code
string
signature
string
docstring
string
loss_without_docstring
float64
loss_with_docstring
float64
factor
float64
stats = Stats(self.config) return stats.usage(zone=self.zone, callback=callback, errback=errback, **kwargs)
def usage(self, callback=None, errback=None, **kwargs)
Return the current usage information for this zone :rtype: dict :return: usage information
5.50435
7.030878
0.782882
if not reload and self.data: raise MonitorException('monitor already loaded') def success(result, *args): self.data = result if callback: return callback(self) else: return self return self._rest.retrieve(self.data['id'], callback=success, errback=errback)
def load(self, callback=None, errback=None, reload=False)
Load monitor data from the API.
5.0267
4.442871
1.131408
return self._rest.delete(self.data['id'], callback=callback, errback=errback)
def delete(self, callback=None, errback=None)
Delete the monitor
4.724174
5.052372
0.935041
if not self.data: raise MonitorException('monitor not loaded') def success(result, *args): self.data = result if callback: return callback(self) else: return self return self._rest.update(self.data['id'], {}, callback=success, errback=errback, **kwargs)
def update(self, callback=None, errback=None, **kwargs)
Update monitor configuration. Pass a list of keywords and their values to update.
4.463933
4.14776
1.076227
import ns1.rest.zones return ns1.rest.zones.Zones(self.config)
def zones(self)
Return a new raw REST interface to zone resources :rtype: :py:class:`ns1.rest.zones.Zones`
7.587127
3.700002
2.050574
import ns1.rest.records return ns1.rest.records.Records(self.config)
def records(self)
Return a new raw REST interface to record resources :rtype: :py:class:`ns1.rest.records.Records`
8.678324
3.742047
2.319138
import ns1.rest.ipam return ns1.rest.ipam.Addresses(self.config)
def addresses(self)
Return a new raw REST interface to address resources :rtype: :py:class:`ns1.rest.ipam.Adresses`
8.336314
4.005634
2.081147
import ns1.rest.ipam return ns1.rest.ipam.Networks(self.config)
def networks(self)
Return a new raw REST interface to network resources :rtype: :py:class:`ns1.rest.ipam.Networks`
8.845332
3.458195
2.557789
import ns1.rest.ipam return ns1.rest.ipam.Scopegroups(self.config)
def scope_groups(self)
Return a new raw REST interface to scope_group resources :rtype: :py:class:`ns1.rest.ipam.Scopegroups`
11.77113
3.243307
3.62936
import ns1.rest.stats return ns1.rest.stats.Stats(self.config)
def stats(self)
Return a new raw REST interface to stats resources :rtype: :py:class:`ns1.rest.stats.Stats`
9.966437
3.614544
2.757315
import ns1.rest.data return ns1.rest.data.Source(self.config)
def datasource(self)
Return a new raw REST interface to datasource resources :rtype: :py:class:`ns1.rest.data.Source`
13.499666
3.956154
3.412321
import ns1.rest.data return ns1.rest.data.Feed(self.config)
def datafeed(self)
Return a new raw REST interface to feed resources :rtype: :py:class:`ns1.rest.data.Feed`
13.193658
4.137201
3.18903
import ns1.rest.monitoring return ns1.rest.monitoring.Monitors(self.config)
def monitors(self)
Return a new raw REST interface to monitors resources :rtype: :py:class:`ns1.rest.monitoring.Monitors`
9.265704
3.422573
2.707234
import ns1.rest.monitoring return ns1.rest.monitoring.NotifyLists(self.config)
def notifylists(self)
Return a new raw REST interface to notify list resources :rtype: :py:class:`ns1.rest.monitoring.NotifyLists`
12.463534
3.648507
3.416064
import ns1.rest.account return ns1.rest.account.Plan(self.config)
def plan(self)
Return a new raw REST interface to account plan :rtype: :py:class:`ns1.rest.account.Plan`
14.076788
3.980409
3.536518
import ns1.zones zone = ns1.zones.Zone(self.config, zone) return zone.load(callback=callback, errback=errback)
def loadZone(self, zone, callback=None, errback=None)
Load an existing zone into a high level Zone object. :param str zone: zone name, like 'example.com' :rtype: :py:class:`ns1.zones.Zone`
4.130632
3.321185
1.243723
import ns1.zones return zone.search(q, has_geo, callback=callback, errback=errback)
def searchZone(self, zone, q=None, has_geo=False, callback=None, errback=None)
Search a zone for a given search query (e.g., for geological data, etc) :param zone: NOT a string like loadZone - an already loaded ns1.zones.Zone, like one returned from loadZone :return:
5.836435
4.168473
1.400138
import ns1.zones zone = ns1.zones.Zone(self.config, zone) return zone.create(zoneFile=zoneFile, callback=callback, errback=errback, **kwargs)
def createZone(self, zone, zoneFile=None, callback=None, errback=None, **kwargs)
Create a new zone, and return an associated high level Zone object. Several optional keyword arguments are available to configure the SOA record. If zoneFile is specified, upload the specific zone definition file to populate the zone with. :param str zone: zone name, like 'example.com' :param str zoneFile: absolute path of a zone file :keyword int retry: retry time :keyword int refresh: refresh ttl :keyword int expiry: expiry ttl :keyword int nx_ttl: nxdomain TTL :rtype: :py:class:`ns1.zones.Zone`
3.026054
2.991481
1.011557
import ns1.zones if zone is None: # extract from record string parts = domain.split('.') if len(parts) <= 2: zone = '.'.join(parts) else: zone = '.'.join(parts[1:]) z = ns1.zones.Zone(self.config, zone) return z.loadRecord(domain, type, callback=callback, errback=errback, **kwargs)
def loadRecord(self, domain, type, zone=None, callback=None, errback=None, **kwargs)
Load an existing record into a high level Record object. :param str domain: domain name of the record in the zone, for example \ 'myrecord'. You may leave off the zone, since it must be \ specified in the zone parameter :param str type: record type, such as 'A', 'MX', 'AAAA', etc. :param str zone: zone name, like 'example.com' :rtype: :py:class:`ns1.records`
3.029067
2.914892
1.03917
import ns1.monitoring monitors_list = self.monitors().list(callback, errback) return [ns1.monitoring.Monitor(self.config, m) for m in monitors_list]
def loadMonitors(self, callback=None, errback=None, **kwargs)
Load all monitors
5.731112
5.92936
0.966565
import ns1.monitoring monitor = ns1.monitoring.Monitor(self.config) return monitor.create(callback=callback, errback=errback, **kwargs)
def createMonitor(self, callback=None, errback=None, **kwargs)
Create a monitor
4.310441
4.702849
0.91656
import ns1.ipam network = ns1.ipam.Network(self.config, id=id) return network.load(callback=callback, errback=errback)
def loadNetworkbyID(self, id, callback=None, errback=None)
Load an existing Network by ID into a high level Network object :param int id: id of an existing Network
4.925172
5.771763
0.853322
import ns1.ipam network = ns1.ipam.Network(self.config, name=name) return network.load(callback=callback, errback=errback)
def loadNetworkbyName(self, name, callback=None, errback=None)
Load an existing Network by name into a high level Network object :param str name: Name of an existing Network
4.842845
5.979744
0.809875
import ns1.ipam if scope_group_id is not None: scope_group = ns1.ipam.Scopegroup(self.config, id=scope_group_id).update() kwargs['scope_group'] = scope_group network = ns1.ipam.Network(self.config, name=name) return network.create(callback=callback, errback=errback, **kwargs)
