code
string
signature
string
docstring
string
loss_without_docstring
float64
loss_with_docstring
float64
factor
float64
x, y = map(np.ravel, np.broadcast_arrays(x, y)) if N is None: N = int(np.max(x) + 0.5 * M + 1) # Now use legendre polynomial weights to populate the results array; # This is an efficient recursive implementation (See Press et al. 1989) result = np.zeros(N, dtype=y.dtype) # first take care of the easy cases where x is an integer integers = (x % 1 == 0) np.add.at(result, x[integers].astype(int), y[integers]) x, y = x[~integers], y[~integers] # For each remaining x, find the index describing the extirpolation range. # i.e. ilo[i] < x[i] < ilo[i] + M with x[i] in the center, # adjusted so that the limits are within the range 0...N ilo = np.clip((x - M // 2).astype(int), 0, N - M) numerator = y * np.prod(x - ilo - np.arange(M)[:, np.newaxis], 0) denominator = factorial(M - 1) for j in range(M): if j > 0: denominator *= j / (j - M) ind = ilo + (M - 1 - j) np.add.at(result, ind, numerator / (denominator * (x - ind))) return result
def extirpolate(x, y, N=None, M=4)
Extirpolate the values (x, y) onto an integer grid range(N), using lagrange polynomial weights on the M nearest points. Parameters ---------- x : array_like array of abscissas y : array_like array of ordinates N : int number of integer bins to use. For best performance, N should be larger than the maximum of x M : int number of adjoining points on which to extirpolate. Returns ------- yN : ndarray N extirpolated values associated with range(N) Example ------- >>> rng = np.random.RandomState(0) >>> x = 100 * rng.rand(20) >>> y = np.sin(x) >>> y_hat = extirpolate(x, y) >>> x_hat = np.arange(len(y_hat)) >>> f = lambda x: np.sin(x / 10) >>> np.allclose(np.sum(y * f(x)), np.sum(y_hat * f(x_hat))) True Notes ----- This code is based on the C implementation of spread() presented in Numerical Recipes in C, Second Edition (Press et al. 1989; p.583).
4.363871
4.253479
1.025953
df *= freq_factor f0 *= freq_factor assert df > 0 t, h = map(np.ravel, np.broadcast_arrays(t, h)) if use_fft: Mfft = int(Mfft) assert(Mfft > 0) # required size of fft is the power of 2 above the oversampling rate Nfft = bitceil(N * oversampling) t0 = t.min() if f0 > 0: h = h * np.exp(2j * np.pi * f0 * (t - t0)) tnorm = ((t - t0) * Nfft * df) % Nfft grid = extirpolate(tnorm, h, Nfft, Mfft) fftgrid = np.fft.ifft(grid) if t0 != 0: f = f0 + df * np.arange(Nfft) fftgrid *= np.exp(2j * np.pi * t0 * f) fftgrid = fftgrid[:N] C = Nfft * fftgrid.real S = Nfft * fftgrid.imag else: f = f0 + df * np.arange(N) C = np.dot(h, np.cos(2 * np.pi * f * t[:, np.newaxis])) S = np.dot(h, np.sin(2 * np.pi * f * t[:, np.newaxis])) return S, C
def trig_sum(t, h, df, N, f0=0, freq_factor=1, oversampling=5, use_fft=True, Mfft=4)
