path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
128042012/cell_4
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd train_set = pd.read_csv('/kaggle/input/aviakompaniya/train_dataset.csv') test_set = pd.read_csv('/kaggle/input/aviakompaniya/test_dataset.csv') sample = pd.read_csv('/kaggle/input/aviakompaniya/sample_submission.csv') df = train_set.dropna() df.describe()
code
128042012/cell_6
[ "image_output_1.png" ]
import pandas as pd train_set = pd.read_csv('/kaggle/input/aviakompaniya/train_dataset.csv') test_set = pd.read_csv('/kaggle/input/aviakompaniya/test_dataset.csv') sample = pd.read_csv('/kaggle/input/aviakompaniya/sample_submission.csv') df = train_set.dropna() df_100 = df[df['Flight Distance'] > 100] df_100[df_100['Arrival Delay in Minutes'] > 500]
code
128042012/cell_11
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train_set = pd.read_csv('/kaggle/input/aviakompaniya/train_dataset.csv') test_set = pd.read_csv('/kaggle/input/aviakompaniya/test_dataset.csv') sample = pd.read_csv('/kaggle/input/aviakompaniya/sample_submission.csv') df = train_set.dropna() df_100 = df[df['Flight Distance'] > 100] df_100.select_dtypes('object').columns Gender = list(df_100.Gender) + list(df_100.Gender) Customer_Type = list(df_100['Customer Type']) + list(df_100['Customer Type']) Type_of_Travel = list(df_100['Type of Travel']) + list(df_100['Type of Travel']) Classes = list(df_100['Class']) + list(df_100['Class']) satisfaction_rate = df_100['satisfaction'].value_counts() / len(df_100) * 100 fig, axes = plt.subplots(1, 3, figsize=(15, 5)) sns.countplot(x='Gender', hue='satisfaction', palette='viridis', data=df_100, ax=axes[0]) axes[0].set_title('Qolgan va qaytgan mijozrlarning jinsi') sns.countplot(x='Class', hue='satisfaction', palette='viridis', data=df_100, ax=axes[1]) axes[1].set_title('Qolgan va qaytgan mijozrlarning qaysi classda uchganligi') sns.countplot(x='Type of Travel', hue='satisfaction', palette='viridis', data=df_100, ax=axes[2]) axes[1].set_title('Qolgan va qaytgan mijozrlarning parvoz turi') plt.show()
code
128042012/cell_1
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier, plot_tree from sklearn.ensemble import RandomForestClassifier from sklearn.svm import SVC from xgboost import XGBClassifier from sklearn.pipeline import Pipeline from sklearn import metrics
code
128042012/cell_7
[ "image_output_1.png" ]
import pandas as pd train_set = pd.read_csv('/kaggle/input/aviakompaniya/train_dataset.csv') test_set = pd.read_csv('/kaggle/input/aviakompaniya/test_dataset.csv') sample = pd.read_csv('/kaggle/input/aviakompaniya/sample_submission.csv') df = train_set.dropna() df_100 = df[df['Flight Distance'] > 100] df_100.select_dtypes('object').columns
code
128042012/cell_8
[ "text_plain_output_1.png", "image_output_2.png", "image_output_1.png" ]
import pandas as pd train_set = pd.read_csv('/kaggle/input/aviakompaniya/train_dataset.csv') test_set = pd.read_csv('/kaggle/input/aviakompaniya/test_dataset.csv') sample = pd.read_csv('/kaggle/input/aviakompaniya/sample_submission.csv') df = train_set.dropna() df_100 = df[df['Flight Distance'] > 100] df_100.select_dtypes('object').columns Gender = list(df_100.Gender) + list(df_100.Gender) Customer_Type = list(df_100['Customer Type']) + list(df_100['Customer Type']) Type_of_Travel = list(df_100['Type of Travel']) + list(df_100['Type of Travel']) Classes = list(df_100['Class']) + list(df_100['Class']) print('\nGender ustunidagi takrorlanmas qiymatlar soni : \n ', len(set(Gender))) print('\nGender ustunidagi takrorlanmas qiymatlari : \n ', set(Gender)) print('\nCustomer_Type ustunidagi takrorlanmas qiymatlar soni : \n ', len(set(Customer_Type))) print('\nCustomer_Type ustunidagi takrorlanmas qiymatlari: \n ', set(Customer_Type)) print('\nType_of_Travel ustunidagi takrorlanmas qiymatlar soni : \n ', len(set(Type_of_Travel))) print('\nType_of_Travel ustunidagi takrorlanmas qiymatlari : \n ', set(Type_of_Travel)) print('\nClass ustunidagi takrorlanmas qiymatlar soni : \n ', len(set(Classes))) print('\nClass ustunidagi takrorlanmas qiymatlari : \n ', set(Classes))
code
128042012/cell_16
[ "text_plain_output_1.png" ]
from sklearn import metrics from sklearn.metrics import classification_report, accuracy_score, confusion_matrix from xgboost import XGBClassifier import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train_set = pd.read_csv('/kaggle/input/aviakompaniya/train_dataset.csv') test_set = pd.read_csv('/kaggle/input/aviakompaniya/test_dataset.csv') sample = pd.read_csv('/kaggle/input/aviakompaniya/sample_submission.csv') df = train_set.dropna() df_100 = df[df['Flight Distance'] > 100] df_100.select_dtypes('object').columns Gender = list(df_100.Gender) + list(df_100.Gender) Customer_Type = list(df_100['Customer Type']) + list(df_100['Customer Type']) Type_of_Travel = list(df_100['Type of Travel']) + list(df_100['Type of Travel']) Classes = list(df_100['Class']) + list(df_100['Class']) satisfaction_rate = df_100['satisfaction'].value_counts() / len(df_100) * 100 fig, axes = plt.subplots(1,3, figsize=(15,5)) sns.countplot(x='Gender', hue='satisfaction', palette='viridis', data=df_100, ax=axes[0]) axes[0].set_title("Qolgan va qaytgan mijozrlarning jinsi") sns.countplot(x='Class', hue='satisfaction', palette='viridis', data=df_100, ax=axes[1]) axes[1].set_title("Qolgan va qaytgan mijozrlarning qaysi classda uchganligi") sns.countplot(x='Type of Travel', hue='satisfaction', palette='viridis', data=df_100, ax=axes[2]) axes[1].set_title("Qolgan va qaytgan mijozrlarning parvoz turi") plt.show() xgb_model = XGBClassifier() xgb_model.fit(X_train, y_train) y_pred = xgb_model.predict(X_test) print(classification_report(y_test, y_pred)) print('Model aniqligi:', accuracy_score(y_test, y_pred)) conf_mat = confusion_matrix(y_test, y_pred) sns.heatmap(conf_mat, annot=True, fmt='g') plt.show() fpr, tpr, thresholds = metrics.roc_curve(y_test, y_pred) roc_auc = metrics.auc(fpr, tpr) display = metrics.RocCurveDisplay(fpr=fpr, tpr=tpr, roc_auc=roc_auc, estimator_name='ROC curve') display.plot() plt.show()
code
128042012/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd train_set = pd.read_csv('/kaggle/input/aviakompaniya/train_dataset.csv') test_set = pd.read_csv('/kaggle/input/aviakompaniya/test_dataset.csv') sample = pd.read_csv('/kaggle/input/aviakompaniya/sample_submission.csv') test_set.info()
code
128042012/cell_10
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd train_set = pd.read_csv('/kaggle/input/aviakompaniya/train_dataset.csv') test_set = pd.read_csv('/kaggle/input/aviakompaniya/test_dataset.csv') sample = pd.read_csv('/kaggle/input/aviakompaniya/sample_submission.csv') df = train_set.dropna() df_100 = df[df['Flight Distance'] > 100] df_100.select_dtypes('object').columns Gender = list(df_100.Gender) + list(df_100.Gender) Customer_Type = list(df_100['Customer Type']) + list(df_100['Customer Type']) Type_of_Travel = list(df_100['Type of Travel']) + list(df_100['Type of Travel']) Classes = list(df_100['Class']) + list(df_100['Class']) satisfaction_rate = df_100['satisfaction'].value_counts() / len(df_100) * 100 plt.figure(figsize=(5, 5)) plt.pie(satisfaction_rate, labels=['Qolgan', 'Ketgan']) plt.show()
code
129033753/cell_13
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import tensorflow as tf DDoS_PortScan = pd.read_csv('/kaggle/input/ddos-portscan/DDoS_PortScan.csv') Label = DDoS_PortScan.loc[:, ' Label'] DDoS_PortScan.replace({'DDoS': 0, 'PortScan': 1}, inplace=True) Label.replace({'DDoS': 0, 'PortScan': 1}, inplace=True) DDoS_PortScan_Data = np.array(DDoS_PortScan) Label_Data = np.array(Label) DDoS_PortScan_Data = DDoS_PortScan_Data / 347000000 DDoS_PortScan_Data = DDoS_PortScan_Data.reshape(DDoS_PortScan_Data.shape[0], 79, 1) DDoS_PortScan_Data = tf.expand_dims(DDoS_PortScan_Data, -1) dataset = tf.data.Dataset.from_tensor_slices((DDoS_PortScan_Data, Label_Data)) print(dataset)
code
129033753/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd DDoS_PortScan = pd.read_csv('/kaggle/input/ddos-portscan/DDoS_PortScan.csv') Label = DDoS_PortScan.loc[:, ' Label'] DDoS_PortScan.replace({'DDoS': 0, 'PortScan': 1}, inplace=True) Label.replace({'DDoS': 0, 'PortScan': 1}, inplace=True) print(DDoS_PortScan.shape) print(Label.shape)
code
129033753/cell_6
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd DDoS_PortScan = pd.read_csv('/kaggle/input/ddos-portscan/DDoS_PortScan.csv') Label = DDoS_PortScan.loc[:, ' Label'] DDoS_PortScan.replace({'DDoS': 0, 'PortScan': 1}, inplace=True) Label.replace({'DDoS': 0, 'PortScan': 1}, inplace=True) DDoS_PortScan_Data = np.array(DDoS_PortScan) Label_Data = np.array(Label) print(DDoS_PortScan_Data.shape) print(DDoS_PortScan_Data.dtype) print(Label_Data.shape) print(Label_Data.dtype)
code
129033753/cell_11
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd DDoS_PortScan = pd.read_csv('/kaggle/input/ddos-portscan/DDoS_PortScan.csv') Label = DDoS_PortScan.loc[:, ' Label'] DDoS_PortScan.replace({'DDoS': 0, 'PortScan': 1}, inplace=True) Label.replace({'DDoS': 0, 'PortScan': 1}, inplace=True) DDoS_PortScan_Data = np.array(DDoS_PortScan) Label_Data = np.array(Label) DDoS_PortScan_Data = DDoS_PortScan_Data / 347000000 DDoS_PortScan_Data = DDoS_PortScan_Data.reshape(DDoS_PortScan_Data.shape[0], 79, 1) print(DDoS_PortScan_Data.shape) print(DDoS_PortScan_Data.dtype)
code
129033753/cell_1
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn import preprocessing import tensorflow as tf import matplotlib.pyplot as plt import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename)) import numpy as np import pandas as pd
code
129033753/cell_7
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd DDoS_PortScan = pd.read_csv('/kaggle/input/ddos-portscan/DDoS_PortScan.csv') Label = DDoS_PortScan.loc[:, ' Label'] DDoS_PortScan.replace({'DDoS': 0, 'PortScan': 1}, inplace=True) Label.replace({'DDoS': 0, 'PortScan': 1}, inplace=True) DDoS_PortScan_Data = np.array(DDoS_PortScan) Label_Data = np.array(Label) DDoS_PortScan_Data
code
129033753/cell_8
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd DDoS_PortScan = pd.read_csv('/kaggle/input/ddos-portscan/DDoS_PortScan.csv') Label = DDoS_PortScan.loc[:, ' Label'] DDoS_PortScan.replace({'DDoS': 0, 'PortScan': 1}, inplace=True) Label.replace({'DDoS': 0, 'PortScan': 1}, inplace=True) DDoS_PortScan_Data = np.array(DDoS_PortScan) Label_Data = np.array(Label) Label_Data
code
129033753/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd DDoS_PortScan = pd.read_csv('/kaggle/input/ddos-portscan/DDoS_PortScan.csv') Label = DDoS_PortScan.loc[:, ' Label'] DDoS_PortScan.replace({'DDoS': 0, 'PortScan': 1}, inplace=True) Label.replace({'DDoS': 0, 'PortScan': 1}, inplace=True) DDoS_PortScan
code
129033753/cell_10
[ "text_html_output_1.png" ]
import numpy as np import pandas as pd DDoS_PortScan = pd.read_csv('/kaggle/input/ddos-portscan/DDoS_PortScan.csv') Label = DDoS_PortScan.loc[:, ' Label'] DDoS_PortScan.replace({'DDoS': 0, 'PortScan': 1}, inplace=True) Label.replace({'DDoS': 0, 'PortScan': 1}, inplace=True) DDoS_PortScan_Data = np.array(DDoS_PortScan) Label_Data = np.array(Label) DDoS_PortScan_Data = DDoS_PortScan_Data / 347000000 Max = np.max(DDoS_PortScan_Data) Max
code
129033753/cell_12
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import tensorflow as tf DDoS_PortScan = pd.read_csv('/kaggle/input/ddos-portscan/DDoS_PortScan.csv') Label = DDoS_PortScan.loc[:, ' Label'] DDoS_PortScan.replace({'DDoS': 0, 'PortScan': 1}, inplace=True) Label.replace({'DDoS': 0, 'PortScan': 1}, inplace=True) DDoS_PortScan_Data = np.array(DDoS_PortScan) Label_Data = np.array(Label) DDoS_PortScan_Data = DDoS_PortScan_Data / 347000000 DDoS_PortScan_Data = DDoS_PortScan_Data.reshape(DDoS_PortScan_Data.shape[0], 79, 1) DDoS_PortScan_Data = tf.expand_dims(DDoS_PortScan_Data, -1) print(DDoS_PortScan_Data.shape)
code
74067689/cell_21
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier classifier = RandomForestClassifier() classifier.fit(X_train, y_train) print('Training Accuracy: ', classifier.score(X_train, y_train)) print('Testing Accuracy: ', classifier.score(X_test, y_test))
code
74067689/cell_25
[ "text_plain_output_1.png" ]
y_test[3]
code
74067689/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/red-wine-quality-cortez-et-al-2009/winequality-red.csv') df.head()
code
74067689/cell_20
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier classifier = RandomForestClassifier() classifier.fit(X_train, y_train)
code
74067689/cell_19
[ "text_plain_output_1.png", "image_output_1.png" ]
print(f'X_train: {X_train.shape}') print(f'X_test: {X_test.shape}')
code
74067689/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/red-wine-quality-cortez-et-al-2009/winequality-red.csv') df.quality.hist()
code
74067689/cell_16
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/red-wine-quality-cortez-et-al-2009/winequality-red.csv') fig = plt.figure(figsize=(5,5)) sns.barplot(x='quality', y='volatile acidity', data=df) figure = plt.figure(figsize=(10, 10)) correlation = df.corr() sns.heatmap(correlation, annot=True) df.quality.value_counts()
code
74067689/cell_24
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/red-wine-quality-cortez-et-al-2009/winequality-red.csv') fig = plt.figure(figsize=(5,5)) sns.barplot(x='quality', y='volatile acidity', data=df) figure = plt.figure(figsize=(10, 10)) correlation = df.corr() sns.heatmap(correlation, annot=True) df.quality.value_counts() X = df.drop(columns='quality', axis=1) y = df['quality'].apply(lambda x: 1 if x > 6 else 0).values classifier = RandomForestClassifier() classifier.fit(X_train, y_train) def predict(X, model): X = np.array(X).reshape(1, -1) pred = model.predict(X) if pred == 1: return 'Good Wine Quality' else: return 'Bad Wine Quality' predict(X_test.values[3], classifier)
code
74067689/cell_14
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/red-wine-quality-cortez-et-al-2009/winequality-red.csv') fig = plt.figure(figsize=(5,5)) sns.barplot(x='quality', y='volatile acidity', data=df) figure = plt.figure(figsize=(10, 10)) correlation = df.corr() sns.heatmap(correlation, annot=True)
code
74067689/cell_10
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/red-wine-quality-cortez-et-al-2009/winequality-red.csv') fig = plt.figure(figsize=(5, 5)) sns.barplot(x='quality', y='volatile acidity', data=df)