def createNetwork(self, name, scope_group_id=None, callback=None, errback=None, **kwargs)
Create a new Network For the list of keywords available, see :attr:`ns1.rest.ipam.Networks.INT_FIELDS` and :attr:`ns1.rest.ipam.Networks.PASSTHRU_FIELDS` :param str name: Name of the Network to be created :param int scope_group: (Optional) id of an existing scope group to associate with
2.582061
2.912635
0.886503
import ns1.ipam address = ns1.ipam.Address(self.config, id=id) return address.load(callback=callback, errback=errback)
def loadAddressbyID(self, id, callback=None, errback=None)
Load an existing address by ID into a high level Address object :param int id: id of an existing Address
4.789474
5.748926
0.833108
import ns1.ipam network = ns1.ipam.Network(self.config, id=network_id).load() address = ns1.ipam.Address(self.config, prefix=prefix, type=type, network=network) return address.load(callback=callback, errback=errback)
def loadAddressbyPrefix(self, prefix, type, network_id, callback=None, errback=None)
Load an existing address by prefix, type and network into a high level Address object :param str prefix: CIDR prefix of an existing Address :param str type: Type of address assignement (planned, assignment or host) :param int network_id: network_id associated with the address
3.019285
3.229467
0.934917
import ns1.ipam network = ns1.ipam.Network(self.config, id=network_id).load() address = ns1.ipam.Address(self.config, prefix=prefix, type=type, network=network) return address.create(callback=callback, errback=errback, **kwargs)
def createAddress(self, prefix, type, network_id, callback=None, errback=None, **kwargs)
Create a new Address For the list of keywords available, see :attr:`ns1.rest.ipam.Addresses.INT_FIELDS` and :attr:`ns1.rest.ipam.Addresses.PASSTHRU_FIELDS` :param str prefix: CIDR prefix of the address to be created :param str type: Type of address assignement (planned, assignment or host) :param int network_id: network_id associated with the address
2.697648
2.558895
1.054224
import ns1.ipam scope_group = ns1.ipam.Scopegroup(self.config, id=id) return scope_group.load(callback=callback, errback=errback)
def loadScopeGroupbyID(self, id, callback=None, errback=None)
Load an existing Scope Group by ID into a high level Scope Group object :param int id: id of an existing ScopeGroup
4.787018
5.647657
0.847611
import ns1.ipam scope_group = ns1.ipam.Scopegroup(self.config, name=name, service_group_id=service_group_id) return scope_group.load(callback=callback, errback=errback)
def loadScopeGroupbyName(self, name, service_group_id, callback=None, errback=None)
Load an existing Scope Group by name and service group id into a high level Scope Group object :param str name: Name of an existing Scope Group :param int service_group_id: id of the service group the Scope group is associated with
3.263908
4.354698
0.749514
import ns1.ipam scope_group = ns1.ipam.Scopegroup(self.config, name=name, service_group_id=service_group_id) return scope_group.create(dhcp4=dhcp4, dhcp6=dhcp6, callback=callback, errback=errback)
def createScopeGroup(self, name, service_group_id, dhcp4, dhcp6, callback=None, errback=None)
Create a new Scope Group For the list of keywords available, see :attr:`ns1.rest.ipam.ScopeGroups.INT_FIELDS` and :attr:`ns1.rest.ipam.ScopeGroups.PASSTHRU_FIELDS` :param str name: Name of the Scope Group to be created :param int service_group_id: id of the service group the Scope group is associated with :param ns1.ipam.DHCPIOptions dhcp4: DHCPOptions object that contains the options for dhcpv4 :param ns1.ipam.DHCPIOptions dhcp6: DHCPOptions object that contains the options for dhcpv6
2.597067
2.38623
1.088356
from ns1.ipam import DHCPOptions options = {} for option in DHCPOptions.OPTIONS[address_family]: options[option] = "" return options
def generateDHCPOptionsTemplate(self, address_family)
Generate boilerplate dictionary to hold dhcp options :param str address_family: dhcpv4 or dhcpv6 :return: dict containing valid option set for address family
6.140594
5.401672
1.136795
import ns1.ipam return ns1.ipam.DHCPOptions(address_family, options)
def loadDHCPOptions(self, address_family, options)
Create a high level DHCPOptions object :param str address_family: Address family of the options. Can be either dhcpv4 or dhcpv6 :param dict options: Dictionary containing the option set to apply for this address family. Note: only those specified will be applied. Allowed options can be found in :attr:`ns1.ipam.DHCPOptions.OPTIONS`
8.155275
3.304753
2.467741
if not comments: return it = iter(comments) first = next(it) extra_path_items = imap(_mark_as_root_path, first.root_path) return chain(extra_path_items, [first], it)
def fill_tree(comments)
Insert extra comments in the comments list, so that the root path of the first comment is always visible. Use this in comments' pagination to fill in the tree information. The inserted comments have an ``added_path`` attribute.
7.9945
7.641448
1.046202
if not comments: return it = iter(comments) # get the first item, this will fail if no items ! old = next(it) # first item starts a new thread old.open = True last = set() for c in it: # if this comment has a parent, store its last child for future reference if old.last_child_id: last.add(old.last_child_id) # this is the last child, mark it if c.pk in last: c.last = True # increase the depth if c.depth > old.depth: c.open = True else: # c.depth <= old.depth # close some depths old.close = list(range(old.depth - c.depth)) # new thread if old.root_id != c.root_id: # close even the top depth old.close.append(len(old.close)) # and start a new thread c.open = True # empty the last set last = set() # iterate yield old old = c old.close = range(old.depth) yield old
def annotate_tree_properties(comments)
iterate through nodes and adds some magic properties to each of them representing opening list of children and closing it
5.342868
5.192826
1.028894
'''Runs spades on all kmers. Each a separate run because SPAdes dies if any kmer does not work. Chooses the 'best' assembly to be the one with the biggest N50''' n50 = {} kmer_to_dir = {} for k in self.spades_kmers: tmpdir = tempfile.mkdtemp(prefix=self.outdir + '.tmp.spades.' + str(k) + '.', dir=os.getcwd()) kmer_to_dir[k] = tmpdir ok, errs = self.run_spades_once(k, tmpdir) if ok: contigs_fasta = os.path.join(tmpdir, 'contigs.fasta') contigs_fai = contigs_fasta + '.fai' common.syscall(self.samtools.exe() + ' faidx ' + contigs_fasta, verbose=self.verbose) stats = pyfastaq.tasks.stats_from_fai(contigs_fai) if stats['N50'] != 0: n50[k] = stats['N50'] if stop_at_first_success: break if len(n50) > 0: if self.verbose: print('[assemble]\tkmer\tN50') for k in sorted(n50): print('[assemble]', k, n50[k], sep='\t') best_k = None for k in sorted(n50): if best_k is None or n50[k] >= n50[best_k]: best_k = k assert best_k is not None for k, directory in kmer_to_dir.items(): if k == best_k: if self.verbose: print('[assemble] using assembly with kmer', k) os.rename(directory, self.outdir) else: shutil.rmtree(directory) else: raise Error('Error running SPAdes. Output directories are:\n ' + '\n '.join(kmer_to_dir.values()) + '\nThe reason why should be in the spades.log file in each directory.')
