code
string | signature
string | docstring
string | loss_without_docstring
float64 | loss_with_docstring
float64 | factor
float64 |
---|---|---|---|---|---|
cfg = Config.instance()
default = cfg.get_expanded(section, option, **kwargs)
return cfg.get_expanded(section, "{}_{}".format(self.workflow_type, option),
default=default, **kwargs)
|
def get_prefixed_config(self, section, option, **kwargs)
|
TODO.
| 5.379511 | 5.336412 | 1.008076 |
tol = abs(tol)
im = np.zeros((p.imzmldict["max count of pixels y"], p.imzmldict["max count of pixels x"]))
for i, (x, y, z_) in enumerate(p.coordinates):
if z_ == 0:
UserWarning("z coordinate = 0 present, if you're getting blank images set getionimage(.., .., z=0)")
if z_ == z:
mzs, ints = map(lambda x: np.asarray(x), p.getspectrum(i))
min_i, max_i = _bisect_spectrum(mzs, mz_value, tol)
im[y - 1, x - 1] = reduce_func(ints[min_i:max_i+1])
return im
|
def getionimage(p, mz_value, tol=0.1, z=1, reduce_func=sum)
|
Get an image representation of the intensity distribution
of the ion with specified m/z value.
By default, the intensity values within the tolerance region are summed.
:param p:
the ImzMLParser (or anything else with similar attributes) for the desired dataset
:param mz_value:
m/z value for which the ion image shall be returned
:param tol:
Absolute tolerance for the m/z value, such that all ions with values
mz_value-|tol| <= x <= mz_value+|tol| are included. Defaults to 0.1
:param z:
z Value if spectrogram is 3-dimensional.
:param reduce_func:
the bahaviour for reducing the intensities between mz_value-|tol| and mz_value+|tol| to a single value. Must
be a function that takes a sequence as input and outputs a number. By default, the values are summed.
:return:
numpy matrix with each element representing the ion intensity in this
pixel. Can be easily plotted with matplotlib
| 4.948709 | 5.223704 | 0.947356 |
mz_group = int_group = None
slist = None
elem_iterator = self.iterparse(self.filename, events=("start", "end"))
if sys.version_info > (3,):
_, self.root = next(elem_iterator)
else:
_, self.root = elem_iterator.next()
for event, elem in elem_iterator:
if elem.tag == self.sl + "spectrumList" and event == "start":
slist = elem
elif elem.tag == self.sl + "spectrum" and event == "end":
self.__process_spectrum(elem)
slist.remove(elem)
elif elem.tag == self.sl + "referenceableParamGroup" and event == "end":
for param in elem:
if param.attrib["name"] == "m/z array":
self.mzGroupId = elem.attrib['id']
mz_group = elem
elif param.attrib["name"] == "intensity array":
self.intGroupId = elem.attrib['id']
int_group = elem
self.__assign_precision(int_group, mz_group)
self.__fix_offsets()
|
def __iter_read_spectrum_meta(self)
|
This method should only be called by __init__. Reads the data formats, coordinates and offsets from
the .imzML file and initializes the respective attributes. While traversing the XML tree, the per-spectrum
metadata is pruned, i.e. the <spectrumList> element(s) are left behind empty.
Supported accession values for the number formats: "MS:1000521", "MS:1000523", "IMS:1000141" or
"IMS:1000142". The string values are "32-bit float", "64-bit float", "32-bit integer", "64-bit integer".
| 3.121592 | 2.955619 | 1.056155 |
d = {}
scan_settings_list_elem = self.root.find('%sscanSettingsList' % self.sl)
instrument_config_list_elem = self.root.find('%sinstrumentConfigurationList' % self.sl)
supportedparams1 = [("max count of pixels x", int), ("max count of pixels y", int),
("max dimension x", int), ("max dimension y", int), ("pixel size x", float),
("pixel size y", float), ("matrix solution concentration", float)]
supportedparams2 = [("wavelength", float),
("focus diameter x", float), ("focus diameter y", float), ("pulse energy", float),
("pulse duration", float), ("attenuation", float)]
supportedaccessions1 = [("IMS:1000042", "value"), ("IMS:1000043", "value"),
("IMS:1000044", "value"), ("IMS:1000045", "value"),
("IMS:1000046", "value"), ("IMS:1000047", "value"), ("MS:1000835", "value")]
supportedaccessions2 = [("MS:1000843", "value"), ("MS:1000844", "value"),
("MS:1000845", "value"), ("MS:1000846", "value"), ("MS:1000847", "value"),
("MS:1000848", "value")]
for i in range(len(supportedparams1)):
acc, attr = supportedaccessions1[i]
elem = scan_settings_list_elem.find('.//%scvParam[@accession="%s"]' % (self.sl, acc))
if elem is None:
break
name, T = supportedparams1[i]
try:
d[name] = T(elem.attrib[attr])
except ValueError:
warn(Warning('Wrong data type in XML file. Skipped attribute "%s"' % name))
for i in range(len(supportedparams2)):
acc, attr = supportedaccessions2[i]
elem = instrument_config_list_elem.find('.//%scvParam[@accession="%s"]' % (self.sl, acc))
if elem is None:
break
name, T = supportedparams2[i]
try:
d[name] = T(elem.attrib[attr])
except ValueError:
warn(Warning('Wrong data type in XML file. Skipped attribute "%s"' % name))
return d
|
def __readimzmlmeta(self)
|
This method should only be called by __init__. Initializes the imzmldict with frequently used metadata from
the .imzML file.
This method reads only a subset of the available meta information and may be extended in the future. The keys
are named similarly to the imzML names. Currently supported keys: "max dimension x", "max dimension y",
"pixel size x", "pixel size y", "matrix solution concentration", "wavelength", "focus diameter x",
"focus diameter y", "pulse energy", "pulse duration", "attenuation".
If a key is not found in the XML tree, it will not be in the dict either.
:return d:
dict containing above mentioned meta data
:rtype:
dict
:raises Warning:
if an xml attribute has a number format different from the imzML specification
| 2.245338 | 1.921898 | 1.168292 |
try:
pixel_size_x = self.imzmldict["pixel size x"]
pixel_size_y = self.imzmldict["pixel size y"]
except KeyError:
raise KeyError("Could not find all pixel size attributes in imzML file")
image_x, image_y = self.coordinates[i][:2]
return image_x * pixel_size_x, image_y * pixel_size_y
|
def get_physical_coordinates(self, i)
|
For a pixel index i, return the real-world coordinates in nanometers.
This is equivalent to multiplying the image coordinates of the given pixel with the pixel size.
:param i: the pixel index
:return: a tuple of x and y coordinates.
:rtype: Tuple[float]
:raises KeyError: if the .imzML file does not specify the attributes "pixel size x" and "pixel size y"
| 3.14895 | 2.340383 | 1.345485 |
mz_bytes, intensity_bytes = self.get_spectrum_as_string(index)
mz_array = np.frombuffer(mz_bytes, dtype=self.mzPrecision)
intensity_array = np.frombuffer(intensity_bytes, dtype=self.intensityPrecision)
return mz_array, intensity_array
|
def getspectrum(self, index)
|
Reads the spectrum at specified index from the .ibd file.