Compute (approximate) trigonometric sums for a number of frequencies This routine computes weighted sine and cosine sums: S_j = sum_i { h_i * sin(2 pi * f_j * t_i) } C_j = sum_i { h_i * cos(2 pi * f_j * t_i) } Where f_j = freq_factor * (f0 + j * df) for the values j in 1 ... N. The sums can be computed either by a brute force O[N^2] method, or by an FFT-based O[Nlog(N)] method. Parameters ---------- t : array_like array of input times h : array_like array weights for the sum df : float frequency spacing N : int number of frequency bins to return f0 : float (optional, default=0) The low frequency to use freq_factor : float (optional, default=1) Factor which multiplies the frequency use_fft : bool if True, use the approximate FFT algorithm to compute the result. This uses the FFT with Press & Rybicki's Lagrangian extirpolation. oversampling : int (default = 5) oversampling freq_factor for the approximation; roughtly the number of time samples across the highest-frequency sinusoid. This parameter contains the tradeoff between accuracy and speed. Not referenced if use_fft is False. Mfft : int The number of adjacent points to use in the FFT approximation. Not referenced if use_fft is False. Returns ------- S, C : ndarrays summation arrays for frequencies f = df * np.arange(1, N + 1)
3.190417
2.946413
1.082814
if band not in 'ugriz': raise ValueError("band='{0}' not recognized".format(band)) i = 'ugriz'.find(band) t, y, dy = self.lcdata.get_lightcurve(self.lcid, return_1d=False) if corrected: ext = self.obsmeta['rExt'] * self.ext_correction[band] else: ext = 0 return t[:, i], y[:, i] - ext, dy[:, i]
def observed(self, band, corrected=True)
Return observed values in the given band Parameters ---------- band : str desired bandpass: should be one of ['u', 'g', 'r', 'i', 'z'] corrected : bool (optional) If true, correct for extinction Returns ------- t, mag, dmag : ndarrays The times, magnitudes, and magnitude errors for the specified band.
5.82514
5.333477
1.092184
t = np.asarray(t) num = self.meta[band + 'T'] mu = self.meta[band + '0'] amp = self.meta[band + 'A'] t0 = self.meta[band + 'E'] # if there are nans or infinities, mask them bad_vals = np.isnan(t) | np.isinf(t) t[bad_vals] = t0 if corrected: ext = 0 else: ext = self.obsmeta['rExt'] * self.ext_correction[band] func = self._template_func(num, band, mu + ext, amp) mag = func(((t - t0) / self.period) % 1) mag[bad_vals] = np.nan if err is not None: mag += self.rng.normal(0, err, t.shape) return mag
def generated(self, band, t, err=None, corrected=True)
Return generated magnitudes in the specified band Parameters ---------- band : str desired bandpass: should be one of ['u', 'g', 'r', 'i', 'z'] t : array_like array of times (in days) err : float or array_like gaussian error in observations corrected : bool (optional) If true, correct for extinction Returns ------- mag : ndarray magnitudes at the specified times under the generated model.
4.624924
4.710258
0.981884
# Import here so astroML is not required at package level from astroML.datasets.tools import get_data_home if data_home is None: data_home = get_data_home(data_home) data_home = os.path.join(data_home, 'Sesar2010') if not os.path.exists(data_home): os.makedirs(data_home) src_url = SESAR_RRLYRAE_URL + filename save_loc = os.path.join(data_home, filename) if force_download or not os.path.exists(save_loc): fhandle = urlopen(src_url) with open(save_loc, 'wb') as cache: cache.write(fhandle.read()) return save_loc
def _get_download_or_cache(filename, data_home=None, url=SESAR_RRLYRAE_URL, force_download=False)
Private utility to download and/or load data from disk cache.
