path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
89127402/cell_18
[ "text_html_output_2.png" ]
from dateutil.relativedelta import relativedelta from statsmodels.tsa.stattools import adfuller import matplotlib.pyplot as plt import pandas as pd from dateutil.relativedelta import relativedelta # rolling averages and std def rolling_stat(timeseries, window_size): # Determing rolling statistics rolmean = timeseries.rolling(window = window_size).mean() rolstd = timeseries.rolling(window = window_size).std() # Plot rolling statistics: fig, ax = plt.subplots(figsize = (12, 4)) orig = plt.plot(timeseries, color = '#4DBEEE', label = 'Original') std = plt.plot(rolstd, color = 'black', label = 'Rolling Std') mean = plt.plot(rolmean, color = 'red', label = 'Rolling Mean') plt.legend(loc = 'best') plt.title('Rolling Mean and Standard Deviation') plt.grid() plt.show(block=False) # get n predictions for series by model def future_preds_df(model, series, num_steps): pred_first = series.index.max() + relativedelta(weeks = 1) pred_last = series.index.max() + relativedelta(weeks = num_steps) date_range_index = pd.date_range(pred_first, pred_last, freq = 'W') vals = model.predict(n_periods = num_steps) return pd.DataFrame(vals,index = date_range_index) # Augmented Dicky-Fuller Test def adf_test(timeseries): adf, pvalue, usedlag, nobs, critical_values, icbest = adfuller(timeseries) print("Test statistic: ", adf, 2) print("P-value: ", pvalue) print("Critical values: ", critical_values) # source: notebook 06f_DEMO_SARIMA_Prophet by IBM Specialized Models: Time Series and Survival Analysis course stations = pd.read_csv('../input/hourly-weather-data-in-ireland-from-24-stations/station_list.csv', index_col=0) dublin_air_data = pd.read_csv('../input/hourly-weather-data-in-ireland-from-24-stations/Stations/532_dublin_airport.csv', index_col=0, parse_dates=['date']) dublin_air_data.info()
code
89127402/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
from dateutil.relativedelta import relativedelta from statsmodels.tsa.stattools import adfuller import matplotlib.pyplot as plt import pandas as pd from dateutil.relativedelta import relativedelta # rolling averages and std def rolling_stat(timeseries, window_size): # Determing rolling statistics rolmean = timeseries.rolling(window = window_size).mean() rolstd = timeseries.rolling(window = window_size).std() # Plot rolling statistics: fig, ax = plt.subplots(figsize = (12, 4)) orig = plt.plot(timeseries, color = '#4DBEEE', label = 'Original') std = plt.plot(rolstd, color = 'black', label = 'Rolling Std') mean = plt.plot(rolmean, color = 'red', label = 'Rolling Mean') plt.legend(loc = 'best') plt.title('Rolling Mean and Standard Deviation') plt.grid() plt.show(block=False) # get n predictions for series by model def future_preds_df(model, series, num_steps): pred_first = series.index.max() + relativedelta(weeks = 1) pred_last = series.index.max() + relativedelta(weeks = num_steps) date_range_index = pd.date_range(pred_first, pred_last, freq = 'W') vals = model.predict(n_periods = num_steps) return pd.DataFrame(vals,index = date_range_index) # Augmented Dicky-Fuller Test def adf_test(timeseries): adf, pvalue, usedlag, nobs, critical_values, icbest = adfuller(timeseries) print("Test statistic: ", adf, 2) print("P-value: ", pvalue) print("Critical values: ", critical_values) # source: notebook 06f_DEMO_SARIMA_Prophet by IBM Specialized Models: Time Series and Survival Analysis course stations = pd.read_csv('../input/hourly-weather-data-in-ireland-from-24-stations/station_list.csv', index_col=0) stations.head(3)
code
89127402/cell_16
[ "text_plain_output_1.png" ]
from dateutil.relativedelta import relativedelta from geopy.distance import distance from statsmodels.tsa.stattools import adfuller import matplotlib.pyplot as plt import pandas as pd from dateutil.relativedelta import relativedelta # rolling averages and std def rolling_stat(timeseries, window_size): # Determing rolling statistics rolmean = timeseries.rolling(window = window_size).mean() rolstd = timeseries.rolling(window = window_size).std() # Plot rolling statistics: fig, ax = plt.subplots(figsize = (12, 4)) orig = plt.plot(timeseries, color = '#4DBEEE', label = 'Original') std = plt.plot(rolstd, color = 'black', label = 'Rolling Std') mean = plt.plot(rolmean, color = 'red', label = 'Rolling Mean') plt.legend(loc = 'best') plt.title('Rolling Mean and Standard Deviation') plt.grid() plt.show(block=False) # get n predictions for series by model def future_preds_df(model, series, num_steps): pred_first = series.index.max() + relativedelta(weeks = 1) pred_last = series.index.max() + relativedelta(weeks = num_steps) date_range_index = pd.date_range(pred_first, pred_last, freq = 'W') vals = model.predict(n_periods = num_steps) return pd.DataFrame(vals,index = date_range_index) # Augmented Dicky-Fuller Test def adf_test(timeseries): adf, pvalue, usedlag, nobs, critical_values, icbest = adfuller(timeseries) print("Test statistic: ", adf, 2) print("P-value: ", pvalue) print("Critical values: ", critical_values) # source: notebook 06f_DEMO_SARIMA_Prophet by IBM Specialized Models: Time Series and Survival Analysis course stations = pd.read_csv('../input/hourly-weather-data-in-ireland-from-24-stations/station_list.csv', index_col=0) dublin_air_loc = (float(stations[stations['Station name'] == 'dublin_airport']['latitude_dd']), float(stations[stations['Station name'] == 'dublin_airport']['longitude_dd'])) stations['dist_to_dublin_air_km'] = stations.apply(lambda row: round(distance(dublin_air_loc, (row['latitude_dd'], row['longitude_dd'])).km, 2), axis=1) stations.sort_values(by=['dist_to_dublin_air_km']).head(10)
code
89127402/cell_24
[ "text_plain_output_1.png" ]
from dateutil.relativedelta import relativedelta from statsmodels.tsa.stattools import adfuller import matplotlib.pyplot as plt import pandas as pd from dateutil.relativedelta import relativedelta # rolling averages and std def rolling_stat(timeseries, window_size): # Determing rolling statistics rolmean = timeseries.rolling(window = window_size).mean() rolstd = timeseries.rolling(window = window_size).std() # Plot rolling statistics: fig, ax = plt.subplots(figsize = (12, 4)) orig = plt.plot(timeseries, color = '#4DBEEE', label = 'Original') std = plt.plot(rolstd, color = 'black', label = 'Rolling Std') mean = plt.plot(rolmean, color = 'red', label = 'Rolling Mean') plt.legend(loc = 'best') plt.title('Rolling Mean and Standard Deviation') plt.grid() plt.show(block=False) # get n predictions for series by model def future_preds_df(model, series, num_steps): pred_first = series.index.max() + relativedelta(weeks = 1) pred_last = series.index.max() + relativedelta(weeks = num_steps) date_range_index = pd.date_range(pred_first, pred_last, freq = 'W') vals = model.predict(n_periods = num_steps) return pd.DataFrame(vals,index = date_range_index) # Augmented Dicky-Fuller Test def adf_test(timeseries): adf, pvalue, usedlag, nobs, critical_values, icbest = adfuller(timeseries) print("Test statistic: ", adf, 2) print("P-value: ", pvalue) print("Critical values: ", critical_values) # source: notebook 06f_DEMO_SARIMA_Prophet by IBM Specialized Models: Time Series and Survival Analysis course stations = pd.read_csv('../input/hourly-weather-data-in-ireland-from-24-stations/station_list.csv', index_col=0) dublin_air_data = pd.read_csv('../input/hourly-weather-data-in-ireland-from-24-stations/Stations/532_dublin_airport.csv', index_col=0, parse_dates=['date']) dublin_air_data.rename(columns={'ind': 'i_rain', 'ind.1': 'i_temp', 'ind.2': 'i_wetb', 'ind.3': 'i_wdsp', 'ind.4': 'i_wddir'}, inplace=True) dublin_air_data.set_index('date', inplace=True) dublin_air_data.isnull().sum() dublin_air_data[dublin_air_data.isna().any(axis=1)]
code
89127402/cell_14
[ "text_plain_output_1.png" ]
from dateutil.relativedelta import relativedelta from statsmodels.tsa.stattools import adfuller import json import matplotlib.pyplot as plt import pandas as pd import plotly.graph_objs as go import json import plotly.graph_objs as go import urllib.request def read_geojson(url): with urllib.request.urlopen(url) as url: jdata = json.loads(url.read().decode()) return jdata from dateutil.relativedelta import relativedelta # rolling averages and std def rolling_stat(timeseries, window_size): # Determing rolling statistics rolmean = timeseries.rolling(window = window_size).mean() rolstd = timeseries.rolling(window = window_size).std() # Plot rolling statistics: fig, ax = plt.subplots(figsize = (12, 4)) orig = plt.plot(timeseries, color = '#4DBEEE', label = 'Original') std = plt.plot(rolstd, color = 'black', label = 'Rolling Std') mean = plt.plot(rolmean, color = 'red', label = 'Rolling Mean') plt.legend(loc = 'best') plt.title('Rolling Mean and Standard Deviation') plt.grid() plt.show(block=False) # get n predictions for series by model def future_preds_df(model, series, num_steps): pred_first = series.index.max() + relativedelta(weeks = 1) pred_last = series.index.max() + relativedelta(weeks = num_steps) date_range_index = pd.date_range(pred_first, pred_last, freq = 'W') vals = model.predict(n_periods = num_steps) return pd.DataFrame(vals,index = date_range_index) # Augmented Dicky-Fuller Test def adf_test(timeseries): adf, pvalue, usedlag, nobs, critical_values, icbest = adfuller(timeseries) print("Test statistic: ", adf, 2) print("P-value: ", pvalue) print("Critical values: ", critical_values) # source: notebook 06f_DEMO_SARIMA_Prophet by IBM Specialized Models: Time Series and Survival Analysis course stations = pd.read_csv('../input/hourly-weather-data-in-ireland-from-24-stations/station_list.csv', index_col=0) ireland_url = 'https://gist.githubusercontent.com/pnewall/9a122c05ba2865c3a58f15008548fbbd/raw/5bb4f84d918b871ee0e8b99f60dde976bb711d7c/ireland_counties.geojson' jdata = read_geojson(ireland_url) jdata['type'] county_names = [jdata['features'][i]['id'] for i in range(len(jdata['features']))] colorscale = [[0.0, '#cccba1'], [0.5, '#a1ccaa'], [1.0, '#a1c1cc']] trace1 = go.Choropleth(geojson=jdata, showscale=False, colorscale=colorscale, zmin=0, zmax=1, z=[0.5] * len(jdata['features']), locations=county_names, featureidkey='properties.name') trace2 = go.Scattergeo(lon=stations['longitude_dd'], lat=stations['latitude_dd'], text=stations['Station name'], mode='markers', marker=dict(opacity=0.8, color='blue', reversescale=True, autocolorscale=False, line=dict(width=0.5, color='lightgray'))) fig = go.Figure(data=[trace1, trace2]) fig.update_geos(center=dict(lon=-7.5, lat=53.7), lataxis_range=[51, 56], lonaxis_range=[-13, -6], resolution=50, scope='europe') fig.update_layout(height=500, margin={'r': 0, 't': 50, 'l': 0, 'b': 0}, title='Locations of weather stations in Ireland') fig.show()
