code
string | signature
string | docstring
string | loss_without_docstring
float64 | loss_with_docstring
float64 | factor
float64 |
---|---|---|---|---|---|
hlog_obj = lambda y, x, b, r, d: hlog_inv(y, b, r, d) - x
find_inv = vectorize(lambda x: brentq(hlog_obj, -2 * r, 2 * r,
args=(x, b, r, d)))
return find_inv | def _make_hlog_numeric(b, r, d) | Return a function that numerically computes the hlog transformation for given parameter values. | 4.733253 | 4.378752 | 1.080959 |
hlog_fun = _make_hlog_numeric(b, r, d)
if not hasattr(x, '__len__'): # if transforming a single number
y = hlog_fun(x)
else:
n = len(x)
if not n: # if transforming empty container
return x
else:
y = hlog_fun(x)
return y | def hlog(x, b=500, r=_display_max, d=_l_mmax) | Base 10 hyperlog transform.
Parameters
----------
x : num | num iterable
values to be transformed.
b : num
Parameter controling the location of the shift
from linear to log transformation.
r : num (default = 10**4)
maximal transformed value.
d : num (default = log10(2**18))
log10 of maximal possible measured value.
hlog_inv(r) = 10**d
Returns
-------
Array of transformed values. | 3.788109 | 4.183691 | 0.905447 |
if hasattr(transform, '__call__'):
tfun = transform
tname = None
elif hasattr(transform, 'lower'):
tname = _get_canonical_name(transform)
if tname is None:
raise ValueError('Unknown transform: %s' % transform)
else:
tfun = name_transforms[tname][direction]
else:
raise TypeError('Unsupported transform type: %s' % type(transform))
return tfun, tname | def parse_transform(transform, direction='forward') | direction : 'forward' | 'inverse' | 3.0711 | 3.001133 | 1.023313 |
tfun, tname = parse_transform(transform, direction)
columns = to_list(columns)
if columns is None:
columns = frame.columns
if return_all:
transformed = frame.copy()
for c in columns:
transformed[c] = tfun(frame[c], *args, **kwargs)
else:
transformed = frame.filter(columns).apply(tfun, *args, **kwargs)
return transformed | def transform_frame(frame, transform, columns=None, direction='forward',
return_all=True, args=(), **kwargs) | Apply transform to specified columns.
direction: 'forward' | 'inverse'
return_all: bool
True - return all columns, with specified ones transformed.
False - return only specified columns.
.. warning:: deprecated | 2.754071 | 2.960612 | 0.930237 |
x = asarray(x, dtype=float)
if use_spln:
if self.spln is None:
self.set_spline(x.min(), x.max(), **kwargs)
return apply_along_axis(self.spln, 0, x)
else:
return self.tfun(x, *self.args, **self.kwargs) | def transform(self, x, use_spln=False, **kwargs) | Apply transform to x
Parameters
----------
x : float-array-convertible
Data to be transformed.
Should support conversion to an array of floats.
use_spln: bool
True - transform using the spline specified in self.slpn.
If self.spln is None, set the spline.
False - transform using self.tfun
kwargs:
Keyword arguments to be passed to self.set_spline.
Only used if use_spln=True & self.spln=None.
Returns
-------
Array of transformed values. | 3.121245 | 2.758626 | 1.131449 |
base_command = 'python setup.py register'
if server == 'pypitest':
command = base_command + ' -r https://testpypi.python.org/pypi'
else:
command = base_command
_execute_setup_command(command) | def pypi_register(server='pypitest') | Register and prep user for PyPi upload.
.. note:: May need to weak ~/.pypirc file per issue:
http://stackoverflow.com/questions/1569315 | 3.076929 | 3.929091 | 0.783115 |
if isinstance(var, (list, tuple)):
new_var = map(lambda x: apply_format(x, format_str), var)
if isinstance(var, tuple):
new_var = '(' + ', '.join(new_var) + ')'
elif isinstance(var, list):
new_var = '[' + ', '.join(new_var) + ']'
return '{}'.format(new_var)
else:
return format_str.format(var) | def apply_format(var, format_str) | Format all non-iterables inside of the iterable var using the format_str
Example:
>>> print apply_format([2, [1, 4], 4, 1], '{:.1f}')
will return ['2.0', ['1.0', '4.0'], '4.0', '1.0'] | 1.93749 | 1.993733 | 0.97179 |
if len(target_channels) != len(set(target_channels)):
raise Exception('Spawn channels must be unique')
return source_channels.issubset(
set(target_channels)) | def _check_spawnable(source_channels, target_channels) | Check whether gate is spawnable on the target channels. | 4.773906 | 4.27902 | 1.115654 |
if event.key is None: return
key = event.key.encode('ascii', 'ignore')
if key in ['1']:
toolbar.create_gate_widget(kind='poly')
elif key in ['2', '3', '4']:
kind = {'2': 'quad', '3': 'horizontal threshold', '4': 'vertical threshold'}[key]
toolbar.create_gate_widget(kind=kind)
elif key in ['9']:
toolbar.remove_active_gate()
elif key in ['0']:
toolbar.load_fcs()
elif key in ['a']:
toolbar.set_axes(('d1', 'd2'), pl.gca())
elif key in ['b']:
toolbar.set_axes(('d2', 'd1'), pl.gca())
elif key in ['c']:
toolbar.set_axes(('d1', 'd3'), pl.gca())
elif key in ['8']:
print(toolbar.get_generation_code()) | def key_press_handler(event, canvas, toolbar=None) | Handles keyboard shortcuts for the FCToolbar. | 3.563233 | 3.43984 | 1.035872 |
if func is None: return
func_list = to_list(func)
if not hasattr(self, 'callback_list'):
self.callback_list = func_list
else:
self.callback_list.extend(func_list) | def add_callback(self, func) | Registers a call back function | 2.959669 | 2.89706 | 1.021611 |
source_channels = set(self.coordinates.keys())
is_spawnable = _check_spawnable(source_channels, target_channels)
if not is_spawnable:
return None
if len(target_channels) == 1:
verts = self.coordinates.get(target_channels[0], None), None
else:
verts = tuple([self.coordinates.get(ch, None) for ch in target_channels])
def _callback(event):
if event.type == Event.CHANGE:
svertex = event.info['caller']
ch = svertex.channels
coordinates = svertex.coordinates
new_coordinates = {k: v for k, v in zip(ch, coordinates)}
self.update_coordinates(new_coordinates)
elif event.type == Event.VERTEX_REMOVED:
svertex = event.info['caller']
self.spawn_list.remove(svertex)
else:
raise ValueError('Unrecognized event {}'.format(event))
spawned_vertex = SpawnableVertex(verts, ax, _callback)
spawned_vertex.channels = target_channels
if self.spawn_list is None:
self.spawn_list = []
self.spawn_list.append(spawned_vertex)
return spawned_vertex | def spawn(self, ax, target_channels) | 'd1' can be shown on ('d1', 'd2') or ('d1')
'd1', 'd2' can be shown only on ('d1', 'd2') or on ('d2', 'd1')
Parameters
--------------
This means that the channels on which the vertex
is defined has to be a subset of the channels
channels : names of channels on which to spawn
the vertex
Returns
-------------
spawnedvertex if successful otherwise None | 3.086178 | 3.020952 | 1.021591 |
for k, v in new_coordinates.items():
if k in self.coordinates:
self.coordinates[k] = v
for svertex in self.spawn_list:
verts = tuple([self.coordinates.get(ch, None) for ch in svertex.channels])
if len(svertex.channels) == 1: # This means a histogram
svertex.update_position(verts[0], None)
else:
svertex.update_position(verts[0], verts[1])
self.callback(Event(Event.BASE_GATE_CHANGED)) | def update_coordinates(self, new_coordinates) | new_coordinates : dict | 5.599655 | 5.437194 | 1.02988 |
verts = self.coordinates
if not self.tracky:
trans = self.ax.get_xaxis_transform(which='grid')
elif not self.trackx:
trans = self.ax.get_yaxis_transform(which='grid')
else:
trans = self.ax.transData
self.artist = pl.Line2D([verts[0]], [verts[1]], transform=trans, picker=15)
self.update_looks('inactive')
self.ax.add_artist(self.artist) | def create_artist(self) | decides whether the artist should be visible
or not in the current axis
current_axis : names of x, y axis | 4.633094 | 4.238941 | 1.092984 |
if hasattr(event, 'inaxes'):
if event.inaxes != self.ax:
return True
else:
return False | def ignore(self, event) | Ignores events. | 4.045356 | 4.440544 | 0.911005 |
if _check_spawnable(self.source_channels, channels):
sgate = self.gate_type(self.verts, ax, channels)
self.spawn_list.append(sgate)
return sgate
else:
return None | def spawn(self, channels, ax) | Spawns a graphical gate that can be used to update the coordinates of the current gate. | 7.618731 | 6.835893 | 1.114519 |
if spawn_gate is None:
for sg in list(self.spawn_list):
self.spawn_list.remove(sg)
sg.remove()
else:
spawn_gate.remove()
self.spawn_list.remove(spawn_gate) | def remove_spawned_gates(self, spawn_gate=None) | Removes all spawned gates. | 2.388271 | 2.251531 | 1.060732 |
channels, verts = self.coordinates
channels = ', '.join(["'{}'".format(ch) for ch in channels])
verts = list(verts)
## Formatting the vertexes
# List level (must be first), used for gates that may have multiple vertexes like a polygon
if len(verts) == 1:
verts = verts[0]
# Tuple level (must be second), used for catching the number of dimensions
# on which a vertex is defined
if len(verts) == 1:
verts = verts[0]
# Format vertices to include less sigfigs
verts = apply_format(verts, '{:.3e}')
gencode.setdefault('name', self.name)
gencode.setdefault('region', self.region)
gencode.setdefault('gate_type', self._gencode_gate_class)
gencode.setdefault('verts', verts)
gencode.setdefault('channels', channels)
format_string = "{name} = {gate_type}({verts}, ({channels}), region='{region}', name='{name}')"
return format_string.format(**gencode) | def get_generation_code(self, **gencode) | Generates python code that can create the gate. | 6.018053 | 5.500548 | 1.094082 |
channels, verts = self.coordinates
num_channels = len(channels)
gate_type_name = self.gate_type.__name__
if gate_type_name == 'ThresholdGate' and num_channels == 2:
gate_type_name = 'QuadGate'
return gate_type_name | def _gencode_gate_class(self) | Returns the class name that generates this gate. | 4.722641 | 4.08863 | 1.155067 |
source_channels = [v.coordinates.keys() for v in self.verts]
return set(itertools.chain(*source_channels)) | def source_channels(self) | Returns a set describing the source channels on which the gate is defined. | 6.8473 | 5.61521 | 1.21942 |
if self.state == 'active':
style = {'color': 'red', 'linestyle': 'solid', 'fill': False}
else:
style = {'color': 'black', 'fill': False}
self.poly.update(style) | def update_looks(self) | Updates the looks of the gate depending on state. | 5.349315 | 4.325674 | 1.236643 |
if self.state == 'active':
style = {'color': 'red', 'linestyle': 'solid'}
else:
style = {'color': 'black'}
for artist in self.artist_list:
artist.update(style) | def update_looks(self) | Updates the looks of the gate depending on state. | 4.981852 | 4.58454 | 1.086663 |
info = {'options': self.get_available_channels(),
'guiEvent': event.mouseevent.guiEvent,
}
if hasattr(self, 'xlabel_artist') and (event.artist == self.xlabel_artist):
info['axis_num'] = 0
self.callback(Event('axis_click', info))
if hasattr(self, 'ylabel_artist') and (event.artist == self.ylabel_artist):
info['axis_num'] = 1
self.callback(Event('axis_click', info)) | def pick_event_handler(self, event) | Handles pick events | 4.208971 | 4.170857 | 1.009138 |
current_channels = list(self.current_channels)
if len(current_channels) == 1:
if axis_num == 0:
new_channels = channel_name,
else:
new_channels = current_channels[0], channel_name
else:
new_channels = list(current_channels)
new_channels[axis_num] = channel_name
self.set_axes(new_channels, self.ax) | def change_axis(self, axis_num, channel_name) | TODO: refactor that and set_axes
what to do with ax?
