path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
17115723/cell_4
[ "text_plain_output_1.png" ]
from time import time import cv2 as cv import imageio as io import numpy as np # linear algebra import os list_train_img = [] a = 0 timea = time() print('Converting training images to a numpy array...') for im in os.listdir('../input/train_images'): uri = '../input/train_images/' + im image = io.imread(uri) image = cv.resize(image, (640, 640), interpolation=cv.INTER_AREA) list_train_img.append(image) a += 1 if a % 500 == 0: print(f'\t{a} images from the training set added to a numpy array') print('All images from the training set converted to a numpy array!') train_im = np.asarray(list_train_img) print(train_im.shape, '\n') del list_train_img list_test_img = [] b = 0 print('Converting test images to a numpy array...') for im_test in os.listdir('../input/test_images'): uri = '../input/test_images/' + im_test image = io.imread(uri) image = cv.resize(image, (640, 640), interpolation=cv.INTER_AREA) list_test_img.append(image) b += 1 if b % 500 == 0: print(f'\t{b} images from the test set added to a numpy array') print('All images from the test set converted to a numpy array!\n') test_im = np.asarray(list_test_img) print(test_im.shape, '\n') del list_test_img timeb = time() print(f'It took {(timeb - timea) / 60} minutes to complete the conversion')
code
17115723/cell_2
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import os from time import time import numpy as np import pandas as pd import imageio as io import cv2 as cv import matplotlib.pyplot as plt from keras.utils import to_categorical from sklearn.model_selection import train_test_split print('Setup complete!')
code
17115723/cell_3
[ "text_plain_output_1.png" ]
import os print('Number of images in the training set:', len(os.listdir('../input/train_images'))) print('Number of images in the test set:', len(os.listdir('../input/test_images')))
code
32069310/cell_21
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) pitching = pd.read_csv('/kaggle/input/baseball-databank/Pitching.csv') pitching = pitching[(pitching['yearID'] >= 1990) & (pitching['GS'] >= 26) & (pitching['G'] == pitching['GS'])].iloc[:, :20] pitching = pitching.drop(['stint', 'W', 'L', 'CG', 'SHO', 'SV'], axis=1) pitching = pitching.set_index('playerID') pitching.shape[0] pitching['IP'] = (pitching['IPouts'] / 3).round(2) del pitching['IPouts'] pitching['BB9'] = (pitching['BB'] * 9 / pitching['IP']).round(2) pitching['SOtoBB'] = (pitching['SO'] / pitching['BB']).round(2) pitching.head()
code
32069310/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) pitching = pd.read_csv('/kaggle/input/baseball-databank/Pitching.csv') pitching.head()
code
32069310/cell_34
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) pitching = pd.read_csv('/kaggle/input/baseball-databank/Pitching.csv') pitching = pitching[(pitching['yearID'] >= 1990) & (pitching['GS'] >= 26) & (pitching['G'] == pitching['GS'])].iloc[:, :20] pitching = pitching.drop(['stint', 'W', 'L', 'CG', 'SHO', 'SV'], axis=1) pitching = pitching.set_index('playerID') pitching.shape[0] pitching['IP'] = (pitching['IPouts'] / 3).round(2) del pitching['IPouts'] pitching['BB9'] = (pitching['BB'] * 9 / pitching['IP']).round(2) pitching['SOtoBB'] = (pitching['SO'] / pitching['BB']).round(2) pitching.SO.idxmax() pitching.SO.idxmin()
code
32069310/cell_23
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) pitching = pd.read_csv('/kaggle/input/baseball-databank/Pitching.csv') pitching = pitching[(pitching['yearID'] >= 1990) & (pitching['GS'] >= 26) & (pitching['G'] == pitching['GS'])].iloc[:, :20] pitching = pitching.drop(['stint', 'W', 'L', 'CG', 'SHO', 'SV'], axis=1) pitching = pitching.set_index('playerID') pitching.shape[0] pitching['IP'] = (pitching['IPouts'] / 3).round(2) del pitching['IPouts'] pitching['BB9'] = (pitching['BB'] * 9 / pitching['IP']).round(2) pitching['SOtoBB'] = (pitching['SO'] / pitching['BB']).round(2) (pitching.groupby('yearID').IP.sum() / pitching.groupby('yearID').GS.sum()).plot.bar()
code
32069310/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) pitching = pd.read_csv('/kaggle/input/baseball-databank/Pitching.csv') pitching = pitching[(pitching['yearID'] >= 1990) & (pitching['GS'] >= 26) & (pitching['G'] == pitching['GS'])].iloc[:, :20] pitching = pitching.drop(['stint', 'W', 'L', 'CG', 'SHO', 'SV'], axis=1) pitching.head()
code
32069310/cell_29
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) pitching = pd.read_csv('/kaggle/input/baseball-databank/Pitching.csv') pitching = pitching[(pitching['yearID'] >= 1990) & (pitching['GS'] >= 26) & (pitching['G'] == pitching['GS'])].iloc[:, :20] pitching = pitching.drop(['stint', 'W', 'L', 'CG', 'SHO', 'SV'], axis=1) pitching = pitching.set_index('playerID') pitching.shape[0] pitching['IP'] = (pitching['IPouts'] / 3).round(2) del pitching['IPouts'] pitching['BB9'] = (pitching['BB'] * 9 / pitching['IP']).round(2) pitching['SOtoBB'] = (pitching['SO'] / pitching['BB']).round(2) pitching.groupby('yearID').SO9.mean().plot.bar()
code
32069310/cell_26
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) pitching = pd.read_csv('/kaggle/input/baseball-databank/Pitching.csv') pitching = pitching[(pitching['yearID'] >= 1990) & (pitching['GS'] >= 26) & (pitching['G'] == pitching['GS'])].iloc[:, :20] pitching = pitching.drop(['stint', 'W', 'L', 'CG', 'SHO', 'SV'], axis=1) pitching = pitching.set_index('playerID') pitching.shape[0] pitching['IP'] = (pitching['IPouts'] / 3).round(2) del pitching['IPouts'] pitching['BB9'] = (pitching['BB'] * 9 / pitching['IP']).round(2) pitching['SOtoBB'] = (pitching['SO'] / pitching['BB']).round(2) pitching.groupby('yearID').size().plot.bar()
code
32069310/cell_2
[ "text_html_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
32069310/cell_19
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) pitching = pd.read_csv('/kaggle/input/baseball-databank/Pitching.csv') pitching = pitching[(pitching['yearID'] >= 1990) & (pitching['GS'] >= 26) & (pitching['G'] == pitching['GS'])].iloc[:, :20] pitching = pitching.drop(['stint', 'W', 'L', 'CG', 'SHO', 'SV'], axis=1) pitching = pitching.set_index('playerID') pitching.shape[0] pitching['IP'] = (pitching['IPouts'] / 3).round(2) del pitching['IPouts'] pitching['BB9'] = (pitching['BB'] * 9 / pitching['IP']).round(2) pitching.head()
code
32069310/cell_32
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) pitching = pd.read_csv('/kaggle/input/baseball-databank/Pitching.csv') pitching = pitching[(pitching['yearID'] >= 1990) & (pitching['GS'] >= 26) & (pitching['G'] == pitching['GS'])].iloc[:, :20] pitching = pitching.drop(['stint', 'W', 'L', 'CG', 'SHO', 'SV'], axis=1) pitching = pitching.set_index('playerID') pitching.shape[0] pitching['IP'] = (pitching['IPouts'] / 3).round(2) del pitching['IPouts'] pitching['BB9'] = (pitching['BB'] * 9 / pitching['IP']).round(2) pitching['SOtoBB'] = (pitching['SO'] / pitching['BB']).round(2) pitching.SO.idxmax()
code
32069310/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) pitching = pd.read_csv('/kaggle/input/baseball-databank/Pitching.csv') pitching = pitching[(pitching['yearID'] >= 1990) & (pitching['GS'] >= 26) & (pitching['G'] == pitching['GS'])].iloc[:, :20] pitching = pitching.drop(['stint', 'W', 'L', 'CG', 'SHO', 'SV'], axis=1) pitching = pitching.set_index('playerID') pitching.head(7)
code
32069310/cell_15
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) pitching = pd.read_csv('/kaggle/input/baseball-databank/Pitching.csv') pitching = pitching[(pitching['yearID'] >= 1990) & (pitching['GS'] >= 26) & (pitching['G'] == pitching['GS'])].iloc[:, :20] pitching = pitching.drop(['stint', 'W', 'L', 'CG', 'SHO', 'SV'], axis=1) pitching = pitching.set_index('playerID') pitching.shape[0] pitching['IP'] = (pitching['IPouts'] / 3).round(2) del pitching['IPouts'] pitching.head()
code
32069310/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) pitching = pd.read_csv('/kaggle/input/baseball-databank/Pitching.csv') pitching = pitching[(pitching['yearID'] >= 1990) & (pitching['GS'] >= 26) & (pitching['G'] == pitching['GS'])].iloc[:, :20] pitching = pitching.drop(['stint', 'W', 'L', 'CG', 'SHO', 'SV'], axis=1) pitching = pitching.set_index('playerID') pitching.tail(6)
code
32069310/cell_12
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) pitching = pd.read_csv('/kaggle/input/baseball-databank/Pitching.csv') pitching = pitching[(pitching['yearID'] >= 1990) & (pitching['GS'] >= 26) & (pitching['G'] == pitching['GS'])].iloc[:, :20] pitching = pitching.drop(['stint', 'W', 'L', 'CG', 'SHO', 'SV'], axis=1) pitching = pitching.set_index('playerID') pitching.shape[0]
code
105179030/cell_9
[ "text_plain_output_1.png" ]
i = 0 while i <= 10: i = i + 1 j = 0 for i in range(1, 21): j = j + i print(j)
code
105179030/cell_6
[ "text_plain_output_1.png" ]
i = 0 while i <= 10: i = i + 1 student = ['adnan', 'saad', 'zaheeb'] for i in student: print(i)
code
105179030/cell_7
[ "text_plain_output_1.png" ]
i = 0 while i <= 10: i = i + 1 a = range(10) for i in a: if i % 2 == 1: print(i)
code
105179030/cell_3
[ "text_plain_output_1.png" ]
i = 0 while i <= 10: if i % 2 == 0: print(i) i = i + 1
code
105179030/cell_5
[ "text_plain_output_1.png" ]
i = 0 while i <= 10: i = i + 1 name = 'Adnan' for i in name: print(i)
code
105174093/cell_13
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import warnings import numpy as np import pandas as pd import warnings warnings.filterwarnings('ignore') import plotly.express as px import matplotlib.pyplot as plt import seaborn as sns import os kaggle_survey_2019 = pd.read_csv('../input/kaggle-survey-2019/multiple_choice_responses.csv') kaggle_survey_2020 = pd.read_csv('../input/kaggle-survey-2020/kaggle_survey_2020_responses.csv') kaggle_survey_2021 = pd.read_csv('../input/kaggle-survey-2021/kaggle_survey_2021_responses.csv') indo_survey_2019 = kaggle_survey_2019[kaggle_survey_2019['Q3'] == 'Indonesia'] indo_survey_2020 = kaggle_survey_2020[kaggle_survey_2020['Q3'] == 'Indonesia'] indo_survey_2021 = kaggle_survey_2021[kaggle_survey_2021['Q3'] == 'Indonesia'] # kaggle_survey_2019 = kaggle_survey_2019[kaggle_survey_2019['Q3']=='Indonesia'].drop\ # (kaggle_survey_2019.columns[0], axis=1) # kaggle_survey_2019.head() # question = pd.read_csv('../input/kaggle-survey-2019/questions_only.csv') # question.columns # question_list = question.loc[0].tolist() # question_list f, ax = plt.subplots(nrows=1, ncols=3, figsize=(15,4)) barcolors = ['darkseagreen', 'peru', 'navy'] barstyle = {"edgecolor":"black", "linewidth":0.5} indo_survey_2019['Q2'].value_counts().plot.bar(ax=ax[0], color=barcolors[0]) ax[0].set_title("2019") indo_survey_2020['Q2'].value_counts().plot.bar(ax=ax[1], color=barcolors[1]) ax[1].set_title("2020") indo_survey_2021['Q2'].value_counts().plot.bar(ax=ax[2], color=barcolors[2]) ax[2].set_title("2021") plt.show() def roleDanSize(df): newdf = df.groupby(['Q4', 'Q5']).size() newdf = newdf.to_frame(name='size').reset_index() newdf['role'] = newdf['Q4'] + '-' + newdf['Q5'] newdf = newdf.drop(columns=['Q4', 'Q5']).sort_values(by=['size']) return newdf data_2019 = roleDanSize(indo_survey_2019) plt.barh(data_2019['role'], data_2019['size']) data_2020 = roleDanSize(indo_survey_2020) plt.barh(data_2020['role'], data_2020['size']) data_2021 = roleDanSize(indo_survey_2021) plt.barh(data_2021['role'], data_2021['size']) def getting_values(rng): """ fungsi bantuan untuk mengeluarkan nilai value_counts() setiap column Q9_Part_1-8 ke dalam bentuk dictionary """ for i in range(1, rng): yield indo_survey_2019['Q9_Part_' + str(i)].value_counts().to_dict() values = [] keys = [] for i in getting_values(9): values.append(list(i.values())) keys.append(list(i.keys())) values = [j for sub in values for j in sub] keys = [j for sub in keys for j in sub] mypie = plt.pie(values, startangle=0, autopct='%1.0f%%', pctdistance=0.9, radius=1.2) plt.title('Important part of your role at work', weight='bold', size=12) plt.legend(mypie[0], keys, bbox_to_anchor=(1, 1)) plt.show()
code
105174093/cell_4