code
89127402/cell_22
[ "text_html_output_1.png" ]
from dateutil.relativedelta import relativedelta from statsmodels.tsa.stattools import adfuller import matplotlib.pyplot as plt import pandas as pd from dateutil.relativedelta import relativedelta # rolling averages and std def rolling_stat(timeseries, window_size): # Determing rolling statistics rolmean = timeseries.rolling(window = window_size).mean() rolstd = timeseries.rolling(window = window_size).std() # Plot rolling statistics: fig, ax = plt.subplots(figsize = (12, 4)) orig = plt.plot(timeseries, color = '#4DBEEE', label = 'Original') std = plt.plot(rolstd, color = 'black', label = 'Rolling Std') mean = plt.plot(rolmean, color = 'red', label = 'Rolling Mean') plt.legend(loc = 'best') plt.title('Rolling Mean and Standard Deviation') plt.grid() plt.show(block=False) # get n predictions for series by model def future_preds_df(model, series, num_steps): pred_first = series.index.max() + relativedelta(weeks = 1) pred_last = series.index.max() + relativedelta(weeks = num_steps) date_range_index = pd.date_range(pred_first, pred_last, freq = 'W') vals = model.predict(n_periods = num_steps) return pd.DataFrame(vals,index = date_range_index) # Augmented Dicky-Fuller Test def adf_test(timeseries): adf, pvalue, usedlag, nobs, critical_values, icbest = adfuller(timeseries) print("Test statistic: ", adf, 2) print("P-value: ", pvalue) print("Critical values: ", critical_values) # source: notebook 06f_DEMO_SARIMA_Prophet by IBM Specialized Models: Time Series and Survival Analysis course stations = pd.read_csv('../input/hourly-weather-data-in-ireland-from-24-stations/station_list.csv', index_col=0) dublin_air_data = pd.read_csv('../input/hourly-weather-data-in-ireland-from-24-stations/Stations/532_dublin_airport.csv', index_col=0, parse_dates=['date']) dublin_air_data.rename(columns={'ind': 'i_rain', 'ind.1': 'i_temp', 'ind.2': 'i_wetb', 'ind.3': 'i_wdsp', 'ind.4': 'i_wddir'}, inplace=True) dublin_air_data.set_index('date', inplace=True) print('Unique Timestamps in our data: ', dublin_air_data.index.nunique()) print('Total range: ', (dublin_air_data.index.max() - dublin_air_data.index.min()) / pd.Timedelta('1 hour'))
code
89127402/cell_10
[ "text_plain_output_1.png" ]
from dateutil.relativedelta import relativedelta from statsmodels.tsa.stattools import adfuller import matplotlib.pyplot as plt import pandas as pd from dateutil.relativedelta import relativedelta # rolling averages and std def rolling_stat(timeseries, window_size): # Determing rolling statistics rolmean = timeseries.rolling(window = window_size).mean() rolstd = timeseries.rolling(window = window_size).std() # Plot rolling statistics: fig, ax = plt.subplots(figsize = (12, 4)) orig = plt.plot(timeseries, color = '#4DBEEE', label = 'Original') std = plt.plot(rolstd, color = 'black', label = 'Rolling Std') mean = plt.plot(rolmean, color = 'red', label = 'Rolling Mean') plt.legend(loc = 'best') plt.title('Rolling Mean and Standard Deviation') plt.grid() plt.show(block=False) # get n predictions for series by model def future_preds_df(model, series, num_steps): pred_first = series.index.max() + relativedelta(weeks = 1) pred_last = series.index.max() + relativedelta(weeks = num_steps) date_range_index = pd.date_range(pred_first, pred_last, freq = 'W') vals = model.predict(n_periods = num_steps) return pd.DataFrame(vals,index = date_range_index) # Augmented Dicky-Fuller Test def adf_test(timeseries): adf, pvalue, usedlag, nobs, critical_values, icbest = adfuller(timeseries) print("Test statistic: ", adf, 2) print("P-value: ", pvalue) print("Critical values: ", critical_values) # source: notebook 06f_DEMO_SARIMA_Prophet by IBM Specialized Models: Time Series and Survival Analysis course stations = pd.read_csv('../input/hourly-weather-data-in-ireland-from-24-stations/station_list.csv', index_col=0) stations['latitude_dd'] = stations['Latitude'].apply(lambda x: int(str(x)[-2:]) / 3600 + int(str(x)[-4:-2]) / 60 + int(str(x)[:-4])) stations['longitude_dd'] = stations['Longitude'].apply(lambda x: (int(str(x)[-2:]) / 3600 + int(str(x)[-4:-2]) / 60 + int(str(x)[:-4])) * -1) stations
code
89127402/cell_27
[ "text_plain_output_1.png" ]
from dateutil.relativedelta import relativedelta from statsmodels.tsa.stattools import adfuller import matplotlib.pyplot as plt import pandas as pd from dateutil.relativedelta import relativedelta # rolling averages and std def rolling_stat(timeseries, window_size): # Determing rolling statistics rolmean = timeseries.rolling(window = window_size).mean() rolstd = timeseries.rolling(window = window_size).std() # Plot rolling statistics: fig, ax = plt.subplots(figsize = (12, 4)) orig = plt.plot(timeseries, color = '#4DBEEE', label = 'Original') std = plt.plot(rolstd, color = 'black', label = 'Rolling Std') mean = plt.plot(rolmean, color = 'red', label = 'Rolling Mean') plt.legend(loc = 'best') plt.title('Rolling Mean and Standard Deviation') plt.grid() plt.show(block=False) # get n predictions for series by model def future_preds_df(model, series, num_steps): pred_first = series.index.max() + relativedelta(weeks = 1) pred_last = series.index.max() + relativedelta(weeks = num_steps) date_range_index = pd.date_range(pred_first, pred_last, freq = 'W') vals = model.predict(n_periods = num_steps) return pd.DataFrame(vals,index = date_range_index) # Augmented Dicky-Fuller Test def adf_test(timeseries): adf, pvalue, usedlag, nobs, critical_values, icbest = adfuller(timeseries) print("Test statistic: ", adf, 2) print("P-value: ", pvalue) print("Critical values: ", critical_values) # source: notebook 06f_DEMO_SARIMA_Prophet by IBM Specialized Models: Time Series and Survival Analysis course stations = pd.read_csv('../input/hourly-weather-data-in-ireland-from-24-stations/station_list.csv', index_col=0) dublin_air_data = pd.read_csv('../input/hourly-weather-data-in-ireland-from-24-stations/Stations/532_dublin_airport.csv', index_col=0, parse_dates=['date']) dublin_air_data.rename(columns={'ind': 'i_rain', 'ind.1': 'i_temp', 'ind.2': 'i_wetb', 'ind.3': 'i_wdsp', 'ind.4': 'i_wddir'}, inplace=True) dublin_air_data.set_index('date', inplace=True) dublin_air_data.isnull().sum() dublin_air_data[dublin_air_data.isna().any(axis=1)] dublin_air_data.interpolate(inplace=True) dublin_air_data.isnull().sum().sum() dublin_air_data.drop(columns=['i_rain', 'i_temp', 'i_wetb', 'i_wdsp', 'i_wddir'], inplace=True) dublin_air_data.nunique() dublin_air_data.describe().T
code
89127402/cell_12
[ "text_html_output_1.png" ]
import json import json import plotly.graph_objs as go import urllib.request def read_geojson(url): with urllib.request.urlopen(url) as url: jdata = json.loads(url.read().decode()) return jdata ireland_url = 'https://gist.githubusercontent.com/pnewall/9a122c05ba2865c3a58f15008548fbbd/raw/5bb4f84d918b871ee0e8b99f60dde976bb711d7c/ireland_counties.geojson' jdata = read_geojson(ireland_url) jdata['type']
code
49124403/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('../input/jane-street-market-prediction/train.csv') df_feature = pd.read_csv('../input/jane-street-market-prediction/features.csv') df_test = pd.read_csv('../input/jane-street-market-prediction/example_test.csv') df_sub = pd.read_csv('../input/jane-street-market-prediction/example_sample_submission.csv') (df_train.shape, df_feature.shape, df_test.shape, df_sub.shape) df_train.isnull().sum()
code
49124403/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
49124403/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('../input/jane-street-market-prediction/train.csv') df_feature = pd.read_csv('../input/jane-street-market-prediction/features.csv') df_test = pd.read_csv('../input/jane-street-market-prediction/example_test.csv') df_sub = pd.read_csv('../input/jane-street-market-prediction/example_sample_submission.csv') (df_train.shape, df_feature.shape, df_test.shape, df_sub.shape) df_train.isnull().sum() df_train = df_train.dropna(axis=0, subset=['feature_129']) df_train = df_train.dropna(axis=0, subset=['feature_127']) df_train = df_train.dropna(axis=0, subset=['feature_125']) df_train = df_train.dropna(axis=0, subset=['feature_121']) df_train = df_train.dropna(axis=0, subset=['feature_123']) df_train = df_train.dropna(axis=0, subset=['feature_118']) df_train = df_train.dropna(axis=0, subset=['feature_118']) df_train = df_train.dropna(axis=0, subset=['feature_117']) df_train = df_train.dropna(axis=0, subset=['feature_110']) df_train = df_train.dropna(axis=0, subset=['feature_93']) df_train = df_train.dropna(axis=0, subset=['feature_59']) df_train = df_train.dropna(axis=0, subset=['feature_58']) df_train = df_train.dropna(axis=0, subset=['feature_56']) df_train = df_train.dropna(axis=0, subset=['feature_55']) df_train = df_train.dropna(axis=0, subset=['feature_45']) df_train = df_train.dropna(axis=0, subset=['feature_31']) df_train = df_train.dropna(axis=0, subset=['feature_21']) df_train = df_train.dropna(axis=0, subset=['feature_3']) df_train.shape
code
