path
stringlengths 13
17
| screenshot_names
sequencelengths 1
873
| code
stringlengths 0
40.4k
| cell_type
stringclasses 1
value |
---|---|---|---|
122252043/cell_8 | [
"text_plain_output_1.png"
] | 41215 | code |
122252043/cell_80 | [
"text_plain_output_1.png"
] | a = 12670
b = 12.344
print(f'a={a:>07,d},b={b:>+6.0f}') | code |
122252043/cell_15 | [
"text_plain_output_1.png"
] | 73 | code |
122252043/cell_16 | [
"text_plain_output_1.png"
] | 217366 | code |
122252043/cell_38 | [
"text_plain_output_1.png"
] | x = 5
x += 2
x = 12
y = 8
x ^ y | code |
122252043/cell_47 | [
"text_plain_output_1.png"
] | True + (not 'piggy') | code |
122252043/cell_66 | [
"text_plain_output_1.png"
] | int('0b1001001', base=2) | code |
122252043/cell_35 | [
"text_plain_output_1.png"
] | x = 5
x += 2
x = 12
y = 8
x & y | code |
122252043/cell_77 | [
"text_plain_output_1.png"
] | a = 12670
b = 12.344
print(f'a={a:>7d},b={b:>6.2f}') | code |
122252043/cell_43 | [
"text_plain_output_1.png"
] | x = 12
y = 8
y << 2 | code |
122252043/cell_24 | [
"text_plain_output_1.png"
] | 128 % 39 | code |
122252043/cell_14 | [
"text_plain_output_1.png"
] | 202 | code |
122252043/cell_22 | [
"text_plain_output_1.png"
] | 2 ** 120 | code |
122252043/cell_53 | [
"text_plain_output_1.png"
] | eval('66+18') | code |
122252043/cell_10 | [
"text_plain_output_1.png"
] | 11325731 | code |
122252043/cell_37 | [
"text_plain_output_1.png"
] | x = 5
x += 2
x = 12
y = 8
~x | code |
122252043/cell_12 | [
"text_plain_output_1.png"
] | 492 | code |
122252043/cell_71 | [
"text_plain_output_1.png"
] | print("'Holliday'") | code |
122252043/cell_5 | [
"text_plain_output_1.png"
] | type(6000.0) | code |
122252043/cell_36 | [
"text_plain_output_1.png"
] | x = 5
x += 2
x = 12
y = 8
x | y | code |
327702/cell_9 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from sklearn import svm
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('../input/pitching.csv')
df
df_sg = df[df.gs == df.g]
Y = df_sg.w / df_sg.gs
Y_class = np.floor(Y)
clf = svm.SVC()
clf.fit(X, Y_class) | code |
327702/cell_2 | [
"text_plain_output_1.png"
] | from subprocess import check_output
import numpy as np
import pandas as pd
from subprocess import check_output
print(check_output(['ls', '../input']).decode('utf8')) | code |
327702/cell_7 | [
"application_vnd.jupyter.stderr_output_1.png"
] | X | code |
327702/cell_3 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('../input/pitching.csv')
df | code |
32071198/cell_9 | [
"text_plain_output_2.png",
"text_plain_output_1.png"
] | from functools import partial
from joblib import Parallel, delayed
from sklearn.compose import ColumnTransformer
from sklearn.ensemble import VotingRegressor
from sklearn.impute import SimpleImputer
from sklearn.metrics import cohen_kappa_score
from sklearn.metrics import confusion_matrix, cohen_kappa_score
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import StandardScaler, OneHotEncoder, FunctionTransformer
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.wrappers.scikit_learn import KerasRegressor
import multiprocessing
import numpy as np
import pandas as pd
import scipy as sp
import tensorflow as tf
import xgboost as xgb
def applyParallel(dfGrouped, func):
retLst = Parallel(n_jobs=multiprocessing.cpu_count())(delayed(func)(name, group) for name, group in dfGrouped)
return pd.DataFrame(retLst)
last_event_before_assessment = {'Cauldron Filler (Assessment)': '90d848e0',
'Cart Balancer (Assessment)': '7ad3efc6',
'Mushroom Sorter (Assessment)': '3bfd1a65',
'Bird Measurer (Assessment)': 'f56e0afc',
'Chest Sorter (Assessment)': '5b49460a'}
media_seq = pd.read_csv('../input/dsb-feats-v2/media_sequence.csv')
clips_seq = media_seq[media_seq.type=='Clip']
clip_times = dict(zip(clips_seq.title, clips_seq.duration))
def read_data():
print('Reading train.csv file....')
train = pd.read_csv('train.csv')
print('Training.csv file have {} rows and {} columns'.format(train.shape[0], train.shape[1]))
print('Reading test.csv file....')
test = pd.read_csv('test.csv')
print('Test.csv file have {} rows and {} columns'.format(test.shape[0], test.shape[1]))
print('Reading train_labels.csv file....')
train_labels = pd.read_csv('train_labels.csv')
print('Train_labels.csv file have {} rows and {} columns'.format(train_labels.shape[0], train_labels.shape[1]))
print('Reading specs.csv file....')
specs = pd.read_csv('specs.csv')
print('Specs.csv file have {} rows and {} columns'.format(specs.shape[0], specs.shape[1]))
return train, test, train_labels, specs
def get_worst_score(group):
return group.sort_values('accuracy_group').iloc[0]
def is_assessment(titles_series):
def is_assessment_title(title):
return "assessment" in title.lower()
return titles_series.apply(lambda x: is_assessment_title(x))
def num_unique_days(timestamps):
return pd.to_datetime(timestamps).apply(lambda x: x.date()).unique().size
def days_since_first_event(timestamps):
dates = pd.to_datetime(timestamps).apply(lambda x: x.date())
return (dates.max() - dates.min()).days
def get_events_before_game_session(events, game_session, assessment_title):
if not (game_session or assessment_title):
return events
else:
assessment_event = last_event_before_assessment.get(assessment_title)
game_session_index = events.index[(events.game_session == game_session) & \
(events.event_id.isin([assessment_event] if assessment_event else last_event_before_assessment.values()))]
return events.loc[:game_session_index[-1]]
def get_clip_duration_features(events):
clips = events[events.type=='Clip']
if clips.empty:
game_time = 0
skip_rate = 0
avg_watch_length = 0
else:
game_time = clips.apply(lambda x: min(x.ts_diff, clip_times.get(x.title)), axis=1).sum()
skip_rate = clips.apply(lambda x: x.ts_diff < clip_times.get(x.title), axis=1).mean()
avg_watch_length = clips.apply(lambda x: min(x.ts_diff / clip_times.get(x.title), 1), axis=1).mean()
return pd.Series([game_time, skip_rate, avg_watch_length],
index=['clip_game_time', 'clip_skip_rate', 'clip_avg_watch_length'],
dtype=float)
def group_by_game_session_and_sum(events, columns):
"""
some columns are rolling counts by game session,
take the max value of each game session then sum for totals
"""
series = pd.Series(dtype=int)
for c in columns:
# set beginning values for each type to 0
for stype in ['activity', 'game', 'assessment', 'clip']:
series[stype+'_'+c] = 0
series['total_'+c] = 0
# get session type and total values and add to running total
for session_id, session in events.groupby('game_session'):
session_type = session['type'].iloc[0].lower()
session_value = session[c].max() / 1000.0 if c=='game_time' else session[c].max()
series[session_type+'_'+c] += session_value
series['total_'+c] += session_value
if c=='game_time':
series = series.drop(labels='clip_'+c)
series = series.append(get_clip_duration_features(events))
return series
def summarize_events(events):
"""
takes a dataframe of events and returns a pd.Series with aggregate/summary values
"""
events = events.sort_values('ts').reset_index()
events['ts_diff'] = -events.ts.diff(-1).dt.total_seconds()
numeric_rows = ['event_count', 'game_time']
aggregates = group_by_game_session_and_sum(events, numeric_rows)
aggregates['num_unique_days'] = num_unique_days(events['timestamp'])
aggregates['elapsed_days'] = days_since_first_event(events['timestamp'])
aggregates['last_world'] = events.tail(1)['world'].values[0]
aggregates['last_assessment'] = events[is_assessment(events['title'])].tail(1)['title'].values[0]
aggregates['assessments_taken'] = events['title'][events.event_id.isin(last_event_before_assessment.values())].value_counts()
aggregates['type_counts'] = events[['game_session', 'type']].drop_duplicates()['type'].value_counts()
aggregates['title_counts'] = events[['game_session', 'title']].drop_duplicates()['title'].value_counts()
aggregates['event_code_counts'] = events.event_code.value_counts()
aggregates['event_id_counts'] = events.event_id.value_counts()
aggregates['unique_game_sessions'] = events.game_session.unique().size
return aggregates
def summarize_events_before_game_session(name, events):
if not isinstance(name, (list,tuple)) or len(name)==1:
# for test data
game_session=None
assessment=None
name_series = pd.Series([name], index=['installation_id'])
else:
installation_id, game_session, assessment = name
name_series = pd.Series(name, index=['installation_id', 'game_session_y', 'title_y'])
events = events.rename(columns={'game_session_x': 'game_session', 'title_x': 'title'}, errors='ignore')
events_before = get_events_before_game_session(events, game_session, assessment)
aggregates = summarize_events(events_before)
try:
labels = events[['num_correct', 'num_incorrect', 'accuracy', 'accuracy_group']].iloc[0] \
.append(name_series)
row = aggregates.append(labels)
except KeyError:
row = aggregates.append(name_series)
# print("no label columns, just returning features")
return row
def expand_count_features(features):
print('**expanding event type count features**')
expanded_type_counts = features.type_counts.apply(pd.Series).fillna(0)
# rename the type count columns
expanded_type_counts.columns = [c.lower()+'_ct' for c in expanded_type_counts.columns]
print('**expanding title count features**')
expanded_title_counts = features.title_counts.apply(pd.Series).fillna(0)
# rename the type count columns
expanded_title_counts.columns = [c.lower().replace(' ', '_')+'_ct' for c in expanded_title_counts.columns]
print('**expanding event code count features**')
expanded_event_code_counts = features.event_code_counts.apply(pd.Series).fillna(0)
# rename the event_code count columns
expanded_event_code_counts.columns = ['event_{}_ct'.format(int(c)) for c in expanded_event_code_counts.columns]
# non_zero_event_code_counts
for ec in expanded_event_code_counts.columns:
expanded_event_code_counts['non_zero_'+ec] = (expanded_event_code_counts[ec] > 0).astype(int)
print('**expanding event id count features**')
expanded_event_id_counts = features.event_id_counts.apply(pd.Series).fillna(0)
# rename the event_id count columns
expanded_event_id_counts.columns = ['eid_{}_ct'.format(c) for c in expanded_event_id_counts.columns]
expanded_assessments_taken = features.assessments_taken.apply(pd.Series).fillna(0)
feats = pd.concat([features.drop(['type_counts', 'title_counts', 'event_code_counts', 'event_id_counts', 'assessments_taken'], axis=1), expanded_type_counts, expanded_title_counts, expanded_event_code_counts, expanded_event_id_counts, expanded_assessments_taken], axis=1)
return feats
def split_features_and_labels(df):
labels_df = df[['title_y', 'num_correct', 'num_incorrect',
'accuracy', 'accuracy_group', 'installation_id', 'game_session_y']].copy()
feats_df = df.drop(
['title_y', 'num_correct', 'num_incorrect', 'game_session_y',
'accuracy', 'accuracy_group'], axis=1)
return feats_df, labels_df
def basic_user_features_transform(train_data, train_labels=None):
data = train_data[['event_id', 'game_session', 'timestamp', 'installation_id', 'event_count', 'event_code',
'game_time', 'title', 'type', 'world']]
data['ts'] = pd.to_datetime(data.timestamp)
if train_labels is not None:
train_w_labels = data.merge(train_labels, on='installation_id')
groups = train_w_labels.groupby(['installation_id', 'game_session_y', 'title_y'])
else:
groups = data.groupby(['installation_id'])
# game session y is index 1 of the group name
# passing none to game session is for eval data, does not subset any of the data for each installation_id
print('**getting user features before each training assessment**')
features = applyParallel(groups,
lambda name, group: summarize_events_before_game_session(name, group))
expanded_features = expand_count_features(features)
if train_labels is not None:
return split_features_and_labels(expanded_features)
else:
return expanded_features, None
def get_data_processing_pipe(feats, log_features, categorical_features):
