code
string | signature
string | docstring
string | loss_without_docstring
float64 | loss_with_docstring
float64 | factor
float64 |
---|---|---|---|---|---|
from gnucash_portfolio import BookAggregate
holdings = []
with BookAggregate() as book:
# query = book.securities.query.filter(Commodity.)
holding_entities = book.securities.get_all()
for item in holding_entities:
# Check holding balance
agg = book.securities.get_aggregate(item)
balance = agg.get_num_shares()
if balance > Decimal(0):
holdings.append(f"{item.namespace}:{item.mnemonic}")
else:
self.logger.debug(f"0 balance for {item}")
# holdings = map(lambda x: , holding_entities)
return holdings
|
def get_symbols_with_positive_balances(self) -> List[str]
|
Identifies all the securities with positive balances
| 7.224802 | 6.872876 | 1.051205 |
from pricedb import dal
if not self.pricedb_session:
self.pricedb_session = dal.get_default_session()
return self.pricedb_session
|
def __get_pricedb_session(self)
|
Provides initialization and access to module-level session
| 3.678598 | 3.171856 | 1.159762 |
assert isinstance(symbol, str)
assert isinstance(assetclass, int)
symbol = symbol.upper()
app = AppAggregate()
new_item = app.add_stock_to_class(assetclass, symbol)
print(f"Record added: {new_item}.")
|
def add(assetclass: int, symbol: str)
|
Add a stock to an asset class
| 5.733372 | 4.55197 | 1.259536 |
app = AppAggregate()
app.logger = logger
unalloc = app.find_unallocated_holdings()
if not unalloc:
print(f"No unallocated holdings.")
for item in unalloc:
print(item)
|
def unallocated()
|
Identify unallocated holdings
| 6.558844 | 5.620137 | 1.167026 |
self.full = full
# Header
output = f"Asset Allocation model, total: {model.currency} {model.total_amount:,.2f}\n"
# Column Headers
for column in self.columns:
name = column['name']
if not self.full and name == "loc.cur.":
# Skip local currency if not displaying stocks.
continue
width = column["width"]
output += f"{name:^{width}}"
output += "\n"
output += f"-------------------------------------------------------------------------------\n"
# Asset classes
view_model = ModelMapper(model).map_to_linear(self.full)
for row in view_model:
output += self.__format_row(row) + "\n"
return output
|
def format(self, model: AssetAllocationModel, full: bool = False)
|
Returns the view-friendly output of the aa model
| 6.644768 | 6.086122 | 1.09179 |
output = ""
index = 0
# Name
value = row.name
# Indent according to depth.
for _ in range(0, row.depth):
value = f" {value}"
output += self.append_text_column(value, index)
# Set Allocation
value = ""
index += 1
if row.set_allocation > 0:
value = f"{row.set_allocation:.2f}"
output += self.append_num_column(value, index)
# Current Allocation
value = ""
index += 1
if row.curr_allocation > Decimal(0):
value = f"{row.curr_allocation:.2f}"
output += self.append_num_column(value, index)
# Allocation difference, percentage
value = ""
index += 1
if row.alloc_diff_perc.copy_abs() > Decimal(0):
value = f"{row.alloc_diff_perc:.0f} %"
output += self.append_num_column(value, index)
# Allocated value
index += 1
value = ""
if row.set_value:
value = f"{row.set_value:,.0f}"
output += self.append_num_column(value, index)
# Current Value
index += 1
value = f"{row.curr_value:,.0f}"
output += self.append_num_column(value, index)
# Value in security's currency. Show only if displaying full model, with stocks.
index += 1
if self.full:
value = ""
if row.curr_value_own_currency:
value = f"({row.curr_value_own_currency:,.0f}"
value += f" {row.own_currency}"
value += ")"
output += self.append_num_column(value, index)
# https://en.wikipedia.org/wiki/ANSI_escape_code
# CSI="\x1B["
# red = 31, green = 32
# output += CSI+"31;40m" + "Colored Text" + CSI + "0m"
# Value diff
index += 1
value = ""
if row.diff_value:
value = f"{row.diff_value:,.0f}"
# Color the output
# value = f"{CSI};40m{value}{CSI};40m"
output += self.append_num_column(value, index)
return output
|
def __format_row(self, row: AssetAllocationViewModel)
|
display-format one row
Formats one Asset Class record
| 2.864103 | 2.845118 | 1.006673 |
width = self.columns[index]["width"]
return f"{text:>{width}}"
|
def append_num_column(self, text: str, index: int)
|
Add value to the output row, width based on index
| 11.712528 | 6.120308 | 1.913715 |
width = self.columns[index]["width"]
return f"{text:<{width}}"
|
def append_text_column(self, text: str, index: int)
|
Add value to the output row, width based on index
| 11.795335 | 6.411293 | 1.839775 |
obj = model.AssetClass()
obj.id = entity.id
obj.parent_id = entity.parentid
obj.name = entity.name
obj.allocation = entity.allocation
obj.sort_order = entity.sortorder
#entity.stock_links
#entity.diff_adjustment
if entity.parentid == None:
obj.depth = 0
return obj
|
def map_entity(self, entity: dal.AssetClass)
|
maps data from entity -> object
| 5.590339 | 4.855389 | 1.151368 |
result = []
for ac in self.model.classes:
rows = self.__get_ac_tree(ac, with_stocks)
result += rows
return result
|
def map_to_linear(self, with_stocks: bool=False)
|
Maps the tree to a linear representation suitable for display
| 11.70858 | 9.399848 | 1.245614 |
output = []
output.append(self.__get_ac_row(ac))
for child in ac.classes:
output += self.__get_ac_tree(child, with_stocks)
if with_stocks:
for stock in ac.stocks:
row = None
if isinstance(stock, Stock):
row = self.__get_stock_row(stock, ac.depth + 1)
elif isinstance(stock, CashBalance):
row = self.__get_cash_row(stock, ac.depth + 1)
output.append(row)
return output
|
def __get_ac_tree(self, ac: model.AssetClass, with_stocks: bool)
|
formats the ac tree - entity with child elements
| 2.427999 | 2.316898 | 1.047952 |
view_model = AssetAllocationViewModel()
view_model.depth = ac.depth
# Name
view_model.name = ac.name
view_model.set_allocation = ac.allocation
view_model.curr_allocation = ac.curr_alloc
view_model.diff_allocation = ac.alloc_diff
view_model.alloc_diff_perc = ac.alloc_diff_perc
# value
view_model.curr_value = ac.curr_value
# expected value
view_model.set_value = ac.alloc_value
# diff
view_model.diff_value = ac.value_diff
return view_model
|
def __get_ac_row(self, ac: model.AssetClass) -> AssetAllocationViewModel
|
Formats one Asset Class record
| 3.233455 | 3.21032 | 1.007206 |
assert isinstance(stock, Stock)
view_model = AssetAllocationViewModel()