axis_num: int
axis number
channel_name: str
new channel to plot on that axis | 2.47906 | 2.408874 | 1.029136 |
# To make sure displayed as hist
if len(set(channels)) == 1:
channels = channels[0],
self.current_channels = channels
# Remove existing gates
for gate in self.gates:
gate.remove_spawned_gates()
##
# Has a clear axis command inside!!
# which will "force kill" spawned gates
self.plot_data()
for gate in self.gates:
sgate = gate.spawn(channels, ax)
gate._refresh_activation() | def set_axes(self, channels, ax) | channels : iterable of string
each value corresponds to a channel names
names must be unique | 13.881756 | 14.019745 | 0.990158 |
# Clear the plot before plotting onto it
self.ax.cla()
if self.sample is None:
return
if self.current_channels is None:
self.current_channels = self.sample.channel_names[:2]
channels = self.current_channels
channels_to_plot = channels[0] if len(channels) == 1 else channels
self.sample.plot(channels_to_plot, ax=self.ax)
xaxis = self.ax.get_xaxis()
yaxis = self.ax.get_yaxis()
self.xlabel_artist = xaxis.get_label()
self.ylabel_artist = yaxis.get_label()
self.xlabel_artist.set_picker(5)
self.ylabel_artist.set_picker(5)
self.fig.canvas.draw() | def plot_data(self) | Plots the loaded data | 2.739569 | 2.772728 | 0.988041 |
if len(self.gates) < 1:
code = ''
else:
import_list = set([gate._gencode_gate_class for gate in self.gates])
import_list = 'from FlowCytometryTools import ' + ', '.join(import_list)
code_list = [gate.get_generation_code() for gate in self.gates]
code_list.sort()
code_list = '\n'.join(code_list)
code = import_list + 2 * '\n' + code_list
self.callback(Event('generated_code',
{'code': code}))
return code | def get_generation_code(self) | Return python code that generates all drawn gates. | 4.077944 | 3.558744 | 1.145894 |
doc_dict = self.doc_dict.copy()
for k, v in doc_dict.items():
if '{' and '}' in v:
self.doc_dict[k] = v.format(**doc_dict) | def replace(self) | Reformat values inside the self.doc_dict using self.doc_dict
TODO: Make support for partial_formatting | 3.792273 | 2.683233 | 1.413322 |
if self.allow_partial_formatting:
mapping = FormatDict(self.doc_dict)
else:
mapping = self.doc_dict
formatter = string.Formatter()
return formatter.vformat(doc, (), mapping) | def _format(self, doc) | Formats the docstring using self.doc_dict | 5.589526 | 3.839787 | 1.455687 |
import wx.lib.agw.multidirdialog as MDD
app = wx.App(0)
dlg = MDD.MultiDirDialog(None, title="Select directories", defaultPath=os.getcwd(),
agwStyle=MDD.DD_MULTIPLE | MDD.DD_DIR_MUST_EXIST)
if dlg.ShowModal() != wx.ID_OK:
dlg.Destroy()
return
paths = dlg.GetPaths()
dlg.Destroy()
app.MainLoop()
return paths | def select_multi_directory_dialog() | Opens a directory selection dialog
Style - specifies style of dialog (read wx documentation for information) | 2.329451 | 2.563624 | 0.908655 |
app = wx.App(None)
if style == None:
style = wx.DD_DIR_MUST_EXIST
dialog = wx.DirDialog(None, windowTitle, defaultPath=defaultPath, style=style)
if dialog.ShowModal() == wx.ID_OK:
path = dialog.GetPath()
else:
path = None
dialog.Destroy()
return path | def select_directory_dialog(windowTitle, defaultPath=os.getcwd(), style=None) | Opens a directory selection dialog
Style - specifies style of dialog (read wx documentation for information) | 1.986897 | 2.054646 | 0.967026 |
if parent == None:
app = wx.App(None)
if style == None:
style = wx.OPEN | wx.CHANGE_DIR
dialog = wx.FileDialog(parent, windowTitle, defaultDir=defaultDir, wildcard=wildcard,
style=style)
if dialog.ShowModal() == wx.ID_OK:
path = dialog.GetPath()
else:
path = None
dialog.Destroy()
return path | def open_file_dialog(windowTitle, wildcard, defaultDir=os.getcwd(), style=None, parent=None) | Opens a wx widget file select dialog.
Wild card specifies which kinds of files are allowed.
Style - specifies style of dialog (read wx documentation for information) | 1.895699 | 2.045095 | 0.926949 |
app = wx.App(None)
# style = wx.FD_OPEN | wx.FD_FILE_MUST_EXIST
dialog = wx.FileDialog(None, 'Save file as ...', defaultDir=os.getcwd(), defaultFile="",
wildcard=wildcard, style=wx.SAVE)
if dialog.ShowModal() == wx.ID_OK:
path = dialog.GetPath()
print("You chose the following filename: %s" % path)
else:
path = None
dialog.Destroy()
return path | def save_file_dialog(wildcard) | Show a save file dialog.
TODO: This is not fully implemented. | 2.392028 | 2.58453 | 0.925517 |
class OptionFrame(wx.Frame):
selectedOption = None
def __init__(self, windowTitle, optionList):
wx.Frame.__init__(self, None, -1, windowTitle, size=(250, 200))
panel = wx.Panel(self, -1)
listBox = wx.ListBox(panel, -1, (20, 20), (80, 120), optionList, wx.LB_SINGLE)
listBox.SetSelection(0)
self.Bind(wx.EVT_LISTBOX_DCLICK, self.doubleclick)
self.optionList = optionList
def doubleclick(self, event):
index = event.GetSelection()
value = self.optionList[index]
OptionFrame.selectedOption = (index, value)
self.Close()
app = wx.PySimpleApp()
OptionFrame(windowTitle, optionList).Show()
app.MainLoop()
return OptionFrame.selectedOption | def select_option_dialog(windowTitle, optionList) | Opens a select option dialog.
Select the option by double clicking.
TODO: Clean up this function
TODO: Improve interface (i.e., add cancel, OK) | 1.98604 | 2.035029 | 0.975927 |
'''Extracts the version'''
with open(VERSION_FILE, "rt") as f:
verstrline = f.read()
VERSION = r"^version = ['\"]([^'\"]*)['\"]"
results = re.search(VERSION, verstrline, re.M)
if results:
version = results.group(1)
else:
raise RuntimeError("Unable to find version string in {}.".format(path))
return version | def get_package_version(path) | Extracts the version | 3.096208 | 3.213857 | 0.963393 |
sel1 = self.x_axis_list.GetSelection()
sel2 = self.y_axis_list.GetSelection()
if sel1 >= 0 and sel2 >= 0:
channel_1 = self.x_axis_list.GetString(sel1)
channel_2 = self.y_axis_list.GetString(sel2)
self.fcgatemanager.set_axes((channel_1, channel_2), self.ax) | def update_widget_channels(self) | Parameters
-------------
axis : 'x' or 'y'
event : pick of list text | 3.318615 | 3.185497 | 1.041789 |
if isinstance(parser, collections.Mapping):
fparse = lambda x: parser[x]
elif hasattr(parser, '__call__'):
fparse = lambda x: parser(x, **kwargs)
elif parser == 'name':
kwargs.setdefault('pre', 'Well_')
kwargs.setdefault('post', ['_', '\.', '$'])
kwargs.setdefault('tagtype', str)
fparse = lambda x: get_tag_value(os.path.basename(x), **kwargs)
elif parser == 'number':
fparse = lambda x: int(x.split('.')[-2])
elif parser == 'read':
fparse = lambda x: measurement_class(ID='temporary', datafile=x).ID_from_data(**kwargs)
else:
raise ValueError('Encountered unsupported value "%s" for parser parameter.' % parser)
d = dict((fparse(dfile), dfile) for dfile in datafiles)
return d | def _assign_IDS_to_datafiles(datafiles, parser, measurement_class=None, **kwargs) | Assign measurement IDS to datafiles using specified parser.