# We create the preprocessing pipelines for both numeric and categorical data.
numeric_features = [c for c in feats.columns if c not in log_features+categorical_features+['installation_id']]
numeric_transformer = Pipeline(steps=[
('imputer', SimpleImputer(fill_value=0, strategy='constant')),
('scaler', StandardScaler())])
numeric_log_transformer = Pipeline(steps=[
('imputer', SimpleImputer(fill_value=0, strategy='constant')),
('log_scale', FunctionTransformer(np.log1p)),
('scaler', StandardScaler())])
categorical_transformer = Pipeline(steps=[
('imputer', SimpleImputer(strategy='constant', fill_value='missing')),
('onehot', OneHotEncoder(handle_unknown='ignore'))])
preprocessor = ColumnTransformer(
remainder='drop',
transformers=[
('num', numeric_transformer, numeric_features),
('num_log', numeric_log_transformer, log_features),
('cat', categorical_transformer, categorical_features)])
return preprocessor
class OrdinalRegressor:
def __init__(self, clf, **kwargs):
self.clf = clf(**kwargs)
self.threshold_optimizer = OptimizedRounder([0, 1, 2, 3])
def fit(self, X, y, **fit_params):
self.clf.fit(X, y, **fit_params)
self.threshold_optimizer.fit(self.predict(X), y)
def predict(self, X, **predict_params):
pred = self.clf.predict(X)
if predict_params.get('classify'):
return self.classify(pred)
return pred
def set_params(self, **kwargs):
self.clf = self.clf.set_params(**kwargs)
def classify(self, pred):
return self.threshold_optimizer.predict(pred)
def predict_and_classify(self, X):
return self.classify(self.predict(X))
def predict_proba(self, X):
return self.predict_and_classify(X)
class OptimizedRounder(object):
def __init__(self, labels):
self.coef_ = 0
self.labels = labels
def _kappa_loss(self, coef, X, y):
if len(set(coef)) != len(coef):
return 0
preds = pd.cut(X, [-np.inf] + list(np.sort(coef)) + [np.inf], labels=self.labels)
return -cohen_kappa_score(y, preds, weights='quadratic')
def fit(self, X, y):
loss_partial = partial(self._kappa_loss, X=X, y=y)
initial_coef = [0.5, 1.5, 2.5]
constraints = ({'type': 'ineq', 'fun': lambda x: x[1] - x[0] - 0.001}, {'type': 'ineq', 'fun': lambda x: x[2] - x[1] - 0.001})
self.coef_ = sp.optimize.minimize(loss_partial, initial_coef, method='COBYLA', constraints=constraints)
def predict(self, X, coef=None):
coef = coef if coef else self.coefficients()
preds = pd.cut(X, [-np.inf] + list(np.sort(coef)) + [np.inf], labels=self.labels)
return preds
def coefficients(self):
return self.coef_['x']
feats = installation_features = pd.read_csv('../input/dsb-feats-v2/installation_features_v2.csv')
labels = installation_labels = pd.read_csv('../input/dsb-feats-v2/installation_labels_v2.csv')
test = pd.read_csv('../input/data-science-bowl-2019/test.csv')
from sklearn.preprocessing import OneHotEncoder
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import GridSearchCV, train_test_split
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import confusion_matrix, cohen_kappa_score
import xgboost as xgb
from sklearn.utils import class_weight
from sklearn.ensemble import VotingRegressor
import tensorflow as tf
from tensorflow.keras.wrappers.scikit_learn import KerasRegressor
from tensorflow import keras
from tensorflow.keras import layers
def build_model(input_shape=[538], hidden_units=[64], learning_rate=0.003, dropout=0, l1=0, l2=0, epochs=20):
model = keras.Sequential([layers.Input(input_shape)])
for hu in hidden_units:
model.add(layers.Dense(hu, activation=tf.keras.layers.LeakyReLU(), kernel_regularizer=keras.regularizers.l1_l2(l1=l1, l2=l2)))
model.add(layers.Dropout(dropout))
model.add(layers.Dense(1))
optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)
model.compile(loss='mse', optimizer=optimizer, metrics=['mae', 'mse'])
return model
class KerasRegressor_v2(KerasRegressor):
def __init__(self, build_fn, **kwargs):
super().__init__(build_fn, **kwargs)
self._estimator_type = 'regressor'
feature_pipe = get_data_processing_pipe(feats, log_features=list(filter(lambda c: c.startswith('event') or c.endswith('event_count') or c.endswith('game_time') or c.startswith('eid_'), feats.columns)), categorical_features=['last_world', 'last_assessment'])
xgb_params = {'colsample_bytree': 0.3, 'learning_rate': 0.03, 'max_depth': 7, 'n_estimators': 300, 'reg_alpha': 10, 'subsample': 0.8}
mlp_params = {'dropout': 0.1, 'epochs': 20, 'hidden_units': (128, 128), 'l1': 0.001, 'l2': 0.0, 'learning_rate': 0.0001}
ordinal_pipe = Pipeline(steps=[('preprocess', feature_pipe), ('clf', OrdinalRegressor(VotingRegressor, estimators=[('xgb', xgb.XGBRegressor(**xgb_params)), ('mlp', KerasRegressor_v2(build_model, **mlp_params))], weights=(0.7, 0.3)))])
test_feats, _ = basic_user_features_transform(test)
for c in feats.columns:
if c not in test_feats.columns:
test_feats[c] = 0
installation_ids = test_feats.installation_id
test_X = test_feats | code |
32071198/cell_6 | [
"text_plain_output_1.png"
] | from functools import partial
from joblib import Parallel, delayed
from sklearn.compose import ColumnTransformer
from sklearn.impute import SimpleImputer
from sklearn.metrics import cohen_kappa_score
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler, OneHotEncoder, FunctionTransformer
import multiprocessing
import numpy as np
import pandas as pd
import scipy as sp
def applyParallel(dfGrouped, func):
retLst = Parallel(n_jobs=multiprocessing.cpu_count())(delayed(func)(name, group) for name, group in dfGrouped)
return pd.DataFrame(retLst)
last_event_before_assessment = {'Cauldron Filler (Assessment)': '90d848e0',
'Cart Balancer (Assessment)': '7ad3efc6',
'Mushroom Sorter (Assessment)': '3bfd1a65',
'Bird Measurer (Assessment)': 'f56e0afc',
'Chest Sorter (Assessment)': '5b49460a'}
media_seq = pd.read_csv('../input/dsb-feats-v2/media_sequence.csv')
clips_seq = media_seq[media_seq.type=='Clip']
clip_times = dict(zip(clips_seq.title, clips_seq.duration))
def read_data():
print('Reading train.csv file....')
train = pd.read_csv('train.csv')
print('Training.csv file have {} rows and {} columns'.format(train.shape[0], train.shape[1]))
print('Reading test.csv file....')
test = pd.read_csv('test.csv')
print('Test.csv file have {} rows and {} columns'.format(test.shape[0], test.shape[1]))
print('Reading train_labels.csv file....')
train_labels = pd.read_csv('train_labels.csv')
print('Train_labels.csv file have {} rows and {} columns'.format(train_labels.shape[0], train_labels.shape[1]))
print('Reading specs.csv file....')
specs = pd.read_csv('specs.csv')
print('Specs.csv file have {} rows and {} columns'.format(specs.shape[0], specs.shape[1]))
return train, test, train_labels, specs
def get_worst_score(group):
return group.sort_values('accuracy_group').iloc[0]
def is_assessment(titles_series):
def is_assessment_title(title):
return "assessment" in title.lower()
return titles_series.apply(lambda x: is_assessment_title(x))
def num_unique_days(timestamps):
return pd.to_datetime(timestamps).apply(lambda x: x.date()).unique().size
def days_since_first_event(timestamps):
dates = pd.to_datetime(timestamps).apply(lambda x: x.date())
return (dates.max() - dates.min()).days
def get_events_before_game_session(events, game_session, assessment_title):
if not (game_session or assessment_title):
return events
else:
assessment_event = last_event_before_assessment.get(assessment_title)
game_session_index = events.index[(events.game_session == game_session) & \
(events.event_id.isin([assessment_event] if assessment_event else last_event_before_assessment.values()))]
return events.loc[:game_session_index[-1]]
def get_clip_duration_features(events):
clips = events[events.type=='Clip']
if clips.empty:
game_time = 0
skip_rate = 0
avg_watch_length = 0
else:
game_time = clips.apply(lambda x: min(x.ts_diff, clip_times.get(x.title)), axis=1).sum()
skip_rate = clips.apply(lambda x: x.ts_diff < clip_times.get(x.title), axis=1).mean()
avg_watch_length = clips.apply(lambda x: min(x.ts_diff / clip_times.get(x.title), 1), axis=1).mean()
return pd.Series([game_time, skip_rate, avg_watch_length],
index=['clip_game_time', 'clip_skip_rate', 'clip_avg_watch_length'],
dtype=float)
def group_by_game_session_and_sum(events, columns):
"""
some columns are rolling counts by game session,
take the max value of each game session then sum for totals
"""
series = pd.Series(dtype=int)
for c in columns:
# set beginning values for each type to 0
for stype in ['activity', 'game', 'assessment', 'clip']:
series[stype+'_'+c] = 0
series['total_'+c] = 0
# get session type and total values and add to running total
for session_id, session in events.groupby('game_session'):
session_type = session['type'].iloc[0].lower()
session_value = session[c].max() / 1000.0 if c=='game_time' else session[c].max()
series[session_type+'_'+c] += session_value
series['total_'+c] += session_value
if c=='game_time':
series = series.drop(labels='clip_'+c)
series = series.append(get_clip_duration_features(events))
return series
def summarize_events(events):
"""
takes a dataframe of events and returns a pd.Series with aggregate/summary values
"""
events = events.sort_values('ts').reset_index()
events['ts_diff'] = -events.ts.diff(-1).dt.total_seconds()
numeric_rows = ['event_count', 'game_time']
aggregates = group_by_game_session_and_sum(events, numeric_rows)
aggregates['num_unique_days'] = num_unique_days(events['timestamp'])
aggregates['elapsed_days'] = days_since_first_event(events['timestamp'])
aggregates['last_world'] = events.tail(1)['world'].values[0]
aggregates['last_assessment'] = events[is_assessment(events['title'])].tail(1)['title'].values[0]
aggregates['assessments_taken'] = events['title'][events.event_id.isin(last_event_before_assessment.values())].value_counts()
aggregates['type_counts'] = events[['game_session', 'type']].drop_duplicates()['type'].value_counts()
aggregates['title_counts'] = events[['game_session', 'title']].drop_duplicates()['title'].value_counts()
aggregates['event_code_counts'] = events.event_code.value_counts()
aggregates['event_id_counts'] = events.event_id.value_counts()
aggregates['unique_game_sessions'] = events.game_session.unique().size
return aggregates
def summarize_events_before_game_session(name, events):
if not isinstance(name, (list,tuple)) or len(name)==1:
# for test data
game_session=None
assessment=None
name_series = pd.Series([name], index=['installation_id'])
else:
installation_id, game_session, assessment = name
name_series = pd.Series(name, index=['installation_id', 'game_session_y', 'title_y'])
events = events.rename(columns={'game_session_x': 'game_session', 'title_x': 'title'}, errors='ignore')
events_before = get_events_before_game_session(events, game_session, assessment)
aggregates = summarize_events(events_before)
try:
labels = events[['num_correct', 'num_incorrect', 'accuracy', 'accuracy_group']].iloc[0] \
.append(name_series)
row = aggregates.append(labels)
except KeyError:
row = aggregates.append(name_series)
# print("no label columns, just returning features")
return row
def expand_count_features(features):
print('**expanding event type count features**')
expanded_type_counts = features.type_counts.apply(pd.Series).fillna(0)
# rename the type count columns
expanded_type_counts.columns = [c.lower()+'_ct' for c in expanded_type_counts.columns]
print('**expanding title count features**')
expanded_title_counts = features.title_counts.apply(pd.Series).fillna(0)
# rename the type count columns
expanded_title_counts.columns = [c.lower().replace(' ', '_')+'_ct' for c in expanded_title_counts.columns]
print('**expanding event code count features**')
expanded_event_code_counts = features.event_code_counts.apply(pd.Series).fillna(0)
# rename the event_code count columns
expanded_event_code_counts.columns = ['event_{}_ct'.format(int(c)) for c in expanded_event_code_counts.columns]
# non_zero_event_code_counts
for ec in expanded_event_code_counts.columns:
expanded_event_code_counts['non_zero_'+ec] = (expanded_event_code_counts[ec] > 0).astype(int)
print('**expanding event id count features**')
expanded_event_id_counts = features.event_id_counts.apply(pd.Series).fillna(0)
# rename the event_id count columns
expanded_event_id_counts.columns = ['eid_{}_ct'.format(c) for c in expanded_event_id_counts.columns]
expanded_assessments_taken = features.assessments_taken.apply(pd.Series).fillna(0)
feats = pd.concat([features.drop(['type_counts', 'title_counts', 'event_code_counts', 'event_id_counts', 'assessments_taken'], axis=1), expanded_type_counts, expanded_title_counts, expanded_event_code_counts, expanded_event_id_counts, expanded_assessments_taken], axis=1)
return feats
def split_features_and_labels(df):
labels_df = df[['title_y', 'num_correct', 'num_incorrect',
'accuracy', 'accuracy_group', 'installation_id', 'game_session_y']].copy()
feats_df = df.drop(
['title_y', 'num_correct', 'num_incorrect', 'game_session_y',
'accuracy', 'accuracy_group'], axis=1)
return feats_df, labels_df
def basic_user_features_transform(train_data, train_labels=None):
data = train_data[['event_id', 'game_session', 'timestamp', 'installation_id', 'event_count', 'event_code',
'game_time', 'title', 'type', 'world']]
data['ts'] = pd.to_datetime(data.timestamp)
if train_labels is not None:
train_w_labels = data.merge(train_labels, on='installation_id')
groups = train_w_labels.groupby(['installation_id', 'game_session_y', 'title_y'])
else:
groups = data.groupby(['installation_id'])
# game session y is index 1 of the group name
# passing none to game session is for eval data, does not subset any of the data for each installation_id
print('**getting user features before each training assessment**')
features = applyParallel(groups,
lambda name, group: summarize_events_before_game_session(name, group))
expanded_features = expand_count_features(features)
if train_labels is not None:
return split_features_and_labels(expanded_features)
else:
return expanded_features, None
def get_data_processing_pipe(feats, log_features, categorical_features):