view_model.depth = depth
# Symbol
view_model.name = stock.symbol
# Current allocation
view_model.curr_allocation = stock.curr_alloc
# Value in base currency
view_model.curr_value = stock.value_in_base_currency
# Value in security's currency.
view_model.curr_value_own_currency = stock.value
view_model.own_currency = stock.currency
return view_model
|
def __get_stock_row(self, stock: Stock, depth: int) -> str
|
formats stock row
| 4.582006 | 4.371866 | 1.048066 |
assert isinstance(item, CashBalance)
view_model = AssetAllocationViewModel()
view_model.depth = depth
# Symbol
view_model.name = item.symbol
# Value in base currency
view_model.curr_value = item.value_in_base_currency
# Value in security's currency.
view_model.curr_value_own_currency = item.value
view_model.own_currency = item.currency
return view_model
|
def __get_cash_row(self, item: CashBalance, depth: int) -> str
|
formats stock row
| 4.959275 | 4.675919 | 1.060599 |
session = self.open_session()
session.add(item)
session.commit()
|
def create_asset_class(self, item: AssetClass)
|
Inserts the record
| 5.530194 | 4.369066 | 1.265761 |
assert isinstance(symbol, str)
assert isinstance(assetclass_id, int)
item = AssetClassStock()
item.assetclassid = assetclass_id
item.symbol = symbol
session = self.open_session()
session.add(item)
self.save()
return item
|
def add_stock_to_class(self, assetclass_id: int, symbol: str)
|
Add a stock link to an asset class
| 3.475927 | 3.207223 | 1.083781 |
assert isinstance(id, int)
self.open_session()
to_delete = self.get(id)
self.session.delete(to_delete)
self.save()
|
def delete(self, id: int)
|
Delete asset class
| 4.596239 | 4.317053 | 1.06467 |
# Get linked securities
session = self.open_session()
linked_entities = session.query(AssetClassStock).all()
linked = []
# linked = map(lambda x: f"{x.symbol}", linked_entities)
for item in linked_entities:
linked.append(item.symbol)
# Get all securities with balance > 0.
from .stocks import StocksInfo
stocks = StocksInfo()
stocks.logger = self.logger
holdings = stocks.get_symbols_with_positive_balances()
# Find those which are not included in the stock links.
non_alloc = []
index = -1
for item in holdings:
try:
index = linked.index(item)
self.logger.debug(index)
except ValueError:
non_alloc.append(item)
return non_alloc
|
def find_unallocated_holdings(self)
|
Identifies any holdings that are not included in asset allocation
| 4.613207 | 4.483819 | 1.028857 |
self.open_session()
item = self.session.query(AssetClass).filter(
AssetClass.id == id).first()
return item
|
def get(self, id: int) -> AssetClass
|
Loads Asset Class
| 4.131219 | 4.910508 | 0.841302 |
from .dal import get_session
cfg = Config()
cfg.logger = self.logger
db_path = cfg.get(ConfigKeys.asset_allocation_database_path)
self.session = get_session(db_path)
return self.session
|
def open_session(self)
|
Opens a db session and returns it
| 7.440061 | 6.755641 | 1.101311 |
# load from db
# TODO set the base currency
base_currency = "EUR"
loader = AssetAllocationLoader(base_currency=base_currency)
loader.logger = self.logger
model = loader.load_tree_from_db()
model.validate()
# securities
# read stock links
loader.load_stock_links()
# read stock quantities from GnuCash
loader.load_stock_quantity()
# Load cash balances
loader.load_cash_balances()
# loader.session
# read prices from Prices database
loader.load_stock_prices()
# recalculate stock values into base currency
loader.recalculate_stock_values_into_base()
# calculate
model.calculate_current_value()
model.calculate_set_values()
model.calculate_current_allocation()
# return the model for display
return model
|
def get_asset_allocation(self)
|
Creates and populates the Asset Allocation model. The main function of the app.
| 7.111367 | 6.83295 | 1.040746 |
full_symbol = symbol
if namespace:
full_symbol = f"{namespace}:{symbol}"
result = (
self.session.query(AssetClassStock)
.filter(AssetClassStock.symbol == full_symbol)
.all()
)
return result
|
def get_asset_classes_for_security(self, namespace: str, symbol: str) -> List[AssetClass]
|
Find all asset classes (should be only one at the moment, though!) to which the symbol belongs
| 3.361421 | 3.109123 | 1.081148 |
model: AssetAllocationModel = self.get_asset_allocation_model()
model.logger = self.logger
valid = model.validate()
if valid:
print(f"The model is valid. Congratulations")
else:
print(f"The model is invalid.")
|
def validate_model(self)
|
Validate the model
| 5.078965 | 4.70466 | 1.07956 |
session = self.open_session()
links = session.query(AssetClassStock).order_by(
AssetClassStock.symbol).all()
output = []
for link in links:
output.append(link.symbol + '\n')
# Save output to a text file.
with open("symbols.txt", mode='w') as file:
file.writelines(output)
print("Symbols exported to symbols.txt")
|
def export_symbols(self)
|
Exports all used symbols
| 4.1918 | 4.243122 | 0.987905 |
if not os.path.exists(file_path):
raise FileNotFoundError("File path not found: %s", file_path)
# check if file exists
if not os.path.isfile(file_path):
log(ERROR, "file not found: %s", file_path)
raise FileNotFoundError("configuration file not found %s", file_path)
self.config.read(file_path)
|
def __read_config(self, file_path: str)
|
Read the config file
| 3.146457 | 2.79868 | 1.124265 |
src_path = self.__get_config_template_path()
src = os.path.abspath(src_path)
if not os.path.exists(src):
log(ERROR, "Config template not found %s", src)
raise FileNotFoundError()
dst = os.path.abspath(self.get_config_path())
shutil.copyfile(src, dst)
if not os.path.exists(dst):
raise FileNotFoundError("Config file could not be copied to user dir!")
|
def __create_user_config(self)
|
Copy the config template into user's directory
| 3.438697 | 2.964546 | 1.15994 |
cfg = Config()
edited = False
if aadb:
cfg.set(ConfigKeys.asset_allocation_database_path, aadb)
print(f"The database has been set to {aadb}.")
edited = True
if cur:
cfg.set(ConfigKeys.default_currency, cur)
edited = True
if edited:
print(f"Changes saved.")
else:
print(f"No changes were made.")
print(f"Use --help parameter for more information.")
|
def set(aadb, cur)
|
Sets the values in the config file
| 4.544334 | 4.605247 | 0.986773 |
if (aadb):
cfg = Config()
value = cfg.get(ConfigKeys.asset_allocation_database_path)
click.echo(value)
if not aadb:
click.echo("Use --help for more information.")
|
def get(aadb: str)
|
Retrieves a value from config
| 10.209177 | 8.751238 | 1.166598 |
prefix = ""
if self.parent:
if self.parent.fullname:
prefix = self.parent.fullname + ":"
else:
# Only the root does not have a parent. In that case we also don't need a name.
return ""
return prefix + self.name
|
def fullname(self)
|
includes the full path with parent names
| 5.259528 | 4.88118 | 1.077512 |
assert isinstance(self.price, Decimal)
return self.quantity * self.price
|
def value(self) -> Decimal
|
Value of the holdings in exchange currency.