49124403/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('../input/jane-street-market-prediction/train.csv') df_feature = pd.read_csv('../input/jane-street-market-prediction/features.csv') df_test = pd.read_csv('../input/jane-street-market-prediction/example_test.csv') df_sub = pd.read_csv('../input/jane-street-market-prediction/example_sample_submission.csv') (df_train.shape, df_feature.shape, df_test.shape, df_sub.shape) df_train.isnull().sum() df_train = df_train.dropna(axis=0, subset=['feature_129']) df_train = df_train.dropna(axis=0, subset=['feature_127']) df_train = df_train.dropna(axis=0, subset=['feature_125']) df_train = df_train.dropna(axis=0, subset=['feature_121']) df_train = df_train.dropna(axis=0, subset=['feature_123']) df_train = df_train.dropna(axis=0, subset=['feature_118']) df_train = df_train.dropna(axis=0, subset=['feature_118']) df_train = df_train.dropna(axis=0, subset=['feature_117']) df_train = df_train.dropna(axis=0, subset=['feature_110']) df_train = df_train.dropna(axis=0, subset=['feature_93']) df_train = df_train.dropna(axis=0, subset=['feature_59']) df_train = df_train.dropna(axis=0, subset=['feature_58']) df_train = df_train.dropna(axis=0, subset=['feature_56']) df_train = df_train.dropna(axis=0, subset=['feature_55']) df_train = df_train.dropna(axis=0, subset=['feature_45']) df_train = df_train.dropna(axis=0, subset=['feature_31']) df_train = df_train.dropna(axis=0, subset=['feature_21']) df_train = df_train.dropna(axis=0, subset=['feature_3']) df_train.shape df_train.isnull().sum()
code
49124403/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('../input/jane-street-market-prediction/train.csv') df_feature = pd.read_csv('../input/jane-street-market-prediction/features.csv') df_test = pd.read_csv('../input/jane-street-market-prediction/example_test.csv') df_sub = pd.read_csv('../input/jane-street-market-prediction/example_sample_submission.csv') (df_train.shape, df_feature.shape, df_test.shape, df_sub.shape)
code
330932/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_countries = pd.read_csv('../input/Country.csv') df_indicators = pd.read_csv('../input/Indicators.csv') df_series = pd.read_csv('../input/Series.csv') df_countries = pd.read_csv('../input/Country.csv') df_indicators = pd.read_csv('../input/Indicators.csv') df_series = pd.read_csv('../input/Series.csv') df_countries[df_countries.CountryCode == 'IDN']
code
330932/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_countries = pd.read_csv('../input/Country.csv') df_indicators = pd.read_csv('../input/Indicators.csv') df_series = pd.read_csv('../input/Series.csv') df_indicators[df_indicators.CountryName == 'Indonesia'].drop_duplicates('IndicatorCode')
code
330932/cell_6
[ "text_html_output_1.png" ]
from subprocess import check_output from subprocess import check_output import numpy as np import pandas as pd from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8'))
code
330932/cell_2
[ "text_html_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8'))
code
330932/cell_8
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_countries = pd.read_csv('../input/Country.csv') df_indicators = pd.read_csv('../input/Indicators.csv') df_series = pd.read_csv('../input/Series.csv') df_indicators[df_indicators.CountryName == 'Indonesia'].drop_duplicates('IndicatorCode') len(df_indicators[df_indicators.CountryName == 'Indonesia']) df_countries = pd.read_csv('../input/Country.csv') df_indicators = pd.read_csv('../input/Indicators.csv') df_series = pd.read_csv('../input/Series.csv') df_indicators[df_indicators.CountryName == 'Indonesia'].drop_duplicates('IndicatorCode')
code
330932/cell_10
[ "text_plain_output_1.png" ]
import sqlite3 import sqlite3 sqlite_file = '../input/database.sqlite' conn = sqlite3.connect(sqlite_file) c = conn.cursor() c.execute("SELECT name FROM sqlite_master WHERE type='table'") all_rows = c.fetchall() print('1):', all_rows) conn.close()
code
330932/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_countries = pd.read_csv('../input/Country.csv') df_indicators = pd.read_csv('../input/Indicators.csv') df_series = pd.read_csv('../input/Series.csv') df_indicators[df_indicators.CountryName == 'Indonesia'].drop_duplicates('IndicatorCode') len(df_indicators[df_indicators.CountryName == 'Indonesia'])
code
18128922/cell_9
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
w2v_model = gensim.models.word2vec.Word2Vec(size=W2V_SIZE, window=W2V_WINDOW, min_count=W2V_MIN_COUNT, workers=8)
code
18128922/cell_4
[ "text_plain_output_1.png" ]
import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) DATASET_COLUMNS = ['target', 'ids', 'date', 'flag', 'user', 'text'] DATASET_ENCODING = 'ISO-8859-1' TRAIN_SIZE = 0.8 TEXT_CLEANING_RE = '@\\S+|https?:\\S+|http?:\\S|[^A-Za-z0-9]+' W2V_SIZE = 300 W2V_WINDOW = 7 W2V_EPOCH = 32 W2V_MIN_COUNT = 10 SEQUENCE_LENGTH = 300 EPOCHS = 8 BATCH_SIZE = 1024 POSITIVE = 'POSITIVE' NEGATIVE = 'NEGATIVE' NEUTRAL = 'NEUTRAL' SENTIMENT_THRESHOLDS = (0.4, 0.7) KERAS_MODEL = 'model.h5' WORD2VEC_MODEL = 'model.w2v' TOKENIZER_MODEL = 'tokenizer.pkl' ENCODER_MODEL = 'encoder.pkl' """ Dataset details target: the polarity of the tweet (0 = negative, 2 = neutral, 4 = positive) ids: The id of the tweet ( 2087) date: the date of the tweet (Sat May 16 23:58:44 UTC 2009) flag: The query (lyx). If there is no query, then this value is NO_QUERY. user: the user that tweeted (robotickilldozr) text: the text of the tweet (Lyx is cool) """ dataset_filename = os.listdir('../input')[0] dataset_path = os.path.join('..', 'input', dataset_filename) print('Open file:', dataset_path) df = pd.read_csv(dataset_path, encoding=DATASET_ENCODING, names=DATASET_COLUMNS) print('Dataset size:', len(df))
code
18128922/cell_6
[ "text_plain_output_1.png" ]
decode_map = {0: 'NEGATIVE', 2: 'NEUTRAL', 4: 'POSITIVE'} def decode_sentiment(label): return decode_map[int(label)] df.target = df.target.apply(lambda x: decode_sentiment(x))
code
18128922/cell_2
[ "text_plain_output_1.png" ]
import nltk nltk.download('stopwords')
code
18128922/cell_11
[ "text_plain_output_1.png" ]
words = w2v_model.wv.vocab.keys() vocab_size = len(words) print('Vocab size', vocab_size)
code
18128922/cell_1
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from sklearn.metrics import confusion_matrix, classification_report, accuracy_score from sklearn.manifold import TSNE from sklearn.feature_extraction.text import TfidfVectorizer from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from keras.models import Sequential from keras.layers import Activation, Dense, Dropout, Embedding, Flatten, Conv1D, MaxPooling1D, LSTM from keras import utils from keras.callbacks import ReduceLROnPlateau, EarlyStopping import nltk from nltk.corpus import stopwords from nltk.stem import SnowballStemmer import gensim import re import numpy as np import os from collections import Counter import logging import time import pickle import itertools logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO) print(os.listdir('../input'))
code
18128922/cell_7
[ "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) DATASET_COLUMNS = ['target', 'ids', 'date', 'flag', 'user', 'text'] DATASET_ENCODING = 'ISO-8859-1' TRAIN_SIZE = 0.8 TEXT_CLEANING_RE = '@\\S+|https?:\\S+|http?:\\S|[^A-Za-z0-9]+' W2V_SIZE = 300 W2V_WINDOW = 7 W2V_EPOCH = 32 W2V_MIN_COUNT = 10 SEQUENCE_LENGTH = 300 EPOCHS = 8 BATCH_SIZE = 1024 POSITIVE = 'POSITIVE' NEGATIVE = 'NEGATIVE' NEUTRAL = 'NEUTRAL' SENTIMENT_THRESHOLDS = (0.4, 0.7) KERAS_MODEL = 'model.h5' WORD2VEC_MODEL = 'model.w2v' TOKENIZER_MODEL = 'tokenizer.pkl' ENCODER_MODEL = 'encoder.pkl' """ Dataset details target: the polarity of the tweet (0 = negative, 2 = neutral, 4 = positive) ids: The id of the tweet ( 2087) date: the date of the tweet (Sat May 16 23:58:44 UTC 2009) flag: The query (lyx). If there is no query, then this value is NO_QUERY. user: the user that tweeted (robotickilldozr) text: the text of the tweet (Lyx is cool) """ dataset_filename = os.listdir('../input')[0] dataset_path = os.path.join('..', 'input', dataset_filename) df = pd.read_csv(dataset_path, encoding=DATASET_ENCODING, names=DATASET_COLUMNS) df_train, df_test = train_test_split(df, test_size=1 - TRAIN_SIZE, random_state=42) print('TRAIN size:', len(df_train)) print('TEST size:', len(df_test))
code
18128922/cell_8
[ "text_plain_output_1.png" ]
documents = [_text.split() for _text in df_train.text] print('training tweets count', len(documents))
code
18128922/cell_10
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
w2v_model.build_vocab(documents)
code
18128922/cell_12
[ "text_html_output_1.png" ]
w2v_model.train(documents, total_examples=len(documents), epochs=W2V_EPOCH)
code
18128922/cell_5
[ "text_plain_output_1.png" ]
import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) DATASET_COLUMNS = ['target', 'ids', 'date', 'flag', 'user', 'text'] DATASET_ENCODING = 'ISO-8859-1' TRAIN_SIZE = 0.8 TEXT_CLEANING_RE = '@\\S+|https?:\\S+|http?:\\S|[^A-Za-z0-9]+' W2V_SIZE = 300 W2V_WINDOW = 7 W2V_EPOCH = 32 W2V_MIN_COUNT = 10 SEQUENCE_LENGTH = 300 EPOCHS = 8 BATCH_SIZE = 1024 POSITIVE = 'POSITIVE' NEGATIVE = 'NEGATIVE' NEUTRAL = 'NEUTRAL' SENTIMENT_THRESHOLDS = (0.4, 0.7) KERAS_MODEL = 'model.h5' WORD2VEC_MODEL = 'model.w2v' TOKENIZER_MODEL = 'tokenizer.pkl' ENCODER_MODEL = 'encoder.pkl' """ Dataset details target: the polarity of the tweet (0 = negative, 2 = neutral, 4 = positive) ids: The id of the tweet ( 2087) date: the date of the tweet (Sat May 16 23:58:44 UTC 2009) flag: The query (lyx). If there is no query, then this value is NO_QUERY. user: the user that tweeted (robotickilldozr) text: the text of the tweet (Lyx is cool) """ dataset_filename = os.listdir('../input')[0] dataset_path = os.path.join('..', 'input', dataset_filename) df = pd.read_csv(dataset_path, encoding=DATASET_ENCODING, names=DATASET_COLUMNS) df.head(5)
code
33096179/cell_13
[ "text_html_output_1.png" ]