# We create the preprocessing pipelines for both numeric and categorical data.
numeric_features = [c for c in feats.columns if c not in log_features+categorical_features+['installation_id']]
numeric_transformer = Pipeline(steps=[
('imputer', SimpleImputer(fill_value=0, strategy='constant')),
('scaler', StandardScaler())])
numeric_log_transformer = Pipeline(steps=[
('imputer', SimpleImputer(fill_value=0, strategy='constant')),
('log_scale', FunctionTransformer(np.log1p)),
('scaler', StandardScaler())])
categorical_transformer = Pipeline(steps=[
('imputer', SimpleImputer(strategy='constant', fill_value='missing')),
('onehot', OneHotEncoder(handle_unknown='ignore'))])
preprocessor = ColumnTransformer(
remainder='drop',
transformers=[
('num', numeric_transformer, numeric_features),
('num_log', numeric_log_transformer, log_features),
('cat', categorical_transformer, categorical_features)])
return preprocessor
class OrdinalRegressor:
def __init__(self, clf, **kwargs):
self.clf = clf(**kwargs)
self.threshold_optimizer = OptimizedRounder([0, 1, 2, 3])
def fit(self, X, y, **fit_params):
self.clf.fit(X, y, **fit_params)
self.threshold_optimizer.fit(self.predict(X), y)
def predict(self, X, **predict_params):
pred = self.clf.predict(X)
if predict_params.get('classify'):
return self.classify(pred)
return pred
def set_params(self, **kwargs):
self.clf = self.clf.set_params(**kwargs)
def classify(self, pred):
return self.threshold_optimizer.predict(pred)
def predict_and_classify(self, X):
return self.classify(self.predict(X))
def predict_proba(self, X):
return self.predict_and_classify(X)
class OptimizedRounder(object):
def __init__(self, labels):
self.coef_ = 0
self.labels = labels
def _kappa_loss(self, coef, X, y):
if len(set(coef)) != len(coef):
return 0
preds = pd.cut(X, [-np.inf] + list(np.sort(coef)) + [np.inf], labels=self.labels)
return -cohen_kappa_score(y, preds, weights='quadratic')
def fit(self, X, y):
loss_partial = partial(self._kappa_loss, X=X, y=y)
initial_coef = [0.5, 1.5, 2.5]
constraints = ({'type': 'ineq', 'fun': lambda x: x[1] - x[0] - 0.001}, {'type': 'ineq', 'fun': lambda x: x[2] - x[1] - 0.001})
self.coef_ = sp.optimize.minimize(loss_partial, initial_coef, method='COBYLA', constraints=constraints)
def predict(self, X, coef=None):
coef = coef if coef else self.coefficients()
preds = pd.cut(X, [-np.inf] + list(np.sort(coef)) + [np.inf], labels=self.labels)
return preds
def coefficients(self):
return self.coef_['x']
feats = installation_features = pd.read_csv('../input/dsb-feats-v2/installation_features_v2.csv')
labels = installation_labels = pd.read_csv('../input/dsb-feats-v2/installation_labels_v2.csv')
test = pd.read_csv('../input/data-science-bowl-2019/test.csv')
print(feats.shape)
print(labels.shape)
print(test.shape) | code |
32071198/cell_1 | [
"text_plain_output_1.png"
] | import os
import pandas as pd
import numpy as np
from sklearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import StandardScaler, OneHotEncoder, FunctionTransformer
from joblib import Parallel, delayed
import multiprocessing
from sklearn.base import clone
from collections import Counter
from functools import partial
from sklearn.metrics import cohen_kappa_score
import scipy as sp
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
129032013/cell_4 | [
"image_output_1.png"
] | import json
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import seaborn as sns
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
dir = '/kaggle/input/the-movies-dataset/'
ratings = pd.read_csv(dir + 'ratings_small.csv')
metadata = pd.read_csv(dir + 'movies_metadata.csv', low_memory=False)
metadata = metadata.rename(columns={'id': 'movieId'})
metadata['movieId'] = pd.to_numeric(metadata['movieId'], errors='coerce')
combined_data = pd.merge(ratings, metadata, on='movieId')
df_grouped = combined_data.groupby(['movieId', 'userId'])['rating'].mean().reset_index()
wide_df = df_grouped.pivot(index='userId', columns='movieId', values='rating')
df_clean = wide_df.dropna(thresh=20, axis=1)
df_clean
import json
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from datetime import datetime
combined_data['release_date'] = pd.to_datetime(combined_data['release_date'], errors='coerce')
def parse_genres(genres_str):
genres = json.loads(genres_str.replace("'", '"'))
genres_list = [g['name'] for g in genres]
return genres_list
combined_data['genres'] = combined_data['genres'].apply(parse_genres)
combined_data['release_year'] = combined_data['release_date'].dt.year
plt.figure(figsize=(10, 5))
sns.histplot(combined_data['rating'], bins=20, kde=False)
plt.title('Distribution of Ratings')
plt.xlabel('Rating')
plt.ylabel('Count')
plt.show() | code |
129032013/cell_2 | [
"text_html_output_1.png"
] | import pandas as pd
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
dir = '/kaggle/input/the-movies-dataset/'
ratings = pd.read_csv(dir + 'ratings_small.csv')
metadata = pd.read_csv(dir + 'movies_metadata.csv', low_memory=False)
metadata = metadata.rename(columns={'id': 'movieId'})
metadata['movieId'] = pd.to_numeric(metadata['movieId'], errors='coerce')
combined_data = pd.merge(ratings, metadata, on='movieId')
df_grouped = combined_data.groupby(['movieId', 'userId'])['rating'].mean().reset_index()
wide_df = df_grouped.pivot(index='userId', columns='movieId', values='rating')
df_clean = wide_df.dropna(thresh=20, axis=1)
df_clean | code |
129032013/cell_1 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
dir = '/kaggle/input/the-movies-dataset/'
ratings = pd.read_csv(dir + 'ratings_small.csv')
metadata = pd.read_csv(dir + 'movies_metadata.csv', low_memory=False) | code |
129032013/cell_7 | [
"image_output_1.png"
] | import json
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
import numpy as np
import numpy as np
import pandas as pd
import seaborn as sns
import seaborn as sns
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
dir = '/kaggle/input/the-movies-dataset/'
ratings = pd.read_csv(dir + 'ratings_small.csv')
metadata = pd.read_csv(dir + 'movies_metadata.csv', low_memory=False)
metadata = metadata.rename(columns={'id': 'movieId'})
metadata['movieId'] = pd.to_numeric(metadata['movieId'], errors='coerce')
combined_data = pd.merge(ratings, metadata, on='movieId')
df_grouped = combined_data.groupby(['movieId', 'userId'])['rating'].mean().reset_index()
wide_df = df_grouped.pivot(index='userId', columns='movieId', values='rating')
df_clean = wide_df.dropna(thresh=20, axis=1)
df_clean
import json
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from datetime import datetime
combined_data['release_date'] = pd.to_datetime(combined_data['release_date'], errors='coerce')
def parse_genres(genres_str):
genres = json.loads(genres_str.replace("'", '"'))
genres_list = [g['name'] for g in genres]
return genres_list
combined_data['genres'] = combined_data['genres'].apply(parse_genres)
combined_data['release_year'] = combined_data['release_date'].dt.year
all_genres = np.concatenate(combined_data['genres'].values)
unique_genres, counts = np.unique(all_genres, return_counts=True)
genre_counts = pd.DataFrame({'genre': unique_genres, 'count': counts}).sort_values(by='count', ascending=False)
plt.figure(figsize=(10, 5))
sns.barplot(x='genre', y='count', data=genre_counts)
plt.title('Distribution of Genres')
plt.xlabel('Genre')
plt.ylabel('Count')
plt.xticks(rotation=90)
plt.show() | code |
129032013/cell_8 | [
"image_output_1.png"
] | import json
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
import numpy as np
import numpy as np
import pandas as pd
import seaborn as sns
import seaborn as sns
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
dir = '/kaggle/input/the-movies-dataset/'
ratings = pd.read_csv(dir + 'ratings_small.csv')
metadata = pd.read_csv(dir + 'movies_metadata.csv', low_memory=False)
metadata = metadata.rename(columns={'id': 'movieId'})
metadata['movieId'] = pd.to_numeric(metadata['movieId'], errors='coerce')
combined_data = pd.merge(ratings, metadata, on='movieId')
df_grouped = combined_data.groupby(['movieId', 'userId'])['rating'].mean().reset_index()
wide_df = df_grouped.pivot(index='userId', columns='movieId', values='rating')
df_clean = wide_df.dropna(thresh=20, axis=1)
df_clean
import json
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from datetime import datetime
combined_data['release_date'] = pd.to_datetime(combined_data['release_date'], errors='coerce')
def parse_genres(genres_str):
genres = json.loads(genres_str.replace("'", '"'))
genres_list = [g['name'] for g in genres]
return genres_list
combined_data['genres'] = combined_data['genres'].apply(parse_genres)
combined_data['release_year'] = combined_data['release_date'].dt.year
all_genres = np.concatenate(combined_data['genres'].values)
unique_genres, counts = np.unique(all_genres, return_counts=True)
genre_counts = pd.DataFrame({'genre': unique_genres, 'count': counts}).sort_values(by='count', ascending=False)
plt.xticks(rotation=90)
plt.figure(figsize=(10, 5))
sns.countplot(data=combined_data, x='original_language')
plt.title('Distribution of Original Language')
plt.xlabel('Language')
plt.ylabel('Count')
plt.xticks(rotation=90)
plt.show() | code |
129032013/cell_5 | [
"image_output_1.png"
] | import json
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
import numpy as np
import numpy as np
import pandas as pd
import seaborn as sns
import seaborn as sns
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
dir = '/kaggle/input/the-movies-dataset/'
ratings = pd.read_csv(dir + 'ratings_small.csv')
metadata = pd.read_csv(dir + 'movies_metadata.csv', low_memory=False)
metadata = metadata.rename(columns={'id': 'movieId'})
metadata['movieId'] = pd.to_numeric(metadata['movieId'], errors='coerce')
combined_data = pd.merge(ratings, metadata, on='movieId')
df_grouped = combined_data.groupby(['movieId', 'userId'])['rating'].mean().reset_index()
wide_df = df_grouped.pivot(index='userId', columns='movieId', values='rating')
df_clean = wide_df.dropna(thresh=20, axis=1)
df_clean
import json
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from datetime import datetime
combined_data['release_date'] = pd.to_datetime(combined_data['release_date'], errors='coerce')
def parse_genres(genres_str):
genres = json.loads(genres_str.replace("'", '"'))
genres_list = [g['name'] for g in genres]
return genres_list
combined_data['genres'] = combined_data['genres'].apply(parse_genres)
combined_data['release_year'] = combined_data['release_date'].dt.year
plt.figure(figsize=(10, 5))
sns.histplot(combined_data['release_year'], bins=np.arange(1900, 2023, 1), kde=False)
plt.title('Distribution of Movie Release Years')
plt.xlabel('Release Year')
plt.ylabel('Count')
plt.show() | code |
49126539/cell_9 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
df = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv')
df.shape
null_in_train_csv = df.isnull().sum()
null_in_train_csv = null_in_train_csv[null_in_train_csv > 0]
null_in_train_csv.sort_values(inplace=True)
data = df.drop(['Alley', 'FireplaceQu', 'PoolQC', 'MiscFeature', 'Fence'], axis=1)
data.shape
arr_train_cor = data.corr()['SalePrice']
idx_train_cor_gt0 = arr_train_cor[arr_train_cor > 0].sort_values(ascending=False).index.tolist()
d1 = idx_train_cor_gt0
print(d1) | code |
49126539/cell_4 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
df = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv')
df.shape
null_in_train_csv = df.isnull().sum()
null_in_train_csv = null_in_train_csv[null_in_train_csv > 0]
null_in_train_csv.sort_values(inplace=True)
sns.heatmap(df.corr(), annot=True)
plt.show() | code |
49126539/cell_6 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
df = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv')
df.shape
null_in_train_csv = df.isnull().sum()
null_in_train_csv = null_in_train_csv[null_in_train_csv > 0]
null_in_train_csv.sort_values(inplace=True)
data = df.drop(['Alley', 'FireplaceQu', 'PoolQC', 'MiscFeature', 'Fence'], axis=1)
data.shape | code |
49126539/cell_2 | [
"image_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv')
df.info()
df.shape | code |
49126539/cell_11 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
df = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv')
df.shape
null_in_train_csv = df.isnull().sum()
null_in_train_csv = null_in_train_csv[null_in_train_csv > 0]
null_in_train_csv.sort_values(inplace=True)
data = df.drop(['Alley', 'FireplaceQu', 'PoolQC', 'MiscFeature', 'Fence'], axis=1)
data.shape
arr_train_cor = data.corr()['SalePrice']
idx_train_cor_gt0 = arr_train_cor[arr_train_cor > 0].sort_values(ascending=False).index.tolist()
d1 = idx_train_cor_gt0
data1 = data[d1]
data1.shape
data1.head() | code |
49126539/cell_1 | [
"text_plain_output_1.png"
] | import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename))
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
from scipy import stats
from scipy.stats import norm
from scipy.stats import binned_statistic
import warnings
warnings.filterwarnings('ignore') | code |
49126539/cell_7 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
df = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv')
df.shape
null_in_train_csv = df.isnull().sum()
null_in_train_csv = null_in_train_csv[null_in_train_csv > 0]
null_in_train_csv.sort_values(inplace=True)
data = df.drop(['Alley', 'FireplaceQu', 'PoolQC', 'MiscFeature', 'Fence'], axis=1)
data.shape
sns.heatmap(data.corr(), vmax=0.8, square=True) | code |
49126539/cell_8 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
df = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv')
df.shape
null_in_train_csv = df.isnull().sum()
null_in_train_csv = null_in_train_csv[null_in_train_csv > 0]
null_in_train_csv.sort_values(inplace=True)
data = df.drop(['Alley', 'FireplaceQu', 'PoolQC', 'MiscFeature', 'Fence'], axis=1)
data.shape
arr_train_cor = data.corr()['SalePrice']
idx_train_cor_gt0 = arr_train_cor[arr_train_cor > 0].sort_values(ascending=False).index.tolist()
print(len(idx_train_cor_gt0)) | code |
49126539/cell_3 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv')
df.shape
null_in_train_csv = df.isnull().sum()
null_in_train_csv = null_in_train_csv[null_in_train_csv > 0]
null_in_train_csv.sort_values(inplace=True)
null_in_train_csv.plot.bar() | code |
49126539/cell_10 | [
"text_plain_output_2.png",
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
df = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv')
df.shape
null_in_train_csv = df.isnull().sum()
null_in_train_csv = null_in_train_csv[null_in_train_csv > 0]
null_in_train_csv.sort_values(inplace=True)
data = df.drop(['Alley', 'FireplaceQu', 'PoolQC', 'MiscFeature', 'Fence'], axis=1)