:param index:
Index of the desired spectrum in the .imzML file
Output:
mz_array: numpy.ndarray
Sequence of m/z values representing the horizontal axis of the desired mass
spectrum
intensity_array: numpy.ndarray
Sequence of intensity values corresponding to mz_array
| 2.810451 | 2.797519 | 1.004623 |
offsets = [self.mzOffsets[index], self.intensityOffsets[index]]
lengths = [self.mzLengths[index], self.intensityLengths[index]]
lengths[0] *= self.sizeDict[self.mzPrecision]
lengths[1] *= self.sizeDict[self.intensityPrecision]
self.m.seek(offsets[0])
mz_string = self.m.read(lengths[0])
self.m.seek(offsets[1])
intensity_string = self.m.read(lengths[1])
return mz_string, intensity_string
|
def get_spectrum_as_string(self, index)
|
Reads m/z array and intensity array of the spectrum at specified location
from the binary file as a byte string. The string can be unpacked by the struct
module. To get the arrays as numbers, use getspectrum
:param index:
Index of the desired spectrum in the .imzML file
:rtype: Tuple[str, str]
Output:
mz_string:
string where each character represents a byte of the mz array of the
spectrum
intensity_string:
string where each character represents a byte of the intensity array of
the spectrum
| 2.494165 | 2.358719 | 1.057424 |
'''reads a mz array from the currently open ibd file'''
self.ibd.seek(mz_offset)
data = self.ibd.read(mz_enc_len)
self.ibd.seek(0, 2)
data = self.mz_compression.decompress(data)
return tuple(np.fromstring(data, dtype=self.mz_dtype))
|
def _read_mz(self, mz_offset, mz_len, mz_enc_len)
|
reads a mz array from the currently open ibd file
| 4.031571 | 2.985821 | 1.350239 |
'''given an mz array, return the mz_data (disk location)
if the mz array was not previously written, write to disk first'''
mzs = tuple(mzs) # must be hashable
if mzs in self.lru_cache:
return self.lru_cache[mzs]
# mz not recognized ... check hash
mz_hash = "%s-%s-%s" % (hash(mzs), sum(mzs), len(mzs))
if mz_hash in self.hashes:
for mz_data in self.hashes[mz_hash]:
test_mz = self._read_mz(*mz_data)
if mzs == test_mz:
self.lru_cache[test_mz] = mz_data
return mz_data
# hash not recognized
# must be a new mz array ... write it, add it to lru_cache and hashes
mz_data = self._encode_and_write(mzs, self.mz_dtype, self.mz_compression)
self.hashes[mz_hash].append(mz_data)
self.lru_cache[mzs] = mz_data
return mz_data
|
def _get_previous_mz(self, mzs)
|
given an mz array, return the mz_data (disk location)
if the mz array was not previously written, write to disk first
| 3.759005 | 2.78922 | 1.347691 |
# must be rounded now to allow comparisons to later data
# but don't waste CPU time in continuous mode since the data will not be used anyway
if self.mode != "continuous" or self.first_mz is None:
mzs = self.mz_compression.rounding(mzs)
intensities = self.intensity_compression.rounding(intensities)
if self.mode == "continuous":
if self.first_mz is None:
self.first_mz = self._encode_and_write(mzs, self.mz_dtype, self.mz_compression)
mz_data = self.first_mz
elif self.mode == "processed":
mz_data = self._encode_and_write(mzs, self.mz_dtype, self.mz_compression)
elif self.mode == "auto":
mz_data = self._get_previous_mz(mzs)
else:
raise TypeError("Unknown mode: %s" % self.mode)
mz_offset, mz_len, mz_enc_len = mz_data
int_offset, int_len, int_enc_len = self._encode_and_write(intensities, self.intensity_dtype, self.intensity_compression)
mz_min = np.min(mzs)
mz_max = np.max(mzs)
ix_max = np.argmax(intensities)
mz_base = mzs[ix_max]
int_base = intensities[ix_max]
int_tic = np.sum(intensities)
s = _Spectrum(coords, mz_len, mz_offset, mz_enc_len, int_len, int_offset, int_enc_len, mz_min, mz_max, mz_base, int_base, int_tic, userParams)
self.spectra.append(s)
|
def addSpectrum(self, mzs, intensities, coords, userParams=[])
|
Add a mass spectrum to the file.
:param mz:
mz array
:param intensities:
intensity array
:param coords:
* 2-tuple of x and y position OR
* 3-tuple of x, y, and z position
note some applications want coords to be 1-indexed
| 2.912286 | 2.966696 | 0.98166 |
'''alias of close()'''
self.ibd.close()
self._write_xml()
self.xml.close()
|
def finish(self)
|
alias of close()
| 20.66239 | 14.284315 | 1.446509 |
global settings, project_settings
# Global changes settings
settings = Changes.load()
# Project specific settings
project_settings = Project.load(GitHubRepository(auth_token=settings.auth_token))
|
def initialise()
|
Detects, prompts and initialises the project.
Stores project and tool configuration in the `changes` module.
| 14.724542 | 12.665328 | 1.162587 |
rmtree('dist', ignore_errors=True)
build_package_command = 'python setup.py clean sdist bdist_wheel'
result = shell.dry_run(build_package_command, context.dry_run)
packages = Path('dist').files() if not context.dry_run else "nothing"
if not result:
raise Exception('Error building packages: %s' % result)
else:
log.info('Built %s' % ', '.join(packages))
return packages
|
def build_distributions(context)
|
Builds package distributions
| 4.634826 | 4.43005 | 1.046224 |
if not context.dry_run and build_distributions(context):
with util.mktmpdir() as tmp_dir:
venv.create_venv(tmp_dir=tmp_dir)
for distribution in Path('dist').files():
try:
venv.install(distribution, tmp_dir)
log.info('Successfully installed %s', distribution)
if context.test_command and verification.run_test_command(context):
log.info(
'Successfully ran test command: %s', context.test_command
)
except Exception as e:
raise Exception(
'Error installing distribution %s' % distribution, e
)
else:
log.info('Dry run, skipping installation')
|
def install_package(context)
|
Attempts to install the sdist and wheel.
| 4.551575 | 4.267712 | 1.066514 |
if not context.dry_run and build_distributions(context):
upload_args = 'twine upload '
upload_args += ' '.join(Path('dist').files())
if context.pypi:
upload_args += ' -r %s' % context.pypi
upload_result = shell.dry_run(upload_args, context.dry_run)
if not context.dry_run and not upload_result:
raise Exception('Error uploading: %s' % upload_result)
else:
log.info(
'Successfully uploaded %s:%s', context.module_name, context.new_version
)
else:
log.info('Dry run, skipping package upload')
|
def upload_package(context)
|
Uploads your project packages to pypi with twine.
| 4.163539 | 3.958171 | 1.051885 |
tmp_dir = venv.create_venv()
install_cmd = '%s/bin/pip install %s' % (tmp_dir, context.module_name)
package_index = 'pypi'
if context.pypi:
install_cmd += '-i %s' % context.pypi
package_index = context.pypi
try:
result = shell.dry_run(install_cmd, context.dry_run)
if not context.dry_run and not result:
log.error(
'Failed to install %s from %s', context.module_name, package_index
)
else:
log.info(
'Successfully installed %s from %s', context.module_name, package_index
)
except Exception as e:
error_msg = 'Error installing %s from %s' % (context.module_name, package_index)
log.exception(error_msg)
raise Exception(error_msg, e)
|
def install_from_pypi(context)
|
Attempts to install your package from pypi.
| 2.647385 | 2.59316 | 1.020911 |
log.info('%s? %s' % (probe_name, probe_result))
if not probe_result:
raise exceptions.ProbeException(failure_msg)
else:
return True
|
def report_and_raise(probe_name, probe_result, failure_msg)
|
Logs the probe result and raises on failure
| 3.410565 | 3.182794 | 1.071563 |
init_path = '{}/__init__.py'.format(python_module)
has_metadata = (
exists(init_path)
and attributes.has_attribute(python_module, '__version__')
and attributes.has_attribute(python_module, '__url__')
)
return report_and_raise(
'Has module metadata',
has_metadata,
'Your %s/__init__.py must contain __version__ and __url__ attributes',
)
|
def has_metadata(python_module)
|
`<module_name>/__init__.py` with `__version__` and `__url__`
| 4.048614 | 3.536479 | 1.144815 |
log.info('Checking project for changes requirements.')
return (
has_tools()
and has_setup()
and has_metadata(python_module)
and has_test_runner()
and has_readme()
and has_changelog()
)
|
def probe_project(python_module)
|
Check if the project meets `changes` requirements.
Complain and exit otherwise.
| 7.210746 | 5.473756 | 1.317331 |
commit_version_change(context)
if context.github:
# github token
project_settings = project_config(context.module_name)
if not project_settings['gh_token']:
click.echo('You need a GitHub token for changes to create a release.')
click.pause(
'Press [enter] to launch the GitHub "New personal access '
'token" page, to create a token for changes.'