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import warnings import numpy as np import pandas as pd import warnings warnings.filterwarnings('ignore') import plotly.express as px import matplotlib.pyplot as plt import seaborn as sns import os kaggle_survey_2019 = pd.read_csv('../input/kaggle-survey-2019/multiple_choice_responses.csv') kaggle_survey_2020 = pd.read_csv('../input/kaggle-survey-2020/kaggle_survey_2020_responses.csv') kaggle_survey_2021 = pd.read_csv('../input/kaggle-survey-2021/kaggle_survey_2021_responses.csv') indo_survey_2019 = kaggle_survey_2019[kaggle_survey_2019['Q3'] == 'Indonesia'] indo_survey_2020 = kaggle_survey_2020[kaggle_survey_2020['Q3'] == 'Indonesia'] indo_survey_2021 = kaggle_survey_2021[kaggle_survey_2021['Q3'] == 'Indonesia'] f, ax = plt.subplots(nrows=1, ncols=3, figsize=(15, 4)) barcolors = ['darkseagreen', 'peru', 'navy'] barstyle = {'edgecolor': 'black', 'linewidth': 0.5} indo_survey_2019['Q2'].value_counts().plot.bar(ax=ax[0], color=barcolors[0]) ax[0].set_title('2019') indo_survey_2020['Q2'].value_counts().plot.bar(ax=ax[1], color=barcolors[1]) ax[1].set_title('2020') indo_survey_2021['Q2'].value_counts().plot.bar(ax=ax[2], color=barcolors[2]) ax[2].set_title('2021') plt.show()
code
105174093/cell_6
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import warnings import numpy as np import pandas as pd import warnings warnings.filterwarnings('ignore') import plotly.express as px import matplotlib.pyplot as plt import seaborn as sns import os kaggle_survey_2019 = pd.read_csv('../input/kaggle-survey-2019/multiple_choice_responses.csv') kaggle_survey_2020 = pd.read_csv('../input/kaggle-survey-2020/kaggle_survey_2020_responses.csv') kaggle_survey_2021 = pd.read_csv('../input/kaggle-survey-2021/kaggle_survey_2021_responses.csv') indo_survey_2019 = kaggle_survey_2019[kaggle_survey_2019['Q3'] == 'Indonesia'] indo_survey_2020 = kaggle_survey_2020[kaggle_survey_2020['Q3'] == 'Indonesia'] indo_survey_2021 = kaggle_survey_2021[kaggle_survey_2021['Q3'] == 'Indonesia'] # kaggle_survey_2019 = kaggle_survey_2019[kaggle_survey_2019['Q3']=='Indonesia'].drop\ # (kaggle_survey_2019.columns[0], axis=1) # kaggle_survey_2019.head() # question = pd.read_csv('../input/kaggle-survey-2019/questions_only.csv') # question.columns # question_list = question.loc[0].tolist() # question_list f, ax = plt.subplots(nrows=1, ncols=3, figsize=(15,4)) barcolors = ['darkseagreen', 'peru', 'navy'] barstyle = {"edgecolor":"black", "linewidth":0.5} indo_survey_2019['Q2'].value_counts().plot.bar(ax=ax[0], color=barcolors[0]) ax[0].set_title("2019") indo_survey_2020['Q2'].value_counts().plot.bar(ax=ax[1], color=barcolors[1]) ax[1].set_title("2020") indo_survey_2021['Q2'].value_counts().plot.bar(ax=ax[2], color=barcolors[2]) ax[2].set_title("2021") plt.show() def roleDanSize(df): newdf = df.groupby(['Q4', 'Q5']).size() newdf = newdf.to_frame(name='size').reset_index() newdf['role'] = newdf['Q4'] + '-' + newdf['Q5'] newdf = newdf.drop(columns=['Q4', 'Q5']).sort_values(by=['size']) return newdf data_2019 = roleDanSize(indo_survey_2019) plt.figure(figsize=(10, 15)) plt.barh(data_2019['role'], data_2019['size']) plt.title('Banyak kemunculan relasi antara pendidikan terakhir dan pekerjaan 2019') plt.ylabel('Pendidikan-Pekerjaan') plt.xlabel('Jumlah') plt.show()
code
105174093/cell_8
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import warnings import numpy as np import pandas as pd import warnings warnings.filterwarnings('ignore') import plotly.express as px import matplotlib.pyplot as plt import seaborn as sns import os kaggle_survey_2019 = pd.read_csv('../input/kaggle-survey-2019/multiple_choice_responses.csv') kaggle_survey_2020 = pd.read_csv('../input/kaggle-survey-2020/kaggle_survey_2020_responses.csv') kaggle_survey_2021 = pd.read_csv('../input/kaggle-survey-2021/kaggle_survey_2021_responses.csv') indo_survey_2019 = kaggle_survey_2019[kaggle_survey_2019['Q3'] == 'Indonesia'] indo_survey_2020 = kaggle_survey_2020[kaggle_survey_2020['Q3'] == 'Indonesia'] indo_survey_2021 = kaggle_survey_2021[kaggle_survey_2021['Q3'] == 'Indonesia'] # kaggle_survey_2019 = kaggle_survey_2019[kaggle_survey_2019['Q3']=='Indonesia'].drop\ # (kaggle_survey_2019.columns[0], axis=1) # kaggle_survey_2019.head() # question = pd.read_csv('../input/kaggle-survey-2019/questions_only.csv') # question.columns # question_list = question.loc[0].tolist() # question_list f, ax = plt.subplots(nrows=1, ncols=3, figsize=(15,4)) barcolors = ['darkseagreen', 'peru', 'navy'] barstyle = {"edgecolor":"black", "linewidth":0.5} indo_survey_2019['Q2'].value_counts().plot.bar(ax=ax[0], color=barcolors[0]) ax[0].set_title("2019") indo_survey_2020['Q2'].value_counts().plot.bar(ax=ax[1], color=barcolors[1]) ax[1].set_title("2020") indo_survey_2021['Q2'].value_counts().plot.bar(ax=ax[2], color=barcolors[2]) ax[2].set_title("2021") plt.show() def roleDanSize(df): newdf = df.groupby(['Q4', 'Q5']).size() newdf = newdf.to_frame(name='size').reset_index() newdf['role'] = newdf['Q4'] + '-' + newdf['Q5'] newdf = newdf.drop(columns=['Q4', 'Q5']).sort_values(by=['size']) return newdf data_2019 = roleDanSize(indo_survey_2019) plt.barh(data_2019['role'], data_2019['size']) data_2020 = roleDanSize(indo_survey_2020) plt.figure(figsize=(10, 17)) plt.barh(data_2020['role'], data_2020['size']) plt.title('Banyak kemunculan relasi antara pendidikan terakhir dan pekerjaan 2020') plt.ylabel('Pendidikan-Pekerjaan') plt.xlabel('Jumlah') plt.show()
code
105174093/cell_10
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import warnings import numpy as np import pandas as pd import warnings warnings.filterwarnings('ignore') import plotly.express as px import matplotlib.pyplot as plt import seaborn as sns import os kaggle_survey_2019 = pd.read_csv('../input/kaggle-survey-2019/multiple_choice_responses.csv') kaggle_survey_2020 = pd.read_csv('../input/kaggle-survey-2020/kaggle_survey_2020_responses.csv') kaggle_survey_2021 = pd.read_csv('../input/kaggle-survey-2021/kaggle_survey_2021_responses.csv') indo_survey_2019 = kaggle_survey_2019[kaggle_survey_2019['Q3'] == 'Indonesia'] indo_survey_2020 = kaggle_survey_2020[kaggle_survey_2020['Q3'] == 'Indonesia'] indo_survey_2021 = kaggle_survey_2021[kaggle_survey_2021['Q3'] == 'Indonesia'] # kaggle_survey_2019 = kaggle_survey_2019[kaggle_survey_2019['Q3']=='Indonesia'].drop\ # (kaggle_survey_2019.columns[0], axis=1) # kaggle_survey_2019.head() # question = pd.read_csv('../input/kaggle-survey-2019/questions_only.csv') # question.columns # question_list = question.loc[0].tolist() # question_list f, ax = plt.subplots(nrows=1, ncols=3, figsize=(15,4)) barcolors = ['darkseagreen', 'peru', 'navy'] barstyle = {"edgecolor":"black", "linewidth":0.5} indo_survey_2019['Q2'].value_counts().plot.bar(ax=ax[0], color=barcolors[0]) ax[0].set_title("2019") indo_survey_2020['Q2'].value_counts().plot.bar(ax=ax[1], color=barcolors[1]) ax[1].set_title("2020") indo_survey_2021['Q2'].value_counts().plot.bar(ax=ax[2], color=barcolors[2]) ax[2].set_title("2021") plt.show() def roleDanSize(df): newdf = df.groupby(['Q4', 'Q5']).size() newdf = newdf.to_frame(name='size').reset_index() newdf['role'] = newdf['Q4'] + '-' + newdf['Q5'] newdf = newdf.drop(columns=['Q4', 'Q5']).sort_values(by=['size']) return newdf data_2019 = roleDanSize(indo_survey_2019) plt.barh(data_2019['role'], data_2019['size']) data_2020 = roleDanSize(indo_survey_2020) plt.barh(data_2020['role'], data_2020['size']) data_2021 = roleDanSize(indo_survey_2021) plt.figure(figsize=(10, 17)) plt.barh(data_2021['role'], data_2021['size']) plt.title('Banyak kemunculan relasi antara pendidikan terakhir dan pekerjaan 2020') plt.ylabel('Pendidikan-Pekerjaan') plt.xlabel('Jumlah') plt.show()
code
2013637/cell_4
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') all_data = pd.concat((train.loc[:, 'Pclass':'Embarked'], test.loc[:, 'Pclass':'Embarked'])) train.head()
code
2013637/cell_8
[ "text_plain_output_1.png" ]
from sklearn.tree import DecisionTreeClassifier import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') all_data = pd.concat((train.loc[:, 'Pclass':'Embarked'], test.loc[:, 'Pclass':'Embarked'])) all_data = all_data.drop(['Name'], axis=1) all_data = pd.get_dummies(all_data) all_data = all_data.fillna(all_data.mean()) X_train = all_data[:train.shape[0]] y_train = train.Survived X_test = all_data[train.shape[0]:] from sklearn.tree import DecisionTreeClassifier tree = DecisionTreeClassifier(random_state=0) tree.fit(X_train, y_train) print(tree.score(X_train, y_train)) decision_tree_predicts = tree.predict(X_test)
code
2013637/cell_5
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') all_data = pd.concat((train.loc[:, 'Pclass':'Embarked'], test.loc[:, 'Pclass':'Embarked'])) all_data = all_data.drop(['Name'], axis=1) all_data = pd.get_dummies(all_data) all_data.head()
code
17096261/cell_1
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import matplotlib.pyplot as plt from PIL import Image import torchvision.transforms as transforms import os import random df = pd.read_csv('../input/train.csv') exps = df['experiment'].unique() exps = [exp.split('-')[0] for exp in exps] exp_series = pd.Series(exps) cell_lines = exp_series.unique() print('four cell lines are: ', cell_lines)
code
17096261/cell_7
[ "image_output_1.png" ]
from PIL import Image import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np # linear algebra import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import torchvision.transforms as transforms import numpy as np import pandas as pd import matplotlib.pyplot as plt from PIL import Image import torchvision.transforms as transforms import os import random df = pd.read_csv('../input/train.csv') exps = df['experiment'].unique() exps = [exp.split('-')[0] for exp in exps] exp_series = pd.Series(exps) cell_lines = exp_series.unique() df = pd.read_csv('../input/train.csv') df['cell_line'], _ = df['experiment'].str.split('-').str types_select = [1,2,3,4,5] fig, axes = plt.subplots(figsize=(25, 25), nrows=len(types_select), ncols=5) for i, sirna in enumerate(types_select): sub_df = df[df['cell_line'] == 'HEPG2'] sub_df = sub_df[df['sirna'] == sirna] sub_df_records = sub_df.to_records() np.random.shuffle(sub_df_records) axes[i][0].set_ylabel('Type ' + str(sirna)) for j in range(5): exp = sub_df_records[j]['experiment'] plate = sub_df_records[j]['plate'] well = sub_df_records[j]['well'] path = os.path.join('../input/train', exp, 'Plate' + str(plate), well + '_' + 's2' + '_' + 'w3' + '.png') img = Image.open(path) img = transforms.Resize(224)(img) axes[i][j].imshow(img) axes[i][j].set_title(sub_df_records[j]['id_code']) df = pd.read_csv('../input/train.csv') incomplete_list = [] df['cell_line'], _ = df['experiment'].str.split('-').str cell_types = ['HEPG2', 'HUVEC', 'RPE', 'U2OS'] for i in range(1, max(df['sirna']) + 1): sub_df = df[df['sirna'] == i] if len(df['cell_line'].unique()) < 4: incomplete_list.append(i) import matplotlib.pyplot as plt df = pd.read_csv('../input/train.csv') incomplete_list = [] df['cell_line'], _ = df['experiment'].str.split('-').str cell_types = ['HEPG2', 'HUVEC', 'RPE', 'U2OS'] fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(10, 10)) for i, cell_type in enumerate(cell_types): sub_df = df[df['cell_line'] == cell_type] axes[i // 2, i % 2].hist(sub_df['sirna'].tolist(), bins=1108) axes[i // 2, i % 2].set_title(cell_type)
code
17096261/cell_3
[ "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
from PIL import Image import matplotlib.pyplot as plt import numpy as np # linear algebra import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import torchvision.transforms as transforms import numpy as np import pandas as pd import matplotlib.pyplot as plt from PIL import Image import torchvision.transforms as transforms import os import random df = pd.read_csv('../input/train.csv') exps = df['experiment'].unique() exps = [exp.split('-')[0] for exp in exps] exp_series = pd.Series(exps) cell_lines = exp_series.unique() df = pd.read_csv('../input/train.csv') df['cell_line'], _ = df['experiment'].str.split('-').str types_select = [1, 2, 3, 4, 5] fig, axes = plt.subplots(figsize=(25, 25), nrows=len(types_select), ncols=5) for i, sirna in enumerate(types_select): sub_df = df[df['cell_line'] == 'HEPG2'] sub_df = sub_df[df['sirna'] == sirna] sub_df_records = sub_df.to_records() np.random.shuffle(sub_df_records) axes[i][0].set_ylabel('Type ' + str(sirna)) for j in range(5): exp = sub_df_records[j]['experiment'] plate = sub_df_records[j]['plate'] well = sub_df_records[j]['well'] path = os.path.join('../input/train', exp, 'Plate' + str(plate), well + '_' + 's2' + '_' + 'w3' + '.png') img = Image.open(path) img = transforms.Resize(224)(img) axes[i][j].imshow(img) axes[i][j].set_title(sub_df_records[j]['id_code'])
code
17096261/cell_5
[ "text_plain_output_1.png" ]
