code
string | signature
string | docstring
string | loss_without_docstring
float64 | loss_with_docstring
float64 | factor
float64 |
---|---|---|---|---|---|
self._check_row_size(array)
self._valign = array
return self | def set_cols_valign(self, array) | Set the desired columns vertical alignment
- the elements of the array should be either "t", "m" or "b":
* "t": column aligned on the top of the cell
* "m": column aligned on the middle of the cell
* "b": column aligned on the bottom of the cell | 8.903702 | 10.909585 | 0.816136 |
self._check_row_size(array)
self._dtype = array
return self | def set_cols_dtype(self, array) | Set the desired columns datatype for the cols.
- the elements of the array should be either a callable or any of
"a", "t", "f", "e" or "i":
* "a": automatic (try to use the most appropriate datatype)
* "t": treat as text
* "f": treat as float in decimal format
* "e": treat as float in exponential format
* "i": treat as int
* a callable: should return formatted string for any value given
- by default, automatic datatyping is used for each column | 12.810209 | 13.696265 | 0.935307 |
if not type(width) is int or width < 0:
raise ValueError('width must be an integer greater then 0')
self._precision = width
return self | def set_precision(self, width) | Set the desired precision for float/exponential formats
- width must be an integer >= 0
- default value is set to 3 | 4.417966 | 4.304027 | 1.026473 |
self._check_row_size(array)
self._header = list(map(obj2unicode, array))
return self | def header(self, array) | Specify the header of the table | 10.640293 | 10.231775 | 1.039926 |
self._check_row_size(array)
if not hasattr(self, "_dtype"):
self._dtype = ["a"] * self._row_size
cells = []
for i, x in enumerate(array):
cells.append(self._str(i, x))
self._rows.append(cells)
return self | def add_row(self, array) | Add a row in the rows stack
- cells can contain newlines and tabs | 4.576127 | 4.549932 | 1.005757 |
# nb: don't use 'iter' on by-dimensional arrays, to get a
# usable code for python 2.1
if header:
if hasattr(rows, '__iter__') and hasattr(rows, 'next'):
self.header(rows.next())
else:
self.header(rows[0])
rows = rows[1:]
for row in rows:
self.add_row(row)
return self | def add_rows(self, rows, header=True) | Add several rows in the rows stack
- The 'rows' argument can be either an iterator returning arrays,
or a by-dimensional array
- 'header' specifies if the first row should be used as the header
of the table | 5.630295 | 4.399379 | 1.279793 |
if not self._header and not self._rows:
return
self._compute_cols_width()
self._check_align()
out = ""
if self._has_border():
out += self._hline()
if self._header:
out += self._draw_line(self._header, isheader=True)
if self._has_header():
out += self._hline_header()
length = 0
for row in self._rows:
length += 1
out += self._draw_line(row)
if self._has_hlines() and length < len(self._rows):
out += self._hline()
if self._has_border():
out += self._hline()
return out[:-1] | def draw(self) | Draw the table
- the table is returned as a whole string | 3.32173 | 3.057335 | 1.086479 |
return str(int(round(cls._to_float(x)))) | def _fmt_int(cls, x, **kw) | Integer formatting class-method.
- x will be float-converted and then used. | 8.965778 | 11.281359 | 0.794743 |
n = kw.get('n')
return '%.*f' % (n, cls._to_float(x)) | def _fmt_float(cls, x, **kw) | Float formatting class-method.
- x parameter is ignored. Instead kw-argument f being x float-converted
will be used.
- precision will be taken from `n` kw-argument. | 5.978054 | 6.452609 | 0.926455 |
n = kw.get('n')
return '%.*e' % (n, cls._to_float(x)) | def _fmt_exp(cls, x, **kw) | Exponential formatting class-method.
- x parameter is ignored. Instead kw-argument f being x float-converted
will be used.
- precision will be taken from `n` kw-argument. | 6.496162 | 6.699805 | 0.969605 |
f = cls._to_float(x)
if abs(f) > 1e8:
fn = cls._fmt_exp
else:
if f - round(f) == 0:
fn = cls._fmt_int
else:
fn = cls._fmt_float
return fn(x, **kw) | def _fmt_auto(cls, x, **kw) | auto formatting class-method. | 3.217529 | 3.220004 | 0.999232 |
FMT = {
'a':self._fmt_auto,
'i':self._fmt_int,
'f':self._fmt_float,
'e':self._fmt_exp,
't':self._fmt_text,
}
n = self._precision
dtype = self._dtype[i]
try:
if callable(dtype):
return dtype(x)
else:
return FMT[dtype](x, n=n)
except FallbackToText:
return self._fmt_text(x) | def _str(self, i, x) | Handles string formatting of cell data
i - index of the cell datatype in self._dtype
x - cell data to format | 4.016864 | 3.778497 | 1.063085 |
if not self._hline_string:
self._hline_string = self._build_hline()
return self._hline_string | def _hline(self) | Print an horizontal line | 5.006301 | 4.129464 | 1.212337 |
horiz = self._char_horiz
if (is_header):
horiz = self._char_header
# compute cell separator
s = "%s%s%s" % (horiz, [horiz, self._char_corner][self._has_vlines()],
horiz)
# build the line
l = s.join([horiz * n for n in self._width])
# add border if needed
if self._has_border():
l = "%s%s%s%s%s\n" % (self._char_corner, horiz, l, horiz,
self._char_corner)
else:
l += "\n"
return l | def _build_hline(self, is_header=False) | Return a string used to separated rows or separate header from
rows | 3.956599 | 3.966283 | 0.997559 |
cell_lines = cell.split('\n')
maxi = 0
for line in cell_lines:
length = 0
parts = line.split('\t')
for part, i in zip(parts, list(range(1, len(parts) + 1))):
length = length + len(part)
if i < len(parts):
length = (length//8 + 1) * 8
maxi = max(maxi, length)
return maxi | def _len_cell(self, cell) | Return the width of the cell
Special characters are taken into account to return the width of the
cell, such like newlines and tabs | 3.146478 | 2.877729 | 1.093389 |
if hasattr(self, "_width"):
return
maxi = []
if self._header:
maxi = [ self._len_cell(x) for x in self._header ]
for row in self._rows:
for cell,i in zip(row, list(range(len(row)))):
try:
maxi[i] = max(maxi[i], self._len_cell(cell))
except (TypeError, IndexError):
maxi.append(self._len_cell(cell))
ncols = len(maxi)
content_width = sum(maxi)
deco_width = 3*(ncols-1) + [0,4][self._has_border()]
if self._max_width and (content_width + deco_width) > self._max_width:
if self._max_width < (ncols + deco_width):
raise ValueError('max_width too low to render data')
available_width = self._max_width - deco_width
newmaxi = [0] * ncols
i = 0
while available_width > 0:
if newmaxi[i] < maxi[i]:
newmaxi[i] += 1
available_width -= 1
i = (i + 1) % ncols
maxi = newmaxi
self._width = maxi | def _compute_cols_width(self) | Return an array with the width of each column
If a specific width has been specified, exit. If the total of the
columns width exceed the table desired width, another width will be
computed to fit, and cells will be wrapped. | 2.815896 | 2.736536 | 1.029 |
line_wrapped = []
for cell, width in zip(line, self._width):
array = []
for c in cell.split('\n'):
if c.strip() == "":
array.append("")
else:
array.extend(textwrapper(c, width))
line_wrapped.append(array)
max_cell_lines = reduce(max, list(map(len, line_wrapped)))
for cell, valign in zip(line_wrapped, self._valign):
if isheader:
valign = "t"
if valign == "m":
missing = max_cell_lines - len(cell)
cell[:0] = [""] * int(missing / 2)
cell.extend([""] * int(missing / 2 + missing % 2))
elif valign == "b":
cell[:0] = [""] * (max_cell_lines - len(cell))
else:
cell.extend([""] * (max_cell_lines - len(cell)))
return line_wrapped | def _splitit(self, line, isheader) | Split each element of line to fit the column width
Each element is turned into a list, result of the wrapping of the
string to the desired width | 2.73609 | 2.705108 | 1.011453 |
assert len(color) in [3, 4, 6, 8]
if len(color) in [3, 4]:
color = "".join([c*2 for c in color])
n = int(color, 16)
t = ((n >> 16) & 255, (n >> 8) & 255, n & 255)
if len(color) == 8:
t = t + ((n >> 24) & 255,)
return t | def color_hex_to_dec_tuple(color) | Converts a color from hexadecimal to decimal tuple, color can be in
the following formats: 3-digit RGB, 4-digit ARGB, 6-digit RGB and
8-digit ARGB. | 1.876091 | 1.837283 | 1.021122 |
box = (int(rect[0]), int(rect[1]), int(rect[0]) + int(rect[2]),
int(rect[1]) + int(rect[3]))
if box[2] > self.img.size[0] or box[3] > self.img.size[1]:
raise errors.RectangleError("Region out-of-bounds")
self.img = self.img.crop(box)
return self | def region(self, rect) | Selects a sub-region of the image using the supplied rectangle,
x, y, width, height. | 2.274163 | 2.21306 | 1.02761 |
opts = Image._normalize_options(kwargs)
size = self._get_size(width, height)
if opts["mode"] == "adapt":
self._adapt(size, opts)
elif opts["mode"] == "clip":
self._clip(size, opts)
elif opts["mode"] == "fill":
self._fill(size, opts)
elif opts["mode"] == "scale":
self._scale(size, opts)
else:
self._crop(size, opts)
return self | def resize(self, width, height, **kwargs) | Resizes the image to the supplied width/height. Returns the
instance. Supports the following optional keyword arguments:
mode - The resizing mode to use, see Image.MODES
filter - The filter to use: see Image.FILTERS
background - The hexadecimal background fill color, RGB or ARGB
position - The position used to crop: see Image.POSITIONS for
pre-defined positions or a custom position ratio
retain - The minimum percentage of the original image to retain
when cropping | 2.327694 | 2.524567 | 0.922017 |
opts = Image._normalize_options(kwargs)
if deg == "auto":
if self._orig_format == "JPEG":
try:
exif = self.img._getexif() or dict()
deg = _orientation_to_rotation.get(exif.get(274, 0), 0)
except Exception:
logger.warn('unable to parse exif')
deg = 0
else:
deg = 0
deg = 360 - (int(deg) % 360)
if deg % 90 == 0:
if deg == 90:
self.img = self.img.transpose(PIL.Image.ROTATE_90)
elif deg == 180:
self.img = self.img.transpose(PIL.Image.ROTATE_180)
elif deg == 270:
self.img = self.img.transpose(PIL.Image.ROTATE_270)
else:
self.img = self.img.rotate(deg, expand=bool(int(opts["expand"])))
return self | def rotate(self, deg, **kwargs) | Rotates the image clockwise around its center. Returns the
instance. Supports the following optional keyword arguments:
expand - Expand the output image to fit rotation | 2.411281 | 2.496971 | 0.965682 |
opts = Image._normalize_options(kwargs)
outfile = BytesIO()
if opts["pil"]["format"]:
fmt = opts["pil"]["format"]
else:
fmt = self._orig_format
save_kwargs = dict()
if Image._isint(opts["quality"]):
save_kwargs["quality"] = int(opts["quality"])
if int(opts["optimize"]):
save_kwargs["optimize"] = True
if int(opts["progressive"]):
save_kwargs["progressive"] = True
if int(opts["preserve_exif"]):
save_kwargs["exif"] = self._exif
color = color_hex_to_dec_tuple(opts["background"])
if self.img.mode == "RGBA":
self._background(fmt, color)
if fmt == "JPEG":
if self.img.mode == "P":
# Converting old GIF and PNG files to JPEG can raise
# IOError: cannot write mode P as JPEG
# https://mail.python.org/pipermail/python-list/2000-May/036017.html
self.img = self.img.convert("RGB")
elif self.img.mode == "RGBA":