Parameters
----------
datafiles : iterable of str
Path to datafiles. An ID will be assigned to each.
Note that this function does not check for uniqueness of IDs!
{_bases_filename_parser}
measurement_class: object
Used to create a temporary object when reading the ID from the datafile.
The measurement class needs to have an `ID_from_data` method.
Only used when parser='read'.
kwargs: dict
Additional parameters to be passed to parser is it is a callable, or 'read'.
If parser is 'read', kwargs are passed to the measurement class's `ID_from_data` method.
Returns
-------
Dict of ID:datafile | 4.099784 | 3.635669 | 1.127656 |
base = len(alphabet)
if x < 0:
raise ValueError('Only non-negative numbers are supported. Encounterd %s' % x)
letters = []
quotient = x
while quotient >= 0:
quotient, remainder = divmod(quotient, base)
quotient -= 1
letters.append(alphabet[remainder])
letters.reverse()
return ''.join(letters) | def int2letters(x, alphabet) | Return the alphabet representation of a non-negative integer x.
For example, with alphabet=['a','b']
0 -> 'a'
1 -> 'b'
2 -> 'aa'
3 -> 'ab'
4 -> 'ba'
Modified from:
http://stackoverflow.com/questions/2267362/convert-integer-to-a-string-in-a-given-numeric-base-in-python | 2.847434 | 3.154139 | 0.902761 |
'''
Read data into memory, applying all actions in queue.
Additionally, update queue and history.
'''
if data is None:
data = self.get_data(**kwargs)
setattr(self, '_data', data)
self.history += self.queue
self.queue = [] | def set_data(self, data=None, **kwargs) | Read data into memory, applying all actions in queue.
Additionally, update queue and history. | 7.399734 | 2.414952 | 3.064133 |
'''
Assign values to self.meta.
Meta is not returned
'''
if meta is None:
meta = self.get_meta(**kwargs)
setattr(self, '_meta', meta) | def set_meta(self, meta=None, **kwargs) | Assign values to self.meta.
Meta is not returned | 7.037097 | 3.286433 | 2.141257 |
'''
return values of attribute of self.
Attribute values can the ones assigned already, or the read for
the corresponding file.
If read from file:
i) the method used to read the file is 'self.read_[attr name]'
(e.g. for an attribute named 'meta' 'self.read_meta'
will be used).
ii) the file path will be the one specified in an attribute
named: '[attr name]file'. (e.g. for an attribute named
'meta' a 'metafile' attribute will be created).
'''
current_value = getattr(self, '_' + name)
if current_value is not None:
value = current_value
else:
parser_kwargs = getattr(self, 'read%s_kwargs' % name, {})
value = getattr(self, 'read_%s' % name)(**parser_kwargs)
return value | def _get_attr_from_file(self, name, **kwargs) | return values of attribute of self.
Attribute values can the ones assigned already, or the read for
the corresponding file.
If read from file:
i) the method used to read the file is 'self.read_[attr name]'
(e.g. for an attribute named 'meta' 'self.read_meta'
will be used).
ii) the file path will be the one specified in an attribute
named: '[attr name]file'. (e.g. for an attribute named
'meta' a 'metafile' attribute will be created). | 7.428985 | 1.702388 | 4.363861 |
'''
Get the measurement data.
If data is not set, read from 'self.datafile' using 'self.read_data'.
'''
if self.queue:
new = self.apply_queued()
return new.get_data()
else:
return self._get_attr_from_file('data', **kwargs) | def get_data(self, **kwargs) | Get the measurement data.
If data is not set, read from 'self.datafile' using 'self.read_data'. | 9.119967 | 4.126863 | 2.209903 |
applyto = applyto.lower()
if applyto == 'data':
if self.data is not None:
data = self.data
elif self.datafile is None:
return noneval
else:
data = self.read_data()
if setdata:
self.data = data
return func(data)
elif applyto == 'measurement':
return func(self)
else:
raise ValueError('Encountered unsupported value "%s" for applyto parameter.' % applyto) | def apply(self, func, applyto='measurement', noneval=nan, setdata=False) | Apply func either to self or to associated data.
If data is not already parsed, try and read it.
Parameters
----------
func : callable
The function either accepts a measurement object or an FCS object.
Does some calculation and returns the result.
applyto : ['data' | 'measurement']
* 'data' : apply to associated data
* 'measurement' : apply to measurement object itself.
noneval : obj
Value to return if `applyto` is 'data', but no data is available.
setdata : bool
Used only if data is not already set.
If true parsed data will be assigned to self.data
Otherwise data will be discarded at end of apply. | 2.510619 | 2.614829 | 0.960147 |
d = _assign_IDS_to_datafiles(datafiles, parser, cls._measurement_class, **ID_kwargs)
measurements = []
for sID, dfile in d.items():
try:
measurements.append(cls._measurement_class(sID, datafile=dfile,
readdata_kwargs=readdata_kwargs,
readmeta_kwargs=readmeta_kwargs))
except:
msg = 'Error occurred while trying to parse file: %s' % dfile
raise IOError(msg)
return cls(ID, measurements) | def from_files(cls, ID, datafiles, parser, readdata_kwargs={}, readmeta_kwargs={}, **ID_kwargs) | Create a Collection of measurements from a set of data files.
Parameters
----------
{_bases_ID}
{_bases_data_files}
{_bases_filename_parser}
{_bases_ID_kwargs} | 3.612235 | 3.782561 | 0.954971 |
datafiles = get_files(datadir, pattern, recursive)
return cls.from_files(ID, datafiles, parser,
readdata_kwargs=readdata_kwargs, readmeta_kwargs=readmeta_kwargs,
**ID_kwargs) | def from_dir(cls, ID, datadir, parser, pattern='*.fcs', recursive=False,
readdata_kwargs={}, readmeta_kwargs={}, **ID_kwargs) | Create a Collection of measurements from data files contained in a directory.
Parameters
----------
ID : hashable
Collection ID
datadir : str
Path of directory containing the data files.
pattern : str
Only files matching the pattern will be used to create measurements.
recursive : bool
Recursively look for files matching pattern in subdirectories.
{_bases_filename_parser}
{_bases_ID_kwargs} | 2.095903 | 2.613159 | 0.802057 |
'''
Apply func to each of the specified measurements.
Parameters
----------
func : callable
Accepts a Measurement object or a DataFrame.
ids : hashable| iterable of hashables | None
Keys of measurements to which func will be applied.
If None is given apply to all measurements.
applyto : 'measurement' | 'data'
* 'measurement' : apply to measurements objects themselves.
* 'data' : apply to measurement associated data
noneval : obj
Value returned if applyto is 'data' but no data is available.
setdata : bool
Whether to set the data in the Measurement object.
Used only if data is not already set.
output_format : ['dict' | 'collection']
* collection : keeps result as collection
WARNING: For collection, func should return a copy of the measurement instance rather
than the original measurement instance.
Returns
-------
Dictionary keyed by measurement keys containing the corresponding output of func
or returns a collection (if output_format='collection').
'''
if ids is None:
ids = self.keys()
else:
ids = to_list(ids)
result = dict((i, self[i].apply(func, applyto, noneval, setdata)) for i in ids)
if output_format == 'collection':
can_keep_as_collection = all(
[isinstance(r, self._measurement_class) for r in result.values()])
if not can_keep_as_collection:
raise TypeError(
'Cannot turn output into a collection. The provided func must return results of type {}'.format(
self._measurement_class))
new_collection = self.copy()
# Locate IDs to remove
ids_to_remove = [x for x in self.keys() if x not in ids]
# Remove data for these IDs
for ids in ids_to_remove:
new_collection.pop(ids)
# Update keys with new values
for k, v in new_collection.items():
new_collection[k] = result[k]
if ID is not None:
new_collection.ID = ID
return new_collection
else:
# Return a dictionary
return result | def apply(self, func, ids=None, applyto='measurement', noneval=nan,
setdata=False, output_format='dict', ID=None,
**kwargs) | Apply func to each of the specified measurements.
Parameters
----------
func : callable
Accepts a Measurement object or a DataFrame.
ids : hashable| iterable of hashables | None
Keys of measurements to which func will be applied.
If None is given apply to all measurements.
applyto : 'measurement' | 'data'
* 'measurement' : apply to measurements objects themselves.
* 'data' : apply to measurement associated data
noneval : obj
Value returned if applyto is 'data' but no data is available.
setdata : bool
Whether to set the data in the Measurement object.
Used only if data is not already set.
output_format : ['dict' | 'collection']
* collection : keeps result as collection
WARNING: For collection, func should return a copy of the measurement instance rather
than the original measurement instance.
Returns
-------
Dictionary keyed by measurement keys containing the corresponding output of func
or returns a collection (if output_format='collection'). | 4.075404 | 1.851415 | 2.201237 |
fun = lambda x: x.set_data()
self.apply(fun, ids=ids, applyto='measurement') | def set_data(self, ids=None) | Set the data for all specified measurements (all if None given). | 10.55038 | 6.719936 | 1.570012 |
fields = to_list(fields)
func = lambda x: x.get_meta_fields(fields)
meta_d = self.apply(func, ids=ids, applyto='measurement',
noneval=noneval, output_format='dict')
if output_format is 'dict':
return meta_d
elif output_format is 'DataFrame':
from pandas import DataFrame as DF
meta_df = DF(meta_d, index=fields)
return meta_df
else:
msg = ("The output_format must be either 'dict' or 'DataFrame'. " +
"Encountered unsupported value %s." % repr(output_format))
raise Exception(msg) | def get_measurement_metadata(self, fields, ids=None, noneval=nan,
output_format='DataFrame') | Get the metadata fields of specified measurements (all if None given).
