path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
128047268/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) GM_df = pd.read_excel('/kaggle/input/juan-anyang/GM.xlsx') Mining_df = pd.read_excel('/kaggle/input/juan-anyang/Mining.xlsx') GM_df.fillna(0, inplace=True) Mining_df.fillna(0, inplace=True) GM_df['Reading No'] = GM_df['Reading No'].astype(str) GM_df.info()
code
128047268/cell_23
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsRegressor from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import StandardScaler, MinMaxScaler from sklearn.svm import SVR from xgboost import XGBRegressor import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) GM_df = pd.read_excel('/kaggle/input/juan-anyang/GM.xlsx') Mining_df = pd.read_excel('/kaggle/input/juan-anyang/Mining.xlsx') GM_df.fillna(0, inplace=True) Mining_df.fillna(0, inplace=True) GM_df['Reading No'] = GM_df['Reading No'].astype(str) Mining_df['Reading No'] = Mining_df['Reading No'].astype(str) dummies_GM = pd.get_dummies(GM_df['Type']) GM_df = pd.concat([GM_df, dummies_GM], axis=1) GM_df.columns dummies_Mining = pd.get_dummies(Mining_df['Type']) Mining_df = pd.concat([Mining_df, dummies_Mining], axis=1) Mining_df.columns Mining_df[['A', 'B', 'C', 'D']] = Mining_df[['A', 'B', 'C', 'D']].astype(int) from sklearn.model_selection import train_test_split y = Mining_df.Level features = ['Cu', 'Sn', 'Pb', 'P', 'S', 'Cl'] X = Mining_df[features] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) from sklearn.preprocessing import StandardScaler sc_X = StandardScaler() X_train = sc_X.fit_transform(X_train) X_test = sc_X.transform(X_test) from sklearn.linear_model import LinearRegression M_lrmodel = LinearRegression() M_lrmodel.fit(X_train, y_train) y_lrpred = M_lrmodel.predict(X_test) from sklearn.svm import SVR M_svrmodel = SVR(kernel='rbf') M_svrmodel.fit(X_train, y_train) y_svrpred = M_svrmodel.predict(X_test) from sklearn.neighbors import KNeighborsRegressor M_knnmodel = KNeighborsRegressor(n_neighbors=1) M_knnmodel.fit(X_train, y_train) y_knnpred = M_knnmodel.predict(X_test) from sklearn.ensemble import RandomForestRegressor M_rfmodel = RandomForestRegressor(n_estimators=20, random_state=0) M_rfmodel.fit(X_train, y_train) y_rfpred = M_rfmodel.predict(X_test) from xgboost import XGBRegressor M_xgbmodel = XGBRegressor() M_xgbmodel.fit(X_train, y_train) y_xgbpred = M_xgbmodel.predict(X_test) from sklearn.metrics import r2_score svr_R = metrics.r2_score(y_test, y_svrpred) svr_a_R = 1 - (1 - svr_R) * (len(y_test) - 1) / (len(y_test) - X_test.shape[1] - 1) print('Adjusted R Squared Value for SVR: ', round(svr_a_R, 3)) lr_R = r2_score(y_test, y_lrpred) lr_a_R = 1 - (1 - lr_R) * (len(y_test) - 1) / (len(y_test) - X_test.shape[1] - 1) print('Adjusted R Squared Value for Linear Regression: ', round(lr_a_R, 3)) rf_R = metrics.r2_score(y_test, y_rfpred) rf_a_R = 1 - (1 - rf_R) * (len(y_test) - 1) / (len(y_test) - X_test.shape[1] - 1) print('Adjusted R Squared Value for Random Forest: ', round(rf_a_R, 3)) knn_R = metrics.r2_score(y_test, y_knnpred) knn_a_R = 1 - (1 - knn_R) * (len(y_test) - 1) / (len(y_test) - X_test.shape[1] - 1) print('Adjusted R Squared Value for KNN: ', round(knn_a_R, 3)) xgb_R = metrics.r2_score(y_test, y_xgbpred) xgb_a_R = 1 - (1 - xgb_R) * (len(y_test) - 1) / (len(y_test) - X_test.shape[1] - 1) print('Adjusted R Squared Value for XGBoost: ', round(xgb_a_R, 3))
code
128047268/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) GM_df = pd.read_excel('/kaggle/input/juan-anyang/GM.xlsx') Mining_df = pd.read_excel('/kaggle/input/juan-anyang/Mining.xlsx') GM_df.fillna(0, inplace=True) Mining_df.fillna(0, inplace=True) GM_df['Reading No'] = GM_df['Reading No'].astype(str) dummies_GM = pd.get_dummies(GM_df['Type']) GM_df = pd.concat([GM_df, dummies_GM], axis=1) GM_df.columns
code
128047268/cell_2
[ "text_plain_output_1.png" ]
import seaborn as sns import plotly.offline as py py.init_notebook_mode(connected=True) import plotly.graph_objs as go sns.set() import matplotlib.pyplot as plt from PIL import Image from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator from sklearn.cluster import KMeans from sklearn.preprocessing import StandardScaler, MinMaxScaler from sklearn.mixture import GaussianMixture from sklearn.model_selection import train_test_split from scipy.stats import boxcox from sklearn.decomposition import PCA import warnings warnings.filterwarnings("ignore", category=DeprecationWarning) warnings.filterwarnings("ignore", category=FutureWarning) warnings.filterwarnings("ignore", category=UserWarning) py.offline.init_notebook_mode(connected = True) !pip install openpyxl
code
128047268/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
128047268/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) GM_df = pd.read_excel('/kaggle/input/juan-anyang/GM.xlsx') Mining_df = pd.read_excel('/kaggle/input/juan-anyang/Mining.xlsx') GM_df.fillna(0, inplace=True) Mining_df.fillna(0, inplace=True) GM_df['Reading No'] = GM_df['Reading No'].astype(str) Mining_df['Reading No'] = Mining_df['Reading No'].astype(str) dummies_GM = pd.get_dummies(GM_df['Type']) GM_df = pd.concat([GM_df, dummies_GM], axis=1) GM_df.columns dummies_Mining = pd.get_dummies(Mining_df['Type']) Mining_df = pd.concat([Mining_df, dummies_Mining], axis=1) Mining_df.columns
code
128047268/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) GM_df = pd.read_excel('/kaggle/input/juan-anyang/GM.xlsx') Mining_df = pd.read_excel('/kaggle/input/juan-anyang/Mining.xlsx') GM_df.fillna(0, inplace=True) Mining_df.fillna(0, inplace=True) GM_df['Reading No'] = GM_df['Reading No'].astype(str) Mining_df['Reading No'] = Mining_df['Reading No'].astype(str) dummies_GM = pd.get_dummies(GM_df['Type']) GM_df = pd.concat([GM_df, dummies_GM], axis=1) GM_df.columns dummies_Mining = pd.get_dummies(Mining_df['Type']) Mining_df = pd.concat([Mining_df, dummies_Mining], axis=1) Mining_df.columns Mining_df[['A', 'B', 'C', 'D']] = Mining_df[['A', 'B', 'C', 'D']].astype(int) Mining_df.info()
code
128047268/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) GM_df = pd.read_excel('/kaggle/input/juan-anyang/GM.xlsx') Mining_df = pd.read_excel('/kaggle/input/juan-anyang/Mining.xlsx') GM_df.fillna(0, inplace=True) Mining_df.fillna(0, inplace=True) GM_df.info()
code
128047268/cell_10
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns GM_df = pd.read_excel('/kaggle/input/juan-anyang/GM.xlsx') Mining_df = pd.read_excel('/kaggle/input/juan-anyang/Mining.xlsx') GM_df.fillna(0, inplace=True) Mining_df.fillna(0, inplace=True) GM_df['Reading No'] = GM_df['Reading No'].astype(str) Mining_df['Reading No'] = Mining_df['Reading No'].astype(str) dummies_GM = pd.get_dummies(GM_df['Type']) GM_df = pd.concat([GM_df, dummies_GM], axis=1) GM_df.columns dummies_Mining = pd.get_dummies(Mining_df['Type']) Mining_df = pd.concat([Mining_df, dummies_Mining], axis=1) Mining_df.columns Mining_df[['A', 'B', 'C', 'D']] = Mining_df[['A', 'B', 'C', 'D']].astype(int) corr_Mining = Mining_df[['Level', 'Type','A','B','C','D', 'Sn', 'Pb', 'Cu', 'P', 'Cl', 'S']].corr() f,ax = plt.subplots(figsize=(9, 9)) mask = np.zeros_like(corr_Mining, dtype=np.bool) mask[np.triu_indices_from(mask)] = True cmap = sns.diverging_palette(220, 10, as_cmap=True) sns.heatmap(corr_Mining, mask=mask, cmap=cmap, square=True, annot=True, linewidths=.5, fmt= '.1f',ax=ax) plt.figure(figsize=(12, 5)) sns.distplot(Mining_df['Level'])
code
128047268/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) GM_df = pd.read_excel('/kaggle/input/juan-anyang/GM.xlsx') Mining_df = pd.read_excel('/kaggle/input/juan-anyang/Mining.xlsx') GM_df.fillna(0, inplace=True) Mining_df.fillna(0, inplace=True) Mining_df['Reading No'] = Mining_df['Reading No'].astype(str) Mining_df.info()
code
130002946/cell_2
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.preprocessing import LabelEncoder from sklearn.ensemble import RandomForestClassifier
code
130002946/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
130002946/cell_7
[ "text_html_output_1.png" ]
from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import LabelEncoder import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') x = df.iloc[:, :-1] y = df.iloc[:, 13] x = x.drop(['Cabin', 'Name', 'PassengerId'], axis='columns') lvl = LabelEncoder() x['CryoSleep'] = lvl.fit_transform(x['CryoSleep']) x['VIP'] = lvl.fit_transform(x['VIP']) dummies = pd.get_dummies(x['HomePlanet']) x = pd.concat([x, dummies], axis='columns') dummies = pd.get_dummies(x['Destination']) x = pd.concat([x, dummies], axis='columns') x = x.drop(['HomePlanet', 'Destination'], axis='columns') x.isnull().sum() null_having = ['Age', 'RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck'] mode_values = x[null_having].mode().iloc[0] mode_values x[null_having] = x[null_having].fillna(mode_values) x df
code
130002946/cell_3