# JPEG does not have an alpha channel so cannot be
# saved as RGBA. It must be converted to RGB.
self.img = self.img.convert("RGB")
if self._orig_format == "JPEG":
self.img.format = self._orig_format
save_kwargs["subsampling"] = "keep"
if opts["quality"] == "keep":
save_kwargs["quality"] = "keep"
try:
self.img.save(outfile, fmt, **save_kwargs)
except IOError as e:
raise errors.ImageSaveError(str(e))
self.img.format = fmt
outfile.seek(0)
return outfile | def save(self, **kwargs) | Returns a buffer to the image for saving, supports the
following optional keyword arguments:
format - The format to save as: see Image.FORMATS
optimize - The image file size should be optimized
preserve_exif - Preserve the Exif information in JPEGs
progressive - The output should be progressive JPEG
quality - The quality used to save JPEGs: integer from 1 - 100 | 3.378223 | 3.286263 | 1.027983 |
key, qs = (key or "", qs or "")
return hmac.new(key.encode(), qs.encode(), hashlib.sha1).hexdigest() | def derive_signature(key, qs) | Derives the signature from the supplied query string using the key. | 3.703678 | 3.128129 | 1.183992 |
sig = derive_signature(key, qs)
return "%s&%s" % (qs, urlencode([("sig", sig)])) | def sign(key, qs) | Signs the query string using the key. | 5.065592 | 4.933053 | 1.026867 |
unsigned_qs = re.sub(r'&?sig=[^&]*', '', qs)
sig = derive_signature(key, unsigned_qs)
return urlparse.parse_qs(qs).get("sig", [None])[0] == sig | def verify_signature(key, qs) | Verifies that the signature in the query string is correct. | 3.686776 | 3.673236 | 1.003686 |
if name.lower() == 'planck': # make sure to handle the Planck window
return 'planck'
try: # use equivalence introduced in scipy 0.16.0
# pylint: disable=protected-access
return scipy_windows._win_equiv[name.lower()].__name__
except AttributeError: # old scipy
try:
return getattr(scipy_windows, name.lower()).__name__
except AttributeError: # no match
pass # raise later
except KeyError: # no match
pass # raise later
raise ValueError('no window function in scipy.signal equivalent to %r'
% name,) | def canonical_name(name) | Find the canonical name for the given window in scipy.signal
Parameters
----------
name : `str`
the name of the window you want
Returns
-------
realname : `str`
the name of the window as implemented in `scipy.signal.window`
Raises
-------
ValueError
if ``name`` cannot be resolved to a window function in `scipy.signal`
Examples
--------
>>> from gwpy.signal.window import canonical_name
>>> canonical_name('hanning')
'hann'
>>> canonical_name('ksr')
'kaiser' | 6.273047 | 6.422605 | 0.976714 |
try:
name = canonical_name(name)
except KeyError as exc:
raise ValueError(str(exc))
try:
rov = ROV[name]
except KeyError:
raise ValueError("no recommended overlap for %r window" % name)
if nfft:
return int(ceil(nfft * rov))
return rov | def recommended_overlap(name, nfft=None) | Returns the recommended fractional overlap for the given window
If ``nfft`` is given, the return is in samples
Parameters
----------
name : `str`
the name of the window you are using
nfft : `int`, optional
the length of the window
Returns
-------
rov : `float`, `int`
the recommended overlap (ROV) for the given window, in samples if
``nfft` is given (`int`), otherwise fractional (`float`)
Examples
--------
>>> from gwpy.signal.window import recommended_overlap
>>> recommended_overlap('hann')
0.5
>>> recommended_overlap('blackmanharris', nfft=128)
85 | 4.463305 | 4.372502 | 1.020767 |
# construct a Planck taper window
w = numpy.ones(N)
if nleft:
w[0] *= 0
zleft = numpy.array([nleft * (1./k + 1./(k-nleft))
for k in range(1, nleft)])
w[1:nleft] *= expit(-zleft)
if nright:
w[N-1] *= 0
zright = numpy.array([-nright * (1./(k-nright) + 1./k)
for k in range(1, nright)])
w[N-nright:N-1] *= expit(-zright)
return w | def planck(N, nleft=0, nright=0) | Return a Planck taper window.
Parameters
----------
N : `int`
Number of samples in the output window
nleft : `int`, optional
Number of samples to taper on the left, should be less than `N/2`
nright : `int`, optional
Number of samples to taper on the right, should be less than `N/2`
Returns
-------
w : `ndarray`
The window, with the maximum value normalized to 1 and at least one
end tapered smoothly to 0.
Examples
--------
To taper 0.1 seconds on both ends of one second of data sampled at 2048 Hz:
>>> from gwpy.signal.window import planck
>>> w = planck(2048, nleft=205, nright=205)
References
----------
.. [1] McKechan, D.J.A., Robinson, C., and Sathyaprakash, B.S. (April
2010). "A tapering window for time-domain templates and simulated
signals in the detection of gravitational waves from coalescing
compact binaries". Classical and Quantum Gravity 27 (8).
:doi:`10.1088/0264-9381/27/8/084020`
.. [2] Wikipedia, "Window function",
https://en.wikipedia.org/wiki/Window_function#Planck-taper_window | 3.044208 | 3.189614 | 0.954413 |
try:
return os.environ[key].lower() in TRUE
except KeyError:
return default | def bool_env(key, default=False) | Parse an environment variable as a boolean switch
`True` is returned if the variable value matches one of the following:
- ``'1'``
- ``'y'``
- ``'yes'``
- ``'true'``
The match is case-insensitive (so ``'Yes'`` will match as `True`)
Parameters
----------
key : `str`
the name of the environment variable to find
default : `bool`
the default return value if the key is not found
Returns
-------
True
if the environment variable matches as 'yes' or similar
False
otherwise
Examples
--------
>>> import os
>>> from gwpy.utils.env import bool_env
>>> os.environ['GWPY_VALUE'] = 'yes'
>>> print(bool_env('GWPY_VALUE'))
True
>>> os.environ['GWPY_VALUE'] = 'something else'
>>> print(bool_env('GWPY_VALUE'))
False
>>> print(bool_env('GWPY_VALUE2'))
False | 3.879018 | 11.657843 | 0.332739 |
if isinstance(cmd, (list, tuple)):
cmdstr = ' '.join(cmd)
kwargs.setdefault('shell', False)
else:
cmdstr = str(cmd)
kwargs.setdefault('shell', True)
proc = Popen(cmd, stdout=stdout, stderr=stderr, **kwargs)
out, err = proc.communicate()
if proc.returncode:
if on_error == 'ignore':
pass
elif on_error == 'warn':
e = CalledProcessError(proc.returncode, cmdstr)
warnings.warn(str(e))
else:
raise CalledProcessError(proc.returncode, cmdstr)
return out.decode('utf-8'), err.decode('utf-8') | def call(cmd, stdout=PIPE, stderr=PIPE, on_error='raise', **kwargs) | Call out to the shell using `subprocess.Popen`
Parameters
----------
stdout : `file-like`, optional
stream for stdout
stderr : `file-like`, optional
stderr for stderr
on_error : `str`, optional
what to do when the command fails, one of
- 'ignore' - do nothing
- 'warn' - print a warning
- 'raise' - raise an exception
**kwargs
other keyword arguments to pass to `subprocess.Popen`
Returns
-------
out : `str`
the output stream of the command
err : `str`
the error stream from the command
Raises
------
OSError
if `cmd` is a `str` (or `shell=True` is passed) and the executable
is not found
subprocess.CalledProcessError
if the command fails otherwise | 1.740955 | 1.913849 | 0.909662 |
def wrapper(*args, **kwargs):
# parse columns argument
columns = kwargs.pop("columns", None)
# read table
tab = func(*args, **kwargs)
# filter on columns
if columns is None:
return tab
return tab[columns]
return _safe_wraps(wrapper, func) | def read_with_columns(func) | Decorate a Table read method to use the ``columns`` keyword | 3.57593 | 3.898554 | 0.917245 |
def wrapper(*args, **kwargs):
# parse selection
selection = kwargs.pop('selection', None) or []
# read table
tab = func(*args, **kwargs)
# apply selection
if selection:
return filter_table(tab, selection)
return tab
return _safe_wraps(wrapper, func) | def read_with_selection(func) | Decorate a Table read method to apply ``selection`` keyword | 4.013562 | 4.019795 | 0.998449 |
reader = registry.get_reader(name, data_class)
wrapped = ( # noqa
read_with_columns( # use ``columns``
read_with_selection( # use ``selection``
reader
))
)
return registry.register_reader(name, data_class, wrapped, force=True) | def decorate_registered_reader(
name,
data_class=EventTable,
columns=True,
selection=True,
) | Wrap an existing registered reader to use GWpy's input decorators
Parameters
----------
name : `str`
the name of the registered format
data_class : `type`, optional
the class for whom the format is registered
columns : `bool`, optional
use the `read_with_columns` decorator
selection : `bool`, optional
use the `read_with_selection` decorator | 5.930943 | 6.165484 | 0.961959 |
import root_numpy
# parse column filters into tree2array ``selection`` keyword
# NOTE: not all filters can be passed directly to root_numpy, so we store
# those separately and apply them after-the-fact before returning
try:
selection = kwargs.pop('selection')
except KeyError: # no filters
filters = None
else:
rootfilters = []
filters = []
for col, op_, value in parse_column_filters(selection):
try:
opstr = [key for key in OPERATORS if OPERATORS[key] is op_][0]
except (IndexError, KeyError): # cannot filter with root_numpy
filters.append((col, op_, value))
else: # can filter with root_numpy
rootfilters.append('{0} {1} {2!r}'.format(col, opstr, value))
kwargs['selection'] = ' && '.join(rootfilters)
# pass file name (not path)
if not isinstance(source, string_types):
source = source.name
# find single tree (if only one tree present)
if treename is None:
trees = root_numpy.list_trees(source)
if len(trees) == 1:
treename = trees[0]
elif not trees:
raise ValueError("No trees found in %s" % source)
else:
raise ValueError("Multiple trees found in %s, please select on "
"via the `treename` keyword argument, e.g. "
"`treename='events'`. Available trees are: %s."