code
74067689/cell_12
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/red-wine-quality-cortez-et-al-2009/winequality-red.csv') fig = plt.figure(figsize=(5,5)) sns.barplot(x='quality', y='volatile acidity', data=df) sns.barplot(x='quality', y='citric acid', data=df)
code
74067689/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/red-wine-quality-cortez-et-al-2009/winequality-red.csv') df.describe()
code
32068663/cell_13
[ "application_vnd.jupyter.stderr_output_1.png" ]
import itertools import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import statsmodels.api as sm train = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv') test = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/test.csv') def impute(df): df['Province_State'] = df['Province_State'].mask(df['Province_State'].isnull(), df['Country_Region']) return df train_imputed = impute(train) train_cc = train_imputed.drop(['Id', 'Fatalities'], 1) train_cc['Date'] = pd.to_datetime(train_cc['Date']) train_cc.set_index(['Country_Region', 'Date'], inplace=True) train_f = train_imputed.drop(['Id', 'ConfirmedCases'], 1) train_f['Date'] = pd.to_datetime(train_f['Date']) train_f.set_index(['Country_Region', 'Date'], inplace=True) p = d = q = range(0, 2) pdq = list(itertools.product(p, d, q)) seasonal_pdq = [(x[0], x[1], x[2], 7) for x in list(itertools.product(p, d, q))] def param(df): liste = dict() for param in pdq: for param_seasonal in seasonal_pdq: try: mod = sm.tsa.statespace.SARIMAX(y, order=param, seasonal_order=param_seasonal, enforce_stationarity=False, enforce_invertibility=False) results = mod.fit() key = str(param) + ',' + str(param_seasonal) liste[key] = results.aic except: continue key_min = min(liste, key=liste.get) k = key_min.replace('(', '').replace(')', '').split(',') i = [int(x) for x in k] par = tuple(i[:3]) par_seas = tuple(i[3:]) return (par, par_seas) liste_pays = train_cc.index.get_level_values(0).unique() rmsle_cc_pays = dict() mle_cc_retval = dict() list_cc_results = dict() predictions_cc = dict() list_cc_y = dict() for elmt in liste_pays: df = train_cc.loc[elmt] if len(df['Province_State'].unique()) == 1: y = df['ConfirmedCases'].resample('D').mean() list_cc_y[elmt + ' ' + elmt] = y par, par_seas = param(y) mod = sm.tsa.statespace.SARIMAX(y, order=par, seasonal_order=par_seas, enforce_stationarity=False, enforce_invertibility=False) results = mod.fit() list_cc_results[elmt + ' ' + elmt] = results pred = results.get_prediction(start=pd.to_datetime('2020-01-22'), dynamic=False) predictions_cc[elmt + ' ' + elmt] = pred y_forecasted = pred.predicted_mean y_truth = y.copy() rmsle = np.sqrt(np.square(np.log(y_forecasted + 1) - np.log(y_truth + 1)).mean()) rmsle_cc_pays[elmt + ' ' + elmt] = round(rmsle, 2) mle_cc_retval[elmt + ' ' + elmt] = results.mle_retvals else: for elt in df['Province_State'].unique(): d = df.loc[df['Province_State'] == elt]['ConfirmedCases'].resample('D').mean() list_cc_y[elmt + ' ' + elt] = d par, par_seas = param(d) mod = sm.tsa.statespace.SARIMAX(d, order=par, seasonal_order=par_seas, enforce_stationarity=False, enforce_invertibility=False) results = mod.fit() list_cc_results[elmt + ' ' + elt] = results pred = results.get_prediction(start=pd.to_datetime('2020-01-22'), dynamic=False) predictions_cc[elmt + ' ' + elt] = pred y_forecasted = pred.predicted_mean y_truth = d.copy() rmsle = np.sqrt(np.square(np.log(y_forecasted + 1) - np.log(y_truth + 1)).mean()) rmsle_cc_pays[elmt + ' ' + elt] = round(rmsle, 2) mle_cc_retval[elmt + ' ' + elt] = results.mle_retvals #Représentation du forecast de la RCI pred_ci = predictions_cc["Cote d'Ivoire Cote d'Ivoire"].conf_int() ax = train_cc.loc[("Cote d'Ivoire")].plot(label='observed') predictions_cc["Cote d'Ivoire Cote d'Ivoire"].predicted_mean.plot(ax=ax, label='One-step ahead Forecast', alpha=.7, figsize=(14, 7)) ax.fill_between(pred_ci.index, pred_ci.iloc[:, 0], pred_ci.iloc[:, 1], color='k', alpha=.2) ax.set_xlabel('Date') ax.set_ylabel('Confirmed Cases') plt.legend() plt.show() print(list_cc_results["Cote d'Ivoire Cote d'Ivoire"].summary().tables[1]) list_cc_results["Cote d'Ivoire Cote d'Ivoire"].plot_diagnostics(figsize=(16, 8)) plt.show()
code
32068663/cell_9
[ "application_vnd.jupyter.stderr_output_1.png" ]
import itertools import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import statsmodels.api as sm train = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv') test = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/test.csv') def impute(df): df['Province_State'] = df['Province_State'].mask(df['Province_State'].isnull(), df['Country_Region']) return df train_imputed = impute(train) train_cc = train_imputed.drop(['Id', 'Fatalities'], 1) train_cc['Date'] = pd.to_datetime(train_cc['Date']) train_cc.set_index(['Country_Region', 'Date'], inplace=True) train_f = train_imputed.drop(['Id', 'ConfirmedCases'], 1) train_f['Date'] = pd.to_datetime(train_f['Date']) train_f.set_index(['Country_Region', 'Date'], inplace=True) p = d = q = range(0, 2) pdq = list(itertools.product(p, d, q)) seasonal_pdq = [(x[0], x[1], x[2], 7) for x in list(itertools.product(p, d, q))] def param(df): liste = dict() for param in pdq: for param_seasonal in seasonal_pdq: try: mod = sm.tsa.statespace.SARIMAX(y, order=param, seasonal_order=param_seasonal, enforce_stationarity=False, enforce_invertibility=False) results = mod.fit() key = str(param) + ',' + str(param_seasonal) liste[key] = results.aic except: continue key_min = min(liste, key=liste.get) k = key_min.replace('(', '').replace(')', '').split(',') i = [int(x) for x in k] par = tuple(i[:3]) par_seas = tuple(i[3:]) return (par, par_seas) liste_pays = train_cc.index.get_level_values(0).unique() rmsle_cc_pays = dict() mle_cc_retval = dict() list_cc_results = dict() predictions_cc = dict() list_cc_y = dict() for elmt in liste_pays: df = train_cc.loc[elmt] if len(df['Province_State'].unique()) == 1: y = df['ConfirmedCases'].resample('D').mean() list_cc_y[elmt + ' ' + elmt] = y par, par_seas = param(y) mod = sm.tsa.statespace.SARIMAX(y, order=par, seasonal_order=par_seas, enforce_stationarity=False, enforce_invertibility=False) results = mod.fit() list_cc_results[elmt + ' ' + elmt] = results pred = results.get_prediction(start=pd.to_datetime('2020-01-22'), dynamic=False) predictions_cc[elmt + ' ' + elmt] = pred y_forecasted = pred.predicted_mean y_truth = y.copy() rmsle = np.sqrt(np.square(np.log(y_forecasted + 1) - np.log(y_truth + 1)).mean()) rmsle_cc_pays[elmt + ' ' + elmt] = round(rmsle, 2) mle_cc_retval[elmt + ' ' + elmt] = results.mle_retvals else: for elt in df['Province_State'].unique(): d = df.loc[df['Province_State'] == elt]['ConfirmedCases'].resample('D').mean() list_cc_y[elmt + ' ' + elt] = d par, par_seas = param(d) mod = sm.tsa.statespace.SARIMAX(d, order=par, seasonal_order=par_seas, enforce_stationarity=False, enforce_invertibility=False) results = mod.fit() list_cc_results[elmt + ' ' + elt] = results pred = results.get_prediction(start=pd.to_datetime('2020-01-22'), dynamic=False) predictions_cc[elmt + ' ' + elt] = pred y_forecasted = pred.predicted_mean y_truth = d.copy() rmsle = np.sqrt(np.square(np.log(y_forecasted + 1) - np.log(y_truth + 1)).mean()) rmsle_cc_pays[elmt + ' ' + elt] = round(rmsle, 2) mle_cc_retval[elmt + ' ' + elt] = results.mle_retvals rmsle_f_pays = dict() mle_f_retval = dict() list_f_results = dict() predictions_f = dict() list_f_y = dict() for elmt in liste_pays: df = train_f.loc[elmt] if len(df['Province_State'].unique()) == 1: y = df['Fatalities'].resample('D').mean() list_f_y[elmt + ' ' + elt] = y par, par_seas = param(y) mod = sm.tsa.statespace.SARIMAX(y, order=par, seasonal_order=par_seas, enforce_stationarity=False, enforce_invertibility=False) results = mod.fit() list_f_results[elmt + ' ' + elt] = results pred = results.get_prediction(start=pd.to_datetime('2020-01-22'), dynamic=False) predictions_f[elmt + ' ' + elt] = pred y_forecasted = pred.predicted_mean y_truth = y.copy() rmsle = np.sqrt(np.square(np.log(y_forecasted + 1) - np.log(y_truth + 1)).mean()) rmsle_f_pays[elmt + ' ' + elt] = round(rmsle, 2) mle_f_retval[elmt + ' ' + elt] = results.mle_retvals else: for elt in df['Province_State'].unique(): d = df.loc[df['Province_State'] == elt]['Fatalities'].resample('D').mean() list_f_y[elmt + ' ' + elt] = d par, par_seas = param(d) mod = sm.tsa.statespace.SARIMAX(d, order=par, seasonal_order=par_seas, enforce_stationarity=False, enforce_invertibility=False) results = mod.fit() list_f_results[elmt + ' ' + elt] = results pred = results.get_prediction(start=pd.to_datetime('2020-01-22'), dynamic=False) predictions_f[elmt + ' ' + elt] = pred y_forecasted = pred.predicted_mean y_truth = d.copy() rmsle = np.sqrt(np.square(np.log(y_forecasted + 1) - np.log(y_truth + 1)).mean()) rmsle_f_pays[elmt + ' ' + elt] = round(rmsle, 2) mle_f_retval[elmt + ' ' + elt] = results.mle_retvals
code
32068663/cell_4
[ "application_vnd.jupyter.stderr_output_2.png", "application_vnd.jupyter.stderr_output_3.png", "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv') test = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/test.csv') def impute(df): df['Province_State'] = df['Province_State'].mask(df['Province_State'].isnull(), df['Country_Region']) return df train_imputed = impute(train) train_imputed.info()
code
32068663/cell_11
[ "text_plain_output_1.png" ]
import itertools import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import statsmodels.api as sm train = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv') test = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/test.csv') def impute(df): df['Province_State'] = df['Province_State'].mask(df['Province_State'].isnull(), df['Country_Region']) return df train_imputed = impute(train) train_cc = train_imputed.drop(['Id', 'Fatalities'], 1) train_cc['Date'] = pd.to_datetime(train_cc['Date']) train_cc.set_index(['Country_Region', 'Date'], inplace=True) train_f = train_imputed.drop(['Id', 'ConfirmedCases'], 1) train_f['Date'] = pd.to_datetime(train_f['Date']) train_f.set_index(['Country_Region', 'Date'], inplace=True) p = d = q = range(0, 2) pdq = list(itertools.product(p, d, q)) seasonal_pdq = [(x[0], x[1], x[2], 7) for x in list(itertools.product(p, d, q))] def param(df): liste = dict() for param in pdq: for param_seasonal in seasonal_pdq: try: mod = sm.tsa.statespace.SARIMAX(y, order=param, seasonal_order=param_seasonal, enforce_stationarity=False, enforce_invertibility=False) results = mod.fit() key = str(param) + ',' + str(param_seasonal) liste[key] = results.aic except: continue key_min = min(liste, key=liste.get) k = key_min.replace('(', '').replace(')', '').split(',') i = [int(x) for x in k] par = tuple(i[:3]) par_seas = tuple(i[3:]) return (par, par_seas) liste_pays = train_cc.index.get_level_values(0).unique() rmsle_cc_pays = dict() mle_cc_retval = dict() list_cc_results = dict() predictions_cc = dict() list_cc_y = dict() for elmt in liste_pays: df = train_cc.loc[elmt] if len(df['Province_State'].unique()) == 1: y = df['ConfirmedCases'].resample('D').mean() list_cc_y[elmt + ' ' + elmt] = y par, par_seas = param(y) mod = sm.tsa.statespace.SARIMAX(y, order=par, seasonal_order=par_seas, enforce_stationarity=False, enforce_invertibility=False) results = mod.fit() list_cc_results[elmt + ' ' + elmt] = results pred = results.get_prediction(start=pd.to_datetime('2020-01-22'), dynamic=False) predictions_cc[elmt + ' ' + elmt] = pred y_forecasted = pred.predicted_mean y_truth = y.copy() rmsle = np.sqrt(np.square(np.log(y_forecasted + 1) - np.log(y_truth + 1)).mean()) rmsle_cc_pays[elmt + ' ' + elmt] = round(rmsle, 2) mle_cc_retval[elmt + ' ' + elmt] = results.mle_retvals else: for elt in df['Province_State'].unique(): d = df.loc[df['Province_State'] == elt]['ConfirmedCases'].resample('D').mean() list_cc_y[elmt + ' ' + elt] = d par, par_seas = param(d) mod = sm.tsa.statespace.SARIMAX(d, order=par, seasonal_order=par_seas, enforce_stationarity=False, enforce_invertibility=False) results = mod.fit() list_cc_results[elmt + ' ' + elt] = results pred = results.get_prediction(start=pd.to_datetime('2020-01-22'), dynamic=False) predictions_cc[elmt + ' ' + elt] = pred y_forecasted = pred.predicted_mean y_truth = d.copy() rmsle = np.sqrt(np.square(np.log(y_forecasted + 1) - np.log(y_truth + 1)).mean()) rmsle_cc_pays[elmt + ' ' + elt] = round(rmsle, 2) mle_cc_retval[elmt + ' ' + elt] = results.mle_retvals rmsle_f_pays = dict() mle_f_retval = dict() list_f_results = dict() predictions_f = dict() list_f_y = dict() for elmt in liste_pays: df = train_f.loc[elmt] if len(df['Province_State'].unique()) == 1: y = df['Fatalities'].resample('D').mean() list_f_y[elmt + ' ' + elt] = y par, par_seas = param(y) mod = sm.tsa.statespace.SARIMAX(y, order=par, seasonal_order=par_seas, enforce_stationarity=False, enforce_invertibility=False) results = mod.fit() list_f_results[elmt + ' ' + elt] = results pred = results.get_prediction(start=pd.to_datetime('2020-01-22'), dynamic=False) predictions_f[elmt + ' ' + elt] = pred y_forecasted = pred.predicted_mean y_truth = y.copy() rmsle = np.sqrt(np.square(np.log(y_forecasted + 1) - np.log(y_truth + 1)).mean()) rmsle_f_pays[elmt + ' ' + elt] = round(rmsle, 2) mle_f_retval[elmt + ' ' + elt] = results.mle_retvals else: for elt in df['Province_State'].unique(): d = df.loc[df['Province_State'] == elt]['Fatalities'].resample('D').mean() list_f_y[elmt + ' ' + elt] = d par, par_seas = param(d) mod = sm.tsa.statespace.SARIMAX(d, order=par, seasonal_order=par_seas, enforce_stationarity=False, enforce_invertibility=False) results = mod.fit() list_f_results[elmt + ' ' + elt] = results pred = results.get_prediction(start=pd.to_datetime('2020-01-22'), dynamic=False) predictions_f[elmt + ' ' + elt] = pred y_forecasted = pred.predicted_mean y_truth = d.copy() rmsle = np.sqrt(np.square(np.log(y_forecasted + 1) - np.log(y_truth + 1)).mean()) rmsle_f_pays[elmt + ' ' + elt] = round(rmsle, 2) mle_f_retval[elmt + ' ' + elt] = results.mle_retvals error = np.array(list(rmsle_cc_pays.values())).mean() error error = np.array(list(rmsle_f_pays.values())).mean() error
code
32068663/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
32068663/cell_8
[ "text_html_output_1.png" ]