data.shape
arr_train_cor = data.corr()['SalePrice']
idx_train_cor_gt0 = arr_train_cor[arr_train_cor > 0].sort_values(ascending=False).index.tolist()
d1 = idx_train_cor_gt0
data1 = data[d1]
data1.shape
data1.info() | code |
333996/cell_4 | [
"text_plain_output_1.png"
] | import pandas as pd
import warnings
import pandas as pd
import warnings
warnings.filterwarnings('ignore')
fm = pd.read_csv('../input/ForumMessages.csv')
fm.info() | code |
333996/cell_7 | [
"image_output_1.png"
] | from collections import defaultdict
import matplotlib.pyplot as plt
import numpy as np
import numpy as np
import pandas as pd
import pandas as pd
import re
import warnings
import warnings
import pandas as pd
import warnings
warnings.filterwarnings('ignore')
fm = pd.read_csv('../input/ForumMessages.csv')
import pandas as pd
import warnings
warnings.filterwarnings('ignore')
fm = pd.read_csv('../input/ForumMessages.csv')
rep_ids = fm['ReplyToForumMessageId'].unique().tolist()
rep_fm = fm[fm['Id'].isin(rep_ids)]
nb_replies = fm['ReplyToForumMessageId'].value_counts()
rep_fm['NbReplies'] = rep_fm['Id'].map(nb_replies)
import re
def words_wo_quotes(mes):
mes_wo_q = re.sub('\\[quote=.*\\[/quote\\]', '', mes, flags=re.DOTALL)
return set([w for w in re.split('[^a-z]', mes_wo_q.lower()) if len(w) >= 2])
rep_fm['Message'] = rep_fm['Message'].astype(str).apply(words_wo_quotes)
from collections import defaultdict
dict_rep = defaultdict(int)
def fill_dict_rep(x):
for w in x[0]:
dict_rep[w] += x[1]
rep_fm[['Message', 'NbReplies']].apply(fill_dict_rep, axis=1)
all_messages = fm['Message'].astype(str).apply(words_wo_quotes)
dict_all = dict.fromkeys(dict_rep.keys(), 0)
def fill_dict_all(x):
for w in x:
if w in dict_rep:
dict_all[w] += 1
all_messages.apply(fill_dict_all)
min_proportion = fm.shape[0] / 100
lwords = []
for w in dict_all:
if dict_all[w] > min_proportion:
lwords.append([w, dict_rep[w] / dict_all[w]])
lwords = sorted(lwords, key=lambda h: h[1], reverse=True)
import matplotlib.pyplot as plt
import numpy as np
plt.rcParams['figure.figsize'] = (10, 12)
x_axis = [wx[1] for wx in lwords[:20]]
y_axis = [wx[0] for wx in lwords[:20]]
plt.barh(range(60, 0, -3), [1] * 20, height=1.5, alpha=0.4)
plt.barh(range(60, 0, -3), x_axis, height=1.5, alpha=0.4)
plt.yticks(np.arange(60.5, 0.5, -3), y_axis, fontsize=20)
fm = pd.read_csv('../input/ForumMessages.csv')
fm = fm[['Message', 'Score']]
fm['Message'] = fm['Message'].astype(str).apply(words_wo_quotes)
score_dict = defaultdict(int)
count_dict = defaultdict(int)
def fill_dict(x):
for w in x[0]:
score_dict[w] += x[1]
count_dict[w] += 1
fm.apply(fill_dict, axis=1)
lwords = []
for de in score_dict:
if count_dict[de] > min_proportion:
lwords.append([de, score_dict[de] / count_dict[de]])
lwords = sorted(lwords, key=lambda h: h[1], reverse=True)
plt.rcParams['figure.figsize'] = (10, 12)
x_axis = [wx[1] for wx in lwords[:20]]
y_axis = [wx[0] for wx in lwords[:20]]
plt.barh(range(60, 0, -3), x_axis, height=1.5, alpha=0.6)
plt.yticks(np.arange(60.5, 0.5, -3), y_axis, fontsize=20)
plt.xlabel('Average score', fontsize=16)
plt.ylabel('Word used', fontsize=16)
plt.title('The 20 best words to use to have a good score', fontsize=22)
plt.show() | code |
333996/cell_5 | [
"image_output_1.png"
] | from collections import defaultdict
import matplotlib.pyplot as plt
import numpy as np
import numpy as np
import pandas as pd
import pandas as pd
import re
import warnings
import warnings
import pandas as pd
import warnings
warnings.filterwarnings('ignore')
fm = pd.read_csv('../input/ForumMessages.csv')
import pandas as pd
import warnings
warnings.filterwarnings('ignore')
fm = pd.read_csv('../input/ForumMessages.csv')
rep_ids = fm['ReplyToForumMessageId'].unique().tolist()
rep_fm = fm[fm['Id'].isin(rep_ids)]
nb_replies = fm['ReplyToForumMessageId'].value_counts()
rep_fm['NbReplies'] = rep_fm['Id'].map(nb_replies)
import re
def words_wo_quotes(mes):
mes_wo_q = re.sub('\\[quote=.*\\[/quote\\]', '', mes, flags=re.DOTALL)
return set([w for w in re.split('[^a-z]', mes_wo_q.lower()) if len(w) >= 2])
rep_fm['Message'] = rep_fm['Message'].astype(str).apply(words_wo_quotes)
from collections import defaultdict
dict_rep = defaultdict(int)
def fill_dict_rep(x):
for w in x[0]:
dict_rep[w] += x[1]
rep_fm[['Message', 'NbReplies']].apply(fill_dict_rep, axis=1)
all_messages = fm['Message'].astype(str).apply(words_wo_quotes)
dict_all = dict.fromkeys(dict_rep.keys(), 0)
def fill_dict_all(x):
for w in x:
if w in dict_rep:
dict_all[w] += 1
all_messages.apply(fill_dict_all)
min_proportion = fm.shape[0] / 100
lwords = []
for w in dict_all:
if dict_all[w] > min_proportion:
lwords.append([w, dict_rep[w] / dict_all[w]])
lwords = sorted(lwords, key=lambda h: h[1], reverse=True)
import matplotlib.pyplot as plt
import numpy as np
plt.rcParams['figure.figsize'] = (10, 12)
x_axis = [wx[1] for wx in lwords[:20]]
y_axis = [wx[0] for wx in lwords[:20]]
plt.barh(range(60, 0, -3), [1] * 20, height=1.5, alpha=0.4)
plt.barh(range(60, 0, -3), x_axis, height=1.5, alpha=0.4)
plt.yticks(np.arange(60.5, 0.5, -3), y_axis, fontsize=20)
plt.xlabel('Proportion of replies', fontsize=16)
plt.ylabel('Word used', fontsize=16)
plt.title('The 20 best words to use to get replies', fontsize=22)
plt.show() | code |
105194092/cell_21 | [
"text_plain_output_1.png"
] | import gc
import numpy as np
import pandas as pd
import pickle
def correlation_score(y_true, y_pred):
"""Scores the predictions according to the competition rules.
It is assumed that the predictions are not constant.
Returns the average of each sample's Pearson correlation coefficient"""
if type(y_true) == pd.DataFrame:
y_true = y_true.values
if type(y_pred) == pd.DataFrame:
y_pred = y_pred.values
if y_true.shape != y_pred.shape:
raise ValueError('Shapes are different.')
corrsum = 0
for i in range(len(y_true)):
corrsum += np.corrcoef(y_true[i], y_pred[i])[1, 0]
return corrsum / len(y_true)
def load(fname):
with open(fname, 'rb') as f:
return pickle.load(f)
pca = load('../input/fork-of-msci-multiome-randomsampling-sp-6b182b/pca.pkl')
pca2 = load('../input/fork-of-msci-multiome-randomsampling-sp-6b182b/pca2.pkl')
n = 1
test_len = multi_test_x.shape[0]
d = test_len // n
x = []
for i in range(n):
x.append(multi_test_x[i * d:i * d + d])
del multi_test_x
gc.collect()
index = 2
from catboost import CatBoostRegressor
preds = np.zeros((test_len, 23418), dtype='float16')
for i, xx in enumerate(x):
for ind in range(index):
with open(f'../input/fork-of-msci-multiome-randomsampling-sp-6b182b/model{ind:02}.pkl', 'rb') as file:
model = pickle.load(file)
preds[i * d:i * d + d, :] += model.predict(xx) @ pca2.components_ / index
gc.collect()
del xx
gc.collect()
del x
gc.collect()
del eval_ids_cell_num, eval_ids_gene_num, valid_multi_rows, eval_ids, test_index, y_columns
gc.collect() | code |
105194092/cell_13 | [
"text_plain_output_2.png",
"text_plain_output_1.png"
] | eval_ids = pd.read_parquet('../input/multimodal-single-cell-as-sparse-matrix/evaluation.parquet')
eval_ids.cell_id = eval_ids.cell_id.astype(pd.CategoricalDtype())
eval_ids.gene_id = eval_ids.gene_id.astype(pd.CategoricalDtype()) | code |
105194092/cell_29 | [
"text_plain_output_1.png"
] | import gc
import numpy as np
import pandas as pd
import pickle
def correlation_score(y_true, y_pred):
"""Scores the predictions according to the competition rules.
It is assumed that the predictions are not constant.
Returns the average of each sample's Pearson correlation coefficient"""
if type(y_true) == pd.DataFrame:
y_true = y_true.values
if type(y_pred) == pd.DataFrame:
y_pred = y_pred.values
if y_true.shape != y_pred.shape:
raise ValueError('Shapes are different.')
corrsum = 0
for i in range(len(y_true)):
corrsum += np.corrcoef(y_true[i], y_pred[i])[1, 0]
return corrsum / len(y_true)
def load(fname):
with open(fname, 'rb') as f:
return pickle.load(f)
pca = load('../input/fork-of-msci-multiome-randomsampling-sp-6b182b/pca.pkl')
pca2 = load('../input/fork-of-msci-multiome-randomsampling-sp-6b182b/pca2.pkl')
n = 1
test_len = multi_test_x.shape[0]
d = test_len // n
x = []
for i in range(n):
x.append(multi_test_x[i * d:i * d + d])
del multi_test_x
gc.collect()
index = 2
from catboost import CatBoostRegressor
preds = np.zeros((test_len, 23418), dtype='float16')
for i, xx in enumerate(x):
for ind in range(index):
with open(f'../input/fork-of-msci-multiome-randomsampling-sp-6b182b/model{ind:02}.pkl', 'rb') as file:
model = pickle.load(file)
preds[i * d:i * d + d, :] += model.predict(xx) @ pca2.components_ / index
gc.collect()
del xx
gc.collect()
submission = pd.Series(name='target', index=pd.MultiIndex.from_frame(eval_ids), dtype=np.float32)
submission
cell_dict = dict(((k, v) for v, k in enumerate(test_index)))
assert len(cell_dict) == len(test_index)
gene_dict = dict(((k, v) for v, k in enumerate(y_columns)))
assert len(gene_dict) == len(y_columns)
eval_ids_cell_num = eval_ids.cell_id.apply(lambda x: cell_dict.get(x, -1))
eval_ids_gene_num = eval_ids.gene_id.apply(lambda x: gene_dict.get(x, -1))
valid_multi_rows = (eval_ids_gene_num != -1) & (eval_ids_cell_num != -1)
submission.iloc[valid_multi_rows] = preds[eval_ids_cell_num[valid_multi_rows].to_numpy(), eval_ids_gene_num[valid_multi_rows].to_numpy()]
submission.reset_index(drop=True, inplace=True)
submission.index.name = 'row_id'
cite_submission = pd.read_csv('../input/msci-citeseq-keras-quickstart/submission.csv')
cite_submission = cite_submission.set_index('row_id')
cite_submission = cite_submission['target']
submission[submission.isnull()] = cite_submission[submission.isnull()]
submission.isnull().any() | code |
105194092/cell_11 | [
"text_plain_output_1.png"
] | import gc
import numpy as np
import pandas as pd
import pickle
def correlation_score(y_true, y_pred):
"""Scores the predictions according to the competition rules.
It is assumed that the predictions are not constant.
Returns the average of each sample's Pearson correlation coefficient"""
if type(y_true) == pd.DataFrame:
y_true = y_true.values
if type(y_pred) == pd.DataFrame:
y_pred = y_pred.values
if y_true.shape != y_pred.shape:
raise ValueError('Shapes are different.')
corrsum = 0
for i in range(len(y_true)):
corrsum += np.corrcoef(y_true[i], y_pred[i])[1, 0]
return corrsum / len(y_true)
def load(fname):
with open(fname, 'rb') as f:
return pickle.load(f)
pca = load('../input/fork-of-msci-multiome-randomsampling-sp-6b182b/pca.pkl')
pca2 = load('../input/fork-of-msci-multiome-randomsampling-sp-6b182b/pca2.pkl')
n = 1
test_len = multi_test_x.shape[0]
d = test_len // n
x = []
for i in range(n):
x.append(multi_test_x[i * d:i * d + d])
del multi_test_x
gc.collect()
index = 2
from catboost import CatBoostRegressor
preds = np.zeros((test_len, 23418), dtype='float16')
for i, xx in enumerate(x):
for ind in range(index):
with open(f'../input/fork-of-msci-multiome-randomsampling-sp-6b182b/model{ind:02}.pkl', 'rb') as file:
model = pickle.load(file)
preds[i * d:i * d + d, :] += model.predict(xx) @ pca2.components_ / index
gc.collect()
del xx
gc.collect()
del x
gc.collect() | code |
105194092/cell_7 | [
"text_plain_output_1.png"
] | multi_test_x = scipy.sparse.load_npz('../input/multimodal-single-cell-as-sparse-matrix/test_multi_inputs_values.sparse.npz')
multi_test_x = pca.transform(multi_test_x) | code |
105194092/cell_32 | [
"text_plain_output_1.png"
] | !head submission.csv | code |
105194092/cell_28 | [
"text_plain_output_1.png"
] | import gc
import numpy as np
import pandas as pd
import pickle
def correlation_score(y_true, y_pred):
"""Scores the predictions according to the competition rules.
It is assumed that the predictions are not constant.
Returns the average of each sample's Pearson correlation coefficient"""
if type(y_true) == pd.DataFrame:
y_true = y_true.values
if type(y_pred) == pd.DataFrame:
y_pred = y_pred.values
if y_true.shape != y_pred.shape:
raise ValueError('Shapes are different.')
corrsum = 0
for i in range(len(y_true)):
corrsum += np.corrcoef(y_true[i], y_pred[i])[1, 0]
return corrsum / len(y_true)
def load(fname):
with open(fname, 'rb') as f:
return pickle.load(f)
pca = load('../input/fork-of-msci-multiome-randomsampling-sp-6b182b/pca.pkl')
pca2 = load('../input/fork-of-msci-multiome-randomsampling-sp-6b182b/pca2.pkl')
n = 1
test_len = multi_test_x.shape[0]
d = test_len // n
x = []
for i in range(n):
x.append(multi_test_x[i * d:i * d + d])
del multi_test_x
gc.collect()
index = 2
from catboost import CatBoostRegressor
preds = np.zeros((test_len, 23418), dtype='float16')
for i, xx in enumerate(x):
for ind in range(index):
with open(f'../input/fork-of-msci-multiome-randomsampling-sp-6b182b/model{ind:02}.pkl', 'rb') as file:
model = pickle.load(file)
preds[i * d:i * d + d, :] += model.predict(xx) @ pca2.components_ / index
gc.collect()
del xx
gc.collect()
submission = pd.Series(name='target', index=pd.MultiIndex.from_frame(eval_ids), dtype=np.float32)
submission
cell_dict = dict(((k, v) for v, k in enumerate(test_index)))
assert len(cell_dict) == len(test_index)
gene_dict = dict(((k, v) for v, k in enumerate(y_columns)))
assert len(gene_dict) == len(y_columns)
eval_ids_cell_num = eval_ids.cell_id.apply(lambda x: cell_dict.get(x, -1))
eval_ids_gene_num = eval_ids.gene_id.apply(lambda x: gene_dict.get(x, -1))
valid_multi_rows = (eval_ids_gene_num != -1) & (eval_ids_cell_num != -1)
submission.iloc[valid_multi_rows] = preds[eval_ids_cell_num[valid_multi_rows].to_numpy(), eval_ids_gene_num[valid_multi_rows].to_numpy()]
submission.reset_index(drop=True, inplace=True)
submission.index.name = 'row_id'
cite_submission = pd.read_csv('../input/msci-citeseq-keras-quickstart/submission.csv')
cite_submission = cite_submission.set_index('row_id')
cite_submission = cite_submission['target']
submission[submission.isnull()] = cite_submission[submission.isnull()]
submission | code |
105194092/cell_8 | [
"text_plain_output_1.png"
] | import gc
n = 1
test_len = multi_test_x.shape[0]
d = test_len // n
x = []
for i in range(n):
x.append(multi_test_x[i * d:i * d + d])
del multi_test_x
gc.collect() | code |
105194092/cell_16 | [
"text_plain_output_1.png"
] | y_columns = np.load('../input/multimodal-single-cell-as-sparse-matrix/train_multi_targets_idxcol.npz', allow_pickle=True)['columns']
test_index = np.load('../input/multimodal-single-cell-as-sparse-matrix/test_multi_inputs_idxcol.npz', allow_pickle=True)['index'] | code |
105194092/cell_31 | [
"text_plain_output_1.png"
] | !head submission.csv | code |
105194092/cell_14 | [
"text_plain_output_1.png"
] | import gc
import numpy as np
import pandas as pd
import pickle
def correlation_score(y_true, y_pred):
"""Scores the predictions according to the competition rules.