)
click.launch('https://github.com/settings/tokens/new')
project_settings['gh_token'] = click.prompt('Enter your changes token')
store_settings(context.module_name, project_settings)
description = click.prompt('Describe this release')
upload_url = create_github_release(
context, project_settings['gh_token'], description
)
upload_release_distributions(
context,
project_settings['gh_token'],
build_distributions(context),
upload_url,
)
click.pause('Press [enter] to review and update your new release')
click.launch(
'{0}/releases/tag/{1}'.format(context.repo_url, context.new_version)
)
else:
tag_and_push(context)
|
def publish(context)
|
Publishes the project
| 4.631872 | 4.660793 | 0.993795 |
try:
run_tests()
if not context.skip_changelog:
generate_changelog(context)
increment_version(context)
build_distributions(context)
install_package(context)
upload_package(context)
install_from_pypi(context)
publish(context)
except Exception:
log.exception('Error releasing')
|
def perform_release(context)
|
Executes the release process.
| 5.368446 | 5.264467 | 1.019751 |
with open('%s/__init__.py' % module_name) as input_file:
for line in input_file:
if line.startswith(attribute_name):
return ast.literal_eval(line.split('=')[1].strip())
|
def extract_attribute(module_name, attribute_name)
|
Extract metatdata property from a module
| 2.54507 | 2.438196 | 1.043833 |
init_file = '%s/__init__.py' % module_name
_, tmp_file = tempfile.mkstemp()
with open(init_file) as input_file:
with open(tmp_file, 'w') as output_file:
for line in input_file:
if line.startswith(attribute_name):
line = "%s = '%s'\n" % (attribute_name, new_value)
output_file.write(line)
if not dry_run:
Path(tmp_file).copy(init_file)
else:
log.info(diff(tmp_file, init_file, retcode=None))
|
def replace_attribute(module_name, attribute_name, new_value, dry_run=True)
|
Update a metadata attribute
| 2.463835 | 2.611035 | 0.943624 |
init_file = '%s/__init__.py' % module_name
return any(
[attribute_name in init_line for init_line in open(init_file).readlines()]
)
|
def has_attribute(module_name, attribute_name)
|
Is this attribute present?
| 3.870974 | 3.664319 | 1.056397 |
if not alternatives:
raise ValueError
if not isinstance(alternatives, list):
raise TypeError
choice_map = OrderedDict(
('{}'.format(i), value) for i, value in enumerate(alternatives, 1)
)
# prepend a termination option
input_terminator = '0'
choice_map.update({input_terminator: '<done>'})
choice_map.move_to_end('0', last=False)
choice_indexes = choice_map.keys()
choice_lines = ['{} - {}'.format(*c) for c in choice_map.items()]
prompt = '\n'.join(
(
'Select labels:',
'\n'.join(choice_lines),
'Choose from {}'.format(', '.join(choice_indexes)),
)
)
user_choices = set()
user_choice = None
while not user_choice == input_terminator:
if user_choices:
note('Selected labels: [{}]'.format(', '.join(user_choices)))
user_choice = click.prompt(
prompt, type=click.Choice(choice_indexes), default=input_terminator
)
done = user_choice == input_terminator
new_selection = user_choice not in user_choices
nothing_selected = not user_choices
if not done and new_selection:
user_choices.add(choice_map[user_choice])
if done and nothing_selected:
error('Please select at least one label')
user_choice = None
return user_choices
|
def choose_labels(alternatives)
|
Prompt the user select several labels from the provided alternatives.
At least one label must be selected.
:param list alternatives: Sequence of options that are available to select from
:return: Several selected labels
| 3.222221 | 3.184933 | 1.011708 |
curdir = os.getcwd()
try:
if dirname is not None:
os.chdir(dirname)
requests_cache.configure(expire_after=60 * 10 * 10)
changes.initialise()
yield
finally:
os.chdir(curdir)
|
def work_in(dirname=None)
|
Context manager version of os.chdir. When exited, returns to the working
directory prior to entering.
| 4.860586 | 4.761619 | 1.020784 |
with work_in(repo_directory):
if discard:
stage_command.discard(release_name, release_description)
else:
stage_command.stage(draft, release_name, release_description)
|
def stage(draft, discard, repo_directory, release_name, release_description)
|
Stages a release
| 3.020448 | 3.139434 | 0.9621 |
changelog_content = [
'\n## [%s](%s/compare/%s...%s)\n\n'
% (
context.new_version,
context.repo_url,
context.current_version,
context.new_version,
)
]
git_log_content = None
git_log = 'log --oneline --no-merges --no-color'.split(' ')
try:
git_log_tag = git_log + ['%s..master' % context.current_version]
git_log_content = git(git_log_tag)
log.debug('content: %s' % git_log_content)
except Exception:
log.warn('Error diffing previous version, initial release')
git_log_content = git(git_log)
git_log_content = replace_sha_with_commit_link(context.repo_url, git_log_content)
# turn change log entries into markdown bullet points
if git_log_content:
[
changelog_content.append('* %s\n' % line) if line else line
for line in git_log_content[:-1]
]
write_new_changelog(
context.repo_url, 'CHANGELOG.md', changelog_content, dry_run=context.dry_run
)
log.info('Added content to CHANGELOG.md')
context.changelog_content = changelog_content
|
def generate_changelog(context)
|
Generates an automatic changelog from your commit messages.
| 3.631119 | 3.564735 | 1.018623 |
return dict((k, dictionary[k]) for k in keys if k in dictionary)
|
def extract(dictionary, keys)
|
Extract only the specified keys from a dict
:param dictionary: source dictionary
:param keys: list of keys to extract
:return dict: extracted dictionary
| 2.9793 | 6.869225 | 0.433717 |
long_arguments = extract(arguments, long_keys)
return dict(
[(key.replace(key_prefix, ''), value) for key, value in long_arguments.items()]
)
|
def extract_arguments(arguments, long_keys, key_prefix='--')
|
:param arguments: dict of command line arguments
| 3.033424 | 3.002808 | 1.010196 |
tag_option = '--annotate'
if probe.has_signing_key(context):
tag_option = '--sign'
shell.dry_run(
TAG_TEMPLATE % (tag_option, context.new_version, context.new_version),
context.dry_run,
)
shell.dry_run('git push --tags', context.dry_run)
|
def tag_and_push(context)
|
Tags your git repo with the new version number
| 6.109601 | 5.272678 | 1.158728 |
if not dry_run:
cmd_parts = command.split(' ')
# http://plumbum.readthedocs.org/en/latest/local_commands.html#run-and-popen
return local[cmd_parts[0]](cmd_parts[1:])
else:
log.info('Dry run of %s, skipping' % command)
return True
|
def dry_run(command, dry_run)
|
Executes a shell command unless the dry run option is set
| 3.849571 | 4.033144 | 0.954484 |
project_name = curdir
config_path = Path(join(project_name, PROJECT_CONFIG_FILE))
if not exists(config_path):
store_settings(DEFAULTS.copy())
return DEFAULTS
return toml.load(io.open(config_path)) or {}
|
def project_config()
|
Deprecated
| 6.483994 | 5.976521 | 1.084911 |
version = semantic_version.Version(version)
if major:
version.major += 1
version.minor = 0
version.patch = 0
elif minor:
version.minor += 1
version.patch = 0
elif patch:
version.patch += 1
return str(version)
|
def increment(version, major=False, minor=False, patch=True)
|
Increment a semantic version
:param version: str of the version to increment
:param major: bool specifying major level version increment
:param minor: bool specifying minor level version increment
:param patch: bool specifying patch level version increment
:return: str of the incremented version
| 1.642908 | 1.900236 | 0.864581 |
attributes.replace_attribute(
context.module_name, '__version__', context.new_version, dry_run=context.dry_run
)
log.info(
'Bumped version from %s to %s' % (context.current_version, context.new_version)
)
|
def increment_version(context)
|
Increments the __version__ attribute of your module's __init__.
| 4.927061 | 4.221978 | 1.167003 |
response = _request('GET', href)
response.raise_for_status()
items.extend(response.json())
if "link" not in response.headers:
return
links = link_header.parse(response.headers["link"])
rels = {link.rel: link.href for link in links.links}
if "next" in rels:
_recursive_gh_get(rels["next"], items)
|
def _recursive_gh_get(href, items)
|
Recursively get list of GitHub objects.