import itertools import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import statsmodels.api as sm train = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv') test = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/test.csv') def impute(df): df['Province_State'] = df['Province_State'].mask(df['Province_State'].isnull(), df['Country_Region']) return df train_imputed = impute(train) train_cc = train_imputed.drop(['Id', 'Fatalities'], 1) train_cc['Date'] = pd.to_datetime(train_cc['Date']) train_cc.set_index(['Country_Region', 'Date'], inplace=True) train_f = train_imputed.drop(['Id', 'ConfirmedCases'], 1) train_f['Date'] = pd.to_datetime(train_f['Date']) train_f.set_index(['Country_Region', 'Date'], inplace=True) p = d = q = range(0, 2) pdq = list(itertools.product(p, d, q)) seasonal_pdq = [(x[0], x[1], x[2], 7) for x in list(itertools.product(p, d, q))] def param(df): liste = dict() for param in pdq: for param_seasonal in seasonal_pdq: try: mod = sm.tsa.statespace.SARIMAX(y, order=param, seasonal_order=param_seasonal, enforce_stationarity=False, enforce_invertibility=False) results = mod.fit() key = str(param) + ',' + str(param_seasonal) liste[key] = results.aic except: continue key_min = min(liste, key=liste.get) k = key_min.replace('(', '').replace(')', '').split(',') i = [int(x) for x in k] par = tuple(i[:3]) par_seas = tuple(i[3:]) return (par, par_seas) liste_pays = train_cc.index.get_level_values(0).unique() rmsle_cc_pays = dict() mle_cc_retval = dict() list_cc_results = dict() predictions_cc = dict() list_cc_y = dict() for elmt in liste_pays: df = train_cc.loc[elmt] if len(df['Province_State'].unique()) == 1: y = df['ConfirmedCases'].resample('D').mean() list_cc_y[elmt + ' ' + elmt] = y par, par_seas = param(y) mod = sm.tsa.statespace.SARIMAX(y, order=par, seasonal_order=par_seas, enforce_stationarity=False, enforce_invertibility=False) results = mod.fit() list_cc_results[elmt + ' ' + elmt] = results pred = results.get_prediction(start=pd.to_datetime('2020-01-22'), dynamic=False) predictions_cc[elmt + ' ' + elmt] = pred y_forecasted = pred.predicted_mean y_truth = y.copy() rmsle = np.sqrt(np.square(np.log(y_forecasted + 1) - np.log(y_truth + 1)).mean()) rmsle_cc_pays[elmt + ' ' + elmt] = round(rmsle, 2) mle_cc_retval[elmt + ' ' + elmt] = results.mle_retvals else: for elt in df['Province_State'].unique(): d = df.loc[df['Province_State'] == elt]['ConfirmedCases'].resample('D').mean() list_cc_y[elmt + ' ' + elt] = d par, par_seas = param(d) mod = sm.tsa.statespace.SARIMAX(d, order=par, seasonal_order=par_seas, enforce_stationarity=False, enforce_invertibility=False) results = mod.fit() list_cc_results[elmt + ' ' + elt] = results pred = results.get_prediction(start=pd.to_datetime('2020-01-22'), dynamic=False) predictions_cc[elmt + ' ' + elt] = pred y_forecasted = pred.predicted_mean y_truth = d.copy() rmsle = np.sqrt(np.square(np.log(y_forecasted + 1) - np.log(y_truth + 1)).mean()) rmsle_cc_pays[elmt + ' ' + elt] = round(rmsle, 2) mle_cc_retval[elmt + ' ' + elt] = results.mle_retvals
code
32068663/cell_3
[ "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv') test = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/test.csv') train.info()
code
32068663/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv') test = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/test.csv') def impute(df): df['Province_State'] = df['Province_State'].mask(df['Province_State'].isnull(), df['Country_Region']) return df train_imputed = impute(train) holdout = impute(test) holdout.head()
code
32068663/cell_10
[ "text_plain_output_1.png" ]
import itertools import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import statsmodels.api as sm train = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv') test = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/test.csv') def impute(df): df['Province_State'] = df['Province_State'].mask(df['Province_State'].isnull(), df['Country_Region']) return df train_imputed = impute(train) train_cc = train_imputed.drop(['Id', 'Fatalities'], 1) train_cc['Date'] = pd.to_datetime(train_cc['Date']) train_cc.set_index(['Country_Region', 'Date'], inplace=True) train_f = train_imputed.drop(['Id', 'ConfirmedCases'], 1) train_f['Date'] = pd.to_datetime(train_f['Date']) train_f.set_index(['Country_Region', 'Date'], inplace=True) p = d = q = range(0, 2) pdq = list(itertools.product(p, d, q)) seasonal_pdq = [(x[0], x[1], x[2], 7) for x in list(itertools.product(p, d, q))] def param(df): liste = dict() for param in pdq: for param_seasonal in seasonal_pdq: try: mod = sm.tsa.statespace.SARIMAX(y, order=param, seasonal_order=param_seasonal, enforce_stationarity=False, enforce_invertibility=False) results = mod.fit() key = str(param) + ',' + str(param_seasonal) liste[key] = results.aic except: continue key_min = min(liste, key=liste.get) k = key_min.replace('(', '').replace(')', '').split(',') i = [int(x) for x in k] par = tuple(i[:3]) par_seas = tuple(i[3:]) return (par, par_seas) liste_pays = train_cc.index.get_level_values(0).unique() rmsle_cc_pays = dict() mle_cc_retval = dict() list_cc_results = dict() predictions_cc = dict() list_cc_y = dict() for elmt in liste_pays: df = train_cc.loc[elmt] if len(df['Province_State'].unique()) == 1: y = df['ConfirmedCases'].resample('D').mean() list_cc_y[elmt + ' ' + elmt] = y par, par_seas = param(y) mod = sm.tsa.statespace.SARIMAX(y, order=par, seasonal_order=par_seas, enforce_stationarity=False, enforce_invertibility=False) results = mod.fit() list_cc_results[elmt + ' ' + elmt] = results pred = results.get_prediction(start=pd.to_datetime('2020-01-22'), dynamic=False) predictions_cc[elmt + ' ' + elmt] = pred y_forecasted = pred.predicted_mean y_truth = y.copy() rmsle = np.sqrt(np.square(np.log(y_forecasted + 1) - np.log(y_truth + 1)).mean()) rmsle_cc_pays[elmt + ' ' + elmt] = round(rmsle, 2) mle_cc_retval[elmt + ' ' + elmt] = results.mle_retvals else: for elt in df['Province_State'].unique(): d = df.loc[df['Province_State'] == elt]['ConfirmedCases'].resample('D').mean() list_cc_y[elmt + ' ' + elt] = d par, par_seas = param(d) mod = sm.tsa.statespace.SARIMAX(d, order=par, seasonal_order=par_seas, enforce_stationarity=False, enforce_invertibility=False) results = mod.fit() list_cc_results[elmt + ' ' + elt] = results pred = results.get_prediction(start=pd.to_datetime('2020-01-22'), dynamic=False) predictions_cc[elmt + ' ' + elt] = pred y_forecasted = pred.predicted_mean y_truth = d.copy() rmsle = np.sqrt(np.square(np.log(y_forecasted + 1) - np.log(y_truth + 1)).mean()) rmsle_cc_pays[elmt + ' ' + elt] = round(rmsle, 2) mle_cc_retval[elmt + ' ' + elt] = results.mle_retvals rmsle_f_pays = dict() mle_f_retval = dict() list_f_results = dict() predictions_f = dict() list_f_y = dict() for elmt in liste_pays: df = train_f.loc[elmt] if len(df['Province_State'].unique()) == 1: y = df['Fatalities'].resample('D').mean() list_f_y[elmt + ' ' + elt] = y par, par_seas = param(y) mod = sm.tsa.statespace.SARIMAX(y, order=par, seasonal_order=par_seas, enforce_stationarity=False, enforce_invertibility=False) results = mod.fit() list_f_results[elmt + ' ' + elt] = results pred = results.get_prediction(start=pd.to_datetime('2020-01-22'), dynamic=False) predictions_f[elmt + ' ' + elt] = pred y_forecasted = pred.predicted_mean y_truth = y.copy() rmsle = np.sqrt(np.square(np.log(y_forecasted + 1) - np.log(y_truth + 1)).mean()) rmsle_f_pays[elmt + ' ' + elt] = round(rmsle, 2) mle_f_retval[elmt + ' ' + elt] = results.mle_retvals else: for elt in df['Province_State'].unique(): d = df.loc[df['Province_State'] == elt]['Fatalities'].resample('D').mean() list_f_y[elmt + ' ' + elt] = d par, par_seas = param(d) mod = sm.tsa.statespace.SARIMAX(d, order=par, seasonal_order=par_seas, enforce_stationarity=False, enforce_invertibility=False) results = mod.fit() list_f_results[elmt + ' ' + elt] = results pred = results.get_prediction(start=pd.to_datetime('2020-01-22'), dynamic=False) predictions_f[elmt + ' ' + elt] = pred y_forecasted = pred.predicted_mean y_truth = d.copy() rmsle = np.sqrt(np.square(np.log(y_forecasted + 1) - np.log(y_truth + 1)).mean()) rmsle_f_pays[elmt + ' ' + elt] = round(rmsle, 2) mle_f_retval[elmt + ' ' + elt] = results.mle_retvals error = np.array(list(rmsle_cc_pays.values())).mean() error
code
32068663/cell_12
[ "application_vnd.jupyter.stderr_output_1.png" ]
import itertools import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import statsmodels.api as sm train = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv') test = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/test.csv') def impute(df): df['Province_State'] = df['Province_State'].mask(df['Province_State'].isnull(), df['Country_Region']) return df train_imputed = impute(train) train_cc = train_imputed.drop(['Id', 'Fatalities'], 1) train_cc['Date'] = pd.to_datetime(train_cc['Date']) train_cc.set_index(['Country_Region', 'Date'], inplace=True) train_f = train_imputed.drop(['Id', 'ConfirmedCases'], 1) train_f['Date'] = pd.to_datetime(train_f['Date']) train_f.set_index(['Country_Region', 'Date'], inplace=True) p = d = q = range(0, 2) pdq = list(itertools.product(p, d, q)) seasonal_pdq = [(x[0], x[1], x[2], 7) for x in list(itertools.product(p, d, q))] def param(df): liste = dict() for param in pdq: for param_seasonal in seasonal_pdq: try: mod = sm.tsa.statespace.SARIMAX(y, order=param, seasonal_order=param_seasonal, enforce_stationarity=False, enforce_invertibility=False) results = mod.fit() key = str(param) + ',' + str(param_seasonal) liste[key] = results.aic except: continue key_min = min(liste, key=liste.get) k = key_min.replace('(', '').replace(')', '').split(',') i = [int(x) for x in k] par = tuple(i[:3]) par_seas = tuple(i[3:]) return (par, par_seas) liste_pays = train_cc.index.get_level_values(0).unique() rmsle_cc_pays = dict() mle_cc_retval = dict() list_cc_results = dict() predictions_cc = dict() list_cc_y = dict() for elmt in liste_pays: df = train_cc.loc[elmt] if len(df['Province_State'].unique()) == 1: y = df['ConfirmedCases'].resample('D').mean() list_cc_y[elmt + ' ' + elmt] = y par, par_seas = param(y) mod = sm.tsa.statespace.SARIMAX(y, order=par, seasonal_order=par_seas, enforce_stationarity=False, enforce_invertibility=False) results = mod.fit() list_cc_results[elmt + ' ' + elmt] = results pred = results.get_prediction(start=pd.to_datetime('2020-01-22'), dynamic=False) predictions_cc[elmt + ' ' + elmt] = pred y_forecasted = pred.predicted_mean y_truth = y.copy() rmsle = np.sqrt(np.square(np.log(y_forecasted + 1) - np.log(y_truth + 1)).mean()) rmsle_cc_pays[elmt + ' ' + elmt] = round(rmsle, 2) mle_cc_retval[elmt + ' ' + elmt] = results.mle_retvals else: for elt in df['Province_State'].unique(): d = df.loc[df['Province_State'] == elt]['ConfirmedCases'].resample('D').mean() list_cc_y[elmt + ' ' + elt] = d par, par_seas = param(d) mod = sm.tsa.statespace.SARIMAX(d, order=par, seasonal_order=par_seas, enforce_stationarity=False, enforce_invertibility=False) results = mod.fit() list_cc_results[elmt + ' ' + elt] = results pred = results.get_prediction(start=pd.to_datetime('2020-01-22'), dynamic=False) predictions_cc[elmt + ' ' + elt] = pred y_forecasted = pred.predicted_mean y_truth = d.copy() rmsle = np.sqrt(np.square(np.log(y_forecasted + 1) - np.log(y_truth + 1)).mean()) rmsle_cc_pays[elmt + ' ' + elt] = round(rmsle, 2) mle_cc_retval[elmt + ' ' + elt] = results.mle_retvals pred_ci = predictions_cc["Cote d'Ivoire Cote d'Ivoire"].conf_int() ax = train_cc.loc["Cote d'Ivoire"].plot(label='observed') predictions_cc["Cote d'Ivoire Cote d'Ivoire"].predicted_mean.plot(ax=ax, label='One-step ahead Forecast', alpha=0.7, figsize=(14, 7)) ax.fill_between(pred_ci.index, pred_ci.iloc[:, 0], pred_ci.iloc[:, 1], color='k', alpha=0.2) ax.set_xlabel('Date') ax.set_ylabel('Confirmed Cases') plt.legend() plt.show()
code
50218788/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
105194319/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.cluster import KMeans import matplotlib.pyplot as plt import pandas as pd data = pd.read_csv('../input/market-sadakatcsv/Market_Sadakat.csv') x = data.copy() kmeans = KMeans(2) kmeans.fit(x) clusters = x.copy() clusters['kume_tahmin'] = kmeans.fit_predict(x) plt.scatter(clusters['tatmin'], clusters['sadakat'], c=clusters['kume_tahmin'], cmap='rainbow') plt.xlabel('Tatmin') plt.ylabel('Sadakat')
code
105194319/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/market-sadakatcsv/Market_Sadakat.csv') data.head()
code
105194319/cell_11
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn import preprocessing from sklearn.cluster import KMeans import pandas as pd data = pd.read_csv('../input/market-sadakatcsv/Market_Sadakat.csv') x = data.copy() kmeans = KMeans(2) kmeans.fit(x) clusters = x.copy() clusters['kume_tahmin'] = kmeans.fit_predict(x) from sklearn import preprocessing x_scaled = preprocessing.scale(x) x_scaled a = [] for i in range(1, 10): kmeans = KMeans(i) kmeans.fit(x_scaled) a.append(kmeans.inertia_) a
code
105194319/cell_7
[ "text_html_output_1.png" ]
from sklearn.cluster import KMeans import pandas as pd data = pd.read_csv('../input/market-sadakatcsv/Market_Sadakat.csv') x = data.copy() kmeans = KMeans(2) kmeans.fit(x)
code
105194319/cell_15
[ "text_plain_output_1.png" ]
from sklearn import preprocessing from sklearn.cluster import KMeans import matplotlib.pyplot as plt import pandas as pd data = pd.read_csv('../input/market-sadakatcsv/Market_Sadakat.csv') x = data.copy() kmeans = KMeans(2) kmeans.fit(x) clusters = x.copy() clusters['kume_tahmin'] = kmeans.fit_predict(x) from sklearn import preprocessing x_scaled = preprocessing.scale(x) x_scaled a = [] for i in range(1, 10): kmeans = KMeans(i) kmeans.fit(x_scaled) a.append(kmeans.inertia_) a kmeans_new = KMeans(4) kmeans_new.fit(x_scaled) clusters_new = x.copy() clusters_new['kume_tahmin'] = kmeans_new.fit_predict(x_scaled) plt.scatter(clusters_new['tatmin'], clusters_new['sadakat'], c=clusters_new['kume_tahmin'], cmap='rainbow') plt.xlabel('Tatmin') plt.ylabel('Sadakat')
code
105194319/cell_14
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn import preprocessing from sklearn.cluster import KMeans import pandas as pd data = pd.read_csv('../input/market-sadakatcsv/Market_Sadakat.csv') x = data.copy() kmeans = KMeans(2) kmeans.fit(x) clusters = x.copy() clusters['kume_tahmin'] = kmeans.fit_predict(x) from sklearn import preprocessing x_scaled = preprocessing.scale(x) x_scaled kmeans_new = KMeans(4) kmeans_new.fit(x_scaled) clusters_new = x.copy() clusters_new['kume_tahmin'] = kmeans_new.fit_predict(x_scaled) clusters_new