from past.builtins import xrange import pandas as pd import seaborn as sns webpth = 'http://www.files.benlaken.com/documents/' monsoon = pd.read_csv('../input/Monsoon_data.csv', parse_dates=['Date']) monsoon.index = monsoon.Date monsoon = monsoon.drop('Date', 1) olou = pd.read_csv('../input/Olou_counts.csv', parse_dates=['Date']) olou.index = olou.Date olou = olou.drop('Date', 1) # Plot the simple time series my_ts = plt.figure() my_ts.set_size_inches(10,5) # Specify the output size ax1 = my_ts.add_subplot(211) # Add an axis frame object to the plot (i.e. a pannel) ax2 = my_ts.add_subplot(212) ax1.step(monsoon.index.date,monsoon.Precip,lw=1.0) ax1.set_title(r'Monthly Precipitation and NM counts') ax1.set_ylabel(r'Precipitation (mm)') ax1.grid(True) #ax1.set_yscale('log') ax2.plot(olou.index.date,olou.Counts/1000,'r.',ms=3.0) ax2.set_ylabel(r'Olou NM (cnt./min.$\times10^{3}$)') ax2.set_xlabel('Date') ax2.grid(True) plt.show(my_ts) my_ts.savefig('Monthly_ts.png',dpi=300) def return_stderr(data): """Calculate uncertainty of a np array as Standard Error of the Mean""" return np.nanstd(data) / np.sqrt(np.count_nonzero(data) - 1) climo = {} climo['means'] = [np.mean(monsoon.Precip[monsoon.index.month == mnth + 1]) for mnth in xrange(12)] climo['error'] = [return_stderr(monsoon.Precip[monsoon.index.month == mnth + 1].values) for mnth in xrange(12)] # -- Plot the climatology -- my_climo = plt.figure() my_climo.set_size_inches(5,5) ax1 = my_climo.add_subplot(111) ax1.errorbar(x=range(12),y=climo['means'],yerr=climo['error']) ax1.set_title(r'Precipitation climatology') ax1.set_ylabel(r'Precipitation (mm)') ax1.set_xlabel(r'Month') ax1.set_xlim(0,11) ax1.set_xticklabels(labels=['Jan','Mar','May','Jul','Sep','Nov']) ax1.grid(True) plt.show(my_climo) my_climo.savefig('Monthly_climo.png',dpi=300) delta = [] for date in monsoon.Precip.index: delta.append(monsoon.Precip[date] - climo['means'][date.month - 1]) dseries = pd.Series(delta, index=monsoon.index) def lookup_index(yr): return (monsoon.index.year == yr) & (monsoon.index.month >= 5) & (monsoon.index.month <= 9) mjjas = {} mjjas['means'] = [np.mean(dseries[lookup_index(yr)]) for yr in xrange(1964, 2012, 1)] mjjas['SEM'] = [return_stderr(dseries[lookup_index(yr)]) for yr in xrange(1964, 2012, 1)] mjjas['sum'] = [np.sum(dseries[lookup_index(yr)]) for yr in xrange(1964, 2012, 1)] sns.set(style='darkgrid') yrange = xrange(1964, 2012, 1) my_mjjas = plt.figure() my_mjjas.set_size_inches(10, 5) ax1 = my_mjjas.add_subplot(121) ax2 = my_mjjas.add_subplot(122) ax1.errorbar(x=yrange, y=mjjas['means'], yerr=mjjas['SEM'], fmt='.', ms=10) ax1.set_xlim(min(yrange) - 1, max(yrange) + 1) ax1.set_title('Mean MJJAS precipitation anomaly') ax1.set_ylabel('$\\delta$ precipitation (mm/month)') ax1.set_xlabel('Year') ax1.grid(True) sns.distplot(mjjas['means'], ax=ax2) ax2.set_title('Distribution of MJJAS anomalies') ax2.set_xlabel('$\\delta$ precipitation (mm/month)') ax2.set_ylabel('Density') plt.show(my_mjjas) my_mjjas.savefig('delta_precip_pop.png', dpi=300)
code
33096179/cell_6
[ "image_output_1.png" ]
import pandas as pd webpth = 'http://www.files.benlaken.com/documents/' monsoon = pd.read_csv('../input/Monsoon_data.csv', parse_dates=['Date']) monsoon.index = monsoon.Date monsoon = monsoon.drop('Date', 1) olou = pd.read_csv('../input/Olou_counts.csv', parse_dates=['Date']) olou.index = olou.Date olou = olou.drop('Date', 1) monsoon.head()
code
33096179/cell_2
[ "image_output_1.png" ]
from __future__ import print_function, division, generators import sys print('Running Python {0}.{1}'.format(sys.version_info[:2][0], sys.version_info[:2][1])) if sys.version_info[:2] > (3, 0): print('Adding xrange for backwards compatibility'.format(sys.version_info[:2][0], sys.version_info[:2][1])) from past.builtins import xrange from scipy.stats.stats import pearsonr import pandas as pd import datetime as dt from scipy.stats import kendalltau import seaborn as sns from random import randrange sns.set(style='darkgrid')
code
33096179/cell_7
[ "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import pandas as pd webpth = 'http://www.files.benlaken.com/documents/' monsoon = pd.read_csv('../input/Monsoon_data.csv', parse_dates=['Date']) monsoon.index = monsoon.Date monsoon = monsoon.drop('Date', 1) olou = pd.read_csv('../input/Olou_counts.csv', parse_dates=['Date']) olou.index = olou.Date olou = olou.drop('Date', 1) monsoon.describe()
code
33096179/cell_8
[ "image_output_1.png" ]
import pandas as pd webpth = 'http://www.files.benlaken.com/documents/' monsoon = pd.read_csv('../input/Monsoon_data.csv', parse_dates=['Date']) monsoon.index = monsoon.Date monsoon = monsoon.drop('Date', 1) olou = pd.read_csv('../input/Olou_counts.csv', parse_dates=['Date']) olou.index = olou.Date olou = olou.drop('Date', 1) my_ts = plt.figure() my_ts.set_size_inches(10, 5) ax1 = my_ts.add_subplot(211) ax2 = my_ts.add_subplot(212) ax1.step(monsoon.index.date, monsoon.Precip, lw=1.0) ax1.set_title('Monthly Precipitation and NM counts') ax1.set_ylabel('Precipitation (mm)') ax1.grid(True) ax2.plot(olou.index.date, olou.Counts / 1000, 'r.', ms=3.0) ax2.set_ylabel('Olou NM (cnt./min.$\\times10^{3}$)') ax2.set_xlabel('Date') ax2.grid(True) plt.show(my_ts) my_ts.savefig('Monthly_ts.png', dpi=300)
code
33096179/cell_10
[ "text_plain_output_1.png" ]
from past.builtins import xrange import pandas as pd webpth = 'http://www.files.benlaken.com/documents/' monsoon = pd.read_csv('../input/Monsoon_data.csv', parse_dates=['Date']) monsoon.index = monsoon.Date monsoon = monsoon.drop('Date', 1) olou = pd.read_csv('../input/Olou_counts.csv', parse_dates=['Date']) olou.index = olou.Date olou = olou.drop('Date', 1) # Plot the simple time series my_ts = plt.figure() my_ts.set_size_inches(10,5) # Specify the output size ax1 = my_ts.add_subplot(211) # Add an axis frame object to the plot (i.e. a pannel) ax2 = my_ts.add_subplot(212) ax1.step(monsoon.index.date,monsoon.Precip,lw=1.0) ax1.set_title(r'Monthly Precipitation and NM counts') ax1.set_ylabel(r'Precipitation (mm)') ax1.grid(True) #ax1.set_yscale('log') ax2.plot(olou.index.date,olou.Counts/1000,'r.',ms=3.0) ax2.set_ylabel(r'Olou NM (cnt./min.$\times10^{3}$)') ax2.set_xlabel('Date') ax2.grid(True) plt.show(my_ts) my_ts.savefig('Monthly_ts.png',dpi=300) def return_stderr(data): """Calculate uncertainty of a np array as Standard Error of the Mean""" return np.nanstd(data) / np.sqrt(np.count_nonzero(data) - 1) climo = {} climo['means'] = [np.mean(monsoon.Precip[monsoon.index.month == mnth + 1]) for mnth in xrange(12)] climo['error'] = [return_stderr(monsoon.Precip[monsoon.index.month == mnth + 1].values) for mnth in xrange(12)] my_climo = plt.figure() my_climo.set_size_inches(5, 5) ax1 = my_climo.add_subplot(111) ax1.errorbar(x=range(12), y=climo['means'], yerr=climo['error']) ax1.set_title('Precipitation climatology') ax1.set_ylabel('Precipitation (mm)') ax1.set_xlabel('Month') ax1.set_xlim(0, 11) ax1.set_xticklabels(labels=['Jan', 'Mar', 'May', 'Jul', 'Sep', 'Nov']) ax1.grid(True) plt.show(my_climo) my_climo.savefig('Monthly_climo.png', dpi=300)
code
73061721/cell_2
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dtrain = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/train.csv') dtrain['MSZoning']
code
73061721/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
73061721/cell_3
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dtrain = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/train.csv') dtrain['MSZoning'] dtrain = dtrain.drop(missing_data[missing_data['Total'] > 1].index, 1) dtrain['Electrical'] = dtrain['Electrical'].fillna(dtrain['Electrical'].mode()[0]) dtrain.isnull().sum().max()
code
130001346/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import numpy as np train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') gender_submission_df = pd.read_csv('../input/titanic/gender_submission.csv') train.describe(include='all')
code
130001346/cell_25
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd import numpy as np train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') gender_submission_df = pd.read_csv('../input/titanic/gender_submission.csv') Parch_and_SibSp_col = train.Parch.astype(str) + ':' + train.SibSp.astype(str) train.assign(Parch_SibSp=Parch_and_SibSp_col)[['Parch_SibSp', 'Survived']].groupby(['Parch_SibSp'], as_index=False).mean().sort_values(by='Survived', ascending=False)
code
130001346/cell_33
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd import numpy as np train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') gender_submission_df = pd.read_csv('../input/titanic/gender_submission.csv') def groupby_mean_sort(df, col): return df[[col, 'Survived']].groupby([col], as_index=False).mean().sort_values(by='Survived', ascending=False) list_for_groupby_mean_sort = ['Pclass', 'Age', 'SibSp', 'Parch', 'Sex', 'Cabin', 'Embarked'] groupby_mean_sort(train, 'SibSp') Parch_and_SibSp_col = train.Parch.astype(str) + ':' + train.SibSp.astype(str) train.assign(Parch_SibSp=Parch_and_SibSp_col)[['Parch_SibSp', 'Survived']].groupby(['Parch_SibSp'], as_index=False).mean().sort_values(by='Survived', ascending=False) Parch_and_SibSp_col = train.Parch.astype(str) + ':' + train.SibSp.astype(str) train.assign(Parch_SibSp=Parch_and_SibSp_col)[['Parch_SibSp', 'Survived', 'Pclass', 'Age']].groupby(['Parch_SibSp'], as_index=False).median().sort_values(by='Survived', ascending=False) train.assign(Sex_Pclass=train.Sex.astype(str) + ':' + train.Pclass.astype(str))[['Sex_Pclass', 'Survived', 'Pclass', 'Age']].groupby(['Sex_Pclass'], as_index=False).mean(numeric_only=True).sort_values(by='Survived', ascending=False) groupby_mean_sort(train, 'Embarked')
code
130001346/cell_20
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd import numpy as np train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') gender_submission_df = pd.read_csv('../input/titanic/gender_submission.csv') def groupby_mean_sort(df, col): return df[[col, 'Survived']].groupby([col], as_index=False).mean().sort_values(by='Survived', ascending=False) list_for_groupby_mean_sort = ['Pclass', 'Age', 'SibSp', 'Parch', 'Sex', 'Cabin', 'Embarked'] groupby_mean_sort(train, 'SibSp')
code
130001346/cell_40
