
knn = KNeighborsClassifier()
knn = knn.fit(X_train_selected, y_train)
knn
res2 = time.time()
res1 = time.time()
rf = RandomForestClassifier()
rf.fit(X_train_selected, y_train)
res2 = time.time()
print('RandomForest took ', res2 - res1, 'seconds') | code |
130012223/cell_73 | [
"text_plain_output_1.png"
] | from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import SelectKBest, f_classif
from sklearn.metrics import accuracy_score
from sklearn.metrics import f1_score
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
import time
k = 15
selector = SelectKBest(score_func=f_classif, k=k)
X_train_selected = selector.fit_transform(X_train, y_train)
X_test_selected = selector.transform(X_test)
from sklearn.neighbors import KNeighborsClassifier
res1 = time.time()
knn = KNeighborsClassifier()
knn = knn.fit(X_train_selected, y_train)
knn
res2 = time.time()
y_pred1 = knn.predict(X_test_selected)
f1 = f1_score(y_test, y_pred1, pos_label='DDoS')
res1 = time.time()
rf = RandomForestClassifier()
rf.fit(X_train_selected, y_train)
res2 = time.time()
y_pred1 = rf.predict(X_test_selected)
accuracy = accuracy_score(y_test, y_pred1)
f1 = f1_score(y_test, y_pred1, pos_label='DDoS')
from sklearn.naive_bayes import GaussianNB
res1 = time.time()
gnb = GaussianNB()
gnb.fit(X_train_selected, y_train)
res2 = time.time()
y_pred1 = gnb.predict(X_test_selected)
accuracy = accuracy_score(y_test, y_pred1)
f1 = f1_score(y_test, y_pred1, pos_label='DDoS')
print('F1 Score: ', f1) | code |
130012223/cell_41 | [
"text_plain_output_1.png"
] | from sklearn.feature_selection import SelectKBest, f_classif
from sklearn.metrics import recall_score
from sklearn.neighbors import KNeighborsClassifier
import time
k = 15
selector = SelectKBest(score_func=f_classif, k=k)
X_train_selected = selector.fit_transform(X_train, y_train)
X_test_selected = selector.transform(X_test)
from sklearn.neighbors import KNeighborsClassifier
res1 = time.time()
knn = KNeighborsClassifier()
knn = knn.fit(X_train_selected, y_train)
knn
res2 = time.time()
y_pred1 = knn.predict(X_test_selected)
recall = recall_score(y_test, y_pred1, pos_label='DDoS')
print('Recall:', recall) | code |
130012223/cell_54 | [
"text_plain_output_1.png"
] | from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import SelectKBest, f_classif
from sklearn.metrics import accuracy_score
from sklearn.metrics import precision_score
from sklearn.neighbors import KNeighborsClassifier
import time
k = 15
selector = SelectKBest(score_func=f_classif, k=k)
X_train_selected = selector.fit_transform(X_train, y_train)
X_test_selected = selector.transform(X_test)
from sklearn.neighbors import KNeighborsClassifier
res1 = time.time()
knn = KNeighborsClassifier()
knn = knn.fit(X_train_selected, y_train)
knn
res2 = time.time()
y_pred1 = knn.predict(X_test_selected)
precision = precision_score(y_test, y_pred1, average='weighted')
res1 = time.time()
rf = RandomForestClassifier()
rf.fit(X_train_selected, y_train)
res2 = time.time()
y_pred1 = rf.predict(X_test_selected)
accuracy = accuracy_score(y_test, y_pred1)
precision = precision_score(y_test, y_pred1, average='weighted')
print('Precision score:', precision) | code |
130012223/cell_67 | [
"text_plain_output_1.png"
] | from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import SelectKBest, f_classif
from sklearn.metrics import accuracy_score
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
import time
k = 15
selector = SelectKBest(score_func=f_classif, k=k)
X_train_selected = selector.fit_transform(X_train, y_train)
X_test_selected = selector.transform(X_test)
from sklearn.neighbors import KNeighborsClassifier
res1 = time.time()
knn = KNeighborsClassifier()
knn = knn.fit(X_train_selected, y_train)
knn
res2 = time.time()
y_pred1 = knn.predict(X_test_selected)
res1 = time.time()
rf = RandomForestClassifier()
rf.fit(X_train_selected, y_train)
res2 = time.time()
y_pred1 = rf.predict(X_test_selected)
accuracy = accuracy_score(y_test, y_pred1)
from sklearn.naive_bayes import GaussianNB
res1 = time.time()
gnb = GaussianNB()
gnb.fit(X_train_selected, y_train)
res2 = time.time()
y_pred1 = gnb.predict(X_test_selected)
accuracy = accuracy_score(y_test, y_pred1)
print('Accuracy score:', accuracy) | code |
130012223/cell_60 | [
"text_plain_output_1.png"
] | from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import SelectKBest, f_classif
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
from sklearn.neighbors import KNeighborsClassifier
import time
k = 15
selector = SelectKBest(score_func=f_classif, k=k)
X_train_selected = selector.fit_transform(X_train, y_train)
X_test_selected = selector.transform(X_test)
from sklearn.neighbors import KNeighborsClassifier
res1 = time.time()
knn = KNeighborsClassifier()
knn = knn.fit(X_train_selected, y_train)
knn
res2 = time.time()
y_pred1 = knn.predict(X_test_selected)
cm = confusion_matrix(y_test, y_pred1)
res1 = time.time()
rf = RandomForestClassifier()
rf.fit(X_train_selected, y_train)
res2 = time.time()
y_pred1 = rf.predict(X_test_selected)
accuracy = accuracy_score(y_test, y_pred1)
cm = confusion_matrix(y_test, y_pred1)
print('Confusion Matrix:')
print(cm) | code |
130012223/cell_69 | [
"text_plain_output_1.png"
] | from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import SelectKBest, f_classif
from sklearn.metrics import accuracy_score
from sklearn.metrics import precision_score
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
import time
k = 15
selector = SelectKBest(score_func=f_classif, k=k)
X_train_selected = selector.fit_transform(X_train, y_train)
X_test_selected = selector.transform(X_test)
from sklearn.neighbors import KNeighborsClassifier
res1 = time.time()
knn = KNeighborsClassifier()
knn = knn.fit(X_train_selected, y_train)
knn
res2 = time.time()
y_pred1 = knn.predict(X_test_selected)
precision = precision_score(y_test, y_pred1, average='weighted')
res1 = time.time()
rf = RandomForestClassifier()
rf.fit(X_train_selected, y_train)
res2 = time.time()
y_pred1 = rf.predict(X_test_selected)
accuracy = accuracy_score(y_test, y_pred1)
precision = precision_score(y_test, y_pred1, average='weighted')
from sklearn.naive_bayes import GaussianNB
res1 = time.time()
gnb = GaussianNB()
gnb.fit(X_train_selected, y_train)
res2 = time.time()
y_pred1 = gnb.predict(X_test_selected)
accuracy = accuracy_score(y_test, y_pred1)
precision = precision_score(y_test, y_pred1, average='weighted')
print('Precision score:', precision) | code |
130012223/cell_50 | [