code
105194319/cell_10
[ "text_html_output_1.png" ]
from sklearn import preprocessing from sklearn.cluster import KMeans import pandas as pd data = pd.read_csv('../input/market-sadakatcsv/Market_Sadakat.csv') x = data.copy() kmeans = KMeans(2) kmeans.fit(x) clusters = x.copy() clusters['kume_tahmin'] = kmeans.fit_predict(x) from sklearn import preprocessing x_scaled = preprocessing.scale(x) x_scaled
code
105194319/cell_12
[ "text_plain_output_1.png" ]
from sklearn import preprocessing from sklearn.cluster import KMeans import matplotlib.pyplot as plt import pandas as pd data = pd.read_csv('../input/market-sadakatcsv/Market_Sadakat.csv') x = data.copy() kmeans = KMeans(2) kmeans.fit(x) clusters = x.copy() clusters['kume_tahmin'] = kmeans.fit_predict(x) from sklearn import preprocessing x_scaled = preprocessing.scale(x) x_scaled a = [] for i in range(1, 10): kmeans = KMeans(i) kmeans.fit(x_scaled) a.append(kmeans.inertia_) a plt.plot(range(1, 10), a) plt.xlabel('Küme Sayısı') plt.ylabel('Küme-içi Kareler Toplamı')
code
105194319/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd data = pd.read_csv('../input/market-sadakatcsv/Market_Sadakat.csv') plt.scatter(data['tatmin'], data['sadakat']) plt.xlabel('Tatmin') plt.ylabel('Sadakat')
code
72092655/cell_13
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd data = pd.read_csv('/kaggle/input/refined-data/data_hard_refined.csv') data_full = pd.read_csv('/kaggle/input/refined-data/data_filtered.csv') objectColumns = list(data.dtypes[data.dtypes == np.object].index) numericColumns = list(data.dtypes[data.dtypes != np.object].index) objectColumns = list(data.dtypes[data.dtypes == np.object].index) numericColumns = list(data.dtypes[data.dtypes != np.object].index) data['Energy/Surface'] = data['SiteEnergyUse(kBtu)'] / data['PropertyGFATotal'] data['GHG/Surface'] = data['TotalGHGEmissions'] / data['PropertyGFATotal'] columns_to_boxplot = ['SiteEnergyUse(kBtu)', 'Energy/Surface', 'TotalGHGEmissions', 'GHG/Surface'] for column in columns_to_boxplot: n_bins = 12 subset = data[column] subset.plot.box(vert=False) for column in columns_to_boxplot: i = 0 quartile_1 = data[column].quantile(0.25) quartile_3 = data[column].quantile(0.75) iqr = quartile_3 - quartile_1 min_value = quartile_1 - 1.5 * iqr max_value = quartile_3 + 1.5 * iqr outliers = data[(data[column] > max_value) | (data[column] < min_value)] i += outliers.shape[0] # analyse des variables quantitatives continues: pour les groupes de PrimaryPropertyType) groups = data['PrimaryPropertyType'].unique() for column in columns_to_boxplot: print('column: {}'.format(column)) n_bins = 12 values=[] assessment = [] subset = data[column] # var = variance empirique, std = ecart type empirique print('all datas: \n\tmean: {}\n\tmed: {}\n\tmod: {}\n\tvar: {}\n\tstd: {}\n\tskew: {}\n\tkur: {}' .format(subset.mean(),subset.median(), subset.mode()[0],subset.var(ddof=0),subset.std(ddof=0),subset.skew(),subset.kurtosis())) plt.hist(subset,n_bins,label='all datas', alpha=0.5) plt.show() subset.plot.box(vert=False) plt.title(column) plt.show() fig = plt.figure(figsize=(36,18)) for group in groups: subset = data[data.PrimaryPropertyType == group][column] # Création du sous-échantillon values.append(subset) assessment.append([group,subset.mean(),subset.median(), subset.mode()[0],subset.var(ddof=0),subset.std(ddof=0),subset.skew(),subset.kurtosis()]) plt.hist(subset,n_bins,label=group, alpha=0.3) plt.legend(loc='best') plt.title(column) plt.show() # Affiche l'histogramme fig = plt.figure(figsize=(36,18)) plt.hist(values, n_bins, histtype='bar', label=groups) plt.legend(loc='best') plt.title(column) plt.show() # Affiche l'histogramme df_assessment = pd.DataFrame(assessment,columns=['group', 'moy', 'med', 'mod','var','std','skew','kur']) display(df_assessment) # https://towardsdatascience.com/create-and-customize-boxplots-with-pythons-matplotlib-to-get-lots-of-insights-from-your-data-d561c9883643 fig, ax = plt.subplots(figsize=(36,10)) ax.boxplot(values, labels=groups) plt.show() print('='*120) data_refined = data.copy() columns_outliers_to_delete = ['Energy/Surface', 'GHG/Surface'] for column in columns_outliers_to_delete: i = 0 for group in groups: j = 0 subset = data_refined[data_refined.PrimaryPropertyType == group] quartile_1 = subset[column].quantile(0.25) quartile_3 = subset[column].quantile(0.75) iqr = quartile_3 - quartile_1 min_value = quartile_1 - 1.5 * iqr max_value = quartile_3 + 1.5 * iqr outliers = subset[(subset[column] > max_value) | (subset[column] < min_value)] j += outliers.shape[0] i += j data_refined.drop(outliers.index.values, inplace=True) data_refined.to_csv('data_without_outliers.csv', index=False) data_refine = data.copy() columns_outliers_to_delete == ['SiteEnergyUse(kBtu)', 'TotalGHGEmissions'] for column in columns_outliers_to_delete: i = 0 quartile_1 = data_refine[column].quantile(0.25) quartile_3 = data_refine[column].quantile(0.75) iqr = quartile_3 - quartile_1 min_value = quartile_1 - 1.5 * iqr max_value = quartile_3 + 1.5 * iqr outliers = data_refine[(data_refine[column] > max_value) | (data_refine[column] < min_value)] i += outliers.shape[0] data_refine.drop(outliers.index.values, inplace=True) print(data.shape) print(data_refine.shape)
code
72092655/cell_9
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd data = pd.read_csv('/kaggle/input/refined-data/data_hard_refined.csv') data_full = pd.read_csv('/kaggle/input/refined-data/data_filtered.csv') objectColumns = list(data.dtypes[data.dtypes == np.object].index) numericColumns = list(data.dtypes[data.dtypes != np.object].index) objectColumns = list(data.dtypes[data.dtypes == np.object].index) numericColumns = list(data.dtypes[data.dtypes != np.object].index) data['Energy/Surface'] = data['SiteEnergyUse(kBtu)'] / data['PropertyGFATotal'] data['GHG/Surface'] = data['TotalGHGEmissions'] / data['PropertyGFATotal'] columns_to_boxplot = ['SiteEnergyUse(kBtu)', 'Energy/Surface', 'TotalGHGEmissions', 'GHG/Surface'] for column in columns_to_boxplot: n_bins = 12 subset = data[column] subset.plot.box(vert=False) groups = data['PrimaryPropertyType'].unique() for column in columns_to_boxplot: print('column: {}'.format(column)) n_bins = 12 values = [] assessment = [] subset = data[column] print('all datas: \n\tmean: {}\n\tmed: {}\n\tmod: {}\n\tvar: {}\n\tstd: {}\n\tskew: {}\n\tkur: {}'.format(subset.mean(), subset.median(), subset.mode()[0], subset.var(ddof=0), subset.std(ddof=0), subset.skew(), subset.kurtosis())) plt.hist(subset, n_bins, label='all datas', alpha=0.5) plt.show() subset.plot.box(vert=False) plt.title(column) plt.show() fig = plt.figure(figsize=(36, 18)) for group in groups: subset = data[data.PrimaryPropertyType == group][column] values.append(subset) assessment.append([group, subset.mean(), subset.median(), subset.mode()[0], subset.var(ddof=0), subset.std(ddof=0), subset.skew(), subset.kurtosis()]) plt.hist(subset, n_bins, label=group, alpha=0.3) plt.legend(loc='best') plt.title(column) plt.show() fig = plt.figure(figsize=(36, 18)) plt.hist(values, n_bins, histtype='bar', label=groups) plt.legend(loc='best') plt.title(column) plt.show() df_assessment = pd.DataFrame(assessment, columns=['group', 'moy', 'med', 'mod', 'var', 'std', 'skew', 'kur']) display(df_assessment) fig, ax = plt.subplots(figsize=(36, 10)) ax.boxplot(values, labels=groups) plt.show() print('=' * 120)
code
72092655/cell_4
[ "image_output_11.png", "text_plain_output_5.png", "image_output_17.png", "text_html_output_4.png", "image_output_14.png", "text_plain_output_4.png", "text_html_output_2.png", "image_output_13.png", "image_output_5.png", "image_output_18.png", "image_output_7.png", "image_output_20.png", "text_plain_output_3.png", "image_output_4.png", "image_output_8.png", "image_output_16.png", "text_html_output_1.png", "image_output_6.png", "image_output_12.png", "text_plain_output_2.png", "text_plain_output_1.png", "image_output_3.png", "image_output_2.png", "image_output_1.png", "image_output_10.png", "image_output_15.png", "text_html_output_3.png", "image_output_9.png", "image_output_19.png" ]
import numpy as np import pandas as pd data = pd.read_csv('/kaggle/input/refined-data/data_hard_refined.csv') data_full = pd.read_csv('/kaggle/input/refined-data/data_filtered.csv') objectColumns = list(data.dtypes[data.dtypes == np.object].index) numericColumns = list(data.dtypes[data.dtypes != np.object].index) objectColumns = list(data.dtypes[data.dtypes == np.object].index) numericColumns = list(data.dtypes[data.dtypes != np.object].index) print(objectColumns) print(numericColumns)
code
72092655/cell_6
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd data = pd.read_csv('/kaggle/input/refined-data/data_hard_refined.csv') data_full = pd.read_csv('/kaggle/input/refined-data/data_filtered.csv') objectColumns = list(data.dtypes[data.dtypes == np.object].index) numericColumns = list(data.dtypes[data.dtypes != np.object].index) objectColumns = list(data.dtypes[data.dtypes == np.object].index) numericColumns = list(data.dtypes[data.dtypes != np.object].index) data['Energy/Surface'] = data['SiteEnergyUse(kBtu)'] / data['PropertyGFATotal'] data['GHG/Surface'] = data['TotalGHGEmissions'] / data['PropertyGFATotal'] columns_to_boxplot = ['SiteEnergyUse(kBtu)', 'Energy/Surface', 'TotalGHGEmissions', 'GHG/Surface'] for column in columns_to_boxplot: print('column: {}'.format(column)) n_bins = 12 subset = data[column] print('all datas: \n\tmean: {}\n\tmed: {}\n\tmod: {}\n\tvar: {}\n\tstd: {}\n\tskew: {}\n\tkur: {}'.format(subset.mean(), subset.median(), subset.mode()[0], subset.var(ddof=0), subset.std(ddof=0), subset.skew(), subset.kurtosis())) plt.hist(subset, n_bins, label='all datas', alpha=0.5) plt.title(column) plt.legend(loc='best') plt.show() subset.plot.box(vert=False) plt.title(column) plt.show() print('=' * 120)
code
72092655/cell_11
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd data = pd.read_csv('/kaggle/input/refined-data/data_hard_refined.csv') data_full = pd.read_csv('/kaggle/input/refined-data/data_filtered.csv') objectColumns = list(data.dtypes[data.dtypes == np.object].index) numericColumns = list(data.dtypes[data.dtypes != np.object].index) objectColumns = list(data.dtypes[data.dtypes == np.object].index) numericColumns = list(data.dtypes[data.dtypes != np.object].index) data['Energy/Surface'] = data['SiteEnergyUse(kBtu)'] / data['PropertyGFATotal'] data['GHG/Surface'] = data['TotalGHGEmissions'] / data['PropertyGFATotal'] columns_to_boxplot = ['SiteEnergyUse(kBtu)', 'Energy/Surface', 'TotalGHGEmissions', 'GHG/Surface'] for column in columns_to_boxplot: n_bins = 12 subset = data[column] subset.plot.box(vert=False) for column in columns_to_boxplot: i = 0 quartile_1 = data[column].quantile(0.25) quartile_3 = data[column].quantile(0.75) iqr = quartile_3 - quartile_1 min_value = quartile_1 - 1.5 * iqr max_value = quartile_3 + 1.5 * iqr outliers = data[(data[column] > max_value) | (data[column] < min_value)] i += outliers.shape[0] # analyse des variables quantitatives continues: pour les groupes de PrimaryPropertyType) groups = data['PrimaryPropertyType'].unique() for column in columns_to_boxplot: print('column: {}'.format(column)) n_bins = 12 values=[] assessment = [] subset = data[column] # var = variance empirique, std = ecart type empirique print('all datas: \n\tmean: {}\n\tmed: {}\n\tmod: {}\n\tvar: {}\n\tstd: {}\n\tskew: {}\n\tkur: {}' .format(subset.mean(),subset.median(), subset.mode()[0],subset.var(ddof=0),subset.std(ddof=0),subset.skew(),subset.kurtosis())) plt.hist(subset,n_bins,label='all datas', alpha=0.5) plt.show() subset.plot.box(vert=False) plt.title(column) plt.show() fig = plt.figure(figsize=(36,18)) for group in groups: subset = data[data.PrimaryPropertyType == group][column] # Création du sous-échantillon values.append(subset) assessment.append([group,subset.mean(),subset.median(), subset.mode()[0],subset.var(ddof=0),subset.std(ddof=0),subset.skew(),subset.kurtosis()]) plt.hist(subset,n_bins,label=group, alpha=0.3) plt.legend(loc='best') plt.title(column) plt.show() # Affiche l'histogramme fig = plt.figure(figsize=(36,18)) plt.hist(values, n_bins, histtype='bar', label=groups) plt.legend(loc='best') plt.title(column) plt.show() # Affiche l'histogramme df_assessment = pd.DataFrame(assessment,columns=['group', 'moy', 'med', 'mod','var','std','skew','kur']) display(df_assessment) # https://towardsdatascience.com/create-and-customize-boxplots-with-pythons-matplotlib-to-get-lots-of-insights-from-your-data-d561c9883643 fig, ax = plt.subplots(figsize=(36,10)) ax.boxplot(values, labels=groups) plt.show() print('='*120) data_refined = data.copy() columns_outliers_to_delete = ['Energy/Surface', 'GHG/Surface'] for column in columns_outliers_to_delete: i = 0 for group in groups: j = 0 subset = data_refined[data_refined.PrimaryPropertyType == group] quartile_1 = subset[column].quantile(0.25) quartile_3 = subset[column].quantile(0.75) iqr = quartile_3 - quartile_1 min_value = quartile_1 - 1.5 * iqr max_value = quartile_3 + 1.5 * iqr outliers = subset[(subset[column] > max_value) | (subset[column] < min_value)] j += outliers.shape[0] i += j data_refined.drop(outliers.index.values, inplace=True) print(data.shape) print(data_refined.shape) data_refined.to_csv('data_without_outliers.csv', index=False)
code
72092655/cell_7
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd data = pd.read_csv('/kaggle/input/refined-data/data_hard_refined.csv') data_full = pd.read_csv('/kaggle/input/refined-data/data_filtered.csv') objectColumns = list(data.dtypes[data.dtypes == np.object].index) numericColumns = list(data.dtypes[data.dtypes != np.object].index) objectColumns = list(data.dtypes[data.dtypes == np.object].index) numericColumns = list(data.dtypes[data.dtypes != np.object].index) data['Energy/Surface'] = data['SiteEnergyUse(kBtu)'] / data['PropertyGFATotal'] data['GHG/Surface'] = data['TotalGHGEmissions'] / data['PropertyGFATotal'] columns_to_boxplot = ['SiteEnergyUse(kBtu)', 'Energy/Surface', 'TotalGHGEmissions', 'GHG/Surface'] for column in columns_to_boxplot: n_bins = 12 subset = data[column] subset.plot.box(vert=False) for column in columns_to_boxplot: i = 0 quartile_1 = data[column].quantile(0.25) quartile_3 = data[column].quantile(0.75) iqr = quartile_3 - quartile_1 min_value = quartile_1 - 1.5 * iqr max_value = quartile_3 + 1.5 * iqr outliers = data[(data[column] > max_value) | (data[column] < min_value)] i += outliers.shape[0] print('colonnes {}, {} outliers détectés'.format(column, i))