It is assumed that the predictions are not constant.
Returns the average of each sample's Pearson correlation coefficient"""
if type(y_true) == pd.DataFrame:
y_true = y_true.values
if type(y_pred) == pd.DataFrame:
y_pred = y_pred.values
if y_true.shape != y_pred.shape:
raise ValueError('Shapes are different.')
corrsum = 0
for i in range(len(y_true)):
corrsum += np.corrcoef(y_true[i], y_pred[i])[1, 0]
return corrsum / len(y_true)
def load(fname):
with open(fname, 'rb') as f:
return pickle.load(f)
pca = load('../input/fork-of-msci-multiome-randomsampling-sp-6b182b/pca.pkl')
pca2 = load('../input/fork-of-msci-multiome-randomsampling-sp-6b182b/pca2.pkl')
n = 1
test_len = multi_test_x.shape[0]
d = test_len // n
x = []
for i in range(n):
x.append(multi_test_x[i * d:i * d + d])
del multi_test_x
gc.collect()
index = 2
from catboost import CatBoostRegressor
preds = np.zeros((test_len, 23418), dtype='float16')
for i, xx in enumerate(x):
for ind in range(index):
with open(f'../input/fork-of-msci-multiome-randomsampling-sp-6b182b/model{ind:02}.pkl', 'rb') as file:
model = pickle.load(file)
preds[i * d:i * d + d, :] += model.predict(xx) @ pca2.components_ / index
gc.collect()
del xx
gc.collect()
submission = pd.Series(name='target', index=pd.MultiIndex.from_frame(eval_ids), dtype=np.float32)
submission | code |
105194092/cell_22 | [
"text_plain_output_1.png"
] | import gc
import numpy as np
import pandas as pd
import pickle
def correlation_score(y_true, y_pred):
"""Scores the predictions according to the competition rules.
It is assumed that the predictions are not constant.
Returns the average of each sample's Pearson correlation coefficient"""
if type(y_true) == pd.DataFrame:
y_true = y_true.values
if type(y_pred) == pd.DataFrame:
y_pred = y_pred.values
if y_true.shape != y_pred.shape:
raise ValueError('Shapes are different.')
corrsum = 0
for i in range(len(y_true)):
corrsum += np.corrcoef(y_true[i], y_pred[i])[1, 0]
return corrsum / len(y_true)
def load(fname):
with open(fname, 'rb') as f:
return pickle.load(f)
pca = load('../input/fork-of-msci-multiome-randomsampling-sp-6b182b/pca.pkl')
pca2 = load('../input/fork-of-msci-multiome-randomsampling-sp-6b182b/pca2.pkl')
n = 1
test_len = multi_test_x.shape[0]
d = test_len // n
x = []
for i in range(n):
x.append(multi_test_x[i * d:i * d + d])
del multi_test_x
gc.collect()
index = 2
from catboost import CatBoostRegressor
preds = np.zeros((test_len, 23418), dtype='float16')
for i, xx in enumerate(x):
for ind in range(index):
with open(f'../input/fork-of-msci-multiome-randomsampling-sp-6b182b/model{ind:02}.pkl', 'rb') as file:
model = pickle.load(file)
preds[i * d:i * d + d, :] += model.predict(xx) @ pca2.components_ / index
gc.collect()
del xx
gc.collect()
submission = pd.Series(name='target', index=pd.MultiIndex.from_frame(eval_ids), dtype=np.float32)
submission
cell_dict = dict(((k, v) for v, k in enumerate(test_index)))
assert len(cell_dict) == len(test_index)
gene_dict = dict(((k, v) for v, k in enumerate(y_columns)))
assert len(gene_dict) == len(y_columns)
eval_ids_cell_num = eval_ids.cell_id.apply(lambda x: cell_dict.get(x, -1))
eval_ids_gene_num = eval_ids.gene_id.apply(lambda x: gene_dict.get(x, -1))
valid_multi_rows = (eval_ids_gene_num != -1) & (eval_ids_cell_num != -1)
submission.iloc[valid_multi_rows] = preds[eval_ids_cell_num[valid_multi_rows].to_numpy(), eval_ids_gene_num[valid_multi_rows].to_numpy()]
submission | code |
105194092/cell_10 | [
"text_plain_output_1.png"
] | import gc
import numpy as np
import pandas as pd
import pickle
def correlation_score(y_true, y_pred):
"""Scores the predictions according to the competition rules.
It is assumed that the predictions are not constant.
Returns the average of each sample's Pearson correlation coefficient"""
if type(y_true) == pd.DataFrame:
y_true = y_true.values
if type(y_pred) == pd.DataFrame:
y_pred = y_pred.values
if y_true.shape != y_pred.shape:
raise ValueError('Shapes are different.')
corrsum = 0
for i in range(len(y_true)):
corrsum += np.corrcoef(y_true[i], y_pred[i])[1, 0]
return corrsum / len(y_true)
def load(fname):
with open(fname, 'rb') as f:
return pickle.load(f)
pca = load('../input/fork-of-msci-multiome-randomsampling-sp-6b182b/pca.pkl')
pca2 = load('../input/fork-of-msci-multiome-randomsampling-sp-6b182b/pca2.pkl')
n = 1
test_len = multi_test_x.shape[0]
d = test_len // n
x = []
for i in range(n):
x.append(multi_test_x[i * d:i * d + d])
del multi_test_x
gc.collect()
index = 2
from catboost import CatBoostRegressor
preds = np.zeros((test_len, 23418), dtype='float16')
for i, xx in enumerate(x):
for ind in range(index):
print(ind, end=' ')
with open(f'../input/fork-of-msci-multiome-randomsampling-sp-6b182b/model{ind:02}.pkl', 'rb') as file:
model = pickle.load(file)
preds[i * d:i * d + d, :] += model.predict(xx) @ pca2.components_ / index
gc.collect()
print('')
del xx
gc.collect() | code |
105194092/cell_27 | [
"text_plain_output_1.png"
] | import gc
import numpy as np
import pandas as pd
import pickle
def correlation_score(y_true, y_pred):
"""Scores the predictions according to the competition rules.
It is assumed that the predictions are not constant.
Returns the average of each sample's Pearson correlation coefficient"""
if type(y_true) == pd.DataFrame:
y_true = y_true.values
if type(y_pred) == pd.DataFrame:
y_pred = y_pred.values
if y_true.shape != y_pred.shape:
raise ValueError('Shapes are different.')
corrsum = 0
for i in range(len(y_true)):
corrsum += np.corrcoef(y_true[i], y_pred[i])[1, 0]
return corrsum / len(y_true)
def load(fname):
with open(fname, 'rb') as f:
return pickle.load(f)
pca = load('../input/fork-of-msci-multiome-randomsampling-sp-6b182b/pca.pkl')
pca2 = load('../input/fork-of-msci-multiome-randomsampling-sp-6b182b/pca2.pkl')
n = 1
test_len = multi_test_x.shape[0]
d = test_len // n
x = []
for i in range(n):
x.append(multi_test_x[i * d:i * d + d])
del multi_test_x
gc.collect()
index = 2
from catboost import CatBoostRegressor
preds = np.zeros((test_len, 23418), dtype='float16')
for i, xx in enumerate(x):
for ind in range(index):
with open(f'../input/fork-of-msci-multiome-randomsampling-sp-6b182b/model{ind:02}.pkl', 'rb') as file:
model = pickle.load(file)
preds[i * d:i * d + d, :] += model.predict(xx) @ pca2.components_ / index
gc.collect()
del xx
gc.collect()
submission = pd.Series(name='target', index=pd.MultiIndex.from_frame(eval_ids), dtype=np.float32)
submission
cell_dict = dict(((k, v) for v, k in enumerate(test_index)))
assert len(cell_dict) == len(test_index)
gene_dict = dict(((k, v) for v, k in enumerate(y_columns)))
assert len(gene_dict) == len(y_columns)
eval_ids_cell_num = eval_ids.cell_id.apply(lambda x: cell_dict.get(x, -1))
eval_ids_gene_num = eval_ids.gene_id.apply(lambda x: gene_dict.get(x, -1))
valid_multi_rows = (eval_ids_gene_num != -1) & (eval_ids_cell_num != -1)
submission.iloc[valid_multi_rows] = preds[eval_ids_cell_num[valid_multi_rows].to_numpy(), eval_ids_gene_num[valid_multi_rows].to_numpy()]
submission.reset_index(drop=True, inplace=True)
submission.index.name = 'row_id'
cite_submission = pd.read_csv('../input/msci-citeseq-keras-quickstart/submission.csv')
cite_submission = cite_submission.set_index('row_id')
cite_submission = cite_submission['target']
submission[submission.isnull()] = cite_submission[submission.isnull()]
submission | code |
105212890/cell_4 | [
"text_plain_output_1.png"
] | n = 3
my_list = [2, 3, 4, 5, 6, 7, 8]
my_new_list = my_list[:n + 1]
print(my_new_list) | code |
105212890/cell_6 | [
"text_plain_output_1.png"
] | n = 3
my_list = [2, 3, 4, 5, 6, 7, 8]
my_new_list = my_list[:n + 1]
my_list = ['haha', 'one', 'two', 'serious']
first_item = my_list[0]
last_item = my_list[-1]
my_result = first_item == last_item
print(my_result) | code |
105212890/cell_2 | [
"text_plain_output_1.png"
] | number_1 = 60
number_2 = 50
my_product = number_1 * number_2
if my_product > 1000:
print('Product:', my_product)
else:
my_sum = number_1 + number_2
print('Sum:', my_sum) | code |
105212890/cell_8 | [
"text_plain_output_1.png"
] | sampleDict = {'class': {'student': {'name': 'Mike', 'marks': {'physics': 70, 'history': 80}}}}
my_print = sampleDict['class']['student']['marks']['history']
print(my_print) | code |
105212890/cell_10 | [
"text_plain_output_1.png"
] | sample_dict = {'emp1': {'name': 'Javi', 'salary': 7500}, 'emp2': {'name': 'Laura', 'salary': 8000}, 'emp3': {'name': 'Dimitris', 'salary': 500}}
sample_dict['emp2']['salary'] = 0
print(sample_dict) | code |
105212890/cell_12 | [
"text_plain_output_1.png"
] | set1 = {20, 50, 4, 88, 15, 3}
set2 = {20, 40, 50, 15}
update = set1.intersection(set2)
set1 = update
print(set1) | code |
89142931/cell_9 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from torch import nn
from torchvision.datasets import ImageFolder
from torchvision.models import resnet18
from torchvision.transforms import Compose, Normalize, Resize, ToTensor
from tqdm.auto import tqdm
import numpy as np
import sys
import torch
from torchvision.datasets import ImageFolder
from torchvision.transforms import Compose, Normalize, Resize, ToTensor
dataset = ImageFolder('/kaggle/input/the-office-characters/Office Dataset/', transform=Compose([Resize((224, 224)), ToTensor(), Normalize((0.5, 0.5, 0.5), (1, 1, 1))]))
train_set, test_set = torch.utils.data.random_split(dataset, [int(0.8 * len(dataset)), len(dataset) - int(0.8 * len(dataset))])
train_dataloader = torch.utils.data.DataLoader(train_set, batch_size=256, shuffle=True)
test_dataloader = torch.utils.data.DataLoader(test_set, batch_size=256, shuffle=False)
from torchvision.models import resnet18
model = resnet18(pretrained=True)
for param in model.parameters():
param.requires_grad = False
model.fc = nn.Linear(512, 6)
def train_epoch(model, data_loader, optimizer, criterion, return_losses=False, device='cuda:0'):
model = model.to(device).train()
total_loss = 0
num_batches = 0
all_losses = []
total_predictions = np.array([])
total_labels = np.array([])
with tqdm(total=len(data_loader), file=sys.stdout) as prbar:
for images, labels in data_loader:
images = images.to(device)
labels = labels.to(device)
predicted = model(images)
loss = criterion(predicted, labels)
loss.backward()
optimizer.step()
optimizer.zero_grad()
accuracy = (predicted.argmax(1) == labels).float().mean()
prbar.set_description(f'Loss: {round(loss.item(), 4)} Accuracy: {round(accuracy.item() * 100, 4)}')
prbar.update(1)
total_loss += loss.item()
total_predictions = np.append(total_predictions, predicted.argmax(1).cpu().detach().numpy())
total_labels = np.append(total_labels, labels.cpu().detach().numpy())
num_batches += 1
all_losses.append(loss.detach().item())
metrics = {'loss': total_loss / num_batches}
metrics.update({'accuracy': (total_predictions == total_labels).mean()})
if return_losses:
return (metrics, all_losses)
else:
return metrics
def validate(model, data_loader, criterion, device='cuda:0'):
model = model.eval()
total_loss = 0
num_batches = 0
total_predictions = np.array([])
total_labels = np.array([])
with tqdm(total=len(data_loader), file=sys.stdout) as prbar:
for images, labels in data_loader:
images = images.to(device)
labels = labels.to(device)
predicted = model(images)
loss = criterion(predicted, labels)
accuracy = (predicted.argmax(1) == labels).float().mean()
prbar.set_description(f'Loss: {round(loss.item(), 4)} Accuracy: {round(accuracy.item() * 100, 4)}')
prbar.update(1)
total_loss += loss.item()
total_predictions = np.append(total_predictions, predicted.argmax(1).cpu().detach().numpy())
total_labels = np.append(total_labels, labels.cpu().detach().numpy())
num_batches += 1
metrics = {'loss': total_loss / num_batches}
metrics.update({'accuracy': (total_predictions == total_labels).mean()})
return metrics
def fit(model, epochs, train_data_loader, validation_data_loader, optimizer, criterion, device='cuda:0'):
all_train_losses = []
epoch_train_losses = []
epoch_eval_losses = []
for epoch in range(epochs):
train_metrics, one_epoch_train_losses = train_epoch(model=model, data_loader=train_data_loader, optimizer=optimizer, return_losses=True, criterion=criterion, device=device)
all_train_losses.extend(one_epoch_train_losses)
epoch_train_losses.append(train_metrics['loss'])
with torch.no_grad():
validation_metrics = validate(model=model, data_loader=validation_data_loader, criterion=criterion)
epoch_eval_losses.append(validation_metrics['loss'])
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.fc.parameters(), 0.0001)
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
fit(model, 30, train_dataloader, test_dataloader, optimizer, criterion, device=device) | code |
89142931/cell_4 | [
"text_plain_output_56.png",
"text_plain_output_35.png",
"text_plain_output_43.png",
"text_plain_output_37.png",
"text_plain_output_5.png",
"text_plain_output_48.png",
"text_plain_output_30.png",