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import pandas as pd import numpy as np train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') gender_submission_df = pd.read_csv('../input/titanic/gender_submission.csv') Parch_and_SibSp_col = train.Parch.astype(str) + ':' + train.SibSp.astype(str) train.assign(Parch_SibSp=Parch_and_SibSp_col)[['Parch_SibSp', 'Survived']].groupby(['Parch_SibSp'], as_index=False).mean().sort_values(by='Survived', ascending=False) Parch_and_SibSp_col = train.Parch.astype(str) + ':' + train.SibSp.astype(str) train.assign(Parch_SibSp=Parch_and_SibSp_col)[['Parch_SibSp', 'Survived', 'Pclass', 'Age']].groupby(['Parch_SibSp'], as_index=False).median().sort_values(by='Survived', ascending=False) train.assign(Sex_Pclass=train.Sex.astype(str) + ':' + train.Pclass.astype(str))[['Sex_Pclass', 'Survived', 'Pclass', 'Age']].groupby(['Sex_Pclass'], as_index=False).mean(numeric_only=True).sort_values(by='Survived', ascending=False) train.assign(Embarked_Sex_Pclass=train.Embarked + ':' + train.Sex + ':' + train.Pclass.astype(str))[['Embarked_Sex_Pclass', 'Survived', 'Age']].groupby(['Embarked_Sex_Pclass'], as_index=False).mean(numeric_only=True).sort_values(by='Survived', ascending=False) import seaborn as sns import matplotlib.pyplot as plt g = sns.FacetGrid(train, col='Survived') g.map(plt.hist, 'Age', bins=20)
code
130001346/cell_29
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd import numpy as np train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') gender_submission_df = pd.read_csv('../input/titanic/gender_submission.csv') def groupby_mean_sort(df, col): return df[[col, 'Survived']].groupby([col], as_index=False).mean().sort_values(by='Survived', ascending=False) list_for_groupby_mean_sort = ['Pclass', 'Age', 'SibSp', 'Parch', 'Sex', 'Cabin', 'Embarked'] groupby_mean_sort(train, 'SibSp') Parch_and_SibSp_col = train.Parch.astype(str) + ':' + train.SibSp.astype(str) train.assign(Parch_SibSp=Parch_and_SibSp_col)[['Parch_SibSp', 'Survived']].groupby(['Parch_SibSp'], as_index=False).mean().sort_values(by='Survived', ascending=False) Parch_and_SibSp_col = train.Parch.astype(str) + ':' + train.SibSp.astype(str) train.assign(Parch_SibSp=Parch_and_SibSp_col)[['Parch_SibSp', 'Survived', 'Pclass', 'Age']].groupby(['Parch_SibSp'], as_index=False).median().sort_values(by='Survived', ascending=False) groupby_mean_sort(train, 'Sex')
code
130001346/cell_7
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd import numpy as np train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') gender_submission_df = pd.read_csv('../input/titanic/gender_submission.csv') train.head(10)
code
130001346/cell_45
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import pandas as pd import numpy as np train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') gender_submission_df = pd.read_csv('../input/titanic/gender_submission.csv') Parch_and_SibSp_col = train.Parch.astype(str) + ':' + train.SibSp.astype(str) train.assign(Parch_SibSp=Parch_and_SibSp_col)[['Parch_SibSp', 'Survived']].groupby(['Parch_SibSp'], as_index=False).mean().sort_values(by='Survived', ascending=False) Parch_and_SibSp_col = train.Parch.astype(str) + ':' + train.SibSp.astype(str) train.assign(Parch_SibSp=Parch_and_SibSp_col)[['Parch_SibSp', 'Survived', 'Pclass', 'Age']].groupby(['Parch_SibSp'], as_index=False).median().sort_values(by='Survived', ascending=False) train.assign(Sex_Pclass=train.Sex.astype(str) + ':' + train.Pclass.astype(str))[['Sex_Pclass', 'Survived', 'Pclass', 'Age']].groupby(['Sex_Pclass'], as_index=False).mean(numeric_only=True).sort_values(by='Survived', ascending=False) train.assign(Embarked_Sex_Pclass=train.Embarked + ':' + train.Sex + ':' + train.Pclass.astype(str))[['Embarked_Sex_Pclass', 'Survived', 'Age']].groupby(['Embarked_Sex_Pclass'], as_index=False).mean(numeric_only=True).sort_values(by='Survived', ascending=False) import seaborn as sns import matplotlib.pyplot as plt g = sns.FacetGrid(train, col='Survived') g.map(plt.hist, 'Age', bins=20) grid = sns.FacetGrid(train, col='Survived', row='Pclass', aspect=1.6) grid.map(plt.hist, 'Age', alpha=0.5, bins=20) grid.add_legend() grid = sns.FacetGrid(train, row='Embarked', aspect=1.6) grid.map(sns.pointplot, 'Pclass', 'Survived', 'Sex', palette='deep') grid.add_legend()
code
130001346/cell_18
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd import numpy as np train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') gender_submission_df = pd.read_csv('../input/titanic/gender_submission.csv') train[['Pclass', 'Survived']].groupby(['Pclass'], as_index=False).mean().sort_values(by='Survived', ascending=False)
code
130001346/cell_47
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import pandas as pd import numpy as np train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') gender_submission_df = pd.read_csv('../input/titanic/gender_submission.csv') Parch_and_SibSp_col = train.Parch.astype(str) + ':' + train.SibSp.astype(str) train.assign(Parch_SibSp=Parch_and_SibSp_col)[['Parch_SibSp', 'Survived']].groupby(['Parch_SibSp'], as_index=False).mean().sort_values(by='Survived', ascending=False) Parch_and_SibSp_col = train.Parch.astype(str) + ':' + train.SibSp.astype(str) train.assign(Parch_SibSp=Parch_and_SibSp_col)[['Parch_SibSp', 'Survived', 'Pclass', 'Age']].groupby(['Parch_SibSp'], as_index=False).median().sort_values(by='Survived', ascending=False) train.assign(Sex_Pclass=train.Sex.astype(str) + ':' + train.Pclass.astype(str))[['Sex_Pclass', 'Survived', 'Pclass', 'Age']].groupby(['Sex_Pclass'], as_index=False).mean(numeric_only=True).sort_values(by='Survived', ascending=False) train.assign(Embarked_Sex_Pclass=train.Embarked + ':' + train.Sex + ':' + train.Pclass.astype(str))[['Embarked_Sex_Pclass', 'Survived', 'Age']].groupby(['Embarked_Sex_Pclass'], as_index=False).mean(numeric_only=True).sort_values(by='Survived', ascending=False) import seaborn as sns import matplotlib.pyplot as plt g = sns.FacetGrid(train, col='Survived') g.map(plt.hist, 'Age', bins=20) grid = sns.FacetGrid(train, col='Survived', row='Pclass', aspect=1.6) grid.map(plt.hist, 'Age', alpha=0.5, bins=20) grid.add_legend() grid = sns.FacetGrid(train, row='Embarked', aspect=1.6) grid.map(sns.pointplot, 'Pclass', 'Survived', 'Sex', palette='deep') grid.add_legend() grid = sns.FacetGrid(train, row='Embarked', col='Survived', aspect=1.6) grid.map(sns.barplot, 'Sex', 'Fare', alpha=0.5, ci=None) grid.add_legend()
code
130001346/cell_35
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd import numpy as np train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') gender_submission_df = pd.read_csv('../input/titanic/gender_submission.csv') Parch_and_SibSp_col = train.Parch.astype(str) + ':' + train.SibSp.astype(str) train.assign(Parch_SibSp=Parch_and_SibSp_col)[['Parch_SibSp', 'Survived']].groupby(['Parch_SibSp'], as_index=False).mean().sort_values(by='Survived', ascending=False) Parch_and_SibSp_col = train.Parch.astype(str) + ':' + train.SibSp.astype(str) train.assign(Parch_SibSp=Parch_and_SibSp_col)[['Parch_SibSp', 'Survived', 'Pclass', 'Age']].groupby(['Parch_SibSp'], as_index=False).median().sort_values(by='Survived', ascending=False) train.assign(Sex_Pclass=train.Sex.astype(str) + ':' + train.Pclass.astype(str))[['Sex_Pclass', 'Survived', 'Pclass', 'Age']].groupby(['Sex_Pclass'], as_index=False).mean(numeric_only=True).sort_values(by='Survived', ascending=False) train.assign(Embarked_Sex_Pclass=train.Embarked + ':' + train.Sex + ':' + train.Pclass.astype(str))[['Embarked_Sex_Pclass', 'Survived', 'Age']].groupby(['Embarked_Sex_Pclass'], as_index=False).mean(numeric_only=True).sort_values(by='Survived', ascending=False)
code
130001346/cell_43
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import pandas as pd import numpy as np train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') gender_submission_df = pd.read_csv('../input/titanic/gender_submission.csv') Parch_and_SibSp_col = train.Parch.astype(str) + ':' + train.SibSp.astype(str) train.assign(Parch_SibSp=Parch_and_SibSp_col)[['Parch_SibSp', 'Survived']].groupby(['Parch_SibSp'], as_index=False).mean().sort_values(by='Survived', ascending=False) Parch_and_SibSp_col = train.Parch.astype(str) + ':' + train.SibSp.astype(str) train.assign(Parch_SibSp=Parch_and_SibSp_col)[['Parch_SibSp', 'Survived', 'Pclass', 'Age']].groupby(['Parch_SibSp'], as_index=False).median().sort_values(by='Survived', ascending=False) train.assign(Sex_Pclass=train.Sex.astype(str) + ':' + train.Pclass.astype(str))[['Sex_Pclass', 'Survived', 'Pclass', 'Age']].groupby(['Sex_Pclass'], as_index=False).mean(numeric_only=True).sort_values(by='Survived', ascending=False) train.assign(Embarked_Sex_Pclass=train.Embarked + ':' + train.Sex + ':' + train.Pclass.astype(str))[['Embarked_Sex_Pclass', 'Survived', 'Age']].groupby(['Embarked_Sex_Pclass'], as_index=False).mean(numeric_only=True).sort_values(by='Survived', ascending=False) import seaborn as sns import matplotlib.pyplot as plt g = sns.FacetGrid(train, col='Survived') g.map(plt.hist, 'Age', bins=20) grid = sns.FacetGrid(train, col='Survived', row='Pclass', aspect=1.6) grid.map(plt.hist, 'Age', alpha=0.5, bins=20) grid.add_legend()
code
130001346/cell_31
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd import numpy as np train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') gender_submission_df = pd.read_csv('../input/titanic/gender_submission.csv') Parch_and_SibSp_col = train.Parch.astype(str) + ':' + train.SibSp.astype(str) train.assign(Parch_SibSp=Parch_and_SibSp_col)[['Parch_SibSp', 'Survived']].groupby(['Parch_SibSp'], as_index=False).mean().sort_values(by='Survived', ascending=False) Parch_and_SibSp_col = train.Parch.astype(str) + ':' + train.SibSp.astype(str) train.assign(Parch_SibSp=Parch_and_SibSp_col)[['Parch_SibSp', 'Survived', 'Pclass', 'Age']].groupby(['Parch_SibSp'], as_index=False).median().sort_values(by='Survived', ascending=False) train.assign(Sex_Pclass=train.Sex.astype(str) + ':' + train.Pclass.astype(str))[['Sex_Pclass', 'Survived', 'Pclass', 'Age']].groupby(['Sex_Pclass'], as_index=False).mean(numeric_only=True).sort_values(by='Survived', ascending=False)
code
130001346/cell_22
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd import numpy as np train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') gender_submission_df = pd.read_csv('../input/titanic/gender_submission.csv') def groupby_mean_sort(df, col): return df[[col, 'Survived']].groupby([col], as_index=False).mean().sort_values(by='Survived', ascending=False) list_for_groupby_mean_sort = ['Pclass', 'Age', 'SibSp', 'Parch', 'Sex', 'Cabin', 'Embarked'] groupby_mean_sort(train, 'SibSp') groupby_mean_sort(train, 'Parch')
code