code
72092655/cell_10
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd data = pd.read_csv('/kaggle/input/refined-data/data_hard_refined.csv') data_full = pd.read_csv('/kaggle/input/refined-data/data_filtered.csv') objectColumns = list(data.dtypes[data.dtypes == np.object].index) numericColumns = list(data.dtypes[data.dtypes != np.object].index) objectColumns = list(data.dtypes[data.dtypes == np.object].index) numericColumns = list(data.dtypes[data.dtypes != np.object].index) data['Energy/Surface'] = data['SiteEnergyUse(kBtu)'] / data['PropertyGFATotal'] data['GHG/Surface'] = data['TotalGHGEmissions'] / data['PropertyGFATotal'] columns_to_boxplot = ['SiteEnergyUse(kBtu)', 'Energy/Surface', 'TotalGHGEmissions', 'GHG/Surface'] for column in columns_to_boxplot: n_bins = 12 subset = data[column] subset.plot.box(vert=False) for column in columns_to_boxplot: i = 0 quartile_1 = data[column].quantile(0.25) quartile_3 = data[column].quantile(0.75) iqr = quartile_3 - quartile_1 min_value = quartile_1 - 1.5 * iqr max_value = quartile_3 + 1.5 * iqr outliers = data[(data[column] > max_value) | (data[column] < min_value)] i += outliers.shape[0] # analyse des variables quantitatives continues: pour les groupes de PrimaryPropertyType) groups = data['PrimaryPropertyType'].unique() for column in columns_to_boxplot: print('column: {}'.format(column)) n_bins = 12 values=[] assessment = [] subset = data[column] # var = variance empirique, std = ecart type empirique print('all datas: \n\tmean: {}\n\tmed: {}\n\tmod: {}\n\tvar: {}\n\tstd: {}\n\tskew: {}\n\tkur: {}' .format(subset.mean(),subset.median(), subset.mode()[0],subset.var(ddof=0),subset.std(ddof=0),subset.skew(),subset.kurtosis())) plt.hist(subset,n_bins,label='all datas', alpha=0.5) plt.show() subset.plot.box(vert=False) plt.title(column) plt.show() fig = plt.figure(figsize=(36,18)) for group in groups: subset = data[data.PrimaryPropertyType == group][column] # Création du sous-échantillon values.append(subset) assessment.append([group,subset.mean(),subset.median(), subset.mode()[0],subset.var(ddof=0),subset.std(ddof=0),subset.skew(),subset.kurtosis()]) plt.hist(subset,n_bins,label=group, alpha=0.3) plt.legend(loc='best') plt.title(column) plt.show() # Affiche l'histogramme fig = plt.figure(figsize=(36,18)) plt.hist(values, n_bins, histtype='bar', label=groups) plt.legend(loc='best') plt.title(column) plt.show() # Affiche l'histogramme df_assessment = pd.DataFrame(assessment,columns=['group', 'moy', 'med', 'mod','var','std','skew','kur']) display(df_assessment) # https://towardsdatascience.com/create-and-customize-boxplots-with-pythons-matplotlib-to-get-lots-of-insights-from-your-data-d561c9883643 fig, ax = plt.subplots(figsize=(36,10)) ax.boxplot(values, labels=groups) plt.show() print('='*120) data_refined = data.copy() columns_outliers_to_delete = ['Energy/Surface', 'GHG/Surface'] for column in columns_outliers_to_delete: print('colonne {}'.format(column)) i = 0 for group in groups: j = 0 subset = data_refined[data_refined.PrimaryPropertyType == group] quartile_1 = subset[column].quantile(0.25) quartile_3 = subset[column].quantile(0.75) iqr = quartile_3 - quartile_1 min_value = quartile_1 - 1.5 * iqr max_value = quartile_3 + 1.5 * iqr outliers = subset[(subset[column] > max_value) | (subset[column] < min_value)] j += outliers.shape[0] i += j print('groupe {}, {} outliers détectés'.format(group, j)) data_refined.drop(outliers.index.values, inplace=True) print('Total {}, {} outliers détectés'.format(column, i)) print('=' * 120)
code
72092655/cell_12
[ "text_plain_output_5.png", "text_plain_output_4.png", "image_output_5.png", "image_output_7.png", "text_plain_output_3.png", "image_output_4.png", "image_output_8.png", "image_output_6.png", "text_plain_output_2.png", "text_plain_output_1.png", "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd data = pd.read_csv('/kaggle/input/refined-data/data_hard_refined.csv') data_full = pd.read_csv('/kaggle/input/refined-data/data_filtered.csv') objectColumns = list(data.dtypes[data.dtypes == np.object].index) numericColumns = list(data.dtypes[data.dtypes != np.object].index) objectColumns = list(data.dtypes[data.dtypes == np.object].index) numericColumns = list(data.dtypes[data.dtypes != np.object].index) data['Energy/Surface'] = data['SiteEnergyUse(kBtu)'] / data['PropertyGFATotal'] data['GHG/Surface'] = data['TotalGHGEmissions'] / data['PropertyGFATotal'] columns_to_boxplot = ['SiteEnergyUse(kBtu)', 'Energy/Surface', 'TotalGHGEmissions', 'GHG/Surface'] for column in columns_to_boxplot: n_bins = 12 subset = data[column] subset.plot.box(vert=False) for column in columns_to_boxplot: i = 0 quartile_1 = data[column].quantile(0.25) quartile_3 = data[column].quantile(0.75) iqr = quartile_3 - quartile_1 min_value = quartile_1 - 1.5 * iqr max_value = quartile_3 + 1.5 * iqr outliers = data[(data[column] > max_value) | (data[column] < min_value)] i += outliers.shape[0] # analyse des variables quantitatives continues: pour les groupes de PrimaryPropertyType) groups = data['PrimaryPropertyType'].unique() for column in columns_to_boxplot: print('column: {}'.format(column)) n_bins = 12 values=[] assessment = [] subset = data[column] # var = variance empirique, std = ecart type empirique print('all datas: \n\tmean: {}\n\tmed: {}\n\tmod: {}\n\tvar: {}\n\tstd: {}\n\tskew: {}\n\tkur: {}' .format(subset.mean(),subset.median(), subset.mode()[0],subset.var(ddof=0),subset.std(ddof=0),subset.skew(),subset.kurtosis())) plt.hist(subset,n_bins,label='all datas', alpha=0.5) plt.show() subset.plot.box(vert=False) plt.title(column) plt.show() fig = plt.figure(figsize=(36,18)) for group in groups: subset = data[data.PrimaryPropertyType == group][column] # Création du sous-échantillon values.append(subset) assessment.append([group,subset.mean(),subset.median(), subset.mode()[0],subset.var(ddof=0),subset.std(ddof=0),subset.skew(),subset.kurtosis()]) plt.hist(subset,n_bins,label=group, alpha=0.3) plt.legend(loc='best') plt.title(column) plt.show() # Affiche l'histogramme fig = plt.figure(figsize=(36,18)) plt.hist(values, n_bins, histtype='bar', label=groups) plt.legend(loc='best') plt.title(column) plt.show() # Affiche l'histogramme df_assessment = pd.DataFrame(assessment,columns=['group', 'moy', 'med', 'mod','var','std','skew','kur']) display(df_assessment) # https://towardsdatascience.com/create-and-customize-boxplots-with-pythons-matplotlib-to-get-lots-of-insights-from-your-data-d561c9883643 fig, ax = plt.subplots(figsize=(36,10)) ax.boxplot(values, labels=groups) plt.show() print('='*120) data_refined = data.copy() columns_outliers_to_delete = ['Energy/Surface', 'GHG/Surface'] for column in columns_outliers_to_delete: i = 0 for group in groups: j = 0 subset = data_refined[data_refined.PrimaryPropertyType == group] quartile_1 = subset[column].quantile(0.25) quartile_3 = subset[column].quantile(0.75) iqr = quartile_3 - quartile_1 min_value = quartile_1 - 1.5 * iqr max_value = quartile_3 + 1.5 * iqr outliers = subset[(subset[column] > max_value) | (subset[column] < min_value)] j += outliers.shape[0] i += j data_refined.drop(outliers.index.values, inplace=True) data_refined.to_csv('data_without_outliers.csv', index=False) data_refine = data.copy() columns_outliers_to_delete == ['SiteEnergyUse(kBtu)', 'TotalGHGEmissions'] for column in columns_outliers_to_delete: i = 0 quartile_1 = data_refine[column].quantile(0.25) quartile_3 = data_refine[column].quantile(0.75) iqr = quartile_3 - quartile_1 min_value = quartile_1 - 1.5 * iqr max_value = quartile_3 + 1.5 * iqr outliers = data_refine[(data_refine[column] > max_value) | (data_refine[column] < min_value)] i += outliers.shape[0] print('colonnes {}, {} outliers détectés'.format(column, i)) data_refine.drop(outliers.index.values, inplace=True)
code
72092655/cell_5
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd data = pd.read_csv('/kaggle/input/refined-data/data_hard_refined.csv') data_full = pd.read_csv('/kaggle/input/refined-data/data_filtered.csv') objectColumns = list(data.dtypes[data.dtypes == np.object].index) numericColumns = list(data.dtypes[data.dtypes != np.object].index) objectColumns = list(data.dtypes[data.dtypes == np.object].index) numericColumns = list(data.dtypes[data.dtypes != np.object].index) print(data['BuildingType'].unique()) print(data['PrimaryPropertyType'].unique())
code
89138938/cell_13
[ "image_output_1.png" ]
import cv2 import matplotlib.pyplot as plt import numpy as np import os image_size = 150 labels = ['PNEUMONIA', 'NORMAL'] def get_data(path): data = list() for label in labels: image_dir = os.path.join(path, label) class_num = labels.index(label) for img in os.listdir(image_dir): try: img_arr = cv2.imread(os.path.join(image_dir, img), cv2.IMREAD_GRAYSCALE) resized_array = cv2.resize(img_arr, (image_size, image_size)) data.append([resized_array, class_num]) except Exception as e: return np.array(data) train = get_data('../input/chest-xray-pneumonia/chest_xray/chest_xray/train') test = get_data('../input/chest-xray-pneumonia/chest_xray/chest_xray/test') val = get_data('../input/chest-xray-pneumonia/chest_xray/chest_xray/val') train_pneumonia = '/kaggle/input/chest-xray-pneumonia/chest_xray/train/PNEUMONIA' train_nornal = '/kaggle/input/chest-xray-pneumonia/chest_xray/train/NORMAL' x = (len(os.listdir(train_pneumonia)), len(os.listdir(train_nornal))) labels = ['PNEUMONIA', 'NORMAL'] color = ['yellow', 'green'] # visualize figure = plt.figure(figsize=(12, 12)) img1 = figure.add_subplot(1, 2, 1) img_plot = plt.imshow(train[3][0], cmap = 'gray') img1.set_title(labels[train[3][1]]) plt.axis("off") # Visualize img2 = figure.add_subplot(1, 2, 2) img2_plot = plt.imshow(train[4][0], cmap = 'gray') img2.set_title(labels[train[4][1]]) plt.axis('off') sample = train[2][0] rgb = cv2.cvtColor(sample, cv2.COLOR_BGR2RGB) gray = cv2.cvtColor(rgb, cv2.COLOR_RGB2GRAY) thresholds = [100, 120, 140, 180] for threshold in thresholds: val, thresh = cv2.threshold(gray, threshold, 255, cv2.THRESH_BINARY) plt.imshow(thresh, cmap='gray') plt.title(f'Threshold = {threshold}') plt.show()
code
89138938/cell_9
[ "image_output_4.png", "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
import cv2 import matplotlib.pyplot as plt import numpy as np import os image_size = 150 labels = ['PNEUMONIA', 'NORMAL'] def get_data(path): data = list() for label in labels: image_dir = os.path.join(path, label) class_num = labels.index(label) for img in os.listdir(image_dir): try: img_arr = cv2.imread(os.path.join(image_dir, img), cv2.IMREAD_GRAYSCALE) resized_array = cv2.resize(img_arr, (image_size, image_size)) data.append([resized_array, class_num]) except Exception as e: return np.array(data) train = get_data('../input/chest-xray-pneumonia/chest_xray/chest_xray/train') test = get_data('../input/chest-xray-pneumonia/chest_xray/chest_xray/test') val = get_data('../input/chest-xray-pneumonia/chest_xray/chest_xray/val') train_pneumonia = '/kaggle/input/chest-xray-pneumonia/chest_xray/train/PNEUMONIA' train_nornal = '/kaggle/input/chest-xray-pneumonia/chest_xray/train/NORMAL' x = (len(os.listdir(train_pneumonia)), len(os.listdir(train_nornal))) labels = ['PNEUMONIA', 'NORMAL'] color = ['yellow', 'green'] figure = plt.figure(figsize=(12, 12)) img1 = figure.add_subplot(1, 2, 1) img_plot = plt.imshow(train[3][0], cmap='gray') img1.set_title(labels[train[3][1]]) plt.axis('off') img2 = figure.add_subplot(1, 2, 2) img2_plot = plt.imshow(train[4][0], cmap='gray') img2.set_title(labels[train[4][1]]) plt.axis('off')
code
89138938/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
import cv2 import numpy as np import os image_size = 150 labels = ['PNEUMONIA', 'NORMAL'] def get_data(path): data = list() for label in labels: image_dir = os.path.join(path, label) class_num = labels.index(label) for img in os.listdir(image_dir): try: img_arr = cv2.imread(os.path.join(image_dir, img), cv2.IMREAD_GRAYSCALE) resized_array = cv2.resize(img_arr, (image_size, image_size)) data.append([resized_array, class_num]) except Exception as e: return np.array(data) train = get_data('../input/chest-xray-pneumonia/chest_xray/chest_xray/train') test = get_data('../input/chest-xray-pneumonia/chest_xray/chest_xray/test') val = get_data('../input/chest-xray-pneumonia/chest_xray/chest_xray/val')
code
89138938/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import cv2 import numpy as np import os image_size = 150 labels = ['PNEUMONIA', 'NORMAL'] def get_data(path): data = list() for label in labels: image_dir = os.path.join(path, label) class_num = labels.index(label) for img in os.listdir(image_dir): try: img_arr = cv2.imread(os.path.join(image_dir, img), cv2.IMREAD_GRAYSCALE) resized_array = cv2.resize(img_arr, (image_size, image_size)) data.append([resized_array, class_num]) except Exception as e: return np.array(data) train = get_data('../input/chest-xray-pneumonia/chest_xray/chest_xray/train') test = get_data('../input/chest-xray-pneumonia/chest_xray/chest_xray/test') val = get_data('../input/chest-xray-pneumonia/chest_xray/chest_xray/val') print('Total number of Train image', len(train)) print() print('Total number of Test image', len(test)) print() print('Total number of Validation image', len(val))
code
89138938/cell_11
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_3.png", "text_plain_output_1.png" ]
import cv2 import matplotlib.pyplot as plt import numpy as np import os image_size = 150 labels = ['PNEUMONIA', 'NORMAL'] def get_data(path): data = list() for label in labels: image_dir = os.path.join(path, label) class_num = labels.index(label) for img in os.listdir(image_dir): try: img_arr = cv2.imread(os.path.join(image_dir, img), cv2.IMREAD_GRAYSCALE) resized_array = cv2.resize(img_arr, (image_size, image_size)) data.append([resized_array, class_num]) except Exception as e: return np.array(data) train = get_data('../input/chest-xray-pneumonia/chest_xray/chest_xray/train') test = get_data('../input/chest-xray-pneumonia/chest_xray/chest_xray/test') val = get_data('../input/chest-xray-pneumonia/chest_xray/chest_xray/val') train_pneumonia = '/kaggle/input/chest-xray-pneumonia/chest_xray/train/PNEUMONIA' train_nornal = '/kaggle/input/chest-xray-pneumonia/chest_xray/train/NORMAL' x = (len(os.listdir(train_pneumonia)), len(os.listdir(train_nornal))) labels = ['PNEUMONIA', 'NORMAL'] color = ['yellow', 'green'] # visualize figure = plt.figure(figsize=(12, 12)) img1 = figure.add_subplot(1, 2, 1) img_plot = plt.imshow(train[3][0], cmap = 'gray') img1.set_title(labels[train[3][1]]) plt.axis("off") # Visualize img2 = figure.add_subplot(1, 2, 2) img2_plot = plt.imshow(train[4][0], cmap = 'gray') img2.set_title(labels[train[4][1]]) plt.axis('off') sample = train[2][0] rgb = cv2.cvtColor(sample, cv2.COLOR_BGR2RGB) plt.imshow(rgb)