[ "text_html_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') x = df.iloc[:, :-1] y = df.iloc[:, 13] x = x.drop(['Cabin', 'Name', 'PassengerId'], axis='columns') lvl = LabelEncoder() x['CryoSleep'] = lvl.fit_transform(x['CryoSleep']) x['VIP'] = lvl.fit_transform(x['VIP']) dummies = pd.get_dummies(x['HomePlanet']) x = pd.concat([x, dummies], axis='columns') dummies = pd.get_dummies(x['Destination']) x = pd.concat([x, dummies], axis='columns') x = x.drop(['HomePlanet', 'Destination'], axis='columns') x.isnull().sum() null_having = ['Age', 'RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck'] mode_values = x[null_having].mode().iloc[0] mode_values x[null_having] = x[null_having].fillna(mode_values) x
code
130000797/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/heart-disease-dataset/heart.csv') df.dtypes df.isnull().sum()
code
130000797/cell_1
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt from scipy.stats import skew, norm from scipy import stats from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.metrics import accuracy_score, classification_report, confusion_matrix from sklearn.model_selection import GridSearchCV from sklearn.pipeline import Pipeline from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier from xgboost import XGBClassifier from lightgbm import LGBMClassifier
code
130000797/cell_7
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
!pip install dataprep from dataprep.eda import plot, plot_missing, plot_correlation, plot_diff, create_report
code
130000797/cell_3
[ "text_plain_output_1.png" ]
import os import os print(os.listdir('/kaggle/input/'))
code
130000797/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/heart-disease-dataset/heart.csv') df.dtypes
code
50221063/cell_6
[ "text_plain_output_1.png" ]
def insertionSort(array): for step in range(1, len(array)): key = array[step] j = step - 1 while j >= 0 and key < array[j]: array[j + 1] = array[j] j = j - 1 array[j + 1] = key data = [10, 5, 30, 15, 50, 6, 25] insertionSort(data) def selectionSort(array, size): for step in range(size): min_idx = step for i in range(step + 1, size): if array[i] < array[min_idx]: min_idx = i array[step], array[min_idx] = (array[min_idx], array[step]) data = [10, 5, 30, 15, 50, 6, 25] size = len(data) selectionSort(data, size) print('Sorted Array in Ascending Order:') print(data)
code
50221063/cell_3
[ "text_plain_output_1.png" ]
def insertionSort(array): for step in range(1, len(array)): key = array[step] j = step - 1 while j >= 0 and key < array[j]: array[j + 1] = array[j] j = j - 1 array[j + 1] = key data = [10, 5, 30, 15, 50, 6, 25] insertionSort(data) print('Sorted Array in Ascending Order:') print(data)
code
18156269/cell_4
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/diabetes.csv') data.head()
code
18156269/cell_2
[ "image_output_1.png" ]
import os import numpy as np import pandas as pd import matplotlib.pyplot as plt from pandas.plotting import scatter_matrix import seaborn as sns import os print(os.listdir('../input'))
code
18156269/cell_7
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/diabetes.csv') data.hist(figsize=(16, 14))
code
18156269/cell_18
[ "image_output_1.png" ]
from pandas.plotting import scatter_matrix import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/diabetes.csv') correlations = data.corr() correlations = data.corr() # plot correlation matrix fig = plt.figure(figsize=(16,14)) ax = fig.add_subplot(111) cax = ax.matshow(correlations, vmin=-1, vmax=1) fig.colorbar(cax) ticks = np.arange(0,9,1) ax.set_xticks(ticks) ax.set_yticks(ticks) ax.set_xticklabels(data.columns) ax.set_yticklabels(data.columns) plt.show() scatter_matrix(data, figsize=(16, 14)) plt.show()
code
18156269/cell_15
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/diabetes.csv') correlations = data.corr() correlations = data.corr() fig = plt.figure(figsize=(16, 14)) ax = fig.add_subplot(111) cax = ax.matshow(correlations, vmin=-1, vmax=1) fig.colorbar(cax) ticks = np.arange(0, 9, 1) ax.set_xticks(ticks) ax.set_yticks(ticks) ax.set_xticklabels(data.columns) ax.set_yticklabels(data.columns) plt.show()
code
18156269/cell_10
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/diabetes.csv') data.plot(kind='density', subplots=True, layout=(3, 3), sharex=False, figsize=(16, 14)) plt.show()
code
18156269/cell_12
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/diabetes.csv') data.plot(kind='box', subplots=True, layout=(3, 3), sharex=False, sharey=False, figsize=(16, 14)) plt.show()
code
88101304/cell_42
[ "text_plain_output_1.png" ]
print(f'Round 1:\n{GRPC_R1_M1}\n{GRPC_R1_M2}\n') print(f'Round 2:\n{GRPC_R2_M1}\n{GRPC_R2_M2}\n') print(f'Round 3:\n{GRPC_R3_M1}\n{GRPC_R3_M2}')
code
88101304/cell_21
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from datetime import datetime, timedelta from sklearn.model_selection import train_test_split from sklearn.preprocessing import OneHotEncoder, StandardScaler import numpy as np import pandas as pd import tensorflow as tf REF_DATE_STR = '2021-10-08 06:00:00+00:00' RANDOM_SEED = 42069 tf.random.set_seed(RANDOM_SEED) def treatment_by_players(ref_date_str: str): """Pretreatment pipeline to build a dataframe set for models by players :param ref_date_str: A reference date as string, to put a weight on matches based to how old those games are :return: Dataset formatted for modeling and players name and ID database. """ ref_date = datetime.strptime(ref_date_str, '%Y-%m-%d %H:%M:%S%z') players_df = pd.read_csv('/kaggle/input/rlcs-202122/by_players.csv', low_memory=False, encoding='utf8') general_df = pd.read_csv('/kaggle/input/rlcs-202122/general.csv', low_memory=False, encoding='utf8') players_df = players_df.rename(columns={'name': 'team'}).rename(columns=lambda x: x[2:] if x.startswith('p_') else x) general_df = general_df.loc[:, ['ballchasing_id', 'correction', 'region', 'split', 'event', 'phase', 'stage', 'round', 'date', 'duration', 'overtime', 'overtime_seconds']] players_df = players_df.drop(['start_time', 'end_time', 'mvp', 'car_id'], axis=1) dataframe = general_df.merge(players_df) dataframe = dataframe.loc[~dataframe.correction].drop('correction', axis=1) results = dataframe.loc[:, ['ballchasing_id', 'color', 'core_mvp']].drop_duplicates().groupby(['ballchasing_id', 'color'], as_index=False).mean() results = results.loc[results.core_mvp > 0].drop('core_mvp', axis=1).rename(columns={'color': 'win'}) dataframe = dataframe.merge(results) dataframe.win = np.where(dataframe.color == dataframe.win, 1, 0) dataframe.platform_id = dataframe['platform'] + '_' + dataframe['platform_id'].astype(str) dataframe = dataframe.drop(['platform'], axis=1) dataframe.date = pd.to_datetime(dataframe.date, utc=True) dataframe.date = (dataframe.date - ref_date) / np.timedelta64(1, 'D') dataframe = dataframe.rename(columns={'date': 'since_ref_date'}) dataframe.overtime_seconds = dataframe.overtime_seconds.fillna(0) players_db = dataframe.loc[:, ['team', 'name', 'platform_id', 'since_ref_date']].sort_values('since_ref_date', ascending=False).drop_duplicates(subset=['platform_id'], keep='first').reset_index(drop=True).sort_values(['team', 'name']).drop('since_ref_date', axis=1) df_reduced = dataframe.loc[:, ['ballchasing_id', 'color', 'team', 'platform_id', 'core_score']] bl_side = df_reduced.loc[df_reduced.color == 'blue'].rename(columns={'platform_id': 'id_list'}).sort_values(['ballchasing_id', 'core_score'], ascending=False).groupby(['ballchasing_id', 'color', 'team'])['id_list'].apply(list).reset_index() or_side = df_reduced.loc[df_reduced.color == 'orange'].rename(columns={'platform_id': 'id_list'}).sort_values(['ballchasing_id', 'core_score'], ascending=False).groupby(['ballchasing_id', 'color', 'team'])['id_list'].apply(list).reset_index() bl_teammates_list_v1 = df_reduced.loc[df_reduced.color == 'blue', ['ballchasing_id', 'platform_id']].merge(bl_side.drop('team', axis=1)) bl_teammates_ex = bl_teammates_list_v1.explode('id_list').reset_index(drop=True) bl_teammates_list_v2 = bl_teammates_ex[bl_teammates_ex.id_list != bl_teammates_ex.platform_id].groupby(['ballchasing_id', 'platform_id'])['id_list'].apply(list).reset_index() bl_teammates = pd.concat([bl_teammates_list_v2.loc[:, ['ballchasing_id', 'platform_id']], bl_teammates_list_v2.id_list.apply(pd.Series)], axis=1).rename(columns={0: 'teammate_1', 1: 'teammate_2'}) or_teammates_list_v1 = df_reduced.loc[df_reduced.color == 'orange', ['ballchasing_id', 'platform_id']].merge(or_side.drop('team', axis=1)) or_teammates_ex = or_teammates_list_v1.explode('id_list').reset_index(drop=True) or_teammates_list_v2 = or_teammates_ex[or_teammates_ex.id_list != or_teammates_ex.platform_id].groupby(['ballchasing_id', 'platform_id'])['id_list'].apply(list).reset_index() or_teammates = pd.concat([or_teammates_list_v2.loc[:, ['ballchasing_id', 'platform_id']], or_teammates_list_v2.id_list.apply(pd.Series)], axis=1).rename(columns={0: 'teammate_1', 1: 'teammate_2'}) teammates = pd.concat([or_teammates, bl_teammates]) bl_as_opponent_series = bl_side.id_list.apply(pd.Series) bl_as_opponent = bl_side.merge(bl_as_opponent_series, left_index=True, right_index=True).drop('id_list', axis=1).rename(columns={0: 'opponent_1', 1: 'opponent_2', 2: 'opponent_3', 'team': 'opponent_team'}).replace({'color': {'blue': 'orange'}}) or_as_opponent_series = or_side.id_list.apply(pd.Series) or_as_opponent = or_side.merge(or_as_opponent_series, left_index=True, right_index=True).drop('id_list', axis=1).rename(columns={0: 'opponent_1', 1: 'opponent_2', 2: 'opponent_3', 'team': 'opponent_team'}).replace({'color': {'orange': 'blue'}}) opps = pd.concat([or_as_opponent, bl_as_opponent]) dataframe = dataframe.merge(teammates, how='outer').merge(opps) dataframe = dataframe.drop(['ballchasing_id', 'name', 'color'], axis=1) dataframe.overtime = np.where(dataframe.overtime, 1, 0) dataframe.core_mvp = np.where(dataframe.core_mvp, 1, 0) return (dataframe, players_db) def model_pretreatment(original_data: pd.DataFrame, split_data: pd.DataFrame): """Prepare raw data for further treatments :param original_data: original dataframe for fit step application and to get columns by type :param split_data: split / sample data resulting from sklearn 'train_test_split' or K-folds operation :return split_data_final: formatted data as numpy array. """ num_cols = original_data.select_dtypes(include=np.number).columns.to_list() cat_cols = original_data.select_dtypes(exclude=np.number).columns.to_list() split_data_cat = OneHotEncoder(handle_unknown='ignore').fit(original_data[cat_cols]).transform(split_data[cat_cols]).toarray() split_data_scaled = StandardScaler().fit(original_data[num_cols]).transform(split_data[num_cols]) split_data_final = np.concatenate((split_data_cat, split_data_scaled), axis=1) return split_data_final def compile_model(train: np.array, train_target: np.array, validation: np.array, val_target: np.array, batch_size: float, alpha: float=0.01, es_rate: float=0.2, epochs: int=100, workers: int=1, verbose: bool=True): """Compile and fit a keras model :param train: train array :param train_target: target array :param validation: validation array :param val_target: validation target array :param batch_size: number of samples to work through before updating the internal model parameters :param alpha: initial learning rate :param es_rate: early stopping rate, epochs percentage to set early stopping :param epochs: number times that the learning algorithm will work through the entire training dataset :param workers: maximum number of processes to spin up when using process-based threading :param verbose: to display progress or not :return: model fitted (Keras model + Keras History). """ if es_rate > 1: es_rate = 1 elif es_rate < 0: es_rate = 0.2 early_stopping = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=es_rate * epochs, mode='min', restore_best_weights=True) checkpoint = tf.keras.callbacks.ModelCheckpoint(filepath='/kaggle/working/tmp_mdl.hdf5', monitor='val_accuracy', save_weights_only=True, mode='max', save_best_only=True) model = tf.keras.Sequential([tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dense(256, activation='relu'), tf.keras.layers.Dense(256, activation='relu'), tf.keras.layers.Dense(1, activation='sigmoid')]) model.compile(loss=tf.keras.losses.binary_crossentropy, optimizer=tf.keras.optimizers.Adam(learning_rate=alpha), metrics=tf.keras.metrics.BinaryAccuracy(name='accuracy')) history = model.fit(train, train_target, callbacks=[early_stopping, checkpoint], batch_size=batch_size, epochs=epochs, validation_data=(validation, val_target), verbose=verbose, workers=workers) model.load_weights('/kaggle/working/tmp_mdl.hdf5') return (model, history) def compil_best_model(x: np.array, y: np.array, epochs: int, es_rate: float, batch_size: int, alpha: float, workers: int=1, verbose: bool=True): """Compil best model (the best combination of batch size & alpha) with Keras model implemented in 'compile_model' function :param x: training instances to class :param y: target array relative to x :param epochs: number times that the learning algorithm will work through the entire training dataset :param es_rate: early stopping rate, epochs percentage to set early stopping :param batch_size: batch size, number of samples to work through before updating the internal model parameters :param alpha: initial learning rate :param workers: maximum number of processes to spin up when using process-based threading :param verbose: to display progress or not :return model, model_history: Keras model and model's history """ x_train, x_val, y_train, y_val = train_test_split(x, y, test_size=1 / 3, random_state=RANDOM_SEED, stratify=y) new_x_train = model_pretreatment(original_data=x, split_data=x_train) new_x_val = model_pretreatment(original_data=x, split_data=x_val) model, model_history = compile_model(train=new_x_train, train_target=y_train, validation=new_x_val, val_target=y_val, batch_size=int(batch_size), alpha=alpha, epochs=epochs, es_rate=es_rate, verbose=verbose, workers=workers) return (model, model_history) DF_GAMES, PLAYERS_DB = treatment_by_players(ref_date_str=REF_DATE_STR) DATA = DF_GAMES.drop('win', axis=1) TARGET = DF_GAMES.win BEST_SETTINGS = {'batch_size': 64, 'init_alpha': 1e-06} MY_MODEL, _ = compil_best_model(x=DATA, y=TARGET, epochs=1000, es_rate=0.1, batch_size=BEST_SETTINGS['batch_size'], alpha=BEST_SETTINGS['init_alpha'])
code
88101304/cell_32
[ "text_plain_output_1.png" ]
print(f'Round 1:\n{GRPA_R1_M1}\n{GRPA_R1_M2}\n') print(f'Round 2:\n{GRPA_R2_M1}\n{GRPA_R2_M2}\n') print(f'Round 3:\n{GRPA_R3_M1}\n{GRPA_R3_M2}')
code
88101304/cell_47
[ "text_plain_output_1.png" ]
print(f'Round 1:\n{GRPD_R1_M1}\n{GRPD_R1_M2}\n') print(f'Round 2:\n{GRPD_R2_M1}\n{GRPD_R2_M2}\n') print(f'Round 3:\n{GRPD_R3_M1}\n{GRPD_R3_M2}')
code
88101304/cell_37
[ "text_plain_output_1.png" ]
print(f'Round 1:\n{GRPB_R1_M1}\n{GRPB_R1_M2}\n') print(f'Round 2:\n{GRPB_R2_M1}\n{GRPB_R2_M2}\n') print(f'Round 3:\n{GRPB_R3_M1}\n{GRPB_R3_M2}')
code
73073728/cell_17
[ "text_plain_output_1.png" ]
from sklearn.metrics import mean_squared_log_error model = LinearRegression(iterations=10000, learning_rate=1e-09) model.fit(X_train, y_train) mean_squared_log_error(y_test, model.predict(X_test)) scaler = StandardScaler() scaler.fit(X_train) X_train, X_test = (scaler.transform(X_train), scaler.transform(X_test)) model = LinearRegression(iterations=10000, learning_rate=0.1) model.fit(X_train, y_train) y_pred = model.predict(X_test) mean_squared_log_error(y_test, y_pred)
code
73073728/cell_12
[ "text_plain_output_1.png" ]
from sklearn.metrics import mean_squared_log_error model = LinearRegression(iterations=10000, learning_rate=1e-09) model.fit(X_train, y_train) mean_squared_log_error(y_test, model.predict(X_test))
code
106195240/cell_21
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import MinMaxScaler import matplotlib.pyplot as plt import pandas as pd import tensorflow as tf data = pd.read_csv('../input/time-series-datasets/monthly-beer-production-in-austr.csv', index_col='Month', parse_dates=True) data.columns = ['Production'] train = data[:'1992-12-31'] test = data['1993-01-01':] scaler = MinMaxScaler() scaler.fit(train) scaled_train = scaler.transform(train) scaled_test = scaler.transform(test) n_months = 12 generator = tf.keras.preprocessing.sequence.TimeseriesGenerator(scaled_train, scaled_train, length=n_months, batch_size=1) tf.keras.backend.clear_session() model = tf.keras.Sequential([tf.keras.layers.InputLayer(input_shape=(n_months, 1)), tf.keras.layers.LSTM(100, activation='tanh', return_sequences=True), tf.keras.layers.LSTM(50, activation='tanh', return_sequences=True), tf.keras.layers.LSTM(25, activation='tanh'), tf.keras.layers.Dense(1)]) model.compile(optimizer='adam', loss='mse') model.summary() early_stop = tf.keras.callbacks.EarlyStopping(monitor='loss', verbose=1, patience=2) history = model.fit(generator, epochs=10, callbacks=[early_stop]) temp = scaled_train[-n_months:] temp = temp.reshape((1, n_months, 1)) model.predict(temp)
code
106195240/cell_13
[ "text_html_output_1.png" ]
from sklearn.preprocessing import MinMaxScaler import matplotlib.pyplot as plt import pandas as pd data = pd.read_csv('../input/time-series-datasets/monthly-beer-production-in-austr.csv', index_col='Month', parse_dates=True) data.columns = ['Production'] train = data[:'1992-12-31'] test = data['1993-01-01':] scaler = MinMaxScaler() scaler.fit(train)
code
106195240/cell_4
[ "image_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/time-series-datasets/monthly-beer-production-in-austr.csv', index_col='Month', parse_dates=True) data.columns = ['Production'] data.head()
code
106195240/cell_23