Parameters
----------
fields : str | iterable of str
Names of metadata fields to be returned.
ids : hashable| iterable of hashables | None
Keys of measurements for which metadata will be returned.
If None is given return metadata of all measurements.
noneval : obj
Value returned if applyto is 'data' but no data is available.
output_format : 'DataFrame' | 'dict'
'DataFrame' : return DataFrame,
'dict' : return dictionary.
Returns
-------
Measurement metadata in specified output_format. | 3.067699 | 3.387861 | 0.905497 |
fil = criteria
new = self.copy()
if isinstance(applyto, collections.Mapping):
remove = (k for k, v in self.items() if not fil(applyto[k]))
elif applyto == 'measurement':
remove = (k for k, v in self.items() if not fil(v))
elif applyto == 'keys':
remove = (k for k, v in self.items() if not fil(k))
elif applyto == 'data':
remove = (k for k, v in self.items() if not fil(v.get_data()))
else:
raise ValueError('Unsupported value "%s" for applyto parameter.' % applyto)
for r in remove:
del new[r]
if ID is None:
ID = self.ID
new.ID = ID
return new | def filter(self, criteria, applyto='measurement', ID=None) | Filter measurements according to given criteria.
Retain only Measurements for which criteria returns True.
TODO: add support for multiple criteria
Parameters
----------
criteria : callable
Returns bool.
applyto : 'measurement' | 'keys' | 'data' | mapping
'measurement' : criteria is applied to Measurement objects
'keys' : criteria is applied to the keys.
'data' : criteria is applied to the Measurement objects' data.
mapping : for each key criteria is applied to mapping value with same key.
ID : str
ID of the filtered collection.
If None is given, append '.filterd' to the current sample ID.
Returns
-------
Filtered Collection. | 2.439126 | 2.331975 | 1.045949 |
keys = to_list(keys)
fil = lambda x: x in keys
if ID is None:
ID = self.ID
return self.filter(fil, applyto='keys', ID=ID) | def filter_by_key(self, keys, ID=None) | Keep only Measurements with given keys. | 5.267912 | 5.014714 | 1.050491 |
fil = lambda x: x in ids
return self.filter_by_attr('ID', fil, ID) | def filter_by_IDs(self, ids, ID=None) | Keep only Measurements with given IDs. | 7.124024 | 6.860025 | 1.038484 |
rows = to_list(rows)
fil = lambda x: x in rows
applyto = {k: self._positions[k][0] for k in self.keys()}
if ID is None:
ID = self.ID
return self.filter(fil, applyto=applyto, ID=ID) | def filter_by_rows(self, rows, ID=None) | Keep only Measurements in corresponding rows. | 5.380557 | 5.016832 | 1.072501 |
rows = to_list(cols)
fil = lambda x: x in rows
applyto = {k: self._positions[k][1] for k in self.keys()}
if ID is None:
ID = self.ID + '.filtered_by_cols'
return self.filter(fil, applyto=applyto, ID=ID) | def filter_by_cols(self, cols, ID=None) | Keep only Measurements in corresponding columns. | 6.053407 | 5.7925 | 1.045042 |
if position_mapper is None:
if isinstance(parser, six.string_types):
position_mapper = parser
else:
msg = "When using a custom parser, you must specify the position_mapper keyword."
raise ValueError(msg)
d = _assign_IDS_to_datafiles(datafiles, parser, cls._measurement_class, **ID_kwargs)
measurements = []
for sID, dfile in d.items():
try:
measurements.append(cls._measurement_class(sID, datafile=dfile,
readdata_kwargs=readdata_kwargs,
readmeta_kwargs=readmeta_kwargs))
except:
msg = 'Error occured while trying to parse file: %s' % dfile
raise IOError(msg)
return cls(ID, measurements, position_mapper, **kwargs) | def from_files(cls, ID, datafiles, parser='name',
position_mapper=None,
readdata_kwargs={}, readmeta_kwargs={}, ID_kwargs={}, **kwargs) | Create an OrderedCollection of measurements from a set of data files.
Parameters
----------
{_bases_ID}
{_bases_data_files}
{_bases_filename_parser}
{_bases_position_mapper}
{_bases_ID_kwargs}
kwargs : dict
Additional key word arguments to be passed to constructor. | 3.185144 | 3.440845 | 0.925687 |
datafiles = get_files(path, pattern, recursive)
return cls.from_files(ID, datafiles, parser=parser, position_mapper=position_mapper,
readdata_kwargs=readdata_kwargs, readmeta_kwargs=readmeta_kwargs,
ID_kwargs=ID_kwargs, **kwargs) | def from_dir(cls, ID, path,
parser='name',
position_mapper=None, pattern='*.fcs', recursive=False,
readdata_kwargs={}, readmeta_kwargs={}, ID_kwargs={}, **kwargs) | Create a Collection of measurements from data files contained in a directory.
Parameters
----------
{_bases_ID}
datadir : str
Path of directory containing the data files.
pattern : str
Only files matching the pattern will be used to create measurements.
recursive : bool
Recursively look for files matching pattern in subdirectories.
{_bases_filename_parser}
{_bases_position_mapper}
{_bases_ID_kwargs}
kwargs : dict
Additional key word arguments to be passed to constructor. | 1.759903 | 2.296795 | 0.766243 |
'''
Set the row/col labels.
Note that this method doesn't check that enough labels were set for all the assigned positions.
'''
if axis.lower() in ('rows', 'row', 'r', 0):
assigned_pos = set(v[0] for v in self._positions.itervalues())
not_assigned = set(labels) - assigned_pos
if len(not_assigned) > 0:
msg = 'New labels must contain all assigned positions'
raise ValueError(msg)
self.row_labels = labels
elif axis.lower() in ('cols', 'col', 'c', 1):
self.col_labels = labels
else:
raise TypeError('Unsupported axis value %s' % axis) | def set_labels(self, labels, axis='rows') | Set the row/col labels.
Note that this method doesn't check that enough labels were set for all the assigned positions. | 3.805183 | 2.694678 | 1.41211 |
'''
check if given position is valid for this collection
'''
row, col = position
valid_r = row in self.row_labels
valid_c = col in self.col_labels
return valid_r and valid_c | def _is_valid_position(self, position) | check if given position is valid for this collection | 4.859385 | 3.474446 | 1.398607 |
'''
Defines a position parser that is used
to map between sample IDs and positions.
Parameters
--------------
{_bases_position_mapper}
TODO: Fix the name to work with more than 26 letters
of the alphabet.
'''
def num_parser(x, order):
i, j = unravel_index(int(x - 1), self.shape, order=order)
return (self.row_labels[i], self.col_labels[j])
if hasattr(position_mapper, '__call__'):
mapper = position_mapper
elif isinstance(position_mapper, collections.Mapping):
mapper = lambda x: position_mapper[x]
elif position_mapper == 'name':
mapper = lambda x: (x[0], int(x[1:]))
elif position_mapper in ('row_first_enumerator', 'number'):
mapper = lambda x: num_parser(x, 'F')
elif position_mapper == 'col_first_enumerator':
mapper = lambda x: num_parser(x, 'C')
else:
msg = '"{}" is not a known key_to_position_parser.'.format(position_mapper)
raise ValueError(msg)
return mapper | def _get_ID2position_mapper(self, position_mapper) | Defines a position parser that is used
to map between sample IDs and positions.
Parameters
--------------
{_bases_position_mapper}
TODO: Fix the name to work with more than 26 letters
of the alphabet. | 4.275948 | 2.621689 | 1.63099 |
'''
checks for position validity & collisions,
but not that all measurements are assigned.
Parameters
-----------
positions : is dict-like of measurement_key:(row,col)
parser :
callable - gets key and returns position
mapping - key:pos
'name' - parses things like 'A1', 'G12'
'number' - converts number to positions, going over rows first.
ids :
parser will be applied to specified ids only.
If None is given, parser will be applied to all measurements.
TODO: output a more informative message for position collisions
'''
if positions is None:
if ids is None:
ids = self.keys()
else:
ids = to_list(ids)
mapper = self._get_ID2position_mapper(position_mapper)
positions = dict((ID, mapper(ID)) for ID in ids)
else:
pass
# check that resulting assignment is unique (one measurement per position)
temp = self._positions.copy()
temp.update(positions)
if not len(temp.values()) == len(set(temp.values())):
msg = 'A position can only be occupied by a single measurement'
raise Exception(msg)
for k, pos in positions.items():
if not self._is_valid_position(pos):
msg = 'Position {} is not supported for this collection'.format(pos)
raise ValueError(msg)
self._positions[k] = pos
self[k]._set_position(self.ID, pos) | def set_positions(self, positions=None, position_mapper='name', ids=None) | checks for position validity & collisions,
but not that all measurements are assigned.
Parameters
-----------
positions : is dict-like of measurement_key:(row,col)
parser :
callable - gets key and returns position
mapping - key:pos
'name' - parses things like 'A1', 'G12'
'number' - converts number to positions, going over rows first.
ids :
parser will be applied to specified ids only.
If None is given, parser will be applied to all measurements.
TODO: output a more informative message for position collisions | 6.934192 | 2.384765 | 2.907704 |
'''
Get a dictionary of measurement positions.
'''
if copy:
return self._positions.copy()
else:
return self._positions | def get_positions(self, copy=True) | Get a dictionary of measurement positions. | 5.261229 | 3.030413 | 1.736142 |
'''
Remove rows and cols that have no assigned measurements.
Return new instance.
'''
new = self.copy()
tmp = self._dict2DF(self, nan, True)
new.row_labels = list(tmp.index)
new.col_labels = list(tmp.columns)
return new | def dropna(self) | Remove rows and cols that have no assigned measurements.