Value = Quantity * Price
| 8.778597 | 6.000494 | 1.462979 |
result = self.parent.name if self.parent else ""
# Iterate to the top asset class and add names.
cursor = self.parent
while cursor:
result = cursor.name + ":" + result
cursor = cursor.parent
return result
|
def asset_class(self) -> str
|
Returns the full asset class path for this stock
| 6.532914 | 6.07388 | 1.075575 |
sum = Decimal(0)
if self.classes:
for child in self.classes:
sum += child.child_allocation
else:
# This is not a branch but a leaf. Return own allocation.
sum = self.allocation
return sum
|
def child_allocation(self)
|
The sum of all child asset classes' allocations
| 6.685163 | 5.670781 | 1.178879 |
assert isinstance(ac_id, int)
# iterate recursively
for ac in self.asset_classes:
if ac.id == ac_id:
return ac
# if nothing returned so far.
return None
|
def get_class_by_id(self, ac_id: int) -> AssetClass
|
Finds the asset class by id
| 5.993878 | 5.595055 | 1.071281 |
for ac in self.asset_classes:
if ac.name.lower() == "cash":
return ac
return None
|
def get_cash_asset_class(self) -> AssetClass
|
Find the cash asset class by name.
| 3.886109 | 2.828339 | 1.37399 |
# Asset class allocation should match the sum of children's allocations.
# Each group should be compared.
sum = Decimal(0)
# Go through each asset class, not just the top level.
for ac in self.asset_classes:
if ac.classes:
# get the sum of all the children's allocations
child_alloc_sum = ac.child_allocation
# compare to set allocation
if ac.allocation != child_alloc_sum:
message = f"The sum of child allocations {child_alloc_sum:.2f} invalid for {ac}!"
self.logger.warning(message)
print(message)
return False
# also make sure that the sum of 1st level children matches 100
for ac in self.classes:
sum += ac.allocation
if sum != Decimal(100):
message = f"The sum of all allocations ({sum:.2f}) does not equal 100!"
self.logger.warning(message)
print(message)
return False
return True
|
def validate(self) -> bool
|
Validate that the values match. Incomplete!
| 4.78323 | 4.657994 | 1.026886 |
for ac in self.asset_classes:
ac.alloc_value = self.total_amount * ac.allocation / Decimal(100)
|
def calculate_set_values(self)
|
Calculate the expected totals based on set allocations
| 9.82516 | 7.306177 | 1.344774 |
for ac in self.asset_classes:
ac.curr_alloc = ac.curr_value * 100 / self.total_amount
|
def calculate_current_allocation(self)
|
Calculates the current allocation % based on the value
| 7.66886 | 6.615613 | 1.159206 |
# must be recursive
total = Decimal(0)
for ac in self.classes:
self.__calculate_current_value(ac)
total += ac.curr_value
self.total_amount = total
|
def calculate_current_value(self)
|
Add all the stock values and assign to the asset classes
| 8.768884 | 6.765219 | 1.296171 |
# Is this the final asset class, the one with stocks?
if asset_class.stocks:
# add all the stocks
stocks_sum = Decimal(0)
for stock in asset_class.stocks:
# recalculate into base currency!
stocks_sum += stock.value_in_base_currency
asset_class.curr_value = stocks_sum
if asset_class.classes:
# load totals for child classes
for child in asset_class.classes:
self.__calculate_current_value(child)
asset_class.curr_value += child.curr_value
|
def __calculate_current_value(self, asset_class: AssetClass)
|
Calculate totals for asset class by adding all the children values
| 4.913456 | 4.319405 | 1.137531 |
# , base_currency: str <= ignored for now.
if self.rate and self.rate.currency == mnemonic:
# Already loaded.
return
app = PriceDbApplication()
# TODO use the base_currency parameter for the query #33
symbol = SecuritySymbol("CURRENCY", mnemonic)
self.rate = app.get_latest_price(symbol)
if not self.rate:
raise ValueError(f"No rate found for {mnemonic}!")
|
def load_currency(self, mnemonic: str)
|
load the latest rate for the given mnemonic; expressed in the base currency
| 10.05104 | 8.796093 | 1.142671 |
# load asset allocation
app = AppAggregate()
app.logger = logger
model = app.get_asset_allocation()
if format == "ascii":
formatter = AsciiFormatter()
elif format == "html":
formatter = HtmlFormatter
else:
raise ValueError(f"Unknown formatter {format}")
# formatters can display stock information with --full
output = formatter.format(model, full=full)
print(output)
|
def show(format, full)
|
Print current allocation to the console.
| 7.800548 | 7.565035 | 1.031132 |
from gnucash_portfolio.accounts import AccountsAggregate, AccountAggregate
cfg = self.__get_config()
cash_root_name = cfg.get(ConfigKeys.cash_root)
# Load cash from all accounts under the root.
gc_db = self.config.get(ConfigKeys.gnucash_book_path)
with open_book(gc_db, open_if_lock=True) as book:
svc = AccountsAggregate(book)
root_account = svc.get_by_fullname(cash_root_name)
acct_svc = AccountAggregate(book, root_account)
cash_balances = acct_svc.load_cash_balances_with_children(cash_root_name)
# Treat each sum per currency as a Stock, for display in full mode.
self.__store_cash_balances_per_currency(cash_balances)
|
def load_cash_balances(self)
|
Loads cash balances from GnuCash book and recalculates into the default currency
| 6.83504 | 6.278216 | 1.088691 |
cash = self.model.get_cash_asset_class()
for cur_symbol in cash_balances:
item = CashBalance(cur_symbol)
item.parent = cash
quantity = cash_balances[cur_symbol]["total"]
item.value = Decimal(quantity)
item.currency = cur_symbol
# self.logger.debug(f"adding {item}")
cash.stocks.append(item)
self.model.stocks.append(item)
|
def __store_cash_balances_per_currency(self, cash_balances)
|
Store balance per currency as Stock records under Cash class
| 4.820618 | 4.209949 | 1.145054 |
self.model = AssetAllocationModel()
# currency
self.model.currency = self.__get_config().get(ConfigKeys.default_currency)
# Asset Classes
db = self.__get_session()
first_level = (
db.query(dal.AssetClass)
.filter(dal.AssetClass.parentid == None)
.order_by(dal.AssetClass.sortorder)
.all()
)
# create tree
for entity in first_level:
ac = self.__map_entity(entity)
self.model.classes.append(ac)
# Add to index
self.model.asset_classes.append(ac)
# append child classes recursively
self.__load_child_classes(ac)
return self.model
|
def load_tree_from_db(self) -> AssetAllocationModel
|
Reads the asset allocation data only, and constructs the AA tree
| 4.208115 | 4.306583 | 0.977135 |
links = self.__get_session().query(dal.AssetClassStock).all()
for entity in links:
# log(DEBUG, f"adding {entity.symbol} to {entity.assetclassid}")
# mapping
stock: Stock = Stock(entity.symbol)
# find parent classes by id and assign children
parent: AssetClass = self.model.get_class_by_id(entity.assetclassid)
if parent:
# Assign to parent.
parent.stocks.append(stock)
# Add to index for easy reference
self.model.stocks.append(stock)
|
def load_stock_links(self)
|
Read stock links into the model
| 7.763644 | 7.437394 | 1.043866 |
info = StocksInfo(self.config)
for stock in self.model.stocks:
stock.quantity = info.load_stock_quantity(stock.symbol)
info.gc_book.close()
|
def load_stock_quantity(self)
|
Loads quantities for all stocks
| 8.155509 | 6.784525 | 1.202075 |
from pricedb import SecuritySymbol
info = StocksInfo(self.config)
for item in self.model.stocks:
symbol = SecuritySymbol("", "")
symbol.parse(item.symbol)
price: PriceModel = info.load_latest_price(symbol)
if not price:
# Use a dummy price of 1, effectively keeping the original amount.
price = PriceModel()
price.currency = self.config.get(ConfigKeys.default_currency)
price.value = Decimal(1)
item.price = price.value
if isinstance(item, Stock):
item.currency = price.currency
# Do not set currency for Cash balance records.
info.close_databases()
|
def load_stock_prices(self)
|
Load latest prices for securities
| 8.478107 | 7.926024 | 1.069654 |
from .currency import CurrencyConverter
conv = CurrencyConverter()
cash = self.model.get_cash_asset_class()
for stock in self.model.stocks:
if stock.currency != self.base_currency:
# Recalculate into base currency
conv.load_currency(stock.currency)
assert isinstance(stock.value, Decimal)
val_base = stock.value * conv.rate.value
else:
# Already in base currency.
val_base = stock.value
stock.value_in_base_currency = val_base
|
def recalculate_stock_values_into_base(self)
|
Loads the exchange rates and recalculates stock holding values into
base currency
| 4.861919 | 4.435936 | 1.09603 |
# load child classes for ac
db = self.__get_session()
entities = (
db.query(dal.AssetClass)
.filter(dal.AssetClass.parentid == ac.id)
.order_by(dal.AssetClass.sortorder)
.all()
)
# map
for entity in entities:
child_ac = self.__map_entity(entity)
# depth
child_ac.depth = ac.depth + 1
ac.classes.append(child_ac)
# Add to index
self.model.asset_classes.append(child_ac)
self.__load_child_classes(child_ac)
|
def __load_child_classes(self, ac: AssetClass)
|
Loads child classes/stocks
| 3.455281 | 3.302392 | 1.046296 |
mapper = self.__get_mapper()
ac = mapper.map_entity(entity)
return ac
|
def __map_entity(self, entity: dal.AssetClass) -> AssetClass
|
maps the entity onto the model object
| 6.371558 | 5.649158 | 1.127877 |
db_path = self.__get_config().get(ConfigKeys.asset_allocation_database_path)
self.session = dal.get_session(db_path)
return self.session
|
def __get_session(self)
|
Opens a db session
| 7.913364 | 6.965743 | 1.13604 |
# open database
db = self.__get_session()
entity = db.query(dal.AssetClass).filter(dal.AssetClass.id == ac_id).first()
return entity
|
def __load_asset_class(self, ac_id: int)
|
Loads Asset Class entity
| 5.747401 | 4.400071 | 1.306206 |
if asset_class.fullname == fullname:
return asset_class
if not hasattr(asset_class, "classes"):
return None
for child in asset_class.classes:
found = self.__get_by_fullname(child, fullname)
if found:
return found
return None
|
def __get_by_fullname(self, asset_class, fullname: str)
|
Recursive function
| 2.510276 | 2.052164 | 1.223234 |
# cfg = Config()
# db_path = cfg.get(ConfigKeys.asset_allocation_database_path)
# connection
con_str = "sqlite:///" + db_path
# Display all SQLite info with echo.
engine = create_engine(con_str, echo=False)
# create metadata (?)
Base.metadata.create_all(engine)
# create session
Session = sessionmaker(bind=engine)
session = Session()
return session
|
def get_session(db_path: str)
|
Creates and opens a database session
| 5.666042 | 5.289841 | 1.071118 |
item = AssetClass()
item.name = name
app = AppAggregate()
app.create_asset_class(item)
print(f"Asset class {name} created.")
|
def add(name)
|
Add new Asset Class
| 8.262021 | 6.320488 | 1.307181 |
saved = False
# load
app = AppAggregate()
item = app.get(id)
if not item:
raise KeyError("Asset Class with id %s not found.", id)
if parent:
assert parent != id, "Parent can not be set to self."
# TODO check if parent exists?
item.parentid = parent
saved = True
# click.echo(f"parent set to {parent}")
if alloc:
assert alloc != Decimal(0)
item.allocation = alloc
saved = True
app.save()
if saved:
click.echo("Data saved.")
else:
click.echo("No data modified. Use --help to see possible parameters.")
|
def edit(id: int, parent: int, alloc: Decimal)
|
Edit asset class
| 5.425779 | 5.04588 | 1.075289 |
session = AppAggregate().open_session()
classes = session.query(AssetClass).all()
for item in classes:
print(item)
|
def my_list()
|
Lists all asset classes
| 11.55798 | 7.489133 | 1.5433 |
# , help="The path to the CSV file to import. The first row must contain column names."
lines = None
with open(file) as csv_file:
lines = csv_file.readlines()
# Header, the first line.
header = lines[0]
lines.remove(header)
header = header.rstrip()
# Parse records from a csv row.
counter = 0
app = AppAggregate()
app.open_session()
for line in lines:
# Create insert statements
line = line.rstrip()
command = f"insert into AssetClass ({header}) values ({line});"
# insert records
app.session.execute(command)
try:
app.save()
except:
print(f"error: ", sys.exc_info()[0])
app.session.close()
counter += 1
print(f"Data imported. {counter} rows created.")
|
def my_import(file)
|
Import Asset Class(es) from a .csv file
| 5.803177 | 5.543992 | 1.046751 |
session = AppAggregate().open_session()
classes = session.query(AssetClass).all()
# Get the root classes
root = []
for ac in classes:
if ac.parentid is None:
root.append(ac)
# logger.debug(ac.parentid)
# header
print_row("id", "asset class", "allocation", "level")
print(f"-------------------------------")
for ac in root:
print_item_with_children(ac, classes, 0)
|
def tree()
|
Display a tree of asset classes
| 7.163776 | 6.357188 | 1.126878 |
print_row(ac.id, ac.name, f"{ac.allocation:,.2f}", level)
print_children_recursively(classes, ac, level + 1)
|
def print_item_with_children(ac, classes, level)
|
Print the given item and all children items
| 6.229067 | 6.728953 | 0.925711 |
children = [child for child in all_items if child.parentid == for_item.id]
for child in children:
#message = f"{for_item.name}({for_item.id}) is a parent to {child.name}({child.id})"
indent = " " * level * 2
id_col = f"{indent} {child.id}"
print_row(id_col, child.name, f"{child.allocation:,.2f}", level)
# Process children.
print_children_recursively(all_items, child, level+1)
|
def print_children_recursively(all_items, for_item, level)
|
Print asset classes recursively
| 3.578801 | 3.635409 | 0.984429 |
#for i in range(0, len(argv)):
# row += f"{argv[i]}"
# columns
row = ""
# id
row += f"{argv[0]:<3}"
# name
row += f" {argv[1]:<13}"
# allocation
row += f" {argv[2]:>5}"
# level
#row += f"{argv[3]}"
print(row)
|
def print_row(*argv)
|
Print one row of data
| 4.418923 | 4.481239 | 0.986094 |
global g_parser
if g_parser is None:
g_parser = Parser()
return g_parser.format(input_text, **context)
|
def render_html(input_text, **context)
|
A module-level convenience method that creates a default bbcode parser,
and renders the input string as HTML.
| 3.699702 | 3.130571 | 1.181798 |
options = TagOptions(tag_name.strip().lower(), **kwargs)
self.recognized_tags[options.tag_name] = (render_func, options)
|
def add_formatter(self, tag_name, render_func, **kwargs)
|
Installs a render function for the specified tag name. The render function
should have the following signature:
def render(tag_name, value, options, parent, context)
The arguments are as follows:
tag_name
The name of the tag being rendered.
value
The context between start and end tags, or None for standalone tags.