"text_plain_output_15.png",
"text_plain_output_9.png",
"text_plain_output_44.png",
"text_plain_output_40.png",
"text_plain_output_31.png",
"text_plain_output_20.png",
"text_plain_output_60.png",
"text_plain_output_4.png",
"text_plain_output_13.png",
"text_plain_output_52.png",
"text_plain_output_45.png",
"text_plain_output_14.png",
"text_plain_output_32.png",
"text_plain_output_29.png",
"text_plain_output_58.png",
"text_plain_output_49.png",
"text_plain_output_27.png",
"text_plain_output_54.png",
"text_plain_output_10.png",
"text_plain_output_6.png",
"text_plain_output_57.png",
"text_plain_output_24.png",
"text_plain_output_21.png",
"text_plain_output_47.png",
"text_plain_output_25.png",
"text_plain_output_18.png",
"text_plain_output_50.png",
"text_plain_output_36.png",
"text_plain_output_3.png",
"text_plain_output_22.png",
"text_plain_output_38.png",
"text_plain_output_7.png",
"text_plain_output_16.png",
"text_plain_output_59.png",
"text_plain_output_8.png",
"text_plain_output_26.png",
"text_plain_output_41.png",
"text_plain_output_34.png",
"text_plain_output_42.png",
"text_plain_output_53.png",
"text_plain_output_23.png",
"text_plain_output_51.png",
"text_plain_output_28.png",
"text_plain_output_2.png",
"text_plain_output_1.png",
"text_plain_output_33.png",
"text_plain_output_39.png",
"text_plain_output_55.png",
"text_plain_output_19.png",
"text_plain_output_17.png",
"text_plain_output_11.png",
"text_plain_output_12.png",
"text_plain_output_46.png"
] | from torch import nn
from torchvision.models import resnet18
from torchvision.models import resnet18
model = resnet18(pretrained=True)
for param in model.parameters():
param.requires_grad = False
model.fc = nn.Linear(512, 6) | code |
89142931/cell_10 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from torch import nn
from torchvision.datasets import ImageFolder
from torchvision.models import resnet18
from torchvision.transforms import Compose, Normalize, Resize, ToTensor
from tqdm.auto import tqdm
import matplotlib.pyplot as plt
import numpy as np
import sys
import torch
from torchvision.datasets import ImageFolder
from torchvision.transforms import Compose, Normalize, Resize, ToTensor
dataset = ImageFolder('/kaggle/input/the-office-characters/Office Dataset/', transform=Compose([Resize((224, 224)), ToTensor(), Normalize((0.5, 0.5, 0.5), (1, 1, 1))]))
train_set, test_set = torch.utils.data.random_split(dataset, [int(0.8 * len(dataset)), len(dataset) - int(0.8 * len(dataset))])
train_dataloader = torch.utils.data.DataLoader(train_set, batch_size=256, shuffle=True)
test_dataloader = torch.utils.data.DataLoader(test_set, batch_size=256, shuffle=False)
from torchvision.models import resnet18
model = resnet18(pretrained=True)
for param in model.parameters():
param.requires_grad = False
model.fc = nn.Linear(512, 6)
def train_epoch(model, data_loader, optimizer, criterion, return_losses=False, device='cuda:0'):
model = model.to(device).train()
total_loss = 0
num_batches = 0
all_losses = []
total_predictions = np.array([])
total_labels = np.array([])
with tqdm(total=len(data_loader), file=sys.stdout) as prbar:
for images, labels in data_loader:
images = images.to(device)
labels = labels.to(device)
predicted = model(images)
loss = criterion(predicted, labels)
loss.backward()
optimizer.step()
optimizer.zero_grad()
accuracy = (predicted.argmax(1) == labels).float().mean()
prbar.set_description(f'Loss: {round(loss.item(), 4)} Accuracy: {round(accuracy.item() * 100, 4)}')
prbar.update(1)
total_loss += loss.item()
total_predictions = np.append(total_predictions, predicted.argmax(1).cpu().detach().numpy())
total_labels = np.append(total_labels, labels.cpu().detach().numpy())
num_batches += 1
all_losses.append(loss.detach().item())
metrics = {'loss': total_loss / num_batches}
metrics.update({'accuracy': (total_predictions == total_labels).mean()})
if return_losses:
return (metrics, all_losses)
else:
return metrics
def validate(model, data_loader, criterion, device='cuda:0'):
model = model.eval()
total_loss = 0
num_batches = 0
total_predictions = np.array([])
total_labels = np.array([])
with tqdm(total=len(data_loader), file=sys.stdout) as prbar:
for images, labels in data_loader:
images = images.to(device)
labels = labels.to(device)
predicted = model(images)
loss = criterion(predicted, labels)
accuracy = (predicted.argmax(1) == labels).float().mean()
prbar.set_description(f'Loss: {round(loss.item(), 4)} Accuracy: {round(accuracy.item() * 100, 4)}')
prbar.update(1)
total_loss += loss.item()
total_predictions = np.append(total_predictions, predicted.argmax(1).cpu().detach().numpy())
total_labels = np.append(total_labels, labels.cpu().detach().numpy())
num_batches += 1
metrics = {'loss': total_loss / num_batches}
metrics.update({'accuracy': (total_predictions == total_labels).mean()})
return metrics
def fit(model, epochs, train_data_loader, validation_data_loader, optimizer, criterion, device='cuda:0'):
all_train_losses = []
epoch_train_losses = []
epoch_eval_losses = []
for epoch in range(epochs):
train_metrics, one_epoch_train_losses = train_epoch(model=model, data_loader=train_data_loader, optimizer=optimizer, return_losses=True, criterion=criterion, device=device)
all_train_losses.extend(one_epoch_train_losses)
epoch_train_losses.append(train_metrics['loss'])
with torch.no_grad():
validation_metrics = validate(model=model, data_loader=validation_data_loader, criterion=criterion)
epoch_eval_losses.append(validation_metrics['loss'])
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.fc.parameters(), 0.0001)
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
cl = 1
while cl == 1:
i = np.random.randint(0, len(test_set))
cl = test_set[i][1]
image = test_set[i][0]
image = image.to(device)
image.requires_grad = True
pred = model(image[None])
predicted_label = pred.argmax(1).item()
confidence = pred.softmax(1)[0][predicted_label]
d = {i: j for i, j in zip(range(6), ['Angela', 'Dwight', 'Jim', 'Kevin', 'Michael', 'Pam'])}
plt.title('%s, confidence = %0.4f' % (d[predicted_label], confidence.item()))
plt.imshow(image.cpu().detach().numpy().transpose((1, 2, 0)) + 0.5) | code |
72086322/cell_21 | [
"image_output_2.png",
"image_output_1.png"
] | import pandas as pd
df = pd.read_csv('../input/colorectal-cancer-patients/crc.txt', sep='\t')
df
df_gene = pd.read_csv('../input/colorectal-cancer-patients/crc_ge.txt', sep='\t')
df_gene = df_gene.transpose()
col_names = df_gene.iloc[0].tolist()
df_gene.columns = col_names
df_gene = df_gene.drop(axis=0, index='ID_REF')
df_gene.insert(loc=0, column='ID_REF', value=df_gene.index)
df_gene = df_gene.reset_index(drop=True)
features_gene_num = df_gene.columns.tolist()[1:]
df_gene[features_gene_num] = df_gene[features_gene_num].astype(float)
df_gene | code |
72086322/cell_9 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
df = pd.read_csv('../input/colorectal-cancer-patients/crc.txt', sep='\t')
df
df = df.drop('Unnamed: 9', axis=1)
df = df.drop('Unnamed: 10', axis=1)
df = df.drop('Unnamed: 11', axis=1)
df = df.drop(index=62, axis=0)
df
features_num = ['Age (in years)', 'DFS (in months)']
for f in features_num:
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 7))
ax1.hist(df[f])
ax1.grid()
ax1.set_title('Histogram of ' + f)
ax2.boxplot(df[f], vert=False)
ax2.grid()
ax2.set_title('Boxplot of ' + f)
plt.show() | code |
72086322/cell_25 | [
"image_output_5.png",
"image_output_4.png",
"image_output_6.png",
"image_output_3.png",
"image_output_2.png",
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
df = pd.read_csv('../input/colorectal-cancer-patients/crc.txt', sep='\t')
df
df = df.drop('Unnamed: 9', axis=1)
df = df.drop('Unnamed: 10', axis=1)
df = df.drop('Unnamed: 11', axis=1)
df = df.drop(index=62, axis=0)
df
features_num = ['Age (in years)', 'DFS (in months)']
# plot distributions
for f in features_num:
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10,7))
ax1.hist(df[f])
ax1.grid()
ax1.set_title('Histogram of ' + f)
ax2.boxplot(df[f], vert=False)
ax2.grid()
ax2.set_title('Boxplot of ' + f)
plt.show()
# correlations
corr_pearson = df[features_num].corr(method='pearson')
corr_spearman = df[features_num].corr(method='spearman')
fig = plt.figure(figsize = (8,6))
sns.heatmap(corr_pearson, annot=True, cmap='RdYlGn', vmin=-1, vmax=+1)
plt.title('Pearson Correlation')
plt.show()
fig = plt.figure(figsize = (8,6))
sns.heatmap(corr_spearman, annot=True, cmap='RdYlGn', vmin=-1, vmax=+1)
plt.title('Spearman Correlation')
plt.show()
features_cat = ['Dukes Stage', 'Gender', 'Location', 'DFS event', 'Adj_Radio', 'Adj_Chem']
for f in features_cat:
df[f].value_counts().sort_index().plot(kind='bar')
df_gene = pd.read_csv('../input/colorectal-cancer-patients/crc_ge.txt', sep='\t')
df_gene = df_gene.transpose()
col_names = df_gene.iloc[0].tolist()
df_gene.columns = col_names
df_gene = df_gene.drop(axis=0, index='ID_REF')
df_gene.insert(loc=0, column='ID_REF', value=df_gene.index)
df_gene = df_gene.reset_index(drop=True)
features_gene_num = df_gene.columns.tolist()[1:]
df_gene[features_gene_num] = df_gene[features_gene_num].astype(float)
for i in range(38):
print('Columns', 50 * i + 1, 'to', 50 * i + 50)
df_gene.iloc[:, 50 * i + 1:50 * i + 50 + 1].plot(kind='box', figsize=(15, 5))
plt.xticks(rotation=90)
plt.grid()
plt.show()
print('Columns', 1901, 'to', 1935)
df_gene.iloc[:, 1901:1935 + 1].plot(kind='box', figsize=(15, 5))
plt.xticks(rotation=90)
plt.grid()
plt.show() | code |
72086322/cell_4 | [
"text_html_output_1.png"
] | import pandas as pd
df = pd.read_csv('../input/colorectal-cancer-patients/crc.txt', sep='\t')
df
df = df.drop('Unnamed: 9', axis=1)
df = df.drop('Unnamed: 10', axis=1)
df = df.drop('Unnamed: 11', axis=1)
df = df.drop(index=62, axis=0)
df | code |
72086322/cell_11 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
df = pd.read_csv('../input/colorectal-cancer-patients/crc.txt', sep='\t')
df
df = df.drop('Unnamed: 9', axis=1)
df = df.drop('Unnamed: 10', axis=1)
df = df.drop('Unnamed: 11', axis=1)
df = df.drop(index=62, axis=0)
df
features_num = ['Age (in years)', 'DFS (in months)']
# plot distributions
for f in features_num:
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10,7))
ax1.hist(df[f])
ax1.grid()
ax1.set_title('Histogram of ' + f)
ax2.boxplot(df[f], vert=False)
ax2.grid()
ax2.set_title('Boxplot of ' + f)
plt.show()
# correlations
corr_pearson = df[features_num].corr(method='pearson')
corr_spearman = df[features_num].corr(method='spearman')
fig = plt.figure(figsize = (8,6))
sns.heatmap(corr_pearson, annot=True, cmap='RdYlGn', vmin=-1, vmax=+1)
plt.title('Pearson Correlation')
plt.show()
fig = plt.figure(figsize = (8,6))
sns.heatmap(corr_spearman, annot=True, cmap='RdYlGn', vmin=-1, vmax=+1)
plt.title('Spearman Correlation')
plt.show()
plt.scatter(df['Age (in years)'], df['DFS (in months)'])
plt.title('DFS vs Age')
plt.xlabel('Age')
plt.ylabel('DFS (months)')
plt.grid()
plt.show() | code |
72086322/cell_18 | [
"image_output_2.png",
"image_output_1.png"
] | import pandas as pd
df = pd.read_csv('../input/colorectal-cancer-patients/crc.txt', sep='\t')
df
df_gene = pd.read_csv('../input/colorectal-cancer-patients/crc_ge.txt', sep='\t')
df_gene = df_gene.transpose()
df_gene.head() | code |
72086322/cell_28 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
df = pd.read_csv('../input/colorectal-cancer-patients/crc.txt', sep='\t')
df
df = df.drop('Unnamed: 9', axis=1)
df = df.drop('Unnamed: 10', axis=1)
df = df.drop('Unnamed: 11', axis=1)
df = df.drop(index=62, axis=0)
df
features_num = ['Age (in years)', 'DFS (in months)']
# plot distributions
for f in features_num:
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10,7))
ax1.hist(df[f])
ax1.grid()
ax1.set_title('Histogram of ' + f)
ax2.boxplot(df[f], vert=False)
ax2.grid()
ax2.set_title('Boxplot of ' + f)
plt.show()
# correlations
corr_pearson = df[features_num].corr(method='pearson')
corr_spearman = df[features_num].corr(method='spearman')
fig = plt.figure(figsize = (8,6))
sns.heatmap(corr_pearson, annot=True, cmap='RdYlGn', vmin=-1, vmax=+1)
plt.title('Pearson Correlation')
plt.show()
fig = plt.figure(figsize = (8,6))
sns.heatmap(corr_spearman, annot=True, cmap='RdYlGn', vmin=-1, vmax=+1)
plt.title('Spearman Correlation')
plt.show()
features_cat = ['Dukes Stage', 'Gender', 'Location', 'DFS event', 'Adj_Radio', 'Adj_Chem']
for f in features_cat:
df[f].value_counts().sort_index().plot(kind='bar')
df_gene = pd.read_csv('../input/colorectal-cancer-patients/crc_ge.txt', sep='\t')
df_gene = df_gene.transpose()
col_names = df_gene.iloc[0].tolist()
df_gene.columns = col_names
df_gene = df_gene.drop(axis=0, index='ID_REF')
df_gene.insert(loc=0, column='ID_REF', value=df_gene.index)
df_gene = df_gene.reset_index(drop=True)
features_gene_num = df_gene.columns.tolist()[1:]
df_gene[features_gene_num] = df_gene[features_gene_num].astype(float)