"text_plain_output_1.png"
] | from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import SelectKBest, f_classif
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.neighbors import KNeighborsClassifier
import numpy as np
import pandas as pd
import time
df = pd.read_csv('/kaggle/input/ddos-dataset/Friday-WorkingHours-Afternoon-DDos.pcap_ISCX.csv')
df.columns
columns_to_drop = ['Flow ID', ' Source IP', ' Destination IP', ' Timestamp']
df = df.drop(columns_to_drop, axis=1)
df.columns
df = df[~np.isinf(df['Flow Bytes/s'])]
df.dropna(inplace=True)
k = 15
selector = SelectKBest(score_func=f_classif, k=k)
X_train_selected = selector.fit_transform(X_train, y_train)
X_test_selected = selector.transform(X_test)
from sklearn.neighbors import KNeighborsClassifier
res1 = time.time()
knn = KNeighborsClassifier()
knn = knn.fit(X_train_selected, y_train)
knn
res2 = time.time()
k = 5
kf = KFold(n_splits=k)
scores = cross_val_score(knn, X_train_selected, y_train, cv=kf)
mean_accuracy = np.mean(scores)
res1 = time.time()
rf = RandomForestClassifier()
rf.fit(X_train_selected, y_train)
res2 = time.time()
k = 5
kf = KFold(n_splits=k)
scores = cross_val_score(rf, X_train_selected, y_train, cv=kf)
for fold_idx, score in enumerate(scores):
print(f'Fold {fold_idx + 1} accuracy: {score}')
mean_accuracy = np.mean(scores)
print(f'\nMean accuracy: {mean_accuracy}') | code |
130012223/cell_52 | [
"text_plain_output_1.png"
] | from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import SelectKBest, f_classif
from sklearn.metrics import accuracy_score
from sklearn.neighbors import KNeighborsClassifier
import time
k = 15
selector = SelectKBest(score_func=f_classif, k=k)
X_train_selected = selector.fit_transform(X_train, y_train)
X_test_selected = selector.transform(X_test)
from sklearn.neighbors import KNeighborsClassifier
res1 = time.time()
knn = KNeighborsClassifier()
knn = knn.fit(X_train_selected, y_train)
knn
res2 = time.time()
y_pred1 = knn.predict(X_test_selected)
res1 = time.time()
rf = RandomForestClassifier()
rf.fit(X_train_selected, y_train)
res2 = time.time()
y_pred1 = rf.predict(X_test_selected)
accuracy = accuracy_score(y_test, y_pred1)
print('Accuracy score:', accuracy) | code |
130012223/cell_45 | [
"text_plain_output_1.png"
] | from sklearn.feature_selection import SelectKBest, f_classif
from sklearn.metrics import confusion_matrix
from sklearn.neighbors import KNeighborsClassifier
import time
k = 15
selector = SelectKBest(score_func=f_classif, k=k)
X_train_selected = selector.fit_transform(X_train, y_train)
X_test_selected = selector.transform(X_test)
from sklearn.neighbors import KNeighborsClassifier
res1 = time.time()
knn = KNeighborsClassifier()
knn = knn.fit(X_train_selected, y_train)
knn
res2 = time.time()
y_pred1 = knn.predict(X_test_selected)
cm = confusion_matrix(y_test, y_pred1)
print('Confusion Matrix:')
print(cm) | code |
130012223/cell_18 | [
"text_plain_output_1.png"
] | import pandas as pd
df = pd.read_csv('/kaggle/input/ddos-dataset/Friday-WorkingHours-Afternoon-DDos.pcap_ISCX.csv')
df.columns
columns_to_drop = ['Flow ID', ' Source IP', ' Destination IP', ' Timestamp']
df = df.drop(columns_to_drop, axis=1)
df.columns | code |
130012223/cell_58 | [
"text_plain_output_1.png"
] | from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import SelectKBest, f_classif
from sklearn.metrics import accuracy_score
from sklearn.metrics import f1_score
from sklearn.neighbors import KNeighborsClassifier
import time
k = 15
selector = SelectKBest(score_func=f_classif, k=k)
X_train_selected = selector.fit_transform(X_train, y_train)
X_test_selected = selector.transform(X_test)
from sklearn.neighbors import KNeighborsClassifier
res1 = time.time()
knn = KNeighborsClassifier()
knn = knn.fit(X_train_selected, y_train)
knn
res2 = time.time()
y_pred1 = knn.predict(X_test_selected)
f1 = f1_score(y_test, y_pred1, pos_label='DDoS')
res1 = time.time()
rf = RandomForestClassifier()
rf.fit(X_train_selected, y_train)
res2 = time.time()
y_pred1 = rf.predict(X_test_selected)
accuracy = accuracy_score(y_test, y_pred1)
f1 = f1_score(y_test, y_pred1, pos_label='DDoS')
print('F1 Score: ', f1) | code |
130012223/cell_28 | [
"text_plain_output_1.png"
] | from sklearn.feature_selection import SelectKBest, f_classif
k = 15
selector = SelectKBest(score_func=f_classif, k=k)
X_train_selected = selector.fit_transform(X_train, y_train)
X_test_selected = selector.transform(X_test) | code |
130012223/cell_78 | [
"text_plain_output_1.png"
] | from sklearn import svm
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import SelectKBest, f_classif
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
import time
k = 15
selector = SelectKBest(score_func=f_classif, k=k)
X_train_selected = selector.fit_transform(X_train, y_train)
X_test_selected = selector.transform(X_test)
from sklearn.neighbors import KNeighborsClassifier
res1 = time.time()
knn = KNeighborsClassifier()
knn = knn.fit(X_train_selected, y_train)
knn
res2 = time.time()
res1 = time.time()
rf = RandomForestClassifier()
rf.fit(X_train_selected, y_train)
res2 = time.time()
from sklearn.naive_bayes import GaussianNB
res1 = time.time()
gnb = GaussianNB()
gnb.fit(X_train_selected, y_train)
res2 = time.time()
from sklearn import svm
res1 = time.time()
clf = svm.SVC(kernel='poly', degree=3, gamma='scale')
clf.fit(X_train_selected, y_train)
res2 = time.time()
print('SVM took ', res2 - res1, 'seconds') | code |
130012223/cell_75 | [
"text_plain_output_1.png"
] | from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import SelectKBest, f_classif
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
import time
k = 15
selector = SelectKBest(score_func=f_classif, k=k)
X_train_selected = selector.fit_transform(X_train, y_train)
X_test_selected = selector.transform(X_test)
from sklearn.neighbors import KNeighborsClassifier
res1 = time.time()
knn = KNeighborsClassifier()
knn = knn.fit(X_train_selected, y_train)
knn
res2 = time.time()
y_pred1 = knn.predict(X_test_selected)
cm = confusion_matrix(y_test, y_pred1)
res1 = time.time()
rf = RandomForestClassifier()
rf.fit(X_train_selected, y_train)
res2 = time.time()
y_pred1 = rf.predict(X_test_selected)
accuracy = accuracy_score(y_test, y_pred1)
cm = confusion_matrix(y_test, y_pred1)
from sklearn.naive_bayes import GaussianNB
res1 = time.time()
gnb = GaussianNB()
gnb.fit(X_train_selected, y_train)
res2 = time.time()
y_pred1 = gnb.predict(X_test_selected)
accuracy = accuracy_score(y_test, y_pred1)