% (source, ', '.join(map(repr, trees))))
# read, filter, and return
t = Table(root_numpy.root2array(
source,
treename,
branches=columns,
**kwargs
))
if filters:
return filter_table(t, *filters)
return t | def table_from_root(source, treename=None, columns=None, **kwargs) | Read a Table from a ROOT tree | 3.754179 | 3.736725 | 1.004671 |
import root_numpy
root_numpy.array2root(table.as_array(), filename, **kwargs) | def table_to_root(table, filename, **kwargs) | Write a Table to a ROOT file | 4.748611 | 4.509607 | 1.052999 |
s = "{}".format(f)
if "e" in s or "E" in s:
return "{0:.{1}f}".format(f, n)
i, p, d = s.partition(".")
return ".".join([i, (d+"0"*n)[:n]]) | def _truncate(f, n) | Truncates/pads a float `f` to `n` decimal places without rounding
From https://stackoverflow.com/a/783927/1307974 (CC-BY-SA) | 1.871304 | 1.674474 | 1.117547 |
class FixedGPSScale(GPSScale):
name = str('{0}s'.format(unit.long_names[0] if unit.long_names else
unit.names[0]))
def __init__(self, axis, epoch=None):
super(FixedGPSScale, self).__init__(axis, epoch=epoch, unit=unit)
return FixedGPSScale | def _gps_scale_factory(unit) | Construct a GPSScale for this unit | 4.974586 | 4.684566 | 1.06191 |
if epoch is None:
self._epoch = None
return
if isinstance(epoch, (Number, Decimal)):
self._epoch = float(epoch)
else:
self._epoch = float(to_gps(epoch)) | def set_epoch(self, epoch) | Set the GPS epoch | 4.251186 | 3.58775 | 1.184917 |
# accept all core time units
if unit is None or (isinstance(unit, units.NamedUnit) and
unit.physical_type == 'time'):
self._unit = unit
return
# convert float to custom unit in seconds
if isinstance(unit, Number):
unit = units.Unit(unit * units.second)
# otherwise, should be able to convert to a time unit
try:
unit = units.Unit(unit)
except ValueError as exc:
# catch annoying plurals
try:
unit = units.Unit(str(unit).rstrip('s'))
except ValueError:
raise exc
# decompose and check that it's actually a time unit
dec = unit.decompose()
if dec.bases != [units.second]:
raise ValueError("Cannot set GPS unit to %s" % unit)
# check equivalent units
for other in TIME_UNITS:
if other.decompose().scale == dec.scale:
self._unit = other
return
raise ValueError("Unrecognised unit: %s" % unit) | def set_unit(self, unit) | Set the GPS step scale | 4.765186 | 4.630484 | 1.02909 |
if not self.unit:
return None
name = sorted(self.unit.names, key=len)[-1]
return '%ss' % name | def get_unit_name(self) | Returns the name of the unit for this GPS scale
Note that this returns a simply-pluralised version of the name. | 6.692297 | 6.480286 | 1.032716 |
scale = self.scale or 1
epoch = self.epoch or 0
values = numpy.asarray(values)
# handle simple or data transformations with floats
if self._parents or ( # part of composite transform (from draw())
epoch == 0 and # no large additions
scale == 1 # no multiplications
):
return self._transform(values, float(epoch), float(scale))
# otherwise do things carefully (and slowly) with Decimals
# -- ideally this only gets called for transforming tick positions
flat = values.flatten()
def _trans(x):
return self._transform_decimal(x, epoch, scale)
return numpy.asarray(list(map(_trans, flat))).reshape(values.shape) | def transform_non_affine(self, values) | Transform an array of GPS times.
This method is designed to filter out transformations that will
generate text elements that require exact precision, and use
`Decimal` objects to do the transformation, and simple `float`
otherwise. | 10.701996 | 9.694779 | 1.103893 |
vdec = Decimal(_truncate(value, 12))
edec = Decimal(_truncate(epoch, 12))
sdec = Decimal(_truncate(scale, 12))
return type(value)(cls._transform(vdec, edec, sdec)) | def _transform_decimal(cls, value, epoch, scale) | Transform to/from GPS using `decimal.Decimal` for precision | 3.576073 | 3.65302 | 0.978936 |
@wraps(func)
def wrapped_func(*args, **kwargs):
warnings.warn(
DEPRECATED_FUNCTION_WARNING.format(func),
category=DeprecationWarning,
stacklevel=2,
)
return func(*args, **kwargs)
return wrapped_func | def deprecated_function(func, warning=DEPRECATED_FUNCTION_WARNING) | Adds a `DeprecationWarning` to a function
Parameters
----------
func : `callable`
the function to decorate with a `DeprecationWarning`
warning : `str`, optional
the warning to present
Notes
-----
The final warning message is formatted as ``warning.format(func)``
so you can use attribute references to the function itself.
See the default message as an example. | 1.949576 | 2.454638 | 0.794242 |
def decorator(func):
# @wraps(func) <- we can't use this as normal because it doesn't work
# on python < 3 for instance methods,
# see workaround below
def wrapped(*args, **kwargs):
result = func(*args, **kwargs)
try:
return returntype(result)
except (TypeError, ValueError) as exc:
exc.args = (
'failed to cast return from {0} as {1}: {2}'.format(
func.__name__, returntype.__name__, str(exc)),
)
raise
try:
return wraps(func)(wrapped)
except AttributeError: # python < 3.0.0
wrapped.__doc__ == func.__doc__
return wrapped
return decorator | def return_as(returntype) | Decorator to cast return of function as the given type
Parameters
----------
returntype : `type`
the desired return type of the decorated function | 4.586749 | 4.634669 | 0.989661 |
# query for metadata
url = ('{url}/api/records/?'
'page=1&'
'size={hits}&'
'q=conceptrecid:"{id}"&'
'sort=-version&'
'all_versions=True'.format(id=zid, url=url, hits=hits))
metadata = requests.get(url).json()
lines = []
for i, hit in enumerate(metadata['hits']['hits']):
version = hit['metadata']['version'][len(tag_prefix):]
lines.append('-' * len(version))
lines.append(version)
lines.append('-' * len(version))
lines.append('')
lines.append('.. image:: {badge}\n'
' :target: {doi}'.format(**hit['links']))
if i < hits - 1:
lines.append('')
return '\n'.join(lines) | def format_citations(zid, url='https://zenodo.org/', hits=10, tag_prefix='v') | Query and format a citations page from Zenodo entries
Parameters
----------
zid : `int`, `str`
the Zenodo ID of the target record
url : `str`, optional
the base URL of the Zenodo host, defaults to ``https://zenodo.org``
hist : `int`, optional
the maximum number of hits to show, default: ``10``
tag_prefix : `str`, optional
the prefix for git tags. This is removed to generate the section
headers in the output RST
Returns
-------
rst : `str`
an RST-formatted string of DOI badges with URLs | 3.24423 | 3.598234 | 0.901617 |
# pylint: disable=redefined-builtin
# parse input source
source = file_list(source)
# parse type
ctype = channel_dict_kwarg(type, channels, (str,))
# read each individually and append
out = series_class.DictClass()
for i, file_ in enumerate(source):
if i == 1: # force data into fresh memory so that append works
for name in out:
out[name] = numpy.require(out[name], requirements=['O'])
# read frame
out.append(read_gwf(file_, channels, start=start, end=end, ctype=ctype,
scaled=scaled, series_class=series_class),
copy=False)
return out | def read(source, channels, start=None, end=None, scaled=None, type=None,
series_class=TimeSeries) | Read a dict of series from one or more GWF files
Parameters
----------
source : `str`, `list`
Source of data, any of the following:
- `str` path of single data file,
- `str` path of cache file,
- `list` of paths.
channels : `~gwpy.detector.ChannelList`, `list`
a list of channels to read from the source.
start : `~gwpy.time.LIGOTimeGPS`, `float`, `str` optional
GPS start time of required data, anything parseable by
:func:`~gwpy.time.to_gps` is fine.
end : `~gwpy.time.LIGOTimeGPS`, `float`, `str`, optional
GPS end time of required data, anything parseable by
:func:`~gwpy.time.to_gps` is fine.
scaled : `bool`, optional
apply slope and bias calibration to ADC data.
type : `dict`, optional
a `dict` of ``(name, channel-type)`` pairs, where ``channel-type``
can be one of ``'adc'``, ``'proc'``, or ``'sim'``.
series_class : `type`, optional
the `Series` sub-type to return.
Returns
-------
data : `~gwpy.timeseries.TimeSeriesDict` or similar
a dict of ``(channel, series)`` pairs read from the GWF source(s). | 6.725556 | 6.939919 | 0.969112 |
# parse kwargs
if not start:
start = 0
if not end:
end = 0
span = Segment(start, end)
# open file
stream = io_gwf.open_gwf(filename, 'r')
nframes = stream.GetNumberOfFrames()
# find channels
out = series_class.DictClass()
# loop over frames in GWF
i = 0
while True:
this = i
i += 1
# read frame
try:
frame = stream.ReadFrameNSubset(this, 0)
except IndexError:
if this >= nframes:
break
raise
# check whether we need this frame at all
if not _need_frame(frame, start, end):
continue
# get epoch for this frame
epoch = LIGOTimeGPS(*frame.GetGTime())
# and read all the channels
for channel in channels:
_scaled = _dynamic_scaled(scaled, channel)
try:
new = _read_channel(stream, this, str(channel),
ctype.get(channel, None),
epoch, start, end, scaled=_scaled,
series_class=series_class)
except _Skip: # don't need this frame for this channel
continue
try:
out[channel].append(new)
except KeyError:
out[channel] = numpy.require(new, requirements=['O'])
# if we have all of the data we want, stop now
if all(span in out[channel].span for channel in out):
break
# if any channels weren't read, something went wrong
for channel in channels:
if channel not in out:
msg = "Failed to read {0!r} from {1!r}".format(
str(channel), filename)
if start or end:
msg += ' for {0}'.format(span)
raise ValueError(msg)
return out | def read_gwf(filename, channels, start=None, end=None, scaled=None,
ctype=None, series_class=TimeSeries) | Read a dict of series data from a single GWF file
Parameters
----------
filename : `str`
the GWF path from which to read
channels : `~gwpy.detector.ChannelList`, `list`
a list of channels to read from the source.
start : `~gwpy.time.LIGOTimeGPS`, `float`, `str` optional
GPS start time of required data, anything parseable by
:func:`~gwpy.time.to_gps` is fine.
end : `~gwpy.time.LIGOTimeGPS`, `float`, `str`, optional
GPS end time of required data, anything parseable by
:func:`~gwpy.time.to_gps` is fine.
scaled : `bool`, optional
apply slope and bias calibration to ADC data.
type : `dict`, optional
a `dict` of ``(name, channel-type)`` pairs, where ``channel-type``
can be one of ``'adc'``, ``'proc'``, or ``'sim'``.
series_class : `type`, optional
the `Series` sub-type to return.
Returns
-------
data : `~gwpy.timeseries.TimeSeriesDict` or similar
a dict of ``(channel, series)`` pairs read from the GWF file. | 4.955553 | 4.848082 | 1.022168 |
data = _get_frdata(stream, num, name, ctype=ctype)
return read_frdata(data, epoch, start, end,
scaled=scaled, series_class=series_class) | def _read_channel(stream, num, name, ctype, epoch, start, end,
scaled=True, series_class=TimeSeries) | Read a channel from a specific frame in a stream | 4.150007 | 3.917412 | 1.059375 |
ctypes = (ctype,) if ctype else ('adc', 'proc', 'sim')
for ctype in ctypes:
_reader = getattr(stream, 'ReadFr{0}Data'.format(ctype.title()))
try:
return _reader(num, name)
except IndexError as exc:
if FRERR_NO_CHANNEL_OF_TYPE.match(str(exc)):
continue
raise
raise ValueError("no Fr{{Adc,Proc,Sim}}Data structures with the "
"name {0}".format(name)) | def _get_frdata(stream, num, name, ctype=None) | Brute force-ish method to return the FrData structure for a channel
This saves on pulling the channel type from the TOC | 7.701176 | 7.773127 | 0.990744 |
datastart = epoch + frdata.GetTimeOffset()
try:
trange = frdata.GetTRange()
except AttributeError: # not proc channel
trange = 0.