from PIL import Image import matplotlib.pyplot as plt import numpy as np # linear algebra import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import torchvision.transforms as transforms import numpy as np import pandas as pd import matplotlib.pyplot as plt from PIL import Image import torchvision.transforms as transforms import os import random df = pd.read_csv('../input/train.csv') exps = df['experiment'].unique() exps = [exp.split('-')[0] for exp in exps] exp_series = pd.Series(exps) cell_lines = exp_series.unique() df = pd.read_csv('../input/train.csv') df['cell_line'], _ = df['experiment'].str.split('-').str types_select = [1,2,3,4,5] fig, axes = plt.subplots(figsize=(25, 25), nrows=len(types_select), ncols=5) for i, sirna in enumerate(types_select): sub_df = df[df['cell_line'] == 'HEPG2'] sub_df = sub_df[df['sirna'] == sirna] sub_df_records = sub_df.to_records() np.random.shuffle(sub_df_records) axes[i][0].set_ylabel('Type ' + str(sirna)) for j in range(5): exp = sub_df_records[j]['experiment'] plate = sub_df_records[j]['plate'] well = sub_df_records[j]['well'] path = os.path.join('../input/train', exp, 'Plate' + str(plate), well + '_' + 's2' + '_' + 'w3' + '.png') img = Image.open(path) img = transforms.Resize(224)(img) axes[i][j].imshow(img) axes[i][j].set_title(sub_df_records[j]['id_code']) df = pd.read_csv('../input/train.csv') incomplete_list = [] df['cell_line'], _ = df['experiment'].str.split('-').str cell_types = ['HEPG2', 'HUVEC', 'RPE', 'U2OS'] for i in range(1, max(df['sirna']) + 1): sub_df = df[df['sirna'] == i] if len(df['cell_line'].unique()) < 4: incomplete_list.append(i) print('the incomplete list is: ', incomplete_list)
code
49123700/cell_13
[ "text_html_output_1.png" ]
import pandas as pd import seaborn as sns import six import warnings import warnings warnings.filterwarnings('ignore') import sys, joblib import six sys.modules['sklearn.externals.six'] = six sys.modules['sklearn.externals.joblib'] = joblib import numpy as np import pandas as pd import re import matplotlib.pyplot as plt import seaborn as sns sns.set_context('talk', font_scale=0.65, rc={'grid.linewidth': 5}) pd.set_option('display.max_columns', 300) pd.set_option('display.max_rows', 400) from sklearn.linear_model import LogisticRegression, LinearRegression, LassoCV, Lasso, Ridge, LogisticRegressionCV from sklearn.feature_selection import RFE from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA, IncrementalPCA from sklearn.model_selection import GridSearchCV, cross_val_score, KFold, StratifiedKFold, RandomizedSearchCV from sklearn.metrics import confusion_matrix, classification_report, accuracy_score, precision_score, recall_score from sklearn.metrics import precision_recall_curve, roc_auc_score, roc_curve from imblearn.over_sampling import SMOTE, RandomOverSampler, ADASYN from sklearn.preprocessing import StandardScaler, MinMaxScaler, QuantileTransformer from scipy.stats import skew from fancyimpute import IterativeImputer, KNN from sklearn.impute import IterativeImputer from sklearn.impute import KNNImputer from sklearn.naive_bayes import MultinomialNB, BernoulliNB, GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, AdaBoostClassifier from sklearn.svm import SVC from xgboost import XGBClassifier from statsmodels.stats.outliers_influence import variance_inflation_factor from sklearn.feature_selection import RFE import statsmodels.api as sm telecom = pd.read_csv('../input/telecom-churn-dataset/telecom_churn_data.csv') def calnullpercentage(df): missing_num = df[df.columns].isna().sum().sort_values(ascending=False) missing_perc = (df[df.columns].isna().sum() / len(df) * 100).sort_values(ascending=False) missing = pd.concat([missing_num, missing_perc], keys=['Total', 'Percentage'], axis=1) missing = missing[missing['Percentage'] > 0] return missing calnullpercentage(telecom)
code
49123700/cell_9
[ "text_html_output_1.png" ]
import pandas as pd import seaborn as sns import six import warnings import warnings warnings.filterwarnings('ignore') import sys, joblib import six sys.modules['sklearn.externals.six'] = six sys.modules['sklearn.externals.joblib'] = joblib import numpy as np import pandas as pd import re import matplotlib.pyplot as plt import seaborn as sns sns.set_context('talk', font_scale=0.65, rc={'grid.linewidth': 5}) pd.set_option('display.max_columns', 300) pd.set_option('display.max_rows', 400) from sklearn.linear_model import LogisticRegression, LinearRegression, LassoCV, Lasso, Ridge, LogisticRegressionCV from sklearn.feature_selection import RFE from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA, IncrementalPCA from sklearn.model_selection import GridSearchCV, cross_val_score, KFold, StratifiedKFold, RandomizedSearchCV from sklearn.metrics import confusion_matrix, classification_report, accuracy_score, precision_score, recall_score from sklearn.metrics import precision_recall_curve, roc_auc_score, roc_curve from imblearn.over_sampling import SMOTE, RandomOverSampler, ADASYN from sklearn.preprocessing import StandardScaler, MinMaxScaler, QuantileTransformer from scipy.stats import skew from fancyimpute import IterativeImputer, KNN from sklearn.impute import IterativeImputer from sklearn.impute import KNNImputer from sklearn.naive_bayes import MultinomialNB, BernoulliNB, GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, AdaBoostClassifier from sklearn.svm import SVC from xgboost import XGBClassifier from statsmodels.stats.outliers_influence import variance_inflation_factor from sklearn.feature_selection import RFE import statsmodels.api as sm telecom = pd.read_csv('../input/telecom-churn-dataset/telecom_churn_data.csv') telecom.head()
code
49123700/cell_34
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import seaborn as sns import six import warnings import warnings warnings.filterwarnings('ignore') import sys, joblib import six sys.modules['sklearn.externals.six'] = six sys.modules['sklearn.externals.joblib'] = joblib import numpy as np import pandas as pd import re import matplotlib.pyplot as plt import seaborn as sns sns.set_context('talk', font_scale=0.65, rc={'grid.linewidth': 5}) pd.set_option('display.max_columns', 300) pd.set_option('display.max_rows', 400) from sklearn.linear_model import LogisticRegression, LinearRegression, LassoCV, Lasso, Ridge, LogisticRegressionCV from sklearn.feature_selection import RFE from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA, IncrementalPCA from sklearn.model_selection import GridSearchCV, cross_val_score, KFold, StratifiedKFold, RandomizedSearchCV from sklearn.metrics import confusion_matrix, classification_report, accuracy_score, precision_score, recall_score from sklearn.metrics import precision_recall_curve, roc_auc_score, roc_curve from imblearn.over_sampling import SMOTE, RandomOverSampler, ADASYN from sklearn.preprocessing import StandardScaler, MinMaxScaler, QuantileTransformer from scipy.stats import skew from fancyimpute import IterativeImputer, KNN from sklearn.impute import IterativeImputer from sklearn.impute import KNNImputer from sklearn.naive_bayes import MultinomialNB, BernoulliNB, GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, AdaBoostClassifier from sklearn.svm import SVC from xgboost import XGBClassifier from statsmodels.stats.outliers_influence import variance_inflation_factor from sklearn.feature_selection import RFE import statsmodels.api as sm telecom = pd.read_csv('../input/telecom-churn-dataset/telecom_churn_data.csv') def calnullpercentage(df): missing_num = df[df.columns].isna().sum().sort_values(ascending=False) missing_perc = (df[df.columns].isna().sum() / len(df) * 100).sort_values(ascending=False) missing = pd.concat([missing_num, missing_perc], keys=['Total', 'Percentage'], axis=1) missing = missing[missing['Percentage'] > 0] return missing telecom['tot_rech_amt_data_6'] = telecom['total_rech_data_6'] * telecom['av_rech_amt_data_6'] telecom['tot_rech_amt_data_7'] = telecom['total_rech_data_7'] * telecom['av_rech_amt_data_7'] telecom['tot_amt_6'] = telecom[['total_rech_amt_6', 'tot_rech_amt_data_6']].sum(axis=1) telecom['tot_amt_7'] = telecom[['total_rech_amt_7', 'tot_rech_amt_data_7']].sum(axis=1) telecom['avg_amt_6_7'] = telecom[['tot_amt_6', 'tot_amt_7']].mean(axis=1) telecom = telecom.loc[telecom['avg_amt_6_7'] >= np.percentile(telecom['avg_amt_6_7'], 70)] telecom.shape catg = [] for col in telecom.columns: if len(telecom[col].unique()) == 2 | 3: catg.append(col) telecom[catg] = telecom[catg].apply(lambda x: x.astype('object')) col_tmp = ['total_rech_num_6', 'total_rech_num_7', 'total_rech_num_8', 'total_rech_num_9', 'total_rech_data_6', 'total_rech_data_7', 'total_rech_data_8', 'total_rech_data_9'] telecom[col_tmp] = telecom[col_tmp].apply(lambda x: x.astype('object')) telecom.drop(['tot_rech_amt_data_6', 'tot_rech_amt_data_7', 'tot_rech_amt_data_8', 'tot_rech_amt_data_9'], inplace=True, axis=1) telecom.drop(telecom.filter(regex='_9|sep', axis=1).columns, axis=1, inplace=True) telecom.shape def redundant_feature(df): redundant = [] for i in df.columns: counts = df[i].value_counts() count_max = counts.iloc[0] if count_max / len(df) * 100 > 95: redundant.append(i) redundant = list(redundant) return redundant print('Before dropping Redundant features: ', telecom.shape) redundant_features = redundant_feature(telecom) telecom = telecom.drop(redundant_features, axis=1) print('After dropping Redundant features: ', telecom.shape)
code
49123700/cell_29
[ "text_plain_output_1.png", "image_output_1.png" ]
import numpy as np import pandas as pd import seaborn as sns import six import warnings import warnings warnings.filterwarnings('ignore') import sys, joblib import six sys.modules['sklearn.externals.six'] = six sys.modules['sklearn.externals.joblib'] = joblib import numpy as np import pandas as pd import re import matplotlib.pyplot as plt import seaborn as sns sns.set_context('talk', font_scale=0.65, rc={'grid.linewidth': 5}) pd.set_option('display.max_columns', 300) pd.set_option('display.max_rows', 400) from sklearn.linear_model import LogisticRegression, LinearRegression, LassoCV, Lasso, Ridge, LogisticRegressionCV from sklearn.feature_selection import RFE from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA, IncrementalPCA from sklearn.model_selection import GridSearchCV, cross_val_score, KFold, StratifiedKFold, RandomizedSearchCV from sklearn.metrics import confusion_matrix, classification_report, accuracy_score, precision_score, recall_score from sklearn.metrics import precision_recall_curve, roc_auc_score, roc_curve from imblearn.over_sampling import SMOTE, RandomOverSampler, ADASYN from sklearn.preprocessing import StandardScaler, MinMaxScaler, QuantileTransformer from scipy.stats import skew from fancyimpute import IterativeImputer, KNN from sklearn.impute import IterativeImputer from sklearn.impute import KNNImputer from sklearn.naive_bayes import MultinomialNB, BernoulliNB, GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, AdaBoostClassifier from sklearn.svm import SVC from xgboost import XGBClassifier from statsmodels.stats.outliers_influence import variance_inflation_factor from sklearn.feature_selection import RFE import statsmodels.api as sm telecom = pd.read_csv('../input/telecom-churn-dataset/telecom_churn_data.csv') def calnullpercentage(df): missing_num = df[df.columns].isna().sum().sort_values(ascending=False) missing_perc = (df[df.columns].isna().sum() / len(df) * 100).sort_values(ascending=False) missing = pd.concat([missing_num, missing_perc], keys=['Total', 'Percentage'], axis=1) missing = missing[missing['Percentage'] > 0] return missing telecom['tot_rech_amt_data_6'] = telecom['total_rech_data_6'] * telecom['av_rech_amt_data_6'] telecom['tot_rech_amt_data_7'] = telecom['total_rech_data_7'] * telecom['av_rech_amt_data_7'] telecom['tot_amt_6'] = telecom[['total_rech_amt_6', 'tot_rech_amt_data_6']].sum(axis=1) telecom['tot_amt_7'] = telecom[['total_rech_amt_7', 'tot_rech_amt_data_7']].sum(axis=1) telecom['avg_amt_6_7'] = telecom[['tot_amt_6', 'tot_amt_7']].mean(axis=1) telecom = telecom.loc[telecom['avg_amt_6_7'] >= np.percentile(telecom['avg_amt_6_7'], 70)] telecom.shape catg = [] for col in telecom.columns: if len(telecom[col].unique()) == 2 | 3: catg.append(col) telecom[catg] = telecom[catg].apply(lambda x: x.astype('object')) col_tmp = ['total_rech_num_6', 'total_rech_num_7', 'total_rech_num_8', 'total_rech_num_9', 'total_rech_data_6', 'total_rech_data_7', 'total_rech_data_8', 'total_rech_data_9'] telecom[col_tmp] = telecom[col_tmp].apply(lambda x: x.astype('object')) telecom.drop(['tot_rech_amt_data_6', 'tot_rech_amt_data_7', 'tot_rech_amt_data_8', 'tot_rech_amt_data_9'], inplace=True, axis=1) telecom.drop(telecom.filter(regex='_9|sep', axis=1).columns, axis=1, inplace=True) pd.DataFrame(round(telecom['churn'].value_counts(normalize=True) * 100, 2))