2.384086
2.28653
1.042666
if partial: return PartialRRLyraeLC('table1.tar.gz', cache_kwargs=kwargs) else: return RRLyraeLC('table1.tar.gz', cache_kwargs=kwargs)
def fetch_rrlyrae(partial=False, **kwargs)
Fetch RR Lyrae light curves from Sesar 2010 Parameters ---------- partial : bool (optional) If true, return the partial dataset (reduced to 1 band per night) Returns ------- rrlyrae : :class:`RRLyraeLC` object This object contains pointers to the RR Lyrae data. Other Parameters ---------------- data_home : str (optional) Specify the local cache directory for the dataset. If not used, it will default to the ``astroML`` default location. url : str (optional) Specify the URL of the datasets. Defaults to webpage associated with Sesar 2010. force_download : bool (optional) If true, then force re-downloading data even if it is already cached locally. Default is False. Examples -------- >>> rrlyrae = fetch_rrlyrae() >>> rrlyrae.ids[:5] [1013184, 1019544, 1027882, 1052471, 1056152] >>> lcid = rrlyrae.ids[0] >>> t, mag, dmag, bands = rrlyrae.get_lightcurve(lcid) >>> t[:4] array([ 51081.347856, 51081.349522, 51081.346189, 51081.347022]) >>> mag[:4] array([ 18.702, 17.553, 17.236, 17.124]) >>> dmag[:4] array([ 0.021, 0.005, 0.005, 0.006]) >>> list(bands[:4]) ['u', 'g', 'r', 'i']
4.723311
6.498722
0.726806
save_loc = _get_download_or_cache('table2.dat.gz', **kwargs) dtype = [('id', 'i'), ('type', 'S2'), ('P', 'f'), ('uA', 'f'), ('u0', 'f'), ('uE', 'f'), ('uT', 'f'), ('gA', 'f'), ('g0', 'f'), ('gE', 'f'), ('gT', 'f'), ('rA', 'f'), ('r0', 'f'), ('rE', 'f'), ('rT', 'f'), ('iA', 'f'), ('i0', 'f'), ('iE', 'f'), ('iT', 'f'), ('zA', 'f'), ('z0', 'f'), ('zE', 'f'), ('zT', 'f')] return np.loadtxt(save_loc, dtype=dtype)
def fetch_rrlyrae_lc_params(**kwargs)
Fetch data from table 2 of Sesar 2010 This table includes observationally-derived parameters for all the Sesar 2010 lightcurves.
2.350697
2.392819
0.982396
save_loc = _get_download_or_cache('table3.dat.gz', **kwargs) dtype = [('id', 'i'), ('RA', 'f'), ('DEC', 'f'), ('rExt', 'f'), ('d', 'f'), ('RGC', 'f'), ('u', 'f'), ('g', 'f'), ('r', 'f'), ('i', 'f'), ('z', 'f'), ('V', 'f'), ('ugmin', 'f'), ('ugmin_err', 'f'), ('grmin', 'f'), ('grmin_err', 'f')] return np.loadtxt(save_loc, dtype=dtype)
def fetch_rrlyrae_fitdata(**kwargs)
Fetch data from table 3 of Sesar 2010 This table includes parameters derived from template fits to all the Sesar 2010 lightcurves.
3.797541
3.955328
0.960108
filename = '{0}/{1}.dat'.format(self.dirname, star_id) try: data = np.loadtxt(self.data.extractfile(filename)) except KeyError: raise ValueError("invalid star id: {0}".format(star_id)) RA = data[:, 0] DEC = data[:, 1] t = data[:, 2::3] y = data[:, 3::3] dy = data[:, 4::3] nans = (y == -99.99) t[nans] = np.nan y[nans] = np.nan dy[nans] = np.nan if return_1d: t, y, dy, filts = np.broadcast_arrays(t, y, dy, ['u', 'g', 'r', 'i', 'z']) good = ~np.isnan(t) return t[good], y[good], dy[good], filts[good] else: return t, y, dy
def get_lightcurve(self, star_id, return_1d=True)
Get the light curves for the given ID Parameters ---------- star_id : int A valid integer star id representing an object in the dataset return_1d : boolean (default=True) Specify whether to return 1D arrays of (t, y, dy, filts) or 2D arrays of (t, y, dy) where each column is a filter. Returns ------- t, y, dy : np.ndarrays (if return_1d == False) Times, magnitudes, and magnitude errors. The shape of each array is [Nobs, 5], where the columns refer to [u,g,r,i,z] bands. Non-observations are indicated by NaN. t, y, dy, filts : np.ndarrays (if return_1d == True) Times, magnitudes, magnitude errors, and filters The shape of each array is [Nobs], and non-observations are filtered out.