See https://developer.github.com/v3/guides/traversing-with-pagination/
| 2.242004 | 2.321362 | 0.965814 |
global progress_reporter_cls
progress_reporter_cls.reportProgress = sys.stdout.isatty() and progress
if progress_reporter_cls.reportProgress:
progress_reporter_cls = _progress_bar
global _github_token_cli_arg
_github_token_cli_arg = github_token
global _github_api_url
_github_api_url = github_api_url
|
def main(github_token, github_api_url, progress)
|
A CLI to easily manage GitHub releases, assets and references.
| 3.687137 | 3.80503 | 0.969017 |
if new_release_sha is None:
return
refs = get_refs(repo_name, tags=True, pattern="refs/tags/%s" % tag_name)
if not refs:
return
assert len(refs) == 1
# If sha associated with "<tag_name>" is up-to-date, we are done.
previous_release_sha = refs[0]["object"]["sha"]
if previous_release_sha == new_release_sha:
return
tmp_tag_name = tag_name + "-tmp"
# If any, remove leftover temporary tag "<tag_name>-tmp"
refs = get_refs(repo_name, tags=True, pattern="refs/tags/%s" % tmp_tag_name)
if refs:
assert len(refs) == 1
time.sleep(0.1)
gh_ref_delete(repo_name,
"refs/tags/%s" % tmp_tag_name, dry_run=dry_run)
# Update "<tag_name>" release by associating it with the "<tag_name>-tmp"
# and "<new_release_sha>". It will create the temporary tag.
time.sleep(0.1)
patch_release(repo_name, tag_name,
tag_name=tmp_tag_name,
target_commitish=new_release_sha,
dry_run=dry_run)
# Now "<tag_name>-tmp" references "<new_release_sha>", remove "<tag_name>"
time.sleep(0.1)
gh_ref_delete(repo_name, "refs/tags/%s" % tag_name, dry_run=dry_run)
# Finally, update "<tag_name>-tmp" release by associating it with the
# "<tag_name>" and "<new_release_sha>".
time.sleep(0.1)
patch_release(repo_name, tmp_tag_name,
tag_name=tag_name,
target_commitish=new_release_sha,
dry_run=dry_run)
# ... and remove "<tag_name>-tmp"
time.sleep(0.1)
gh_ref_delete(repo_name,
"refs/tags/%s" % tmp_tag_name, dry_run=dry_run)
|
def _update_release_sha(repo_name, tag_name, new_release_sha, dry_run)
|
Update the commit associated with a given release tag.
Since updating a tag commit is not directly possible, this function
does the following steps:
* set the release tag to ``<tag_name>-tmp`` and associate it
with ``new_release_sha``.
* delete tag ``refs/tags/<tag_name>``.
* update the release tag to ``<tag_name>`` and associate it
with ``new_release_sha``.
| 2.17288 | 2.214266 | 0.98131 |
funds_df = data.approved_funds_by_projects
project = (
funds_df
.loc[funds_df['PRONAC'] == pronac]
)
project = project.to_dict('records')[0]
info = (
data
.approved_funds_agg.to_dict(orient="index")
[project['idSegmento']]
)
mean, std = info.values()
outlier = gaussian_outlier.is_outlier(project['VlTotalAprovado'],
mean, std)
maximum_expected_funds = gaussian_outlier.maximum_expected_value(mean, std)
return {
'is_outlier': outlier,
'total_approved_funds': project['VlTotalAprovado'],
'maximum_expected_funds': maximum_expected_funds
}
|
def approved_funds(pronac, dt)
|
Verifica se o valor total de um projeto é um
outlier em relação
aos projetos do mesmo seguimento cultural
Dataframes: planilha_orcamentaria
| 5.202016 | 5.171587 | 1.005884 |
indicators = obj.indicator_set.all()
if not indicators:
value = 0.0
else:
value = indicators.first().value
return value
|
def complexidade(obj)
|
Returns a value that indicates project health, currently FinancialIndicator
is used as this value, but it can be a result of calculation with other
indicators in future
| 4.65029 | 4.192709 | 1.109137 |
indicators = project.indicator_set.all()
indicators_detail = [(indicator_details(i)
for i in indicators)][0]
if not indicators:
indicators_detail = [
{'FinancialIndicator':
{'valor': 0.0,
'metrics': default_metrics, }, }]
indicators_detail = convert_list_into_dict(indicators_detail)
return {'pronac': project.pronac,
'nome': project.nome,
'indicadores': indicators_detail,
}
|
def details(project)
|
Project detail endpoint,
Returns project pronac, name,
and indicators with details
| 8.09786 | 6.441978 | 1.257046 |
metrics = format_metrics_json(indicator)
metrics_list = set(indicator.metrics
.filter(name__in=metrics_name_map.keys())
.values_list('name', flat=True))
null_metrics = default_metrics
for keys in metrics_list:
null_metrics.pop(metrics_name_map[keys], None)
metrics.update(null_metrics)
return {type(indicator).__name__: {
'valor': indicator.value,
'metricas': metrics, },
}
|
def indicator_details(indicator)
|
Return a dictionary with all metrics in FinancialIndicator,
if there aren't values for that Indicator, it is filled with default values
| 5.650019 | 5.344788 | 1.057108 |
assert isinstance(metric, str)
assert '.' in metric, 'metric must declare a namespace'
try:
func = self._metrics[metric]
return func(pronac, self._data)
except KeyError:
raise InvalidMetricError('metric does not exist')
|
def get_metric(self, pronac, metric)
|
Get metric for the project with the given pronac number.
Usage:
>>> metrics.get_metric(pronac_id, 'finance.approved_funds')
| 5.467054 | 6.412118 | 0.852613 |
def decorator(func):
name = func.__name__
key = f'{category}.{name}'
self._metrics[key] = func
return func
return decorator
|
def register(self, category)
|
Usage:
@metrics.register('finance')
def approved_funds(pronac, data):
return metric_from_data_and_pronac_number(data, pronac)
| 4.563823 | 3.205209 | 1.423877 |
# TODO: Remove except and use ignore_conflicts
# on bulk_create when django 2.2. is released
with open(MODEL_FILE, "r") as file_content:
query = file_content.read()
db = db_connector()
query_result = db.execute_pandas_sql_query(query)
db.close()
try:
projects = Project.objects.bulk_create(
(Project(**vals) for vals in query_result.to_dict("records")),
# ignore_conflicts=True available on django 2.2.
)
indicators = [FinancialIndicator(project=p) for p in projects]
FinancialIndicator.objects.bulk_create(indicators)
except IntegrityError:
# happens when there are duplicated projects
LOG("Projects bulk_create failed, creating one by one...")
with transaction.atomic():
if force_update:
for item in query_result.to_dict("records"):
p, _ = Project.objects.update_or_create(**item)
FinancialIndicator.objects.update_or_create(project=p)
else:
for item in query_result.to_dict("records"):
p, _ = Project.objects.get_or_create(**item)
FinancialIndicator.objects.update_or_create(project=p)
|
def execute_project_models_sql_scripts(force_update=False)
|
Used to get project information from MinC database
and convert to this application Project models.
Uses bulk_create if database is clean
| 3.942353 | 3.798009 | 1.038005 |
missing = missing_metrics(metrics, pronacs)
print(f"There are {len(missing)} missing metrics!")
processors = mp.cpu_count()
print(f"Using {processors} processors to calculate metrics!")
indicators_qs = FinancialIndicator.objects.filter(
project_id__in=[p for p, _ in missing]
)
indicators = {i.project_id: i for i in indicators_qs}
pool = mp.Pool(processors)
results = [
pool.apply_async(create_metric, args=(indicators, metric_name, pronac))
for pronac, metric_name in missing
]
calculated_metrics = [p.get() for p in results]
if calculated_metrics:
Metric.objects.bulk_create(calculated_metrics)
print("Bulk completed")
for indicator in indicators.values():
indicator.fetch_weighted_complexity()
print("Finished update indicators!")
pool.close()
print("Finished metrics calculation!")
|
def create_finance_metrics(metrics: list, pronacs: list)
|
Creates metrics, creating an Indicator if it doesn't already exists
Metrics are created for projects that are in pronacs and saved in
database.