code
89138938/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
import cv2 import matplotlib.pyplot as plt import numpy as np import os image_size = 150 labels = ['PNEUMONIA', 'NORMAL'] def get_data(path): data = list() for label in labels: image_dir = os.path.join(path, label) class_num = labels.index(label) for img in os.listdir(image_dir): try: img_arr = cv2.imread(os.path.join(image_dir, img), cv2.IMREAD_GRAYSCALE) resized_array = cv2.resize(img_arr, (image_size, image_size)) data.append([resized_array, class_num]) except Exception as e: return np.array(data) train_pneumonia = '/kaggle/input/chest-xray-pneumonia/chest_xray/train/PNEUMONIA' train_nornal = '/kaggle/input/chest-xray-pneumonia/chest_xray/train/NORMAL' x = (len(os.listdir(train_pneumonia)), len(os.listdir(train_nornal))) labels = ['PNEUMONIA', 'NORMAL'] color = ['yellow', 'green'] plt.pie(x, labels=labels, colors=color, autopct='%.0f%%', radius=1.5, textprops={'fontsize': 16}) plt.show()
code
89138938/cell_12
[ "text_plain_output_1.png" ]
import cv2 import matplotlib.pyplot as plt import numpy as np import os image_size = 150 labels = ['PNEUMONIA', 'NORMAL'] def get_data(path): data = list() for label in labels: image_dir = os.path.join(path, label) class_num = labels.index(label) for img in os.listdir(image_dir): try: img_arr = cv2.imread(os.path.join(image_dir, img), cv2.IMREAD_GRAYSCALE) resized_array = cv2.resize(img_arr, (image_size, image_size)) data.append([resized_array, class_num]) except Exception as e: return np.array(data) train = get_data('../input/chest-xray-pneumonia/chest_xray/chest_xray/train') test = get_data('../input/chest-xray-pneumonia/chest_xray/chest_xray/test') val = get_data('../input/chest-xray-pneumonia/chest_xray/chest_xray/val') train_pneumonia = '/kaggle/input/chest-xray-pneumonia/chest_xray/train/PNEUMONIA' train_nornal = '/kaggle/input/chest-xray-pneumonia/chest_xray/train/NORMAL' x = (len(os.listdir(train_pneumonia)), len(os.listdir(train_nornal))) labels = ['PNEUMONIA', 'NORMAL'] color = ['yellow', 'green'] # visualize figure = plt.figure(figsize=(12, 12)) img1 = figure.add_subplot(1, 2, 1) img_plot = plt.imshow(train[3][0], cmap = 'gray') img1.set_title(labels[train[3][1]]) plt.axis("off") # Visualize img2 = figure.add_subplot(1, 2, 2) img2_plot = plt.imshow(train[4][0], cmap = 'gray') img2.set_title(labels[train[4][1]]) plt.axis('off') sample = train[2][0] rgb = cv2.cvtColor(sample, cv2.COLOR_BGR2RGB) gray = cv2.cvtColor(rgb, cv2.COLOR_RGB2GRAY) plt.imshow(gray, cmap='gray')
code
17102038/cell_21
[ "text_plain_output_1.png" ]
from keras.callbacks import ReduceLROnPlateau from keras.layers import Dense, Activation, Dropout, Flatten, Conv2D, MaxPooling2D, AveragePooling2D from keras.layers.normalization import BatchNormalization from keras.models import Sequential import keras import matplotlib.pyplot as plt import pandas as pd import pandas as pd import numpy as np import tensorflow as tf import keras from keras.models import Sequential from keras.layers import Dense, Activation, Dropout, Flatten, Conv2D, MaxPooling2D, AveragePooling2D from keras.layers.normalization import BatchNormalization from keras.callbacks import ReduceLROnPlateau from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import itertools import seaborn as sns X = pd.read_csv('../input/train.csv') X_test_main = pd.read_csv('../input/test.csv') y = X['label'] X = X.drop(['label'], axis=1) X = X.values.reshape(-1, 28, 28, 1).astype('float32') X_test_main = X_test_main.values.reshape(-1, 28, 28, 1).astype('float32') y = y.values X.shape plt.colorbar() model = Sequential() model.add(Conv2D(filters=32, kernel_size=(3, 3), activation='relu', strides=(1, 1), padding='valid')) model.add(MaxPooling2D(pool_size=(3, 3), strides=(1, 1), padding='valid')) model.add(BatchNormalization()) model.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu', strides=(1, 1), padding='valid')) model.add(MaxPooling2D(pool_size=(3, 3), strides=(1, 1), padding='valid')) model.add(BatchNormalization()) model.add(Conv2D(filters=128, kernel_size=(3, 3), activation='relu', strides=(1, 1), padding='valid')) model.add(MaxPooling2D(pool_size=(3, 3), strides=(1, 1), padding='valid')) model.add(BatchNormalization()) model.add(Flatten()) model.add(Dense(units=512, activation='relu')) model.add(Dense(units=120, activation='relu')) model.add(Dense(units=10, activation='softmax')) sgd = keras.optimizers.SGD(lr=0.001, decay=1e-06, momentum=0.9, nesterov=True) model.compile(loss='sparse_categorical_crossentropy', optimizer=sgd, metrics=['sparse_categorical_accuracy']) lrr = ReduceLROnPlateau(monitor='val_acc', patience=3, verbose=1, factor=0.5, min_lr=1e-05) result = model.fit(X_train, y_train, batch_size=70, epochs=20, verbose=2, validation_split=0.25, callbacks=[lrr], shuffle=True) '\nresult = model.fit(X, \n y, \n batch_size=70, \n epochs=3, \n verbose=2, \n validation_split=0.25, \n callbacks=[lrr],\n shuffle=True)\n' acc = result.history['sparse_categorical_accuracy'] val_acc = result.history['val_sparse_categorical_accuracy'] epochs = range(len(acc)) plt.plot(epochs, acc, 'r', label='Training') plt.plot(epochs, val_acc, 'b', label='Validation') plt.title('Training and validatio set accuracy') plt.legend(loc=0) plt.figure() plt.show()
code
17102038/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd import numpy as np import tensorflow as tf import keras from keras.models import Sequential from keras.layers import Dense, Activation, Dropout, Flatten, Conv2D, MaxPooling2D, AveragePooling2D from keras.layers.normalization import BatchNormalization from keras.callbacks import ReduceLROnPlateau from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import itertools import seaborn as sns X = pd.read_csv('../input/train.csv') X_test_main = pd.read_csv('../input/test.csv') y = X['label'] X = X.drop(['label'], axis=1) X = X.values.reshape(-1, 28, 28, 1).astype('float32') X_test_main = X_test_main.values.reshape(-1, 28, 28, 1).astype('float32') y = y.values X.shape plt.figure() plt.imshow(X[1][:, :, 0]) plt.colorbar() plt.grid(False) plt.show()
code
17102038/cell_2
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import numpy as np import tensorflow as tf import keras from keras.models import Sequential from keras.layers import Dense, Activation, Dropout, Flatten, Conv2D, MaxPooling2D, AveragePooling2D from keras.layers.normalization import BatchNormalization from keras.callbacks import ReduceLROnPlateau from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import itertools import seaborn as sns X = pd.read_csv('../input/train.csv') X_test_main = pd.read_csv('../input/test.csv') y = X['label'] X = X.drop(['label'], axis=1) X = X.values.reshape(-1, 28, 28, 1).astype('float32') X_test_main = X_test_main.values.reshape(-1, 28, 28, 1).astype('float32') y = y.values
code
17102038/cell_19
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_4.png", "text_plain_output_3.png", "text_plain_output_1.png" ]
from keras.callbacks import ReduceLROnPlateau from keras.layers import Dense, Activation, Dropout, Flatten, Conv2D, MaxPooling2D, AveragePooling2D from keras.layers.normalization import BatchNormalization from keras.models import Sequential import keras model = Sequential() model.add(Conv2D(filters=32, kernel_size=(3, 3), activation='relu', strides=(1, 1), padding='valid')) model.add(MaxPooling2D(pool_size=(3, 3), strides=(1, 1), padding='valid')) model.add(BatchNormalization()) model.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu', strides=(1, 1), padding='valid')) model.add(MaxPooling2D(pool_size=(3, 3), strides=(1, 1), padding='valid')) model.add(BatchNormalization()) model.add(Conv2D(filters=128, kernel_size=(3, 3), activation='relu', strides=(1, 1), padding='valid')) model.add(MaxPooling2D(pool_size=(3, 3), strides=(1, 1), padding='valid')) model.add(BatchNormalization()) model.add(Flatten()) model.add(Dense(units=512, activation='relu')) model.add(Dense(units=120, activation='relu')) model.add(Dense(units=10, activation='softmax')) sgd = keras.optimizers.SGD(lr=0.001, decay=1e-06, momentum=0.9, nesterov=True) model.compile(loss='sparse_categorical_crossentropy', optimizer=sgd, metrics=['sparse_categorical_accuracy']) lrr = ReduceLROnPlateau(monitor='val_acc', patience=3, verbose=1, factor=0.5, min_lr=1e-05) result = model.fit(X_train, y_train, batch_size=70, epochs=20, verbose=2, validation_split=0.25, callbacks=[lrr], shuffle=True) '\nresult = model.fit(X, \n y, \n batch_size=70, \n epochs=3, \n verbose=2, \n validation_split=0.25, \n callbacks=[lrr],\n shuffle=True)\n' model.summary() y_pred = model.predict(X_test, verbose=2) y_pred[:, 0] test_loss, test_acc = model.evaluate(X_test, y_test) print('Test accuracy:', test_acc)
code
17102038/cell_18
[ "image_output_1.png" ]
from keras.callbacks import ReduceLROnPlateau from keras.layers import Dense, Activation, Dropout, Flatten, Conv2D, MaxPooling2D, AveragePooling2D from keras.layers.normalization import BatchNormalization from keras.models import Sequential import keras model = Sequential() model.add(Conv2D(filters=32, kernel_size=(3, 3), activation='relu', strides=(1, 1), padding='valid')) model.add(MaxPooling2D(pool_size=(3, 3), strides=(1, 1), padding='valid')) model.add(BatchNormalization()) model.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu', strides=(1, 1), padding='valid')) model.add(MaxPooling2D(pool_size=(3, 3), strides=(1, 1), padding='valid')) model.add(BatchNormalization()) model.add(Conv2D(filters=128, kernel_size=(3, 3), activation='relu', strides=(1, 1), padding='valid')) model.add(MaxPooling2D(pool_size=(3, 3), strides=(1, 1), padding='valid')) model.add(BatchNormalization()) model.add(Flatten()) model.add(Dense(units=512, activation='relu')) model.add(Dense(units=120, activation='relu')) model.add(Dense(units=10, activation='softmax')) sgd = keras.optimizers.SGD(lr=0.001, decay=1e-06, momentum=0.9, nesterov=True) model.compile(loss='sparse_categorical_crossentropy', optimizer=sgd, metrics=['sparse_categorical_accuracy']) lrr = ReduceLROnPlateau(monitor='val_acc', patience=3, verbose=1, factor=0.5, min_lr=1e-05) result = model.fit(X_train, y_train, batch_size=70, epochs=20, verbose=2, validation_split=0.25, callbacks=[lrr], shuffle=True) '\nresult = model.fit(X, \n y, \n batch_size=70, \n epochs=3, \n verbose=2, \n validation_split=0.25, \n callbacks=[lrr],\n shuffle=True)\n' model.summary() y_pred = model.predict(X_test, verbose=2) y_pred[:, 0]
code
17102038/cell_15
[ "application_vnd.jupyter.stderr_output_1.png" ]
from keras.callbacks import ReduceLROnPlateau from keras.layers import Dense, Activation, Dropout, Flatten, Conv2D, MaxPooling2D, AveragePooling2D from keras.layers.normalization import BatchNormalization from keras.models import Sequential import keras model = Sequential() model.add(Conv2D(filters=32, kernel_size=(3, 3), activation='relu', strides=(1, 1), padding='valid')) model.add(MaxPooling2D(pool_size=(3, 3), strides=(1, 1), padding='valid')) model.add(BatchNormalization()) model.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu', strides=(1, 1), padding='valid')) model.add(MaxPooling2D(pool_size=(3, 3), strides=(1, 1), padding='valid')) model.add(BatchNormalization()) model.add(Conv2D(filters=128, kernel_size=(3, 3), activation='relu', strides=(1, 1), padding='valid')) model.add(MaxPooling2D(pool_size=(3, 3), strides=(1, 1), padding='valid')) model.add(BatchNormalization()) model.add(Flatten()) model.add(Dense(units=512, activation='relu')) model.add(Dense(units=120, activation='relu')) model.add(Dense(units=10, activation='softmax')) sgd = keras.optimizers.SGD(lr=0.001, decay=1e-06, momentum=0.9, nesterov=True) model.compile(loss='sparse_categorical_crossentropy', optimizer=sgd, metrics=['sparse_categorical_accuracy']) lrr = ReduceLROnPlateau(monitor='val_acc', patience=3, verbose=1, factor=0.5, min_lr=1e-05) result = model.fit(X_train, y_train, batch_size=70, epochs=20, verbose=2, validation_split=0.25, callbacks=[lrr], shuffle=True) '\nresult = model.fit(X, \n y, \n batch_size=70, \n epochs=3, \n verbose=2, \n validation_split=0.25, \n callbacks=[lrr],\n shuffle=True)\n'
code
17102038/cell_16
[ "text_plain_output_1.png" ]
from keras.callbacks import ReduceLROnPlateau from keras.layers import Dense, Activation, Dropout, Flatten, Conv2D, MaxPooling2D, AveragePooling2D from keras.layers.normalization import BatchNormalization from keras.models import Sequential import keras model = Sequential() model.add(Conv2D(filters=32, kernel_size=(3, 3), activation='relu', strides=(1, 1), padding='valid')) model.add(MaxPooling2D(pool_size=(3, 3), strides=(1, 1), padding='valid')) model.add(BatchNormalization()) model.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu', strides=(1, 1), padding='valid')) model.add(MaxPooling2D(pool_size=(3, 3), strides=(1, 1), padding='valid')) model.add(BatchNormalization()) model.add(Conv2D(filters=128, kernel_size=(3, 3), activation='relu', strides=(1, 1), padding='valid')) model.add(MaxPooling2D(pool_size=(3, 3), strides=(1, 1), padding='valid')) model.add(BatchNormalization()) model.add(Flatten()) model.add(Dense(units=512, activation='relu')) model.add(Dense(units=120, activation='relu')) model.add(Dense(units=10, activation='softmax')) sgd = keras.optimizers.SGD(lr=0.001, decay=1e-06, momentum=0.9, nesterov=True) model.compile(loss='sparse_categorical_crossentropy', optimizer=sgd, metrics=['sparse_categorical_accuracy']) lrr = ReduceLROnPlateau(monitor='val_acc', patience=3, verbose=1, factor=0.5, min_lr=1e-05) result = model.fit(X_train, y_train, batch_size=70, epochs=20, verbose=2, validation_split=0.25, callbacks=[lrr], shuffle=True) '\nresult = model.fit(X, \n y, \n batch_size=70, \n epochs=3, \n verbose=2, \n validation_split=0.25, \n callbacks=[lrr],\n shuffle=True)\n' model.summary()