2.526558
2.414751
1.046302
if self._metadata is None: self._metadata = fetch_rrlyrae_lc_params() i = np.where(self._metadata['id'] == lcid)[0] if len(i) == 0: raise ValueError("invalid lcid: {0}".format(lcid)) return self._metadata[i[0]]
def get_metadata(self, lcid)
Get the parameters derived from the fit for the given id. This is table 2 of Sesar 2010
3.958972
3.413891
1.159666
if self._obsdata is None: self._obsdata = fetch_rrlyrae_fitdata() i = np.where(self._obsdata['id'] == lcid)[0] if len(i) == 0: raise ValueError("invalid lcid: {0}".format(lcid)) return self._obsdata[i[0]]
def get_obsmeta(self, lcid)
Get the observation metadata for the given id. This is table 3 of Sesar 2010
3.772349
3.626063
1.040343
try: data = np.loadtxt(self.data.extractfile(template_id + '.dat')) except KeyError: raise ValueError("invalid star id: {0}".format(template_id)) return data[:, 0], data[:, 1]
def get_template(self, template_id)
Get a particular lightcurve template Parameters ---------- template_id : str id of desired template Returns ------- phase : ndarray array of phases mag : ndarray array of normalized magnitudes
5.714584
5.08455
1.123911
hr_data = self.hr_values() return int(sum(hr_data) / len(hr_data))
def hr_avg(self)
Average heart rate of the workout
4.823905
4.04897
1.191391
secs_per_km = self.duration / (self.distance / 1000) return time.strftime('%M:%S', time.gmtime(secs_per_km))
def pace(self)
Average pace (mm:ss/km for the workout
3.781524
3.197057
1.182814
total_ascent = 0.0 altitude_data = self.altitude_points() for i in range(len(altitude_data) - 1): diff = altitude_data[i+1] - altitude_data[i] if diff > 0.0: total_ascent += diff return total_ascent
def ascent(self)
Returns ascent of workout in meters
2.681432
2.359143
1.136613
total_descent = 0.0 altitude_data = self.altitude_points() for i in range(len(altitude_data) - 1): diff = altitude_data[i+1] - altitude_data[i] if diff < 0.0: total_descent += abs(diff) return total_descent
def descent(self)
Returns descent of workout in meters
2.764187
2.491146
1.109604
invalid_chars = '!\"#$%&\'()*+-./:;<=>?@[\\]^_{|}~\t\n' if any(char in invalid_chars for char in keywords): raise ValidationError(MESSAGE_KEYWORD_SPECIAL_CHARS)
def keywords_special_characters(keywords)
Confirms that the keywords don't contain special characters Args: keywords (str) Raises: django.forms.ValidationError
3.818029
4.428728
0.862105
if value.image.format.upper() not in constants.ALLOWED_IMAGE_FORMATS: raise ValidationError(MESSAGE_INVALID_IMAGE_FORMAT)
def image_format(value)
Confirms that the uploaded image is of supported format. Args: value (File): The file with an `image` property containing the image Raises: django.forms.ValidationError
6.423262
5.098093
1.259934
parsed = parse.urlparse(value.lower()) if not parsed.netloc.endswith('facebook.com'): raise ValidationError(MESSAGE_NOT_FACEBOOK)
def case_study_social_link_facebook(value)
Confirms that the social media url is pointed at the correct domain. Args: value (string): The url to check. Raises: django.forms.ValidationError
5.77042
6.185073
0.932959
parsed = parse.urlparse(value.lower()) if not parsed.netloc.endswith('twitter.com'): raise ValidationError(MESSAGE_NOT_TWITTER)
def case_study_social_link_twitter(value)
Confirms that the social media url is pointed at the correct domain. Args: value (string): The url to check. Raises: django.forms.ValidationError
5.417538
5.838859
0.927842
parsed = parse.urlparse(value.lower()) if not parsed.netloc.endswith('linkedin.com'): raise ValidationError(MESSAGE_NOT_LINKEDIN)