Whether this has been rendered depends on render_embedded tag option.
options
A dictionary of options specified on the opening tag.
parent
The parent TagOptions, if the tag is being rendered inside another tag,
otherwise None.
context
The keyword argument dictionary passed into the format call.
| 5.891166 | 7.404213 | 0.795651 |
def _render(name, value, options, parent, context):
fmt = {}
if options:
fmt.update(options)
fmt.update({'value': value})
return format_string % fmt
self.add_formatter(tag_name, _render, **kwargs)
|
def add_simple_formatter(self, tag_name, format_string, **kwargs)
|
Installs a formatter that takes the tag options dictionary, puts a value key
in it, and uses it as a format dictionary to the given format string.
| 3.803655 | 3.389571 | 1.122164 |
self.add_simple_formatter('b', '<strong>%(value)s</strong>')
self.add_simple_formatter('i', '<em>%(value)s</em>')
self.add_simple_formatter('u', '<u>%(value)s</u>')
self.add_simple_formatter('s', '<strike>%(value)s</strike>')
self.add_simple_formatter('hr', '<hr />', standalone=True)
self.add_simple_formatter('sub', '<sub>%(value)s</sub>')
self.add_simple_formatter('sup', '<sup>%(value)s</sup>')
def _render_list(name, value, options, parent, context):
list_type = options['list'] if (options and 'list' in options) else '*'
css_opts = {
'1': 'decimal', '01': 'decimal-leading-zero',
'a': 'lower-alpha', 'A': 'upper-alpha',
'i': 'lower-roman', 'I': 'upper-roman',
}
tag = 'ol' if list_type in css_opts else 'ul'
css = ' style="list-style-type:%s;"' % css_opts[list_type] if list_type in css_opts else ''
return '<%s%s>%s</%s>' % (tag, css, value, tag)
self.add_formatter('list', _render_list, transform_newlines=False, strip=True, swallow_trailing_newline=True)
# Make sure transform_newlines = False for [*], so [code] tags can be embedded without transformation.
def _render_list_item(name, value, options, parent, context):
if not parent or parent.tag_name != 'list':
return '[*]%s<br />' % value
return '<li>%s</li>' % value
self.add_formatter('*', _render_list_item, newline_closes=True, transform_newlines=False,
same_tag_closes=True, strip=True)
self.add_simple_formatter('quote', '<blockquote>%(value)s</blockquote>', strip=True,
swallow_trailing_newline=True)
self.add_simple_formatter('code', '<code>%(value)s</code>', render_embedded=False, transform_newlines=False,
swallow_trailing_newline=True, replace_cosmetic=False)
self.add_simple_formatter('center', '<div style="text-align:center;">%(value)s</div>')
def _render_color(name, value, options, parent, context):
if 'color' in options:
color = options['color'].strip()
elif options:
color = list(options.keys())[0].strip()
else:
return value
match = re.match(r'^([a-z]+)|^(#[a-f0-9]{3,6})', color, re.I)
color = match.group() if match else 'inherit'
return '<span style="color:%(color)s;">%(value)s</span>' % {
'color': color,
'value': value,
}
self.add_formatter('color', _render_color)
def _render_url(name, value, options, parent, context):
if options and 'url' in options:
# Option values are not escaped for HTML output.
href = self._replace(options['url'], self.REPLACE_ESCAPE)
else:
href = value
# Completely ignore javascript: and data: "links".
if re.sub(r'[^a-z0-9+]', '', href.lower().split(':', 1)[0]) in ('javascript', 'data', 'vbscript'):
return ''
# Only add the missing http:// if it looks like it starts with a domain name.
if '://' not in href and _domain_re.match(href):
href = 'http://' + href
return self.url_template.format(href=href.replace('"', '%22'), text=value)
self.add_formatter('url', _render_url, replace_links=False, replace_cosmetic=False)
|
def install_default_formatters(self)
|
Installs default formatters for the following tags:
b, i, u, s, list (and \*), quote, code, center, color, url
| 2.67066 | 2.583223 | 1.033848 |
for find, repl in replacements:
data = data.replace(find, repl)
return data
|
def _replace(self, data, replacements)
|
Given a list of 2-tuples (find, repl) this function performs all
replacements on the input and returns the result.
| 3.57901 | 2.498571 | 1.432423 |
parts = data.split('\n')
tokens = []
for num, part in enumerate(parts):
if part:
tokens.append((self.TOKEN_DATA, None, None, part))
if num < (len(parts) - 1):
tokens.append((self.TOKEN_NEWLINE, None, None, '\n'))
return tokens
|
def _newline_tokenize(self, data)
|
Given a string that does not contain any tags, this function will
return a list of NEWLINE and DATA tokens such that if you concatenate
their data, you will have the original string.
| 2.737948 | 2.524664 | 1.08448 |
name = None
try:
# OrderedDict is only available for 2.7+, so leave regular unsorted dicts as a fallback.
from collections import OrderedDict
opts = OrderedDict()
except ImportError:
opts = {}
in_value = False
in_quote = False
attr = ''
value = ''
attr_done = False
stripped = data.strip()
ls = len(stripped)
pos = 0
while pos < ls:
ch = stripped[pos]
if in_value:
if in_quote:
if ch == '\\' and ls > pos + 1 and stripped[pos + 1] in ('\\', '"', "'"):
value += stripped[pos + 1]
pos += 1
elif ch == in_quote:
in_quote = False
in_value = False
if attr:
opts[attr.lower()] = value.strip()
attr = ''
value = ''
else:
value += ch
else:
if ch in ('"', "'"):
in_quote = ch
elif ch == ' ' and data.find('=', pos + 1) > 0:
# If there is no = after this, the value may accept spaces.
opts[attr.lower()] = value.strip()
attr = ''
value = ''
in_value = False
else:
value += ch
else:
if ch == '=':
in_value = True
if name is None:
name = attr
elif ch == ' ':
attr_done = True
else:
if attr_done:
if attr:
if name is None:
name = attr
else:
opts[attr.lower()] = ''
attr = ''
attr_done = False
attr += ch
pos += 1
if attr:
if name is None:
name = attr
opts[attr.lower()] = value.strip()
return name.lower(), opts
|
def _parse_opts(self, data)
|
Given a tag string, this function will parse any options out of it and
return a tuple of (tag_name, options_dict). Options may be quoted in order
to preserve spaces, and free-standing options are allowed. The tag name
itself may also serve as an option if it is immediately followed by an equal
sign. Here are some examples:
quote author="Dan Watson"
tag_name=quote, options={'author': 'Dan Watson'}
url="http://test.com/s.php?a=bcd efg" popup
tag_name=url, options={'url': 'http://test.com/s.php?a=bcd efg', 'popup': ''}
| 2.702335 | 2.644153 | 1.022004 |
if not tag.startswith(self.tag_opener) or not tag.endswith(self.tag_closer) or ('\n' in tag) or ('\r' in tag):
return (False, tag, False, None)
tag_name = tag[len(self.tag_opener):-len(self.tag_closer)].strip()
if not tag_name:
return (False, tag, False, None)
closer = False
opts = {}
if tag_name[0] == '/':
tag_name = tag_name[1:]
closer = True
# Parse options inside the opening tag, if needed.
if (('=' in tag_name) or (' ' in tag_name)) and not closer:
tag_name, opts = self._parse_opts(tag_name)
return (True, tag_name.strip().lower(), closer, opts)
|
def _parse_tag(self, tag)
|
Given a tag string (characters enclosed by []), this function will
parse any options and return a tuple of the form:
(valid, tag_name, closer, options)
| 2.711817 | 2.279335 | 1.18974 |
in_quote = False
quotable = False
lto = len(self.tag_opener)
ltc = len(self.tag_closer)
for i in xrange(start + 1, len(data)):
ch = data[i]
if ch == '=':
quotable = True
if ch in ('"', "'"):
if quotable and not in_quote:
in_quote = ch
elif in_quote == ch:
in_quote = False
quotable = False
if not in_quote and data[i:i + lto] == self.tag_opener:
return i, False
if not in_quote and data[i:i + ltc] == self.tag_closer:
return i + ltc, True
return len(data), False
|
def _tag_extent(self, data, start)
|
Finds the extent of a tag, accounting for option quoting and new tags starting before the current one closes.