cm = confusion_matrix(y_test, y_pred1)
print('Confusion Matrix:')
print(cm) | code |
130012223/cell_35 | [
"text_plain_output_1.png"
] | from sklearn.feature_selection import SelectKBest, f_classif
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.neighbors import KNeighborsClassifier
import numpy as np
import pandas as pd
import time
df = pd.read_csv('/kaggle/input/ddos-dataset/Friday-WorkingHours-Afternoon-DDos.pcap_ISCX.csv')
df.columns
columns_to_drop = ['Flow ID', ' Source IP', ' Destination IP', ' Timestamp']
df = df.drop(columns_to_drop, axis=1)
df.columns
df = df[~np.isinf(df['Flow Bytes/s'])]
df.dropna(inplace=True)
k = 15
selector = SelectKBest(score_func=f_classif, k=k)
X_train_selected = selector.fit_transform(X_train, y_train)
X_test_selected = selector.transform(X_test)
from sklearn.neighbors import KNeighborsClassifier
res1 = time.time()
knn = KNeighborsClassifier()
knn = knn.fit(X_train_selected, y_train)
knn
res2 = time.time()
k = 5
kf = KFold(n_splits=k)
scores = cross_val_score(knn, X_train_selected, y_train, cv=kf)
for fold_idx, score in enumerate(scores):
print(f'Fold {fold_idx + 1} accuracy: {score}')
mean_accuracy = np.mean(scores)
print(f'\nMean accuracy: {mean_accuracy}') | code |
130012223/cell_43 | [
"text_plain_output_1.png"
] | from sklearn.feature_selection import SelectKBest, f_classif
from sklearn.metrics import f1_score
from sklearn.neighbors import KNeighborsClassifier
import time
k = 15
selector = SelectKBest(score_func=f_classif, k=k)
X_train_selected = selector.fit_transform(X_train, y_train)
X_test_selected = selector.transform(X_test)
from sklearn.neighbors import KNeighborsClassifier
res1 = time.time()
knn = KNeighborsClassifier()
knn = knn.fit(X_train_selected, y_train)
knn
res2 = time.time()
y_pred1 = knn.predict(X_test_selected)
f1 = f1_score(y_test, y_pred1, pos_label='DDoS')
print('F1 Score:', f1) | code |
130012223/cell_14 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd
df = pd.read_csv('/kaggle/input/ddos-dataset/Friday-WorkingHours-Afternoon-DDos.pcap_ISCX.csv')
df.columns | code |
130012223/cell_37 | [
"text_plain_output_1.png"
] | from sklearn.feature_selection import SelectKBest, f_classif
from sklearn.neighbors import KNeighborsClassifier
import time
k = 15
selector = SelectKBest(score_func=f_classif, k=k)
X_train_selected = selector.fit_transform(X_train, y_train)
X_test_selected = selector.transform(X_test)
from sklearn.neighbors import KNeighborsClassifier
res1 = time.time()
knn = KNeighborsClassifier()
knn = knn.fit(X_train_selected, y_train)
knn
res2 = time.time()
y_pred1 = knn.predict(X_test_selected)
print('Accuracy score= {:.8f}'.format(knn.score(X_test_selected, y_test))) | code |
130012223/cell_71 | [
"text_plain_output_1.png"
] | from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import SelectKBest, f_classif
from sklearn.metrics import accuracy_score
from sklearn.metrics import recall_score
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
import time
k = 15
selector = SelectKBest(score_func=f_classif, k=k)
X_train_selected = selector.fit_transform(X_train, y_train)
X_test_selected = selector.transform(X_test)
from sklearn.neighbors import KNeighborsClassifier
res1 = time.time()
knn = KNeighborsClassifier()
knn = knn.fit(X_train_selected, y_train)
knn
res2 = time.time()
y_pred1 = knn.predict(X_test_selected)
recall = recall_score(y_test, y_pred1, pos_label='DDoS')
res1 = time.time()
rf = RandomForestClassifier()
rf.fit(X_train_selected, y_train)
res2 = time.time()
y_pred1 = rf.predict(X_test_selected)
accuracy = accuracy_score(y_test, y_pred1)
recall = recall_score(y_test, y_pred1, pos_label='DDoS')
from sklearn.naive_bayes import GaussianNB
res1 = time.time()
gnb = GaussianNB()
gnb.fit(X_train_selected, y_train)
res2 = time.time()
y_pred1 = gnb.predict(X_test_selected)
accuracy = accuracy_score(y_test, y_pred1)
recall = recall_score(y_test, y_pred1, pos_label='DDoS')
print('Recall:', recall) | code |
129030866/cell_13 | [
"text_plain_output_1.png"
] | import pandas as pd
import seaborn as sns
import numpy as np
import pandas as pd
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pd.set_option('display.max_colwidth', None)
import os
import random
import re
import unicodedata
import gc
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('whitegrid')
import torch
import torch.nn as nn
import torch.optim as optim
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
from datasets import Dataset, DatasetDict
data_path = '/kaggle/input/nlp-getting-started/'
train_df = pd.read_csv(data_path + 'train.csv')
train_df.shape
train_df.info() | code |
129030866/cell_9 | [
"text_html_output_1.png"
] | import pandas as pd
import seaborn as sns
import numpy as np
import pandas as pd
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pd.set_option('display.max_colwidth', None)
import os
import random
import re
import unicodedata
import gc
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('whitegrid')
import torch
import torch.nn as nn
import torch.optim as optim
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
from datasets import Dataset, DatasetDict
data_path = '/kaggle/input/nlp-getting-started/'
train_df = pd.read_csv(data_path + 'train.csv')
train_df.shape | code |
129030866/cell_57 | [
"text_html_output_1.png"
] | import numpy as np
import pandas as pd
import seaborn as sns
import numpy as np
import pandas as pd
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pd.set_option('display.max_colwidth', None)
import os
import random
import re
import unicodedata
import gc
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('whitegrid')
import torch
import torch.nn as nn
import torch.optim as optim
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
from datasets import Dataset, DatasetDict
data_path = '/kaggle/input/nlp-getting-started/'
train_df = pd.read_csv(data_path + 'train.csv')
train_df.shape
train_df['target'] = np.float64(train_df.target)
keyword_target = train_df.groupby(['keyword', 'target']).size().unstack(fill_value=0)
keyword_target['disaster_ratio'] = keyword_target[1] / (keyword_target[0] + keyword_target[1])
keyword_target = keyword_target.sort_values(by='disaster_ratio', ascending=False)
train_df.drop_duplicates(['text', 'target'], inplace=True)
train_df.drop_duplicates(['text'], inplace=True)
train_df.sort_values(by=['hashtag_count'], ascending=False).head(5)
train_df.sort_values(by=['mentions_count'], ascending=False).head(5)