args:
metrics: list of names of metrics that will be calculated
pronacs: pronacs in dataset that is used to calculate those metrics
| 3.92227 | 3.861784 | 1.015663 |
dataframe = data.planilha_comprovacao
project = dataframe.loc[dataframe['PRONAC'] == pronac]
segment_id = project.iloc[0]["idSegmento"]
segments_cache = data.segment_projects_agg
segments_cache = segments_cache.to_dict(orient="index")
mean = segments_cache[segment_id]["mean"]
std = segments_cache[segment_id]["<lambda>"]
total_receipts = project.shape[0]
is_outlier = gaussian_outlier.is_outlier(total_receipts, mean, std)
maximum_expected = gaussian_outlier.maximum_expected_value(mean, std)
return {
"is_outlier": is_outlier,
"valor": total_receipts,
"maximo_esperado": maximum_expected,
"minimo_esperado": 0,
}
|
def total_receipts(pronac, dt)
|
This metric calculates the project total of receipts
and compare it to projects in the same segment
output:
is_outlier: True if projects receipts is not compatible
to others projects in the same segment
total_receipts: absolute number of receipts
maximum_expected_in_segment: maximum receipts expected in segment
| 5.000904 | 4.16001 | 1.202138 |
all_metrics = FinancialIndicator.METRICS
for key in all_metrics:
df = getattr(data, key)
pronac = 'PRONAC'
if key == 'planilha_captacao':
pronac = 'Pronac'
pronacs = df[pronac].unique().tolist()
create_finance_metrics(all_metrics[key], pronacs)
|
def load_project_metrics()
|
Create project metrics for financial indicator
Updates them if already exists
| 9.193935 | 7.995182 | 1.149934 |
info = data.providers_info
df = info[info['PRONAC'] == pronac]
providers_count = data.providers_count.to_dict()[0]
new_providers = []
segment_id = None
for _, row in df.iterrows():
cnpj = row['nrCNPJCPF']
cnpj_count = providers_count.get(cnpj, 0)
segment_id = row['idSegmento']
if cnpj_count <= 1:
item_id = row['idPlanilhaAprovacao']
item_name = row['Item']
provider_name = row['nmFornecedor']
new_provider = {
'nome': provider_name,
'cnpj': cnpj,
'itens': {
item_id: {
'nome': item_name,
'tem_comprovante': True
}
}
}
new_providers.append(new_provider)
providers_amount = len(df['nrCNPJCPF'].unique())
new_providers_amount = len(new_providers)
new_providers_percentage = new_providers_amount / providers_amount
averages = data.average_percentage_of_new_providers.to_dict()
segments_average = averages['segments_average_percentage']
all_projects_average = list(averages['all_projects_average'].values())[0]
if new_providers:
new_providers.sort(key=lambda provider: provider['nome'])
return {
'lista_de_novos_fornecedores': new_providers,
'valor': new_providers_amount,
'new_providers_percentage': new_providers_percentage,
'is_outlier': new_providers_percentage > segments_average[segment_id],
'segment_average_percentage': segments_average[segment_id],
'all_projects_average_percentage': all_projects_average,
}
|
def new_providers(pronac, dt)
|
Return the percentage of providers of a project
that are new to the providers database.
| 3.247592 | 3.20025 | 1.014793 |
segments_percentages = {}
all_projects_percentages = []
providers_count = providers_count.to_dict()[0]
for _, items in providers_info.groupby('PRONAC'):
cnpj_array = items['nrCNPJCPF'].unique()
new_providers = 0
for cnpj in cnpj_array:
cnpj_count = providers_count.get(cnpj, 0)
if cnpj_count <= 1:
new_providers += 1
segment_id = items.iloc[0]['idSegmento']
new_providers_percent = new_providers / cnpj_array.size
segments_percentages.setdefault(segment_id, [])
segments_percentages[segment_id].append(new_providers_percent)
all_projects_percentages.append(new_providers_percent)
segments_average_percentage = {}
for segment_id, percentages in segments_percentages.items():
mean = np.mean(percentages)
segments_average_percentage[segment_id] = mean
return pd.DataFrame.from_dict({
'segments_average_percentage': segments_average_percentage,
'all_projects_average': np.mean(all_projects_percentages)
})
|
def average_percentage_of_new_providers(providers_info, providers_count)
|
Return the average percentage of new providers
per segment and the average percentage of all projects.
| 2.640097 | 2.441161 | 1.081493 |
providers_count = {}
cnpj_array = df.values
for a in cnpj_array:
cnpj = a[0]
occurrences = providers_count.get(cnpj, 0)
providers_count[cnpj] = occurrences + 1
return pd.DataFrame.from_dict(providers_count, orient='index')
|
def providers_count(df)
|
Returns total occurrences of each provider
in the database.
| 2.834273 | 2.810792 | 1.008354 |
cnpj_list = []
for _, items in df.groupby('PRONAC'):
unique_cnpjs = items['nrCNPJCPF'].unique()
cnpj_list += list(unique_cnpjs)
return pd.DataFrame(cnpj_list)
|
def all_providers_cnpj(df)
|
Return CPF/CNPJ of all providers
in database.
| 6.302386 | 6.378539 | 0.988061 |
df = data.providers_info
grouped = df.groupby('PRONAC')
return grouped.get_group(pronac)
|
def get_providers_info(pronac)
|
Return all info about providers of a
project with the given pronac.
| 8.903428 | 8.299947 | 1.072709 |
agg = df.groupby(group).agg(info)
agg.columns = agg.columns.droplevel(0)
return agg
|
def get_info(df, group, info=['mean', 'std'])
|
Aggregate mean and std with the given group.
| 2.689953 | 2.483105 | 1.083302 |
url_keys = {
'pronac': 'idPronac',
'uf': 'uf',
'product': 'produto',
'county': 'idmunicipio',
'item_id': 'idPlanilhaItem',
'stage': 'etapa',
}
if df_values:
values = [item[v] for v in df_values]
url_values = dict(
zip(url_keys.keys(), values)
)
else:
url_values = {
"pronac": item["idPronac"],
"uf": item["UfItem"],
"product": item["idProduto"],
"county": item["cdCidade"],
"item_id": item["idPlanilhaItens"],
"stage": item["cdEtapa"],
}
item_data = [(value, url_values[key]) for key, value in url_keys.items()]
url = prefix
for k, v in item_data:
url += f'/{str(k)}/{str(v)}'
return url
|
def get_salic_url(item, prefix, df_values=None)
|
Mount a salic url for the given item.
| 3.264235 | 3.221401 | 1.013297 |
df = data.planilha_projetos
cpf_cnpj = None
row_df = df[df['PRONAC'].astype(str) == str(pronac)]
if not row_df.empty:
cpf_cnpj = row_df.iloc[0]['CgcCpf']
return str(cpf_cnpj)
|
def get_cpf_cnpj_by_pronac(pronac)
|
Return the CNPF/CNPJ of the proponent
of the project with the given pronac.
| 4.282752 | 3.966133 | 1.079831 |
pronac_id = str(item['idPronac'])
item_id = str(item["idPlanilhaItens"])
combined_id = f'{pronac_id}/{item_id}'
return combined_id in data.receipt.index
|
def has_receipt(item)
|
Verify if a item has a receipt.
| 9.23429 | 8.773776 | 1.052488 |
df = data.all_items
return (
df[df['idSegmento'] == str(segment_id)]
.drop_duplicates(["PRONAC"])
.values
)
|
def get_segment_projects(segment_id)
|
Returns all projects from a segment.
| 17.715309 | 16.727488 | 1.059054 |
mutated_df = df[['IdPRONAC', 'idPlanilhaItem']].astype(str)
mutated_df['pronac_planilha_itens'] = (
f"{mutated_df['IdPRONAC']}/{mutated_df['idPlanilhaItem']}"
)
return (
mutated_df
.set_index(['pronac_planilha_itens'])
)
|
def receipt(df)
|
Return a dataframe to verify if a item has a receipt.