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import MinMaxScaler import matplotlib.pyplot as plt import numpy as np import pandas as pd import tensorflow as tf data = pd.read_csv('../input/time-series-datasets/monthly-beer-production-in-austr.csv', index_col='Month', parse_dates=True) data.columns = ['Production'] train = data[:'1992-12-31'] test = data['1993-01-01':] scaler = MinMaxScaler() scaler.fit(train) scaled_train = scaler.transform(train) scaled_test = scaler.transform(test) n_months = 12 generator = tf.keras.preprocessing.sequence.TimeseriesGenerator(scaled_train, scaled_train, length=n_months, batch_size=1) tf.keras.backend.clear_session() model = tf.keras.Sequential([tf.keras.layers.InputLayer(input_shape=(n_months, 1)), tf.keras.layers.LSTM(100, activation='tanh', return_sequences=True), tf.keras.layers.LSTM(50, activation='tanh', return_sequences=True), tf.keras.layers.LSTM(25, activation='tanh'), tf.keras.layers.Dense(1)]) model.compile(optimizer='adam', loss='mse') model.summary() early_stop = tf.keras.callbacks.EarlyStopping(monitor='loss', verbose=1, patience=2) history = model.fit(generator, epochs=10, callbacks=[early_stop]) temp = scaled_train[-n_months:] temp = temp.reshape((1, n_months, 1)) model.predict(temp) test_predictions = [] last_batch = scaled_train[-n_months:] current_batch = last_batch.reshape((1, n_months, 1)) for i in range(test.shape[0]): pred = model.predict(current_batch)[0] test_predictions.append(pred) current_batch = np.append(current_batch[:, 1:, :], [[pred]], axis=1) test['LSTM_predictions'] = scaler.inverse_transform(test_predictions)
code
106195240/cell_6
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd data = pd.read_csv('../input/time-series-datasets/monthly-beer-production-in-austr.csv', index_col='Month', parse_dates=True) data.columns = ['Production'] data.plot(figsize=(12, 6)) plt.show()
code
106195240/cell_19
[ "image_output_1.png" ]
from sklearn.preprocessing import MinMaxScaler import matplotlib.pyplot as plt import pandas as pd import tensorflow as tf data = pd.read_csv('../input/time-series-datasets/monthly-beer-production-in-austr.csv', index_col='Month', parse_dates=True) data.columns = ['Production'] train = data[:'1992-12-31'] test = data['1993-01-01':] scaler = MinMaxScaler() scaler.fit(train) scaled_train = scaler.transform(train) scaled_test = scaler.transform(test) n_months = 12 generator = tf.keras.preprocessing.sequence.TimeseriesGenerator(scaled_train, scaled_train, length=n_months, batch_size=1) tf.keras.backend.clear_session() model = tf.keras.Sequential([tf.keras.layers.InputLayer(input_shape=(n_months, 1)), tf.keras.layers.LSTM(100, activation='tanh', return_sequences=True), tf.keras.layers.LSTM(50, activation='tanh', return_sequences=True), tf.keras.layers.LSTM(25, activation='tanh'), tf.keras.layers.Dense(1)]) model.compile(optimizer='adam', loss='mse') model.summary() early_stop = tf.keras.callbacks.EarlyStopping(monitor='loss', verbose=1, patience=2) history = model.fit(generator, epochs=10, callbacks=[early_stop]) plt.plot(history.history['loss']) plt.show()
code
106195240/cell_18
[ "image_output_1.png" ]
from sklearn.preprocessing import MinMaxScaler import matplotlib.pyplot as plt import pandas as pd import tensorflow as tf data = pd.read_csv('../input/time-series-datasets/monthly-beer-production-in-austr.csv', index_col='Month', parse_dates=True) data.columns = ['Production'] train = data[:'1992-12-31'] test = data['1993-01-01':] scaler = MinMaxScaler() scaler.fit(train) scaled_train = scaler.transform(train) scaled_test = scaler.transform(test) n_months = 12 generator = tf.keras.preprocessing.sequence.TimeseriesGenerator(scaled_train, scaled_train, length=n_months, batch_size=1) tf.keras.backend.clear_session() model = tf.keras.Sequential([tf.keras.layers.InputLayer(input_shape=(n_months, 1)), tf.keras.layers.LSTM(100, activation='tanh', return_sequences=True), tf.keras.layers.LSTM(50, activation='tanh', return_sequences=True), tf.keras.layers.LSTM(25, activation='tanh'), tf.keras.layers.Dense(1)]) model.compile(optimizer='adam', loss='mse') model.summary() early_stop = tf.keras.callbacks.EarlyStopping(monitor='loss', verbose=1, patience=2) history = model.fit(generator, epochs=10, callbacks=[early_stop])
code
106195240/cell_8
[ "image_output_1.png" ]
from statsmodels.tsa.seasonal import seasonal_decompose import matplotlib.pyplot as plt import pandas as pd data = pd.read_csv('../input/time-series-datasets/monthly-beer-production-in-austr.csv', index_col='Month', parse_dates=True) data.columns = ['Production'] decomposed = seasonal_decompose(data['Production']) fig = decomposed.plot() fig.set_size_inches((25, 9)) fig.show()
code
106195240/cell_3
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_3.png", "text_plain_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/time-series-datasets/monthly-beer-production-in-austr.csv', index_col='Month', parse_dates=True) data.columns = ['Production'] print(data.shape)
code
106195240/cell_17
[ "text_html_output_1.png" ]
from sklearn.preprocessing import MinMaxScaler import matplotlib.pyplot as plt import pandas as pd import tensorflow as tf data = pd.read_csv('../input/time-series-datasets/monthly-beer-production-in-austr.csv', index_col='Month', parse_dates=True) data.columns = ['Production'] train = data[:'1992-12-31'] test = data['1993-01-01':] scaler = MinMaxScaler() scaler.fit(train) scaled_train = scaler.transform(train) scaled_test = scaler.transform(test) n_months = 12 generator = tf.keras.preprocessing.sequence.TimeseriesGenerator(scaled_train, scaled_train, length=n_months, batch_size=1) tf.keras.backend.clear_session() model = tf.keras.Sequential([tf.keras.layers.InputLayer(input_shape=(n_months, 1)), tf.keras.layers.LSTM(100, activation='tanh', return_sequences=True), tf.keras.layers.LSTM(50, activation='tanh', return_sequences=True), tf.keras.layers.LSTM(25, activation='tanh'), tf.keras.layers.Dense(1)]) model.compile(optimizer='adam', loss='mse') model.summary()
code
106195240/cell_24
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.preprocessing import MinMaxScaler import matplotlib.pyplot as plt import numpy as np import pandas as pd import tensorflow as tf data = pd.read_csv('../input/time-series-datasets/monthly-beer-production-in-austr.csv', index_col='Month', parse_dates=True) data.columns = ['Production'] train = data[:'1992-12-31'] test = data['1993-01-01':] scaler = MinMaxScaler() scaler.fit(train) scaled_train = scaler.transform(train) scaled_test = scaler.transform(test) n_months = 12 generator = tf.keras.preprocessing.sequence.TimeseriesGenerator(scaled_train, scaled_train, length=n_months, batch_size=1) tf.keras.backend.clear_session() model = tf.keras.Sequential([tf.keras.layers.InputLayer(input_shape=(n_months, 1)), tf.keras.layers.LSTM(100, activation='tanh', return_sequences=True), tf.keras.layers.LSTM(50, activation='tanh', return_sequences=True), tf.keras.layers.LSTM(25, activation='tanh'), tf.keras.layers.Dense(1)]) model.compile(optimizer='adam', loss='mse') model.summary() early_stop = tf.keras.callbacks.EarlyStopping(monitor='loss', verbose=1, patience=2) history = model.fit(generator, epochs=10, callbacks=[early_stop]) temp = scaled_train[-n_months:] temp = temp.reshape((1, n_months, 1)) model.predict(temp) test_predictions = [] last_batch = scaled_train[-n_months:] current_batch = last_batch.reshape((1, n_months, 1)) for i in range(test.shape[0]): pred = model.predict(current_batch)[0] test_predictions.append(pred) current_batch = np.append(current_batch[:, 1:, :], [[pred]], axis=1) test.plot(figsize=(12, 6)) plt.title('Forecasted vs Actual Time Series') plt.show()
code
106195240/cell_12
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd data = pd.read_csv('../input/time-series-datasets/monthly-beer-production-in-austr.csv', index_col='Month', parse_dates=True) data.columns = ['Production'] train = data[:'1992-12-31'] test = data['1993-01-01':] print('Shape of training set: ', train.shape) print('Shape of testing set: ', test.shape)
code
106195240/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/time-series-datasets/monthly-beer-production-in-austr.csv', index_col='Month', parse_dates=True) data.columns = ['Production'] data.tail()
code
89135912/cell_9
[ "text_html_output_1.png" ]
from bs4 import BeautifulSoup from nltk.corpus import stopwords import re stop_words = stopwords.words('english') def clean(review): clean_html = BeautifulSoup(review).get_text() clean_non_letters = re.sub('[^a-zA-Z]', ' ', clean_html) cleaned_lowecase = clean_non_letters.lower() words = cleaned_lowecase.split() clean_words = [w for w in words if w not in stop_words] return ' '.join(clean_words) clean('hello my name in 67&%gopal goyal ')
code
89135912/cell_25