train_df.sort_values(by=['url_count'], ascending=False).head(5) | code |
129030866/cell_23 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import numpy as np
import pandas as pd
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pd.set_option('display.max_colwidth', None)
import os
import random
import re
import unicodedata
import gc
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('whitegrid')
import torch
import torch.nn as nn
import torch.optim as optim
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
from datasets import Dataset, DatasetDict
data_path = '/kaggle/input/nlp-getting-started/'
train_df = pd.read_csv(data_path + 'train.csv')
train_df.shape
train_df['target'] = np.float64(train_df.target)
train_df['keyword'].value_counts().head(10).sort_values().plot(kind='barh')
keyword_target = train_df.groupby(['keyword', 'target']).size().unstack(fill_value=0)
keyword_target['disaster_ratio'] = keyword_target[1] / (keyword_target[0] + keyword_target[1])
keyword_target = keyword_target.sort_values(by='disaster_ratio', ascending=False)
fig, axes = plt.subplots(nrows=2, ncols=1, figsize=(10, 10), sharex=True)
keyword_target.head(10)[[0, 1]].plot(kind='barh', ax=axes[0])
keyword_target.tail(10)[[0, 1]].plot(kind='barh', ax=axes[1])
axes[0].set_title('Top 10 keywords by disaster_ratio')
axes[1].set_title('Bottom 10 keywords by disaster_ratio')
plt.show() | code |
129030866/cell_44 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import numpy as np
import pandas as pd
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pd.set_option('display.max_colwidth', None)
import os
import random
import re
import unicodedata
import gc
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('whitegrid')
import torch
import torch.nn as nn
import torch.optim as optim
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
from datasets import Dataset, DatasetDict
data_path = '/kaggle/input/nlp-getting-started/'
train_df = pd.read_csv(data_path + 'train.csv')
train_df.shape
train_df['target'] = np.float64(train_df.target)
train_df['keyword'].value_counts().head(10).sort_values().plot(kind='barh')
keyword_target = train_df.groupby(['keyword', 'target']).size().unstack(fill_value=0)
keyword_target['disaster_ratio'] = keyword_target[1] / (keyword_target[0] + keyword_target[1])
keyword_target = keyword_target.sort_values(by='disaster_ratio', ascending=False)
# plot the top 10 and bottom 10 keywords by disaster_ratio
fig, axes = plt.subplots(nrows=2, ncols=1, figsize=(10, 10), sharex=True)
keyword_target.head(10)[[0, 1]].plot(kind='barh', ax=axes[0])
keyword_target.tail(10)[[0, 1]].plot(kind='barh', ax=axes[1])
axes[0].set_title('Top 10 keywords by disaster_ratio')
axes[1].set_title('Bottom 10 keywords by disaster_ratio')
plt.show()
train_df['location'].value_counts().head(10).sort_values().plot(kind='barh')
train_df.drop_duplicates(['text', 'target'], inplace=True)
train_df.drop_duplicates(['text'], inplace=True)
plt.figure(figsize=(12, 7))
sns.histplot(data=train_df, x='text_length', hue='target', kde=True, element='step')
plt.title('Distribution of Tweet Text Lengths')
plt.show() | code |
129030866/cell_20 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import numpy as np
import pandas as pd
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pd.set_option('display.max_colwidth', None)
import os
import random
import re
import unicodedata
import gc
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('whitegrid')
import torch
import torch.nn as nn
import torch.optim as optim
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
from datasets import Dataset, DatasetDict
data_path = '/kaggle/input/nlp-getting-started/'
train_df = pd.read_csv(data_path + 'train.csv')
train_df.shape
train_df['target'] = np.float64(train_df.target)
train_df['keyword'].value_counts().head(10).sort_values().plot(kind='barh')
plt.title('Top 10 Keywords')
plt.show() | code |
129030866/cell_76 | [
"text_html_output_1.png"
] | import numpy as np
import pandas as pd
import re
import seaborn as sns
import numpy as np
import pandas as pd
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pd.set_option('display.max_colwidth', None)
import os
import random
import re
import unicodedata
import gc
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('whitegrid')
import torch
import torch.nn as nn
import torch.optim as optim
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
from datasets import Dataset, DatasetDict
data_path = '/kaggle/input/nlp-getting-started/'
train_df = pd.read_csv(data_path + 'train.csv')
train_df.shape
test_df = pd.read_csv(data_path + 'test.csv')
test_df.shape
train_df['target'] = np.float64(train_df.target)
keyword_target = train_df.groupby(['keyword', 'target']).size().unstack(fill_value=0)
keyword_target['disaster_ratio'] = keyword_target[1] / (keyword_target[0] + keyword_target[1])
keyword_target = keyword_target.sort_values(by='disaster_ratio', ascending=False)
def extract_text(pattern, tweet_text):
"""Extract text from a string using a regex pattern"""
pat_match = re.findall(pattern, tweet_text)
return pat_match
def count_pattern(pattern, tweet_text):
"""Count the number of times a pattern occurs in a string"""
pat_match = re.findall(pattern, tweet_text)
return len(pat_match)
train_df.drop_duplicates(['text', 'target'], inplace=True)
train_df.drop_duplicates(['text'], inplace=True)
train_df.sort_values(by=['hashtag_count'], ascending=False).head(5)
train_df.sort_values(by=['mentions_count'], ascending=False).head(5)
train_df.sort_values(by=['url_count'], ascending=False).head(5)
def replace_url_in_text(df: pd.DataFrame, col_name: str) -> pd.DataFrame:
"""
Use a regular expression to match URLs in the text of Twitter posts,
which start with 'http' or 'https' and contain various allowed characters.
Replace the URLs with the special token [URL].
"""
pattern = 'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\\\(\\\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+'
df[col_name] = df[col_name].apply(lambda x: re.sub(pattern, '[URL]', x))
return df
train_df = replace_url_in_text(train_df, 'text')
train_df.sort_values(by='url_count', ascending=False).head()
def replace_mention_in_text(df: pd.DataFrame, col_name: str) -> pd.DataFrame:
"""
Use a regular expression to match mentions in the text of Twitter posts,
which start with '@' followed by a username containing alphanumeric characters
and underscores. Replace the mention with the special token [MT].