| 5.685514 | 5.426241 | 1.047781 |
if pickles:
save_sql_to_files(f)
if models:
if f:
manage(ctx, 'create_models_from_sql --force True', env={})
else:
manage(ctx, 'create_models_from_sql', env={})
|
def update_data(ctx, models=True, pickles=False, f=False)
|
Updates local django db projects and pickle files using salic database from
MinC
Pickles are saved in /data/raw/ from sql queries in /data/scripts/
Models are created from /data/scripts/models/
| 6.51684 | 5.857473 | 1.112568 |
if f:
manage(ctx, 'create_models_from_sql --force True', env={})
else:
manage(ctx, 'create_models_from_sql', env={})
|
def update_models(ctx, f=False)
|
Updates local django db projects models using salic database from
MinC
| 6.66271 | 6.313838 | 1.055255 |
project = Project.objects.get(pronac=project)
indicator, _ = (FinancialIndicator
.objects.update_or_create(project=project))
indicator.is_valid = is_valid
if indicator.is_valid:
p_metrics = metrics_calc.get_project(project.pronac)
for metric_name in metrics_list:
print("calculando a metrica ", metric_name)
x = getattr(p_metrics.finance, metric_name)
print("do projeto: ", project)
Metric.objects.create_metric(metric_name, x, indicator)
indicator.fetch_weighted_complexity()
return indicator
|
def create_indicator(self, project, is_valid, metrics_list)
|
Creates FinancialIndicator object for a project, calculating
metrics and indicator value
| 7.11271 | 6.260557 | 1.136115 |
ext_size = len(SQL_EXTENSION)
path = DATA_PATH / 'scripts'
save_dir = DATA_PATH / "raw"
for file in os.listdir(path):
if file.endswith(SQL_EXTENSION):
file_path = os.path.join(save_dir,
file[:-ext_size] + '.' + FILE_EXTENSION)
if not os.path.isfile(file_path) or overwrite:
query_result = make_query(path / file)
save_dataframe_as_pickle(query_result, file_path)
else:
print(("file {} already exists, if you would like to update"
" it, use -f flag\n").format(file_path))
|
def save_sql_to_files(overwrite=False)
|
Executes every .sql files in /data/scripts/ using salic db vpn and
then saves pickle files into /data/raw/
| 3.956542 | 3.806432 | 1.039436 |
# TODO: implment metrics recalculation
max_total = sum(
[self.metrics_weights[metric_name] for metric_name in self.metrics_weights]
)
total = 0
if recalculate_metrics:
self.calculate_indicator_metrics()
for metric in self.metrics.all():
if metric.name in self.metrics_weights and metric.is_outlier:
total += self.metrics_weights[metric.name]
value = total / max_total
final_value = "{:.1f}".format(value * 10)
if final_value[-1] == "0":
final_value = "{:.0f}".format(value * 10)
final_value = int(final_value)
else:
final_value = float(final_value)
self.value = float(final_value)
self.is_valid = True
self.updated_at = datetime.datetime.now()
self.save()
return final_value
|
def fetch_weighted_complexity(self, recalculate_metrics=False)
|
Calculates indicator value according to metrics weights
Uses metrics in database
args:
recalculate_metrics: If true metrics values are updated before
using weights
| 3.067878 | 2.792649 | 1.098555 |
threshold = 0.1
outlier_info = get_outliers_percentage(pronac)
outlier_info['is_outlier'] = outlier_info['percentage'] > threshold
outlier_info['maximum_expected'] = threshold * outlier_info['total_items']
return outlier_info
|
def item_prices(pronac, data)
|
Verify if a project is an outlier compared
to the other projects in his segment, based
on the price of bought items.
| 4.38345 | 4.071906 | 1.076511 |
if (segment_id, item_id) not in df.index:
return False
mean = df.loc[(segment_id, item_id)]['mean']
std = df.loc[(segment_id, item_id)]['std']
return gaussian_outlier.is_outlier(
x=price, mean=mean, standard_deviation=std
)
|
def is_outlier(df, item_id, segment_id, price)
|
Verify if a item is an outlier compared to the
other occurrences of the same item, based on his price.
Args:
item_id: idPlanilhaItens
segment_id: idSegmento
price: VlUnitarioAprovado
| 2.653478 | 3.059657 | 0.867247 |
df = (
raw_df[['idSegmento', 'idPlanilhaItens', 'VlUnitarioAprovado']]
.groupby(by=['idSegmento', 'idPlanilhaItens'])
.agg([np.mean, lambda x: np.std(x, ddof=0)])
)
df.columns = df.columns.droplevel(0)
return (
df
.rename(columns={'<lambda>': 'std'})
)
|
def aggregated_relevant_items(raw_df)
|
Aggragation for calculate mean and std.
| 4.346748 | 4.046689 | 1.074149 |
start_date = datetime(2013, 1, 1)
df['DataProjeto'] = pd.to_datetime(df['DataProjeto'])
# get only projects newer than start_date
# and items with price > 0
df = df[df.DataProjeto >= start_date]
df = df[df.VlUnitarioAprovado > 0.0]
return df
|
def relevant_items(df)
|
Dataframe with items used by cultural projects,
filtered by date and price.
| 5.270566 | 4.712513 | 1.118419 |
df = (
raw_df
[['PRONAC', 'idPlanilhaAprovacao', 'Item',
'idPlanilhaItens', 'VlUnitarioAprovado',
'idSegmento', 'DataProjeto', 'idPronac',
'UfItem', 'idProduto', 'cdCidade', 'cdEtapa']]
).copy()
df['VlUnitarioAprovado'] = df['VlUnitarioAprovado'].apply(pd.to_numeric)
return df
|
def items_with_price(raw_df)
|
Dataframe with price as number.
| 9.322672 | 9.317584 | 1.000546 |
items = (
data.items_with_price
.groupby(['PRONAC'])
.get_group(pronac)
)
df = data.aggregated_relevant_items
outlier_items = {}
url_prefix = '/prestacao-contas/analisar/comprovante'
for _, item in items.iterrows():
item_id = item['idPlanilhaItens']
price = item['VlUnitarioAprovado']
segment_id = item['idSegmento']
item_name = item['Item']
if is_outlier(df, item_id, segment_id, price):
outlier_items[item_id] = {
'name': item_name,
'salic_url': get_salic_url(item, url_prefix),
'has_receipt': has_receipt(item)
}
total_items = items.shape[0]
outliers_amount = len(outlier_items)
percentage = outliers_amount / total_items
return {
'items': outlier_items,
'valor': outliers_amount,
'total_items': total_items,
'percentage': percentage,
'is_outlier': outliers_amount > 0,
}
|
def get_outliers_percentage(pronac)
|
Returns the percentage of items
of the project that are outliers.
| 4.225052 | 4.214628 | 1.002473 |
df = data.items_by_project
project = df.loc[df['PRONAC'] == pronac]
seg = project.iloc[0]["idSegmento"]
info = data.items_by_project_agg.to_dict(orient="index")[seg]
mean, std = info.values()
threshold = mean + 1.5 * std
project_items_count = project.shape[0]
is_outlier = project_items_count > threshold
return {
'is_outlier': is_outlier,
'valor': project_items_count,
'maximo_esperado': mean,
'desvio_padrao': std,
}
|
def number_of_items(pronac, dt)
|
This metric calculates the project number of declared number of items
and compare it to projects in the same segment
output:
is_outlier: True if projects number of items is not compatible
to others projects in the same segment
valor: absolute number of items
maximo_esperado: mean number of items of segment
desvio_padrao: standard deviation of number of items in project segment
| 4.795186 | 3.288674 | 1.458091 |
percentage = 0.1
return (
df
.groupby(['idSegmento', 'idPlanilhaItens'])
.count()
.rename(columns={'PRONAC': 'itemOccurrences'})
.sort_values('itemOccurrences', ascending=False)
.reset_index(['idSegmento', 'idPlanilhaItens'])
.groupby('idSegmento')
.apply(lambda x: x[None: max(2, int(len(x) * percentage))])
.reset_index(['idSegmento'], drop=True)
.set_index(['idSegmento'])
)
|
def common_items(df)
|
Returns the itens that are common in all the segments,
in the format | idSegmento | id planilhaItens |.
| 4.431274 | 3.245601 | 1.365317 |
if len(seg_common_items) == 0:
return 0
project_items = get_project_items(pronac).values[:, 0]
project_items_amount = len(project_items)
if project_items_amount == 0:
return 1
common_found_items = sum(
seg_common_items.isin(project_items)['idPlanilhaItens']
)
return common_found_items / project_items_amount
|
def common_items_percentage(pronac, seg_common_items)
|
Returns the percentage of items in a project that are
common in the cultural segment.