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.feature_extraction.text import CountVectorizer from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) traindata = pd.read_csv('/kaggle/input/word2vec-nlp-tutorial/labeledTrainData.tsv.zip', delimiter='\t') testdata = pd.read_csv('/kaggle/input/word2vec-nlp-tutorial/testData.tsv.zip', header=0, delimiter='\t') unlabledata = pd.read_csv('/kaggle/input/word2vec-nlp-tutorial/unlabeledTrainData.tsv.zip', header=0, delimiter='\t', quoting=3) submissoin = pd.read_csv('/kaggle/input/word2vec-nlp-tutorial/sampleSubmission.csv', header=0, delimiter='\t') totaldata = pd.concat([traindata, testdata], axis=0) totaldata.shape from sklearn.feature_extraction.text import CountVectorizer cv = CountVectorizer() vec = cv.fit_transform(totaldata['cleanreview']) X = vec[:len(traindata)] Y = traindata.sentiment x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.1) model = RandomForestClassifier() model.fit(x_train, y_train) pred = model.predict(x_test) accuracy_score(pred, y_test) data = vec[len(traindata):] data.shape pred = model.predict(data) submissoin['sentiment'] = pred submissoin.head()
code
89135912/cell_4
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) traindata = pd.read_csv('/kaggle/input/word2vec-nlp-tutorial/labeledTrainData.tsv.zip', delimiter='\t') testdata = pd.read_csv('/kaggle/input/word2vec-nlp-tutorial/testData.tsv.zip', header=0, delimiter='\t') unlabledata = pd.read_csv('/kaggle/input/word2vec-nlp-tutorial/unlabeledTrainData.tsv.zip', header=0, delimiter='\t', quoting=3) submissoin = pd.read_csv('/kaggle/input/word2vec-nlp-tutorial/sampleSubmission.csv', header=0, delimiter='\t') traindata['review'][0]
code
89135912/cell_23
[ "text_html_output_1.png" ]
from sklearn.feature_extraction.text import CountVectorizer from sklearn.model_selection import train_test_split import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) traindata = pd.read_csv('/kaggle/input/word2vec-nlp-tutorial/labeledTrainData.tsv.zip', delimiter='\t') testdata = pd.read_csv('/kaggle/input/word2vec-nlp-tutorial/testData.tsv.zip', header=0, delimiter='\t') unlabledata = pd.read_csv('/kaggle/input/word2vec-nlp-tutorial/unlabeledTrainData.tsv.zip', header=0, delimiter='\t', quoting=3) submissoin = pd.read_csv('/kaggle/input/word2vec-nlp-tutorial/sampleSubmission.csv', header=0, delimiter='\t') totaldata = pd.concat([traindata, testdata], axis=0) totaldata.shape from sklearn.feature_extraction.text import CountVectorizer cv = CountVectorizer() vec = cv.fit_transform(totaldata['cleanreview']) X = vec[:len(traindata)] Y = traindata.sentiment x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.1) print(len(traindata), vec.shape)
code
89135912/cell_29
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.feature_extraction.text import CountVectorizer from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) traindata = pd.read_csv('/kaggle/input/word2vec-nlp-tutorial/labeledTrainData.tsv.zip', delimiter='\t') testdata = pd.read_csv('/kaggle/input/word2vec-nlp-tutorial/testData.tsv.zip', header=0, delimiter='\t') unlabledata = pd.read_csv('/kaggle/input/word2vec-nlp-tutorial/unlabeledTrainData.tsv.zip', header=0, delimiter='\t', quoting=3) submissoin = pd.read_csv('/kaggle/input/word2vec-nlp-tutorial/sampleSubmission.csv', header=0, delimiter='\t') totaldata = pd.concat([traindata, testdata], axis=0) totaldata.shape from sklearn.feature_extraction.text import CountVectorizer cv = CountVectorizer() vec = cv.fit_transform(totaldata['cleanreview']) X = vec[:len(traindata)] Y = traindata.sentiment x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.1) model = RandomForestClassifier() model.fit(x_train, y_train) pred = model.predict(x_test) accuracy_score(pred, y_test) data = vec[len(traindata):] data.shape pred = model.predict(data) submissoin['sentiment'] = pred submission = pd.read_csv('/kaggle/input/word2vec-nlp-tutorial/sampleSubmission.csv', header=0, delimiter='\t') output = pd.DataFrame(data={'id': testdata.id, 'sentiment': pred}) output
code
89135912/cell_26
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.feature_extraction.text import CountVectorizer from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) traindata = pd.read_csv('/kaggle/input/word2vec-nlp-tutorial/labeledTrainData.tsv.zip', delimiter='\t') testdata = pd.read_csv('/kaggle/input/word2vec-nlp-tutorial/testData.tsv.zip', header=0, delimiter='\t') unlabledata = pd.read_csv('/kaggle/input/word2vec-nlp-tutorial/unlabeledTrainData.tsv.zip', header=0, delimiter='\t', quoting=3) submissoin = pd.read_csv('/kaggle/input/word2vec-nlp-tutorial/sampleSubmission.csv', header=0, delimiter='\t') totaldata = pd.concat([traindata, testdata], axis=0) totaldata.shape from sklearn.feature_extraction.text import CountVectorizer cv = CountVectorizer() vec = cv.fit_transform(totaldata['cleanreview']) X = vec[:len(traindata)] Y = traindata.sentiment x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.1) model = RandomForestClassifier() model.fit(x_train, y_train) pred = model.predict(x_test) accuracy_score(pred, y_test) data = vec[len(traindata):] data.shape pred = model.predict(data) submissoin['sentiment'] = pred submissoin.drop('sentiment', axis=1, inplace=True) submissoin.columns
code
89135912/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) traindata = pd.read_csv('/kaggle/input/word2vec-nlp-tutorial/labeledTrainData.tsv.zip', delimiter='\t') testdata = pd.read_csv('/kaggle/input/word2vec-nlp-tutorial/testData.tsv.zip', header=0, delimiter='\t') unlabledata = pd.read_csv('/kaggle/input/word2vec-nlp-tutorial/unlabeledTrainData.tsv.zip', header=0, delimiter='\t', quoting=3) submissoin = pd.read_csv('/kaggle/input/word2vec-nlp-tutorial/sampleSubmission.csv', header=0, delimiter='\t') testdata.head()
code
89135912/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
89135912/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) traindata = pd.read_csv('/kaggle/input/word2vec-nlp-tutorial/labeledTrainData.tsv.zip', delimiter='\t') testdata = pd.read_csv('/kaggle/input/word2vec-nlp-tutorial/testData.tsv.zip', header=0, delimiter='\t') unlabledata = pd.read_csv('/kaggle/input/word2vec-nlp-tutorial/unlabeledTrainData.tsv.zip', header=0, delimiter='\t', quoting=3) submissoin = pd.read_csv('/kaggle/input/word2vec-nlp-tutorial/sampleSubmission.csv', header=0, delimiter='\t') totaldata = pd.concat([traindata, testdata], axis=0) totaldata.shape
code
89135912/cell_24
[ "text_plain_output_1.png" ]
from sklearn.feature_extraction.text import CountVectorizer from sklearn.model_selection import train_test_split import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) traindata = pd.read_csv('/kaggle/input/word2vec-nlp-tutorial/labeledTrainData.tsv.zip', delimiter='\t') testdata = pd.read_csv('/kaggle/input/word2vec-nlp-tutorial/testData.tsv.zip', header=0, delimiter='\t') unlabledata = pd.read_csv('/kaggle/input/word2vec-nlp-tutorial/unlabeledTrainData.tsv.zip', header=0, delimiter='\t', quoting=3) submissoin = pd.read_csv('/kaggle/input/word2vec-nlp-tutorial/sampleSubmission.csv', header=0, delimiter='\t') totaldata = pd.concat([traindata, testdata], axis=0) totaldata.shape from sklearn.feature_extraction.text import CountVectorizer cv = CountVectorizer() vec = cv.fit_transform(totaldata['cleanreview']) X = vec[:len(traindata)] Y = traindata.sentiment x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.1) data = vec[len(traindata):] data.shape
code
89135912/cell_14
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) traindata = pd.read_csv('/kaggle/input/word2vec-nlp-tutorial/labeledTrainData.tsv.zip', delimiter='\t') testdata = pd.read_csv('/kaggle/input/word2vec-nlp-tutorial/testData.tsv.zip', header=0, delimiter='\t') unlabledata = pd.read_csv('/kaggle/input/word2vec-nlp-tutorial/unlabeledTrainData.tsv.zip', header=0, delimiter='\t', quoting=3) submissoin = pd.read_csv('/kaggle/input/word2vec-nlp-tutorial/sampleSubmission.csv', header=0, delimiter='\t') traindata.head()
code
89135912/cell_22
[ "text_html_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score model = RandomForestClassifier() model.fit(x_train, y_train) pred = model.predict(x_test) accuracy_score(pred, y_test)
code
89135912/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) traindata = pd.read_csv('/kaggle/input/word2vec-nlp-tutorial/labeledTrainData.tsv.zip', delimiter='\t') testdata = pd.read_csv('/kaggle/input/word2vec-nlp-tutorial/testData.tsv.zip', header=0, delimiter='\t') unlabledata = pd.read_csv('/kaggle/input/word2vec-nlp-tutorial/unlabeledTrainData.tsv.zip', header=0, delimiter='\t', quoting=3) submissoin = pd.read_csv('/kaggle/input/word2vec-nlp-tutorial/sampleSubmission.csv', header=0, delimiter='\t') traindata.head()
code
16126718/cell_7
[ "text_plain_output_1.png" ]