for i in range(38):
plt.xticks(rotation=90)
plt.xticks(rotation=90)
df_combined = df.join(other=df_gene.set_index('ID_REF'), on='ID_REF', how='left')
df_combined | code |
72086322/cell_8 | [
"image_output_11.png",
"text_plain_output_35.png",
"image_output_24.png",
"text_plain_output_37.png",
"image_output_25.png",
"text_plain_output_5.png",
"text_plain_output_30.png",
"text_plain_output_15.png",
"image_output_17.png",
"image_output_30.png",
"text_plain_output_9.png",
"image_output_14.png",
"image_output_39.png",
"image_output_28.png",
"text_plain_output_31.png",
"text_plain_output_20.png",
"image_output_23.png",
"image_output_34.png",
"text_plain_output_4.png",
"text_plain_output_13.png",
"image_output_13.png",
"image_output_5.png",
"text_plain_output_14.png",
"image_output_18.png",
"text_plain_output_32.png",
"text_plain_output_29.png",
"image_output_21.png",
"text_plain_output_27.png",
"text_plain_output_10.png",
"text_plain_output_6.png",
"image_output_7.png",
"text_plain_output_24.png",
"text_plain_output_21.png",
"image_output_31.png",
"text_plain_output_25.png",
"image_output_20.png",
"text_plain_output_18.png",
"text_plain_output_36.png",
"image_output_32.png",
"text_plain_output_3.png",
"image_output_4.png",
"text_plain_output_22.png",
"image_output_35.png",
"text_plain_output_38.png",
"text_plain_output_7.png",
"image_output_36.png",
"image_output_8.png",
"image_output_37.png",
"text_plain_output_16.png",
"image_output_16.png",
"text_plain_output_8.png",
"text_plain_output_26.png",
"image_output_27.png",
"image_output_6.png",
"text_plain_output_34.png",
"text_plain_output_23.png",
"image_output_12.png",
"text_plain_output_28.png",
"image_output_22.png",
"text_plain_output_2.png",
"text_plain_output_1.png",
"text_plain_output_33.png",
"text_plain_output_39.png",
"image_output_3.png",
"image_output_29.png",
"text_plain_output_19.png",
"image_output_2.png",
"image_output_1.png",
"image_output_10.png",
"text_plain_output_17.png",
"text_plain_output_11.png",
"text_plain_output_12.png",
"image_output_33.png",
"image_output_15.png",
"image_output_9.png",
"image_output_19.png",
"image_output_38.png",
"image_output_26.png"
] | import pandas as pd
df = pd.read_csv('../input/colorectal-cancer-patients/crc.txt', sep='\t')
df
df = df.drop('Unnamed: 9', axis=1)
df = df.drop('Unnamed: 10', axis=1)
df = df.drop('Unnamed: 11', axis=1)
df = df.drop(index=62, axis=0)
df
features_num = ['Age (in years)', 'DFS (in months)']
df[features_num].describe(percentiles=[0.1, 0.25, 0.5, 0.75, 0.9]) | code |
72086322/cell_16 | [
"text_html_output_1.png"
] | import pandas as pd
df = pd.read_csv('../input/colorectal-cancer-patients/crc.txt', sep='\t')
df
df_gene = pd.read_csv('../input/colorectal-cancer-patients/crc_ge.txt', sep='\t')
df_gene.head() | code |
72086322/cell_3 | [
"text_html_output_1.png"
] | import pandas as pd
df = pd.read_csv('../input/colorectal-cancer-patients/crc.txt', sep='\t')
df | code |
72086322/cell_24 | [
"image_output_1.png"
] | import pandas as pd
df = pd.read_csv('../input/colorectal-cancer-patients/crc.txt', sep='\t')
df
df_gene = pd.read_csv('../input/colorectal-cancer-patients/crc_ge.txt', sep='\t')
df_gene = df_gene.transpose()
col_names = df_gene.iloc[0].tolist()
df_gene.columns = col_names
df_gene = df_gene.drop(axis=0, index='ID_REF')
df_gene.insert(loc=0, column='ID_REF', value=df_gene.index)
df_gene = df_gene.reset_index(drop=True)
features_gene_num = df_gene.columns.tolist()[1:]
df_gene[features_gene_num] = df_gene[features_gene_num].astype(float)
df_gene[features_gene_num].describe() | code |
72086322/cell_14 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
df = pd.read_csv('../input/colorectal-cancer-patients/crc.txt', sep='\t')
df
df = df.drop('Unnamed: 9', axis=1)
df = df.drop('Unnamed: 10', axis=1)
df = df.drop('Unnamed: 11', axis=1)
df = df.drop(index=62, axis=0)
df
features_num = ['Age (in years)', 'DFS (in months)']
# plot distributions
for f in features_num:
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10,7))
ax1.hist(df[f])
ax1.grid()
ax1.set_title('Histogram of ' + f)
ax2.boxplot(df[f], vert=False)
ax2.grid()
ax2.set_title('Boxplot of ' + f)
plt.show()
# correlations
corr_pearson = df[features_num].corr(method='pearson')
corr_spearman = df[features_num].corr(method='spearman')
fig = plt.figure(figsize = (8,6))
sns.heatmap(corr_pearson, annot=True, cmap='RdYlGn', vmin=-1, vmax=+1)
plt.title('Pearson Correlation')
plt.show()
fig = plt.figure(figsize = (8,6))
sns.heatmap(corr_spearman, annot=True, cmap='RdYlGn', vmin=-1, vmax=+1)
plt.title('Spearman Correlation')
plt.show()
features_cat = ['Dukes Stage', 'Gender', 'Location', 'DFS event', 'Adj_Radio', 'Adj_Chem']
for f in features_cat:
df[f].value_counts().sort_index().plot(kind='bar')
plt.title(f)
plt.grid()
plt.show() | code |
72086322/cell_10 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
df = pd.read_csv('../input/colorectal-cancer-patients/crc.txt', sep='\t')
df
df = df.drop('Unnamed: 9', axis=1)
df = df.drop('Unnamed: 10', axis=1)
df = df.drop('Unnamed: 11', axis=1)
df = df.drop(index=62, axis=0)
df
features_num = ['Age (in years)', 'DFS (in months)']
# plot distributions
for f in features_num:
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10,7))
ax1.hist(df[f])
ax1.grid()
ax1.set_title('Histogram of ' + f)
ax2.boxplot(df[f], vert=False)
ax2.grid()
ax2.set_title('Boxplot of ' + f)
plt.show()
corr_pearson = df[features_num].corr(method='pearson')
corr_spearman = df[features_num].corr(method='spearman')
fig = plt.figure(figsize=(8, 6))
sns.heatmap(corr_pearson, annot=True, cmap='RdYlGn', vmin=-1, vmax=+1)
plt.title('Pearson Correlation')
plt.show()
fig = plt.figure(figsize=(8, 6))
sns.heatmap(corr_spearman, annot=True, cmap='RdYlGn', vmin=-1, vmax=+1)
plt.title('Spearman Correlation')
plt.show() | code |
72086322/cell_5 | [
"text_html_output_1.png"
] | import pandas as pd
df = pd.read_csv('../input/colorectal-cancer-patients/crc.txt', sep='\t')
df
df = df.drop('Unnamed: 9', axis=1)
df = df.drop('Unnamed: 10', axis=1)
df = df.drop('Unnamed: 11', axis=1)
df = df.drop(index=62, axis=0)
df
df.info() | code |
16146582/cell_6 | [
"image_output_1.png"
] | from keras.layers import Dense
from keras.models import Sequential
import numpy as np
import pandas as pd
train_csv_df = pd.read_csv('../input/train.csv')
test_csv_df = pd.read_csv('../input/test.csv')
y_train = np.array(train_csv_df['label'])
X_train = np.array(train_csv_df.drop('label', 1))
X_test = np.array(test_csv_df)
count = 0
for index in range(0, 6):
count += 1
y_train = np.eye(10)[y_train]
X_test = X_test / 255
X_train = X_train / 255
model = Sequential()
model.add(Dense(units=512, input_dim=784, activation='relu'))
model.add(Dense(units=330, activation='relu'))
model.add(Dense(units=212, activation='relu'))
model.add(Dense(units=128, activation='relu'))
model.add(Dense(units=152, activation='relu'))
model.add(Dense(units=152, activation='relu'))
model.add(Dense(units=10, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(X_train, y_train, epochs=50, batch_size=6000)
predictions = model.predict(X_test)
count = 0
for index in range(0, 6):
plt.subplot(2, 3, count + 1)
plt.title(np.argmax(predictions[index]))
plt.imshow(X_test[index].reshape(28, 28), cmap='gray')
count += 1
plt.show() | code |
16146582/cell_1 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import os
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from keras.models import Sequential
from keras.layers import Dense | code |
16146582/cell_3 | [
"image_output_1.png"
] | import numpy as np
import pandas as pd
train_csv_df = pd.read_csv('../input/train.csv')
test_csv_df = pd.read_csv('../input/test.csv')
y_train = np.array(train_csv_df['label'])
X_train = np.array(train_csv_df.drop('label', 1))
X_test = np.array(test_csv_df)
count = 0
for index in range(0, 6):
plt.subplot(2, 3, count + 1)
plt.title(y_train[index])
plt.imshow(X_train[index].reshape(28, 28), cmap='gray')
count += 1
plt.show() | code |
16146582/cell_5 | [
"text_plain_output_2.png",
"text_plain_output_1.png"
] | from keras.layers import Dense
from keras.models import Sequential
import numpy as np
import pandas as pd
train_csv_df = pd.read_csv('../input/train.csv')
test_csv_df = pd.read_csv('../input/test.csv')
y_train = np.array(train_csv_df['label'])
X_train = np.array(train_csv_df.drop('label', 1))
X_test = np.array(test_csv_df)
y_train = np.eye(10)[y_train]
X_test = X_test / 255
X_train = X_train / 255
model = Sequential()
model.add(Dense(units=512, input_dim=784, activation='relu'))
model.add(Dense(units=330, activation='relu'))
model.add(Dense(units=212, activation='relu'))
model.add(Dense(units=128, activation='relu'))
model.add(Dense(units=152, activation='relu'))
model.add(Dense(units=152, activation='relu'))
model.add(Dense(units=10, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(X_train, y_train, epochs=50, batch_size=6000) | code |
90102656/cell_7 | [
"application_vnd.jupyter.stderr_output_3.png",
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png"
] | import cv2
face_model = cv2.CascadeClassifier('../input/haarcascades/haarcascade_frontalface_default.xml')
img = cv2.imread('../input/face-mask-detection/images/maksssksksss244.png')
img = cv2.cvtColor(img, cv2.IMREAD_GRAYSCALE)
faces = face_model.detectMultiScale(img, scaleFactor=1.1, minNeighbors=4)
out_img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
for x, y, w, h in faces:
cv2.rectangle(out_img, (x, y), (x + w, y + h), (0, 0, 255), 1)
plt.figure(figsize=(12, 12))
plt.imshow(out_img) | code |
90102656/cell_15 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from keras.preprocessing.image import ImageDataGenerator
train_dir = '../input/face-mask-12k-images-dataset/Face Mask Dataset/Train'
test_dir = '../input/face-mask-12k-images-dataset/Face Mask Dataset/Test'
val_dir = '../input/face-mask-12k-images-dataset/Face Mask Dataset/Validation'
train_datagen = ImageDataGenerator(rescale=1.0 / 255, horizontal_flip=True, zoom_range=0.2, shear_range=0.2)
train_generator = train_datagen.flow_from_directory(directory=train_dir, target_size=(128, 128), class_mode='categorical', batch_size=32)
val_datagen = ImageDataGenerator(rescale=1.0 / 255)
val_generator = train_datagen.flow_from_directory(directory=val_dir, target_size=(128, 128), class_mode='categorical', batch_size=32)
test_datagen = ImageDataGenerator(rescale=1.0 / 255)
test_generator = train_datagen.flow_from_directory(directory=val_dir, target_size=(128, 128), class_mode='categorical', batch_size=32) | code |
90102656/cell_3 | [
"text_plain_output_1.png"
] | import os
print(os.listdir('../input'))
print(os.listdir('../working')) | code |
90102656/cell_17 | [
"image_output_1.png"
] | from keras import Sequential
from keras.applications.vgg19 import VGG19
from keras.layers import Flatten, Dense
vgg19 = VGG19(weights='imagenet', include_top=False, input_shape=(128, 128, 3))
for layer in vgg19.layers:
layer.trainable = False
model = Sequential()
model.add(vgg19)
model.add(Flatten())
model.add(Dense(2, activation='sigmoid'))
model.summary() | code |
90102656/cell_10 | [
"text_plain_output_1.png"
] | from scipy.spatial import distance
import cv2
face_model = cv2.CascadeClassifier('../input/haarcascades/haarcascade_frontalface_default.xml')
img = cv2.imread('../input/face-mask-detection/images/maksssksksss244.png')
img = cv2.cvtColor(img, cv2.IMREAD_GRAYSCALE)
faces = face_model.detectMultiScale(img, scaleFactor=1.1, minNeighbors=4)
out_img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
for x, y, w, h in faces:
cv2.rectangle(out_img, (x, y), (x + w, y + h), (0, 0, 255), 1)
MIN_DISTANCE = 130
if len(faces) >= 2:
label = [0 for i in range(len(faces))]
for i in range(len(faces) - 1):
for j in range(i + 1, len(faces)):
dist = distance.euclidean(faces[i][:2], faces[j][:2])
if dist < MIN_DISTANCE:
label[i] = 1
label[j] = 1
new_img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
for i in range(len(faces)):
x, y, w, h = faces[i]
if label[i] == 1:
cv2.rectangle(new_img, (x, y), (x + w, y + h), (255, 0, 0), 1)
else:
cv2.rectangle(new_img, (x, y), (x + w, y + h), (0, 255, 0), 1)
plt.figure(figsize=(10, 10))
plt.imshow(new_img)
else:
print('No. of faces detected is less than 2') | code |
89127402/cell_21 | [
"text_plain_output_1.png"
] | from dateutil.relativedelta import relativedelta
from statsmodels.tsa.stattools import adfuller
import matplotlib.pyplot as plt
import pandas as pd
from dateutil.relativedelta import relativedelta
# rolling averages and std
def rolling_stat(timeseries, window_size):
# Determing rolling statistics
rolmean = timeseries.rolling(window = window_size).mean()
rolstd = timeseries.rolling(window = window_size).std()
# Plot rolling statistics:
fig, ax = plt.subplots(figsize = (12, 4))