# check overlap with user-requested span
if (end and datastart >= end) or (trange and datastart + trange < start):
raise _Skip()
# get scaling
try:
slope = frdata.GetSlope()
bias = frdata.GetBias()
except AttributeError: # not FrAdcData
slope = None
bias = None
null_scaling = True
else:
null_scaling = slope == 1. and bias == 0.
out = None
for j in range(frdata.data.size()):
# we use range(frdata.data.size()) to avoid segfault
# related to iterating directly over frdata.data
try:
new = read_frvect(frdata.data[j], datastart, start, end,
name=frdata.GetName(),
series_class=series_class)
except _Skip:
continue
# apply ADC scaling (only if interesting; this prevents unnecessary
# type-casting errors)
if scaled and not null_scaling:
new *= slope
new += bias
if slope is not None:
# user has deliberately disabled the ADC calibration, so
# the stored engineering unit is not valid, revert to 'counts':
new.override_unit('count')
if out is None:
out = new
else:
out.append(new)
return out | def read_frdata(frdata, epoch, start, end, scaled=True,
series_class=TimeSeries) | Read a series from an `FrData` structure
Parameters
----------
frdata : `LDAStools.frameCPP.FrAdcData` or similar
the data structure to read
epoch : `float`
the GPS start time of the containing frame
(`LDAStools.frameCPP.FrameH.GTime`)
start : `float`
the GPS start time of the user request
end : `float`
the GPS end time of the user request
scaled : `bool`, optional
apply slope and bias calibration to ADC data.
series_class : `type`, optional
the `Series` sub-type to return.
Returns
-------
series : `~gwpy.timeseries.TimeSeriesBase`
the formatted data series
Raises
------
_Skip
if this data structure doesn't overlap with the requested
``[start, end)`` interval. | 6.815979 | 6.149443 | 1.10839 |
# only read FrVect with matching name (or no name set)
# frame spec allows for arbitrary other FrVects
# to hold other information
if vect.GetName() and name and vect.GetName() != name:
raise _Skip()
# get array
arr = vect.GetDataArray()
nsamp = arr.size
# and dimensions
dim = vect.GetDim(0)
dx = dim.dx
x0 = dim.startX
# start and end GPS times of this FrVect
dimstart = epoch + x0
dimend = dimstart + nsamp * dx
# index of first required sample
nxstart = int(max(0., float(start-dimstart)) / dx)
# requested start time is after this frame, skip
if nxstart >= nsamp:
raise _Skip()
# index of end sample
if end:
nxend = int(nsamp - ceil(max(0., float(dimend-end)) / dx))
else:
nxend = None
if nxstart or nxend:
arr = arr[nxstart:nxend]
# -- cast as a series
# get unit
unit = vect.GetUnitY() or None
# create array
series = series_class(arr, t0=dimstart+nxstart*dx, dt=dx, name=name,
channel=name, unit=unit, copy=False)
# add information to channel
series.channel.sample_rate = series.sample_rate.value
series.channel.unit = unit
series.channel.dtype = series.dtype
return series | def read_frvect(vect, epoch, start, end, name=None, series_class=TimeSeries) | Read an array from an `FrVect` structure
Parameters
----------
vect : `LDASTools.frameCPP.FrVect`
the frame vector structur to read
start : `float`
the GPS start time of the request
end : `float`
the GPS end time of the request
epoch : `float`
the GPS start time of the containing `FrData` structure
name : `str`, optional
the name of the output `series_class`; this is also used
to ignore ``FrVect`` structures containing other information
series_class : `type`, optional
the `Series` sub-type to return.
Returns
-------
series : `~gwpy.timeseries.TimeSeriesBase`
the formatted data series
Raises
------
_Skip
if this vect doesn't overlap with the requested
``[start, end)`` interval, or the name doesn't match. | 5.977864 | 5.35394 | 1.116536 |
# set frame header metadata
if not start:
starts = {LIGOTimeGPS(tsdict[key].x0.value) for key in tsdict}
if len(starts) != 1:
raise RuntimeError("Cannot write multiple TimeSeries to a single "
"frame with different start times, "
"please write into different frames")
start = list(starts)[0]
if not end:
ends = {tsdict[key].span[1] for key in tsdict}
if len(ends) != 1:
raise RuntimeError("Cannot write multiple TimeSeries to a single "
"frame with different end times, "
"please write into different frames")
end = list(ends)[0]
duration = end - start
start = LIGOTimeGPS(start)
ifos = {ts.channel.ifo for ts in tsdict.values() if
ts.channel and ts.channel.ifo and
hasattr(frameCPP, 'DETECTOR_LOCATION_{0}'.format(ts.channel.ifo))}
# create frame
frame = io_gwf.create_frame(time=start, duration=duration, name=name,
run=run, ifos=ifos)
# append channels
for i, key in enumerate(tsdict):
try:
# pylint: disable=protected-access
ctype = tsdict[key].channel._ctype or 'proc'
except AttributeError:
ctype = 'proc'
append_to_frame(frame, tsdict[key].crop(start, end),
type=ctype, channelid=i)
# write frame to file
io_gwf.write_frames(outfile, [frame], compression=compression,
compression_level=compression_level) | def write(tsdict, outfile, start=None, end=None, name='gwpy', run=0,
compression=257, compression_level=6) | Write data to a GWF file using the frameCPP API | 3.88862 | 3.680876 | 1.056439 |
# pylint: disable=redefined-builtin
if timeseries.channel:
channel = str(timeseries.channel)
else:
channel = str(timeseries.name)
offset = float(LIGOTimeGPS(timeseries.t0.value) -
LIGOTimeGPS(*frame.GetGTime()))
# create the data container
if type.lower() == 'adc':
frdata = frameCPP.FrAdcData(
channel,
0, # channel group
channelid, # channel number in group
16, # number of bits in ADC
timeseries.sample_rate.value, # sample rate
)
frdata.SetTimeOffset(offset)
append = frame.AppendFrAdcData
elif type.lower() == 'proc':
frdata = frameCPP.FrProcData(
channel, # channel name
str(timeseries.name), # comment
frameCPP.FrProcData.TIME_SERIES, # ID as time-series
frameCPP.FrProcData.UNKNOWN_SUB_TYPE, # empty sub-type (fseries)
offset, # offset of first sample relative to frame start
abs(timeseries.span), # duration of data
0., # heterodyne frequency
0., # phase of heterodyne
0., # frequency range
0., # resolution bandwidth
)
append = frame.AppendFrProcData
elif type.lower() == 'sim':
frdata = frameCPP.FrSimData(
str(timeseries.channel), # channel name
str(timeseries.name), # comment
timeseries.sample_rate.value, # sample rate
offset, # time offset of first sample
0., # heterodyne frequency
0., # phase of heterodyne
)
append = frame.AppendFrSimData
else:
raise RuntimeError("Invalid channel type {!r}, please select one of "
"'adc, 'proc', or 'sim'".format(type))
# append an FrVect
frdata.AppendData(create_frvect(timeseries))
append(frdata) | def append_to_frame(frame, timeseries, type='proc', channelid=0) | Append data from a `TimeSeries` to a `~frameCPP.FrameH`
Parameters
----------
frame : `~frameCPP.FrameH`
frame object to append to
timeseries : `TimeSeries`
the timeseries to append
type : `str`
the type of the channel, one of 'adc', 'proc', 'sim'
channelid : `int`, optional
the ID of the channel within the group (only used for ADC channels) | 4.283941 | 4.084064 | 1.048941 |
# create timing dimension
dims = frameCPP.Dimension(
timeseries.size, timeseries.dx.value,
str(timeseries.dx.unit), 0)
# create FrVect
vect = frameCPP.FrVect(
timeseries.name or '', FRVECT_TYPE_FROM_NUMPY[timeseries.dtype.type],
1, dims, str(timeseries.unit))
# populate FrVect and return
vect.GetDataArray()[:] = numpy.require(timeseries.value,
requirements=['C'])
return vect | def create_frvect(timeseries) | Create a `~frameCPP.FrVect` from a `TimeSeries`
This method is primarily designed to make writing data to GWF files a
bit easier.
Parameters
----------
timeseries : `TimeSeries`
the input `TimeSeries`
Returns
-------
frvect : `~frameCPP.FrVect`
the output `FrVect` | 8.771232 | 7.248174 | 1.21013 |
array = iter(array)
i = 0
while True:
try: # get next value
val = next(array)
except StopIteration: # end of array
return
if val: # start of new segment
n = 1 # count consecutive True
try:
while next(array): # run until segment will end
n += 1
except StopIteration: # have reached the end
return # stop
finally: # yield segment (including at StopIteration)
if n >= minlen: # ... if long enough
yield (start + i * delta, start + (i + n) * delta)
i += n
i += 1 | def _bool_segments(array, start=0, delta=1, minlen=1) | Yield segments of consecutive `True` values in a boolean array
Parameters
----------
array : `iterable`
An iterable of boolean-castable values.
start : `float`
The value of the first sample on the indexed axis
(e.g.the GPS start time of the array).
delta : `float`
The step size on the indexed axis (e.g. sample duration).
minlen : `int`, optional
The minimum number of consecutive `True` values for a segment.
Yields
------
segment : `tuple`
``(start + i * delta, start + (i + n) * delta)`` for a sequence
of ``n`` consecutive True values starting at position ``i``.
Notes
-----
This method is adapted from original code written by Kipp Cannon and
distributed under GPLv3.
The datatype of the values returned will be the larger of the types
of ``start`` and ``delta``.
Examples
--------
>>> print(list(_bool_segments([0, 1, 0, 0, 0, 1, 1, 1, 0, 1]))
[(1, 2), (5, 8), (9, 10)]
>>> print(list(_bool_segments([0, 1, 0, 0, 0, 1, 1, 1, 0, 1]
... start=100., delta=0.1))
[(100.1, 100.2), (100.5, 100.8), (100.9, 101.0)] | 4.74381 | 4.777408 | 0.992967 |
from ..segments import DataQualityFlag
# format dtype
if dtype is None:
dtype = self.t0.dtype
if isinstance(dtype, numpy.dtype): # use callable dtype
dtype = dtype.type
start = dtype(self.t0.value)
dt = dtype(self.dt.value)
# build segmentlists (can use simple objects since DQFlag converts)
active = _bool_segments(self.value, start, dt, minlen=int(minlen))
known = [tuple(map(dtype, self.span))]
# build flag and return
out = DataQualityFlag(name=name or self.name, active=active,
known=known, label=label or self.name,
description=description)
if round:
return out.round()
return out | def to_dqflag(self, name=None, minlen=1, dtype=None, round=False,
label=None, description=None) | Convert this series into a `~gwpy.segments.DataQualityFlag`.
Each contiguous set of `True` values are grouped as a
`~gwpy.segments.Segment` running from the GPS time the first
found `True`, to the GPS time of the next `False` (or the end
of the series)
Parameters
----------
minlen : `int`, optional
minimum number of consecutive `True` values to identify as a
`~gwpy.segments.Segment`. This is useful to ignore single
bit flips, for example.
dtype : `type`, `callable`
output segment entry type, can pass either a type for simple
casting, or a callable function that accepts a float and returns
another numeric type, defaults to the `dtype` of the time index
round : `bool`, optional
choose to round each `~gwpy.segments.Segment` to its
inclusive integer boundaries
label : `str`, optional
the :attr:`~gwpy.segments.DataQualityFlag.label` for the
output flag.
description : `str`, optional
the :attr:`~gwpy.segments.DataQualityFlag.description` for the
output flag.