code
49123700/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd import seaborn as sns import six import warnings import warnings warnings.filterwarnings('ignore') import sys, joblib import six sys.modules['sklearn.externals.six'] = six sys.modules['sklearn.externals.joblib'] = joblib import numpy as np import pandas as pd import re import matplotlib.pyplot as plt import seaborn as sns sns.set_context('talk', font_scale=0.65, rc={'grid.linewidth': 5}) pd.set_option('display.max_columns', 300) pd.set_option('display.max_rows', 400) from sklearn.linear_model import LogisticRegression, LinearRegression, LassoCV, Lasso, Ridge, LogisticRegressionCV from sklearn.feature_selection import RFE from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA, IncrementalPCA from sklearn.model_selection import GridSearchCV, cross_val_score, KFold, StratifiedKFold, RandomizedSearchCV from sklearn.metrics import confusion_matrix, classification_report, accuracy_score, precision_score, recall_score from sklearn.metrics import precision_recall_curve, roc_auc_score, roc_curve from imblearn.over_sampling import SMOTE, RandomOverSampler, ADASYN from sklearn.preprocessing import StandardScaler, MinMaxScaler, QuantileTransformer from scipy.stats import skew from fancyimpute import IterativeImputer, KNN from sklearn.impute import IterativeImputer from sklearn.impute import KNNImputer from sklearn.naive_bayes import MultinomialNB, BernoulliNB, GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, AdaBoostClassifier from sklearn.svm import SVC from xgboost import XGBClassifier from statsmodels.stats.outliers_influence import variance_inflation_factor from sklearn.feature_selection import RFE import statsmodels.api as sm telecom = pd.read_csv('../input/telecom-churn-dataset/telecom_churn_data.csv') telecom.describe(percentiles=[0.25, 0.5, 0.75, 0.99])
code
49123700/cell_18
[ "text_html_output_1.png" ]
import numpy as np import pandas as pd import seaborn as sns import six import warnings import warnings warnings.filterwarnings('ignore') import sys, joblib import six sys.modules['sklearn.externals.six'] = six sys.modules['sklearn.externals.joblib'] = joblib import numpy as np import pandas as pd import re import matplotlib.pyplot as plt import seaborn as sns sns.set_context('talk', font_scale=0.65, rc={'grid.linewidth': 5}) pd.set_option('display.max_columns', 300) pd.set_option('display.max_rows', 400) from sklearn.linear_model import LogisticRegression, LinearRegression, LassoCV, Lasso, Ridge, LogisticRegressionCV from sklearn.feature_selection import RFE from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA, IncrementalPCA from sklearn.model_selection import GridSearchCV, cross_val_score, KFold, StratifiedKFold, RandomizedSearchCV from sklearn.metrics import confusion_matrix, classification_report, accuracy_score, precision_score, recall_score from sklearn.metrics import precision_recall_curve, roc_auc_score, roc_curve from imblearn.over_sampling import SMOTE, RandomOverSampler, ADASYN from sklearn.preprocessing import StandardScaler, MinMaxScaler, QuantileTransformer from scipy.stats import skew from fancyimpute import IterativeImputer, KNN from sklearn.impute import IterativeImputer from sklearn.impute import KNNImputer from sklearn.naive_bayes import MultinomialNB, BernoulliNB, GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, AdaBoostClassifier from sklearn.svm import SVC from xgboost import XGBClassifier from statsmodels.stats.outliers_influence import variance_inflation_factor from sklearn.feature_selection import RFE import statsmodels.api as sm telecom = pd.read_csv('../input/telecom-churn-dataset/telecom_churn_data.csv') telecom['tot_rech_amt_data_6'] = telecom['total_rech_data_6'] * telecom['av_rech_amt_data_6'] telecom['tot_rech_amt_data_7'] = telecom['total_rech_data_7'] * telecom['av_rech_amt_data_7'] telecom['tot_amt_6'] = telecom[['total_rech_amt_6', 'tot_rech_amt_data_6']].sum(axis=1) telecom['tot_amt_7'] = telecom[['total_rech_amt_7', 'tot_rech_amt_data_7']].sum(axis=1) telecom['avg_amt_6_7'] = telecom[['tot_amt_6', 'tot_amt_7']].mean(axis=1) telecom = telecom.loc[telecom['avg_amt_6_7'] >= np.percentile(telecom['avg_amt_6_7'], 70)] telecom.shape
code
49123700/cell_32
[ "text_html_output_1.png" ]
import numpy as np import pandas as pd import seaborn as sns import six import warnings import warnings warnings.filterwarnings('ignore') import sys, joblib import six sys.modules['sklearn.externals.six'] = six sys.modules['sklearn.externals.joblib'] = joblib import numpy as np import pandas as pd import re import matplotlib.pyplot as plt import seaborn as sns sns.set_context('talk', font_scale=0.65, rc={'grid.linewidth': 5}) pd.set_option('display.max_columns', 300) pd.set_option('display.max_rows', 400) from sklearn.linear_model import LogisticRegression, LinearRegression, LassoCV, Lasso, Ridge, LogisticRegressionCV from sklearn.feature_selection import RFE from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA, IncrementalPCA from sklearn.model_selection import GridSearchCV, cross_val_score, KFold, StratifiedKFold, RandomizedSearchCV from sklearn.metrics import confusion_matrix, classification_report, accuracy_score, precision_score, recall_score from sklearn.metrics import precision_recall_curve, roc_auc_score, roc_curve from imblearn.over_sampling import SMOTE, RandomOverSampler, ADASYN from sklearn.preprocessing import StandardScaler, MinMaxScaler, QuantileTransformer from scipy.stats import skew from fancyimpute import IterativeImputer, KNN from sklearn.impute import IterativeImputer from sklearn.impute import KNNImputer from sklearn.naive_bayes import MultinomialNB, BernoulliNB, GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, AdaBoostClassifier from sklearn.svm import SVC from xgboost import XGBClassifier from statsmodels.stats.outliers_influence import variance_inflation_factor from sklearn.feature_selection import RFE import statsmodels.api as sm telecom = pd.read_csv('../input/telecom-churn-dataset/telecom_churn_data.csv') telecom['tot_rech_amt_data_6'] = telecom['total_rech_data_6'] * telecom['av_rech_amt_data_6'] telecom['tot_rech_amt_data_7'] = telecom['total_rech_data_7'] * telecom['av_rech_amt_data_7'] telecom['tot_amt_6'] = telecom[['total_rech_amt_6', 'tot_rech_amt_data_6']].sum(axis=1) telecom['tot_amt_7'] = telecom[['total_rech_amt_7', 'tot_rech_amt_data_7']].sum(axis=1) telecom['avg_amt_6_7'] = telecom[['tot_amt_6', 'tot_amt_7']].mean(axis=1) telecom = telecom.loc[telecom['avg_amt_6_7'] >= np.percentile(telecom['avg_amt_6_7'], 70)] telecom.shape catg = [] for col in telecom.columns: if len(telecom[col].unique()) == 2 | 3: catg.append(col) telecom[catg] = telecom[catg].apply(lambda x: x.astype('object')) col_tmp = ['total_rech_num_6', 'total_rech_num_7', 'total_rech_num_8', 'total_rech_num_9', 'total_rech_data_6', 'total_rech_data_7', 'total_rech_data_8', 'total_rech_data_9'] telecom[col_tmp] = telecom[col_tmp].apply(lambda x: x.astype('object')) telecom.drop(['tot_rech_amt_data_6', 'tot_rech_amt_data_7', 'tot_rech_amt_data_8', 'tot_rech_amt_data_9'], inplace=True, axis=1) telecom.drop(telecom.filter(regex='_9|sep', axis=1).columns, axis=1, inplace=True) telecom.shape
code
49123700/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd import seaborn as sns import six import warnings import warnings warnings.filterwarnings('ignore') import sys, joblib import six sys.modules['sklearn.externals.six'] = six sys.modules['sklearn.externals.joblib'] = joblib import numpy as np import pandas as pd import re import matplotlib.pyplot as plt import seaborn as sns sns.set_context('talk', font_scale=0.65, rc={'grid.linewidth': 5}) pd.set_option('display.max_columns', 300) pd.set_option('display.max_rows', 400) from sklearn.linear_model import LogisticRegression, LinearRegression, LassoCV, Lasso, Ridge, LogisticRegressionCV from sklearn.feature_selection import RFE from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA, IncrementalPCA from sklearn.model_selection import GridSearchCV, cross_val_score, KFold, StratifiedKFold, RandomizedSearchCV from sklearn.metrics import confusion_matrix, classification_report, accuracy_score, precision_score, recall_score from sklearn.metrics import precision_recall_curve, roc_auc_score, roc_curve from imblearn.over_sampling import SMOTE, RandomOverSampler, ADASYN from sklearn.preprocessing import StandardScaler, MinMaxScaler, QuantileTransformer from scipy.stats import skew from fancyimpute import IterativeImputer, KNN from sklearn.impute import IterativeImputer from sklearn.impute import KNNImputer from sklearn.naive_bayes import MultinomialNB, BernoulliNB, GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, AdaBoostClassifier from sklearn.svm import SVC from xgboost import XGBClassifier from statsmodels.stats.outliers_influence import variance_inflation_factor from sklearn.feature_selection import RFE import statsmodels.api as sm telecom = pd.read_csv('../input/telecom-churn-dataset/telecom_churn_data.csv') telecom.select_dtypes(include='object').head(3)
code
49123700/cell_14
[ "text_html_output_1.png" ]
import pandas as pd import seaborn as sns import six import warnings import warnings warnings.filterwarnings('ignore') import sys, joblib import six sys.modules['sklearn.externals.six'] = six sys.modules['sklearn.externals.joblib'] = joblib import numpy as np import pandas as pd import re import matplotlib.pyplot as plt import seaborn as sns sns.set_context('talk', font_scale=0.65, rc={'grid.linewidth': 5}) pd.set_option('display.max_columns', 300) pd.set_option('display.max_rows', 400) from sklearn.linear_model import LogisticRegression, LinearRegression, LassoCV, Lasso, Ridge, LogisticRegressionCV from sklearn.feature_selection import RFE from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA, IncrementalPCA from sklearn.model_selection import GridSearchCV, cross_val_score, KFold, StratifiedKFold, RandomizedSearchCV from sklearn.metrics import confusion_matrix, classification_report, accuracy_score, precision_score, recall_score from sklearn.metrics import precision_recall_curve, roc_auc_score, roc_curve from imblearn.over_sampling import SMOTE, RandomOverSampler, ADASYN from sklearn.preprocessing import StandardScaler, MinMaxScaler, QuantileTransformer from scipy.stats import skew from fancyimpute import IterativeImputer, KNN from sklearn.impute import IterativeImputer from sklearn.impute import KNNImputer from sklearn.naive_bayes import MultinomialNB, BernoulliNB, GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, AdaBoostClassifier from sklearn.svm import SVC from xgboost import XGBClassifier from statsmodels.stats.outliers_influence import variance_inflation_factor from sklearn.feature_selection import RFE import statsmodels.api as sm telecom = pd.read_csv('../input/telecom-churn-dataset/telecom_churn_data.csv') def calnullpercentage(df): missing_num = df[df.columns].isna().sum().sort_values(ascending=False) missing_perc = (df[df.columns].isna().sum() / len(df) * 100).sort_values(ascending=False) missing = pd.concat([missing_num, missing_perc], keys=['Total', 'Percentage'], axis=1) missing = missing[missing['Percentage'] > 0] return missing print(len(calnullpercentage(telecom)))
code
49123700/cell_22