130001346/cell_53
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd import numpy as np train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') gender_submission_df = pd.read_csv('../input/titanic/gender_submission.csv') Parch_and_SibSp_col = train.Parch.astype(str) + ':' + train.SibSp.astype(str) train.assign(Parch_SibSp=Parch_and_SibSp_col)[['Parch_SibSp', 'Survived']].groupby(['Parch_SibSp'], as_index=False).mean().sort_values(by='Survived', ascending=False) Parch_and_SibSp_col = train.Parch.astype(str) + ':' + train.SibSp.astype(str) train.assign(Parch_SibSp=Parch_and_SibSp_col)[['Parch_SibSp', 'Survived', 'Pclass', 'Age']].groupby(['Parch_SibSp'], as_index=False).median().sort_values(by='Survived', ascending=False) train.assign(Sex_Pclass=train.Sex.astype(str) + ':' + train.Pclass.astype(str))[['Sex_Pclass', 'Survived', 'Pclass', 'Age']].groupby(['Sex_Pclass'], as_index=False).mean(numeric_only=True).sort_values(by='Survived', ascending=False) train.assign(Embarked_Sex_Pclass=train.Embarked + ':' + train.Sex + ':' + train.Pclass.astype(str))[['Embarked_Sex_Pclass', 'Survived', 'Age']].groupby(['Embarked_Sex_Pclass'], as_index=False).mean(numeric_only=True).sort_values(by='Survived', ascending=False) combine = [train, test] print('Before', train.shape, test.shape, combine[0].shape, combine[1].shape) for i, df in enumerate(combine): df = df.drop(['Ticket', 'Cabin', 'PassengerId'], axis=1) combine[i] = df ('After', train.shape, test.shape, combine[0].shape, combine[1].shape)
code
130001346/cell_10
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd import numpy as np train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') gender_submission_df = pd.read_csv('../input/titanic/gender_submission.csv') train.info() test.info()
code
130001346/cell_27
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd import numpy as np train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') gender_submission_df = pd.read_csv('../input/titanic/gender_submission.csv') Parch_and_SibSp_col = train.Parch.astype(str) + ':' + train.SibSp.astype(str) train.assign(Parch_SibSp=Parch_and_SibSp_col)[['Parch_SibSp', 'Survived']].groupby(['Parch_SibSp'], as_index=False).mean().sort_values(by='Survived', ascending=False) Parch_and_SibSp_col = train.Parch.astype(str) + ':' + train.SibSp.astype(str) train.assign(Parch_SibSp=Parch_and_SibSp_col)[['Parch_SibSp', 'Survived', 'Pclass', 'Age']].groupby(['Parch_SibSp'], as_index=False).median().sort_values(by='Survived', ascending=False)
code
130001346/cell_37
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd import numpy as np train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') gender_submission_df = pd.read_csv('../input/titanic/gender_submission.csv') def groupby_mean_sort(df, col): return df[[col, 'Survived']].groupby([col], as_index=False).mean().sort_values(by='Survived', ascending=False) list_for_groupby_mean_sort = ['Pclass', 'Age', 'SibSp', 'Parch', 'Sex', 'Cabin', 'Embarked'] groupby_mean_sort(train, 'SibSp') Parch_and_SibSp_col = train.Parch.astype(str) + ':' + train.SibSp.astype(str) train.assign(Parch_SibSp=Parch_and_SibSp_col)[['Parch_SibSp', 'Survived']].groupby(['Parch_SibSp'], as_index=False).mean().sort_values(by='Survived', ascending=False) Parch_and_SibSp_col = train.Parch.astype(str) + ':' + train.SibSp.astype(str) train.assign(Parch_SibSp=Parch_and_SibSp_col)[['Parch_SibSp', 'Survived', 'Pclass', 'Age']].groupby(['Parch_SibSp'], as_index=False).median().sort_values(by='Survived', ascending=False) train.assign(Sex_Pclass=train.Sex.astype(str) + ':' + train.Pclass.astype(str))[['Sex_Pclass', 'Survived', 'Pclass', 'Age']].groupby(['Sex_Pclass'], as_index=False).mean(numeric_only=True).sort_values(by='Survived', ascending=False) train.assign(Embarked_Sex_Pclass=train.Embarked + ':' + train.Sex + ':' + train.Pclass.astype(str))[['Embarked_Sex_Pclass', 'Survived', 'Age']].groupby(['Embarked_Sex_Pclass'], as_index=False).mean(numeric_only=True).sort_values(by='Survived', ascending=False) groupby_mean_sort(train, 'Age')
code
104127568/cell_21
[ "text_html_output_2.png", "text_html_output_1.png", "text_html_output_3.png" ]
from datetime import timedelta import pandas as pd df = pd.read_csv('../input/flo-data2/flo_data_20k.csv') date_columns = df.columns[df.columns.str.contains('date')] df[date_columns] = df[date_columns].apply(pd.to_datetime) today_date = df['last_order_date'].max() + timedelta(days=2) rfm_df = df.groupby('master_id').agg({'last_order_date': lambda date: (today_date - date.max()).days, 'total_order_num': lambda num: num.sum(), 'total_value': lambda value: value.sum()}) rfm_df.columns = ['recency', 'frequency', 'monetary'] rfm_df['RECENCY_SCORE'] = pd.qcut(rfm_df['recency'], 5, labels=[5, 4, 3, 2, 1]) rfm_df['FREQUENCY_SCORE'] = pd.qcut(rfm_df['frequency'].rank(method='first'), 5, labels=[1, 2, 3, 4, 5]) rfm_df['MONETARY_SCORE'] = pd.qcut(rfm_df['monetary'], 5, labels=[1, 2, 3, 4, 5]) rfm_df['RF_SCORE'] = rfm_df[['RECENCY_SCORE', 'FREQUENCY_SCORE']].astype(str).apply(lambda x: ''.join(x), axis=1) seg_map = {'[1-2][1-2]': 'hibernating', '[1-2][3-4]': 'at_risk', '[1-2]5': 'cant_loose', '3[1-2]': 'about_to_sleep', '33': 'need_attention', '[3-4][4-5]': 'loyal_customers', '41': 'promising', '51': 'new_customers', '[4-5][2-3]': 'potential_loyalists', '5[4-5]': 'champions'} rfm_df['SEGMENT'] = rfm_df['RF_SCORE'].replace(seg_map, regex=True) kmeans_df = df.groupby('master_id').agg({'last_order_date': lambda date: (today_date - date.max()).days, 'total_order_num': lambda num: num.sum(), 'total_value': lambda value: value.sum()}) kmeans_df.columns = ['recency', 'frequency', 'monetary'] kmeans_df.groupby('cluster').agg({'recency': ['count', 'mean', 'min', 'max'], 'frequency': ['mean', 'min', 'max'], 'monetary': ['mean', 'min', 'max']}) kmeans_df.groupby(['cluster', 'segment']).agg({'recency': ['count', 'mean', 'max', 'min'], 'frequency': ['mean', 'max', 'min'], 'monetary': ['mean', 'max', 'min']})
code
104127568/cell_9
[ "text_html_output_1.png" ]
from datetime import timedelta import pandas as pd df = pd.read_csv('../input/flo-data2/flo_data_20k.csv') date_columns = df.columns[df.columns.str.contains('date')] df[date_columns] = df[date_columns].apply(pd.to_datetime) today_date = df['last_order_date'].max() + timedelta(days=2) rfm_df = df.groupby('master_id').agg({'last_order_date': lambda date: (today_date - date.max()).days, 'total_order_num': lambda num: num.sum(), 'total_value': lambda value: value.sum()}) rfm_df.columns = ['recency', 'frequency', 'monetary'] rfm_df['RECENCY_SCORE'] = pd.qcut(rfm_df['recency'], 5, labels=[5, 4, 3, 2, 1]) rfm_df['FREQUENCY_SCORE'] = pd.qcut(rfm_df['frequency'].rank(method='first'), 5, labels=[1, 2, 3, 4, 5]) rfm_df['MONETARY_SCORE'] = pd.qcut(rfm_df['monetary'], 5, labels=[1, 2, 3, 4, 5]) rfm_df['RF_SCORE'] = rfm_df[['RECENCY_SCORE', 'FREQUENCY_SCORE']].astype(str).apply(lambda x: ''.join(x), axis=1) seg_map = {'[1-2][1-2]': 'hibernating', '[1-2][3-4]': 'at_risk', '[1-2]5': 'cant_loose', '3[1-2]': 'about_to_sleep', '33': 'need_attention', '[3-4][4-5]': 'loyal_customers', '41': 'promising', '51': 'new_customers', '[4-5][2-3]': 'potential_loyalists', '5[4-5]': 'champions'} rfm_df['SEGMENT'] = rfm_df['RF_SCORE'].replace(seg_map, regex=True) rfm_df.groupby('SEGMENT').agg({'recency': ['count', 'mean', 'min', 'max'], 'frequency': ['mean', 'min', 'max'], 'monetary': ['mean', 'min', 'max']})
code
104127568/cell_11
[ "text_html_output_1.png" ]
from datetime import timedelta from plotly.offline import iplot import pandas as pd import plotly.graph_objs as go df = pd.read_csv('../input/flo-data2/flo_data_20k.csv') date_columns = df.columns[df.columns.str.contains('date')] df[date_columns] = df[date_columns].apply(pd.to_datetime) today_date = df['last_order_date'].max() + timedelta(days=2) rfm_df = df.groupby('master_id').agg({'last_order_date': lambda date: (today_date - date.max()).days, 'total_order_num': lambda num: num.sum(), 'total_value': lambda value: value.sum()}) rfm_df.columns = ['recency', 'frequency', 'monetary'] rfm_df['RECENCY_SCORE'] = pd.qcut(rfm_df['recency'], 5, labels=[5, 4, 3, 2, 1]) rfm_df['FREQUENCY_SCORE'] = pd.qcut(rfm_df['frequency'].rank(method='first'), 5, labels=[1, 2, 3, 4, 5]) rfm_df['MONETARY_SCORE'] = pd.qcut(rfm_df['monetary'], 5, labels=[1, 2, 3, 4, 5]) rfm_df['RF_SCORE'] = rfm_df[['RECENCY_SCORE', 'FREQUENCY_SCORE']].astype(str).apply(lambda x: ''.join(x), axis=1) seg_map = {'[1-2][1-2]': 'hibernating', '[1-2][3-4]': 'at_risk', '[1-2]5': 'cant_loose', '3[1-2]': 'about_to_sleep', '33': 'need_attention', '[3-4][4-5]': 'loyal_customers', '41': 'promising', '51': 'new_customers', '[4-5][2-3]': 'potential_loyalists', '5[4-5]': 'champions'} rfm_df['SEGMENT'] = rfm_df['RF_SCORE'].replace(seg_map, regex=True) rfm_df.groupby('SEGMENT').agg({'recency': ['count', 'mean', 'min', 'max'], 'frequency': ['mean', 'min', 'max'], 'monetary': ['mean', 'min', 'max']}) def cluster_visualizer(dataframe, cluster, lim): trace1 = go.Bar(x=dataframe.groupby(cluster).agg({'recency': 'mean'}).reset_index()[cluster], text=round(dataframe.groupby(cluster).agg({'recency': 'mean'}).reset_index()['recency'], 2), textposition='auto', y=dataframe.groupby(cluster).agg({'recency': 'mean'}).reset_index()['recency'], name='Recency', textfont=dict(size=12), marker=dict(color='#F33F19', opacity=0.65)) trace2 = go.Bar(x=dataframe.groupby(cluster).agg({'frequency': 'mean'}).reset_index()[cluster], text=round(dataframe.groupby(cluster).agg({'frequency': 'mean'}).reset_index()['frequency'], 2), textposition='auto', y=dataframe.groupby(cluster).agg({'frequency': 'mean'}).reset_index()['frequency'], name='Frequency', textfont=dict(size=12), marker=dict(color='#1C19F3', opacity=0.65)) trace3 = go.Bar(x=dataframe.groupby(cluster).agg({'monetary': 'mean'}).reset_index()[cluster], text=round(dataframe.groupby(cluster).agg({'monetary': 'mean'}).reset_index()['monetary'], 2), textposition='auto', y=dataframe.groupby(cluster).agg({'monetary': 'mean'}).reset_index()['monetary'], name='Monetary', textfont=dict(size=12), marker=dict(color='#F3193D', opacity=0.65)) trace = {'trace1': [trace1, 'Average Recency', 'Clusters', 'Recency', lim[0]], 'trace2': [trace2, 'Average Frequency', 'Clusters', 'Frequency', lim[1]], 'trace3': [trace3, 'Average Monetary', 'Clusters', 'Monetary', lim[2]]} for i in ['trace1', 'trace2', 'trace3']: layout = go.Layout(title={'text': trace[i][1], 'y': 0.9, 'x': 0.5, 'xanchor': 'center', 'yanchor': 'top'}, xaxis=dict(title=trace[i][2]), yaxis=dict(title=trace[i][3]), template='plotly_white') fig = go.Figure(data=[trace[i][0]], layout=layout) fig.update_yaxes(range=[0, trace[i][4]], automargin=True) lim_list = [250, 15, 1500] cluster_visualizer(rfm_df, 'SEGMENT', lim_list)