def run_spades(self, stop_at_first_success=False)
Runs spades on all kmers. Each a separate run because SPAdes dies if any kmer does not work. Chooses the 'best' assembly to be the one with the biggest N50
3.587765
2.798556
1.282006
'''Runs canu instead of spades''' cmd = self._make_canu_command(self.outdir,'canu') ok, errs = common.syscall(cmd, verbose=self.verbose, allow_fail=False) if not ok: raise Error('Error running Canu.') original_contigs = os.path.join(self.outdir, 'canu.contigs.fasta') renamed_contigs = os.path.join(self.outdir, 'contigs.fasta') Assembler._rename_canu_contigs(original_contigs, renamed_contigs) original_gfa = os.path.join(self.outdir, 'canu.contigs.gfa') renamed_gfa = os.path.join(self.outdir, 'contigs.gfa') os.rename(original_gfa, renamed_gfa)
def run_canu(self)
Runs canu instead of spades
3.256578
2.999079
1.085859
'''Returns Fasta or Fastq sequence from pysam aligned read''' if read.qual is None or ignore_quality: if qual is None or ignore_quality: seq = pyfastaq.sequences.Fasta(read.qname, common.decode(read.seq)) else: seq = pyfastaq.sequences.Fastq(read.qname, common.decode(read.seq), qual * read.query_length) else: if qual is None: seq = pyfastaq.sequences.Fastq(read.qname, common.decode(read.seq), common.decode(read.qual)) else: seq = pyfastaq.sequences.Fastq(read.qname, common.decode(read.seq), qual * read.query_length) if read.is_reverse and revcomp: seq.revcomp() return seq
def aligned_read_to_read(read, revcomp=True, qual=None, ignore_quality=False)
Returns Fasta or Fastq sequence from pysam aligned read
2.329325
1.991512
1.169626
'''Gets the length of each reference sequence from the header of the bam. Returns dict name => length''' sam_reader = pysam.Samfile(self.bam, "rb") return dict(zip(sam_reader.references, sam_reader.lengths))
def _get_ref_lengths(self)
Gets the length of each reference sequence from the header of the bam. Returns dict name => length
5.349196
2.739371
1.952709
'''If contigs_to_use is a set, returns that set. If it's None, returns an empty set. Otherwise, assumes it's a file name, and gets names from the file''' if type(contigs_to_use) == set: return contigs_to_use elif contigs_to_use is None: return set() else: f = pyfastaq.utils.open_file_read(contigs_to_use) contigs_to_use = set([line.rstrip() for line in f]) pyfastaq.utils.close(f) return contigs_to_use
def _get_contigs_to_use(self, contigs_to_use)
If contigs_to_use is a set, returns that set. If it's None, returns an empty set. Otherwise, assumes it's a file name, and gets names from the file
2.666662
1.692769
1.575326
'''Checks that the set of contigs to use are all in the reference fasta lengths dict made by self._get_ref_lengths()''' if self.contigs_to_use is None: return True for contig in self.contigs_to_use: if contig not in ref_dict: raise Error('Requested to use contig "' + contig + '", but not found in input BAM file "' + self.bam + '"') return True
def _check_contigs_to_use(self, ref_dict)
Checks that the set of contigs to use are all in the reference fasta lengths dict made by self._get_ref_lengths()
4.663743
2.620947
1.779412
'''Gets all reads from contig called "contig" and writes to fout''' sam_reader = pysam.Samfile(self.bam, "rb") for read in sam_reader.fetch(contig): print(mapping.aligned_read_to_read(read, ignore_quality=not self.fastq_out), file=fout)
def _all_reads_from_contig(self, contig, fout)
Gets all reads from contig called "contig" and writes to fout
5.61108
4.554563
1.231969
'''Writes all unmapped reads to fout''' sam_reader = pysam.Samfile(self.bam, "rb") for read in sam_reader.fetch(until_eof=True): if read.is_unmapped: print(mapping.aligned_read_to_read(read, ignore_quality=not self.fastq_out), file=fout)
def _get_all_unmapped_reads(self, fout)
Writes all unmapped reads to fout
4.336698
4.267573
1.016198
'''Get all reads from contig, but breaks them all at given position (0-based) in the reference. Writes to fout. Currently pproximate where it breaks (ignores indels in the alignment)''' sam_reader = pysam.Samfile(self.bam, "rb") for read in sam_reader.fetch(contig): seqs = [] if read.pos < position < read.reference_end - 1: split_point = position - read.pos if split_point - 1 >= min_read_length: sequence = mapping.aligned_read_to_read(read, revcomp=False, ignore_quality=not self.fastq_out).subseq(0, split_point) sequence.id += '.left' seqs.append(sequence) if read.query_length - split_point >= min_read_length: sequence = mapping.aligned_read_to_read(read, revcomp=False, ignore_quality=not self.fastq_out).subseq(split_point, read.query_length) sequence.id += '.right' seqs.append(sequence) else: seqs.append(mapping.aligned_read_to_read(read, revcomp=False, ignore_quality=not self.fastq_out)) for seq in seqs: if read.is_reverse: seq.revcomp() print(seq, file=fout)
def _break_reads(self, contig, position, fout, min_read_length=250)
Get all reads from contig, but breaks them all at given position (0-based) in the reference. Writes to fout. Currently pproximate where it breaks (ignores indels in the alignment)
3.474294
2.297097
1.512472
'''Writes reads not mapping to the given region of contig, start and end as per python convention''' sam_reader = pysam.Samfile(self.bam, "rb") exclude_interval = pyfastaq.intervals.Interval(start, end - 1) for read in sam_reader.fetch(contig): read_interval = pyfastaq.intervals.Interval(read.pos, read.reference_end - 1) if not read_interval.intersects(exclude_interval): print(mapping.aligned_read_to_read(read, ignore_quality=not self.fastq_out), file=fout)
def _exclude_region(self, contig, start, end, fout)
Writes reads not mapping to the given region of contig, start and end as per python convention
4.931983
3.408373
1.44702
'''Writes reads mapping to given region of contig, trimming part of read not in the region''' sam_reader = pysam.Samfile(self.bam, "rb") trimming_end = (start == 0) for read in sam_reader.fetch(contig, start, end): read_interval = pyfastaq.intervals.Interval(read.pos, read.reference_end - 1) seq = mapping.aligned_read_to_read(read, ignore_quality=not self.fastq_out, revcomp=False) if trimming_end: bases_off_start = 0 bases_off_end = max(0, read.reference_end - 1 - end) #seq.seq = seq.seq[:read.query_alignment_end - bases_off_end] seq = seq.subseq(0, read.query_alignment_end - bases_off_end) else: bases_off_start = max(0, start - read.pos + 1) #seq.seq = seq.seq[bases_off_start + read.query_alignment_start:] seq = seq.subseq(bases_off_start + read.query_alignment_start, len(seq)) if read.is_reverse: seq.revcomp() if len(seq) >= min_length: print(seq, file=fout)
def _get_region(self, contig, start, end, fout, min_length=250)
Writes reads mapping to given region of contig, trimming part of read not in the region
3.395677
2.887498
1.175993
'''Returns a set of names from file called filename. If filename is None, returns an empty set''' if filename is None: return set() with open(filename) as f: return {line.rstrip() for line in f}
def _get_contigs_to_keep(self, filename)
Returns a set of names from file called filename. If filename is None, returns an empty set
4.872041
2.396878
2.032661
'''Writes a new file with small contigs removed. Returns lists of all names and names of removed contigs''' removed = set() all_names = set() if keep is None: keep = set() file_reader = pyfastaq.sequences.file_reader(infile) fout = pyfastaq.utils.open_file_write(outfile) for seq in file_reader: all_names.add(seq.id) if len(seq) >= self.min_contig_length or seq.id in keep: print(seq, file=fout) else: removed.add(seq.id) pyfastaq.utils.close(fout) return all_names, removed
def _remove_small_contigs(self, infile, outfile, keep=None)
Writes a new file with small contigs removed. Returns lists of all names and names of removed contigs
3.188091
2.423959
1.315241
'''Returns two dictionaries: 1) name=>contig length. 2) Second is dictionary of nucmer hits (ignoring self matches). contig name => list of hits''' hits = {} lengths = {} file_reader = pymummer.coords_file.reader(infile) for al in file_reader: if al.qry_name == al.ref_name: continue elif al.qry_name not in hits: hits[al.qry_name] = [] hits[al.qry_name].append(al) lengths[al.qry_name] = al.qry_length lengths[al.ref_name] = al.ref_length return lengths, hits
def _load_nucmer_hits(self, infile)
Returns two dictionaries: 1) name=>contig length. 2) Second is dictionary of nucmer hits (ignoring self matches). contig name => list of hits
4.745626
2.540259
1.868166
'''Returns True iff (the query contig is contained in the reference contig and the query contig is not flagged to be kept)''' return ( hit.qry_name not in self.contigs_to_keep and hit.qry_name != hit.ref_name and (100 * hit.hit_length_qry / hit.qry_length >= self.min_contig_percent_match) and hit.percent_identity >= self.nucmer_min_id )
def _contains(self, hit)
Returns True iff (the query contig is contained in the reference contig and the query contig is not flagged to be kept)
7.209024
3.5866
2.009988
'''Given a list of hits, all with same query, returns a set of the contigs containing that query''' return {hit.ref_name for hit in hits if self._contains(hit)}
def _containing_contigs(self, hits)
Given a list of hits, all with same query, returns a set of the contigs containing that query
8.940447
3.370397
2.652639
'''Given dictionary of nucmer hits (made by self._load_nucmer_hits()), returns a dictionary. key=contig name. Value = set of contigs that contain the key.''' containing = {} for qry_name in hits_dict: d = self._containing_contigs(hits_dict[qry_name]) if len(d): containing[qry_name] = d return containing
def _get_containing_contigs(self, hits_dict)
Given dictionary of nucmer hits (made by self._load_nucmer_hits()), returns a dictionary. key=contig name. Value = set of contigs that contain the key.