code
17102038/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import numpy as np import tensorflow as tf import keras from keras.models import Sequential from keras.layers import Dense, Activation, Dropout, Flatten, Conv2D, MaxPooling2D, AveragePooling2D from keras.layers.normalization import BatchNormalization from keras.callbacks import ReduceLROnPlateau from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import itertools import seaborn as sns X = pd.read_csv('../input/train.csv') X_test_main = pd.read_csv('../input/test.csv') y = X['label'] X = X.drop(['label'], axis=1) X = X.values.reshape(-1, 28, 28, 1).astype('float32') X_test_main = X_test_main.values.reshape(-1, 28, 28, 1).astype('float32') y = y.values X.shape
code
74054733/cell_5
[ "text_plain_output_1.png" ]
ver = read_kernel_versions() ver.columns
code
1008459/cell_9
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_hdf('../input/train.h5') data.loc[(data.id == 288) & (data.technical_16 != 0.0) & ~data.technical_16.isnull(), ['timestamp', 'technical_16']] data.loc[(data.id == 1201) & (data.technical_16 != 0.0) & ~data.technical_16.isnull(), ['timestamp', 'technical_16']]
code
1008459/cell_7
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_hdf('../input/train.h5') data.loc[(data.id == 288) & (data.technical_16 != 0.0) & ~data.technical_16.isnull(), ['timestamp', 'technical_16']]
code
1008459/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_hdf('../input/train.h5')
code
1008459/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_hdf('../input/train.h5') data.technical_16.describe()
code
32071115/cell_13
[ "text_html_output_1.png" ]
from tqdm.notebook import tqdm import pandas as pd import requests def get_restcountries(countries): """Retrieve all available fields from restcountries API https://github.com/apilayer/restcountries#response-example""" api = 'https://restcountries.eu/rest/v2' rdfs = [] for country in tqdm(countries): r = requests.get(f'{api}/name/{country}?fullText=true').json() if len(r) != 1: r = requests.get(f'{api}/name/{country}?fullText=false').json() if len(r) != 1: try: alpha3 = {'Channel Islands': None, 'Congo (Brazzaville)': 'COG', 'Congo (Kinshasa)': 'COD', 'Czechia': 'CZE', 'Diamond Princess': None, 'Iran': 'IRN', 'Korea, South': 'PRK', 'North Macedonia': 'MKD', 'St Martin': 'MAF', 'Taiwan*': 'TWN', 'Virgin Islands': 'VIR'} r = requests.get(f'{api}/alpha/{alpha3[country]}') r = [r.json()] if r.status_code == 200 else [] except: r = [] rdf = pd.DataFrame(r) rdf['country'] = country rdfs.append(rdf) return pd.concat(rdfs, sort=False).set_index('country') def get_datausa(): """Retrieve population on state level from datausa.io https://datausa.io/about/api/""" datausa = pd.DataFrame(requests.get('https://datausa.io/api/data?drilldowns=State&measures=Population&year=latest', headers={'User-Agent': ''}).json()['data']) datausa = datausa[['State', 'Population']] datausa.columns = ['state', 'population'] datausa['region'] = 'Americas' datausa['subregion'] = 'Northern America' return datausa.set_index('state') wiki_canada = {'Alberta': 4413146, 'British Columbia': 5110917, 'Manitoba': 1377517, 'New Brunswick': 779993, 'Newfoundland and Labrador': 521365, 'Nova Scotia': 977457, 'Ontario': 14711827, 'Prince Edward Island': 158158, 'Quebec': 8537674, 'Saskatchewan': 1181666} canada = pd.DataFrame({'population': wiki_canada, 'region': 'Americas', 'subregion': 'Northern America'}) wiki_australia = {'Australian Capital Territory': 426709, 'New South Wales': 8089526, 'Northern Territory': 245869, 'Queensland': 5095100, 'South Australia': 1751693, 'Tasmania': 534281, 'Victoria': 6594804, 'Western Australia': 2621680} australia = pd.DataFrame({'population': wiki_australia, 'region': 'Oceania', 'subregion': 'Australia and New Zealand'}) wiki_china = {'Anhui': 62550000, 'Beijing': 21710000, 'Chongqing': 30750000, 'Fujian': 39110000, 'Gansu': 26260000, 'Guangdong': 111690000, 'Guangxi': 48850000, 'Guizhou': 35550000, 'Hainan': 9170000, 'Hebei': 75200000, 'Heilongjiang': 37890000, 'Henan': 95590000, 'Hubei': 59020000, 'Hunan': 68600000, 'Inner Mongolia': 25290000, 'Jiangsu': 80290000, 'Jiangxi': 46220000, 'Jilin': 27170000, 'Liaoning': 43690000, 'Ningxia': 6820000, 'Qinghai': 5980000, 'Shaanxi': 38350000, 'Shandong': 100060000, 'Shanghai': 24180000, 'Shanxi': 36820000, 'Sichuan': 83020000, 'Tianjin': 15570000, 'Tibet': 3370000, 'Xinjiang': 24450000, 'Yunnan': 48010000, 'Zhejiang': 56570000} china = pd.DataFrame({'population': wiki_china, 'region': 'Asia', 'subregion': 'Eastern Asia'}) wiki_channel_islands = {'Channel Islands': 170499} channel_islands = pd.DataFrame({'population': wiki_channel_islands, 'region': 'Europe', 'subregion': 'Northern Europe'}) wiki_diamond_princess = {'Diamond Princess': 3711} diamond_princess = pd.DataFrame({'population': wiki_diamond_princess, 'region': 'Asia', 'subregion': 'Eastern Asia'}) train = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv', parse_dates=['Date']) train.columns = ['id', 'province_state', 'country_region', 'date', 'confirmed', 'fatal'] train['country_region'].update(train['country_region'].str.replace('Georgia', 'Sakartvelo')) train['entity'] = train['province_state'].where(~train['province_state'].isna(), train['country_region']) countries = train['entity'].unique() features = get_restcountries(countries)[['region', 'subregion', 'population']] for chunk in [get_datausa(), canada, australia, china, channel_islands, diamond_princess]: features = features.combine_first(chunk) features covid = train[['date', 'entity', 'confirmed', 'fatal']].join(features, on='entity') covid['confirmed'] = covid.groupby('entity')['confirmed'].cummax() covid['fatal'] = covid.groupby('entity')['fatal'].cummax() covid[['confirmed', 'fatal', 'population']] = covid[['confirmed', 'fatal', 'population']].fillna(0).astype('int') covid.sample(20)
code
32071115/cell_15
[ "text_html_output_1.png" ]
from tqdm.notebook import tqdm import pandas as pd import requests def get_restcountries(countries): """Retrieve all available fields from restcountries API https://github.com/apilayer/restcountries#response-example""" api = 'https://restcountries.eu/rest/v2' rdfs = [] for country in tqdm(countries): r = requests.get(f'{api}/name/{country}?fullText=true').json() if len(r) != 1: r = requests.get(f'{api}/name/{country}?fullText=false').json() if len(r) != 1: try: alpha3 = {'Channel Islands': None, 'Congo (Brazzaville)': 'COG', 'Congo (Kinshasa)': 'COD', 'Czechia': 'CZE', 'Diamond Princess': None, 'Iran': 'IRN', 'Korea, South': 'PRK', 'North Macedonia': 'MKD', 'St Martin': 'MAF', 'Taiwan*': 'TWN', 'Virgin Islands': 'VIR'} r = requests.get(f'{api}/alpha/{alpha3[country]}') r = [r.json()] if r.status_code == 200 else [] except: r = [] rdf = pd.DataFrame(r) rdf['country'] = country rdfs.append(rdf) return pd.concat(rdfs, sort=False).set_index('country') def get_datausa(): """Retrieve population on state level from datausa.io https://datausa.io/about/api/""" datausa = pd.DataFrame(requests.get('https://datausa.io/api/data?drilldowns=State&measures=Population&year=latest', headers={'User-Agent': ''}).json()['data']) datausa = datausa[['State', 'Population']] datausa.columns = ['state', 'population'] datausa['region'] = 'Americas' datausa['subregion'] = 'Northern America' return datausa.set_index('state') wiki_canada = {'Alberta': 4413146, 'British Columbia': 5110917, 'Manitoba': 1377517, 'New Brunswick': 779993, 'Newfoundland and Labrador': 521365, 'Nova Scotia': 977457, 'Ontario': 14711827, 'Prince Edward Island': 158158, 'Quebec': 8537674, 'Saskatchewan': 1181666} canada = pd.DataFrame({'population': wiki_canada, 'region': 'Americas', 'subregion': 'Northern America'}) wiki_australia = {'Australian Capital Territory': 426709, 'New South Wales': 8089526, 'Northern Territory': 245869, 'Queensland': 5095100, 'South Australia': 1751693, 'Tasmania': 534281, 'Victoria': 6594804, 'Western Australia': 2621680} australia = pd.DataFrame({'population': wiki_australia, 'region': 'Oceania', 'subregion': 'Australia and New Zealand'}) wiki_china = {'Anhui': 62550000, 'Beijing': 21710000, 'Chongqing': 30750000, 'Fujian': 39110000, 'Gansu': 26260000, 'Guangdong': 111690000, 'Guangxi': 48850000, 'Guizhou': 35550000, 'Hainan': 9170000, 'Hebei': 75200000, 'Heilongjiang': 37890000, 'Henan': 95590000, 'Hubei': 59020000, 'Hunan': 68600000, 'Inner Mongolia': 25290000, 'Jiangsu': 80290000, 'Jiangxi': 46220000, 'Jilin': 27170000, 'Liaoning': 43690000, 'Ningxia': 6820000, 'Qinghai': 5980000, 'Shaanxi': 38350000, 'Shandong': 100060000, 'Shanghai': 24180000, 'Shanxi': 36820000, 'Sichuan': 83020000, 'Tianjin': 15570000, 'Tibet': 3370000, 'Xinjiang': 24450000, 'Yunnan': 48010000, 'Zhejiang': 56570000} china = pd.DataFrame({'population': wiki_china, 'region': 'Asia', 'subregion': 'Eastern Asia'}) wiki_channel_islands = {'Channel Islands': 170499} channel_islands = pd.DataFrame({'population': wiki_channel_islands, 'region': 'Europe', 'subregion': 'Northern Europe'}) wiki_diamond_princess = {'Diamond Princess': 3711} diamond_princess = pd.DataFrame({'population': wiki_diamond_princess, 'region': 'Asia', 'subregion': 'Eastern Asia'}) train = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv', parse_dates=['Date']) train.columns = ['id', 'province_state', 'country_region', 'date', 'confirmed', 'fatal'] train['country_region'].update(train['country_region'].str.replace('Georgia', 'Sakartvelo')) train['entity'] = train['province_state'].where(~train['province_state'].isna(), train['country_region']) countries = train['entity'].unique() features = get_restcountries(countries)[['region', 'subregion', 'population']] for chunk in [get_datausa(), canada, australia, china, channel_islands, diamond_princess]: features = features.combine_first(chunk) features covid = train[['date', 'entity', 'confirmed', 'fatal']].join(features, on='entity') covid['confirmed'] = covid.groupby('entity')['confirmed'].cummax() covid['fatal'] = covid.groupby('entity')['fatal'].cummax() covid[['confirmed', 'fatal', 'population']] = covid[['confirmed', 'fatal', 'population']].fillna(0).astype('int') covid.sample(20) covid.groupby('entity').max().pivot_table(index='region', aggfunc='sum', margins=True)
code
32071115/cell_17
[ "text_plain_output_1.png" ]
from tqdm.notebook import tqdm import pandas as pd import requests def get_restcountries(countries): """Retrieve all available fields from restcountries API https://github.com/apilayer/restcountries#response-example""" api = 'https://restcountries.eu/rest/v2' rdfs = [] for country in tqdm(countries): r = requests.get(f'{api}/name/{country}?fullText=true').json() if len(r) != 1: r = requests.get(f'{api}/name/{country}?fullText=false').json() if len(r) != 1: try: alpha3 = {'Channel Islands': None, 'Congo (Brazzaville)': 'COG', 'Congo (Kinshasa)': 'COD', 'Czechia': 'CZE', 'Diamond Princess': None, 'Iran': 'IRN', 'Korea, South': 'PRK', 'North Macedonia': 'MKD', 'St Martin': 'MAF', 'Taiwan*': 'TWN', 'Virgin Islands': 'VIR'} r = requests.get(f'{api}/alpha/{alpha3[country]}') r = [r.json()] if r.status_code == 200 else [] except: r = [] rdf = pd.DataFrame(r) rdf['country'] = country rdfs.append(rdf) return pd.concat(rdfs, sort=False).set_index('country') def get_datausa(): """Retrieve population on state level from datausa.io https://datausa.io/about/api/""" datausa = pd.DataFrame(requests.get('https://datausa.io/api/data?drilldowns=State&measures=Population&year=latest', headers={'User-Agent': ''}).json()['data']) datausa = datausa[['State', 'Population']] datausa.columns = ['state', 'population'] datausa['region'] = 'Americas' datausa['subregion'] = 'Northern America' return datausa.set_index('state') wiki_canada = {'Alberta': 4413146, 'British Columbia': 5110917, 'Manitoba': 1377517, 'New Brunswick': 779993, 'Newfoundland and Labrador': 521365, 'Nova Scotia': 977457, 'Ontario': 14711827, 'Prince Edward Island': 158158, 'Quebec': 8537674, 'Saskatchewan': 1181666} canada = pd.DataFrame({'population': wiki_canada, 'region': 'Americas', 'subregion': 'Northern America'}) wiki_australia = {'Australian Capital Territory': 426709, 'New South Wales': 8089526, 'Northern Territory': 245869, 'Queensland': 5095100, 'South Australia': 1751693, 'Tasmania': 534281, 'Victoria': 6594804, 'Western Australia': 2621680} australia = pd.DataFrame({'population': wiki_australia, 'region': 'Oceania', 'subregion': 'Australia and New Zealand'}) wiki_china = {'Anhui': 62550000, 'Beijing': 21710000, 'Chongqing': 30750000, 'Fujian': 39110000, 'Gansu': 26260000, 'Guangdong': 111690000, 'Guangxi': 48850000, 'Guizhou': 35550000, 'Hainan': 9170000, 'Hebei': 75200000, 'Heilongjiang': 37890000, 'Henan': 95590000, 'Hubei': 59020000, 'Hunan': 68600000, 'Inner Mongolia': 25290000, 'Jiangsu': 80290000, 'Jiangxi': 46220000, 'Jilin': 27170000, 'Liaoning': 43690000, 'Ningxia': 6820000, 'Qinghai': 5980000, 'Shaanxi': 38350000, 'Shandong': 100060000, 'Shanghai': 24180000, 'Shanxi': 36820000, 'Sichuan': 83020000, 'Tianjin': 15570000, 'Tibet': 3370000, 'Xinjiang': 24450000, 'Yunnan': 48010000, 'Zhejiang': 56570000} china = pd.DataFrame({'population': wiki_china, 'region': 'Asia', 'subregion': 'Eastern Asia'}) wiki_channel_islands = {'Channel Islands': 170499} channel_islands = pd.DataFrame({'population': wiki_channel_islands, 'region': 'Europe', 'subregion': 'Northern Europe'}) wiki_diamond_princess = {'Diamond Princess': 3711} diamond_princess = pd.DataFrame({'population': wiki_diamond_princess, 'region': 'Asia', 'subregion': 'Eastern Asia'}) train = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv', parse_dates=['Date']) train.columns = ['id', 'province_state', 'country_region', 'date', 'confirmed', 'fatal'] train['country_region'].update(train['country_region'].str.replace('Georgia', 'Sakartvelo')) train['entity'] = train['province_state'].where(~train['province_state'].isna(), train['country_region']) countries = train['entity'].unique() features = get_restcountries(countries)[['region', 'subregion', 'population']] for chunk in [get_datausa(), canada, australia, china, channel_islands, diamond_princess]: features = features.combine_first(chunk) features covid = train[['date', 'entity', 'confirmed', 'fatal']].join(features, on='entity') covid['confirmed'] = covid.groupby('entity')['confirmed'].cummax() covid['fatal'] = covid.groupby('entity')['fatal'].cummax() covid[['confirmed', 'fatal', 'population']] = covid[['confirmed', 'fatal', 'population']].fillna(0).astype('int') covid.sample(20) covid.groupby('entity').max().pivot_table(index='region', aggfunc='sum', margins=True) covid.to_csv('covid.csv', index=False) covid['date'].max()