| 4.137002 | 3.856675 | 1.072686 |
segments = common_items.index.unique()
metrics = {}
for seg in segments:
seg_common_items = segment_common_items(seg)
projects = get_segment_projects(seg)
metric_values = []
for proj in projects:
pronac = proj[0]
percentage = common_items_percentage(pronac, seg_common_items)
metric_values.append(percentage)
metrics[seg] = {
'mean': np.mean(metric_values),
'std': np.std(metric_values)
}
return pd.DataFrame.from_dict(metrics, orient='index')
|
def common_items_metrics(all_items, common_items)
|
Calculates the percentage of common items for each project
in each segment and calculates the mean and std of this percentage
for each segment.
| 3.276222 | 2.917948 | 1.122783 |
df = data.all_items
return (
df[df['PRONAC'] == pronac]
.drop(columns=['PRONAC', 'idSegmento'])
)
|
def get_project_items(pronac)
|
Returns all items from a project.
| 8.785918 | 8.124227 | 1.081447 |
df = data.common_items
return (
df
.loc[str(segment_id)]
.reset_index(drop=1)
.drop(columns=["itemOccurrences"])
)
|
def segment_common_items(segment_id)
|
Returns all the common items in a segment.
| 7.082325 | 7.042107 | 1.005711 |
segment_id = get_segment_id(str(pronac))
seg_common_items = (
segment_common_items(segment_id)
.set_index('idPlanilhaItens')
.index
)
project_items = (
get_project_items(pronac)
.set_index('idPlanilhaItens')
.index
)
diff = list(project_items.difference(seg_common_items))
return (
data.distinct_items
.loc[diff]
.to_dict()['Item']
)
|
def get_uncommon_items(pronac)
|
Return all uncommon items of a project
(related to segment common items).
| 4.576333 | 3.964573 | 1.154307 |
result = uncommon_items
url_prefix = '/prestacao-contas/analisar/comprovante'
for _, item in filtered_items.iterrows():
item_id = item['idPlanilhaItens']
item_name = uncommon_items[item_id]
result[item_id] = {
'name': item_name,
'salic_url': get_salic_url(item, url_prefix),
'has_recepit': has_receipt(item)
}
return result
|
def add_info_to_uncommon_items(filtered_items, uncommon_items)
|
Add extra info to the uncommon items.
| 5.647473 | 5.70158 | 0.99051 |
segment_id = get_segment_id(str(pronac))
metrics = data.common_items_metrics.to_dict(orient='index')[segment_id]
ratio = common_items_percentage(pronac, segment_common_items(segment_id))
# constant that defines the threshold to verify if a project
# is an outlier.
k = 1.5
threshold = metrics['mean'] - k * metrics['std']
uncommon_items = get_uncommon_items(pronac)
pronac_filter = data.all_items['PRONAC'] == pronac
uncommon_items_filter = (
data.all_items['idPlanilhaItens']
.isin(uncommon_items)
)
items_filter = (pronac_filter & uncommon_items_filter)
filtered_items = (
data
.all_items[items_filter]
.drop_duplicates(subset='idPlanilhaItens')
)
uncommon_items = add_info_to_uncommon_items(filtered_items, uncommon_items)
return {
'is_outlier': ratio < threshold,
'valor': ratio,
'maximo_esperado': metrics['mean'],
'desvio_padrao': metrics['std'],
'items_incomuns': uncommon_items,
'items_comuns_que_o_projeto_nao_possui': get_common_items_not_present(pronac),
}
|
def common_items_ratio(pronac, dt)
|
Calculates the common items on projects in a cultural segment,
calculates the uncommon items on projects in a cultural segment and
verify if a project is an outlier compared to the other projects
in his segment.
| 4.281772 | 3.943729 | 1.085717 |
dataframe = data.planilha_comprovacao
project = dataframe.loc[dataframe['PRONAC'] == pronac]
segment_id = project.iloc[0]["idSegmento"]
pronac_funds = project[
["idPlanilhaAprovacao", "PRONAC", "vlComprovacao", "idSegmento"]
]
funds_grp = pronac_funds.drop(columns=["idPlanilhaAprovacao"]).groupby(
["PRONAC"]
)
project_funds = funds_grp.sum().loc[pronac]["vlComprovacao"]
segments_info = data.verified_funds_by_segment_agg.to_dict(orient="index")
mean = segments_info[segment_id]["mean"]
std = segments_info[segment_id]["std"]
is_outlier = gaussian_outlier.is_outlier(project_funds, mean, std)
maximum_expected_funds = gaussian_outlier.maximum_expected_value(mean, std)
return {
"is_outlier": is_outlier,
"valor": project_funds,
"maximo_esperado": maximum_expected_funds,
"minimo_esperado": 0,
}
|
def verified_funds(pronac, dt)
|
Responsable for detecting anomalies in projects total verified funds.
| 4.268046 | 4.162892 | 1.02526 |
df['CaptacaoReal'] = df['CaptacaoReal'].apply(
pd.to_numeric
)
return (
df[['Pronac', 'CaptacaoReal']]
.groupby(['Pronac'])
.sum()
)
|
def raised_funds_by_project(df)
|
Raised funds organized by project.
| 8.513004 | 8.019538 | 1.061533 |
project_raised_funds = data.raised_funds_by_project.loc[pronac]['CaptacaoReal']
dataframe = data.planilha_comprovacao
project_verified = dataframe.loc[dataframe['PRONAC'] == str(pronac)]
if project_verified.empty:
project_verified_funds = 0
else:
pronac_funds = project_verified[
["idPlanilhaAprovacao", "PRONAC", "vlComprovacao", "idSegmento"]
]
funds_grp = pronac_funds.drop(columns=["idPlanilhaAprovacao"]).groupby(
["PRONAC"]
)
project_verified_funds = funds_grp.sum().loc[pronac]["vlComprovacao"]
to_verify_value = project_raised_funds - float(project_verified_funds)
is_outlier = to_verify_value != 0
return {
'is_outlier': is_outlier,
'valor': to_verify_value,
'valor_captado': project_raised_funds,
'valor_comprovado': project_verified_funds,
'minimo_esperado': 0,
}
|
def to_verify_funds(pronac, dt)
|
Checks how much money is left for the project to verify,
using raised_funds - verified_funds
This value can be negative (a project can verify more money than
the value approved)
| 4.086668 | 3.948051 | 1.03511 |
cpf_cnpj = get_cpf_cnpj_by_pronac(pronac)
proponent_submitted_projects = {}
proponent_analyzed_projects = {}
if cpf_cnpj:
submitted_projects = get_proponent_submitted_projects(cpf_cnpj)
analyzed_projects = get_proponent_analyzed_projects(cpf_cnpj)
try:
proponent_submitted_projects = {
'number_of_projects': submitted_projects['num_pronacs'],
'pronacs_of_this_proponent': submitted_projects['pronac_list']
}
except KeyError:
pass
try:
proponent_analyzed_projects = {
'number_of_projects': analyzed_projects['num_pronacs'],
'pronacs_of_this_proponent': analyzed_projects['pronac_list']
}
except KeyError:
pass
return {
'cpf_cnpj': cpf_cnpj,
'valor': len(proponent_submitted_projects),
'projetos_submetidos': proponent_submitted_projects,
'projetos_analizados': proponent_analyzed_projects,
}
|
def proponent_projects(pronac, data)
|
Checks the CNPJ/CPF of the proponent of project
with the given pronac and returns all the projects
that have been submitted by this proponent and all
projects that have already been analyzed.
| 2.024149 | 1.915527 | 1.056706 |
df = raw_df[['PRONAC', 'proponenteCgcCpf']]
analyzed_projects = df.groupby('proponenteCgcCpf')[
'PRONAC'
].agg(['unique', 'nunique'])
analyzed_projects.columns = ['pronac_list', 'num_pronacs']
return analyzed_projects
|
def analyzed_projects(raw_df)
|
Return all projects that was analyzed.
| 7.180153 | 6.907331 | 1.039497 |
df = raw_df.astype({'PRONAC': str, 'CgcCpf': str})
submitted_projects = df.groupby('CgcCpf')[
'PRONAC'
].agg(['unique', 'nunique'])
submitted_projects.columns = ['pronac_list', 'num_pronacs']
return submitted_projects
|
def submitted_projects(raw_df)
|
Return all submitted projects.
| 6.900997 | 6.640459 | 1.039235 |
csv_path = os.path.join(DATA_FOLDER, csv_name)
csv = pd.read_csv(csv_path, low_memory=False,
usecols=usecols, encoding="utf-8")
return csv
|
def read_csv(csv_name, usecols=None)
|
Returns a DataFrame from a .csv file stored in /data/raw/
| 2.529575 | 2.569948 | 0.98429 |
csv_path = os.path.join(DATA_FOLDER, csv_name)
csv = pd.read_csv(
csv_path,
usecols=usecols,
encoding="utf-8",
dtype=column_types_dict,
engine="python",
)
for key_column, val_type in column_types_dict.items():
if val_type == str:
csv[key_column] = csv[key_column].str.strip()
return csv
|
def read_csv_with_different_type(csv_name, column_types_dict, usecols=None)
|
Returns a DataFrame from a .csv file stored in /data/raw/.