Returns (found_close, end_pos) where valid is False if another tag started before this one closed.
| 2.369605 | 2.26292 | 1.047145 |
data = data.replace('\r\n', '\n').replace('\r', '\n')
pos = start = end = 0
ld = len(data)
tokens = []
while pos < ld:
start = data.find(self.tag_opener, pos)
if start >= pos:
# Check to see if there was data between this start and the last end.
if start > pos:
tl = self._newline_tokenize(data[pos:start])
tokens.extend(tl)
pos = start
# Find the extent of this tag, if it's ever closed.
end, found_close = self._tag_extent(data, start)
if found_close:
tag = data[start:end]
valid, tag_name, closer, opts = self._parse_tag(tag)
# Make sure this is a well-formed, recognized tag, otherwise it's just data.
if valid and tag_name in self.recognized_tags:
if closer:
tokens.append((self.TOKEN_TAG_END, tag_name, None, tag))
else:
tokens.append((self.TOKEN_TAG_START, tag_name, opts, tag))
elif valid and self.drop_unrecognized and tag_name not in self.recognized_tags:
# If we found a valid (but unrecognized) tag and self.drop_unrecognized is True, just drop it.
pass
else:
tokens.extend(self._newline_tokenize(tag))
else:
# We didn't find a closing tag, tack it on as text.
tokens.extend(self._newline_tokenize(data[start:end]))
pos = end
else:
# No more tags left to parse.
break
if pos < ld:
tl = self._newline_tokenize(data[pos:])
tokens.extend(tl)
return tokens
|
def tokenize(self, data)
|
Tokenizes the given string. A token is a 4-tuple of the form:
(token_type, tag_name, tag_options, token_text)
token_type
One of: TOKEN_TAG_START, TOKEN_TAG_END, TOKEN_NEWLINE, TOKEN_DATA
tag_name
The name of the tag if token_type=TOKEN_TAG_*, otherwise None
tag_options
A dictionary of options specified for TOKEN_TAG_START, otherwise None
token_text
The original token text
| 3.312211 | 3.055907 | 1.083872 |
embed_count = 0
block_count = 0
lt = len(tokens)
while pos < lt:
token_type, tag_name, tag_opts, token_text = tokens[pos]
if token_type == self.TOKEN_DATA:
# Short-circuit for performance.
pos += 1
continue
if tag.newline_closes and token_type in (self.TOKEN_TAG_START, self.TOKEN_TAG_END):
# If we're finding the closing token for a tag that is closed by newlines, but
# there is an embedded tag that doesn't transform newlines (i.e. a code tag
# that keeps newlines intact), we need to skip over that.
inner_tag = self.recognized_tags[tag_name][1]
if not inner_tag.transform_newlines:
if token_type == self.TOKEN_TAG_START:
block_count += 1
else:
block_count -= 1
if token_type == self.TOKEN_NEWLINE and tag.newline_closes and block_count == 0:
# If for some crazy reason there are embedded tags that both close on newline,
# the first newline will automatically close all those nested tags.
return pos, True
elif token_type == self.TOKEN_TAG_START and tag_name == tag.tag_name:
if tag.same_tag_closes:
return pos, False
if tag.render_embedded:
embed_count += 1
elif token_type == self.TOKEN_TAG_END and tag_name == tag.tag_name:
if embed_count > 0:
embed_count -= 1
else:
return pos, True
pos += 1
return pos, True
|
def _find_closing_token(self, tag, tokens, pos)
|
Given the current tag options, a list of tokens, and the current position
in the token list, this function will find the position of the closing token
associated with the specified tag. This may be a closing tag, a newline, or
simply the end of the list (to ensure tags are closed). This function should
return a tuple of the form (end_pos, consume), where consume should indicate
whether the ending token should be consumed or not.
| 3.5795 | 3.438761 | 1.040927 |
url = match.group(0)
if self.linker:
if self.linker_takes_context:
return self.linker(url, context)
else:
return self.linker(url)
else:
href = url
if '://' not in href:
href = 'http://' + href
# Escape quotes to avoid XSS, let the browser escape the rest.
return self.url_template.format(href=href.replace('"', '%22'), text=url)
|
def _link_replace(self, match, **context)
|
Callback for re.sub to replace link text with markup. Turns out using a callback function
is actually faster than using backrefs, plus this lets us provide a hook for user customization.
linker_takes_context=True means that the linker gets passed context like a standard format function.
| 4.123423 | 3.252896 | 1.267616 |
url_matches = {}
if self.replace_links and replace_links:
# If we're replacing links in the text (i.e. not those in [url] tags) then we need to be
# careful to pull them out before doing any escaping or cosmetic replacement.
pos = 0
while True:
match = _url_re.search(data, pos)
if not match:
break
# Replace any link with a token that we can substitute back in after replacements.
token = '{{ bbcode-link-%s }}' % len(url_matches)
url_matches[token] = self._link_replace(match, **context)
start, end = match.span()
data = data[:start] + token + data[end:]
# To be perfectly accurate, this should probably be len(data[:start] + token), but
# start will work, because the token itself won't match as a URL.
pos = start
if escape_html:
data = self._replace(data, self.REPLACE_ESCAPE)
if replace_cosmetic:
data = self._replace(data, self.REPLACE_COSMETIC)
# Now put the replaced links back in the text.
for token, replacement in url_matches.items():
data = data.replace(token, replacement)
if transform_newlines:
data = data.replace('\n', '\r')
return data
|
def _transform(self, data, escape_html, replace_links, replace_cosmetic, transform_newlines, **context)
|
Transforms the input string based on the options specified, taking into account
whether the option is enabled globally for this parser.
| 4.411331 | 4.476626 | 0.985414 |
tokens = self.tokenize(data)
full_context = self.default_context.copy()
full_context.update(context)
return self._format_tokens(tokens, None, **full_context).replace('\r', self.newline)
|
def format(self, data, **context)
|
Formats the input text using any installed renderers. Any context keyword arguments
given here will be passed along to the render functions as a context dictionary.
| 4.771622 | 4.307303 | 1.107798 |
text = []
for token_type, tag_name, tag_opts, token_text in self.tokenize(data):
if token_type == self.TOKEN_DATA:
text.append(token_text)
elif token_type == self.TOKEN_NEWLINE and not strip_newlines:
text.append(token_text)
return ''.join(text)
|
def strip(self, data, strip_newlines=False)
|
Strips out any tags from the input text, using the same tokenization as the formatter.