Returns
-------
dqflag : `~gwpy.segments.DataQualityFlag`
a segment representation of this `StateTimeSeries`, the span
defines the `known` segments, while the contiguous `True`
sets defined each of the `active` segments | 6.630913 | 5.818784 | 1.13957 |
try:
return self._bits
except AttributeError:
if self.dtype.name.startswith(('uint', 'int')):
nbits = self.itemsize * 8
self.bits = Bits(['Bit %d' % b for b in range(nbits)],
channel=self.channel, epoch=self.epoch)
return self.bits
elif hasattr(self.channel, 'bits'):
self.bits = self.channel.bits
return self.bits
return None | def bits(self) | list of `Bits` for this `StateVector`
:type: `Bits` | 4.192141 | 4.209911 | 0.995779 |
try:
return self._boolean
except AttributeError:
nbits = len(self.bits)
boolean = numpy.zeros((self.size, nbits), dtype=bool)
for i, sample in enumerate(self.value):
boolean[i, :] = [int(sample) >> j & 1 for j in range(nbits)]
self._boolean = Array2D(boolean, name=self.name,
x0=self.x0, dx=self.dx, y0=0, dy=1)
return self.boolean | def boolean(self) | A mapping of this `StateVector` to a 2-D array containing all
binary bits as booleans, for each time point. | 3.64503 | 3.469272 | 1.050661 |
if bits is None:
bits = [b for b in self.bits if b not in {None, ''}]
bindex = []
for bit in bits:
try:
bindex.append((self.bits.index(bit), bit))
except (IndexError, ValueError) as exc:
exc.args = ('Bit %r not found in StateVector' % bit,)
raise
self._bitseries = StateTimeSeriesDict()
for i, bit in bindex:
self._bitseries[bit] = StateTimeSeries(
self.value >> i & 1, name=bit, epoch=self.x0.value,
channel=self.channel, sample_rate=self.sample_rate)
return self._bitseries | def get_bit_series(self, bits=None) | Get the `StateTimeSeries` for each bit of this `StateVector`.
Parameters
----------
bits : `list`, optional
a list of bit indices or bit names, defaults to all bits
Returns
-------
bitseries : `StateTimeSeriesDict`
a `dict` of `StateTimeSeries`, one for each given bit | 4.034274 | 3.451747 | 1.168763 |
return super(StateVector, cls).read(source, *args, **kwargs) | def read(cls, source, *args, **kwargs) | Read data into a `StateVector`
Parameters
----------
source : `str`, `list`
Source of data, any of the following:
- `str` path of single data file,
- `str` path of LAL-format cache file,
- `list` of paths.
channel : `str`, `~gwpy.detector.Channel`
the name of the channel to read, or a `Channel` object.
start : `~gwpy.time.LIGOTimeGPS`, `float`, `str`
GPS start time of required data,
any input parseable by `~gwpy.time.to_gps` is fine
end : `~gwpy.time.LIGOTimeGPS`, `float`, `str`, optional
GPS end time of required data, defaults to end of data found;
any input parseable by `~gwpy.time.to_gps` is fine
bits : `list`, optional
list of bits names for this `StateVector`, give `None` at
any point in the list to mask that bit
format : `str`, optional
source format identifier. If not given, the format will be
detected if possible. See below for list of acceptable
formats.
nproc : `int`, optional, default: `1`
number of parallel processes to use, serial process by
default.
gap : `str`, optional
how to handle gaps in the cache, one of
- 'ignore': do nothing, let the undelying reader method handle it
- 'warn': do nothing except print a warning to the screen
- 'raise': raise an exception upon finding a gap (default)
- 'pad': insert a value to fill the gaps
pad : `float`, optional
value with which to fill gaps in the source data, only used if
gap is not given, or `gap='pad'` is given
Examples
--------
To read the S6 state vector, with names for all the bits::
>>> sv = StateVector.read(
'H-H1_LDAS_C02_L2-968654592-128.gwf', 'H1:IFO-SV_STATE_VECTOR',
bits=['Science mode', 'Conlog OK', 'Locked',
'No injections', 'No Excitations'],
dtype='uint32')
then you can convert these to segments
>>> segments = sv.to_dqflags()
or to read just the interferometer operations bits::
>>> sv = StateVector.read(
'H-H1_LDAS_C02_L2-968654592-128.gwf', 'H1:IFO-SV_STATE_VECTOR',
bits=['Science mode', None, 'Locked'], dtype='uint32')
Running `to_dqflags` on this example would only give 2 flags, rather
than all five.
Alternatively the `bits` attribute can be reset after reading, but
before any further operations.
Notes
----- | 5.982738 | 7.58818 | 0.788429 |
from ..segments import DataQualityDict
out = DataQualityDict()
bitseries = self.get_bit_series(bits=bits)
for bit, sts in bitseries.items():
out[bit] = sts.to_dqflag(name=bit, minlen=minlen, round=round,
dtype=dtype,
description=self.bits.description[bit])
return out | def to_dqflags(self, bits=None, minlen=1, dtype=float, round=False) | Convert this `StateVector` into a `~gwpy.segments.DataQualityDict`
The `StateTimeSeries` for each bit is converted into a
`~gwpy.segments.DataQualityFlag` with the bits combined into a dict.
Parameters
----------
minlen : `int`, optional, default: 1
minimum number of consecutive `True` values to identify as a
`Segment`. This is useful to ignore single bit flips,
for example.
bits : `list`, optional
a list of bit indices or bit names to select, defaults to
`~StateVector.bits`
Returns
-------
DataQualityFlag list : `list`
a list of `~gwpy.segments.flag.DataQualityFlag`
reprensentations for each bit in this `StateVector`
See Also
--------
:meth:`StateTimeSeries.to_dqflag`
for details on the segment representation method for
`StateVector` bits | 4.985367 | 4.251984 | 1.17248 |
new = cls.DictClass.fetch(
[channel], start, end, host=host, port=port,
verbose=verbose, connection=connection)[channel]
if bits:
new.bits = bits
return new | def fetch(cls, channel, start, end, bits=None, host=None, port=None,
verbose=False, connection=None, type=Nds2ChannelType.any()) | Fetch data from NDS into a `StateVector`.
Parameters
----------
channel : `str`, `~gwpy.detector.Channel`
the name of the channel to read, or a `Channel` object.
start : `~gwpy.time.LIGOTimeGPS`, `float`, `str`
GPS start time of required data,
any input parseable by `~gwpy.time.to_gps` is fine
end : `~gwpy.time.LIGOTimeGPS`, `float`, `str`
GPS end time of required data,
any input parseable by `~gwpy.time.to_gps` is fine
bits : `Bits`, `list`, optional
definition of bits for this `StateVector`
host : `str`, optional
URL of NDS server to use, defaults to observatory site host
port : `int`, optional
port number for NDS server query, must be given with `host`
verify : `bool`, optional, default: `True`
check channels exist in database before asking for data
connection : `nds2.connection`
open NDS connection to use
verbose : `bool`, optional
print verbose output about NDS progress
type : `int`, optional
NDS2 channel type integer
dtype : `type`, `numpy.dtype`, `str`, optional
identifier for desired output data type | 5.071735 | 9.261074 | 0.54764 |
new = cls.DictClass.get([channel], start, end, **kwargs)[channel]
if bits:
new.bits = bits
return new | def get(cls, channel, start, end, bits=None, **kwargs) | Get data for this channel from frames or NDS
Parameters
----------
channel : `str`, `~gwpy.detector.Channel`
the name of the channel to read, or a `Channel` object.
start : `~gwpy.time.LIGOTimeGPS`, `float`, `str`
GPS start time of required data,
any input parseable by `~gwpy.time.to_gps` is fine
end : `~gwpy.time.LIGOTimeGPS`, `float`, `str`
GPS end time of required data,
any input parseable by `~gwpy.time.to_gps` is fine
bits : `Bits`, `list`, optional
definition of bits for this `StateVector`
pad : `float`, optional
value with which to fill gaps in the source data, only used if
gap is not given, or ``gap='pad'`` is given
dtype : `numpy.dtype`, `str`, `type`, or `dict`
numeric data type for returned data, e.g. `numpy.float`, or
`dict` of (`channel`, `dtype`) pairs
nproc : `int`, optional, default: `1`
number of parallel processes to use, serial process by
default.
verbose : `bool`, optional
print verbose output about NDS progress.
**kwargs
other keyword arguments to pass to either
:meth:`.find` (for direct GWF file access) or
:meth:`.fetch` for remote NDS2 access
See Also
--------
StateVector.fetch
for grabbing data from a remote NDS2 server
StateVector.find
for discovering and reading data from local GWF files | 7.396625 | 21.463955 | 0.344607 |
if format == 'timeseries':
return super(StateVector, self).plot(**kwargs)
if format == 'segments':
from ..plot import Plot
kwargs.setdefault('xscale', 'auto-gps')
return Plot(*self.to_dqflags(bits=bits).values(),
projection='segments', **kwargs)
raise ValueError("'format' argument must be one of: 'timeseries' or "
"'segments'") | def plot(self, format='segments', bits=None, **kwargs) | Plot the data for this `StateVector`
Parameters
----------
format : `str`, optional, default: ``'segments'``
The type of plot to make, either 'segments' to plot the
SegmentList for each bit, or 'timeseries' to plot the raw
data for this `StateVector`
bits : `list`, optional
A list of bit indices or bit names, defaults to
`~StateVector.bits`. This argument is ignored if ``format`` is
not ``'segments'``
**kwargs
Other keyword arguments to be passed to either
`~gwpy.plot.SegmentAxes.plot` or
`~gwpy.plot.Axes.plot`, depending
on ``format``.
Returns
-------
plot : `~gwpy.plot.Plot`
output plot object
See Also
--------
matplotlib.pyplot.figure
for documentation of keyword arguments used to create the
figure
matplotlib.figure.Figure.add_subplot
for documentation of keyword arguments used to create the
axes
gwpy.plot.SegmentAxes.plot_flag
for documentation of keyword arguments used in rendering each
statevector flag. | 7.264461 | 7.315366 | 0.993041 |
rate1 = self.sample_rate.value
if isinstance(rate, units.Quantity):
rate2 = rate.value
else:
rate2 = float(rate)
# upsample
if (rate2 / rate1).is_integer():
raise NotImplementedError("StateVector upsampling has not "
"been implemented yet, sorry.")
# downsample
elif (rate1 / rate2).is_integer():
factor = int(rate1 / rate2)
# reshape incoming data to one column per new sample
newsize = int(self.size / factor)
old = self.value.reshape((newsize, self.size // newsize))
# work out number of bits
if self.bits:
nbits = len(self.bits)
else:
max_ = self.value.max()
nbits = int(ceil(log(max_, 2))) if max_ else 1
bits = range(nbits)
# construct an iterator over the columns of the old array
itr = numpy.nditer(
[old, None],
flags=['external_loop', 'reduce_ok'],
op_axes=[None, [0, -1]],
op_flags=[['readonly'], ['readwrite', 'allocate']])
dtype = self.dtype
type_ = self.dtype.type
# for each new sample, each bit is logical AND of old samples
# bit is ON,
for x, y in itr:
y[...] = numpy.sum([type_((x >> bit & 1).all() * (2 ** bit))
for bit in bits], dtype=self.dtype)
new = StateVector(itr.operands[1], dtype=dtype)
new.__metadata_finalize__(self)
new._unit = self.unit
new.sample_rate = rate2
return new
# error for non-integer resampling factors
elif rate1 < rate2:
raise ValueError("New sample rate must be multiple of input "
"series rate if upsampling a StateVector")
else:
raise ValueError("New sample rate must be divisor of input "
"series rate if downsampling a StateVector") | def resample(self, rate) | Resample this `StateVector` to a new rate
Because of the nature of a state-vector, downsampling is done
by taking the logical 'and' of all original samples in each new
sampling interval, while upsampling is achieved by repeating
samples.