6.017349
2.357439
2.552494
'''containing_contigs is a dict: key=contig name. Value = set of contigs that contain the key. Returns alls contigs called "name" that contain that contig''' contains_name = set() # failsafe to prevent infinite recursion if max_depth < 0: return contains_name if name in containing_contigs: for containing_contig in containing_contigs[name]: # if we have a contains b and b contains a, then this stops infinite recursion if containing_contig==exclude: continue contains_name.add(containing_contig) new_names = self._get_all_containing(containing_contigs, containing_contig, exclude=name,max_depth=max_depth-1) new_names.discard(name) contains_name.update(new_names) return contains_name
def _get_all_containing(self, containing_contigs, name, exclude=None, max_depth=10)
containing_contigs is a dict: key=contig name. Value = set of contigs that contain the key. Returns alls contigs called "name" that contain that contig
4.75727
3.051735
1.558874
'''This uses a contined in b, and b contained in c to force a contained in c. Just in case a contained in c wasn't already found by nucmer''' for name in containing_contigs: containing_contigs[name] = self._get_all_containing(containing_contigs, name) return containing_contigs
def _expand_containing_using_transitivity(self, containing_contigs)
This uses a contined in b, and b contained in c to force a contained in c. Just in case a contained in c wasn't already found by nucmer
12.388788
2.523209
4.909933
'''Input is a list of sets. Merges any intersecting sets in the list''' found = True while found: found = False to_intersect = None for i in range(len(sets)): for j in range(len(sets)): if i == j: continue elif sets[i].intersection(sets[j]): to_intersect = i, j break if to_intersect is not None: break if to_intersect is not None: found = True sets[i].update(sets[j]) sets.pop(j) return sets
def _collapse_list_of_sets(self, sets)
Input is a list of sets. Merges any intersecting sets in the list
2.813408
2.272372
1.238093
'''Input is a dict: key=contig name. Value = set of contigs that contain the key. Returns a list of sets of contigs that are equivalent''' equivalent_contigs = [] for qry_name, containing in hits_dict.items(): equivalent = set() for containing_name in containing: if containing_name in hits_dict and qry_name in hits_dict[containing_name]: equivalent.add(containing_name) equivalent.add(qry_name) if len(equivalent): equivalent_contigs.append(equivalent) equivalent_contigs = self._collapse_list_of_sets(equivalent_contigs) return equivalent_contigs
def _get_identical_contigs(self, hits_dict)
Input is a dict: key=contig name. Value = set of contigs that contain the key. Returns a list of sets of contigs that are equivalent
3.543985
2.252579
1.573301
'''Returns the name of the longest contig, from the set of names contig_set. contig_lengths is expected to be a dictionary of contig name => length.''' longest_name = None max_length = -1 for name in contig_set: if contig_lengths[name] > max_length: longest_name = name max_length = contig_lengths[name] assert max_length != -1 assert longest_name is not None return longest_name
def _longest_contig(self, contig_set, contig_lengths)
Returns the name of the longest contig, from the set of names contig_set. contig_lengths is expected to be a dictionary of contig name => length.
2.838391
1.671529
1.69808
'''Input is dictionary of containing contigs made by self._expand_containing_using_transitivity(). Removes redundant identical contigs, leaving one representative (the longest) of each set of identical contigs. Returns new version of dictionary, and a dictionary of contig name => contig it was replaced with''' identical_contigs = self._get_identical_contigs(containing_contigs) to_replace = {} # contig name => name to replace it with for contig_set in identical_contigs: longest_contig = self._longest_contig(contig_set, contig_lengths) for name in contig_set - {longest_contig}: assert name not in to_replace to_replace[name] = longest_contig for name, replace_with in to_replace.items(): if replace_with not in containing_contigs: containing_contigs[replace_with] = set() if name in containing_contigs: containing_contigs[replace_with].update(containing_contigs[name]) del containing_contigs[name] to_delete = set() for name, names_set in containing_contigs.items(): assert name not in to_replace new_set = {to_replace.get(x, x) for x in names_set} new_set.discard(name) if len(new_set) > 0: containing_contigs[name] = new_set else: to_delete.add(name) for name in to_delete: del containing_contigs[name] return containing_contigs, to_replace
def _remove_identical_contigs(self, containing_contigs, contig_lengths)
Input is dictionary of containing contigs made by self._expand_containing_using_transitivity(). Removes redundant identical contigs, leaving one representative (the longest) of each set of identical contigs. Returns new version of dictionary, and a dictionary of contig name => contig it was replaced with
3.008036
1.813605
1.658594
'''Dies if any files in the list of filenames does not exist''' files_not_found = [x for x in filenames if not os.path.exists(x)] if len(files_not_found): for filename in files_not_found: print('File not found: "', filename, '"', sep='', file=sys.stderr) raise Error('File(s) not found. Cannot continue')
def check_files_exist(filenames)
Dies if any files in the list of filenames does not exist
3.771079
2.908071
1.296763
'''Returns a dictionary of contig_name -> pyfastaq.Sequences.Fasta object''' contigs = {} pyfastaq.tasks.file_to_dict(self.contigs_fasta, contigs) return contigs
def get_contigs(self)
Returns a dictionary of contig_name -> pyfastaq.Sequences.Fasta object
6.239522
3.238374
1.926745
'''Returns a set of the contig names that are circular''' if self.assembler == 'spades': if self.contigs_fastg is not None: return self._circular_contigs_from_spades_before_3_6_1(self.contigs_fastg) elif None not in [self.contigs_paths, self.assembly_graph_fastg]: return self._circular_contigs_from_spades_after_3_6_1(self.assembly_graph_fastg, self.contigs_paths) else: return set() elif self.assembler == 'canu': return self._circular_contigs_from_canu_gfa(self.contigs_gfa) else: return set()
def circular_contigs(self)
Returns a set of the contig names that are circular
3.053811
2.875953
1.061843
'''Run nucmer of new assembly vs original assembly''' n = pymummer.nucmer.Runner( ref, qry, outfile, min_id=self.nucmer_min_id, min_length=self.nucmer_min_length, diagdiff=self.nucmer_diagdiff, maxmatch=True, breaklen=self.nucmer_breaklen, simplify=True, verbose=self.verbose ) n.run()
def _run_nucmer(self, ref, qry, outfile)
Run nucmer of new assembly vs original assembly
4.951822
4.021499
1.231337
'''Returns dict ref name => list of nucmer hits from infile''' hits = {} file_reader = pymummer.coords_file.reader(infile) for al in file_reader: if al.ref_name not in hits: hits[al.ref_name] = [] hits[al.ref_name].append(al) return hits
def _load_nucmer_hits(self, infile)
Returns dict ref name => list of nucmer hits from infile
5.090243
3.398654
1.497724
'''Input: list of nucmer hits. Output: dictionary, keys are query names, values are lists of hits''' d = {} for hit in hits: if hit.qry_name not in d: d[hit.qry_name] = [] d[hit.qry_name].append(hit) return d
def _hits_hashed_by_query(self, hits)
Input: list of nucmer hits. Output: dictionary, keys are query names, values are lists of hits
3.026726
1.936853
1.562703
'''Input: list of nucmer hits. Returns the longest hit, taking hit length on the reference''' if len(nucmer_hits) == 0: return None max_length = None longest_hit = None for hit in nucmer_hits: if max_length is None or hit.hit_length_ref > max_length: max_length = hit.hit_length_ref longest_hit = copy.copy(hit) assert longest_hit is not None return longest_hit