"""
pattern = '@(\\w+)'
df[col_name] = df[col_name].apply(lambda x: re.sub(pattern, '[MT]', x))
return df
train_df = replace_mention_in_text(train_df, 'text')
train_df.sort_values(by='mentions_count', ascending=False).head() | code |
129030866/cell_40 | [
"text_plain_output_1.png"
] | import numpy as np
import pandas as pd
import seaborn as sns
import numpy as np
import pandas as pd
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pd.set_option('display.max_colwidth', None)
import os
import random
import re
import unicodedata
import gc
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('whitegrid')
import torch
import torch.nn as nn
import torch.optim as optim
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
from datasets import Dataset, DatasetDict
data_path = '/kaggle/input/nlp-getting-started/'
train_df = pd.read_csv(data_path + 'train.csv')
train_df.shape
train_df['target'] = np.float64(train_df.target)
keyword_target = train_df.groupby(['keyword', 'target']).size().unstack(fill_value=0)
keyword_target['disaster_ratio'] = keyword_target[1] / (keyword_target[0] + keyword_target[1])
keyword_target = keyword_target.sort_values(by='disaster_ratio', ascending=False)
train_df.drop_duplicates(['text', 'target'], inplace=True)
train_df.drop_duplicates(['text'], inplace=True)
print('count of tweets with duplicate text:', train_df.duplicated(['text']).sum()) | code |
129030866/cell_39 | [
"image_output_1.png"
] | import numpy as np
import pandas as pd
import seaborn as sns
import numpy as np
import pandas as pd
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pd.set_option('display.max_colwidth', None)
import os
import random
import re
import unicodedata
import gc
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('whitegrid')
import torch
import torch.nn as nn
import torch.optim as optim
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
from datasets import Dataset, DatasetDict
data_path = '/kaggle/input/nlp-getting-started/'
train_df = pd.read_csv(data_path + 'train.csv')
train_df.shape
train_df['target'] = np.float64(train_df.target)
keyword_target = train_df.groupby(['keyword', 'target']).size().unstack(fill_value=0)
keyword_target['disaster_ratio'] = keyword_target[1] / (keyword_target[0] + keyword_target[1])
keyword_target = keyword_target.sort_values(by='disaster_ratio', ascending=False)
train_df.drop_duplicates(['text', 'target'], inplace=True)
print('remaining tweets with duplicate text and different target:', train_df.duplicated(['text']).sum()) | code |
129030866/cell_65 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
model_name = 'microsoft/deberta-v3-base'
tokenizer = AutoTokenizer.from_pretrained(model_name)
new_token_list = ['[URL]', '[MT]', '[HT]', '[MV]']
tokenizer.add_special_tokens({'additional_special_tokens': new_token_list}) | code |
129030866/cell_72 | [
"text_plain_output_1.png"
] | import numpy as np
import pandas as pd
import re
import seaborn as sns
import numpy as np
import pandas as pd
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pd.set_option('display.max_colwidth', None)
import os
import random
import re
import unicodedata
import gc
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('whitegrid')
import torch
import torch.nn as nn
import torch.optim as optim
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
from datasets import Dataset, DatasetDict
data_path = '/kaggle/input/nlp-getting-started/'
train_df = pd.read_csv(data_path + 'train.csv')
train_df.shape
test_df = pd.read_csv(data_path + 'test.csv')
test_df.shape
train_df['target'] = np.float64(train_df.target)
keyword_target = train_df.groupby(['keyword', 'target']).size().unstack(fill_value=0)
keyword_target['disaster_ratio'] = keyword_target[1] / (keyword_target[0] + keyword_target[1])
keyword_target = keyword_target.sort_values(by='disaster_ratio', ascending=False)
def extract_text(pattern, tweet_text):
"""Extract text from a string using a regex pattern"""
pat_match = re.findall(pattern, tweet_text)
return pat_match
def count_pattern(pattern, tweet_text):
"""Count the number of times a pattern occurs in a string"""
pat_match = re.findall(pattern, tweet_text)
return len(pat_match)
train_df.drop_duplicates(['text', 'target'], inplace=True)
train_df.drop_duplicates(['text'], inplace=True)
train_df.sort_values(by=['hashtag_count'], ascending=False).head(5)
train_df.sort_values(by=['mentions_count'], ascending=False).head(5)
train_df.sort_values(by=['url_count'], ascending=False).head(5)
def replace_url_in_text(df: pd.DataFrame, col_name: str) -> pd.DataFrame:
"""
Use a regular expression to match URLs in the text of Twitter posts,
which start with 'http' or 'https' and contain various allowed characters.
Replace the URLs with the special token [URL].
"""
pattern = 'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\\\(\\\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+'
df[col_name] = df[col_name].apply(lambda x: re.sub(pattern, '[URL]', x))
return df
train_df = replace_url_in_text(train_df, 'text')
train_df.sort_values(by='url_count', ascending=False).head() | code |
129030866/cell_19 | [
"text_html_output_1.png"
] | import numpy as np
import pandas as pd
import seaborn as sns
import numpy as np
import pandas as pd
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pd.set_option('display.max_colwidth', None)
import os
import random
import re
import unicodedata
import gc
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('whitegrid')
import torch
import torch.nn as nn
import torch.optim as optim
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
from datasets import Dataset, DatasetDict
data_path = '/kaggle/input/nlp-getting-started/'
train_df = pd.read_csv(data_path + 'train.csv')
train_df.shape
train_df['target'] = np.float64(train_df.target)
print(f"Count of records with missing keyword entry: {train_df['keyword'].isnull().sum()}") | code |
129030866/cell_7 | [
"text_plain_output_1.png"
] | import os
import os
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
129030866/cell_45 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import numpy as np
import pandas as pd
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pd.set_option('display.max_colwidth', None)
import os
import random
import re
import unicodedata
import gc
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('whitegrid')
import torch
import torch.nn as nn
import torch.optim as optim
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
from datasets import Dataset, DatasetDict
data_path = '/kaggle/input/nlp-getting-started/'
train_df = pd.read_csv(data_path + 'train.csv')
train_df.shape
train_df['target'] = np.float64(train_df.target)
train_df['keyword'].value_counts().head(10).sort_values().plot(kind='barh')
keyword_target = train_df.groupby(['keyword', 'target']).size().unstack(fill_value=0)
keyword_target['disaster_ratio'] = keyword_target[1] / (keyword_target[0] + keyword_target[1])
keyword_target = keyword_target.sort_values(by='disaster_ratio', ascending=False)
# plot the top 10 and bottom 10 keywords by disaster_ratio
fig, axes = plt.subplots(nrows=2, ncols=1, figsize=(10, 10), sharex=True)
keyword_target.head(10)[[0, 1]].plot(kind='barh', ax=axes[0])
keyword_target.tail(10)[[0, 1]].plot(kind='barh', ax=axes[1])
axes[0].set_title('Top 10 keywords by disaster_ratio')
axes[1].set_title('Bottom 10 keywords by disaster_ratio')
plt.show()
train_df['location'].value_counts().head(10).sort_values().plot(kind='barh')
train_df.drop_duplicates(['text', 'target'], inplace=True)
train_df.drop_duplicates(['text'], inplace=True)
sns.boxplot(x='target', y='text_length', data=train_df)
plt.title('Distribution of Tweet Text Lengths by Target')
plt.show() | code |
129030866/cell_49 | [
"image_output_1.png"
] | import numpy as np
import pandas as pd
import seaborn as sns
import numpy as np
import pandas as pd