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import six import warnings import warnings warnings.filterwarnings('ignore') import sys, joblib import six sys.modules['sklearn.externals.six'] = six sys.modules['sklearn.externals.joblib'] = joblib import numpy as np import pandas as pd import re import matplotlib.pyplot as plt import seaborn as sns sns.set_context('talk', font_scale=0.65, rc={'grid.linewidth': 5}) pd.set_option('display.max_columns', 300) pd.set_option('display.max_rows', 400) from sklearn.linear_model import LogisticRegression, LinearRegression, LassoCV, Lasso, Ridge, LogisticRegressionCV from sklearn.feature_selection import RFE from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA, IncrementalPCA from sklearn.model_selection import GridSearchCV, cross_val_score, KFold, StratifiedKFold, RandomizedSearchCV from sklearn.metrics import confusion_matrix, classification_report, accuracy_score, precision_score, recall_score from sklearn.metrics import precision_recall_curve, roc_auc_score, roc_curve from imblearn.over_sampling import SMOTE, RandomOverSampler, ADASYN from sklearn.preprocessing import StandardScaler, MinMaxScaler, QuantileTransformer from scipy.stats import skew from fancyimpute import IterativeImputer, KNN from sklearn.impute import IterativeImputer from sklearn.impute import KNNImputer from sklearn.naive_bayes import MultinomialNB, BernoulliNB, GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, AdaBoostClassifier from sklearn.svm import SVC from xgboost import XGBClassifier from statsmodels.stats.outliers_influence import variance_inflation_factor from sklearn.feature_selection import RFE import statsmodels.api as sm telecom = pd.read_csv('../input/telecom-churn-dataset/telecom_churn_data.csv') telecom['tot_rech_amt_data_6'] = telecom['total_rech_data_6'] * telecom['av_rech_amt_data_6'] telecom['tot_rech_amt_data_7'] = telecom['total_rech_data_7'] * telecom['av_rech_amt_data_7'] telecom['tot_amt_6'] = telecom[['total_rech_amt_6', 'tot_rech_amt_data_6']].sum(axis=1) telecom['tot_amt_7'] = telecom[['total_rech_amt_7', 'tot_rech_amt_data_7']].sum(axis=1) telecom['avg_amt_6_7'] = telecom[['tot_amt_6', 'tot_amt_7']].mean(axis=1) telecom = telecom.loc[telecom['avg_amt_6_7'] >= np.percentile(telecom['avg_amt_6_7'], 70)] telecom.shape catg = [] for col in telecom.columns: if len(telecom[col].unique()) == 2 | 3: catg.append(col) telecom[catg] = telecom[catg].apply(lambda x: x.astype('object')) col_tmp = ['total_rech_num_6', 'total_rech_num_7', 'total_rech_num_8', 'total_rech_num_9', 'total_rech_data_6', 'total_rech_data_7', 'total_rech_data_8', 'total_rech_data_9'] telecom[col_tmp] = telecom[col_tmp].apply(lambda x: x.astype('object')) x = ['tot_amt_8', 'total_rech_amt_8', 'tot_rech_amt_data_8', 'total_rech_data_8', 'av_rech_amt_data_8'] plt.figure(figsize=(8, 5)) sns.heatmap(telecom[x].corr(), annot=True, cmap='viridis_r')
code
49123700/cell_10
[ "text_html_output_1.png" ]
import pandas as pd import seaborn as sns import six import warnings import warnings warnings.filterwarnings('ignore') import sys, joblib import six sys.modules['sklearn.externals.six'] = six sys.modules['sklearn.externals.joblib'] = joblib import numpy as np import pandas as pd import re import matplotlib.pyplot as plt import seaborn as sns sns.set_context('talk', font_scale=0.65, rc={'grid.linewidth': 5}) pd.set_option('display.max_columns', 300) pd.set_option('display.max_rows', 400) from sklearn.linear_model import LogisticRegression, LinearRegression, LassoCV, Lasso, Ridge, LogisticRegressionCV from sklearn.feature_selection import RFE from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA, IncrementalPCA from sklearn.model_selection import GridSearchCV, cross_val_score, KFold, StratifiedKFold, RandomizedSearchCV from sklearn.metrics import confusion_matrix, classification_report, accuracy_score, precision_score, recall_score from sklearn.metrics import precision_recall_curve, roc_auc_score, roc_curve from imblearn.over_sampling import SMOTE, RandomOverSampler, ADASYN from sklearn.preprocessing import StandardScaler, MinMaxScaler, QuantileTransformer from scipy.stats import skew from fancyimpute import IterativeImputer, KNN from sklearn.impute import IterativeImputer from sklearn.impute import KNNImputer from sklearn.naive_bayes import MultinomialNB, BernoulliNB, GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, AdaBoostClassifier from sklearn.svm import SVC from xgboost import XGBClassifier from statsmodels.stats.outliers_influence import variance_inflation_factor from sklearn.feature_selection import RFE import statsmodels.api as sm telecom = pd.read_csv('../input/telecom-churn-dataset/telecom_churn_data.csv') print(telecom.shape) print('\n') print(telecom.info(verbose=True, null_counts=True))
code
72098069/cell_13
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.metrics import roc_auc_score from xgboost import XGBClassifier import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('../input/dont-overfit-ii/train.csv') df_test = pd.read_csv('../input/dont-overfit-ii/test.csv') labels = df_train.columns.drop(['id', 'target']) target = df_train['target'] ide = df_test['id'] df_test = df_test.drop('id', axis=1) from xgboost import XGBClassifier m = XGBClassifier(max_depth=2, gamma=11, eta=0.8, reg_alpha=0.7, reg_lambda=0.9, eval_metric=None) m.fit(x_train, y_train) pred = m.predict(x_test) print(df_test.shape) ou = m.predict(df_test)
code
72098069/cell_9
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import roc_auc_score from sklearn.linear_model import LogisticRegression model = LogisticRegression() model.fit(x_train, y_train) preds = model.predict(x_test) from sklearn.metrics import roc_auc_score print('auc_train:', roc_auc_score(y_train, model.predict(x_train))) print('auc_test:', roc_auc_score(y_test, preds))
code
72098069/cell_4
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('../input/dont-overfit-ii/train.csv') df_test = pd.read_csv('../input/dont-overfit-ii/test.csv') labels = df_train.columns.drop(['id', 'target']) target = df_train['target'] ide = df_test['id'] df_test = df_test.drop('id', axis=1) df_train.head()
code
72098069/cell_6
[ "text_plain_output_1.png" ]
import missingno as msno import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('../input/dont-overfit-ii/train.csv') df_test = pd.read_csv('../input/dont-overfit-ii/test.csv') labels = df_train.columns.drop(['id', 'target']) target = df_train['target'] ide = df_test['id'] df_test = df_test.drop('id', axis=1) msno.matrix(df_train, figsize=(20, 7))
code
72098069/cell_11
[ "text_plain_output_1.png" ]
from xgboost import XGBClassifier from xgboost import XGBClassifier m = XGBClassifier(max_depth=2, gamma=11, eta=0.8, reg_alpha=0.7, reg_lambda=0.9, eval_metric=None) m.fit(x_train, y_train) pred = m.predict(x_test)
code
72098069/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import missingno as msno from sklearn.model_selection import train_test_split import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
72098069/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('../input/dont-overfit-ii/train.csv') df_test = pd.read_csv('../input/dont-overfit-ii/test.csv') labels = df_train.columns.drop(['id', 'target']) target = df_train['target'] ide = df_test['id'] df_test = df_test.drop('id', axis=1) df_train.info()
code
72098069/cell_12
[ "text_html_output_1.png" ]
from sklearn.metrics import roc_auc_score from xgboost import XGBClassifier from xgboost import XGBClassifier m = XGBClassifier(max_depth=2, gamma=11, eta=0.8, reg_alpha=0.7, reg_lambda=0.9, eval_metric=None) m.fit(x_train, y_train) pred = m.predict(x_test) print('auc_train:', roc_auc_score(y_train, m.predict(x_train))) print('auc_test:', roc_auc_score(y_test, pred))
code
33103605/cell_9
[ "text_plain_output_1.png" ]
from ktrain import text import ktrain import pandas as pd import pathlib train_path = '../input/sentimentdatasets/testStackOverFlow.csv' tr_path = pathlib.Path(train_path) if tr_path.exists(): train_df = pd.read_csv(train_path, encoding='utf-16', sep=';', header=None) else: raise SystemExit('Train path does not exist.') model_path = '../input/models/model.h5' mo_path = pathlib.Path(model_path) raise SystemExit('Model path does not exist.') data_path = '../input/sentimentdatasets/github_gold.csv' da_path = pathlib.Path(data_path) if da_path.exists(): test_df = pd.read_csv(data_path, sep=';', header=0) else: raise SystemExit('Data path does not exist.') (x_train, y_train), (x_test, y_test), preproc = text.texts_from_array(train_df[2], train_df[1], x_test=test_df['Text'], y_test=test_df['Polarity'], maxlen=500, preprocess_mode='bert') learner = ktrain.get_learner(text.text_classifier('bert', (x_train, y_train), preproc=preproc), train_data=(x_train, y_train), val_data=(x_test, y_test), batch_size=6) learner.load_model(model_path) predictor = ktrain.get_predictor(learner.model, preproc) have_test_dataset = False data_df = test_df if have_test_dataset: data = test_df[2].tolist() label = test_df[1].tolist() else: total_dataset = data_df.shape[0] test_data = round(total_dataset * 0.3) data_list = data_df['Text'].tolist() data = data_list[-test_data - 1:-1] label_list = data_df['Polarity'].tolist() label = label_list[-test_data - 1:-1] print('Showing prediction mistakes on test set!') i = 0 correct = 0 wrong = 0 total = len(data) for dt in data: result = predictor.predict(dt) if result == label[i]: correct += 1 else: wrong += 1 print('Wrong result on sentence:\n', dt, '\nExpected: ', label[i], '\nPredicted: ', result) i += 1
code
33103605/cell_4
[ "text_plain_output_1.png" ]
from ktrain import text import pandas as pd import pathlib train_path = '../input/sentimentdatasets/testStackOverFlow.csv' tr_path = pathlib.Path(train_path) if tr_path.exists(): train_df = pd.read_csv(train_path, encoding='utf-16', sep=';', header=None) else: raise SystemExit('Train path does not exist.') model_path = '../input/models/model.h5' mo_path = pathlib.Path(model_path) raise SystemExit('Model path does not exist.') data_path = '../input/sentimentdatasets/github_gold.csv' da_path = pathlib.Path(data_path) if da_path.exists(): test_df = pd.read_csv(data_path, sep=';', header=0) else: raise SystemExit('Data path does not exist.') (x_train, y_train), (x_test, y_test), preproc = text.texts_from_array(train_df[2], train_df[1], x_test=test_df['Text'], y_test=test_df['Polarity'], maxlen=500, preprocess_mode='bert')
code
33103605/cell_6
[ "text_plain_output_100.png", "text_plain_output_84.png", "text_plain_output_56.png", "text_plain_output_158.png", "text_plain_output_181.png", "text_plain_output_137.png", "text_plain_output_139.png", "text_plain_output_35.png", "text_plain_output_130.png", "text_plain_output_117.png", "text_plain_output_98.png", "text_plain_output_43.png", "text_plain_output_78.png", "text_plain_output_143.png", "text_plain_output_106.png", "text_plain_output_37.png", "text_plain_output_138.png", "text_plain_output_172.png", "text_plain_output_147.png", "text_plain_output_90.png", "text_plain_output_79.png", "text_plain_output_5.png", "text_plain_output_75.png", "text_plain_output_48.png", "text_plain_output_116.png", "text_plain_output_128.png", "text_plain_output_30.png", "text_plain_output_167.png", "text_plain_output_73.png", "text_plain_output_126.png", "text_plain_output_115.png", "text_plain_output_15.png", "text_plain_output_133.png", "text_plain_output_178.png", "text_plain_output_154.png", "text_plain_output_114.png", "text_plain_output_157.png", "text_plain_output_70.png", "text_plain_output_9.png", "text_plain_output_44.png", "text_plain_output_119.png", "text_plain_output_86.png", "text_plain_output_118.png", "text_plain_output_131.png", "text_plain_output_40.png", "text_plain_output_123.png", "text_plain_output_74.png", "text_plain_output_31.png", "text_plain_output_20.png", "text_plain_output_102.png", "text_plain_output_111.png", "text_plain_output_101.png", "text_plain_output_169.png", "text_plain_output_144.png", "text_plain_output_161.png", "text_plain_output_132.png", "text_plain_output_60.png", "text_plain_output_155.png", "text_plain_output_68.png", "text_plain_output_4.png", "text_plain_output_65.png", "text_plain_output_64.png", "text_plain_output_13.png", "text_plain_output_107.png", "text_plain_output_52.png", "text_plain_output_66.png", "text_plain_output_45.png", "text_plain_output_171.png", "text_plain_output_14.png", "text_plain_output_159.png", "text_plain_output_32.png", "text_plain_output_88.png", "text_plain_output_29.png", "text_plain_output_140.png", "text_plain_output_129.png", "text_plain_output_160.png", "text_plain_output_58.png", "text_plain_output_49.png", "text_plain_output_63.png", "text_plain_output_27.png", "text_plain_output_177.png", "text_plain_output_76.png", "text_plain_output_108.png", "text_plain_output_54.png", "text_plain_output_142.png", "text_plain_output_10.png", "text_plain_output_6.png", "text_plain_output_153.png", "text_plain_output_170.png", "text_plain_output_92.png", "text_plain_output_57.png", "text_plain_output_120.png", "text_plain_output_24.png", "text_plain_output_21.png", "text_plain_output_104.png", "text_plain_output_47.png", "text_plain_output_121.png", "text_plain_output_25.png", "text_plain_output_134.png", "text_plain_output_77.png", "text_plain_output_18.png", "text_plain_output_149.png", "text_plain_output_50.png", "text_plain_output_36.png", "text_plain_output_96.png", "text_plain_output_87.png", "text_plain_output_3.png", "text_plain_output_180.png", "text_plain_output_141.png", "text_plain_output_112.png", "text_plain_