Return new instance. | 8.799775 | 4.639197 | 1.896831 |
_output = 'collection' if output_format == 'collection' else 'dict'
result = super(OrderedCollection, self).apply(func, ids, applyto,
noneval, setdata,
output_format=_output)
# Note: result should be of type dict or collection for the code
# below to work
if output_format is 'dict':
return result
elif output_format is 'DataFrame':
return self._dict2DF(result, noneval, dropna)
elif output_format is 'collection':
return result
else:
msg = ("output_format must be either 'dict' or 'DataFrame'. " +
"Encountered unsupported value %s." % repr(output_format))
raise Exception(msg) | def apply(self, func, ids=None, applyto='measurement',
output_format='DataFrame', noneval=nan,
setdata=False, dropna=False, ID=None) | Apply func to each of the specified measurements.
Parameters
----------
func : callable
Accepts a Measurement object or a DataFrame.
ids : hashable| iterable of hashables | None
Keys of measurements to which func will be applied.
If None is given apply to all measurements.
applyto : 'measurement' | 'data'
'measurement' : apply to measurements objects themselves.
'data' : apply to measurement associated data
output_format: ['DataFrame' | 'dict' | 'collection']
noneval : obj
Value returned if applyto is 'data' but no data is available.
setdata : bool
Whether to set the data in the Measurement object.
Used only if data is not already set.
dropna : bool
whether to remove rows/cols that contain no measurements.
ID : [None | str | numeric]
ID is used as the new ID for the collection.
If None, then the old ID is retained.
Note: Only applicable when output is a collection.
Returns
-------
DataFrame/Dictionary/Collection containing the output of func for each Measurement. | 3.798953 | 4.353149 | 0.872691 |
# Acquire call arguments to be passed to create plate layout
callArgs = locals().copy() # This statement must remain first. The copy is just defensive.
[callArgs.pop(varname) for varname in
['self', 'func', 'applyto', 'ids', 'colorbar', 'xlim', 'ylim']] # pop args
callArgs['rowNum'] = self.shape[0]
callArgs['colNum'] = self.shape[1]
subplots_adjust_args = {}
subplots_adjust_args.setdefault('right', 0.85)
subplots_adjust_args.setdefault('top', 0.85)
pl.subplots_adjust(**subplots_adjust_args)
# Uses plate default row/col labels if user does not override them by specifying row/col
# labels
if row_labels == None: callArgs['row_labels'] = self.row_labels
if col_labels == None: callArgs['col_labels'] = self.col_labels
ax_main, ax_subplots = graph.create_grid_layout(**callArgs)
subplots_ax = DF(ax_subplots, index=self.row_labels, columns=self.col_labels)
if ids is None:
ids = self.keys()
ids = to_list(ids)
for ID in ids:
measurement = self[ID]
if not hasattr(measurement, 'data'):
continue
row, col = self._positions[ID]
ax = subplots_ax[col][row]
pl.sca(ax) # sets the current axis
if applyto == 'measurement':
func(measurement, ax) # reminder: pandas row/col order is reversed
elif applyto == 'data':
data = measurement.get_data()
if data is not None:
if func.func_code.co_argcount == 1:
func(data)
else:
func(data, ax)
else:
raise ValueError('Encountered unsupported value {} for applyto parameter.'.format(
applyto))
# Autoscaling axes
graph.scale_subplots(ax_subplots, xlim=xlim, ylim=ylim)
#####
# Placing ticks on the top left subplot
ax_label = ax_subplots[0, -1]
pl.sca(ax_label)
if xlabel:
xlim = ax_label.get_xlim()
pl.xticks([xlim[0], xlim[1]], rotation=90)
if ylabel:
ylim = ax_label.get_ylim()
pl.yticks([ylim[0], ylim[1]], rotation=0)
pl.sca(ax_main) # sets to the main axis -- more intuitive
return ax_main, ax_subplots | def grid_plot(self, func, applyto='measurement', ids=None,
row_labels=None, col_labels=None,
xlim='auto', ylim='auto',
xlabel=None, ylabel=None,
colorbar=True,
row_label_xoffset=None, col_label_yoffset=None,
hide_tick_labels=True, hide_tick_lines=True,
hspace=0, wspace=0,
row_labels_kwargs={}, col_labels_kwargs={}) | Creates subplots for each well in the plate. Uses func to plot on each axis.
Follow with a call to matplotlibs show() in order to see the plot.
Parameters
----------
func : callable
func is a callable that accepts a measurement
object (with an optional axis reference) and plots on the current axis.
Return values from func are ignored.
.. note: if using applyto='measurement', the function
when querying for data should make sure that the data
actually exists
applyto : 'measurement' | 'data'
{_graph_grid_layout}
{bases_OrderedCollection_grid_plot_pars}
Returns
-------
{_graph_grid_layout_returns}
Examples
---------
>>> def y(well, ax):
>>> data = well.get_data()
>>> if data is None:
>>> return None
>>> graph.plotFCM(data, 'Y2-A')
>>> def z(data, ax):
>>> plot(data[0:100, 1], data[0:100, 2])
>>> plate.plot(y, applyto='measurement');
>>> plate.plot(z, applyto='data'); | 3.722671 | 3.758831 | 0.99038 |
if self.vert[1] <= self.vert[0]:
raise ValueError(u'{} must be larger than {}'.format(self.vert[1], self.vert[0])) | def validate_input(self) | Raise appropriate exception if gate was defined incorrectly. | 5.715558 | 4.980902 | 1.147495 |
idx = ((dataframe[self.channels[0]] <= self.vert[1]) &
(dataframe[self.channels[0]] >= self.vert[0]))
if self.region == 'out':
idx = ~idx
return idx | def _identify(self, dataframe) | Return bool series which is True for indexes that 'pass' the gate | 5.881871 | 5.206315 | 1.129757 |
if ax == None:
ax = pl.gca()
if ax_channels is not None:
flip = self._find_orientation(ax_channels)
plot_func = ax.axes.axhline if flip else ax.axes.axvline
kwargs.setdefault('color', 'black')
a1 = plot_func(self.vert[0], *args, **kwargs)
a2 = plot_func(self.vert[1], *args, **kwargs)
return (a1, a2) | def plot(self, flip=False, ax_channels=None, ax=None, *args, **kwargs) | {_gate_plot_doc} | 3.253978 | 3.148211 | 1.033596 |
##
# TODO Fix this implementation. (i.e., why not support just 'left')
# At the moment this implementation won't work at all.
# The logic here can be simplified.
id1 = dataframe[self.channels[0]] >= self.vert[0]
id2 = dataframe[self.channels[1]] >= self.vert[1]
if 'left' in self.region: id1 = ~id1
if 'bottom' in self.region: id2 = ~id2
idx = id1 & id2
if 'out' in self.region:
idx = ~idx
return idx | def _identify(self, dataframe) | Returns a list of indexes containing only the points that pass the filter.
Parameters
----------
dataframe : DataFrame | 6.255476 | 6.30535 | 0.99209 |
if ax == None:
ax = pl.gca()
kwargs.setdefault('color', 'black')
if ax_channels is not None:
flip = self._find_orientation(ax_channels)
if not flip:
a1 = ax.axes.axvline(self.vert[0], *args, **kwargs)
a2 = ax.axes.axhline(self.vert[1], *args, **kwargs)
else:
a1 = ax.axes.axvline(self.vert[1], *args, **kwargs)
a2 = ax.axes.axhline(self.vert[0], *args, **kwargs)
return (a1, a2) | def plot(self, flip=False, ax_channels=None, ax=None, *args, **kwargs) | {_gate_plot_doc} | 2.317559 | 2.255374 | 1.027572 |
path = Path(self.vert)
idx = path.contains_points(dataframe.filter(self.channels))
if self.region == 'out':
idx = ~idx
return idx | def _identify(self, dataframe) | Returns a list of indexes containing only the points that pass the filter.