from PIL import Image import numpy as np import os import pandas as pd def get_pixel_data(filepath): """ Get the pixel data from an image as a pandas DataFrame. """ image = Image.open(filepath) pixel_data = np.array(image.getdata()) pixel_data = pixel_data.mean(axis=1) pixel_data = pixel_data.reshape(1, 32 * 32) pixel_data = pd.DataFrame(pixel_data, columns=np.arange(32 * 32)) image.close() return pixel_data path = '../input/train/train/' train = pd.DataFrame() for file in sorted(os.listdir(path)): image = get_pixel_data(path + file) train = train.append(image, ignore_index=True) labels_train = pd.read_csv('../input/train.csv').sort_values('id') path = '../input/test/test/' test = pd.DataFrame() test_id = [] for file in sorted(os.listdir(path)): image = get_pixel_data(path + file) test = test.append(image, ignore_index=True) test_id.append(file) print('TRAIN---------------------') print('Shape: {}'.format(train.shape)) print('Label 0 (False): {}'.format(np.sum(labels_train.has_cactus == 0))) print('Label 1 (True): {}'.format(np.sum(labels_train.has_cactus == 1))) print('TEST----------------------') print('Shape: {}'.format(test.shape))
code
16126718/cell_17
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from PIL import Image from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression import numpy as np import os import pandas as pd import random def get_pixel_data(filepath): """ Get the pixel data from an image as a pandas DataFrame. """ image = Image.open(filepath) pixel_data = np.array(image.getdata()) pixel_data = pixel_data.mean(axis=1) pixel_data = pixel_data.reshape(1, 32 * 32) pixel_data = pd.DataFrame(pixel_data, columns=np.arange(32 * 32)) image.close() return pixel_data path = '../input/train/train/' train = pd.DataFrame() for file in sorted(os.listdir(path)): image = get_pixel_data(path + file) train = train.append(image, ignore_index=True) labels_train = pd.read_csv('../input/train.csv').sort_values('id') path = '../input/test/test/' test = pd.DataFrame() test_id = [] for file in sorted(os.listdir(path)): image = get_pixel_data(path + file) test = test.append(image, ignore_index=True) test_id.append(file) random.seed(0) idx = random.choices(range(17500), k=10000) X_train = train.iloc[idx] X_test = train.drop(idx, axis=0) y_train = labels_train.iloc[idx, 1] y_test = labels_train.drop(idx, axis=0).iloc[:, 1] model = LogisticRegression(solver='lbfgs', random_state=0) model.fit(X_train, y_train) model.score(X_test, y_test) model = RandomForestClassifier(criterion='entropy', random_state=0) model.fit(X_train, y_train) model.score(X_test, y_test) preds = model.predict(test) print('Label 0 (False): {}'.format(np.sum(preds == 0))) print('Label 1 (True): {}'.format(np.sum(preds == 1))) results = pd.DataFrame({'id': test_id, 'has_cactus': preds}) results.to_csv('submission.csv', index=False)
code
16126718/cell_10
[ "text_plain_output_1.png" ]
from PIL import Image from sklearn.linear_model import LogisticRegression import numpy as np import os import pandas as pd import random def get_pixel_data(filepath): """ Get the pixel data from an image as a pandas DataFrame. """ image = Image.open(filepath) pixel_data = np.array(image.getdata()) pixel_data = pixel_data.mean(axis=1) pixel_data = pixel_data.reshape(1, 32 * 32) pixel_data = pd.DataFrame(pixel_data, columns=np.arange(32 * 32)) image.close() return pixel_data path = '../input/train/train/' train = pd.DataFrame() for file in sorted(os.listdir(path)): image = get_pixel_data(path + file) train = train.append(image, ignore_index=True) labels_train = pd.read_csv('../input/train.csv').sort_values('id') path = '../input/test/test/' test = pd.DataFrame() test_id = [] for file in sorted(os.listdir(path)): image = get_pixel_data(path + file) test = test.append(image, ignore_index=True) test_id.append(file) random.seed(0) idx = random.choices(range(17500), k=10000) X_train = train.iloc[idx] X_test = train.drop(idx, axis=0) y_train = labels_train.iloc[idx, 1] y_test = labels_train.drop(idx, axis=0).iloc[:, 1] model = LogisticRegression(solver='lbfgs', random_state=0) model.fit(X_train, y_train) model.score(X_test, y_test)
code
16126718/cell_12
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from PIL import Image from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression import numpy as np import os import pandas as pd import random def get_pixel_data(filepath): """ Get the pixel data from an image as a pandas DataFrame. """ image = Image.open(filepath) pixel_data = np.array(image.getdata()) pixel_data = pixel_data.mean(axis=1) pixel_data = pixel_data.reshape(1, 32 * 32) pixel_data = pd.DataFrame(pixel_data, columns=np.arange(32 * 32)) image.close() return pixel_data path = '../input/train/train/' train = pd.DataFrame() for file in sorted(os.listdir(path)): image = get_pixel_data(path + file) train = train.append(image, ignore_index=True) labels_train = pd.read_csv('../input/train.csv').sort_values('id') path = '../input/test/test/' test = pd.DataFrame() test_id = [] for file in sorted(os.listdir(path)): image = get_pixel_data(path + file) test = test.append(image, ignore_index=True) test_id.append(file) random.seed(0) idx = random.choices(range(17500), k=10000) X_train = train.iloc[idx] X_test = train.drop(idx, axis=0) y_train = labels_train.iloc[idx, 1] y_test = labels_train.drop(idx, axis=0).iloc[:, 1] model = LogisticRegression(solver='lbfgs', random_state=0) model.fit(X_train, y_train) model.score(X_test, y_test) model = RandomForestClassifier(criterion='entropy', random_state=0) model.fit(X_train, y_train) model.score(X_test, y_test)
code
18146048/cell_13
[ "text_html_output_1.png" ]
import pandas as pd student_data_mat = pd.read_csv('../input/student_math.csv', delimiter=';') student_data_por = pd.read_csv('../input/student_language.csv', delimiter=';') student_data_mat.shape student_data_por.shape student_data = pd.merge(student_data_mat, student_data_por, how='outer') student_data.shape columns_string = student_data.columns[student_data.dtypes == object] columns_string student_data = pd.get_dummies(student_data, columns=columns_string, drop_first=True) student_data.info()
code
18146048/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd student_data_mat = pd.read_csv('../input/student_math.csv', delimiter=';') student_data_por = pd.read_csv('../input/student_language.csv', delimiter=';') student_data_mat.shape student_data_por.shape student_data = pd.merge(student_data_mat, student_data_por, how='outer') student_data.head()
code
18146048/cell_25
[ "text_html_output_1.png" ]
from sklearn.decomposition import PCA import matplotlib.pyplot as plt import numpy as np import pandas as pd student_data_mat = pd.read_csv('../input/student_math.csv', delimiter=';') student_data_por = pd.read_csv('../input/student_language.csv', delimiter=';') student_data_mat.shape student_data_por.shape student_data = pd.merge(student_data_mat, student_data_por, how='outer') student_data.shape columns_string = student_data.columns[student_data.dtypes == object] columns_string student_data = pd.get_dummies(student_data, columns=columns_string, drop_first=True) student_data.shape student_data.drop(axis=1, labels=['G1'], inplace=True) label = student_data['G3'].values predictors = student_data.drop(axis=1, labels=['G3']).values pca = PCA(n_components=len(student_data.columns) - 1) pca.fit(predictors) variance = pca.explained_variance_ variance variance_ratio_cum_sum = np.cumsum(np.round(pca.explained_variance_ratio_, decimals=4) * 100) pca = PCA(n_components=9) pca.fit(predictors) Transformed_vector = pca.fit_transform(predictors) print(Transformed_vector)
code
18146048/cell_23
[ "text_html_output_1.png" ]
from sklearn.decomposition import PCA import pandas as pd student_data_mat = pd.read_csv('../input/student_math.csv', delimiter=';') student_data_por = pd.read_csv('../input/student_language.csv', delimiter=';') student_data_mat.shape student_data_por.shape student_data = pd.merge(student_data_mat, student_data_por, how='outer') student_data.shape columns_string = student_data.columns[student_data.dtypes == object] columns_string student_data = pd.get_dummies(student_data, columns=columns_string, drop_first=True) student_data.shape student_data.drop(axis=1, labels=['G1'], inplace=True) label = student_data['G3'].values predictors = student_data.drop(axis=1, labels=['G3']).values pca = PCA(n_components=len(student_data.columns) - 1) pca.fit(predictors) variance = pca.explained_variance_ variance print(pca.explained_variance_ratio_)
code
18146048/cell_6
[ "text_plain_output_2.png", "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd student_data_mat = pd.read_csv('../input/student_math.csv', delimiter=';') student_data_por = pd.read_csv('../input/student_language.csv', delimiter=';') student_data_mat.shape
code
18146048/cell_26
[ "text_html_output_1.png" ]