output_152.png", "text_plain_output_113.png", "text_plain_output_22.png", "text_plain_output_81.png", "text_plain_output_69.png", "text_plain_output_175.png", "text_plain_output_165.png", "text_plain_output_146.png", "text_plain_output_145.png", "text_plain_output_125.png", "text_plain_output_38.png", "text_plain_output_7.png", "text_plain_output_166.png", "text_plain_output_91.png", "text_plain_output_16.png", "text_plain_output_174.png", "text_plain_output_59.png", "text_plain_output_103.png", "text_plain_output_71.png", "text_plain_output_8.png", "text_plain_output_122.png", "text_plain_output_26.png", "text_plain_output_109.png", "text_plain_output_41.png", "text_plain_output_34.png", "text_plain_output_168.png", "text_plain_output_85.png", "text_plain_output_42.png", "text_plain_output_110.png", "text_plain_output_67.png", "text_plain_output_53.png", "text_plain_output_23.png", "text_plain_output_173.png", "text_plain_output_151.png", "text_plain_output_89.png", "text_plain_output_51.png", "text_plain_output_28.png", "text_plain_output_72.png", "text_plain_output_99.png", "text_plain_output_163.png", "text_plain_output_179.png", "text_plain_output_162.png", "text_plain_output_136.png", "text_plain_output_2.png", "text_plain_output_127.png", "text_plain_output_97.png", "text_plain_output_1.png", "text_plain_output_33.png", "text_plain_output_150.png", "text_plain_output_39.png", "text_plain_output_176.png", "text_plain_output_55.png", "text_plain_output_82.png", "text_plain_output_93.png", "text_plain_output_19.png", "text_plain_output_105.png", "text_plain_output_80.png", "text_plain_output_94.png", "text_plain_output_164.png", "text_plain_output_124.png", "text_plain_output_17.png", "text_plain_output_148.png", "text_plain_output_11.png", "text_plain_output_12.png", "text_plain_output_62.png", "text_plain_output_95.png", "text_plain_output_156.png", "text_plain_output_61.png", "text_plain_output_83.png", "text_plain_output_135.png", "text_plain_output_46.png" ]
from ktrain import text import ktrain import pandas as pd import pathlib train_path = '../input/sentimentdatasets/testStackOverFlow.csv' tr_path = pathlib.Path(train_path) if tr_path.exists(): train_df = pd.read_csv(train_path, encoding='utf-16', sep=';', header=None) else: raise SystemExit('Train path does not exist.') model_path = '../input/models/model.h5' mo_path = pathlib.Path(model_path) raise SystemExit('Model path does not exist.') data_path = '../input/sentimentdatasets/github_gold.csv' da_path = pathlib.Path(data_path) if da_path.exists(): test_df = pd.read_csv(data_path, sep=';', header=0) else: raise SystemExit('Data path does not exist.') (x_train, y_train), (x_test, y_test), preproc = text.texts_from_array(train_df[2], train_df[1], x_test=test_df['Text'], y_test=test_df['Polarity'], maxlen=500, preprocess_mode='bert') learner = ktrain.get_learner(text.text_classifier('bert', (x_train, y_train), preproc=preproc), train_data=(x_train, y_train), val_data=(x_test, y_test), batch_size=6) learner.load_model(model_path) print('model loaded successfully')
code
33103605/cell_2
[ "text_plain_output_1.png" ]
!pip install ktrain import ktrain from ktrain import text
code
33103605/cell_3
[ "text_html_output_2.png", "text_html_output_1.png", "text_plain_output_2.png", "text_plain_output_1.png" ]
import pandas as pd import pathlib train_path = '../input/sentimentdatasets/testStackOverFlow.csv' tr_path = pathlib.Path(train_path) if tr_path.exists(): train_df = pd.read_csv(train_path, encoding='utf-16', sep=';', header=None) print('Train path set.') else: raise SystemExit('Train path does not exist.') model_path = '../input/models/model.h5' mo_path = pathlib.Path(model_path) if mo_path.exists(): print('Model path set.') else: raise SystemExit('Model path does not exist.') data_path = '../input/sentimentdatasets/github_gold.csv' da_path = pathlib.Path(data_path) if da_path.exists(): test_df = pd.read_csv(data_path, sep=';', header=0) print('Data path set.') else: raise SystemExit('Data path does not exist.')
code
33103605/cell_10
[ "text_plain_output_1.png" ]
from ktrain import text import ktrain import pandas as pd import pathlib train_path = '../input/sentimentdatasets/testStackOverFlow.csv' tr_path = pathlib.Path(train_path) if tr_path.exists(): train_df = pd.read_csv(train_path, encoding='utf-16', sep=';', header=None) else: raise SystemExit('Train path does not exist.') model_path = '../input/models/model.h5' mo_path = pathlib.Path(model_path) raise SystemExit('Model path does not exist.') data_path = '../input/sentimentdatasets/github_gold.csv' da_path = pathlib.Path(data_path) if da_path.exists(): test_df = pd.read_csv(data_path, sep=';', header=0) else: raise SystemExit('Data path does not exist.') (x_train, y_train), (x_test, y_test), preproc = text.texts_from_array(train_df[2], train_df[1], x_test=test_df['Text'], y_test=test_df['Polarity'], maxlen=500, preprocess_mode='bert') learner = ktrain.get_learner(text.text_classifier('bert', (x_train, y_train), preproc=preproc), train_data=(x_train, y_train), val_data=(x_test, y_test), batch_size=6) learner.load_model(model_path) predictor = ktrain.get_predictor(learner.model, preproc) have_test_dataset = False data_df = test_df if have_test_dataset: data = test_df[2].tolist() label = test_df[1].tolist() else: total_dataset = data_df.shape[0] test_data = round(total_dataset * 0.3) data_list = data_df['Text'].tolist() data = data_list[-test_data - 1:-1] label_list = data_df['Polarity'].tolist() label = label_list[-test_data - 1:-1] i = 0 correct = 0 wrong = 0 total = len(data) for dt in data: result = predictor.predict(dt) if result == label[i]: correct += 1 else: wrong += 1 i += 1 print('Correct: ', correct, '/', total, '\nWrong: ', wrong, '/', total)
code
33103605/cell_5
[ "text_plain_output_1.png" ]
from ktrain import text import ktrain import pandas as pd import pathlib train_path = '../input/sentimentdatasets/testStackOverFlow.csv' tr_path = pathlib.Path(train_path) if tr_path.exists(): train_df = pd.read_csv(train_path, encoding='utf-16', sep=';', header=None) else: raise SystemExit('Train path does not exist.') model_path = '../input/models/model.h5' mo_path = pathlib.Path(model_path) raise SystemExit('Model path does not exist.') data_path = '../input/sentimentdatasets/github_gold.csv' da_path = pathlib.Path(data_path) if da_path.exists(): test_df = pd.read_csv(data_path, sep=';', header=0) else: raise SystemExit('Data path does not exist.') (x_train, y_train), (x_test, y_test), preproc = text.texts_from_array(train_df[2], train_df[1], x_test=test_df['Text'], y_test=test_df['Polarity'], maxlen=500, preprocess_mode='bert') learner = ktrain.get_learner(text.text_classifier('bert', (x_train, y_train), preproc=preproc), train_data=(x_train, y_train), val_data=(x_test, y_test), batch_size=6)
code
130011822/cell_13
[ "text_html_output_1.png" ]
from sklearn.feature_extraction.text import CountVectorizer from sklearn.linear_model import LogisticRegression from sklearn.preprocessing import StandardScaler vectorizer = CountVectorizer() X_train_vec = vectorizer.fit_transform(X_train) X_test_vec = vectorizer.transform(X_test) from sklearn.preprocessing import StandardScaler scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train_vec.toarray()) X_test_scaled = scaler.transform(X_test_vec.toarray()) model = LogisticRegression() model.fit(X_train_vec, y_train) accuracy = model.score(X_test_scaled, y_test) X_new_data = 'agenda for next sitting see minutes' X_new_data_vec = vectorizer.transform([X_new_data]) X_new_data_scaled = scaler.transform(X_new_data_vec.toarray()) y_pred = model.predict(X_new_data_scaled) print(y_pred)
code
130011822/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/unlock-the-power-of-english-asl-with-aslg-pc12-c/train.csv') df.columns df.head()
code
130011822/cell_11
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.feature_extraction.text import CountVectorizer from sklearn.linear_model import LogisticRegression from sklearn.preprocessing import StandardScaler vectorizer = CountVectorizer() X_train_vec = vectorizer.fit_transform(X_train) X_test_vec = vectorizer.transform(X_test) from sklearn.preprocessing import StandardScaler scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train_vec.toarray()) X_test_scaled = scaler.transform(X_test_vec.toarray()) model = LogisticRegression() model.fit(X_train_vec, y_train)
code
130011822/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
130011822/cell_3
[ "text_html_output_1.png" ]
import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.feature_extraction.text import CountVectorizer from sklearn.linear_model import LogisticRegression
code
130011822/cell_12
[ "text_plain_output_1.png" ]
from sklearn.feature_extraction.text import CountVectorizer from sklearn.linear_model import LogisticRegression from sklearn.preprocessing import StandardScaler vectorizer = CountVectorizer() X_train_vec = vectorizer.fit_transform(X_train) X_test_vec = vectorizer.transform(X_test) from sklearn.preprocessing import StandardScaler scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train_vec.toarray()) X_test_scaled = scaler.transform(X_test_vec.toarray()) model = LogisticRegression() model.fit(X_train_vec, y_train) accuracy = model.score(X_test_scaled, y_test) print('Accuracy:', accuracy)
code
130011822/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/unlock-the-power-of-english-asl-with-aslg-pc12-c/train.csv') df.columns
code
122263749/cell_13
[ "text_plain_output_1.png" ]
from keras.preprocessing import image from os import listdir from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder import cv2 import numpy as np INIT_LR = 0.001 BS = 32 default_image_size = tuple((72, 72)) image_size = 72 directory_root = '../input/brain-tumor-classification-mri/Training' width = 256 height = 256 depth = 3 def convert_image_to_array(image_dir): try: image = cv2.imread(image_dir) if image is not None: image = cv2.resize(image, default_image_size) image = cv2.convertScaleAbs(image, alpha=1.2, beta=0) return image.astype(np.uint8) else: return np.array([]) except Exception as e: return None image_list, label_list = ([], []) try: root_dir = listdir(directory_root) brain_folder_list = listdir(f'{directory_root}/') for brain_folder in brain_folder_list: brain_image_list = listdir(f'{directory_root}/{brain_folder}/') for image in brain_image_list[:500]: image_directory = f'{directory_root}/{brain_folder}/{image}' if image_directory.endswith('.jpg') == True or image_directory.endswith('.JPG') == True: image_list.append(convert_image_to_array(image_directory)) label_list.append(brain_folder) exit except Exception as e: np_image_list = np.array(image_list, dtype=np.uint8) from sklearn.preprocessing import LabelEncoder le = LabelEncoder() y = le.fit_transform(label_list) label_list = y.reshape(len(image_list), 1) label_list.shape print('[INFO] Spliting data to train, test') x_train, x_test, y_train, y_test = train_test_split(np_image_list, label_list, test_size=0.2, random_state=42)
code
122263749/cell_9
[ "text_plain_output_1.png" ]
from keras.preprocessing import image from os import listdir import cv2 import numpy as np INIT_LR = 0.001 BS = 32 default_image_size = tuple((72, 72)) image_size = 72 directory_root = '../input/brain-tumor-classification-mri/Training' width = 256 height = 256 depth = 3 def convert_image_to_array(image_dir): try: image = cv2.imread(image_dir) if image is not None: image = cv2.resize(image, default_image_size) image = cv2.convertScaleAbs(image, alpha=1.2, beta=0) return image.astype(np.uint8) else: return np.array([]) except Exception as e: return None image_list, label_list = ([], []) try: print('[INFO] Loading images ...') root_dir = listdir(directory_root) brain_folder_list = listdir(f'{directory_root}/') print(brain_folder_list) for brain_folder in brain_folder_list: print(f'[INFO] Processing {brain_folder} ...') brain_image_list = listdir(f'{directory_root}/{brain_folder}/') for image in brain_image_list[:500]: image_directory = f'{directory_root}/{brain_folder}/{image}' if image_directory.endswith('.jpg') == True or image_directory.endswith('.JPG') == True: image_list.append(convert_image_to_array(image_directory)) label_list.append(brain_folder) exit print('[INFO] Image loading completed') except Exception as e: print(f'Error : {e}')
code
122263749/cell_20
[ "text_plain_output_1.png" ]