def _get_longest_hit_by_ref_length(self, nucmer_hits)
Input: list of nucmer hits. Returns the longest hit, taking hit length on the reference
2.933447
2.01355
1.456853
'''Returns True iff the hit is "close enough" to the start of the reference sequence''' hit_coords = nucmer_hit.ref_coords() return hit_coords.start < self.ref_end_tolerance
def _is_at_ref_start(self, nucmer_hit)
Returns True iff the hit is "close enough" to the start of the reference sequence
7.29959
4.198872
1.738465
'''Returns True iff the hit is "close enough" to the end of the reference sequence''' hit_coords = nucmer_hit.ref_coords() return hit_coords.end >= nucmer_hit.ref_length - self.ref_end_tolerance
def _is_at_ref_end(self, nucmer_hit)
Returns True iff the hit is "close enough" to the end of the reference sequence
5.264777
3.419191
1.539773
'''Returns True iff the hit is "close enough" to the start of the query sequence''' hit_coords = nucmer_hit.qry_coords() return hit_coords.start < self.qry_end_tolerance
def _is_at_qry_start(self, nucmer_hit)
Returns True iff the hit is "close enough" to the start of the query sequence
6.781253
4.004255
1.693512
'''Returns True iff the hit is "close enough" to the end of the query sequence''' hit_coords = nucmer_hit.qry_coords() return hit_coords.end >= nucmer_hit.qry_length - self.qry_end_tolerance
def _is_at_qry_end(self, nucmer_hit)
Returns True iff the hit is "close enough" to the end of the query sequence
4.853111
3.262446
1.487568
'''Returns the hit nearest to the start of the ref sequence from the input list of hits''' nearest_to_start = hits[0] for hit in hits[1:]: if hit.ref_coords().start < nearest_to_start.ref_coords().start: nearest_to_start = hit return nearest_to_start
def _get_hit_nearest_ref_start(self, hits)
Returns the hit nearest to the start of the ref sequence from the input list of hits
3.035825
2.287696
1.327023
'''Returns the hit nearest to the end of the ref sequence from the input list of hits''' nearest_to_end = hits[0] for hit in hits[1:]: if hit.ref_coords().end > nearest_to_end.ref_coords().end: nearest_to_end = hit return nearest_to_end
def _get_hit_nearest_ref_end(self, hits)
Returns the hit nearest to the end of the ref sequence from the input list of hits
3.107542
2.332243
1.332426
'''Input: list of nucmer hits to the same reference. Returns the longest hit to the start of the reference, or None if there is no such hit''' if hits_to_exclude is None: hits_to_exclude = set() hits_at_start = [hit for hit in nucmer_hits if self._is_at_ref_start(hit) and hit not in hits_to_exclude] return self._get_longest_hit_by_ref_length(hits_at_start)
def _get_longest_hit_at_ref_start(self, nucmer_hits, hits_to_exclude=None)
Input: list of nucmer hits to the same reference. Returns the longest hit to the start of the reference, or None if there is no such hit
2.92996
2.00586
1.4607
'''Input: list of nucmer hits to the same reference. Returns the longest hit to the end of the reference, or None if there is no such hit''' if hits_to_exclude is None: hits_to_exclude = set() hits_at_end = [hit for hit in nucmer_hits if self._is_at_ref_end(hit) and hit not in hits_to_exclude] return self._get_longest_hit_by_ref_length(hits_at_end)
def _get_longest_hit_at_ref_end(self, nucmer_hits, hits_to_exclude=None)
Input: list of nucmer hits to the same reference. Returns the longest hit to the end of the reference, or None if there is no such hit
2.937057
2.015497
1.457237
'''Input: list of nucmer hits to the same query. Returns the longest hit to the start of the query, or None if there is no such hit''' hits_at_start = [hit for hit in nucmer_hits if self._is_at_qry_start(hit)] return self._get_longest_hit_by_ref_length(hits_at_start)
def _get_longest_hit_at_qry_start(self, nucmer_hits)
Input: list of nucmer hits to the same query. Returns the longest hit to the start of the query, or None if there is no such hit
3.902137
2.421102
1.611719
'''Input: list of nucmer hits to the same query. Returns the longest hit to the end of the query, or None if there is no such hit''' hits_at_end = [hit for hit in nucmer_hits if self._is_at_qry_end(hit)] return self._get_longest_hit_by_ref_length(hits_at_end)
def _get_longest_hit_at_qry_end(self, nucmer_hits)
Input: list of nucmer hits to the same query. Returns the longest hit to the end of the query, or None if there is no such hit
3.925383
2.429721
1.61557
'''Returns True iff list of nucmer_hits has a hit longer than min_length, not counting the hits in hits_to_exclude''' if hits_to_exclude is None: to_exclude = set() else: to_exclude = hits_to_exclude long_hits = [hit.hit_length_qry for hit in nucmer_hits if hit not in to_exclude and hit.hit_length_qry > min_length] return len(long_hits) > 0
def _has_qry_hit_longer_than(self, nucmer_hits, min_length, hits_to_exclude=None)
Returns True iff list of nucmer_hits has a hit longer than min_length, not counting the hits in hits_to_exclude
2.781496
2.025917
1.372956
'''Returns true iff the two hits can be used to circularise the reference sequence of the hits''' if not(self._is_at_ref_start(start_hit) or self._is_at_ref_end(end_hit)): return False if self._is_at_qry_end(start_hit) \ and self._is_at_qry_start(end_hit) \ and start_hit.on_same_strand() \ and end_hit.on_same_strand(): return True if self._is_at_qry_start(start_hit) \ and self._is_at_qry_end(end_hit) \ and (not start_hit.on_same_strand()) \ and (not end_hit.on_same_strand()): return True return False
def _can_circularise(self, start_hit, end_hit)
Returns true iff the two hits can be used to circularise the reference sequence of the hits
2.341231
1.971283
1.187668
'''Returns a dict ref name => tuple(hit at start, hit at end) for each ref sequence in the hash nucmer_hits (each value is a list of nucmer hits)''' writing_log_file = None not in [log_fh, log_outprefix] maybe_circular = {} all_nucmer_hits = [] for l in nucmer_hits.values(): all_nucmer_hits.extend(l) nucmer_hits_by_qry = self._hits_hashed_by_query(all_nucmer_hits) for ref_name, list_of_hits in nucmer_hits.items(): if writing_log_file: print(log_outprefix, ref_name, 'Checking ' + str(len(list_of_hits)) + ' nucmer hits', sep='\t', file=log_fh) longest_start_hit = self._get_longest_hit_at_ref_start(list_of_hits) longest_end_hit = self._get_longest_hit_at_ref_end(list_of_hits) if longest_start_hit == longest_end_hit: second_longest_start_hit = self._get_longest_hit_at_ref_start(list_of_hits, hits_to_exclude={longest_start_hit}) second_longest_end_hit = self._get_longest_hit_at_ref_end(list_of_hits, hits_to_exclude={longest_end_hit}) if second_longest_start_hit is not None: longest_start_hit = self._get_hit_nearest_ref_start([longest_start_hit, second_longest_start_hit]) if second_longest_end_hit is not None: longest_end_hit = self._get_hit_nearest_ref_end([longest_end_hit, second_longest_end_hit]) if ( longest_start_hit is not None and longest_end_hit is not None and longest_start_hit != longest_end_hit and self._hits_have_same_query(longest_start_hit, longest_end_hit) ): if writing_log_file: print(log_outprefix, ref_name, 'potential pair of nucmer hits for circularization:', sep='\t', file=log_fh) print(log_outprefix, ref_name, '', longest_start_hit, sep='\t', file=log_fh) print(log_outprefix, ref_name, '', longest_end_hit, sep='\t', file=log_fh) shortest_hit_length = self._min_qry_hit_length([longest_start_hit, longest_end_hit]) has_longer_hit = self._has_qry_hit_longer_than( nucmer_hits_by_qry[longest_start_hit.qry_name], shortest_hit_length, hits_to_exclude={longest_start_hit, longest_end_hit} ) if writing_log_file and has_longer_hit: print(log_outprefix, ref_name, 'cannot use this pair because longer match was found', sep='\t', file=log_fh) can_circularise = self._can_circularise(longest_start_hit, longest_end_hit) if writing_log_file and not can_circularise: print(log_outprefix, ref_name, 'cannot use this pair because positions/orientations of matches no good', sep='\t', file=log_fh) if (not has_longer_hit) and can_circularise: print(log_outprefix, ref_name, 'can use this pair of hits', sep='\t', file=log_fh) maybe_circular[ref_name] = (longest_start_hit, longest_end_hit) return maybe_circular