Parameters
----------
rate : `float`
rate to which to resample this `StateVector`, must be a
divisor of the original sample rate (when downsampling)
or a multiple of the original (when upsampling).
Returns
-------
vector : `StateVector`
resampled version of the input `StateVector` | 4.932497 | 4.650179 | 1.060711 |
# pylint: disable=redefined-builtin
def combiner(listofseglists):
out = cls(seg for seglist in listofseglists for seg in seglist)
if coalesce:
return out.coalesce()
return out
return io_read_multi(combiner, cls, source, format=format, **kwargs) | def read(cls, source, format=None, coalesce=False, **kwargs) | Read segments from file into a `SegmentList`
Parameters
----------
filename : `str`
path of file to read
format : `str`, optional
source format identifier. If not given, the format will be
detected if possible. See below for list of acceptable
formats.
coalesce : `bool`, optional
if `True` coalesce the segment list before returning,
otherwise return exactly as contained in file(s).
**kwargs
other keyword arguments depend on the format, see the online
documentation for details (:ref:`gwpy-segments-io`)
Returns
-------
segmentlist : `SegmentList`
`SegmentList` active and known segments read from file.
Notes
----- | 5.322148 | 7.039732 | 0.756016 |
return io_registry.write(self, target, *args, **kwargs) | def write(self, target, *args, **kwargs) | Write this `SegmentList` to a file
Arguments and keywords depend on the output format, see the
online documentation for full details for each format.
Parameters
----------
target : `str`
output filename
Notes
----- | 6.673969 | 13.615602 | 0.490171 |
return EventTable.read(source, 'waveburst', *args, format='root', **kwargs) | def table_from_cwb(source, *args, **kwargs) | Read an `EventTable` from a Coherent WaveBurst ROOT file
This function just redirects to the format='root' reader with appropriate
defaults. | 21.447979 | 8.365699 | 2.5638 |
re_name_def = re.compile(
r'^\s*#\s+' # whitespace and comment marker
r'(?P<colnumber>[0-9]+)\s+-\s+' # number of column
r'(?P<colname>(.*))'
)
self.names = []
include_cuts = False
for line in lines:
if not line: # ignore empty lines in header (windows)
continue
if not line.startswith('# '): # end of header lines
break
if line.startswith('# -/+'):
include_cuts = True
else:
match = re_name_def.search(line)
if match:
self.names.append(match.group('colname').rstrip())
if not self.names:
raise core.InconsistentTableError(
'No column names found in cWB header')
if include_cuts:
self.cols = [ # pylint: disable=attribute-defined-outside-init
core.Column(name='selection cut 1'),
core.Column(name='selection cut 2'),
]
else:
self.cols = [] # pylint: disable=attribute-defined-outside-init
for name in self.names:
col = core.Column(name=name)
self.cols.append(col) | def get_cols(self, lines) | Initialize Column objects from a multi-line ASCII header
Parameters
----------
lines : `list`
List of table lines | 3.465862 | 3.474288 | 0.997575 |
if name is None:
name = get_backend()
backend_name = (name[9:] if name.startswith("module://") else
"matplotlib.backends.backend_{}".format(name.lower()))
return importlib.import_module(backend_name) | def get_backend_mod(name=None) | Returns the imported module for the given backend name
Parameters
----------
name : `str`, optional
the name of the backend, defaults to the current backend.
Returns
-------
backend_mod: `module`
the module as returned by :func:`importlib.import_module`
Examples
--------
>>> from gwpy.plot.plot import get_backend_mod
>>> print(get_backend_mod('agg'))
<module 'matplotlib.backends.backend_agg' from ... > | 4.018173 | 4.163994 | 0.964981 |
# determine auto-separation
if separate is None and inputs:
# if given a nested list of data, multiple axes are required
if any(isinstance(x, iterable_types + (dict,)) for x in inputs):
separate = True
# if data are of different types, default to separate
elif not all(type(x) is type(inputs[0]) for x in inputs): # noqa: E721
separate = True
# build list of lists
out = []
for x in inputs:
if isinstance(x, dict): # unwrap dict
x = list(x.values())
# new group from iterable, notes:
# the iterable is presumed to be a list of independent data
# structures, unless its a list of scalars in which case we
# should plot them all as one
if (
isinstance(x, (KeysView, ValuesView)) or
isinstance(x, (list, tuple)) and (
not x or not numpy.isscalar(x[0]))
):
out.append(x)
# dataset starts a new group
elif separate or not out:
out.append([x])
# dataset joins current group
else: # append input to most recent group
out[-1].append(x)
if flat:
return [s for group in out for s in group]
return out | def _group_axes_data(inputs, separate=None, flat=False) | Determine the number of axes from the input args to this `Plot`
Parameters
----------
inputs : `list` of array-like data sets
A list of data arrays, or a list of lists of data sets
sep : `bool`, optional
Plot each set of data on a separate `Axes`
flat : `bool`, optional
Return a flattened list of data objects
Returns
-------
axesdata : `list` of lists of array-like data
A `list` with one element per required `Axes` containing the
array-like data sets for those `Axes`, unless ``flat=True``
is given.
Notes
-----
The logic for this method is as follows:
- if a `list` of data arrays are given, and `separate=False`, use 1 `Axes`
- if a `list` of data arrays are given, and `separate=True`, use N `Axes,
one for each data array
- if a nested `list` of data arrays are given, ignore `sep` and
use one `Axes` for each group of arrays.
Examples
--------
>>> from gwpy.plot import Plot
>>> Plot._group_axes_data([1, 2], separate=False)
[[1, 2]]
>>> Plot._group_axes_data([1, 2], separate=True)
[[1], [2]]
>>> Plot._group_axes_data([[1, 2], 3])
[[1, 2], [3]] | 5.49665 | 5.788068 | 0.949652 |
if isinstance(sharex, bool):
sharex = "all" if sharex else "none"
if isinstance(sharey, bool):
sharey = "all" if sharey else "none"
# parse keywords
axes_kw = {key: kwargs.pop(key) for key in utils.AXES_PARAMS if
key in kwargs}
# handle geometry and group axes
if geometry is not None and geometry[0] * geometry[1] == len(data):
separate = True
axes_groups = _group_axes_data(data, separate=separate)
if geometry is None:
geometry = (len(axes_groups), 1)
nrows, ncols = geometry
if axes_groups and nrows * ncols != len(axes_groups):
# mismatching data and geometry
raise ValueError("cannot group data into {0} axes with a "
"{1}x{2} grid".format(len(axes_groups), nrows,
ncols))
# create grid spec
gs = GridSpec(nrows, ncols)
axarr = numpy.empty((nrows, ncols), dtype=object)
# set default labels
defxlabel = 'xlabel' not in axes_kw
defylabel = 'ylabel' not in axes_kw
flatdata = [s for group in axes_groups for s in group]
for axis in ('x', 'y'):
unit = _common_axis_unit(flatdata, axis=axis)
if unit:
axes_kw.setdefault('{}label'.format(axis),
unit.to_string('latex_inline_dimensional'))
# create axes for each group and draw each data object
for group, (row, col) in zip_longest(
axes_groups, itertools.product(range(nrows), range(ncols)),
fillvalue=[]):
# create Axes
shared_with = {"none": None, "all": axarr[0, 0],
"row": axarr[row, 0], "col": axarr[0, col]}
axes_kw["sharex"] = shared_with[sharex]
axes_kw["sharey"] = shared_with[sharey]
axes_kw['xscale'] = xscale if xscale else _parse_xscale(group)
ax = axarr[row, col] = self.add_subplot(gs[row, col], **axes_kw)
# plot data
plot_func = getattr(ax, method)
if method in ('imshow', 'pcolormesh'):
for obj in group:
plot_func(obj, **kwargs)
elif group:
plot_func(*group, **kwargs)
# set default axis labels
for axis, share, pos, n, def_ in (
(ax.xaxis, sharex, row, nrows, defxlabel),
(ax.yaxis, sharey, col, ncols, defylabel),
):
# hide label if shared axis and not bottom left panel
if share == 'all' and pos < n - 1:
axis.set_label_text('')
# otherwise set default status
else:
axis.isDefault_label = def_
return self.axes | def _init_axes(self, data, method='plot',
xscale=None, sharex=False, sharey=False,
geometry=None, separate=None, **kwargs) | Populate this figure with data, creating `Axes` as necessary | 3.266866 | 3.274303 | 0.997729 |
for cbar in self.colorbars:
cbar.draw_all()
self.canvas.draw() | def refresh(self) | Refresh the current figure | 6.366663 | 4.910529 | 1.296533 |
# this method tries to reproduce the functionality of pyplot.show,
# mainly for user convenience. However, as of matplotlib-3.0.0,
# pyplot.show() ends up calling _back_ to Plot.show(),
# so we have to be careful not to end up in a recursive loop
#
# Developer note: if we ever make it pinning to matplotlib >=3.0.0
# this method can likely be completely removed
#
import inspect
try:
callframe = inspect.currentframe().f_back
except AttributeError:
pass
else:
if 'matplotlib' in callframe.f_code.co_filename:
block = False
# render
super(Plot, self).show(warn=warn)
# don't block on ipython with interactive backends
if block is None and interactive_backend():
block = not IPYTHON
# block in GUI loop (stolen from mpl.backend_bases._Backend.show)
if block:
backend_mod = get_backend_mod()
try:
backend_mod.Show().mainloop()
except AttributeError: # matplotlib < 2.1.0
backend_mod.show.mainloop() | def show(self, block=None, warn=True) | Display the current figure (if possible).
If blocking, this method replicates the behaviour of
:func:`matplotlib.pyplot.show()`, otherwise it just calls up to
:meth:`~matplotlib.figure.Figure.show`.
This method also supports repeatedly showing the same figure, even
after closing the display window, which isn't supported by
`pyplot.show` (AFAIK).
Parameters
----------
block : `bool`, optional
open the figure and block until the figure is closed, otherwise
open the figure as a detached window, default: `None`.
If `None`, block if using an interactive backend and _not_
inside IPython.
warn : `bool`, optional
print a warning if matplotlib is not running in an interactive
backend and cannot display the figure, default: `True`. | 6.860847 | 6.612388 | 1.037575 |
from matplotlib.pyplot import close
for ax in self.axes[::-1]:
# avoid matplotlib/matplotlib#9970
ax.set_xscale('linear')
ax.set_yscale('linear')
# clear the axes
ax.cla()
# close the figure
close(self) | def close(self) | Close the plot and release its memory. | 5.326178 | 4.73083 | 1.125844 |
if projection is None:
return self.axes
return [ax for ax in self.axes if ax.name == projection.lower()] | def get_axes(self, projection=None) | Find all `Axes`, optionally matching the given projection
Parameters
----------
projection : `str`
name of axes types to return
Returns
-------
axlist : `list` of `~matplotlib.axes.Axes` | 3.856565 | 4.624803 | 0.833887 |
# pre-process kwargs
mappable, kwargs = gcbar.process_colorbar_kwargs(
self, mappable, ax, cax=cax, fraction=fraction, **kwargs)
# generate colour bar
cbar = super(Plot, self).colorbar(mappable, **kwargs)
self.colorbars.append(cbar)
if label: # mpl<1.3 doesn't accept label in Colorbar constructor
cbar.set_label(label)
# update mappables for this axis
if emit:
ax = kwargs.pop('ax')
norm = mappable.norm
cmap = mappable.get_cmap()
for map_ in ax.collections + ax.images:
map_.set_norm(norm)
map_.set_cmap(cmap)
return cbar | def colorbar(self, mappable=None, cax=None, ax=None, fraction=0.,
label=None, emit=True, **kwargs) | Add a colorbar to the current `Plot`
A colorbar must be associated with an `Axes` on this `Plot`,
and an existing mappable element (e.g. an image).