code
104127568/cell_18
[ "text_html_output_1.png" ]
from datetime import timedelta from plotly.offline import iplot import pandas as pd import plotly.graph_objs as go df = pd.read_csv('../input/flo-data2/flo_data_20k.csv') date_columns = df.columns[df.columns.str.contains('date')] df[date_columns] = df[date_columns].apply(pd.to_datetime) today_date = df['last_order_date'].max() + timedelta(days=2) rfm_df = df.groupby('master_id').agg({'last_order_date': lambda date: (today_date - date.max()).days, 'total_order_num': lambda num: num.sum(), 'total_value': lambda value: value.sum()}) rfm_df.columns = ['recency', 'frequency', 'monetary'] rfm_df['RECENCY_SCORE'] = pd.qcut(rfm_df['recency'], 5, labels=[5, 4, 3, 2, 1]) rfm_df['FREQUENCY_SCORE'] = pd.qcut(rfm_df['frequency'].rank(method='first'), 5, labels=[1, 2, 3, 4, 5]) rfm_df['MONETARY_SCORE'] = pd.qcut(rfm_df['monetary'], 5, labels=[1, 2, 3, 4, 5]) rfm_df['RF_SCORE'] = rfm_df[['RECENCY_SCORE', 'FREQUENCY_SCORE']].astype(str).apply(lambda x: ''.join(x), axis=1) seg_map = {'[1-2][1-2]': 'hibernating', '[1-2][3-4]': 'at_risk', '[1-2]5': 'cant_loose', '3[1-2]': 'about_to_sleep', '33': 'need_attention', '[3-4][4-5]': 'loyal_customers', '41': 'promising', '51': 'new_customers', '[4-5][2-3]': 'potential_loyalists', '5[4-5]': 'champions'} rfm_df['SEGMENT'] = rfm_df['RF_SCORE'].replace(seg_map, regex=True) rfm_df.groupby('SEGMENT').agg({'recency': ['count', 'mean', 'min', 'max'], 'frequency': ['mean', 'min', 'max'], 'monetary': ['mean', 'min', 'max']}) def cluster_visualizer(dataframe, cluster, lim): trace1 = go.Bar(x=dataframe.groupby(cluster).agg({'recency': 'mean'}).reset_index()[cluster], text=round(dataframe.groupby(cluster).agg({'recency': 'mean'}).reset_index()['recency'], 2), textposition='auto', y=dataframe.groupby(cluster).agg({'recency': 'mean'}).reset_index()['recency'], name='Recency', textfont=dict(size=12), marker=dict(color='#F33F19', opacity=0.65)) trace2 = go.Bar(x=dataframe.groupby(cluster).agg({'frequency': 'mean'}).reset_index()[cluster], text=round(dataframe.groupby(cluster).agg({'frequency': 'mean'}).reset_index()['frequency'], 2), textposition='auto', y=dataframe.groupby(cluster).agg({'frequency': 'mean'}).reset_index()['frequency'], name='Frequency', textfont=dict(size=12), marker=dict(color='#1C19F3', opacity=0.65)) trace3 = go.Bar(x=dataframe.groupby(cluster).agg({'monetary': 'mean'}).reset_index()[cluster], text=round(dataframe.groupby(cluster).agg({'monetary': 'mean'}).reset_index()['monetary'], 2), textposition='auto', y=dataframe.groupby(cluster).agg({'monetary': 'mean'}).reset_index()['monetary'], name='Monetary', textfont=dict(size=12), marker=dict(color='#F3193D', opacity=0.65)) trace = {'trace1': [trace1, 'Average Recency', 'Clusters', 'Recency', lim[0]], 'trace2': [trace2, 'Average Frequency', 'Clusters', 'Frequency', lim[1]], 'trace3': [trace3, 'Average Monetary', 'Clusters', 'Monetary', lim[2]]} for i in ['trace1', 'trace2', 'trace3']: layout = go.Layout(title={'text': trace[i][1], 'y': 0.9, 'x': 0.5, 'xanchor': 'center', 'yanchor': 'top'}, xaxis=dict(title=trace[i][2]), yaxis=dict(title=trace[i][3]), template='plotly_white') fig = go.Figure(data=[trace[i][0]], layout=layout) fig.update_yaxes(range=[0, trace[i][4]], automargin=True) lim_list = [250, 15, 1500] cluster_visualizer(rfm_df, 'SEGMENT', lim_list) kmeans_df = df.groupby('master_id').agg({'last_order_date': lambda date: (today_date - date.max()).days, 'total_order_num': lambda num: num.sum(), 'total_value': lambda value: value.sum()}) kmeans_df.columns = ['recency', 'frequency', 'monetary'] kmeans_df.groupby('cluster').agg({'recency': ['count', 'mean', 'min', 'max'], 'frequency': ['mean', 'min', 'max'], 'monetary': ['mean', 'min', 'max']}) lim_list = [350, 10, 1000] cluster_visualizer(kmeans_df, 'cluster', lim_list)
code
104127568/cell_15
[ "text_html_output_4.png", "text_html_output_2.png", "text_html_output_3.png" ]
from datetime import timedelta from sklearn.cluster import KMeans from sklearn.preprocessing import MinMaxScaler from yellowbrick.cluster import KElbowVisualizer import pandas as pd df = pd.read_csv('../input/flo-data2/flo_data_20k.csv') date_columns = df.columns[df.columns.str.contains('date')] df[date_columns] = df[date_columns].apply(pd.to_datetime) today_date = df['last_order_date'].max() + timedelta(days=2) rfm_df = df.groupby('master_id').agg({'last_order_date': lambda date: (today_date - date.max()).days, 'total_order_num': lambda num: num.sum(), 'total_value': lambda value: value.sum()}) rfm_df.columns = ['recency', 'frequency', 'monetary'] rfm_df['RECENCY_SCORE'] = pd.qcut(rfm_df['recency'], 5, labels=[5, 4, 3, 2, 1]) rfm_df['FREQUENCY_SCORE'] = pd.qcut(rfm_df['frequency'].rank(method='first'), 5, labels=[1, 2, 3, 4, 5]) rfm_df['MONETARY_SCORE'] = pd.qcut(rfm_df['monetary'], 5, labels=[1, 2, 3, 4, 5]) rfm_df['RF_SCORE'] = rfm_df[['RECENCY_SCORE', 'FREQUENCY_SCORE']].astype(str).apply(lambda x: ''.join(x), axis=1) seg_map = {'[1-2][1-2]': 'hibernating', '[1-2][3-4]': 'at_risk', '[1-2]5': 'cant_loose', '3[1-2]': 'about_to_sleep', '33': 'need_attention', '[3-4][4-5]': 'loyal_customers', '41': 'promising', '51': 'new_customers', '[4-5][2-3]': 'potential_loyalists', '5[4-5]': 'champions'} rfm_df['SEGMENT'] = rfm_df['RF_SCORE'].replace(seg_map, regex=True) kmeans_df = df.groupby('master_id').agg({'last_order_date': lambda date: (today_date - date.max()).days, 'total_order_num': lambda num: num.sum(), 'total_value': lambda value: value.sum()}) kmeans_df.columns = ['recency', 'frequency', 'monetary'] scaler = MinMaxScaler((0, 1)) kmeans_df2 = scaler.fit_transform(kmeans_df) kmeans = KMeans() elbow = KElbowVisualizer(kmeans, k=(2, 20)).fit(kmeans_df2) elbow.show()
code
104127568/cell_17
[ "text_plain_output_1.png", "image_output_1.png" ]
from datetime import timedelta import pandas as pd df = pd.read_csv('../input/flo-data2/flo_data_20k.csv') date_columns = df.columns[df.columns.str.contains('date')] df[date_columns] = df[date_columns].apply(pd.to_datetime) today_date = df['last_order_date'].max() + timedelta(days=2) rfm_df = df.groupby('master_id').agg({'last_order_date': lambda date: (today_date - date.max()).days, 'total_order_num': lambda num: num.sum(), 'total_value': lambda value: value.sum()}) rfm_df.columns = ['recency', 'frequency', 'monetary'] rfm_df['RECENCY_SCORE'] = pd.qcut(rfm_df['recency'], 5, labels=[5, 4, 3, 2, 1]) rfm_df['FREQUENCY_SCORE'] = pd.qcut(rfm_df['frequency'].rank(method='first'), 5, labels=[1, 2, 3, 4, 5]) rfm_df['MONETARY_SCORE'] = pd.qcut(rfm_df['monetary'], 5, labels=[1, 2, 3, 4, 5]) rfm_df['RF_SCORE'] = rfm_df[['RECENCY_SCORE', 'FREQUENCY_SCORE']].astype(str).apply(lambda x: ''.join(x), axis=1) seg_map = {'[1-2][1-2]': 'hibernating', '[1-2][3-4]': 'at_risk', '[1-2]5': 'cant_loose', '3[1-2]': 'about_to_sleep', '33': 'need_attention', '[3-4][4-5]': 'loyal_customers', '41': 'promising', '51': 'new_customers', '[4-5][2-3]': 'potential_loyalists', '5[4-5]': 'champions'} rfm_df['SEGMENT'] = rfm_df['RF_SCORE'].replace(seg_map, regex=True) kmeans_df = df.groupby('master_id').agg({'last_order_date': lambda date: (today_date - date.max()).days, 'total_order_num': lambda num: num.sum(), 'total_value': lambda value: value.sum()}) kmeans_df.columns = ['recency', 'frequency', 'monetary'] kmeans_df.groupby('cluster').agg({'recency': ['count', 'mean', 'min', 'max'], 'frequency': ['mean', 'min', 'max'], 'monetary': ['mean', 'min', 'max']})
code
106207199/cell_4
[ "text_plain_output_1.png" ]
!pip install pandas
code
128008954/cell_42
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/ipl-2008-to-2021-all-match-dataset/IPL_Matches_2008_2022.csv') df matches = pd.read_csv('/kaggle/input/ipl-2008-to-2021-all-match-dataset/IPL_Matches_2008_2022.csv') delivery = pd.read_csv('/kaggle/input/ipl-2008-to-2021-all-match-dataset/IPL_Ball_by_Ball_2008_2022.csv') matches.City.unique() matches.columns matches.Season = matches.Season.replace(to_replace='2007/08', value='2008') matches.Season = matches.Season.replace(to_replace='2009/10', value='2010') matches.Season = matches.Season.replace(to_replace='2020/21', value='2020') matches.City.fillna(matches.Venue, inplace=True) matches.City.unique()
code
128008954/cell_21
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/ipl-2008-to-2021-all-match-dataset/IPL_Matches_2008_2022.csv') df df.columns df.MatchNumber.value_counts() df.Venue df.shape df.method df.Margin.sum() df['WonBy'][df.WonBy == 'Runs'].value_counts() df['WonBy'][df.WonBy == 'Wickets'].value_counts() df['WonBy'][df.WonBy == 'Runs'].corr df.Player_of_Match df.WonBy.mode() df.SuperOver.value_counts() df.Season.value_counts()
code
128008954/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/ipl-2008-to-2021-all-match-dataset/IPL_Matches_2008_2022.csv') df df.columns df.MatchNumber.value_counts() df.Venue df.shape df.method
code
128008954/cell_25
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/ipl-2008-to-2021-all-match-dataset/IPL_Matches_2008_2022.csv') df df.columns df.MatchNumber.value_counts() df.Venue df.shape df.method df.Margin.sum() df['WonBy'][df.WonBy == 'Runs'].value_counts() df['WonBy'][df.WonBy == 'Wickets'].value_counts() df['WonBy'][df.WonBy == 'Runs'].corr df.Player_of_Match df.WonBy.mode() df.SuperOver.value_counts() df.Season.value_counts() df.TossDecision.value_counts() df.Date.value_counts()
code
128008954/cell_4
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/ipl-2008-to-2021-all-match-dataset/IPL_Matches_2008_2022.csv') df df.info()