def _get_possible_circular_ref_contigs(self, nucmer_hits, log_fh=None, log_outprefix=None)
Returns a dict ref name => tuple(hit at start, hit at end) for each ref sequence in the hash nucmer_hits (each value is a list of nucmer hits)
2.215576
1.992395
1.112016
'''Returns a new dictionary, with keys from input dict removed if their value was not unique''' value_counts = collections.Counter(d.values()) new_d = {} writing_log_file = None not in [log_fh, log_outprefix] for key in d: if value_counts[d[key]] == 1: new_d[key] = d[key] elif writing_log_file: print(log_outprefix, 'Reject because non-unique:', d[key], sep='\t', file=log_fh) return new_d
def _remove_keys_from_dict_with_nonunique_values(self, d, log_fh=None, log_outprefix=None)
Returns a new dictionary, with keys from input dict removed if their value was not unique
3.765817
2.99803
1.256097
'''Given a nucmer ref_start_hit and ref_end_hit, returns a new contig. Assumes that these hits can be used to circularise the reference contig of the hits using the query contig''' assert ref_start_hit.ref_name == ref_end_hit.ref_name assert ref_start_hit.qry_name == ref_end_hit.qry_name qry_name = ref_start_hit.qry_name ref_name = ref_start_hit.ref_name ref_start_coords = ref_start_hit.ref_coords() ref_end_coords = ref_end_hit.ref_coords() if ref_start_coords.intersects(ref_end_coords): new_ctg = copy.copy(self.reassembly_contigs[qry_name]) new_ctg.id = ref_name return new_ctg if ref_start_hit.on_same_strand(): qry_start_coords = ref_end_hit.qry_coords() qry_end_coords = ref_start_hit.qry_coords() bases = self.original_contigs[ref_name][ref_start_coords.end+1:ref_end_coords.start] + \ self.reassembly_contigs[qry_name][qry_start_coords.start:qry_end_coords.end+1] return pyfastaq.sequences.Fasta(ref_name, bases) else: qry_start_coords = ref_start_hit.qry_coords() qry_end_coords = ref_end_hit.qry_coords() tmp_seq = pyfastaq.sequences.Fasta('x', self.reassembly_contigs[qry_name][qry_start_coords.start:qry_end_coords.end+1]) tmp_seq.revcomp() return pyfastaq.sequences.Fasta(ref_name, self.original_contigs[ref_name][ref_start_coords.end+1:ref_end_coords.start] + tmp_seq.seq)
def _make_circularised_contig(self, ref_start_hit, ref_end_hit)
Given a nucmer ref_start_hit and ref_end_hit, returns a new contig. Assumes that these hits can be used to circularise the reference contig of the hits using the query contig
2.177003
1.827109
1.191502
'''Returns True iff the orientation of the hits means that the query contig of both hits can bridge the reference contigs of the hits''' assert start_hit.qry_name == end_hit.qry_name if start_hit.ref_name == end_hit.ref_name: return False if ( (self._is_at_ref_end(start_hit) and start_hit.on_same_strand()) or (self._is_at_ref_start(start_hit) and not start_hit.on_same_strand()) ): start_hit_ok = True else: start_hit_ok = False if ( (self._is_at_ref_start(end_hit) and end_hit.on_same_strand()) or (self._is_at_ref_end(end_hit) and not end_hit.on_same_strand()) ): end_hit_ok = True else: end_hit_ok = False return start_hit_ok and end_hit_ok
def _orientation_ok_to_bridge_contigs(self, start_hit, end_hit)
Returns True iff the orientation of the hits means that the query contig of both hits can bridge the reference contigs of the hits
2.280079
1.757636
1.297242
'''Input is dict qry_name -> list of nucmer hits to that qry. Returns dict qry_name -> tuple(start hit, end hit)''' bridges = {} writing_log_file = None not in [log_fh, log_outprefix] for qry_name, hits_to_qry in nucmer_hits.items(): if len(hits_to_qry) < 2: continue if writing_log_file: print(log_outprefix, '\t', qry_name, ': checking nucmer matches', sep='', file=log_fh) longest_start_hit = self._get_longest_hit_at_qry_start(hits_to_qry) longest_end_hit = self._get_longest_hit_at_qry_end(hits_to_qry) if ( None in (longest_start_hit, longest_end_hit) or longest_start_hit.ref_name == longest_end_hit.ref_name or self._hits_have_same_reference(longest_start_hit, longest_end_hit) ): if writing_log_file: print(log_outprefix, '\t', qry_name, ': no potential pairs of hits to merge contigs', sep='', file=log_fh) continue if writing_log_file: print(log_outprefix, '\t', qry_name, ': potential pair of hits to merge contigs...', sep='', file=log_fh) print(log_outprefix, '\t', qry_name, ': ', longest_start_hit, sep='', file=log_fh) print(log_outprefix, '\t', qry_name, ': ', longest_end_hit, sep='', file=log_fh) shortest_hit_length = self._min_qry_hit_length([longest_start_hit, longest_end_hit]) has_longer_hit = self._has_qry_hit_longer_than( hits_to_qry, shortest_hit_length, hits_to_exclude={longest_start_hit, longest_end_hit} ) if has_longer_hit and writing_log_file: print(log_outprefix, '\t', qry_name, ': rejected - there is a longer hit to elsewhere', sep='', file=log_fh) orientation_ok = self._orientation_ok_to_bridge_contigs(longest_start_hit, longest_end_hit) if writing_log_file and not orientation_ok: print(log_outprefix, '\t', qry_name, ': rejected - orientation/distance from ends not correct to make a merge', sep='', file=log_fh) if orientation_ok and not has_longer_hit: if writing_log_file: print(log_outprefix, '\t', qry_name, ': might be used - no longer hits elsewhere and orientation/distance to ends OK', sep='', file=log_fh) bridges[qry_name] = (longest_start_hit, longest_end_hit) return bridges
def _get_possible_query_bridging_contigs(self, nucmer_hits, log_fh=None, log_outprefix=None)
Input is dict qry_name -> list of nucmer hits to that qry. Returns dict qry_name -> tuple(start hit, end hit)
2.444502
2.218318
1.101962
'''Input is dict qry_name -> tuple(start hit, end hit) made by _get_possible_query_bridging_contigs. Removes key/values where the value(==ref contig) has a hit at the start, or at the end, to more than one key(==qry contig)''' ref_hits_start = {} ref_hits_end = {} for qry_name, (start_hit, end_hit) in bridges.items(): for hit in start_hit, end_hit: assert self._is_at_ref_start(hit) or self._is_at_ref_end(hit) if self._is_at_ref_start(hit): ref_hits_start[hit.ref_name] = ref_hits_start.get(hit.ref_name, 0) + 1 elif self._is_at_ref_end(hit): ref_hits_end[hit.ref_name] = ref_hits_end.get(hit.ref_name, 0) + 1 qry_names_to_remove = set() for qry_name, (start_hit, end_hit) in bridges.items(): for hit in start_hit, end_hit: remove = False if ( (self._is_at_ref_start(hit) and ref_hits_start.get(hit.ref_name, 0) > 1) or (self._is_at_ref_end(hit) and ref_hits_end.get(hit.ref_name, 0) > 1) ): qry_names_to_remove.add(qry_name) for name in qry_names_to_remove: del bridges[name] return bridges
def _filter_bridging_contigs(self, bridges)
Input is dict qry_name -> tuple(start hit, end hit) made by _get_possible_query_bridging_contigs. Removes key/values where the value(==ref contig) has a hit at the start, or at the end, to more than one key(==qry contig)
2.45185
1.492749
1.642507