from sklearn.decomposition import PCA import pandas as pd student_data_mat = pd.read_csv('../input/student_math.csv', delimiter=';') student_data_por = pd.read_csv('../input/student_language.csv', delimiter=';') student_data_mat.shape student_data_por.shape student_data = pd.merge(student_data_mat, student_data_por, how='outer') student_data.shape columns_string = student_data.columns[student_data.dtypes == object] columns_string student_data = pd.get_dummies(student_data, columns=columns_string, drop_first=True) student_data.shape student_data.drop(axis=1, labels=['G1'], inplace=True) label = student_data['G3'].values predictors = student_data.drop(axis=1, labels=['G3']).values pca = PCA(n_components=len(student_data.columns) - 1) pca.fit(predictors) variance = pca.explained_variance_ variance student_data_without_output = student_data.drop(axis=1, labels=['G3'], inplace=False) features = student_data_without_output.columns features
code
18146048/cell_11
[ "text_html_output_1.png" ]
import pandas as pd student_data_mat = pd.read_csv('../input/student_math.csv', delimiter=';') student_data_por = pd.read_csv('../input/student_language.csv', delimiter=';') student_data_mat.shape student_data_por.shape student_data = pd.merge(student_data_mat, student_data_por, how='outer') student_data.shape student_data.info()
code
18146048/cell_19
[ "text_plain_output_1.png" ]
import pandas as pd student_data_mat = pd.read_csv('../input/student_math.csv', delimiter=';') student_data_por = pd.read_csv('../input/student_language.csv', delimiter=';') student_data_mat.shape student_data_por.shape student_data = pd.merge(student_data_mat, student_data_por, how='outer') student_data.shape columns_string = student_data.columns[student_data.dtypes == object] columns_string student_data = pd.get_dummies(student_data, columns=columns_string, drop_first=True) student_data.shape student_data.drop(axis=1, labels=['G1'], inplace=True) label = student_data['G3'].values predictors = student_data.drop(axis=1, labels=['G3']).values predictors
code
18146048/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd student_data_mat = pd.read_csv('../input/student_math.csv', delimiter=';') student_data_por = pd.read_csv('../input/student_language.csv', delimiter=';') student_data_por.head()
code
18146048/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd student_data_mat = pd.read_csv('../input/student_math.csv', delimiter=';') student_data_por = pd.read_csv('../input/student_language.csv', delimiter=';') student_data_por.shape
code
18146048/cell_15
[ "text_html_output_1.png" ]
import pandas as pd student_data_mat = pd.read_csv('../input/student_math.csv', delimiter=';') student_data_por = pd.read_csv('../input/student_language.csv', delimiter=';') student_data_mat.shape student_data_por.shape student_data = pd.merge(student_data_mat, student_data_por, how='outer') student_data.shape columns_string = student_data.columns[student_data.dtypes == object] columns_string student_data = pd.get_dummies(student_data, columns=columns_string, drop_first=True) student_data.shape
code
18146048/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd student_data_mat = pd.read_csv('../input/student_math.csv', delimiter=';') student_data_por = pd.read_csv('../input/student_language.csv', delimiter=';') student_data_mat.shape student_data_por.shape student_data = pd.merge(student_data_mat, student_data_por, how='outer') student_data.shape columns_string = student_data.columns[student_data.dtypes == object] columns_string student_data = pd.get_dummies(student_data, columns=columns_string, drop_first=True) student_data.shape student_data[['G1', 'G2', 'G3']].corr()
code
18146048/cell_3
[ "text_plain_output_1.png" ]
import os import os print(os.listdir('../input'))
code
18146048/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd student_data_mat = pd.read_csv('../input/student_math.csv', delimiter=';') student_data_por = pd.read_csv('../input/student_language.csv', delimiter=';') student_data_mat.shape student_data_por.shape student_data = pd.merge(student_data_mat, student_data_por, how='outer') student_data.shape columns_string = student_data.columns[student_data.dtypes == object] columns_string student_data = pd.get_dummies(student_data, columns=columns_string, drop_first=True) student_data.shape student_data.drop(axis=1, labels=['G1'], inplace=True) student_data.head()
code
18146048/cell_24
[ "text_plain_output_1.png" ]
from sklearn.decomposition import PCA import matplotlib.pyplot as plt import numpy as np import pandas as pd student_data_mat = pd.read_csv('../input/student_math.csv', delimiter=';') student_data_por = pd.read_csv('../input/student_language.csv', delimiter=';') student_data_mat.shape student_data_por.shape student_data = pd.merge(student_data_mat, student_data_por, how='outer') student_data.shape columns_string = student_data.columns[student_data.dtypes == object] columns_string student_data = pd.get_dummies(student_data, columns=columns_string, drop_first=True) student_data.shape student_data.drop(axis=1, labels=['G1'], inplace=True) label = student_data['G3'].values predictors = student_data.drop(axis=1, labels=['G3']).values pca = PCA(n_components=len(student_data.columns) - 1) pca.fit(predictors) variance = pca.explained_variance_ variance variance_ratio_cum_sum = np.cumsum(np.round(pca.explained_variance_ratio_, decimals=4) * 100) print(variance_ratio_cum_sum) plt.plot(variance_ratio_cum_sum)
code
18146048/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd student_data_mat = pd.read_csv('../input/student_math.csv', delimiter=';') student_data_por = pd.read_csv('../input/student_language.csv', delimiter=';') student_data_mat.shape student_data_por.shape student_data = pd.merge(student_data_mat, student_data_por, how='outer') student_data.shape columns_string = student_data.columns[student_data.dtypes == object] columns_string student_data = pd.get_dummies(student_data, columns=columns_string, drop_first=True) student_data.head()
code
18146048/cell_22
[ "text_plain_output_1.png" ]
from sklearn.decomposition import PCA import pandas as pd student_data_mat = pd.read_csv('../input/student_math.csv', delimiter=';') student_data_por = pd.read_csv('../input/student_language.csv', delimiter=';') student_data_mat.shape student_data_por.shape student_data = pd.merge(student_data_mat, student_data_por, how='outer') student_data.shape columns_string = student_data.columns[student_data.dtypes == object] columns_string student_data = pd.get_dummies(student_data, columns=columns_string, drop_first=True) student_data.shape student_data.drop(axis=1, labels=['G1'], inplace=True) label = student_data['G3'].values predictors = student_data.drop(axis=1, labels=['G3']).values pca = PCA(n_components=len(student_data.columns) - 1) pca.fit(predictors) variance = pca.explained_variance_ variance
code
18146048/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd student_data_mat = pd.read_csv('../input/student_math.csv', delimiter=';') student_data_por = pd.read_csv('../input/student_language.csv', delimiter=';') student_data_mat.shape student_data_por.shape student_data = pd.merge(student_data_mat, student_data_por, how='outer') student_data.shape
code
18146048/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd student_data_mat = pd.read_csv('../input/student_math.csv', delimiter=';') student_data_por = pd.read_csv('../input/student_language.csv', delimiter=';') student_data_mat.shape student_data_por.shape student_data = pd.merge(student_data_mat, student_data_por, how='outer') student_data.shape columns_string = student_data.columns[student_data.dtypes == object] columns_string
code
18146048/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd student_data_mat = pd.read_csv('../input/student_math.csv', delimiter=';') student_data_por = pd.read_csv('../input/student_language.csv', delimiter=';') student_data_mat.head()
code
73095391/cell_20
[ "text_html_output_1.png" ]
import cv2 import glob import numpy as np import pandas as pd RESIZED_WIDTH, RESIZED_HEIGHT = (224, 224) EACH_WIDTH, EACH_HEIGHT = (RESIZED_WIDTH // 2, RESIZED_HEIGHT // 2) OUTPUT_FORMAT = 'jpg' OUTPUT_DIR = 'data_argument_224_224' train_dir = 'train_images' train_paths = glob.glob(f'{data_dir}/{train_dir}/*.jpg') TRAIN_DF = pd.read_csv('../input/pp-csv/clearned_train.csv') TRAIN_DF EXTRA_TRAIN = pd.DataFrame(columns=['image', 'labels']) def concat_img(imgs): if len(imgs) < 4: return output_shape = (EACH_WIDTH, EACH_HEIGHT) imgs = [cv2.resize(img, output_shape) for img in imgs] upper_img = cv2.vconcat([imgs[0], imgs[1]]) lower_img = cv2.vconcat([imgs[2], imgs[3]]) img = cv2.hconcat([upper_img, lower_img]) return img length = len(TRAIN_DF) indexs = np.random.randint(0, length, size=4) for count in range(3000): imgs = [] new_labels = [] indexs = np.random.randint(0, length, size=4) for index in indexs: filepath = train_paths[index] img = cv2.imread(filepath) imgs.append(img) labels = TRAIN_DF.iloc[index, 1] for disease in labels.split(' '): if disease == 'healthy' or disease in new_labels: continue new_labels.append(disease) if not new_labels: new_label = 'healthy' else: new_label = ' '.join(new_labels) img_name = f'{count}.jpg' new_img = concat_img(imgs) new_file_path = f'{OUTPUT_DIR}/{train_dir}/{img_name}' cv2.imwrite(new_file_path, new_img) EXTRA_TRAIN = EXTRA_TRAIN.append({'image': img_name, 'labels': new_label}, ignore_index=True) EXTRA_TRAIN