Reads the CSV as string.
| 2.188866 | 2.147208 | 1.019401 |
csv_path = os.path.join(DATA_FOLDER, csv_name)
csv = pd.read_csv(csv_path, low_memory=False, usecols=usecols)
for column in integer_columns:
csv = csv[pd.to_numeric(csv[column], errors="coerce").notnull()]
csv[integer_columns] = csv[integer_columns].apply(pd.to_numeric)
return csv
|
def read_csv_as_integer(csv_name, integer_columns, usecols=None)
|
Returns a DataFrame from a .csv file stored in /data/raw/.
Converts columns specified by 'integer_columns' to integer.
| 2.069399 | 2.006403 | 1.031397 |
df = verified_repeated_receipts_for_pronac(pronac)
comprovantes_cheque = df[df['tpFormaDePagamento'] == 1.0]
return metric_return(comprovantes_cheque)
|
def check_receipts(pronac, dt)
|
Checks how many items are in a same receipt when payment type is check
- is_outlier: True if there are any receipts that have more than one
- itens_que_compartilham_comprovantes: List of items that share receipt
| 14.824362 | 13.341099 | 1.11118 |
df = verified_repeated_receipts_for_pronac(pronac)
comprovantes_transferencia = df[df['tpFormaDePagamento'] == 2.0]
return metric_return(comprovantes_transferencia)
|
def transfer_receipts(pronac, dt)
|
Checks how many items are in a same receipt when payment type is bank
transfer
- is_outlier: True if there are any receipts that have more than one
- itens_que_compartilham_comprovantes: List of items that share receipt
| 13.299489 | 12.094478 | 1.099633 |
df = verified_repeated_receipts_for_pronac(pronac)
comprovantes_saque = df[df['tpFormaDePagamento'] == 3.0]
return metric_return(comprovantes_saque)
|
def money_receipts(pronac, dt)
|
Checks how many items are in a same receipt when payment type is
withdraw/money
- is_outlier: True if there are any receipts that have more than one
- itens_que_compartilham_comprovantes: List of items that share receipt
| 14.961937 | 15.003139 | 0.997254 |
is_outlier, mean, std, total_raised_funds = get_outlier_info(pronac)
maximum_expected_funds = gaussian_outlier.maximum_expected_value(mean, std)
return {
'is_outlier': is_outlier,
'total_raised_funds': total_raised_funds,
'maximum_expected_funds': maximum_expected_funds
}
|
def raised_funds(pronac, data)
|
Returns the total raised funds of a project
with the given pronac and if this project is an
outlier based on this value.
| 3.432835 | 3.329156 | 1.031143 |
grouped = df.groupby('Segmento')
aggregated = grouped.agg(['mean', 'std'])
aggregated.columns = aggregated.columns.droplevel(0)
return aggregated
|
def segment_raised_funds_average(df)
|
Return some info about raised funds.
| 4.372418 | 4.396574 | 0.994506 |
df = data.planilha_captacao
raised_funds_averages = data.segment_raised_funds_average.to_dict('index')
segment_id = df[df['Pronac'] == pronac]['Segmento'].iloc[0]
mean = raised_funds_averages[segment_id]['mean']
std = raised_funds_averages[segment_id]['std']
project_raised_funds = get_project_raised_funds(pronac)
outlier = gaussian_outlier.is_outlier(project_raised_funds, mean, std)
return (outlier, mean, std, project_raised_funds)
|
def get_outlier_info(pronac)
|
Return if a project with the given
pronac is an outlier based on raised funds.
| 4.141648 | 3.614941 | 1.145703 |
items_df = data.approved_verified_items
items_df = items_df.loc[items_df['PRONAC'] == pronac]
items_df[[APPROVED_COLUMN, VERIFIED_COLUMN]] = items_df[
[APPROVED_COLUMN, VERIFIED_COLUMN]
].astype(float)
items_df["Item"] = items_df["Item"].str.replace("\r", "")
items_df["Item"] = items_df["Item"].str.replace("\n", "")
items_df["Item"] = items_df["Item"].str.replace('"', "")
items_df["Item"] = items_df["Item"].str.replace("'", "")
items_df["Item"] = items_df["Item"].str.replace("\\", "")
THRESHOLD = 1.5
bigger_than_approved = items_df[VERIFIED_COLUMN] > (
items_df[APPROVED_COLUMN] * THRESHOLD
)
features = items_df[bigger_than_approved]
outlier_items = outlier_items_(features)
features_size = features.shape[0]
is_outlier = features_size > 0
return {
"is_outlier": is_outlier,
"valor": features_size,
"maximo_esperado": MIN_EXPECTED_ITEMS,
"minimo_esperado": MAX_EXPECTED_ITEMS,
"lista_de_comprovantes": outlier_items,
"link_da_planilha": "http://salic.cultura.gov.br/projeto/#/{0}/relacao-de-pagamento".format(pronac)
}
|
def verified_approved(pronac, dt)
|
This metric compare budgetary items of SALIC projects in terms of
verified versus approved value
Items that have vlComprovacao > vlAprovacao * 1.5 are considered outliers
output:
is_outlier: True if any item is outlier
valor: Absolute number of items that are outliers
outlier_items: Outlier items detail
| 3.436749 | 2.958867 | 1.161509 |
for file in os.listdir(path):
base, ext = os.path.splitext(file)
if ext != ".csv":
continue
LOG(f"converting {file} to pickle")
df = pd.read_csv(path / file, low_memory=True)
WRITE_DF(df, path / (base + "." + FILE_EXTENSION), **WRITE_DF_OPTS)
if clean:
os.remove(path / file)
LOG(f"removed {file}")
|
def csv_to_pickle(path=ROOT / "raw", clean=False)
|
Convert all CSV files in path to pickle.
| 3.251387 | 3.140841 | 1.035196 |
path = "%s.%s" % (self._root / "processed" / loc, FILE_EXTENSION)
WRITE_DF(df, path, **WRITE_DF_OPTS)
self._cache[loc] = df
|
def store(self, loc, df)
|
Store dataframe in the given location.
Store some arbitrary dataframe:
>>> data.store('my_data', df)
Now recover it from the global store.
>>> data.my_data
...
| 8.826602 | 12.440313 | 0.709516 |
if self.gc_book:
self.gc_book.close()
if self.pricedb_session:
self.pricedb_session.close()
|
def close_databases(self)
|
Close all database sessions
| 5.578297 | 4.984272 | 1.11918 |
book = self.get_gc_book()
collection = SecuritiesAggregate(book)
sec = collection.get_aggregate_for_symbol(symbol)
quantity = sec.get_quantity()
return quantity
|
def load_stock_quantity(self, symbol: str) -> Decimal(0)
|
retrieves stock quantity
| 8.911856 | 8.548979 | 1.042447 |
if not self.gc_book:
gc_db = self.config.get(ConfigKeys.gnucash_book_path)
if not gc_db:
raise AttributeError("GnuCash book path not configured.")
# check if this is the abs file exists
if not os.path.isabs(gc_db):
gc_db = resource_filename(
Requirement.parse("Asset-Allocation"), gc_db)
if not os.path.exists(gc_db):
raise ValueError(f"Invalid GnuCash book path {gc_db}")
self.gc_book = open_book(gc_db, open_if_lock=True)
return self.gc_book
|
def get_gc_book(self)
|
Returns the GnuCash db session
| 4.072523 | 3.781544 | 1.076947 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.