| 2.75539 | 2.722872 | 1.011943 |
a_trunc = a // tol
vals, counts = mode(a_trunc, axis)
mask = (a_trunc == vals)
# mean of each row
return np.sum(a * mask, axis) / np.sum(mask, axis)
|
def mode_in_range(a, axis=0, tol=1E-3)
|
Find the mode of values to within a certain range
| 5.640103 | 5.891741 | 0.95729 |
return dict([(filt, model.score(periods))
for (filt, model) in self.models_.items()])
|
def scores(self, periods)
|
Compute the scores under the various models
Parameters
----------
periods : array_like
array of periods at which to compute scores
Returns
-------
scores : dict
Dictionary of scores. Dictionary keys are the unique filter names
passed to fit()
| 9.029473 | 10.959284 | 0.823911 |
for (key, model) in self.models_.items():
model.optimizer = self.optimizer
return dict((filt, model.best_period)
for (filt, model) in self.models_.items())
|
def best_periods(self)
|
Compute the scores under the various models
Parameters
----------
periods : array_like
array of periods at which to compute scores
Returns
-------
best_periods : dict
Dictionary of best periods. Dictionary keys are the unique filter
names passed to fit()
| 6.824163 | 7.146065 | 0.954954 |
# For linear models, dy=1 is equivalent to no errors
if dy is None:
dy = 1
self.t, self.y, self.dy = np.broadcast_arrays(t, y, dy)
self._fit(self.t, self.y, self.dy)
self._best_period = None # reset best period in case of refitting
if self.fit_period:
self._best_period = self._calc_best_period()
return self
|
def fit(self, t, y, dy=None)
|
Fit the multiterm Periodogram model to the data.
Parameters
----------
t : array_like, one-dimensional
sequence of observation times
y : array_like, one-dimensional
sequence of observed values
dy : float or array_like (optional)
errors on observed values
| 3.763429 | 3.86806 | 0.97295 |
t = np.asarray(t)
if period is None:
period = self.best_period
result = self._predict(t.ravel(), period=period)
return result.reshape(t.shape)
|
def predict(self, t, period=None)
|
Compute the best-fit model at ``t`` for a given period
Parameters
----------
t : float or array_like
times at which to predict
period : float (optional)
The period at which to compute the model. If not specified, it
will be computed via the optimizer provided at initialization.
Returns
-------
y : np.ndarray
predicted model values at times t
| 3.301177 | 4.085125 | 0.808097 |
return self._score_frequency_grid(f0, df, N)
|
def score_frequency_grid(self, f0, df, N)
|
Compute the score on a frequency grid.
Some models can compute results faster if the inputs are passed in this
manner.
Parameters
----------
f0, df, N : (float, float, int)
parameters describing the frequency grid freq = f0 + df * arange(N)
Note that these are frequencies, not angular frequencies.
Returns
-------
score : ndarray
the length-N array giving the score at each frequency
| 3.626929 | 9.881021 | 0.36706 |
N = len(self.t)
T = np.max(self.t) - np.min(self.t)
df = 1. / T / oversampling
f0 = df
Nf = int(0.5 * oversampling * nyquist_factor * N)
freq = f0 + df * np.arange(Nf)
return 1. / freq, self._score_frequency_grid(f0, df, Nf)
|
def periodogram_auto(self, oversampling=5, nyquist_factor=3,
return_periods=True)
|
Compute the periodogram on an automatically-determined grid
This function uses heuristic arguments to choose a suitable frequency
grid for the data. Note that depending on the data window function,
the model may be sensitive to periodicity at higher frequencies than
this function returns!
The final number of frequencies will be
Nf = oversampling * nyquist_factor * len(t) / 2
Parameters
----------
oversampling : float
the number of samples per approximate peak width
nyquist_factor : float
the highest frequency, in units of the nyquist frequency for points
spread uniformly through the data range.
Returns
-------
period : ndarray
the grid of periods
power : ndarray
the power at each frequency
| 3.751449 | 4.126262 | 0.909164 |
periods = np.asarray(periods)
return self._score(periods.ravel()).reshape(periods.shape)
|
def score(self, periods=None)
|
Compute the periodogram for the given period or periods
Parameters
----------
periods : float or array_like
Array of periods at which to compute the periodogram.
Returns
-------
scores : np.ndarray
Array of normalized powers (between 0 and 1) for each period.
Shape of scores matches the shape of the provided periods.
| 6.41082 | 8.253489 | 0.776741 |
if self._best_period is None:
self._best_period = self._calc_best_period()
return self._best_period
|
def best_period(self)
|
Lazy evaluation of the best period given the model
| 2.857224 | 2.317393 | 1.232947 |
return self.optimizer.find_best_periods(self, n_periods,
return_scores=return_scores)
|
def find_best_periods(self, n_periods=5, return_scores=False)
|
Find the top several best periods for the model
| 4.15344 | 4.349001 | 0.955033 |
self.unique_filts_ = np.unique(filts)
# For linear models, dy=1 is equivalent to no errors
if dy is None:
dy = 1
all_data = np.broadcast_arrays(t, y, dy, filts)
self.t, self.y, self.dy, self.filts = map(np.ravel, all_data)
self._fit(self.t, self.y, self.dy, self.filts)
self._best_period = None # reset best period in case of refitting
if self.fit_period:
self._best_period = self._calc_best_period()
return self
|
def fit(self, t, y, dy=None, filts=0)
|
Fit the multiterm Periodogram model to the data.
Parameters
----------
t : array_like, one-dimensional
sequence of observation times
y : array_like, one-dimensional
sequence of observed values
dy : float or array_like (optional)
errors on observed values
filts : array_like (optional)
The array specifying the filter/bandpass for each observation.
| 3.587828 | 3.53596 | 1.014669 |
unique_filts = set(np.unique(filts))
if not unique_filts.issubset(self.unique_filts_):
raise ValueError("filts does not match training data: "
"input: {0} output: {1}"
"".format(set(self.unique_filts_),
set(unique_filts)))
t, filts = np.broadcast_arrays(t, filts)
if period is None:
period = self.best_period
result = self._predict(t.ravel(), filts=filts.ravel(), period=period)
return result.reshape(t.shape)
|
def predict(self, t, filts, period=None)
|
Compute the best-fit model at ``t`` for a given period
Parameters
----------
t : float or array_like
times at which to predict
filts : array_like (optional)
the array specifying the filter/bandpass for each observation. This
is used only in multiband periodograms.
period : float (optional)
The period at which to compute the model. If not specified, it
will be computed via the optimizer provided at initialization.