from PIL import Image from PIL import Image from keras.preprocessing import image from os import listdir from tensorflow import keras from tensorflow.keras import layers import cv2 import matplotlib.pyplot as plt import matplotlib.pyplot as plt import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np import tensorflow as tf learning_rate = 0.001 weight_decay = 0.0001 batch_size = 256 num_epochs = 300 image_size = 72 patch_size = 5 num_patches = (image_size // patch_size) ** 2 projection_dim = 64 num_heads = 4 transformer_units = [projection_dim * 2, projection_dim] transformer_layers = 8 mlp_head_units = [2048, 1024] INIT_LR = 0.001 BS = 32 default_image_size = tuple((72, 72)) image_size = 72 directory_root = '../input/brain-tumor-classification-mri/Training' width = 256 height = 256 depth = 3 def convert_image_to_array(image_dir): try: image = cv2.imread(image_dir) if image is not None: image = cv2.resize(image, default_image_size) image = cv2.convertScaleAbs(image, alpha=1.2, beta=0) return image.astype(np.uint8) else: return np.array([]) except Exception as e: return None image_list, label_list = ([], []) try: root_dir = listdir(directory_root) brain_folder_list = listdir(f'{directory_root}/') for brain_folder in brain_folder_list: brain_image_list = listdir(f'{directory_root}/{brain_folder}/') for image in brain_image_list[:500]: image_directory = f'{directory_root}/{brain_folder}/{image}' if image_directory.endswith('.jpg') == True or image_directory.endswith('.JPG') == True: image_list.append(convert_image_to_array(image_directory)) label_list.append(brain_folder) exit except Exception as e: np_image_list = np.array(image_list, dtype=np.uint8) from PIL import Image import matplotlib.pyplot as plt from PIL import Image import matplotlib.pyplot as plt data_augmentation = keras.Sequential([layers.experimental.preprocessing.Normalization(), layers.experimental.preprocessing.Resizing(image_size, image_size), layers.experimental.preprocessing.RandomFlip('horizontal'), layers.experimental.preprocessing.RandomRotation(factor=0.02), layers.experimental.preprocessing.RandomZoom(height_factor=0.2, width_factor=0.2)], name='data_augmentation') data_augmentation.layers[0].adapt(x_train) def mlp(x, hidden_units, dropout_rate): for units in hidden_units: x = layers.Dense(units, activation=tf.nn.gelu)(x) x = layers.Dropout(dropout_rate)(x) return x class Patches(layers.Layer): def __init__(self, patch_size): super(Patches, self).__init__() self.patch_size = patch_size def call(self, images): batch_size = tf.shape(images)[0] patches = tf.image.extract_patches(images=images, sizes=[1, self.patch_size, self.patch_size, 1], strides=[1, self.patch_size, self.patch_size, 1], rates=[1, 1, 1, 1], padding='VALID') patch_dims = patches.shape[-1] patches = tf.reshape(patches, [batch_size, -1, patch_dims]) return patches import matplotlib.pyplot as plt plt.figure(figsize=(4, 4)) image = x_train[np.random.choice(range(x_train.shape[0]))] print(x_train[0]) plt.imshow(image.astype('uint8')) plt.axis('off') resized_image = tf.image.resize(tf.convert_to_tensor([image]), size=(image_size, image_size)) patches = Patches(patch_size)(resized_image) print(f'Image size: {image_size} X {image_size}') print(f'Patch size: {patch_size} X {patch_size}') print(f'Patches per image: {patches.shape[1]}') print(f'Elements per patch: {patches.shape[-1]}') n = int(np.sqrt(patches.shape[1])) plt.figure(figsize=(4, 4)) for i, patch in enumerate(patches[0]): ax = plt.subplot(n, n, i + 1) patch_img = tf.reshape(patch, (patch_size, patch_size, 3)) plt.imshow(patch_img.numpy().astype('uint8')) plt.axis('off')
code
122263749/cell_11
[ "text_plain_output_1.png" ]
from keras.preprocessing import image from os import listdir from sklearn.preprocessing import LabelEncoder import cv2 import numpy as np INIT_LR = 0.001 BS = 32 default_image_size = tuple((72, 72)) image_size = 72 directory_root = '../input/brain-tumor-classification-mri/Training' width = 256 height = 256 depth = 3 def convert_image_to_array(image_dir): try: image = cv2.imread(image_dir) if image is not None: image = cv2.resize(image, default_image_size) image = cv2.convertScaleAbs(image, alpha=1.2, beta=0) return image.astype(np.uint8) else: return np.array([]) except Exception as e: return None image_list, label_list = ([], []) try: root_dir = listdir(directory_root) brain_folder_list = listdir(f'{directory_root}/') for brain_folder in brain_folder_list: brain_image_list = listdir(f'{directory_root}/{brain_folder}/') for image in brain_image_list[:500]: image_directory = f'{directory_root}/{brain_folder}/{image}' if image_directory.endswith('.jpg') == True or image_directory.endswith('.JPG') == True: image_list.append(convert_image_to_array(image_directory)) label_list.append(brain_folder) exit except Exception as e: from sklearn.preprocessing import LabelEncoder le = LabelEncoder() y = le.fit_transform(label_list) print(y) label_list = y.reshape(len(image_list), 1)
code
122263749/cell_15
[ "text_plain_output_1.png" ]
print(f'x_train shape: {x_train.shape} - y_train shape: {y_train.shape}') print(f'x_test shape: {x_test.shape} - y_test shape: {y_test.shape}')
code
122263749/cell_16
[ "image_output_1.png" ]
from PIL import Image from PIL import Image from keras.preprocessing import image from os import listdir import cv2 import matplotlib.pyplot as plt import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np INIT_LR = 0.001 BS = 32 default_image_size = tuple((72, 72)) image_size = 72 directory_root = '../input/brain-tumor-classification-mri/Training' width = 256 height = 256 depth = 3 def convert_image_to_array(image_dir): try: image = cv2.imread(image_dir) if image is not None: image = cv2.resize(image, default_image_size) image = cv2.convertScaleAbs(image, alpha=1.2, beta=0) return image.astype(np.uint8) else: return np.array([]) except Exception as e: return None image_list, label_list = ([], []) try: root_dir = listdir(directory_root) brain_folder_list = listdir(f'{directory_root}/') for brain_folder in brain_folder_list: brain_image_list = listdir(f'{directory_root}/{brain_folder}/') for image in brain_image_list[:500]: image_directory = f'{directory_root}/{brain_folder}/{image}' if image_directory.endswith('.jpg') == True or image_directory.endswith('.JPG') == True: image_list.append(convert_image_to_array(image_directory)) label_list.append(brain_folder) exit except Exception as e: np_image_list = np.array(image_list, dtype=np.uint8) from PIL import Image import matplotlib.pyplot as plt from PIL import Image import matplotlib.pyplot as plt plt.imshow(Image.fromarray(x_train[100].astype(np.uint8))) plt.show()
code
122263749/cell_14
[ "text_plain_output_1.png" ]
from PIL import Image from keras.preprocessing import image from os import listdir import cv2 import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np INIT_LR = 0.001 BS = 32 default_image_size = tuple((72, 72)) image_size = 72 directory_root = '../input/brain-tumor-classification-mri/Training' width = 256 height = 256 depth = 3 def convert_image_to_array(image_dir): try: image = cv2.imread(image_dir) if image is not None: image = cv2.resize(image, default_image_size) image = cv2.convertScaleAbs(image, alpha=1.2, beta=0) return image.astype(np.uint8) else: return np.array([]) except Exception as e: return None image_list, label_list = ([], []) try: root_dir = listdir(directory_root) brain_folder_list = listdir(f'{directory_root}/') for brain_folder in brain_folder_list: brain_image_list = listdir(f'{directory_root}/{brain_folder}/') for image in brain_image_list[:500]: image_directory = f'{directory_root}/{brain_folder}/{image}' if image_directory.endswith('.jpg') == True or image_directory.endswith('.JPG') == True: image_list.append(convert_image_to_array(image_directory)) label_list.append(brain_folder) exit except Exception as e: np_image_list = np.array(image_list, dtype=np.uint8) from PIL import Image import matplotlib.pyplot as plt plt.imshow(Image.fromarray(x_train[0].astype(np.uint8))) plt.show()
code
122263749/cell_12
[ "text_plain_output_1.png" ]
from keras.preprocessing import image from os import listdir from sklearn.preprocessing import LabelEncoder import cv2 import numpy as np INIT_LR = 0.001 BS = 32 default_image_size = tuple((72, 72)) image_size = 72 directory_root = '../input/brain-tumor-classification-mri/Training' width = 256 height = 256 depth = 3 def convert_image_to_array(image_dir): try: image = cv2.imread(image_dir) if image is not None: image = cv2.resize(image, default_image_size) image = cv2.convertScaleAbs(image, alpha=1.2, beta=0) return image.astype(np.uint8) else: return np.array([]) except Exception as e: return None image_list, label_list = ([], []) try: root_dir = listdir(directory_root) brain_folder_list = listdir(f'{directory_root}/') for brain_folder in brain_folder_list: brain_image_list = listdir(f'{directory_root}/{brain_folder}/') for image in brain_image_list[:500]: image_directory = f'{directory_root}/{brain_folder}/{image}' if image_directory.endswith('.jpg') == True or image_directory.endswith('.JPG') == True: image_list.append(convert_image_to_array(image_directory)) label_list.append(brain_folder) exit except Exception as e: from sklearn.preprocessing import LabelEncoder le = LabelEncoder() y = le.fit_transform(label_list) label_list = y.reshape(len(image_list), 1) label_list.shape
code
122263749/cell_5
[ "text_plain_output_1.png", "image_output_2.png", "image_output_1.png" ]
pip install -U tensorflow-addons
code
90118648/cell_21
[ "text_plain_output_1.png" ]
from sklearn.impute import KNNImputer import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') predictors = ['Pclass', 'Sex', 'Age', 'Parch', 'SibSp', 'Fare', 'Embarked'] X_train = train[predictors] y_train = train['Survived'] X_test = test[predictors] knn_imputer = KNNImputer() X_train = pd.DataFrame(knn_imputer.fit_transform(X_train), columns=predictors) X_train[['Sex', 'Embarked', 'Pclass', 'Title']] = X_train[['Sex', 'Embarked', 'Pclass', 'Title']].astype('category') X_train.info()
code
90118648/cell_13
[ "text_plain_output_1.png" ]
from sklearn.impute import KNNImputer import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') predictors = ['Pclass', 'Sex', 'Age', 'Parch', 'SibSp', 'Fare', 'Embarked'] X_train = train[predictors] y_train = train['Survived'] X_test = test[predictors] knn_imputer = KNNImputer() X_train = pd.DataFrame(knn_imputer.fit_transform(X_train), columns=predictors) X_train.describe()
code
90118648/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') train['Embarked'] = [1 if l == 'S' else 2 if l == 'C' else 3 for l in train['Embarked']] train['Embarked'].value_counts()
code
90118648/cell_25
[ "text_plain_output_1.png" ]
from sklearn.impute import KNNImputer import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') predictors = ['Pclass', 'Sex', 'Age', 'Parch', 'SibSp', 'Fare', 'Embarked'] X_train = train[predictors] y_train = train['Survived'] X_test = test[predictors] knn_imputer = KNNImputer() X_train = pd.DataFrame(knn_imputer.fit_transform(X_train), columns=predictors) X_test = pd.DataFrame(knn_imputer.transform(X_test), columns=predictors) X_train[['Sex', 'Embarked', 'Pclass', 'Title']] = X_train[['Sex', 'Embarked', 'Pclass', 'Title']].astype('category') X_test[['Sex', 'Embarked', 'Pclass', 'Title']] = X_test[['Sex', 'Embarked', 'Pclass', 'Title']].astype('category') X_train_ohe = pd.get_dummies(X_train) X_test_ohe = pd.get_dummies(X_test) X_test_ohe.head()
code
90118648/cell_4
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') train.info()
code
90118648/cell_30
[ "text_plain_output_1.png" ]
from sklearn.impute import KNNImputer from sklearn.preprocessing import PowerTransformer import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') predictors = ['Pclass', 'Sex', 'Age', 'Parch', 'SibSp', 'Fare', 'Embarked'] X_train = train[predictors] y_train = train['Survived'] X_test = test[predictors] knn_imputer = KNNImputer() X_train = pd.DataFrame(knn_imputer.fit_transform(X_train), columns=predictors) X_test = pd.DataFrame(knn_imputer.transform(X_test), columns=predictors) X_train[['Sex', 'Embarked', 'Pclass', 'Title']] = X_train[['Sex', 'Embarked', 'Pclass', 'Title']].astype('category') X_test[['Sex', 'Embarked', 'Pclass', 'Title']] = X_test[['Sex', 'Embarked', 'Pclass', 'Title']].astype('category') X_train_ohe = pd.get_dummies(X_train) X_test_ohe = pd.get_dummies(X_test) num = ['Age', 'Parch', 'SibSp', 'Fare'] power = PowerTransformer() train_power = pd.DataFrame(power.fit_transform(X_train[num]), columns=num) train_power.head()
code
90118648/cell_33
[ "text_html_output_1.png" ]