Parameters
----------
mappable : matplotlib data collection
Collection against which to map the colouring
cax : `~matplotlib.axes.Axes`
Axes on which to draw colorbar
ax : `~matplotlib.axes.Axes`
Axes relative to which to position colorbar
fraction : `float`, optional
Fraction of original axes to use for colorbar, give `fraction=0`
to not resize the original axes at all.
emit : `bool`, optional
If `True` update all mappables on `Axes` to match the same
colouring as the colorbar.
**kwargs
other keyword arguments to be passed to the
:meth:`~matplotlib.figure.Figure.colorbar`
Returns
-------
cbar : `~matplotlib.colorbar.Colorbar`
the newly added `Colorbar`
See Also
--------
matplotlib.figure.Figure.colorbar
matplotlib.colorbar.Colorbar
Examples
--------
>>> import numpy
>>> from gwpy.plot import Plot
To plot a simple image and add a colorbar:
>>> plot = Plot()
>>> ax = plot.gca()
>>> ax.imshow(numpy.random.randn(120).reshape((10, 12)))
>>> plot.colorbar(label='Value')
>>> plot.show()
Colorbars can also be generated by directly referencing the parent
axes:
>>> Plot = Plot()
>>> ax = plot.gca()
>>> ax.imshow(numpy.random.randn(120).reshape((10, 12)))
>>> ax.colorbar(label='Value')
>>> plot.show() | 4.24789 | 4.954125 | 0.857445 |
warnings.warn(
"{0}.add_colorbar was renamed {0}.colorbar, this warnings will "
"result in an error in the future".format(type(self).__name__),
DeprecationWarning)
return self.colorbar(*args, **kwargs) | def add_colorbar(self, *args, **kwargs) | DEPRECATED, use `Plot.colorbar` instead | 5.392192 | 4.659177 | 1.157327 |
# get axes to anchor against
if not ax:
ax = self.gca()
# set options for new axes
axes_kw = {
'pad': pad,
'add_to_figure': True,
'sharex': ax if sharex is True else sharex or None,
'axes_class': get_projection_class('segments'),
}
# map X-axis limit from old axes
if axes_kw['sharex'] is ax and not ax.get_autoscalex_on():
axes_kw['xlim'] = ax.get_xlim()
# if axes uses GPS scaling, copy the epoch as well
try:
axes_kw['epoch'] = ax.get_epoch()
except AttributeError:
pass
# add new axes
if ax.get_axes_locator():
divider = ax.get_axes_locator()._axes_divider
else:
from mpl_toolkits.axes_grid1 import make_axes_locatable
divider = make_axes_locatable(ax)
if location not in {'top', 'bottom'}:
raise ValueError("Segments can only be positoned at 'top' or "
"'bottom'.")
segax = divider.append_axes(location, height, **axes_kw)
# update anchor axes
if axes_kw['sharex'] is ax and location == 'bottom':
# map label
segax.set_xlabel(ax.get_xlabel())
segax.xaxis.isDefault_label = ax.xaxis.isDefault_label
ax.set_xlabel("")
# hide ticks on original axes
setp(ax.get_xticklabels(), visible=False)
# plot segments
segax.plot(segments, **plotargs)
segax.grid(b=False, which='both', axis='y')
segax.autoscale(axis='y', tight=True)
return segax | def add_segments_bar(self, segments, ax=None, height=0.14, pad=0.1,
sharex=True, location='bottom', **plotargs) | Add a segment bar `Plot` indicating state information.
By default, segments are displayed in a thin horizontal set of Axes
sitting immediately below the x-axis of the main,
similarly to a colorbar.
Parameters
----------
segments : `~gwpy.segments.DataQualityFlag`
A data-quality flag, or `SegmentList` denoting state segments
about this Plot
ax : `Axes`, optional
Specific `Axes` relative to which to position new `Axes`,
defaults to :func:`~matplotlib.pyplot.gca()`
height : `float, `optional
Height of the new axes, as a fraction of the anchor axes
pad : `float`, optional
Padding between the new axes and the anchor, as a fraction of
the anchor axes dimension
sharex : `True`, `~matplotlib.axes.Axes`, optional
Either `True` to set ``sharex=ax`` for the new segment axes,
or an `Axes` to use directly
location : `str`, optional
Location for new segment axes, defaults to ``'bottom'``,
acceptable values are ``'top'`` or ``'bottom'``.
**plotargs
extra keyword arguments are passed to
:meth:`~gwpy.plot.SegmentAxes.plot` | 4.249253 | 3.977894 | 1.068217 |
warnings.warn('add_state_segments() was renamed add_segments_bar(), '
'this warning will result in an error in the future',
DeprecationWarning)
return self.add_segments_bar(*args, **kwargs) | def add_state_segments(self, *args, **kwargs) | DEPRECATED: use :meth:`Plot.add_segments_bar` | 5.344138 | 3.927795 | 1.360595 |
# connect if needed
if connection is None:
if gps is None:
gps = from_gps('now')
if db is None:
db = get_database_names(gps, gps)[0]
connection = connect(db=db, **conectkwargs)
# query
out = query("select channel from job where monitorName = 'chacr'")
return [r[0] for r in out] | def get_hacr_channels(db=None, gps=None, connection=None,
**conectkwargs) | Return the names of all channels present in the given HACR database | 6.186802 | 5.903428 | 1.048002 |
if columns is None:
columns = HACR_COLUMNS
columns = list(columns)
span = Segment(*map(to_gps, (start, end)))
# parse selection for SQL query (removing leading 'where ')
selectionstr = 'and %s' % format_db_selection(selection, engine=None)[6:]
# get database names and loop over each on
databases = get_database_names(start, end)
rows = []
for db in databases:
conn = connect(db, **connectkwargs)
cursor = conn.cursor()
# find process ID(s) for this channel
pids = query("select process_id, gps_start, gps_stop "
"from job where monitorName = %r and channel = %r"
% (monitor, str(channel)), connection=conn)
for p, s, e in pids:
# validate this process id
if pid is not None and int(p) != int(pid):
continue
tspan = Segment(float(s), float(e))
if not tspan.intersects(span):
continue
# execute trigger query
q = ('select %s from mhacr where process_id = %d and '
'gps_start > %s and gps_start < %d %s order by gps_start asc'
% (', '.join(columns), int(p), span[0], span[1],
selectionstr))
n = cursor.execute(q)
if n == 0:
continue
# get new events, convert to recarray, and append to table
rows.extend(cursor.fetchall())
return EventTable(rows=rows, names=columns) | def get_hacr_triggers(channel, start, end, columns=HACR_COLUMNS, pid=None,
monitor='chacr', selection=None, **connectkwargs) | Fetch a table of HACR triggers in the given interval | 4.75491 | 4.778098 | 0.995147 |
try:
import pymysql
except ImportError as e:
e.args = ('pymysql is required to fetch HACR triggers',)
raise
return pymysql.connect(host=host, user=user, passwd=passwd, db=db) | def connect(db, host=HACR_DATABASE_SERVER, user=HACR_DATABASE_USER,
passwd=HACR_DATABASE_PASSWD) | Connect to the given SQL database | 3.58639 | 3.807062 | 0.942036 |
if connection is None:
connection = connect(**connectkwargs)
cursor = connection.cursor()
cursor.execute(querystr)
return cursor.fetchall() | def query(querystr, connection=None, **connectkwargs) | Execute a query of the given SQL database | 2.200898 | 2.220838 | 0.991022 |
if not analog:
if not sample_rate:
raise ValueError("Must give sample_rate frequency to display "
"digital (analog=False) filter")
sample_rate = Quantity(sample_rate, 'Hz').value
dt = 2 * pi / sample_rate
if not isinstance(frequencies, (type(None), int)):
frequencies = numpy.atleast_1d(frequencies).copy()
frequencies *= dt
# parse filter (without digital conversions)
_, fcomp = parse_filter(filter_, analog=False)
if analog:
lti = signal.lti(*fcomp)
else:
lti = signal.dlti(*fcomp, dt=dt)
# calculate frequency response
w, mag, phase = lti.bode(w=frequencies)
# convert from decibels
if not dB:
mag = 10 ** (mag / 10.)
# draw
mline = self.maxes.plot(w, mag, **kwargs)[0]
pline = self.paxes.plot(w, phase, **kwargs)[0]
return mline, pline | def add_filter(self, filter_, frequencies=None, dB=True,
analog=False, sample_rate=None, **kwargs) | Add a linear time-invariant filter to this BodePlot
Parameters
----------
filter_ : `~scipy.signal.lti`, `tuple`
the filter to plot, either as a `~scipy.signal.lti`, or a
`tuple` with the following number and meaning of elements
- 2: (numerator, denominator)
- 3: (zeros, poles, gain)
- 4: (A, B, C, D)
frequencies : `numpy.ndarray`, optional
list of frequencies (in Hertz) at which to plot
dB : `bool`, optional
if `True`, display magnitude in decibels, otherwise display
amplitude, default: `True`
**kwargs
any other keyword arguments accepted by
:meth:`~matplotlib.axes.Axes.plot`
Returns
-------
mag, phase : `tuple` of `lines <matplotlib.lines.Line2D>`
the lines drawn for the magnitude and phase of the filter. | 4.682327 | 4.188264 | 1.117964 |
# parse spectrum arguments
kwargs.setdefault('label', spectrum.name)
# get magnitude
mag = numpy.absolute(spectrum.value)
if dB:
mag = to_db(mag)
if not power:
mag *= 2.
# get phase
phase = numpy.angle(spectrum.value, deg=True)
# plot
w = spectrum.frequencies.value
mline = self.maxes.plot(w, mag, **kwargs)[0]
pline = self.paxes.plot(w, phase, **kwargs)[0]
return mline, pline | def add_frequencyseries(self, spectrum, dB=True, power=False, **kwargs) | Plot the magnitude and phase of a complex-valued `FrequencySeries`
Parameters
----------
spectrum : `~gwpy.frequencyseries.FrequencySeries`
the (complex-valued) `FrequencySeries` to display
db : `bool`, optional, default: `True`
if `True`, display magnitude in decibels, otherwise display
amplitude.
power : `bool`, optional, default: `False`
give `True` to incidate that ``spectrum`` holds power values,
so ``dB = 10 * log(abs(spectrum))``, otherwise
``db = 20 * log(abs(spectrum))``. This argument is ignored if
``db=False``.