Parameters
----------
dataframe : DataFrame | 15.839612 | 17.525509 | 0.903803 |
if ax == None:
ax = pl.gca()
if ax_channels is not None:
flip = self._find_orientation(ax_channels)
if flip:
vert = [v[::-1] for v in self.vert]
else:
vert = self.vert
kwargs.setdefault('fill', False)
kwargs.setdefault('color', 'black')
poly = pl.Polygon(vert, *args, **kwargs)
return ax.add_artist(poly) | def plot(self, flip=False, ax_channels=None, ax=None, *args, **kwargs) | {_gate_plot_doc} | 3.264069 | 3.204223 | 1.018677 |
for gate in self.gates:
gate.plot(flip=flip, ax_channels=ax_channels, ax=ax, *args, **kwargs) | def plot(self, flip=False, ax_channels=None, ax=None, *args, **kwargs) | {_gate_plot_doc} | 2.568868 | 1.813345 | 1.416646 |
import os
base_path = os.path.dirname(os.path.abspath(__file__))
test_data_dir = os.path.join(base_path, 'tests', 'data', 'Plate01')
test_data_file = os.path.join(test_data_dir, 'RFP_Well_A3.fcs')
return test_data_dir, test_data_file | def _get_paths() | Generate paths to test data. Done in a function to protect namespace a bit. | 3.250595 | 2.866093 | 1.134155 |
'push a copy of older release to appropriate version directory'
local_dir = doc_root + 'build/html'
remote_dir = '/usr/share/nginx/pandas/pandas-docs/version/%s/' % ver
cmd = 'cd %s; rsync -avz . [email protected]:%s -essh'
cmd = cmd % (local_dir, remote_dir)
print cmd
if os.system(cmd):
raise SystemExit(
'Upload to %s from %s failed' % (remote_dir, local_dir))
local_dir = doc_root + 'build/latex'
pdf_cmd = 'cd %s; scp pandas.pdf [email protected]:%s'
pdf_cmd = pdf_cmd % (local_dir, remote_dir)
if os.system(pdf_cmd):
raise SystemExit('Upload PDF to %s from %s failed' % (ver, doc_root)) | def upload_prev(ver, doc_root='./') | push a copy of older release to appropriate version directory | 4.336771 | 3.616409 | 1.199193 |
if ax == None: ax = pl.gca()
xlabel_kwargs.setdefault('size', 16)
ylabel_kwargs.setdefault('size', 16)
channel_names = to_list(channel_names)
if len(channel_names) == 1:
# 1D so histogram plot
kwargs.setdefault('color', 'gray')
kwargs.setdefault('histtype', 'stepfilled')
kwargs.setdefault('bins', 200) # Do not move above
x = data[channel_names[0]].values
if len(x) >= 1:
if (len(x) == 1) and isinstance(kwargs['bins'], int):
# Only needed for hist (not hist2d) due to hist function doing
# excessive input checking
warnings.warn("One of the data sets only has a single event. "
"This event won't be plotted unless the bin locations"
" are explicitly provided to the plotting function. ")
return None
plot_output = ax.hist(x, **kwargs)
else:
return None
elif len(channel_names) == 2:
x = data[channel_names[0]].values # value of first channel
y = data[channel_names[1]].values # value of second channel
if len(x) == 0:
# Don't draw a plot if there's no data
return None
if kind == 'scatter':
kwargs.setdefault('edgecolor', 'none')
plot_output = ax.scatter(x, y, **kwargs)
elif kind == 'histogram':
kwargs.setdefault('bins', 200) # Do not move above
kwargs.setdefault('cmin', 1)
kwargs.setdefault('cmap', pl.cm.copper)
kwargs.setdefault('norm', matplotlib.colors.LogNorm())
plot_output = ax.hist2d(x, y, **kwargs)
mappable = plot_output[-1]
if colorbar:
pl.colorbar(mappable, ax=ax)
else:
raise ValueError("Not a valid plot type. Must be 'scatter', 'histogram'")
else:
raise ValueError('Received an unexpected number of channels: "{}"'.format(channel_names))
pl.grid(grid)
if autolabel:
y_label_text = 'Counts' if len(channel_names) == 1 else channel_names[1]
ax.set_xlabel(channel_names[0], **xlabel_kwargs)
ax.set_ylabel(y_label_text, **ylabel_kwargs)
return plot_output | def plotFCM(data, channel_names, kind='histogram', ax=None,
autolabel=True, xlabel_kwargs={}, ylabel_kwargs={},
colorbar=False, grid=False,
**kwargs) | Plots the sample on the current axis.
Follow with a call to matplotlibs show() in order to see the plot.
Parameters
----------
data : DataFrame
{graph_plotFCM_pars}
{common_plot_ax}
Returns
-------
The output of the plot command used | 2.9274 | 3.010388 | 0.972433 |
axis_options = ('x', 'y', 'both', 'none', '', 'xy', 'yx')
if axis.lower() not in axis_options:
raise ValueError('axis must be in {0}'.format(axis_options))
if subplots is None:
subplots = plt.gcf().axes
data_limits = [(ax.xaxis.get_data_interval(), ax.yaxis.get_data_interval()) for loc, ax in
numpy.ndenumerate(subplots)] # TODO: Make a proper iterator
xlims, ylims = zip(*data_limits)
xmins_list, xmaxs_list = zip(*xlims)
ymins_list, ymaxs_list = zip(*ylims)
xmin = numpy.min(xmins_list)
xmax = numpy.max(xmaxs_list)
ymin = numpy.min(ymins_list)
ymax = numpy.max(ymaxs_list)
for loc, ax in numpy.ndenumerate(subplots):
if axis in ('x', 'both', 'xy', 'yx'):
ax.set_xlim((xmin, xmax))
if axis in ('y', 'both', 'xy', 'yx'):
ax.set_ylim((ymin, ymax)) | def autoscale_subplots(subplots=None, axis='both') | Sets the x and y axis limits for each subplot to match the x and y axis
limits of the most extreme data points encountered.
The limits are set to the same values for all subplots.
Parameters
-----------
subplots : ndarray or list of matplotlib.axes.Axes
axis : ['x' | 'y' | 'both' / 'xy' / 'yx' | 'none' / '']
'x' : autoscales the x axis
'y' : autoscales the y axis
'both', 'xy', 'yx' : autoscales both axis
'none', '' : autoscales nothing | 2.123954 | 2.105535 | 1.008748 |
auto_axis = ''
if xlim == 'auto':
auto_axis += 'x'
if ylim == 'auto':
auto_axis += 'y'
autoscale_subplots(subplots, auto_axis)
for loc, ax in numpy.ndenumerate(subplots):
if 'x' not in auto_axis:
ax.set_xlim(xlim)
if 'y' not in auto_axis:
ax.set_ylim(ylim) | def scale_subplots(subplots=None, xlim='auto', ylim='auto') | Set the x and y axis limits for a collection of subplots.
Parameters
-----------
subplots : ndarray or list of matplotlib.axes.Axes
xlim : None | 'auto' | (xmin, xmax)
'auto' : sets the limits according to the most
extreme values of data encountered.
ylim : None | 'auto' | (ymin, ymax) | 2.529016 | 3.315163 | 0.762863 |
shape = matrix.shape
xtick_pos = numpy.arange(shape[1])
ytick_pos = numpy.arange(shape[0])
xtick_grid, ytick_grid = numpy.meshgrid(xtick_pos, ytick_pos)
vmax = numpy.nanmax(matrix)
vmin = numpy.nanmin(matrix)
if not kwargs.get('color', None) and cmap is not None:
use_cmap = True
norm = matplotlib.colors.Normalize(vmin=vmin, vmax=vmax, clip=False)
else:
use_cmap = False
for (row, col), w in numpy.ndenumerate(matrix):
x = xtick_grid[row, col]
y = ytick_grid[row, col]
if use_cmap:
kwargs['color'] = cmap(norm(w))
plt.text(x, y, text_format.format(w), horizontalalignment='center',
verticalalignment='center', transform=plt.gca().transData, **kwargs) | def _plot_table(matrix, text_format='{:.2f}', cmap=None, **kwargs) | Plot a numpy matrix as a table. Uses the current axis bounding box to decide on limits.
text_format specifies the formatting to apply to the values.
Parameters
----------
matrix : ndarray
text_format : str
Indicates how to format the the values
text_format = {:.2} -> keeps all digits until the first 2 significant digits past the decimal
text_format = {:.2f} -> keeps only 2 digits past the decimal
cmap : None | colormap
if a colormap is provided, this colormap will be used to choose the color of the text.
**kwargs : all other arguments passed to plt.text function
Examples
----------
plot_table(numpy.random.random((3,3))
plt.show() | 2.016956 | 2.072611 | 0.973147 |
for i, thisAxis in enumerate((ax.get_xaxis(), ax.get_yaxis())):
for thisItem in thisAxis.get_ticklines():
if isinstance(visible, list):
thisItem.set_visible(visible[i])
else:
thisItem.set_visible(visible) | def _set_tick_lines_visibility(ax, visible=True) | Set the visibility of the tick lines of the requested axis. | 2.711022 | 2.597692 | 1.043627 |
for i, thisAxis in enumerate((ax.get_xaxis(), ax.get_yaxis())):
for thisItem in thisAxis.get_ticklabels():
if isinstance(visible, list):
thisItem.set_visible(visible[i])
else:
thisItem.set_visible(visible) | def _set_tick_labels_visibility(ax, visible=True) | Set the visibility of the tick labels of the requested axis. | 2.724815 | 2.581227 | 1.055628 |
xlabel = None
xvalues = None
ylabel = None
yvalues = None
if hasattr(data, 'minor_axis'):
xvalues = data.minor_axis
if hasattr(data.minor_axis, 'name'):
xlabel = data.minor_axis.name
if hasattr(data, 'columns'):
xvalues = data.columns
if hasattr(data.columns, 'name'):
xlabel = data.columns.name
if hasattr(data, 'major_axis'):
yvalues = data.major_axis
if hasattr(data.major_axis, 'name'):
ylabel = data.major_axis.name
if hasattr(data, 'index'):
yvalues = data.index
if hasattr(data.index, 'name'):
ylabel = data.index.name
return xlabel, xvalues, ylabel, yvalues | def extract_annotation(data) | Extract names and values of rows and columns.
Parameter:
data : DataFrame | Panel
Returns:
col_name, col_values, row_name, row_values | 1.635898 | 1.665247 | 0.982376 |
# Copy the original sample
new_sample = original_sample.copy()
new_data = new_sample.data
# Our transformation goes here
new_data['Y2-A'] = log(new_data['Y2-A'])
new_data = new_data.dropna() # Removes all NaN entries
new_sample.data = new_data
return new_sample | def transform_using_this_method(original_sample) | This function implements a log transformation on the data. | 4.248016 | 4.133938 | 1.027596 |
'''
Read the datafile specified in Sample.datafile and
return the resulting object.
Does NOT assign the data to self.data
It's advised not to use this method, but instead to access
the data through the FCMeasurement.data attribute.
'''
meta, data = parse_fcs(self.datafile, **kwargs)
return data | def read_data(self, **kwargs) | Read the datafile specified in Sample.datafile and
return the resulting object.
Does NOT assign the data to self.data
It's advised not to use this method, but instead to access
the data through the FCMeasurement.data attribute. | 11.561003 | 2.189482 | 5.280245 |
'''
Read only the annotation of the FCS file (without reading DATA segment).
It's advised not to use this method, but instead to access
the meta data through the FCMeasurement.meta attribute.
'''
# TODO Try to rewrite the code to be more logical
# The reason the equivalent statement is not in the read_data method
# above is because self.readdata_kwargs are passed
# as **kwargs to the read_data function.
if 'channel_naming' in self.readdata_kwargs:
kwargs['channel_naming'] = self.readdata_kwargs['channel_naming']
meta = parse_fcs(self.datafile,
reformat_meta=True,
meta_data_only=True, **kwargs)
return meta | def read_meta(self, **kwargs) | Read only the annotation of the FCS file (without reading DATA segment).