from sklearn.impute import KNNImputer from sklearn.preprocessing import PowerTransformer import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') predictors = ['Pclass', 'Sex', 'Age', 'Parch', 'SibSp', 'Fare', 'Embarked'] X_train = train[predictors] y_train = train['Survived'] X_test = test[predictors] knn_imputer = KNNImputer() X_train = pd.DataFrame(knn_imputer.fit_transform(X_train), columns=predictors) X_test = pd.DataFrame(knn_imputer.transform(X_test), columns=predictors) X_train[['Sex', 'Embarked', 'Pclass', 'Title']] = X_train[['Sex', 'Embarked', 'Pclass', 'Title']].astype('category') X_test[['Sex', 'Embarked', 'Pclass', 'Title']] = X_test[['Sex', 'Embarked', 'Pclass', 'Title']].astype('category') X_train_ohe = pd.get_dummies(X_train) X_test_ohe = pd.get_dummies(X_test) num = ['Age', 'Parch', 'SibSp', 'Fare'] power = PowerTransformer() train_power = pd.DataFrame(power.fit_transform(X_train[num]), columns=num) test_power = pd.DataFrame(power.transform(X_test[num]), columns=num) X_train_ohe_power = pd.concat([train_power[num], X_train_ohe.drop(num, axis=1)], axis=1) X_test_ohe_power = pd.concat([test_power[num], X_test_ohe.drop(num, axis=1)], axis=1) X_test_ohe_power.head()
code
90118648/cell_20
[ "text_html_output_1.png" ]
from sklearn.impute import KNNImputer import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') predictors = ['Pclass', 'Sex', 'Age', 'Parch', 'SibSp', 'Fare', 'Embarked'] X_train = train[predictors] y_train = train['Survived'] X_test = test[predictors] knn_imputer = KNNImputer() X_train = pd.DataFrame(knn_imputer.fit_transform(X_train), columns=predictors) X_test = pd.DataFrame(knn_imputer.transform(X_test), columns=predictors) X_train['Title'] = [s.split(',')[1].split('.')[0].strip() for s in train['Name']] X_train['Title'] = X_train['Title'].astype('category') replacements = {'Mlle': 'Miss', 'Mme': 'Mrs', 'Ms': 'Mrs'} X_train['Title'] = X_train['Title'].replace(replacements) counts = X_train['Title'].value_counts() mask = X_train['Title'].isin(counts[counts < 10].index) X_train['Title'][mask] = 'Other' X_train['Title'].value_counts() X_test['Title'] = [s.split(',')[1].split('.')[0].strip() for s in test['Name']] X_test['Title'] = X_test['Title'].astype('category') replacements = {'Mlle': 'Miss', 'Mme': 'Mrs', 'Ms': 'Mrs'} X_test['Title'] = X_test['Title'].replace(replacements) counts = X_test['Title'].value_counts() mask = X_test['Title'].isin(counts[counts < 10].index) X_test['Title'][mask] = 'Other' X_test['Title'].value_counts()
code
90118648/cell_6
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') train.describe(include='all')
code
90118648/cell_19
[ "text_html_output_1.png" ]
from sklearn.impute import KNNImputer import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') predictors = ['Pclass', 'Sex', 'Age', 'Parch', 'SibSp', 'Fare', 'Embarked'] X_train = train[predictors] y_train = train['Survived'] X_test = test[predictors] knn_imputer = KNNImputer() X_train = pd.DataFrame(knn_imputer.fit_transform(X_train), columns=predictors) X_train['Title'] = [s.split(',')[1].split('.')[0].strip() for s in train['Name']] X_train['Title'] = X_train['Title'].astype('category') replacements = {'Mlle': 'Miss', 'Mme': 'Mrs', 'Ms': 'Mrs'} X_train['Title'] = X_train['Title'].replace(replacements) counts = X_train['Title'].value_counts() mask = X_train['Title'].isin(counts[counts < 10].index) X_train['Title'][mask] = 'Other' X_train['Title'].value_counts()
code
90118648/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
90118648/cell_7
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') train['Sex'] = [0 if l == 'male' else 1 for l in train['Sex']] train['Sex'].value_counts()
code
90118648/cell_18
[ "text_plain_output_1.png" ]
from sklearn.impute import KNNImputer import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') predictors = ['Pclass', 'Sex', 'Age', 'Parch', 'SibSp', 'Fare', 'Embarked'] X_train = train[predictors] y_train = train['Survived'] X_test = test[predictors] knn_imputer = KNNImputer() X_train = pd.DataFrame(knn_imputer.fit_transform(X_train), columns=predictors) X_test = pd.DataFrame(knn_imputer.transform(X_test), columns=predictors) X_test['Embarked'] = ['S' if l == 1 else 'C' if l == 2 else 'Q' for l in X_test['Embarked']] X_test['Embarked'].value_counts()
code
90118648/cell_32
[ "text_html_output_1.png" ]
from sklearn.impute import KNNImputer from sklearn.preprocessing import PowerTransformer import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') predictors = ['Pclass', 'Sex', 'Age', 'Parch', 'SibSp', 'Fare', 'Embarked'] X_train = train[predictors] y_train = train['Survived'] X_test = test[predictors] knn_imputer = KNNImputer() X_train = pd.DataFrame(knn_imputer.fit_transform(X_train), columns=predictors) X_test = pd.DataFrame(knn_imputer.transform(X_test), columns=predictors) X_train[['Sex', 'Embarked', 'Pclass', 'Title']] = X_train[['Sex', 'Embarked', 'Pclass', 'Title']].astype('category') X_test[['Sex', 'Embarked', 'Pclass', 'Title']] = X_test[['Sex', 'Embarked', 'Pclass', 'Title']].astype('category') X_train_ohe = pd.get_dummies(X_train) X_test_ohe = pd.get_dummies(X_test) num = ['Age', 'Parch', 'SibSp', 'Fare'] power = PowerTransformer() train_power = pd.DataFrame(power.fit_transform(X_train[num]), columns=num) test_power = pd.DataFrame(power.transform(X_test[num]), columns=num) X_train_ohe_power = pd.concat([train_power[num], X_train_ohe.drop(num, axis=1)], axis=1) X_train_ohe_power.head()
code
90118648/cell_28
[ "text_plain_output_1.png" ]
from category_encoders import TargetEncoder from sklearn.impute import KNNImputer import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') predictors = ['Pclass', 'Sex', 'Age', 'Parch', 'SibSp', 'Fare', 'Embarked'] X_train = train[predictors] y_train = train['Survived'] X_test = test[predictors] knn_imputer = KNNImputer() X_train = pd.DataFrame(knn_imputer.fit_transform(X_train), columns=predictors) X_test = pd.DataFrame(knn_imputer.transform(X_test), columns=predictors) X_train[['Sex', 'Embarked', 'Pclass', 'Title']] = X_train[['Sex', 'Embarked', 'Pclass', 'Title']].astype('category') X_test[['Sex', 'Embarked', 'Pclass', 'Title']] = X_test[['Sex', 'Embarked', 'Pclass', 'Title']].astype('category') encoder = TargetEncoder(return_df=True) X_train_te = encoder.fit_transform(X_train, y_train) X_test_te = encoder.transform(X_test) X_test_te.describe()
code
90118648/cell_8
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') test['Sex'] = [0 if l == 'male' else 1 for l in test['Sex']] test['Sex'].value_counts()
code
90118648/cell_15
[ "text_plain_output_1.png" ]
from sklearn.impute import KNNImputer import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') predictors = ['Pclass', 'Sex', 'Age', 'Parch', 'SibSp', 'Fare', 'Embarked'] X_train = train[predictors] y_train = train['Survived'] X_test = test[predictors] knn_imputer = KNNImputer() X_train = pd.DataFrame(knn_imputer.fit_transform(X_train), columns=predictors) X_train['Sex'] = ['male' if l == 0 else 'female' for l in X_train['Sex']] X_train['Sex'].value_counts()
code
90118648/cell_16
[ "text_plain_output_1.png" ]
from sklearn.impute import KNNImputer import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') predictors = ['Pclass', 'Sex', 'Age', 'Parch', 'SibSp', 'Fare', 'Embarked'] X_train = train[predictors] y_train = train['Survived'] X_test = test[predictors] knn_imputer = KNNImputer() X_train = pd.DataFrame(knn_imputer.fit_transform(X_train), columns=predictors) X_test = pd.DataFrame(knn_imputer.transform(X_test), columns=predictors) X_test['Sex'] = ['male' if l == 0 else 'female' for l in X_test['Sex']] X_test['Sex'].value_counts()
code
90118648/cell_17
[ "text_plain_output_1.png" ]
from sklearn.impute import KNNImputer import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') predictors = ['Pclass', 'Sex', 'Age', 'Parch', 'SibSp', 'Fare', 'Embarked'] X_train = train[predictors] y_train = train['Survived'] X_test = test[predictors] knn_imputer = KNNImputer() X_train = pd.DataFrame(knn_imputer.fit_transform(X_train), columns=predictors) X_train['Embarked'] = ['S' if l == 1 else 'C' if l == 2 else 'Q' for l in X_train['Embarked']] X_train['Embarked'].value_counts()
code
90118648/cell_35
[ "text_html_output_1.png" ]
from category_encoders import TargetEncoder from sklearn.impute import KNNImputer from sklearn.preprocessing import PowerTransformer import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') predictors = ['Pclass', 'Sex', 'Age', 'Parch', 'SibSp', 'Fare', 'Embarked'] X_train = train[predictors] y_train = train['Survived'] X_test = test[predictors] knn_imputer = KNNImputer() X_train = pd.DataFrame(knn_imputer.fit_transform(X_train), columns=predictors) X_test = pd.DataFrame(knn_imputer.transform(X_test), columns=predictors) X_train[['Sex', 'Embarked', 'Pclass', 'Title']] = X_train[['Sex', 'Embarked', 'Pclass', 'Title']].astype('category') X_test[['Sex', 'Embarked', 'Pclass', 'Title']] = X_test[['Sex', 'Embarked', 'Pclass', 'Title']].astype('category') X_train_ohe = pd.get_dummies(X_train) X_test_ohe = pd.get_dummies(X_test) encoder = TargetEncoder(return_df=True) X_train_te = encoder.fit_transform(X_train, y_train) num = ['Age', 'Parch', 'SibSp', 'Fare'] power = PowerTransformer() train_power = pd.DataFrame(power.fit_transform(X_train[num]), columns=num) test_power = pd.DataFrame(power.transform(X_test[num]), columns=num) X_train_ohe_power = pd.concat([train_power[num], X_train_ohe.drop(num, axis=1)], axis=1) X_test_ohe_power = pd.concat([test_power[num], X_test_ohe.drop(num, axis=1)], axis=1) X_train_te_power = pd.concat([train_power[num], X_train_te.drop(num, axis=1)], axis=1) X_train_te_power.head()
code
90118648/cell_31
[ "text_plain_output_1.png" ]
from sklearn.impute import KNNImputer from sklearn.preprocessing import PowerTransformer import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') predictors = ['Pclass', 'Sex', 'Age', 'Parch', 'SibSp', 'Fare', 'Embarked'] X_train = train[predictors] y_train = train['Survived'] X_test = test[predictors] knn_imputer = KNNImputer() X_train = pd.DataFrame(knn_imputer.fit_transform(X_train), columns=predictors) X_test = pd.DataFrame(knn_imputer.transform(X_test), columns=predictors) X_train[['Sex', 'Embarked', 'Pclass', 'Title']] = X_train[['Sex', 'Embarked', 'Pclass', 'Title']].astype('category') X_test[['Sex', 'Embarked', 'Pclass', 'Title']] = X_test[['Sex', 'Embarked', 'Pclass', 'Title']].astype('category') X_train_ohe = pd.get_dummies(X_train) X_test_ohe = pd.get_dummies(X_test) num = ['Age', 'Parch', 'SibSp', 'Fare'] power = PowerTransformer() train_power = pd.DataFrame(power.fit_transform(X_train[num]), columns=num) test_power = pd.DataFrame(power.transform(X_test[num]), columns=num) test_power.head()
code
90118648/cell_24
[ "text_plain_output_1.png" ]
from sklearn.impute import KNNImputer import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') predictors = ['Pclass', 'Sex', 'Age', 'Parch', 'SibSp', 'Fare', 'Embarked'] X_train = train[predictors] y_train = train['Survived'] X_test = test[predictors] knn_imputer = KNNImputer() X_train = pd.DataFrame(knn_imputer.fit_transform(X_train), columns=predictors) X_test = pd.DataFrame(knn_imputer.transform(X_test), columns=predictors) X_train[['Sex', 'Embarked', 'Pclass', 'Title']] = X_train[['Sex', 'Embarked', 'Pclass', 'Title']].astype('category') X_train_ohe = pd.get_dummies(X_train) X_train_ohe.head()
code
90118648/cell_14
[ "text_html_output_1.png" ]
from sklearn.impute import KNNImputer import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') predictors = ['Pclass', 'Sex', 'Age', 'Parch', 'SibSp', 'Fare', 'Embarked'] X_train = train[predictors] y_train = train['Survived'] X_test = test[predictors] knn_imputer = KNNImputer() X_train = pd.DataFrame(knn_imputer.fit_transform(X_train), columns=predictors) X_test = pd.DataFrame(knn_imputer.transform(X_test), columns=predictors) X_test.describe()
code
90118648/cell_22
[ "text_plain_output_1.png" ]
from sklearn.impute import KNNImputer import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') predictors = ['Pclass', 'Sex', 'Age', 'Parch', 'SibSp', 'Fare', 'Embarked'] X_train = train[predictors] y_train = train['Survived'] X_test = test[predictors] knn_imputer = KNNImputer() X_train = pd.DataFrame(knn_imputer.fit_transform(X_train), columns=predictors) X_test = pd.DataFrame(knn_imputer.transform(X_test), columns=predictors) X_test[['Sex', 'Embarked', 'Pclass', 'Title']] = X_test[['Sex', 'Embarked', 'Pclass', 'Title']].astype('category') X_test.info()
code