Returns
-------
y : np.ndarray
predicted model values at times t
| 3.008857 | 3.284303 | 0.916132 |
X = self._construct_X(omega, weighted=True, **kwargs)
M = np.dot(X.T, X)
if getattr(self, 'regularization', None) is not None:
diag = M.ravel(order='K')[::M.shape[0] + 1]
if self.regularize_by_trace:
diag += diag.sum() * np.asarray(self.regularization)
else:
diag += np.asarray(self.regularization)
return X, M
|
def _construct_X_M(self, omega, **kwargs)
|
Construct the weighted normal matrix of the problem
| 3.461186 | 3.303403 | 1.047764 |
y = np.asarray(kwargs.get('y', self.y))
dy = np.asarray(kwargs.get('dy', self.dy))
if dy.size == 1:
return np.mean(y)
else:
return np.average(y, weights=1 / dy ** 2)
|
def _compute_ymean(self, **kwargs)
|
Compute the (weighted) mean of the y data
| 2.472498 | 2.201612 | 1.12304 |
t = kwargs.get('t', self.t)
dy = kwargs.get('dy', self.dy)
fit_offset = kwargs.get('fit_offset', self.fit_offset)
if fit_offset:
offsets = [np.ones(len(t))]
else:
offsets = []
cols = sum(([np.sin((i + 1) * omega * t),
np.cos((i + 1) * omega * t)]
for i in range(self.Nterms)), offsets)
if weighted:
return np.transpose(np.vstack(cols) / dy)
else:
return np.transpose(np.vstack(cols))
|
def _construct_X(self, omega, weighted=True, **kwargs)
|
Construct the design matrix for the problem
| 2.872202 | 2.772336 | 1.036022 |
phase, y = self._get_template_by_id(templateid)
# double-check that phase ranges from 0 to 1
assert phase.min() >= 0
assert phase.max() <= 1
# at the start and end points, we need to add ~5 points to make sure
# the spline & derivatives wrap appropriately
phase = np.concatenate([phase[-5:] - 1, phase, phase[:5] + 1])
y = np.concatenate([y[-5:], y, y[:5]])
# Univariate spline allows for derivatives; use this!
return UnivariateSpline(phase, y, s=0, k=5)
|
def _interpolated_template(self, templateid)
|
Return an interpolator for the given template
| 5.808297 | 5.837974 | 0.994916 |
theta_best = [self._optimize(period, tmpid)
for tmpid, _ in enumerate(self.templates)]
chi2 = [self._chi2(theta, period, tmpid)
for tmpid, theta in enumerate(theta_best)]
return theta_best, chi2
|
def _eval_templates(self, period)
|
Evaluate the best template for the given period
| 4.682931 | 4.252057 | 1.101333 |
template = self.templates[tmpid]
phase = (t / period - theta[2]) % 1
return theta[0] + theta[1] * template(phase)
|
def _model(self, t, theta, period, tmpid)
|
Compute model at t for the given parameters, period, & template
| 5.879387 | 4.587537 | 1.2816 |
template = self.templates[tmpid]
phase = (self.t / period - theta[2]) % 1
model = theta[0] + theta[1] * template(phase)
chi2 = (((model - self.y) / self.dy) ** 2).sum()
if return_gradient:
grad = 2 * (model - self.y) / self.dy ** 2
gradient = np.array([np.sum(grad),
np.sum(grad * template(phase)),
-np.sum(grad * theta[1]
* template.derivative(1)(phase))])
return chi2, gradient
else:
return chi2
|
def _chi2(self, theta, period, tmpid, return_gradient=False)
|
Compute the chi2 for the given parameters, period, & template
Optionally return the gradient for faster optimization
| 2.777893 | 2.7639 | 1.005063 |
theta_0 = [self.y.min(), self.y.max() - self.y.min(), 0]
result = minimize(self._chi2, theta_0, jac=bool(use_gradient),
bounds=[(None, None), (0, None), (None, None)],
args=(period, tmpid, use_gradient))
return result.x
|
def _optimize(self, period, tmpid, use_gradient=True)
|
Optimize the model for the given period & template
| 3.550736 | 3.517948 | 1.00932 |
# compute the estimated peak width from the data range
tmin, tmax = np.min(model.t), np.max(model.t)
width = 2 * np.pi / (tmax - tmin)
# raise a ValueError if period limits are out of range
if tmax - tmin < np.max(self.period_range):
raise ValueError("The optimizer is not designed to search for "
"for periods larger than the data baseline. ")
# our candidate steps in omega is controlled by period_range & coverage
omega_step = width / self.first_pass_coverage
omega_min = 2 * np.pi / np.max(self.period_range)
omega_max = 2 * np.pi / np.min(self.period_range)
omegas = np.arange(omega_min, omega_max + omega_step, omega_step)
periods = 2 * np.pi / omegas
# print some updates if desired
if not self.quiet:
print("Finding optimal frequency:")
print(" - Estimated peak width = {0:.3g}".format(width))
print(" - Using {0} steps per peak; "
"omega_step = {1:.3g}".format(self.first_pass_coverage,
omega_step))
print(" - User-specified period range: "
" {0:.2g} to {1:.2g}".format(periods.min(), periods.max()))
print(" - Computing periods at {0:.0f} steps".format(len(periods)))
sys.stdout.flush()
# Compute the score on the initial grid
N = int(1 + width // omega_step)
score = model.score_frequency_grid(omega_min / (2 * np.pi),
omega_step / (2 * np.pi),
len(omegas))
# find initial candidates of unique peaks
minscore = score.min()
n_candidates = max(5, 2 * n_periods)
candidate_freqs = np.zeros(n_candidates)
candidate_scores = np.zeros(n_candidates)
for i in range(n_candidates):
j = np.argmax(score)
candidate_freqs[i] = omegas[j]
candidate_scores[i] = score[j]
score[max(0, j - N):(j + N)] = minscore
# If required, do a final pass on these unique at higher resolution
if self.final_pass_coverage <= self.first_pass_coverage:
best_periods = 2 * np.pi / candidate_freqs[:n_periods]
best_scores = candidate_scores[:n_periods]
else:
f0 = -omega_step / (2 * np.pi)
df = width / self.final_pass_coverage / (2 * np.pi)
Nf = abs(2 * f0) // df
steps = f0 + df * np.arange(Nf)
candidate_freqs /= (2 * np.pi)
freqs = steps + candidate_freqs[:, np.newaxis]
periods = 1. / freqs
if not self.quiet:
print("Zooming-in on {0} candidate peaks:"
"".format(n_candidates))
print(" - Computing periods at {0:.0f} "
"steps".format(periods.size))
sys.stdout.flush()
#scores = model.score(periods)
scores = np.array([model.score_frequency_grid(c + f0, df, Nf)
for c in candidate_freqs])
best_scores = scores.max(1)
j = np.argmax(scores, 1)
i = np.argsort(best_scores)[::-1]
best_periods = periods[i, j[i]]
best_scores = best_scores[i]
if return_scores:
return best_periods[:n_periods], best_scores[:n_periods]
else:
return best_periods[:n_periods]
|
def find_best_periods(self, model, n_periods=5, return_scores=False)
|
Find the `n_periods` best periods in the model
| 3.403512 | 3.409406 | 0.998271 |
if N < len(FACTORIALS):
return FACTORIALS[N]
else:
from scipy import special
return int(special.factorial(N))
|
def factorial(N)
|
Compute the factorial of N.
If N <= 10, use a fast lookup table; otherwise use scipy.special.factorial
| 3.359873 | 2.80825 | 1.196429 |
# Note: for Python 2.7 and 3.x, this is faster:
# return 1 << int(N - 1).bit_length()
N = int(N) - 1
for i in [1, 2, 4, 8, 16, 32]:
N |= N >> i
return N + 1
|
def bitceil(N)
|
Find the bit (i.e. power of 2) immediately greater than or equal to N
Note: this works for numbers up to 2 ** 64.
Roughly equivalent to int(2 ** np.ceil(np.log2(N)))
| 3.55322 | 3.393852 | 1.046958 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.