'''Input is dict of nucmer_hits. Makes any possible contig merges. Returns True iff any merges were made''' writing_log_file = None not in [log_fh, log_outprefix] if len(nucmer_hits) == 0: if writing_log_file: print(log_outprefix, 'No nucmer hits, so will not make any merges', sep='\t', file=log_fh) return all_nucmer_hits = [] for l in nucmer_hits.values(): all_nucmer_hits.extend(l) nucmer_hits_by_qry = self._hits_hashed_by_query(all_nucmer_hits) bridges = self._get_possible_query_bridging_contigs(nucmer_hits_by_qry, log_fh=log_fh, log_outprefix=log_outprefix) if writing_log_file: print(log_outprefix, '\tPotential contigs to use for merging: ', ' '.join(sorted(bridges.keys())), sep='', file=log_fh) bridges = self._filter_bridging_contigs(bridges) if writing_log_file: print(log_outprefix, '\tContigs to use for merging after uniqueness filtering: ', ' '.join(sorted(bridges.keys())), sep='', file=log_fh) merged = set() made_a_join = False for qry_name, (start_hit, end_hit) in bridges.items(): if start_hit.ref_name in merged or end_hit.ref_name in merged: continue self._merge_bridged_contig_pair(start_hit, end_hit, ref_contigs, qry_contigs, log_fh=log_fh, log_outprefix=log_outprefix) merged.add(start_hit.ref_name) merged.add(end_hit.ref_name) made_a_join = True if writing_log_file: print(log_outprefix, '\tMade at least one contig join: ', made_a_join, sep='', file=log_fh) return made_a_join
def _merge_all_bridged_contigs(self, nucmer_hits, ref_contigs, qry_contigs, log_fh=None, log_outprefix=None)
Input is dict of nucmer_hits. Makes any possible contig merges. Returns True iff any merges were made
2.488587
2.175909
1.1437
'''Writes crunch file and shell script to start up ACT, showing comparison of ref and qry''' if self.verbose: print('Making ACT files from', ref_fasta, qry_fasta, coords_file) ref_fasta = os.path.relpath(ref_fasta) qry_fasta = os.path.relpath(qry_fasta) coords_file = os.path.relpath(coords_file) outprefix = os.path.relpath(outprefix) self._index_fasta(ref_fasta) self._index_fasta(qry_fasta) crunch_file = outprefix + '.crunch' pymummer.coords_file.convert_to_msp_crunch( coords_file, crunch_file, ref_fai=ref_fasta + '.fai', qry_fai=qry_fasta + '.fai' ) bash_script = outprefix + '.start_act.sh' with open(bash_script, 'w') as f: print('#!/usr/bin/env bash', file=f) print('act', ref_fasta, crunch_file, qry_fasta, file=f) pyfastaq.utils.syscall('chmod +x ' + bash_script)
def _write_act_files(self, ref_fasta, qry_fasta, coords_file, outprefix)
Writes crunch file and shell script to start up ACT, showing comparison of ref and qry
3.136227
2.484416
1.26236
'''Writes dictionary of contigs to file''' f = pyfastaq.utils.open_file_write(fname) for contig in sorted(contigs, key=lambda x:len(contigs[x]), reverse=True): print(contigs[contig], file=f) pyfastaq.utils.close(f)
def _contigs_dict_to_file(self, contigs, fname)
Writes dictionary of contigs to file
2.865892
2.907844
0.985573
'''Returns set of names of nodes in SPAdes fastg file that are circular. Names will match those in spades fasta file''' seq_reader = pyfastaq.sequences.file_reader(fastg) names = set([x.id.rstrip(';') for x in seq_reader if ':' in x.id]) found_fwd = set() found_rev = set() for name in names: l = name.split(':') if len(l) != 2: continue if l[0] == l[1]: if l[0][-1] == "'": found_rev.add(l[0][:-1]) else: found_fwd.add(l[0]) return found_fwd.intersection(found_rev)
def _get_spades_circular_nodes(self, fastg)
Returns set of names of nodes in SPAdes fastg file that are circular. Names will match those in spades fasta file
3.653776
2.559076
1.427772
'''Tries to make new circularised contig from contig called original_contig. hits = list of nucmer hits, all with ref=original contg. circular_spades=set of query contig names that spades says are circular''' writing_log_file = None not in [log_fh, log_outprefix] hits_to_circular_contigs = [x for x in hits if x.qry_name in circular_spades] if len(hits_to_circular_contigs) == 0: if writing_log_file: print(log_outprefix, original_contig, 'No matches to SPAdes circular contigs', sep='\t', file=log_fh) return None, None for hit in hits_to_circular_contigs: print(log_outprefix, original_contig, 'Checking hit:', hit, sep='\t', file=log_fh) percent_query_covered = 100 * (hit.hit_length_qry / hit.qry_length) if self.min_spades_circular_percent <= percent_query_covered: print(log_outprefix, '\t', original_contig, '\t\tHit is long enough. Percent of contig covered by hit is ', percent_query_covered, sep='', file=log_fh) # the spades contig hit is long enough, but now check that # the input contig is covered by hits from this spades contig hit_intervals = [x.ref_coords() for x in hits_to_circular_contigs if x.qry_name == hit.qry_name] if len(hit_intervals) > 0: pyfastaq.intervals.merge_overlapping_in_list(hit_intervals) percent_covered = 100 * pyfastaq.intervals.length_sum_from_list(hit_intervals) / hit.ref_length if writing_log_file: print(log_outprefix, '\t', original_contig, '\t\treference bases covered by spades contig:', ', '.join([str(x) for x in hit_intervals]), sep='', file=log_fh) print(log_outprefix, '\t', original_contig, '\t\t ... which is ', percent_covered, ' percent of ', hit.ref_length, ' bases', sep='', file=log_fh) if self.min_spades_circular_percent <= percent_covered: if writing_log_file: print(log_outprefix, original_contig, '\tUsing hit to call as circular (enough bases covered)', sep='\t', file=log_fh) return pyfastaq.sequences.Fasta(original_contig, self.reassembly_contigs[hit.qry_name].seq), hit.qry_name elif writing_log_file: print(log_outprefix, original_contig, '\tNot using hit to call as circular (not enough bases covered)', sep='\t', file=log_fh) else: print(log_outprefix, original_contig, '\tNot using hit to call as circular (hit too short)', sep='\t', file=log_fh) if writing_log_file: print(log_outprefix, original_contig, 'No suitable matches to SPAdes circular contigs', sep='\t', file=log_fh) return None, None
def _make_new_contig_from_nucmer_and_spades(self, original_contig, hits, circular_spades, log_fh=None, log_outprefix=None)
Tries to make new circularised contig from contig called original_contig. hits = list of nucmer hits, all with ref=original contg. circular_spades=set of query contig names that spades says are circular
3.025702
2.561841
1.181065
header_info = RE_HUNK_HEADER.match(header) hunk_info = header_info.groups() hunk = Hunk(*hunk_info) source_line_no = hunk.source_start target_line_no = hunk.target_start expected_source_end = source_line_no + hunk.source_length expected_target_end = target_line_no + hunk.target_length for diff_line_no, line in diff: if encoding is not None: line = line.decode(encoding) valid_line = RE_HUNK_EMPTY_BODY_LINE.match(line) if not valid_line: valid_line = RE_HUNK_BODY_LINE.match(line) if not valid_line: raise UnidiffParseError('Hunk diff line expected: %s' % line) line_type = valid_line.group('line_type') if line_type == LINE_TYPE_EMPTY: line_type = LINE_TYPE_CONTEXT value = valid_line.group('value') original_line = Line(value, line_type=line_type) if line_type == LINE_TYPE_ADDED: original_line.target_line_no = target_line_no target_line_no += 1 elif line_type == LINE_TYPE_REMOVED: original_line.source_line_no = source_line_no source_line_no += 1 elif line_type == LINE_TYPE_CONTEXT: original_line.target_line_no = target_line_no target_line_no += 1 original_line.source_line_no = source_line_no source_line_no += 1 elif line_type == LINE_TYPE_NO_NEWLINE: pass else: original_line = None # stop parsing if we got past expected number of lines if (source_line_no > expected_source_end or target_line_no > expected_target_end): raise UnidiffParseError('Hunk is longer than expected') if original_line: original_line.diff_line_no = diff_line_no hunk.append(original_line) # if hunk source/target lengths are ok, hunk is complete if (source_line_no == expected_source_end and target_line_no == expected_target_end): break # report an error if we haven't got expected number of lines if (source_line_no < expected_source_end or target_line_no < expected_target_end): raise UnidiffParseError('Hunk is shorter than expected') self.append(hunk)
def _parse_hunk(self, header, diff, encoding)
Parse hunk details.