code
32071115/cell_12
[ "text_html_output_1.png" ]
from tqdm.notebook import tqdm import pandas as pd import requests def get_restcountries(countries): """Retrieve all available fields from restcountries API https://github.com/apilayer/restcountries#response-example""" api = 'https://restcountries.eu/rest/v2' rdfs = [] for country in tqdm(countries): r = requests.get(f'{api}/name/{country}?fullText=true').json() if len(r) != 1: r = requests.get(f'{api}/name/{country}?fullText=false').json() if len(r) != 1: try: alpha3 = {'Channel Islands': None, 'Congo (Brazzaville)': 'COG', 'Congo (Kinshasa)': 'COD', 'Czechia': 'CZE', 'Diamond Princess': None, 'Iran': 'IRN', 'Korea, South': 'PRK', 'North Macedonia': 'MKD', 'St Martin': 'MAF', 'Taiwan*': 'TWN', 'Virgin Islands': 'VIR'} r = requests.get(f'{api}/alpha/{alpha3[country]}') r = [r.json()] if r.status_code == 200 else [] except: r = [] rdf = pd.DataFrame(r) rdf['country'] = country rdfs.append(rdf) return pd.concat(rdfs, sort=False).set_index('country') def get_datausa(): """Retrieve population on state level from datausa.io https://datausa.io/about/api/""" datausa = pd.DataFrame(requests.get('https://datausa.io/api/data?drilldowns=State&measures=Population&year=latest', headers={'User-Agent': ''}).json()['data']) datausa = datausa[['State', 'Population']] datausa.columns = ['state', 'population'] datausa['region'] = 'Americas' datausa['subregion'] = 'Northern America' return datausa.set_index('state') wiki_canada = {'Alberta': 4413146, 'British Columbia': 5110917, 'Manitoba': 1377517, 'New Brunswick': 779993, 'Newfoundland and Labrador': 521365, 'Nova Scotia': 977457, 'Ontario': 14711827, 'Prince Edward Island': 158158, 'Quebec': 8537674, 'Saskatchewan': 1181666} canada = pd.DataFrame({'population': wiki_canada, 'region': 'Americas', 'subregion': 'Northern America'}) wiki_australia = {'Australian Capital Territory': 426709, 'New South Wales': 8089526, 'Northern Territory': 245869, 'Queensland': 5095100, 'South Australia': 1751693, 'Tasmania': 534281, 'Victoria': 6594804, 'Western Australia': 2621680} australia = pd.DataFrame({'population': wiki_australia, 'region': 'Oceania', 'subregion': 'Australia and New Zealand'}) wiki_china = {'Anhui': 62550000, 'Beijing': 21710000, 'Chongqing': 30750000, 'Fujian': 39110000, 'Gansu': 26260000, 'Guangdong': 111690000, 'Guangxi': 48850000, 'Guizhou': 35550000, 'Hainan': 9170000, 'Hebei': 75200000, 'Heilongjiang': 37890000, 'Henan': 95590000, 'Hubei': 59020000, 'Hunan': 68600000, 'Inner Mongolia': 25290000, 'Jiangsu': 80290000, 'Jiangxi': 46220000, 'Jilin': 27170000, 'Liaoning': 43690000, 'Ningxia': 6820000, 'Qinghai': 5980000, 'Shaanxi': 38350000, 'Shandong': 100060000, 'Shanghai': 24180000, 'Shanxi': 36820000, 'Sichuan': 83020000, 'Tianjin': 15570000, 'Tibet': 3370000, 'Xinjiang': 24450000, 'Yunnan': 48010000, 'Zhejiang': 56570000} china = pd.DataFrame({'population': wiki_china, 'region': 'Asia', 'subregion': 'Eastern Asia'}) wiki_channel_islands = {'Channel Islands': 170499} channel_islands = pd.DataFrame({'population': wiki_channel_islands, 'region': 'Europe', 'subregion': 'Northern Europe'}) wiki_diamond_princess = {'Diamond Princess': 3711} diamond_princess = pd.DataFrame({'population': wiki_diamond_princess, 'region': 'Asia', 'subregion': 'Eastern Asia'}) train = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv', parse_dates=['Date']) train.columns = ['id', 'province_state', 'country_region', 'date', 'confirmed', 'fatal'] train['country_region'].update(train['country_region'].str.replace('Georgia', 'Sakartvelo')) train['entity'] = train['province_state'].where(~train['province_state'].isna(), train['country_region']) countries = train['entity'].unique() features = get_restcountries(countries)[['region', 'subregion', 'population']] for chunk in [get_datausa(), canada, australia, china, channel_islands, diamond_princess]: features = features.combine_first(chunk) features
code
331254/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import seaborn as sns import numpy as np import pandas as pd from matplotlib import pyplot as plt import matplotlib from sklearn.linear_model import LinearRegression frame = pd.read_csv('../input/3-Airplane_Crashes_Since_1908.txt', sep=',') plt.figure(figsize=(45, 10)) sns.stripplot('year', 'Fatalities', data=frame)
code
331254/cell_2
[ "text_plain_output_1.png" ]
import pandas as pd import numpy as np import pandas as pd from matplotlib import pyplot as plt import matplotlib from sklearn.linear_model import LinearRegression frame = pd.read_csv('../input/3-Airplane_Crashes_Since_1908.txt', sep=',') frame.head()
code
331254/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import seaborn as sns import numpy as np import pandas as pd from matplotlib import pyplot as plt import matplotlib from sklearn.linear_model import LinearRegression frame = pd.read_csv('../input/3-Airplane_Crashes_Since_1908.txt', sep=',') plt.figure(figsize=(45, 10)) sns.barplot('year', 'Aboard', data=frame)
code
331254/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import seaborn as sns import numpy as np import pandas as pd from matplotlib import pyplot as plt import matplotlib from sklearn.linear_model import LinearRegression frame = pd.read_csv('../input/3-Airplane_Crashes_Since_1908.txt', sep=',') plt.figure(figsize=(45, 10)) sns.barplot('year', 'Fatalities', data=frame)
code
331254/cell_10
[ "text_html_output_1.png" ]
import pandas as pd import seaborn as sns import numpy as np import pandas as pd from matplotlib import pyplot as plt import matplotlib from sklearn.linear_model import LinearRegression frame = pd.read_csv('../input/3-Airplane_Crashes_Since_1908.txt', sep=',') plt.figure(figsize=(100, 10)) sns.barplot('year', 'Aboard', data=frame, color='blue') bottom_plot = sns.barplot('year', 'Fatalities', data=frame, color='red') bottom_plot.set_ylabel('mean(Fatalities) and mean(Aboard)') bottom_plot.set_xlabel('year')
code
331254/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import numpy as np import pandas as pd from matplotlib import pyplot as plt import matplotlib from sklearn.linear_model import LinearRegression frame = pd.read_csv('../input/3-Airplane_Crashes_Since_1908.txt', sep=',') frame['year'].head()
code
105192049/cell_4
[ "text_plain_output_1.png" ]
from gekko import GEKKO from gekko import GEKKO from gekko import GEKKO import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import time import time import time import numpy as np import pandas as pd from gekko import GEKKO import time m = GEKKO() m.options.SOLVER = 1 m.solver_options = ['minlp_maximum_iterations 500', 'minlp_max_iter_with_int_sol 10', 'minlp_as_nlp 0', 'nlp_maximum_iterations 50', 'minlp_branch_method 1', 'minlp_integer_tol 0.05', 'minlp_gap_tol 0.01'] df = pd.read_csv('../input/junkchanged/cloulet_dataset.csv') max_elementb = df['Bandwidth'].max() max_elementc = df['Capacity'].max() start_time = time.time() main_allocation = m.Var(value=max_elementc, lb=max_elementc, ub=max_elementc) others_allocation = m.Var(value=max_elementc, lb=0, ub=max_elementb) b = m.Var(value=max_elementb, lb=max_elementb, ub=max_elementb) m.Equation(main_allocation * others_allocation <= b) m.Maximize(main_allocation + others_allocation) m.solve(disp=False) import numpy as np import pandas as pd from gekko import GEKKO import time m = GEKKO() m.options.SOLVER = 1 m.solver_options = ['minlp_maximum_iterations 50000'] df = pd.read_csv('../input/junkchanged/cloulet_dataset.csv') bw = df['Bandwidth'] cp = df['Capacity'] n = len(bw) start_time = time.time() x = m.Array(m.Var, n) for i in range(n): x[i] = m.Var(lb=0, ub=cp[i], integer=True) s = m.sum([x[i] for i in range(n)]) for i in range(n): m.Equation(x[i] * s - x[i] * x[i] <= bw[i]) m.Maximize(s) m.solve(disp=False) import numpy as np import pandas as pd from gekko import GEKKO import time m = GEKKO() m.options.SOLVER = 1 m.solver_options = ['minlp_maximum_iterations 50000'] df = pd.read_csv('../input/junkchanged/cloulet_dataset.csv') bw = df['Bandwidth'] cp = df['Capacity'] print(bw) print(cp) n = len(bw) start_time = time.time() x = m.Array(m.Var, n) for i in range(n): x[i] = m.Var(lb=0, ub=cp[i], integer=True) s = 25.0 xsum = m.sum([x[i] for i in range(n)]) traffic = m.sum([x[i] * x[i] for i in range(n)]) for i in range(n): m.Equation(x[i] * s - x[i] * x[i] <= bw[i]) m.Equation(xsum == s) m.Maximize(traffic) m.solve(disp=False) for i in range(n): print(x[i].value, ' capacity ', cp[i], ' bandwidth ', bw[i]) print('execution time', time.time() - start_time)
code
105192049/cell_2
[ "text_plain_output_1.png" ]
from gekko import GEKKO import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import time import numpy as np import pandas as pd from gekko import GEKKO import time m = GEKKO() m.options.SOLVER = 1 m.solver_options = ['minlp_maximum_iterations 500', 'minlp_max_iter_with_int_sol 10', 'minlp_as_nlp 0', 'nlp_maximum_iterations 50', 'minlp_branch_method 1', 'minlp_integer_tol 0.05', 'minlp_gap_tol 0.01'] df = pd.read_csv('../input/junkchanged/cloulet_dataset.csv') max_elementb = df['Bandwidth'].max() max_elementc = df['Capacity'].max() print('----', max_elementb, max_elementc) start_time = time.time() main_allocation = m.Var(value=max_elementc, lb=max_elementc, ub=max_elementc) others_allocation = m.Var(value=max_elementc, lb=0, ub=max_elementb) b = m.Var(value=max_elementb, lb=max_elementb, ub=max_elementb) m.Equation(main_allocation * others_allocation <= b) m.Maximize(main_allocation + others_allocation) m.solve(disp=False) print('main_allocation: ' + str(main_allocation.value)) print('others_allocation: ' + str(others_allocation.value)) print('Total acceptance: ' + str(-m.options.objfcnval)) print('--- %s seconds ---' % (time.time() - start_time))
code
105192049/cell_1
[ "text_plain_output_1.png" ]
!pip install gekko
code
105192049/cell_3
[ "text_plain_output_1.png" ]
from gekko import GEKKO from gekko import GEKKO import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import time import time import numpy as np import pandas as pd from gekko import GEKKO import time m = GEKKO() m.options.SOLVER = 1 m.solver_options = ['minlp_maximum_iterations 500', 'minlp_max_iter_with_int_sol 10', 'minlp_as_nlp 0', 'nlp_maximum_iterations 50', 'minlp_branch_method 1', 'minlp_integer_tol 0.05', 'minlp_gap_tol 0.01'] df = pd.read_csv('../input/junkchanged/cloulet_dataset.csv') max_elementb = df['Bandwidth'].max() max_elementc = df['Capacity'].max() start_time = time.time() main_allocation = m.Var(value=max_elementc, lb=max_elementc, ub=max_elementc) others_allocation = m.Var(value=max_elementc, lb=0, ub=max_elementb) b = m.Var(value=max_elementb, lb=max_elementb, ub=max_elementb) m.Equation(main_allocation * others_allocation <= b) m.Maximize(main_allocation + others_allocation) m.solve(disp=False) import numpy as np import pandas as pd from gekko import GEKKO import time m = GEKKO() m.options.SOLVER = 1 m.solver_options = ['minlp_maximum_iterations 50000'] df = pd.read_csv('../input/junkchanged/cloulet_dataset.csv') bw = df['Bandwidth'] cp = df['Capacity'] print(bw) print(cp) n = len(bw) start_time = time.time() x = m.Array(m.Var, n) for i in range(n): x[i] = m.Var(lb=0, ub=cp[i], integer=True) s = m.sum([x[i] for i in range(n)]) for i in range(n): m.Equation(x[i] * s - x[i] * x[i] <= bw[i]) m.Maximize(s) m.solve(disp=False) print('total allocation', s.value) for i in range(n): print(x[i].value, ' capacity ', cp[i], ' bandwidth ', bw[i]) print('execution time', time.time() - start_time)
code
49120672/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
from skimage.io.collection import ImageCollection import numpy as np # linear algebra ic = ImageCollection('../input/cassava-leaf-disease-classification/train_images/1000*.jpg') i = 0 for pic in ic: print('{} \nPic type: {} \nPic shape: {} \n\n'.format(i, type(pic), np.shape(pic))) i += 1
code
49120672/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) disease_numbers = pd.read_json('../input/cassava-leaf-disease-classification/label_num_to_disease_map.json', orient='index') sample_submission = pd.read_csv('../input/cassava-leaf-disease-classification/sample_submission.csv') train = pd.read_csv('../input/cassava-leaf-disease-classification/train.csv') print(train.info()) print('\nDescription:\n', train.describe())
code
49120672/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns disease_numbers = pd.read_json('../input/cassava-leaf-disease-classification/label_num_to_disease_map.json', orient='index') sample_submission = pd.read_csv('../input/cassava-leaf-disease-classification/sample_submission.csv') train = pd.read_csv('../input/cassava-leaf-disease-classification/train.csv') print(train.groupby('label').count()) ax = sns.distplot(train['label'], bins=5, kde=False, norm_hist=True, hist_kws={'edgecolor': 'k', 'align': 'mid'})
code
49120672/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
49120672/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) disease_numbers = pd.read_json('../input/cassava-leaf-disease-classification/label_num_to_disease_map.json', orient='index') sample_submission = pd.read_csv('../input/cassava-leaf-disease-classification/sample_submission.csv') train = pd.read_csv('../input/cassava-leaf-disease-classification/train.csv') print('The image IDs are stored as {}.'.format(type(train['image_id'][1])))
code
49120672/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) disease_numbers = pd.read_json('../input/cassava-leaf-disease-classification/label_num_to_disease_map.json', orient='index') sample_submission = pd.read_csv('../input/cassava-leaf-disease-classification/sample_submission.csv') train = pd.read_csv('../input/cassava-leaf-disease-classification/train.csv') print('Disease Numbers:\n {} \n\nSample_Submission:\n {} \n\ntrain.csv:\n {}'.format(disease_numbers, sample_submission, train))
code