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pd.set_option('display.max_colwidth', None)
import os
import random
import re
import unicodedata
import gc
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('whitegrid')
import torch
import torch.nn as nn
import torch.optim as optim
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
from datasets import Dataset, DatasetDict
data_path = '/kaggle/input/nlp-getting-started/'
train_df = pd.read_csv(data_path + 'train.csv')
train_df.shape
train_df['target'] = np.float64(train_df.target)
keyword_target = train_df.groupby(['keyword', 'target']).size().unstack(fill_value=0)
keyword_target['disaster_ratio'] = keyword_target[1] / (keyword_target[0] + keyword_target[1])
keyword_target = keyword_target.sort_values(by='disaster_ratio', ascending=False)
train_df.drop_duplicates(['text', 'target'], inplace=True)
train_df.drop_duplicates(['text'], inplace=True)
train_df.sort_values(by=['hashtag_count'], ascending=False).head(5) | code |
129030866/cell_62 | [
"text_html_output_1.png"
] | from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
model_name = 'microsoft/deberta-v3-base'
tokenizer = AutoTokenizer.from_pretrained(model_name) | code |
129030866/cell_59 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import numpy as np
import pandas as pd
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pd.set_option('display.max_colwidth', None)
import os
import random
import re
import unicodedata
import gc
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('whitegrid')
import torch
import torch.nn as nn
import torch.optim as optim
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
from datasets import Dataset, DatasetDict
data_path = '/kaggle/input/nlp-getting-started/'
train_df = pd.read_csv(data_path + 'train.csv')
train_df.shape
train_df['target'] = np.float64(train_df.target)
train_df['keyword'].value_counts().head(10).sort_values().plot(kind='barh')
keyword_target = train_df.groupby(['keyword', 'target']).size().unstack(fill_value=0)
keyword_target['disaster_ratio'] = keyword_target[1] / (keyword_target[0] + keyword_target[1])
keyword_target = keyword_target.sort_values(by='disaster_ratio', ascending=False)
# plot the top 10 and bottom 10 keywords by disaster_ratio
fig, axes = plt.subplots(nrows=2, ncols=1, figsize=(10, 10), sharex=True)
keyword_target.head(10)[[0, 1]].plot(kind='barh', ax=axes[0])
keyword_target.tail(10)[[0, 1]].plot(kind='barh', ax=axes[1])
axes[0].set_title('Top 10 keywords by disaster_ratio')
axes[1].set_title('Bottom 10 keywords by disaster_ratio')
plt.show()
train_df['location'].value_counts().head(10).sort_values().plot(kind='barh')
train_df.drop_duplicates(['text', 'target'], inplace=True)
train_df.drop_duplicates(['text'], inplace=True)
train_df.sort_values(by=['hashtag_count'], ascending=False).head(5)
train_df.sort_values(by=['mentions_count'], ascending=False).head(5)
train_df.sort_values(by=['url_count'], ascending=False).head(5)
fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(18, 5))
sns.boxplot(x='target', y='hashtag_count', data=train_df, ax=axes[0])
sns.boxplot(x='target', y='mentions_count', data=train_df, ax=axes[1])
sns.boxplot(x='target', y='url_count', data=train_df, ax=axes[2])
axes[0].set_title('Hashtag Count Distribution by Target')
axes[1].set_title('Mentions Count Distribution by Target')
axes[2].set_title('URL Count Distribution by Target') | code |
129030866/cell_28 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import numpy as np
import pandas as pd
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pd.set_option('display.max_colwidth', None)
import os
import random
import re
import unicodedata
import gc
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('whitegrid')
import torch
import torch.nn as nn
import torch.optim as optim
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
from datasets import Dataset, DatasetDict
data_path = '/kaggle/input/nlp-getting-started/'
train_df = pd.read_csv(data_path + 'train.csv')
train_df.shape
train_df['target'] = np.float64(train_df.target)
train_df['keyword'].value_counts().head(10).sort_values().plot(kind='barh')
keyword_target = train_df.groupby(['keyword', 'target']).size().unstack(fill_value=0)
keyword_target['disaster_ratio'] = keyword_target[1] / (keyword_target[0] + keyword_target[1])
keyword_target = keyword_target.sort_values(by='disaster_ratio', ascending=False)
# plot the top 10 and bottom 10 keywords by disaster_ratio
fig, axes = plt.subplots(nrows=2, ncols=1, figsize=(10, 10), sharex=True)
keyword_target.head(10)[[0, 1]].plot(kind='barh', ax=axes[0])
keyword_target.tail(10)[[0, 1]].plot(kind='barh', ax=axes[1])
axes[0].set_title('Top 10 keywords by disaster_ratio')
axes[1].set_title('Bottom 10 keywords by disaster_ratio')
plt.show()
train_df['location'].value_counts().head(10).sort_values().plot(kind='barh')
plt.title('Top 10 Locations')
plt.show() | code |
129030866/cell_16 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import numpy as np
import pandas as pd
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pd.set_option('display.max_colwidth', None)
import os
import random
import re
import unicodedata
import gc
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('whitegrid')
import torch
import torch.nn as nn
import torch.optim as optim
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
from datasets import Dataset, DatasetDict
data_path = '/kaggle/input/nlp-getting-started/'
train_df = pd.read_csv(data_path + 'train.csv')
train_df.shape
sns.countplot(data=train_df, x='target')
plt.title('Target Variable Distribution')
plt.show() | code |
129030866/cell_66 | [
"application_vnd.jupyter.stderr_output_4.png",
"text_plain_output_3.png",
"text_plain_output_2.png",
"text_plain_output_1.png"
] | from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
model_name = 'microsoft/deberta-v3-base'
tokenizer = AutoTokenizer.from_pretrained(model_name)
new_token_list = ['[URL]', '[MT]', '[HT]', '[MV]']
tokenizer.add_special_tokens({'additional_special_tokens': new_token_list})
tokenizer.all_special_tokens | code |
129030866/cell_43 | [
"text_plain_output_1.png"
] | import numpy as np
import pandas as pd
import seaborn as sns
import numpy as np
import pandas as pd
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pd.set_option('display.max_colwidth', None)
import os
import random
import re
import unicodedata
import gc
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('whitegrid')
import torch
import torch.nn as nn
import torch.optim as optim
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
from datasets import Dataset, DatasetDict
data_path = '/kaggle/input/nlp-getting-started/'
train_df = pd.read_csv(data_path + 'train.csv')
train_df.shape
train_df['target'] = np.float64(train_df.target)
keyword_target = train_df.groupby(['keyword', 'target']).size().unstack(fill_value=0)
keyword_target['disaster_ratio'] = keyword_target[1] / (keyword_target[0] + keyword_target[1])
keyword_target = keyword_target.sort_values(by='disaster_ratio', ascending=False)
train_df.drop_duplicates(['text', 'target'], inplace=True)
train_df.drop_duplicates(['text'], inplace=True)
train_df['text_length'].describe(percentiles=[0, 0.25, 0.5, 0.75, 0.9, 0.99]).round(0) | code |
129030866/cell_14 | [
"text_plain_output_1.png"
] | import pandas as pd
import seaborn as sns
import numpy as np
import pandas as pd
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pd.set_option('display.max_colwidth', None)
import os
import random
import re
import unicodedata
import gc
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('whitegrid')
import torch
import torch.nn as nn
import torch.optim as optim
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
from datasets import Dataset, DatasetDict
data_path = '/kaggle/input/nlp-getting-started/'
train_df = pd.read_csv(data_path + 'train.csv')