2.100101
2.082341
1.008529
if (self.source_file.startswith('a/') and self.target_file.startswith('b/')): filepath = self.source_file[2:] elif (self.source_file.startswith('a/') and self.target_file == '/dev/null'): filepath = self.source_file[2:] elif (self.target_file.startswith('b/') and self.source_file == '/dev/null'): filepath = self.target_file[2:] else: filepath = self.source_file return filepath
def path(self)
Return the file path abstracted from VCS.
2.191136
2.032784
1.077899
greedy = '?' if greedy else '' # For greedy search if isinstance(post, (list, tuple)): post = '(?=' + '|'.join(post) + ')' tag_list = re.findall(r'{pre}(.+{greedy}){post}'.format(pre=pre, post=post, greedy=greedy), string) if len(tag_list) > 1: raise ValueError('More than one matching pattern found... check filename') elif len(tag_list) == 0: return None else: return tagtype(tag_list[0])
def get_tag_value(string, pre, post, tagtype=float, greedy=True)
Extracts the value of a tag from a string. Parameters ----------------- pre : str regular expression to match before the the tag value post : str | list | tuple regular expression to match after the the tag value if list than the regular expressions will be combined into the regular expression (?=post[0]|post[1]|..) tagtype : str | float | int the type to which the tag value should be converted to greedy : bool Whether the regular expression is gredy or not. Returns --------------- Tag value if found, None otherwise Example ------------ get_tag_value('PID_23.5.txt', pre=r'PID_' , post='(?=_|\.txt)') should return 23.5 get_tag_value('PID_23.5_.txt', pre=r'PID_', post='(?=_|\.txt)') should return 23.5 get_tag_value('PID_23_5_.txt', pre=r'PID_', post='(?=_|\.txt)') should return 23 get_tag_value('PID_23.txt', pre=r'PID_', post='.txt') should return 23 get_tag_value('PID.txt', pre=r'PID_', post='.txt') should return None TODO Make list/tuple input for pre
3.266567
3.137955
1.040986
# get dirname from user if not given if dirname is None: from FlowCytometryTools.gui import dialogs dirname = dialogs.select_directory_dialog('Select a directory') # find all files in dirname that match pattern if recursive: # search subdirs matches = [] for root, dirnames, filenames in os.walk(dirname): for filename in fnmatch.filter(filenames, pattern): matches.append(os.path.join(root, filename)) else: matches = glob.glob(os.path.join(dirname, pattern)) return matches
def get_files(dirname=None, pattern='*.*', recursive=True)
Get all file names within a given directory those names match a given pattern. Parameters ---------- dirname : str | None Directory containing the datafiles. If None is given, open a dialog box. pattern : str Return only files whose names match the specified pattern. recursive : bool True : Search recursively within all sub-directories. False : Search only in given directory. Returns ------- matches: list List of file names (including full path).
2.708775
2.860841
0.946846
with open(path, 'wb') as f: try: pickle.dump(obj, f, protocol=pickle.HIGHEST_PROTOCOL) except Exception as e: print('Pickling failed for object {0}, path {1}'.format(obj, path)) print('Error message: {0}'.format(e))
def save(obj, path)
Pickle (serialize) object to input file path Parameters ---------- obj : any object path : string File path
2.180764
2.4135
0.903569
f = open(path, 'rb') try: return pickle.load(f) finally: f.close()
def load(path)
Load pickled object from the specified file path. Parameters ---------- path : string File path Returns ------- unpickled : type of object stored in file
2.428414
3.486274
0.696564
if isinstance(obj, type(None)): return None elif isinstance(obj, six.string_types): return [obj] else: # Nesting here since symmetry is broken in isinstance checks. # Strings are iterables in python 3, so the relative order of if statements is important. if isinstance(obj, collections.Iterable): return obj else: return [obj]
def to_iter(obj)
Convert an object to a list if it is not already an iterable. Nones are returned unaltered. This is an awful function that proliferates an explosion of types, please do not use anymore.
6.022692
5.448632
1.105359
obj = to_iter(obj) if isinstance(obj, type(None)): return None else: return list(obj)
def to_list(obj)
Converts an object into a list if it not an iterable, forcing tuples into lists. Nones are returned unchanged.
4.633328
4.211182
1.100244
from copy import copy, deepcopy if deep: return deepcopy(self) else: return copy(self)
def copy(self, deep=True)
Make a copy of this object Parameters ---------- deep : boolean, default True Make a deep copy, i.e. also copy data Returns ------- copy : type of caller
3.175646
4.675265
0.679244
if th <= 0: raise ValueError('Threshold value must be positive. %s given.' % th) return where(x <= th, log10(th) * 1. * r / d, log10(x) * 1. * r / d)
def tlog(x, th=1, r=_display_max, d=_l_mmax)
Truncated log10 transform. Parameters ---------- x : num | num iterable values to be transformed. th : num values below th are transormed to 0. Must be positive. r : num (default = 10**4) maximal transformed value. d : num (default = log10(2**18)) log10 of maximal possible measured value. tlog(10**d) = r Returns ------- Array of transformed values.
4.796389
5.369011
0.893347
if th <= 0: raise ValueError('Threshold value must be positive. %s given.' % th) x = 10 ** (y * 1. * d / r) try: x[x < th] = th except TypeError: if x < th: x = th return x
def tlog_inv(y, th=1, r=_display_max, d=_l_mmax)
Inverse truncated log10 transform. Values Parameters ---------- y : num | num iterable values to be transformed. th : num Inverse values below th are transormed to th. Must be > positive. r : num (default = 10**4) maximal transformed value. d : num (default = log10(2**18)) log10 of maximal possible measured value. tlog_inv(r) = 10**d Returns ------- Array of transformed values.
4.307365
4.798099
0.897723
aux = 1. * d / r * y s = sign(y) if s.shape: # to catch case where input is a single number s[s == 0] = 1 elif s == 0: s = 1 return s * 10 ** (s * aux) + b * aux - s
def hlog_inv(y, b=500, r=_display_max, d=_l_mmax)
Inverse of base 10 hyperlog transform.
7.382378
7.077213
1.043119
x = asarray(x) xmin = min(x) xmax = max(x) if xmin == xmax: return asarray([xmin] * nx) if xmax <= 0: # all values<=0 return -_x_for_spln(-x, nx, log_spacing)[::-1] if not log_spacing: return linspace(xmin, xmax, nx) # All code below is to handle-log-spacing when x has potentially both negative # and positive values. if xmin > 0: return logspace(log10(xmin), log10(xmax), nx) else: lxmax = max([log10(xmax), 0]) lxmin = max([log10(abs(xmin)), 0]) # All the code below is for log-spacing, when xmin < 0 and xmax > 0 if lxmax == 0 and lxmin == 0: return linspace(xmin, xmax, nx) # Use linear spacing as fallback if xmin > 0: x_spln = logspace(lxmin, lxmax, nx) elif xmin == 0: x_spln = r_[0, logspace(-1, lxmax, nx - 1)] else: # (xmin < 0) f = lxmin / (lxmin + lxmax) nx_neg = int(f * nx) nx_pos = nx - nx_neg if nx <= 1: # If triggered fix edge case behavior raise AssertionError(u'nx should never bebe 0 or 1') # Work-around various edge cases if nx_neg == 0: nx_neg = 1 nx_pos = nx_pos - 1 if nx_pos == 0: nx_pos = 1 nx_neg = nx_neg - 1 x_spln_pos = logspace(-1, lxmax, nx_pos) x_spln_neg = -logspace(lxmin, -1, nx_neg) x_spln = r_[x_spln_neg, x_spln_pos] return x_spln
def _x_for_spln(x, nx, log_spacing)
Create vector of values to be used in constructing a spline. Parameters ---------- x : num | num iterable Resulted values will span the range [min(x), max(x)] nx : int Length of returned vector. log_spacing: bool False - Create linearly spaced values. True - Create logarithmically spaced values. To extend to negative values, the spacing is done separately on the negative and positive range, and these are later combined. The number of points in the negative/positive range is proportional to their relative range in log space. i.e., for data in the range [-100, 1000] 2/5 of the resulting points will be in the negative range. Returns ------- x_spln : array
3.235554
3.29495
0.981974