code
73095391/cell_1
[ "text_plain_output_1.png" ]
!apt install zip
code
73095391/cell_7
[ "text_plain_output_1.png" ]
data_dir = "../input/plant-pathology-2021-fgvc8" !ls {data_dir}
code
73095391/cell_22
[ "text_html_output_1.png" ]
!zip -r {OUTPUT_DIR}_resized.zip ./{OUTPUT_DIR}/*
code
73095391/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd TRAIN_DF = pd.read_csv('../input/pp-csv/clearned_train.csv') TRAIN_DF
code
1007093/cell_9
[ "image_output_1.png" ]
from keras.layers import Dense, Dropout, Lambda, Flatten from keras.models import Sequential from keras.optimizers import Adam ,RMSprop from keras.utils import np_utils import numpy as np import pandas as pd train_file = pd.read_csv('../input/train.csv') test_images = pd.read_csv('../input/test.csv') train_images = train_file.ix[:, 1:].values.astype('float32') train_labels = train_file.ix[:, 0].values.astype('int32') train_images = train_images.reshape((42000, 28 * 28)) train_images = train_images / 255 test_images = test_images / 255 train_labels = np_utils.to_categorical(train_labels) num_classes = train_labels.shape[1] seed = 43 np.random.seed(seed) model = Sequential() model.add(Dense(64, activation='relu', input_dim=28 * 28)) model.add(Dense(128, activation='relu')) model.add(Dropout(0.15)) model.add(Dense(64, activation='relu')) model.add(Dropout(0.15)) model.add(Dense(32, activation='relu')) model.add(Dropout(0.15)) model.add(Dense(10, activation='softmax')) model.compile(optimizer=RMSprop(lr=0.001), loss='categorical_crossentropy', metrics=['accuracy']) history = model.fit(train_images, train_labels, validation_split=0.05, nb_epoch=25, batch_size=64)
code
1007093/cell_4
[ "image_output_1.png" ]
import pandas as pd train_file = pd.read_csv('../input/train.csv') test_images = pd.read_csv('../input/test.csv') train_images = train_file.ix[:, 1:].values.astype('float32') print(train_images.shape) train_labels = train_file.ix[:, 0].values.astype('int32') print(train_labels.shape)
code
1007093/cell_2
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import matplotlib.pyplot as plt from keras.utils import np_utils from keras.models import Sequential from keras.layers import Dense, Dropout, Lambda, Flatten from keras.optimizers import Adam, RMSprop from sklearn.model_selection import train_test_split
code
1007093/cell_15
[ "text_plain_output_1.png" ]
from keras.layers import Dense, Dropout, Lambda, Flatten from keras.models import Sequential from keras.optimizers import Adam ,RMSprop from keras.utils import np_utils import numpy as np import pandas as pd train_file = pd.read_csv('../input/train.csv') test_images = pd.read_csv('../input/test.csv') train_images = train_file.ix[:, 1:].values.astype('float32') train_labels = train_file.ix[:, 0].values.astype('int32') train_images = train_images.reshape((42000, 28 * 28)) train_images = train_images / 255 test_images = test_images / 255 train_labels = np_utils.to_categorical(train_labels) num_classes = train_labels.shape[1] seed = 43 np.random.seed(seed) model = Sequential() model.add(Dense(64, activation='relu', input_dim=28 * 28)) model.add(Dense(128, activation='relu')) model.add(Dropout(0.15)) model.add(Dense(64, activation='relu')) model.add(Dropout(0.15)) model.add(Dense(32, activation='relu')) model.add(Dropout(0.15)) model.add(Dense(10, activation='softmax')) model.compile(optimizer=RMSprop(lr=0.001), loss='categorical_crossentropy', metrics=['accuracy']) history = model.fit(train_images, train_labels, validation_split=0.05, nb_epoch=25, batch_size=64) history_dict = history.history history_dict.keys()
code
1007093/cell_16
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt loss_values = history_dict['loss'] val_loss_values = history_dict['val_loss'] epochs = range(1, len(loss_values) + 1) plt.plot(epochs, loss_values, 'bo') plt.plot(epochs, val_loss_values, 'b+') plt.xlabel('Epochs') plt.ylabel('Loss') plt.show()
code
1007093/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd train_file = pd.read_csv('../input/train.csv') print(train_file.shape) test_images = pd.read_csv('../input/test.csv') print(test_images.shape)
code
1007093/cell_17
[ "text_plain_output_1.png" ]
from keras.layers import Dense, Dropout, Lambda, Flatten from keras.models import Sequential from keras.optimizers import Adam ,RMSprop from keras.utils import np_utils import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np import pandas as pd train_file = pd.read_csv('../input/train.csv') test_images = pd.read_csv('../input/test.csv') train_images = train_file.ix[:, 1:].values.astype('float32') train_labels = train_file.ix[:, 0].values.astype('int32') train_images = train_images.reshape((42000, 28 * 28)) train_images = train_images / 255 test_images = test_images / 255 train_labels = np_utils.to_categorical(train_labels) num_classes = train_labels.shape[1] seed = 43 np.random.seed(seed) model = Sequential() model.add(Dense(64, activation='relu', input_dim=28 * 28)) model.add(Dense(128, activation='relu')) model.add(Dropout(0.15)) model.add(Dense(64, activation='relu')) model.add(Dropout(0.15)) model.add(Dense(32, activation='relu')) model.add(Dropout(0.15)) model.add(Dense(10, activation='softmax')) model.compile(optimizer=RMSprop(lr=0.001), loss='categorical_crossentropy', metrics=['accuracy']) history = model.fit(train_images, train_labels, validation_split=0.05, nb_epoch=25, batch_size=64) history_dict = history.history history_dict.keys() plt.clf() acc_values = history_dict['acc'] val_acc_values = history_dict['val_acc'] plt.plot(epochs, acc_values, 'bo') plt.plot(epochs, val_acc_values, 'b+') plt.xlabel('Epochs') plt.ylabel('Accuracy') plt.show()
code
1007093/cell_10
[ "application_vnd.jupyter.stderr_output_1.png" ]
from keras.layers import Dense, Dropout, Lambda, Flatten from keras.models import Sequential from keras.optimizers import Adam ,RMSprop from keras.utils import np_utils import numpy as np import pandas as pd train_file = pd.read_csv('../input/train.csv') test_images = pd.read_csv('../input/test.csv') train_images = train_file.ix[:, 1:].values.astype('float32') train_labels = train_file.ix[:, 0].values.astype('int32') train_images = train_images.reshape((42000, 28 * 28)) train_images = train_images / 255 test_images = test_images / 255 train_labels = np_utils.to_categorical(train_labels) num_classes = train_labels.shape[1] seed = 43 np.random.seed(seed) model = Sequential() model.add(Dense(64, activation='relu', input_dim=28 * 28)) model.add(Dense(128, activation='relu')) model.add(Dropout(0.15)) model.add(Dense(64, activation='relu')) model.add(Dropout(0.15)) model.add(Dense(32, activation='relu')) model.add(Dropout(0.15)) model.add(Dense(10, activation='softmax')) model.compile(optimizer=RMSprop(lr=0.001), loss='categorical_crossentropy', metrics=['accuracy']) history = model.fit(train_images, train_labels, validation_split=0.05, nb_epoch=25, batch_size=64) print(model.summary())
code
1008693/cell_25
[ "text_html_output_1.png" ]
from sklearn.model_selection import KFold from sklearn.preprocessing import StandardScaler from sklearn.svm import SVC import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns employees.shape employees.mean() import seaborn as sns correlation_matrix = employees.corr() employees['salary'] = pd.factorize(employees['salary'])[0] employees['sales'] = pd.factorize(employees['sales'])[0] leave_result = employees['left'] y = np.where(leave_result == 1, 1, 0) y X = employees.drop('left', axis=1).as_matrix().astype(np.float) X from sklearn.preprocessing import StandardScaler scaler = StandardScaler() X = scaler.fit_transform(X) from sklearn.model_selection import KFold def run_cv(X, y, clf_class, **kwargs): kf = KFold(n_splits=3, shuffle=True) y_pred = y.copy() for train_index, test_index in kf.split(X): X_train, X_test = (X[train_index], X[test_index]) y_train = y[train_index] clf = clf_class(**kwargs) clf.fit(X_train, y_train) y_pred[test_index] = clf.predict(X_test) return y_pred from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier as RF from sklearn.neighbors import KNeighborsClassifier as KNN from sklearn.linear_model import LogisticRegression as LR from sklearn.ensemble import GradientBoostingClassifier as GBC from sklearn.metrics import average_precision_score def accuracy(y_true, y_pred): return np.mean(y_true == y_pred) print('Logistic Regression:') print('%.3f' % accuracy(y, run_cv(X, y, LR))) print('Gradient Boosting Classifier') print('%.3f' % accuracy(y, run_cv(X, y, GBC))) print('Support vector machines:') print('%.3f' % accuracy(y, run_cv(X, y, SVC))) print('Random forest:') print('%.3f' % accuracy(y, run_cv(X, y, RF))) print('K-nearest-neighbors:') print('%.3f' % accuracy(y, run_cv(X, y, KNN)))
code
1008693/cell_4
[ "text_plain_output_1.png" ]
employees.shape
code