train_df.shape
train_df.head() | code |
129030866/cell_22 | [
"text_plain_output_1.png"
] | import numpy as np
import pandas as pd
import seaborn as sns
import numpy as np
import pandas as pd
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pd.set_option('display.max_colwidth', None)
import os
import random
import re
import unicodedata
import gc
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('whitegrid')
import torch
import torch.nn as nn
import torch.optim as optim
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
from datasets import Dataset, DatasetDict
data_path = '/kaggle/input/nlp-getting-started/'
train_df = pd.read_csv(data_path + 'train.csv')
train_df.shape
train_df['target'] = np.float64(train_df.target)
keyword_target = train_df.groupby(['keyword', 'target']).size().unstack(fill_value=0)
keyword_target['disaster_ratio'] = keyword_target[1] / (keyword_target[0] + keyword_target[1])
keyword_target = keyword_target.sort_values(by='disaster_ratio', ascending=False)
keyword_target.head() | code |
129030866/cell_53 | [
"image_output_1.png"
] | import numpy as np
import pandas as pd
import seaborn as sns
import numpy as np
import pandas as pd
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pd.set_option('display.max_colwidth', None)
import os
import random
import re
import unicodedata
import gc
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('whitegrid')
import torch
import torch.nn as nn
import torch.optim as optim
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
from datasets import Dataset, DatasetDict
data_path = '/kaggle/input/nlp-getting-started/'
train_df = pd.read_csv(data_path + 'train.csv')
train_df.shape
train_df['target'] = np.float64(train_df.target)
keyword_target = train_df.groupby(['keyword', 'target']).size().unstack(fill_value=0)
keyword_target['disaster_ratio'] = keyword_target[1] / (keyword_target[0] + keyword_target[1])
keyword_target = keyword_target.sort_values(by='disaster_ratio', ascending=False)
train_df.drop_duplicates(['text', 'target'], inplace=True)
train_df.drop_duplicates(['text'], inplace=True)
train_df.sort_values(by=['hashtag_count'], ascending=False).head(5)
train_df.sort_values(by=['mentions_count'], ascending=False).head(5) | code |
129030866/cell_10 | [
"text_plain_output_1.png"
] | import pandas as pd
import seaborn as sns
import numpy as np
import pandas as pd
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pd.set_option('display.max_colwidth', None)
import os
import random
import re
import unicodedata
import gc
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('whitegrid')
import torch
import torch.nn as nn
import torch.optim as optim
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
from datasets import Dataset, DatasetDict
data_path = '/kaggle/input/nlp-getting-started/'
train_df = pd.read_csv(data_path + 'train.csv')
train_df.shape
test_df = pd.read_csv(data_path + 'test.csv')
test_df.shape | code |
129030866/cell_27 | [
"text_html_output_1.png"
] | import numpy as np
import pandas as pd
import seaborn as sns
import numpy as np
import pandas as pd
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pd.set_option('display.max_colwidth', None)
import os
import random
import re
import unicodedata
import gc
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('whitegrid')
import torch
import torch.nn as nn
import torch.optim as optim
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
from datasets import Dataset, DatasetDict
data_path = '/kaggle/input/nlp-getting-started/'
train_df = pd.read_csv(data_path + 'train.csv')
train_df.shape
train_df['target'] = np.float64(train_df.target)
keyword_target = train_df.groupby(['keyword', 'target']).size().unstack(fill_value=0)
keyword_target['disaster_ratio'] = keyword_target[1] / (keyword_target[0] + keyword_target[1])
keyword_target = keyword_target.sort_values(by='disaster_ratio', ascending=False)
print(f"Count of records with missing location entry: {train_df['location'].isnull().sum()}") | code |
129030866/cell_37 | [
"text_plain_output_1.png"
] | import numpy as np
import pandas as pd
import seaborn as sns
import numpy as np
import pandas as pd
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pd.set_option('display.max_colwidth', None)
import os
import random
import re
import unicodedata
import gc
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('whitegrid')
import torch
import torch.nn as nn
import torch.optim as optim
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
from datasets import Dataset, DatasetDict
data_path = '/kaggle/input/nlp-getting-started/'
train_df = pd.read_csv(data_path + 'train.csv')
train_df.shape
train_df['target'] = np.float64(train_df.target)
keyword_target = train_df.groupby(['keyword', 'target']).size().unstack(fill_value=0)
keyword_target['disaster_ratio'] = keyword_target[1] / (keyword_target[0] + keyword_target[1])
keyword_target = keyword_target.sort_values(by='disaster_ratio', ascending=False)
print('count of tweets with duplicate text:', train_df.duplicated(['text']).sum())
print('count of tweets with duplicate text and target:', train_df.duplicated(['text', 'target']).sum()) | code |
32072718/cell_9 | [
"image_output_11.png",
"image_output_17.png",
"image_output_14.png",
"image_output_13.png",
"image_output_5.png",
"image_output_7.png",
"image_output_4.png",
"image_output_8.png",
"image_output_16.png",
"image_output_6.png",
"image_output_12.png",
"image_output_3.png",
"image_output_2.png",
"image_output_1.png",
"image_output_10.png",
"image_output_15.png",
"image_output_9.png"
] | import pandas as pd
dataset = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/train.csv')
dataset.head() | code |
32072718/cell_34 | [
"image_output_11.png",
"image_output_17.png",
"image_output_14.png",
"image_output_13.png",
"image_output_5.png",
"image_output_18.png",
"image_output_7.png",
"image_output_4.png",
"image_output_8.png",
"image_output_16.png",
"image_output_6.png",
"image_output_12.png",
"image_output_3.png",
"image_output_2.png",
"image_output_1.png",
"image_output_10.png",
"image_output_15.png",
"image_output_9.png"
] | import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
dataset = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/train.csv')
dataset.isnull().sum()
features_with_na = []
for features in dataset.columns:
if dataset[features].isnull().sum() > 1:
features_with_na.append(features)
features_with_na
features_with_na = [features for features in dataset.columns if dataset[features].isnull().sum() > 1]
for feature in features_with_na:
data = dataset.copy()
data[feature] = np.where(data[feature].isnull(), 1, 0)
numerical_features = [feature for feature in dataset.columns if dataset[feature].dtypes != 'O']
year_feature = [feature for feature in numerical_features if 'Yr' in feature or 'Year' in feature]
year_feature | code |
32072718/cell_40 | [
"image_output_3.png",
"image_output_2.png",
"image_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
dataset = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/train.csv')
dataset.isnull().sum()
features_with_na = []
for features in dataset.columns:
if dataset[features].isnull().sum() > 1:
features_with_na.append(features)
features_with_na
features_with_na = [features for features in dataset.columns if dataset[features].isnull().sum() > 1]
for feature in features_with_na:
data = dataset.copy()
data[feature] = np.where(data[feature].isnull(), 1, 0)
numerical_features = [feature for feature in dataset.columns if dataset[feature].dtypes != 'O']
year_feature = [feature for feature in numerical_features if 'Yr' in feature or 'Year' in feature]
year_feature
for feature in year_feature:
if feature != 'YrSold':
data = dataset.copy()
data[feature] = data['YrSold'] - data[feature]
discrete_feature = [feature for feature in numerical_features if len(dataset[feature].unique()) < 25 and feature not in year_feature + ['Id']]