**kwargs
any other keyword arguments accepted by
:meth:`~matplotlib.axes.Axes.plot`
Returns
-------
mag, phase : `tuple` of `lines <matplotlib.lines.Line2D>`
the lines drawn for the magnitude and phase of the filter. | 4.033703 | 3.680231 | 1.096046 |
out = ChannelList()
append = out.append
if isinstance(source, FILE_LIKE):
close = False
else:
source = open(source, 'r')
close = True
try:
section = None
while True:
try:
line = next(source)
except StopIteration:
break
if line == '' or line == '\n' or line.startswith('#'):
continue
elif line.startswith('['):
section = line[1:-2]
elif line.startswith('{'):
append(parse_omega_channel(source, section))
else:
raise RuntimeError("Failed to parse Omega config line:\n%s"
% line)
finally:
if close:
source.close()
return out | def read_omega_scan_config(source) | Parse an Omega-scan configuration file into a `ChannelList`
Parameters
----------
source : `str`
path of Omega configuration file to parse
Returns
-------
channels : `ChannelList`
the list of channels (in order) as parsed
Raises
------
RuntimeError
if this method finds a line it cannot parse sensibly | 3.090671 | 3.232265 | 0.956194 |
params = OrderedDict()
while True:
line = next(fobj)
if line == '}\n':
break
key, value = line.split(':', 1)
params[key.strip().rstrip()] = omega_param(value)
out = Channel(params.get('channelName'),
sample_rate=params.get('sampleFrequency'),
frametype=params.get('frameType'),
frequency_range=params.get('searchFrequencyRange'))
out.group = section
out.params = params
return out | def parse_omega_channel(fobj, section=None) | Parse a `Channel` from an Omega-scan configuration file
Parameters
----------
fobj : `file`
the open file-like object to parse
section : `str`
name of section in which this channel should be recorded
Returns
-------
channel : `Channel`
the channel as parsed from this `file` | 4.476224 | 5.127945 | 0.872908 |
val = val.strip().rstrip()
if val.startswith(('"', "'")):
return str(val[1:-1])
if val.startswith('['):
return tuple(map(float, val[1:-1].split()))
return float(val) | def omega_param(val) | Parse a value from an Omega-scan configuration file
This method tries to parse matlab-syntax parameters into a `str`,
`float`, or `tuple` | 3.868223 | 3.5919 | 1.07693 |
if isinstance(fobj, FILE_LIKE):
close = False
else:
fobj = open(fobj, 'w')
close = True
try:
# print header
if header:
print('# Q Scan configuration file', file=fobj)
print('# Generated with GWpy from a ChannelList', file=fobj)
group = None
for channel in channellist:
# print header
if channel.group != group:
group = channel.group
print('\n[%s]' % group, file=fobj)
print("", file=fobj)
print_omega_channel(channel, file=fobj)
finally:
if close:
fobj.close() | def write_omega_scan_config(channellist, fobj, header=True) | Write a `ChannelList` to an Omega-pipeline scan configuration file
This method is dumb and assumes the channels are sorted in the right
order already | 3.816325 | 3.781779 | 1.009135 |
print('{', file=file)
try:
params = channel.params.copy()
except AttributeError:
params = OrderedDict()
params.setdefault('channelName', str(channel))
params.setdefault('alwaysPlotFlag', int(params.pop('important', False)))
if channel.frametype:
params.setdefault('frameType', channel.frametype)
if channel.sample_rate is not None:
params.setdefault('sampleFrequency',
channel.sample_rate.to('Hz').value)
if channel.frequency_range is not None:
low, high = channel.frequency_range.to('Hz').value
params.setdefault('searchFrequencyRange', (low, high))
if 'qlow' in params or 'qhigh' in params:
qlow = params.pop('qlow', 'sqrt(11)')
qhigh = params.pop('qhigh', 64)
params.setdefault('searchQRange', (qlow, qhigh))
# write params
for key in ['channelName', 'frameType']:
if key not in params:
raise KeyError("No %r defined for %s" % (key, str(channel)))
for key, value in params.items():
key = '%s:' % str(key)
if isinstance(value, tuple):
value = '[%s]' % ' '.join(map(str, value))
elif isinstance(value, float) and value.is_integer():
value = int(value)
elif isinstance(value, str):
value = repr(value)
print(' {0: <30} {1}'.format(key, value), file=file)
print('}', file=file) | def print_omega_channel(channel, file=sys.stdout) | Print a `Channel` in Omega-pipeline scan format | 2.862173 | 2.832866 | 1.010345 |
if hasattr(channel, 'ndsname'): # gwpy.detector.Channel
return channel.ndsname
if hasattr(channel, 'channel_type'): # nds2.channel
return '%s,%s' % (channel.name,
channel.channel_type_to_string(channel.channel_type))
return str(channel) | def _get_nds2_name(channel) | Returns the NDS2-formatted name for a channel
Understands how to format NDS name strings from
`gwpy.detector.Channel` and `nds2.channel` objects | 4.648852 | 3.117528 | 1.491198 |
hosts = []
for host in os.getenv(env).split(','):
try:
host, port = host.rsplit(':', 1)
except ValueError:
port = None
else:
port = int(port)
if (host, port) not in hosts:
hosts.append((host, port))
return hosts | def parse_nds_env(env='NDSSERVER') | Parse the NDSSERVER environment variable into a list of hosts
Parameters
----------
env : `str`, optional
environment variable name to use for server order,
default ``'NDSSERVER'``. The contents of this variable should
be a comma-separated list of `host:port` strings, e.g.
``'nds1.server.com:80,nds2.server.com:80'``
Returns
-------
hostiter : `list` of `tuple`
a list of (unique) ``(str, int)`` tuples for each host:port
pair | 2.345187 | 2.654043 | 0.883628 |
hosts = []
# if given environment variable exists, it will contain a
# comma-separated list of host:port strings giving the logical ordering
if env and os.getenv(env):
hosts = parse_nds_env(env)
# If that host fails, return the server for this IFO and the backup at CIT
if to_gps('now') - to_gps(epoch) > lookback:
ifolist = [None, ifo]
else:
ifolist = [ifo, None]
for difo in ifolist:
try:
host, port = DEFAULT_HOSTS[difo]
except KeyError:
# unknown default NDS2 host for detector, if we don't have
# hosts already defined (either by NDSSERVER or similar)
# we should warn the user
if not hosts:
warnings.warn('No default host found for ifo %r' % ifo)
else:
if (host, port) not in hosts:
hosts.append((host, port))
return list(hosts) | def host_resolution_order(ifo, env='NDSSERVER', epoch='now',
lookback=14*86400) | Generate a logical ordering of NDS (host, port) tuples for this IFO
Parameters
----------
ifo : `str`
prefix for IFO of interest
env : `str`, optional
environment variable name to use for server order,
default ``'NDSSERVER'``. The contents of this variable should
be a comma-separated list of `host:port` strings, e.g.
``'nds1.server.com:80,nds2.server.com:80'``
epoch : `~gwpy.time.LIGOTimeGPS`, `float`, `str`
GPS epoch of data requested
lookback : `float`
duration of spinning-disk cache. This value triggers defaulting to
the CIT NDS2 server over those at the LIGO sites
Returns
-------
hro : `list` of `2-tuples <tuple>`
ordered `list` of ``(host, port)`` tuples | 8.088875 | 7.247584 | 1.116079 |
import nds2
# pylint: disable=no-member
# set default port for NDS1 connections (required, I think)
if port is None and NDS1_HOSTNAME.match(host):
port = 8088
if port is None:
return nds2.connection(host)
return nds2.connection(host, port) | def connect(host, port=None) | Open an `nds2.connection` to a given host and port
Parameters
----------
host : `str`
name of server with which to connect
port : `int`, optional
connection port
Returns
-------
connection : `nds2.connection`
a new open connection to the given NDS host | 6.256545 | 6.198998 | 1.009283 |
try:
return connect(host, port)
except RuntimeError as exc:
if 'Request SASL authentication' not in str(exc):
raise
warnings.warn('Error authenticating against {0}:{1}'.format(host, port),
NDSWarning)
kinit()
return connect(host, port) | def auth_connect(host, port=None) | Open an `nds2.connection` handling simple authentication errors
This method will catch exceptions related to kerberos authentication,
and execute a kinit() for the user before attempting to connect again.
Parameters
----------
host : `str`
name of server with which to connect
port : `int`, optional
connection port
Returns
-------
connection : `nds2.connection`
a new open connection to the given NDS host | 6.196336 | 5.185379 | 1.194963 |
@wraps(func)
def wrapped_func(*args, **kwargs): # pylint: disable=missing-docstring
if kwargs.get('connection', None) is None:
try:
host = kwargs.pop('host')
except KeyError:
raise TypeError("one of `connection` or `host` is required "
"to query NDS2 server")
kwargs['connection'] = auth_connect(host, kwargs.pop('port', None))
return func(*args, **kwargs)
return wrapped_func | def open_connection(func) | Decorate a function to create a `nds2.connection` if required | 3.400743 | 2.972252 | 1.144163 |
@wraps(func)
def wrapped_func(*args, **kwargs): # pylint: disable=missing-docstring
for kwd, enum_ in (('type', Nds2ChannelType),
('dtype', Nds2DataType)):
if kwargs.get(kwd, None) is None:
kwargs[kwd] = enum_.any()
elif not isinstance(kwargs[kwd], int):
kwargs[kwd] = enum_.find(kwargs[kwd]).value
return func(*args, **kwargs)
return wrapped_func | def parse_nds2_enums(func) | Decorate a function to translate a type string into an integer | 3.103806 | 3.089409 | 1.00466 |
@wraps(func)
def wrapped_func(*args, **kwargs): # pylint: disable=missing-docstring
connection = kwargs.get('connection', None)
epoch = connection.current_epoch() if connection else None
try:
return func(*args, **kwargs)
finally:
if epoch is not None:
connection.set_epoch(epoch.gps_start, epoch.gps_stop)
return wrapped_func | def reset_epoch(func) | Wrap a function to reset the epoch when finished
This is useful for functions that wish to use `connection.set_epoch`. | 2.863287 | 2.470685 | 1.158904 |
# pylint: disable=unused-argument,redefined-builtin
# set epoch
if not isinstance(epoch, tuple):
epoch = (epoch or 'All',)
connection.set_epoch(*epoch)
# format sample_rate as tuple for find_channels call
if isinstance(sample_rate, (int, float)):
sample_rate = (sample_rate, sample_rate)
elif sample_rate is None:
sample_rate = tuple()
# query for channels
out = []
for name in _get_nds2_names(channels):
out.extend(_find_channel(connection, name, type, dtype, sample_rate,
unique=unique))
return out | def find_channels(channels, connection=None, host=None, port=None,
sample_rate=None, type=Nds2ChannelType.any(),
dtype=Nds2DataType.any(), unique=False, epoch='ALL') | Query an NDS2 server for channel information
Parameters
----------
channels : `list` of `str`
list of channel names to query, each can include bash-style globs
connection : `nds2.connection`, optional
open NDS2 connection to use for query
host : `str`, optional
name of NDS2 server to query, required if ``connection`` is not
given
port : `int`, optional
port number on host to use for NDS2 connection
sample_rate : `int`, `float`, `tuple`, optional
a single number, representing a specific sample rate to match,
or a tuple representing a ``(low, high)` interval to match
type : `int`, optional
the NDS2 channel type to match
dtype : `int`, optional
the NDS2 data type to match
unique : `bool`, optional, default: `False`
require one (and only one) match per channel
epoch : `str`, `tuple` of `int`, optional
the NDS epoch to restrict to, either the name of a known epoch,
or a 2-tuple of GPS ``[start, stop)`` times
Returns
-------
channels : `list` of `nds2.channel`
list of NDS2 channel objects
See also
--------
nds2.connection.find_channels
for documentation on the underlying query method
Examples
--------
>>> from gwpy.io.nds2 import find_channels
>>> find_channels(['G1:DER_DATA_H'], host='nds.ligo.caltech.edu')
[<G1:DER_DATA_H (16384Hz, RDS, FLOAT64)>] | 3.512577 | 4.673117 | 0.751656 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.