code
128008954/cell_23
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/ipl-2008-to-2021-all-match-dataset/IPL_Matches_2008_2022.csv') df df.columns df.MatchNumber.value_counts() df.Venue df.shape df.method df.Margin.sum() df['WonBy'][df.WonBy == 'Runs'].value_counts() df['WonBy'][df.WonBy == 'Wickets'].value_counts() df['WonBy'][df.WonBy == 'Runs'].corr df.Player_of_Match df.WonBy.mode() df.SuperOver.value_counts() df.Season.value_counts() df.TossDecision.value_counts()
code
128008954/cell_30
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/ipl-2008-to-2021-all-match-dataset/IPL_Matches_2008_2022.csv') df matches = pd.read_csv('/kaggle/input/ipl-2008-to-2021-all-match-dataset/IPL_Matches_2008_2022.csv') delivery = pd.read_csv('/kaggle/input/ipl-2008-to-2021-all-match-dataset/IPL_Ball_by_Ball_2008_2022.csv') matches
code
128008954/cell_33
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/ipl-2008-to-2021-all-match-dataset/IPL_Matches_2008_2022.csv') df matches = pd.read_csv('/kaggle/input/ipl-2008-to-2021-all-match-dataset/IPL_Matches_2008_2022.csv') delivery = pd.read_csv('/kaggle/input/ipl-2008-to-2021-all-match-dataset/IPL_Ball_by_Ball_2008_2022.csv') delivery = delivery.sort_values(by=['ID']) delivery.head()
code
128008954/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/ipl-2008-to-2021-all-match-dataset/IPL_Matches_2008_2022.csv') df df.columns df.MatchNumber.value_counts()
code
128008954/cell_29
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/ipl-2008-to-2021-all-match-dataset/IPL_Matches_2008_2022.csv') df matches = pd.read_csv('/kaggle/input/ipl-2008-to-2021-all-match-dataset/IPL_Matches_2008_2022.csv') delivery = pd.read_csv('/kaggle/input/ipl-2008-to-2021-all-match-dataset/IPL_Ball_by_Ball_2008_2022.csv') delivery
code
128008954/cell_39
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/ipl-2008-to-2021-all-match-dataset/IPL_Matches_2008_2022.csv') df matches = pd.read_csv('/kaggle/input/ipl-2008-to-2021-all-match-dataset/IPL_Matches_2008_2022.csv') delivery = pd.read_csv('/kaggle/input/ipl-2008-to-2021-all-match-dataset/IPL_Ball_by_Ball_2008_2022.csv') matches.City.unique() matches.columns
code
128008954/cell_26
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/ipl-2008-to-2021-all-match-dataset/IPL_Matches_2008_2022.csv') df df.columns df.MatchNumber.value_counts() df.Venue df.shape df.method df.Margin.sum() df['WonBy'][df.WonBy == 'Runs'].value_counts() df['WonBy'][df.WonBy == 'Wickets'].value_counts() df['WonBy'][df.WonBy == 'Runs'].corr df.Player_of_Match df.WonBy.mode() df.SuperOver.value_counts() df.Season.value_counts() df.TossDecision.value_counts() df.Date.value_counts() df.head(10)
code
128008954/cell_2
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/ipl-2008-to-2021-all-match-dataset/IPL_Matches_2008_2022.csv') df
code
128008954/cell_19
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/ipl-2008-to-2021-all-match-dataset/IPL_Matches_2008_2022.csv') df df.columns df.MatchNumber.value_counts() df.Venue df.shape df.method df.Margin.sum() df['WonBy'][df.WonBy == 'Runs'].value_counts() df['WonBy'][df.WonBy == 'Wickets'].value_counts() df['WonBy'][df.WonBy == 'Runs'].corr df.Player_of_Match df.WonBy.mode() df.SuperOver.value_counts()
code
128008954/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
128008954/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/ipl-2008-to-2021-all-match-dataset/IPL_Matches_2008_2022.csv') df df.columns df.MatchNumber.value_counts() df.Venue
code
128008954/cell_18
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/ipl-2008-to-2021-all-match-dataset/IPL_Matches_2008_2022.csv') df df.columns df.MatchNumber.value_counts() df.Venue df.shape df.method df.Margin.sum() df['WonBy'][df.WonBy == 'Runs'].value_counts() df['WonBy'][df.WonBy == 'Wickets'].value_counts() df['WonBy'][df.WonBy == 'Runs'].corr df.Player_of_Match df.WonBy.mode()
code
128008954/cell_32
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/ipl-2008-to-2021-all-match-dataset/IPL_Matches_2008_2022.csv') df matches = pd.read_csv('/kaggle/input/ipl-2008-to-2021-all-match-dataset/IPL_Matches_2008_2022.csv') delivery = pd.read_csv('/kaggle/input/ipl-2008-to-2021-all-match-dataset/IPL_Ball_by_Ball_2008_2022.csv') matches
code
128008954/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/ipl-2008-to-2021-all-match-dataset/IPL_Matches_2008_2022.csv') df df.columns df.MatchNumber.value_counts() df.Venue df.shape
code
128008954/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/ipl-2008-to-2021-all-match-dataset/IPL_Matches_2008_2022.csv') df df.columns df.MatchNumber.value_counts() df.Venue df.shape df.method df.Margin.sum() df['WonBy'][df.WonBy == 'Runs'].value_counts() df['WonBy'][df.WonBy == 'Wickets'].value_counts() df['WonBy'][df.WonBy == 'Runs'].corr
code
128008954/cell_38
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/ipl-2008-to-2021-all-match-dataset/IPL_Matches_2008_2022.csv') df matches = pd.read_csv('/kaggle/input/ipl-2008-to-2021-all-match-dataset/IPL_Matches_2008_2022.csv') delivery = pd.read_csv('/kaggle/input/ipl-2008-to-2021-all-match-dataset/IPL_Ball_by_Ball_2008_2022.csv') matches.City.unique()
code
128008954/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/ipl-2008-to-2021-all-match-dataset/IPL_Matches_2008_2022.csv') df df.columns df.MatchNumber.value_counts() df.Venue df.shape df.method df.Margin.sum() df['WonBy'][df.WonBy == 'Runs'].value_counts() df['WonBy'][df.WonBy == 'Wickets'].value_counts() df['WonBy'][df.WonBy == 'Runs'].corr df.Player_of_Match
code
128008954/cell_31
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/ipl-2008-to-2021-all-match-dataset/IPL_Matches_2008_2022.csv') df matches = pd.read_csv('/kaggle/input/ipl-2008-to-2021-all-match-dataset/IPL_Matches_2008_2022.csv') delivery = pd.read_csv('/kaggle/input/ipl-2008-to-2021-all-match-dataset/IPL_Ball_by_Ball_2008_2022.csv') delivery.head()
code
128008954/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/ipl-2008-to-2021-all-match-dataset/IPL_Matches_2008_2022.csv') df df.columns df.MatchNumber.value_counts() df.Venue df.shape df.method df.Margin.sum() df['WonBy'][df.WonBy == 'Runs'].value_counts() df['WonBy'][df.WonBy == 'Wickets'].value_counts()
code
128008954/cell_10
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/ipl-2008-to-2021-all-match-dataset/IPL_Matches_2008_2022.csv') df df.columns df.MatchNumber.value_counts() df.Venue df.shape df.method df.Margin.sum()
code
128008954/cell_27
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/ipl-2008-to-2021-all-match-dataset/IPL_Matches_2008_2022.csv') df df.columns df.MatchNumber.value_counts() df.Venue df.shape df.method df.Margin.sum() df['WonBy'][df.WonBy == 'Runs'].value_counts() df['WonBy'][df.WonBy == 'Wickets'].value_counts() df['WonBy'][df.WonBy == 'Runs'].corr df.Player_of_Match df.WonBy.mode() df.SuperOver.value_counts() df.Season.value_counts() df.TossDecision.value_counts() df.Date.value_counts() df.sort_values(by=['ID'])
code
128008954/cell_37
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/ipl-2008-to-2021-all-match-dataset/IPL_Matches_2008_2022.csv') df matches = pd.read_csv('/kaggle/input/ipl-2008-to-2021-all-match-dataset/IPL_Matches_2008_2022.csv') delivery = pd.read_csv('/kaggle/input/ipl-2008-to-2021-all-match-dataset/IPL_Ball_by_Ball_2008_2022.csv') delivery = delivery.sort_values(by=['ID']) delivery = pd.get_dummies(delivery, columns=['extra_type']) matches['my_dates'] = pd.to_datetime(matches['Date']) matches['day_of_week'] = matches['my_dates'].dt.day_name() matches['my_dates'].value_counts()
code
128008954/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/ipl-2008-to-2021-all-match-dataset/IPL_Matches_2008_2022.csv') df df.columns df.MatchNumber.value_counts() df.Venue df.shape df.method df.Margin.sum() df['WonBy'][df.WonBy == 'Runs'].value_counts()
code
128008954/cell_5
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/ipl-2008-to-2021-all-match-dataset/IPL_Matches_2008_2022.csv') df df.columns
code
128008954/cell_36
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/ipl-2008-to-2021-all-match-dataset/IPL_Matches_2008_2022.csv') df matches = pd.read_csv('/kaggle/input/ipl-2008-to-2021-all-match-dataset/IPL_Matches_2008_2022.csv') delivery = pd.read_csv('/kaggle/input/ipl-2008-to-2021-all-match-dataset/IPL_Ball_by_Ball_2008_2022.csv') delivery = delivery.sort_values(by=['ID']) delivery = pd.get_dummies(delivery, columns=['extra_type']) delivery.rename(columns={'extra_type_byes': 'byes', 'extra_type_legbyes': 'legbyes', 'extra_type_noballs': 'noballs', 'extra_type_wides': 'wides', 'extra_type_penalty': 'penalty'}, inplace=True) delivery
code
33107759/cell_4
[ "text_plain_output_1.png" ]
from cord import ResearchPapers from cord import ResearchPapers papers = ResearchPapers.load()
code
33107759/cell_6
[ "text_html_output_1.png" ]
from cord import ResearchPapers from cord import ResearchPapers papers = ResearchPapers.load() covid_papers = papers.since_sarscov2() covid_papers.searchbar('relationships between testing tracing efforts and public health outcomes')
code
33107759/cell_2
[ "text_plain_output_1.png" ]
!pip install git+https://github.com/dgunning/cord19.git
code
128042012/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd train_set = pd.read_csv('/kaggle/input/aviakompaniya/train_dataset.csv') test_set = pd.read_csv('/kaggle/input/aviakompaniya/test_dataset.csv') sample = pd.read_csv('/kaggle/input/aviakompaniya/sample_submission.csv') df = train_set.dropna() df_100 = df[df['Flight Distance'] > 100] df_100.select_dtypes('object').columns Gender = list(df_100.Gender) + list(df_100.Gender) Customer_Type = list(df_100['Customer Type']) + list(df_100['Customer Type']) Type_of_Travel = list(df_100['Type of Travel']) + list(df_100['Type of Travel']) Classes = list(df_100['Class']) + list(df_100['Class']) df_100['Gender'] = pd.Categorical(df_100['Gender']).codes df_100['Customer Type'] = pd.Categorical(df_100['Customer Type']).codes df_100['Type of Travel'] = pd.Categorical(df_100['Type of Travel']).codes df_100['Class'] = pd.Categorical(df_100['Class']).codes
code