It's advised not to use this method, but instead to access
the meta data through the FCMeasurement.meta attribute. | 8.847241 | 4.270153 | 2.071879 |
'''
Return a dictionary of metadata fields
'''
fields = to_list(fields)
meta = self.get_meta()
return {field: meta.get(field) for field in fields} | def get_meta_fields(self, fields, kwargs={}) | Return a dictionary of metadata fields | 4.544494 | 3.571791 | 1.272329 |
'''
Returns the well ID from the src keyword in the FCS file. (e.g., A2)
This keyword may not appear in FCS files generated by other machines,
in which case this function will raise an exception.
'''
try:
return self.get_meta_fields(ID_field)[ID_field]
except KeyError:
msg = "The keyword '{}' does not exist in the following FCS file: {}"
msg = msg.format(ID_field, self.datafile)
raise Exception(msg) | def ID_from_data(self, ID_field='$SRC') | Returns the well ID from the src keyword in the FCS file. (e.g., A2)
This keyword may not appear in FCS files generated by other machines,
in which case this function will raise an exception. | 5.594303 | 2.210817 | 2.530423 |
ax = kwargs.get('ax')
channel_names = to_list(channel_names)
gates = to_list(gates)
plot_output = graph.plotFCM(self.data, channel_names, kind=kind, **kwargs)
if gates is not None:
if gate_colors is None:
gate_colors = cycle(('b', 'g', 'r', 'm', 'c', 'y'))
if not isinstance(gate_lw, collections.Iterable):
gate_lw = [gate_lw]
gate_lw = cycle(gate_lw)
for (g, c, lw) in zip(gates, gate_colors, gate_lw):
g.plot(ax=ax, ax_channels=channel_names, color=c, lw=lw)
return plot_output | def plot(self, channel_names, kind='histogram',
gates=None, gate_colors=None, gate_lw=1, **kwargs) | Plot the flow cytometry data associated with the sample on the current axis.
To produce the plot, follow up with a call to matplotlib's show() function.
Parameters
----------
{graph_plotFCM_pars}
{FCMeasurement_plot_pars}
{common_plot_ax}
gates : [None, Gate, list of Gate]
Gate must be of type {_gate_available_classes}.
gate_lw: float | iterable
line width to use when drawing gates
if float, uses the same line width for all gates
if iterable, then cycles between the values
kwargs : dict
Additional keyword arguments to be passed to graph.plotFCM
Returns
-------
None : if no data is present
plot_output : output of plot command used to draw (e.g., output of hist)
Examples
--------
>>> sample.plot('Y2-A', bins=100, alpha=0.7, color='green', normed=1) # 1d histogram
>>> sample.plot(['B1-A', 'Y2-A'], cmap=cm.Oranges, colorbar=False) # 2d histogram | 2.782012 | 2.876436 | 0.967173 |
if channel_names == 'auto':
channel_names = list(self.channel_names)
def plot_region(channels, **kwargs):
if channels[0] == channels[1]:
channels = channels[0]
kind = 'histogram'
self.plot(channels, kind=kind, gates=gates,
gate_colors=gate_colors, autolabel=False)
channel_list = np.array(list(channel_names), dtype=object)
channel_mat = [[(x, y) for x in channel_list] for y in channel_list]
channel_mat = DataFrame(channel_mat, columns=channel_list, index=channel_list)
kwargs.setdefault('wspace', 0.1)
kwargs.setdefault('hspace', 0.1)
return plot_ndpanel(channel_mat, plot_region, **kwargs) | def view(self, channel_names='auto',
gates=None,
diag_kw={}, offdiag_kw={},
gate_colors=None, **kwargs) | Generates a matrix of subplots allowing for a quick way
to examine how the sample looks in different channels.
Parameters
----------
channel_names : [list | 'auto']
List of channel names to plot.
offdiag_plot : ['histogram' | 'scatter']
Specifies the type of plot for the off-diagonal elements.
diag_kw : dict
Not implemented
Returns
------------
axes references | 3.319517 | 3.473454 | 0.955682 |
'''Loads the current sample in a graphical interface for drawing gates.
Parameters
----------
backend: 'auto' | 'wx' | 'webagg'
Specifies which backend should be used to view the sample.
'''
if backend == 'auto':
if matplotlib.__version__ >= '1.4.3':
backend = 'WebAgg'
else:
backend = 'wx'
if backend == 'wx':
from FlowCytometryTools.gui.wx_backend import gui
elif backend == 'webagg':
from FlowCytometryTools.gui.webagg_backend import gui
else:
raise ValueError('No support for backend {}'.format(backend))
gui.GUILauncher(measurement=self) | def view_interactively(self, backend='wx') | Loads the current sample in a graphical interface for drawing gates.
Parameters
----------
backend: 'auto' | 'wx' | 'webagg'
Specifies which backend should be used to view the sample. | 4.312677 | 2.610774 | 1.651877 |
# Create new measurement
new = self.copy()
data = new.data
channels = to_list(channels)
if channels is None:
channels = data.columns
## create transformer
if isinstance(transform, Transformation):
transformer = transform
else:
if auto_range: # determine transformation range
if 'd' in kwargs:
warnings.warn(
'Encountered both auto_range=True and user-specified range value in '
'parameter d.\n Range value specified in parameter d is used.')
else:
channel_meta = self.channels
# the -1 below because the channel numbers begin from 1 instead of 0
# (this is fragile code)
ranges = [float(r['$PnR']) for i, r in channel_meta.iterrows() if
self.channel_names[i - 1] in channels]
if not np.allclose(ranges, ranges[0]):
raise Exception()
if transform in {'hlog', 'tlog', 'hlog_inv', 'tlog_inv'}:
# Hacky fix to make sure that 'd' is provided only
# for hlog / tlog transformations
kwargs['d'] = np.log10(ranges[0])
transformer = Transformation(transform, direction, args, **kwargs)
## create new data
transformed = transformer(data[channels], use_spln)
if return_all:
new_data = data
else:
new_data = data.filter(channels)
new_data[channels] = transformed
## update new Measurement
new.data = new_data
if ID is not None:
new.ID = ID
if get_transformer:
return new, transformer
else:
return new | def transform(self, transform, direction='forward',
channels=None, return_all=True, auto_range=True,
use_spln=True, get_transformer=False, ID=None,
apply_now=True,
args=(), **kwargs) | Applies a transformation to the specified channels.
The transformation parameters are shared between all transformed channels.
If different parameters need to be applied to different channels,
use several calls to `transform`.
Parameters
----------
{FCMeasurement_transform_pars}
ID : hashable | None
ID for the resulting collection. If None is passed, the original ID is used.
Returns
-------
new : FCMeasurement
New measurement containing the transformed data.
transformer : Transformation
The Transformation applied to the input measurement.
Only returned if get_transformer=True.
Examples
--------
{FCMeasurement_transform_examples} | 4.999109 | 5.182323 | 0.964646 |
data = self.get_data()
num_events = data.shape[0]
if isinstance(key, float):
if (key > 1.0) or (key < 0.0):
raise ValueError('If float, key must be between 0.0 and 1.0')
key = int(num_events * key)
elif isinstance(key, tuple):
all_float = all([isinstance(x, float) for x in key])
if (len(key) > 2) or (not all_float):
raise ValueError('Tuple must consist of two floats, each between 0.0 and 1.0')
start = int(num_events * key[0])
stop = int(num_events * key[1])
key = slice(start, stop) # Convert to a slice
try:
if isinstance(key, slice):
if auto_resize:
stop = key.stop if key.stop < num_events else num_events
start = key.start if key.start < num_events else num_events
key = slice(start, stop, key.step) # Generate new slice
newdata = data.iloc[key]
elif isinstance(key, int):
if auto_resize:
if key > num_events:
key = num_events
if key < 1:
# EDGE CAES: Must return an empty sample
order = 'start'
if order == 'random':
newdata = data.loc[sample(list(data.index), key)] # Use loc not iloc here!!
elif order == 'start':
newdata = data.iloc[:key]
elif order == 'end':
newdata = data.iloc[-key:]
else:
raise ValueError("order must be in ('random', 'start', 'end')")
else:
raise TypeError("'key' must be of type int, float, tuple or slice.")
except IndexError:
print("If you're encountering an out-of-bounds error, "
"try to setting 'auto_resize' to True.")
raise
newsample = self.copy()
newsample.set_data(data=newdata)
return newsample | def subsample(self, key, order='random', auto_resize=False) | Allows arbitrary slicing (subsampling) of the data.
Parameters
----------
{FCMeasurement_subsample_parameters}
Returns
-------
FCMeasurement
Sample with subsampled data. | 2.81609 | 2.834348 | 0.993558 |
'''
Apply given gate and return new gated sample (with assigned data).
Parameters
----------
gate : {_gate_available_classes}
Returns
-------
FCMeasurement
Sample with data that passes gates
'''
data = self.get_data()
newdata = gate(data)
newsample = self.copy()
newsample.data = newdata
return newsample | def gate(self, gate, apply_now=True) | Apply given gate and return new gated sample (with assigned data).
Parameters
----------
gate : {_gate_available_classes}
Returns
-------
FCMeasurement
Sample with data that passes gates | 10.914154 | 2.2524 | 4.845567 |
'''
Apply transform to each Measurement in the Collection.
Return a new Collection with transformed data.
{_containers_held_in_memory_warning}
Parameters
----------
{FCMeasurement_transform_pars}
ID : hashable | None
ID for the resulting collection. If None is passed, the original ID is used.
Returns
-------
new : FCCollection
New collection containing the transformed measurements.
transformer : Transformation
The Transformation applied to the measurements.
Only returned if get_transformer=True & share_transform=True.