dataset[discrete_feature].head() | code |
32072718/cell_39 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
dataset = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/train.csv')
dataset.isnull().sum()
features_with_na = []
for features in dataset.columns:
if dataset[features].isnull().sum() > 1:
features_with_na.append(features)
features_with_na
features_with_na = [features for features in dataset.columns if dataset[features].isnull().sum() > 1]
for feature in features_with_na:
data = dataset.copy()
data[feature] = np.where(data[feature].isnull(), 1, 0)
numerical_features = [feature for feature in dataset.columns if dataset[feature].dtypes != 'O']
year_feature = [feature for feature in numerical_features if 'Yr' in feature or 'Year' in feature]
year_feature
for feature in year_feature:
if feature != 'YrSold':
data = dataset.copy()
data[feature] = data['YrSold'] - data[feature]
discrete_feature = [feature for feature in numerical_features if len(dataset[feature].unique()) < 25 and feature not in year_feature + ['Id']]
discrete_feature | code |
32072718/cell_26 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
dataset = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/train.csv')
dataset.isnull().sum()
features_with_na = []
for features in dataset.columns:
if dataset[features].isnull().sum() > 1:
features_with_na.append(features)
features_with_na
features_with_na = [features for features in dataset.columns if dataset[features].isnull().sum() > 1]
for feature in features_with_na:
data = dataset.copy()
data[feature] = np.where(data[feature].isnull(), 1, 0)
numerical_features = [feature for feature in dataset.columns if dataset[feature].dtypes != 'O']
print('Number of numerical variables: ', len(numerical_features))
dataset[numerical_features].head() | code |
32072718/cell_7 | [
"text_plain_output_1.png"
] | import pandas as pd
dataset = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/train.csv')
print(dataset.shape) | code |
32072718/cell_18 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
dataset = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/train.csv')
dataset.isnull().sum()
features_with_na = []
for features in dataset.columns:
if dataset[features].isnull().sum() > 1:
features_with_na.append(features)
features_with_na
features_with_na = [features for features in dataset.columns if dataset[features].isnull().sum() > 1]
for feature in features_with_na:
data = dataset.copy()
data[feature] = np.where(data[feature].isnull(), 1, 0)
data.groupby(feature)['SalePrice'].median().plot.bar()
plt.title(feature)
plt.show() | code |
32072718/cell_8 | [
"text_html_output_1.png"
] | import pandas as pd
dataset = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/train.csv')
type(dataset) | code |
32072718/cell_16 | [
"text_plain_output_1.png"
] | import numpy as np
import pandas as pd
dataset = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/train.csv')
dataset.isnull().sum()
features_with_na = []
for features in dataset.columns:
if dataset[features].isnull().sum() > 1:
features_with_na.append(features)
features_with_na
features_with_na = [features for features in dataset.columns if dataset[features].isnull().sum() > 1]
for feature in features_with_na:
print(feature, np.round(dataset[feature].isnull().mean(), 4), ' % missing values') | code |
32072718/cell_38 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
dataset = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/train.csv')
dataset.isnull().sum()
features_with_na = []
for features in dataset.columns:
if dataset[features].isnull().sum() > 1:
features_with_na.append(features)
features_with_na
features_with_na = [features for features in dataset.columns if dataset[features].isnull().sum() > 1]
for feature in features_with_na:
data = dataset.copy()
data[feature] = np.where(data[feature].isnull(), 1, 0)
numerical_features = [feature for feature in dataset.columns if dataset[feature].dtypes != 'O']
year_feature = [feature for feature in numerical_features if 'Yr' in feature or 'Year' in feature]
year_feature
for feature in year_feature:
if feature != 'YrSold':
data = dataset.copy()
data[feature] = data['YrSold'] - data[feature]
discrete_feature = [feature for feature in numerical_features if len(dataset[feature].unique()) < 25 and feature not in year_feature + ['Id']]
print('Discrete Variables Count: {}'.format(len(discrete_feature))) | code |
32072718/cell_35 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
dataset = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/train.csv')
dataset.isnull().sum()
features_with_na = []
for features in dataset.columns:
if dataset[features].isnull().sum() > 1:
features_with_na.append(features)
features_with_na
features_with_na = [features for features in dataset.columns if dataset[features].isnull().sum() > 1]
for feature in features_with_na:
data = dataset.copy()
data[feature] = np.where(data[feature].isnull(), 1, 0)
numerical_features = [feature for feature in dataset.columns if dataset[feature].dtypes != 'O']
year_feature = [feature for feature in numerical_features if 'Yr' in feature or 'Year' in feature]
year_feature
for feature in year_feature:
print(feature, np.sort(dataset[feature].unique()))
print('\n') | code |
32072718/cell_22 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
dataset = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/train.csv')
dataset.isnull().sum()
features_with_na = []
for features in dataset.columns:
if dataset[features].isnull().sum() > 1:
features_with_na.append(features)
features_with_na
features_with_na = [features for features in dataset.columns if dataset[features].isnull().sum() > 1]
for feature in features_with_na:
data = dataset.copy()
data[feature] = np.where(data[feature].isnull(), 1, 0)
print('Id of Houses {}'.format(len(dataset.Id))) | code |
32072718/cell_10 | [
"text_plain_output_1.png"
] | import pandas as pd
dataset = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/train.csv')
dataset.tail() | code |
32072718/cell_37 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
dataset = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/train.csv')
dataset.isnull().sum()
features_with_na = []
for features in dataset.columns:
if dataset[features].isnull().sum() > 1:
features_with_na.append(features)
features_with_na
features_with_na = [features for features in dataset.columns if dataset[features].isnull().sum() > 1]
for feature in features_with_na:
data = dataset.copy()
data[feature] = np.where(data[feature].isnull(), 1, 0)
numerical_features = [feature for feature in dataset.columns if dataset[feature].dtypes != 'O']
year_feature = [feature for feature in numerical_features if 'Yr' in feature or 'Year' in feature]
year_feature
for feature in year_feature:
if feature != 'YrSold':
data = dataset.copy()
data[feature] = data['YrSold'] - data[feature]
plt.scatter(data[feature], data['SalePrice'])
plt.xlabel(feature)
plt.ylabel('SalePrice')
plt.show() | code |
32072718/cell_36 | [
"text_html_output_1.png",
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
dataset = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/train.csv')
dataset.isnull().sum()
features_with_na = []
for features in dataset.columns:
if dataset[features].isnull().sum() > 1:
features_with_na.append(features)
features_with_na
features_with_na = [features for features in dataset.columns if dataset[features].isnull().sum() > 1]
for feature in features_with_na:
data = dataset.copy()
data[feature] = np.where(data[feature].isnull(), 1, 0)
numerical_features = [feature for feature in dataset.columns if dataset[feature].dtypes != 'O']
dataset.groupby('YrSold')['SalePrice'].median().plot()
plt.xlabel('Year Sold')
plt.ylabel('Median House Price')
plt.title('House Price vs YearSold') | code |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.