orig = plt.plot(timeseries, color = '#4DBEEE', label = 'Original')
std = plt.plot(rolstd, color = 'black', label = 'Rolling Std')
mean = plt.plot(rolmean, color = 'red', label = 'Rolling Mean')
plt.legend(loc = 'best')
plt.title('Rolling Mean and Standard Deviation')
plt.grid()
plt.show(block=False)
# get n predictions for series by model
def future_preds_df(model, series, num_steps):
pred_first = series.index.max() + relativedelta(weeks = 1)
pred_last = series.index.max() + relativedelta(weeks = num_steps)
date_range_index = pd.date_range(pred_first, pred_last, freq = 'W')
vals = model.predict(n_periods = num_steps)
return pd.DataFrame(vals,index = date_range_index)
# Augmented Dicky-Fuller Test
def adf_test(timeseries):
adf, pvalue, usedlag, nobs, critical_values, icbest = adfuller(timeseries)
print("Test statistic: ", adf, 2)
print("P-value: ", pvalue)
print("Critical values: ", critical_values)
# source: notebook 06f_DEMO_SARIMA_Prophet by IBM Specialized Models: Time Series and Survival Analysis course
stations = pd.read_csv('../input/hourly-weather-data-in-ireland-from-24-stations/station_list.csv', index_col=0)
dublin_air_data = pd.read_csv('../input/hourly-weather-data-in-ireland-from-24-stations/Stations/532_dublin_airport.csv', index_col=0, parse_dates=['date'])
dublin_air_data.rename(columns={'ind': 'i_rain', 'ind.1': 'i_temp', 'ind.2': 'i_wetb', 'ind.3': 'i_wdsp', 'ind.4': 'i_wddir'}, inplace=True)
dublin_air_data.set_index('date', inplace=True)
dublin_air_data.head() | code |
89127402/cell_13 | [
"text_html_output_1.png"
] | import json
import json
import plotly.graph_objs as go
import urllib.request
def read_geojson(url):
with urllib.request.urlopen(url) as url:
jdata = json.loads(url.read().decode())
return jdata
ireland_url = 'https://gist.githubusercontent.com/pnewall/9a122c05ba2865c3a58f15008548fbbd/raw/5bb4f84d918b871ee0e8b99f60dde976bb711d7c/ireland_counties.geojson'
jdata = read_geojson(ireland_url)
jdata['type']
print(jdata['features'][0].keys())
print(jdata['features'][0]['properties']) | code |
89127402/cell_25 | [
"text_html_output_1.png"
] | from dateutil.relativedelta import relativedelta
from statsmodels.tsa.stattools import adfuller
import matplotlib.pyplot as plt
import pandas as pd
from dateutil.relativedelta import relativedelta
# rolling averages and std
def rolling_stat(timeseries, window_size):
# Determing rolling statistics
rolmean = timeseries.rolling(window = window_size).mean()
rolstd = timeseries.rolling(window = window_size).std()
# Plot rolling statistics:
fig, ax = plt.subplots(figsize = (12, 4))
orig = plt.plot(timeseries, color = '#4DBEEE', label = 'Original')
std = plt.plot(rolstd, color = 'black', label = 'Rolling Std')
mean = plt.plot(rolmean, color = 'red', label = 'Rolling Mean')
plt.legend(loc = 'best')
plt.title('Rolling Mean and Standard Deviation')
plt.grid()
plt.show(block=False)
# get n predictions for series by model
def future_preds_df(model, series, num_steps):
pred_first = series.index.max() + relativedelta(weeks = 1)
pred_last = series.index.max() + relativedelta(weeks = num_steps)
date_range_index = pd.date_range(pred_first, pred_last, freq = 'W')
vals = model.predict(n_periods = num_steps)
return pd.DataFrame(vals,index = date_range_index)
# Augmented Dicky-Fuller Test
def adf_test(timeseries):
adf, pvalue, usedlag, nobs, critical_values, icbest = adfuller(timeseries)
print("Test statistic: ", adf, 2)
print("P-value: ", pvalue)
print("Critical values: ", critical_values)
# source: notebook 06f_DEMO_SARIMA_Prophet by IBM Specialized Models: Time Series and Survival Analysis course
stations = pd.read_csv('../input/hourly-weather-data-in-ireland-from-24-stations/station_list.csv', index_col=0)
dublin_air_data = pd.read_csv('../input/hourly-weather-data-in-ireland-from-24-stations/Stations/532_dublin_airport.csv', index_col=0, parse_dates=['date'])
dublin_air_data.rename(columns={'ind': 'i_rain', 'ind.1': 'i_temp', 'ind.2': 'i_wetb', 'ind.3': 'i_wdsp', 'ind.4': 'i_wddir'}, inplace=True)
dublin_air_data.set_index('date', inplace=True)
dublin_air_data.isnull().sum()
dublin_air_data[dublin_air_data.isna().any(axis=1)]
dublin_air_data.interpolate(inplace=True)
dublin_air_data.isnull().sum().sum() | code |
89127402/cell_23 | [
"text_plain_output_1.png"
] | from dateutil.relativedelta import relativedelta
from statsmodels.tsa.stattools import adfuller
import matplotlib.pyplot as plt
import pandas as pd
from dateutil.relativedelta import relativedelta
# rolling averages and std
def rolling_stat(timeseries, window_size):
# Determing rolling statistics
rolmean = timeseries.rolling(window = window_size).mean()
rolstd = timeseries.rolling(window = window_size).std()
# Plot rolling statistics:
fig, ax = plt.subplots(figsize = (12, 4))
orig = plt.plot(timeseries, color = '#4DBEEE', label = 'Original')
std = plt.plot(rolstd, color = 'black', label = 'Rolling Std')
mean = plt.plot(rolmean, color = 'red', label = 'Rolling Mean')
plt.legend(loc = 'best')
plt.title('Rolling Mean and Standard Deviation')
plt.grid()
plt.show(block=False)
# get n predictions for series by model
def future_preds_df(model, series, num_steps):
pred_first = series.index.max() + relativedelta(weeks = 1)
pred_last = series.index.max() + relativedelta(weeks = num_steps)
date_range_index = pd.date_range(pred_first, pred_last, freq = 'W')
vals = model.predict(n_periods = num_steps)
return pd.DataFrame(vals,index = date_range_index)
# Augmented Dicky-Fuller Test
def adf_test(timeseries):
adf, pvalue, usedlag, nobs, critical_values, icbest = adfuller(timeseries)
print("Test statistic: ", adf, 2)
print("P-value: ", pvalue)
print("Critical values: ", critical_values)
# source: notebook 06f_DEMO_SARIMA_Prophet by IBM Specialized Models: Time Series and Survival Analysis course
stations = pd.read_csv('../input/hourly-weather-data-in-ireland-from-24-stations/station_list.csv', index_col=0)
dublin_air_data = pd.read_csv('../input/hourly-weather-data-in-ireland-from-24-stations/Stations/532_dublin_airport.csv', index_col=0, parse_dates=['date'])
dublin_air_data.rename(columns={'ind': 'i_rain', 'ind.1': 'i_temp', 'ind.2': 'i_wetb', 'ind.3': 'i_wdsp', 'ind.4': 'i_wddir'}, inplace=True)
dublin_air_data.set_index('date', inplace=True)
dublin_air_data.isnull().sum() | code |
89127402/cell_20 | [
"text_plain_output_1.png"
] | from dateutil.relativedelta import relativedelta
from statsmodels.tsa.stattools import adfuller
import matplotlib.pyplot as plt
import pandas as pd
from dateutil.relativedelta import relativedelta
# rolling averages and std
def rolling_stat(timeseries, window_size):
# Determing rolling statistics
rolmean = timeseries.rolling(window = window_size).mean()
rolstd = timeseries.rolling(window = window_size).std()
# Plot rolling statistics:
fig, ax = plt.subplots(figsize = (12, 4))
orig = plt.plot(timeseries, color = '#4DBEEE', label = 'Original')
std = plt.plot(rolstd, color = 'black', label = 'Rolling Std')
mean = plt.plot(rolmean, color = 'red', label = 'Rolling Mean')
plt.legend(loc = 'best')
plt.title('Rolling Mean and Standard Deviation')
plt.grid()
plt.show(block=False)
# get n predictions for series by model
def future_preds_df(model, series, num_steps):
pred_first = series.index.max() + relativedelta(weeks = 1)
pred_last = series.index.max() + relativedelta(weeks = num_steps)
date_range_index = pd.date_range(pred_first, pred_last, freq = 'W')
vals = model.predict(n_periods = num_steps)
return pd.DataFrame(vals,index = date_range_index)
# Augmented Dicky-Fuller Test
def adf_test(timeseries):
adf, pvalue, usedlag, nobs, critical_values, icbest = adfuller(timeseries)
print("Test statistic: ", adf, 2)
print("P-value: ", pvalue)
print("Critical values: ", critical_values)
# source: notebook 06f_DEMO_SARIMA_Prophet by IBM Specialized Models: Time Series and Survival Analysis course
stations = pd.read_csv('../input/hourly-weather-data-in-ireland-from-24-stations/station_list.csv', index_col=0)
dublin_air_data = pd.read_csv('../input/hourly-weather-data-in-ireland-from-24-stations/Stations/532_dublin_airport.csv', index_col=0, parse_dates=['date'])
dublin_air_data.rename(columns={'ind': 'i_rain', 'ind.1': 'i_temp', 'ind.2': 'i_wetb', 'ind.3': 'i_wdsp', 'ind.4': 'i_wddir'}, inplace=True)
print('Unique timestamps: ', dublin_air_data.date.nunique())
print('All timestamps: ', dublin_air_data.shape[0]) | code |
89127402/cell_26 | [
"text_plain_output_1.png"
] | from dateutil.relativedelta import relativedelta
from statsmodels.tsa.stattools import adfuller
import matplotlib.pyplot as plt
import pandas as pd
from dateutil.relativedelta import relativedelta
# rolling averages and std
def rolling_stat(timeseries, window_size):
# Determing rolling statistics
rolmean = timeseries.rolling(window = window_size).mean()
rolstd = timeseries.rolling(window = window_size).std()
# Plot rolling statistics:
fig, ax = plt.subplots(figsize = (12, 4))
orig = plt.plot(timeseries, color = '#4DBEEE', label = 'Original')
std = plt.plot(rolstd, color = 'black', label = 'Rolling Std')
mean = plt.plot(rolmean, color = 'red', label = 'Rolling Mean')
plt.legend(loc = 'best')
plt.title('Rolling Mean and Standard Deviation')
plt.grid()
plt.show(block=False)
# get n predictions for series by model
def future_preds_df(model, series, num_steps):
pred_first = series.index.max() + relativedelta(weeks = 1)
pred_last = series.index.max() + relativedelta(weeks = num_steps)
date_range_index = pd.date_range(pred_first, pred_last, freq = 'W')
vals = model.predict(n_periods = num_steps)
return pd.DataFrame(vals,index = date_range_index)
# Augmented Dicky-Fuller Test
def adf_test(timeseries):
adf, pvalue, usedlag, nobs, critical_values, icbest = adfuller(timeseries)
print("Test statistic: ", adf, 2)
print("P-value: ", pvalue)
print("Critical values: ", critical_values)
# source: notebook 06f_DEMO_SARIMA_Prophet by IBM Specialized Models: Time Series and Survival Analysis course
stations = pd.read_csv('../input/hourly-weather-data-in-ireland-from-24-stations/station_list.csv', index_col=0)
dublin_air_data = pd.read_csv('../input/hourly-weather-data-in-ireland-from-24-stations/Stations/532_dublin_airport.csv', index_col=0, parse_dates=['date'])
dublin_air_data.rename(columns={'ind': 'i_rain', 'ind.1': 'i_temp', 'ind.2': 'i_wetb', 'ind.3': 'i_wdsp', 'ind.4': 'i_wddir'}, inplace=True)
dublin_air_data.set_index('date', inplace=True)
dublin_air_data.isnull().sum()
dublin_air_data[dublin_air_data.isna().any(axis=1)]
dublin_air_data.interpolate(inplace=True)
dublin_air_data.isnull().sum().sum()
dublin_air_data.drop(columns=['i_rain', 'i_temp', 'i_wetb', 'i_wdsp', 'i_wddir'], inplace=True)
dublin_air_data.nunique() | code |
89127402/cell_2 | [
"text_plain_output_1.png"
] | !pip install pmdarima | code |
89127402/cell_19 | [
"text_html_output_1.png"
] | from dateutil.relativedelta import relativedelta
from statsmodels.tsa.stattools import adfuller
import matplotlib.pyplot as plt
import pandas as pd
from dateutil.relativedelta import relativedelta
# rolling averages and std
def rolling_stat(timeseries, window_size):
# Determing rolling statistics
rolmean = timeseries.rolling(window = window_size).mean()
rolstd = timeseries.rolling(window = window_size).std()
# Plot rolling statistics:
fig, ax = plt.subplots(figsize = (12, 4))
orig = plt.plot(timeseries, color = '#4DBEEE', label = 'Original')
std = plt.plot(rolstd, color = 'black', label = 'Rolling Std')
mean = plt.plot(rolmean, color = 'red', label = 'Rolling Mean')
plt.legend(loc = 'best')
plt.title('Rolling Mean and Standard Deviation')
plt.grid()
plt.show(block=False)
# get n predictions for series by model
def future_preds_df(model, series, num_steps):
pred_first = series.index.max() + relativedelta(weeks = 1)
pred_last = series.index.max() + relativedelta(weeks = num_steps)
date_range_index = pd.date_range(pred_first, pred_last, freq = 'W')
vals = model.predict(n_periods = num_steps)
return pd.DataFrame(vals,index = date_range_index)
# Augmented Dicky-Fuller Test
def adf_test(timeseries):
adf, pvalue, usedlag, nobs, critical_values, icbest = adfuller(timeseries)
print("Test statistic: ", adf, 2)
print("P-value: ", pvalue)
print("Critical values: ", critical_values)
# source: notebook 06f_DEMO_SARIMA_Prophet by IBM Specialized Models: Time Series and Survival Analysis course
stations = pd.read_csv('../input/hourly-weather-data-in-ireland-from-24-stations/station_list.csv', index_col=0)
dublin_air_data = pd.read_csv('../input/hourly-weather-data-in-ireland-from-24-stations/Stations/532_dublin_airport.csv', index_col=0, parse_dates=['date'])
dublin_air_data.rename(columns={'ind': 'i_rain', 'ind.1': 'i_temp', 'ind.2': 'i_wetb', 'ind.3': 'i_wdsp', 'ind.4': 'i_wddir'}, inplace=True)
print('Column names: ', dublin_air_data.columns) | code |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.