Examples
--------
{FCMeasurement_transform_examples}
'''
new = self.copy()
if share_transform:
channel_meta = list(self.values())[0].channels
channel_names = list(self.values())[0].channel_names
if channels is None:
channels = list(channel_names)
else:
channels = to_list(channels)
## create transformer
if isinstance(transform, Transformation):
transformer = transform
else:
if auto_range: # determine transformation range
if 'd' in kwargs:
warnings.warn('Encountered both auto_range=True and user-specified range '
'value in parameter d.\n '
'Range value specified in parameter d is used.')
else:
# the -1 below because the channel numbers begin from 1 instead of 0 (this is fragile code)
ranges = [float(r['$PnR']) for i, r in channel_meta.iterrows() if
channel_names[i - 1] in channels]
if not np.allclose(ranges, ranges[0]):
raise Exception('Not all specified channels have the same '
'data range, therefore they cannot be '
'transformed together.')
if transform in {'hlog', 'tlog', 'hlog_inv', 'tlog_inv'}:
# Hacky fix to make sure that 'd' is provided only
# for hlog / tlog transformations
kwargs['d'] = np.log10(ranges[0])
transformer = Transformation(transform, direction, args, **kwargs)
if use_spln:
xmax = self.apply(lambda x: x[channels].max().max(), applyto='data').max().max()
xmin = self.apply(lambda x: x[channels].min().min(), applyto='data').min().min()
transformer.set_spline(xmin, xmax)
## transform all measurements
for k, v in new.items():
new[k] = v.transform(transformer, channels=channels, return_all=return_all,
use_spln=use_spln, apply_now=apply_now)
else:
for k, v in new.items():
new[k] = v.transform(transform, direction=direction, channels=channels,
return_all=return_all, auto_range=auto_range,
get_transformer=False,
use_spln=use_spln, apply_now=apply_now, args=args, **kwargs)
if ID is not None:
new.ID = ID
if share_transform and get_transformer:
return new, transformer
else:
return new | def transform(self, transform, direction='forward', share_transform=True,
channels=None, return_all=True, auto_range=True,
use_spln=True, get_transformer=False, ID=None,
apply_now=True,
args=(), **kwargs) | Apply transform to each Measurement in the Collection.
Return a new Collection with transformed data.
{_containers_held_in_memory_warning}
Parameters
----------
{FCMeasurement_transform_pars}
ID : hashable | None
ID for the resulting collection. If None is passed, the original ID is used.
Returns
-------
new : FCCollection
New collection containing the transformed measurements.
transformer : Transformation
The Transformation applied to the measurements.
Only returned if get_transformer=True & share_transform=True.
Examples
--------
{FCMeasurement_transform_examples} | 4.098352 | 2.815966 | 1.455398 |
'''
Applies the gate to each Measurement in the Collection, returning a new Collection with gated data.
{_containers_held_in_memory_warning}
Parameters
----------
gate : {_gate_available_classes}
ID : [ str, numeric, None]
New ID to be given to the output. If None, the ID of the current collection will be used.
'''
def func(well):
return well.gate(gate, apply_now=apply_now)
return self.apply(func, output_format='collection', ID=ID) | def gate(self, gate, ID=None, apply_now=True) | Applies the gate to each Measurement in the Collection, returning a new Collection with gated data.
{_containers_held_in_memory_warning}
Parameters
----------
gate : {_gate_available_classes}
ID : [ str, numeric, None]
New ID to be given to the output. If None, the ID of the current collection will be used. | 10.280985 | 2.156825 | 4.766723 |
def func(well):
return well.subsample(key=key, order=order, auto_resize=auto_resize)
return self.apply(func, output_format='collection', ID=ID) | def subsample(self, key, order='random', auto_resize=False, ID=None) | Allows arbitrary slicing (subsampling) of the data.
.. note::
When using order='random', the sampling is random
for each of the measurements in the collection.
Parameters
----------
{FCMeasurement_subsample_parameters}
Returns
-------
FCCollection or a subclass
new collection of subsampled event data. | 5.099173 | 5.771478 | 0.883513 |
return self.apply(lambda x: x.counts, ids=ids, setdata=setdata, output_format=output_format) | def counts(self, ids=None, setdata=False, output_format='DataFrame') | Return the counts in each of the specified measurements.
Parameters
----------
ids : [hashable | iterable of hashables | None]
Keys of measurements to get counts of.
If None is given get counts of all measurements.
setdata : bool
Whether to set the data in the Measurement object.
Used only if data is not already set.
output_format : DataFrame | dict
Specifies the output format for that data.
Returns
-------
[DataFrame | Dictionary]
Dictionary keys correspond to measurement keys. | 2.962925 | 4.061555 | 0.729505 |
##
# Note
# -------
# The function assumes that grid_plot and FCMeasurement.plot use unique key words.
# Any key word arguments that appear in both functions are passed only to grid_plot in the end.
##
# Automatically figure out which of the kwargs should
# be sent to grid_plot instead of two sample.plot
# (May not be a robust solution, we'll see as the code evolves
grid_arg_list = inspect.getargspec(OrderedCollection.grid_plot).args
grid_plot_kwargs = {'ids': ids,
'row_labels': row_labels,
'col_labels': col_labels}
for key, value in list(kwargs.items()):
if key in grid_arg_list:
kwargs.pop(key)
grid_plot_kwargs[key] = value
##
# Make sure channel names is a list to make the code simpler below
channel_names = to_list(channel_names)
##
# Determine data limits for binning
#
if kind == 'histogram':
nbins = kwargs.get('bins', 200)
if isinstance(nbins, int):
min_list = []
max_list = []
for sample in self:
min_list.append(self[sample].data[channel_names].min().values)
max_list.append(self[sample].data[channel_names].max().values)
min_list = list(zip(*min_list))
max_list = list(zip(*max_list))
bins = []
for i, c in enumerate(channel_names):
min_v = min(min_list[i])
max_v = max(max_list[i])
bins.append(np.linspace(min_v, max_v, nbins))
# Check if 1d
if len(channel_names) == 1:
bins = bins[0] # bins should be an ndarray, not a list of ndarrays
kwargs['bins'] = bins
##########
# Defining the plotting function that will be used.
# At the moment grid_plot handles the labeling
# (rather than sample.plot or the base function
# in GoreUtilities.graph
def plot_sample(sample, ax):
return sample.plot(channel_names, ax=ax,
gates=gates, gate_colors=gate_colors,
colorbar=False,
kind=kind, autolabel=False, **kwargs)
xlabel, ylabel = None, None
if autolabel:
cnames = to_list(channel_names)
xlabel = cnames[0]
if len(cnames) == 2:
ylabel = cnames[1]
return self.grid_plot(plot_sample, xlim=xlim, ylim=ylim,
xlabel=xlabel, ylabel=ylabel,
**grid_plot_kwargs) | def plot(self, channel_names, kind='histogram',
gates=None, gate_colors=None,
ids=None, row_labels=None, col_labels=None,
xlim='auto', ylim='auto',
autolabel=True,
**kwargs) | Produces a grid plot with each subplot corresponding to the data at the given position.
Parameters
---------------
{FCMeasurement_plot_pars}
{graph_plotFCM_pars}
{_graph_grid_layout}
Returns
-------
{_graph_grid_layout_returns}
Examples
--------
Below, plate is an instance of FCOrderedCollection
>>> plate.plot(['SSC-A', 'FSC-A'], kind='histogram', autolabel=True)
>>> plate.plot(['SSC-A', 'FSC-A'], xlim=(0, 10000))
>>> plate.plot(['B1-A', 'Y2-A'], kind='scatter', color='red', s=1, alpha=0.3)
>>> plate.plot(['B1-A', 'Y2-A'], bins=100, alpha=0.3)
>>> plate.plot(['B1-A', 'Y2-A'], bins=[linspace(-1000, 10000, 100), linspace(-1000, 10000, 100)], alpha=0.3)
.. note::
For more details see documentation for FCMeasurement.plot
**kwargs passes arguments to both grid_plot and to FCMeasurement.plot. | 3.990231 | 3.777588 | 1.056291 |
if isinstance(obj, unicode_type):
return obj
elif isinstance(obj, bytes_type):
try:
return unicode_type(obj, 'utf-8')
except UnicodeDecodeError as strerror:
sys.stderr.write("UnicodeDecodeError exception for string '%s': %s\n" % (obj, strerror))
return unicode_type(obj, 'utf-8', 'replace')
else:
return unicode_type(obj) | def obj2unicode(obj) | Return a unicode representation of a python object | 2.340443 | 2.36466 | 0.989759 |
if isinstance(iterable, bytes_type) or isinstance(iterable, unicode_type):
return sum([uchar_width(c) for c in obj2unicode(iterable)])
else:
return iterable.__len__() | def len(iterable) | Redefining len here so it will be able to work with non-ASCII characters | 6.746334 | 6.025426 | 1.119644 |
if len(array) != 4:
raise ArraySizeError("array should contain 4 characters")
array = [ x[:1] for x in [ str(s) for s in array ] ]
(self._char_horiz, self._char_vert,
self._char_corner, self._char_header) = array
return self | def set_chars(self, array) | Set the characters used to draw lines between rows and columns
- the array should contain 4 fields:
[horizontal, vertical, corner, header]
- default is set to:
['-', '|', '+', '='] | 5.680732 | 4.263618 | 1.332374 |
self._check_row_size(array)
self._header_align = array
return self | def set_header_align(self, array) | Set the desired header alignment
- the elements of the array should be either "l", "c" or "r":
* "l": column flushed left
* "c": column centered
* "r": column flushed right | 7.841752 | 8.062165 | 0.972661 |
self._check_row_size(array)
self._align = array
return self | def set_cols_align(self, array) | Set the desired columns alignment
- the elements of the array should be either "l", "c" or "r":
* "l": column flushed left
* "c": column centered
* "r": column flushed right | 10.290493 | 11.546805 | 0.891198 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.