def case_study_social_link_linkedin(value)
Confirms that the social media url is pointed at the correct domain. Args: value (string): The url to check. Raises: django.forms.ValidationError
5.438718
6.004476
0.905777
for prefix, name in company_types_with_insufficient_companies_house_data: if value.upper().startswith(prefix): raise ValidationError( MESSAGE_INSUFFICIENT_DATA, params={'name': name} )
def no_company_with_insufficient_companies_house_data(value)
Confirms that the company number is not for for a company that Companies House does not hold information on. Args: value (string): The company number to check. Raises: django.forms.ValidationError
5.394264
5.834042
0.924619
domain = helpers.get_domain_from_email_address(value) if domain.lower() in free_domains: raise ValidationError(MESSAGE_USE_COMPANY_EMAIL)
def email_domain_free(value)
Confirms that the email address is not using a free service. @param {str} value @returns {None} @raises AssertionError
7.408188
8.810359
0.84085
domain = helpers.get_domain_from_email_address(value) if domain.lower() in disposable_domains: raise ValidationError(MESSAGE_USE_COMPANY_EMAIL)
def email_domain_disposable(value)
Confirms that the email address is not using a disposable service. @param {str} value @returns {None} @raises AssertionError
6.619162
8.443723
0.783915
try: parsed = phonenumbers.parse(value, 'GB') except NumberParseException: pass else: is_mobile = carrier._is_mobile(number_type(parsed)) if is_mobile and phonenumbers.is_valid_number(parsed): return None raise ValidationError(MESSAGE_INVALID_PHONE_NUMBER)
def domestic_mobile_phone_number(value)
Confirms that the phone number is a valid UK phone number. @param {str} value @returns {None} @raises AssertionError
4.709093
5.288334
0.890468
result = [points[0]] for i in range(1, len(points) - 2): prv = points[i-1] crr = points[i] nxt = points[i+1] if prv.time <= crr.time and crr.time <= nxt.time: result.append(crr) result.append(points[-1]) return result
def remove_liers(points)
Removes obvious noise points Checks time consistency, removing points that appear out of order Args: points (:obj:`list` of :obj:`Point`) Returns: :obj:`list` of :obj:`Point`
2.3104
2.457208
0.940254
points = self.points[lower_index:upper_index] min_lat = float("inf") min_lon = float("inf") max_lat = -float("inf") max_lon = -float("inf") for point in points: min_lat = min(min_lat, point.lat) min_lon = min(min_lon, point.lon) max_lat = max(max_lat, point.lat) max_lon = max(max_lon, point.lon) return (min_lat - thr, min_lon - thr, max_lat + thr, max_lon + thr)
def bounds(self, thr=0, lower_index=0, upper_index=-1)
Computes the bounds of the segment, or part of it Args: lower_index (int, optional): Start index. Defaults to 0 upper_index (int, optional): End index. Defaults to 0 Returns: :obj:`tuple` of :obj:`float`: Bounds of the (sub)segment, such that (min_lat, min_lon, max_lat, max_lon)
1.575697
1.556051
1.012626
if strategy is INVERSE_STRATEGY: self.points = with_inverse(self.points, noise) elif strategy is EXTRAPOLATE_STRATEGY: self.points = with_extrapolation(self.points, noise, 30) elif strategy is NO_STRATEGY: self.points = with_no_strategy(self.points, noise) return self
def smooth(self, noise, strategy=INVERSE_STRATEGY)
In-place smoothing See smooth_segment function Args: noise (float): Noise expected strategy (int): Strategy to use. Either smooth.INVERSE_STRATEGY or smooth.EXTRAPOLATE_STRATEGY Returns: :obj:`Segment`
2.641988
2.772531
0.952916
if topology_only: self.points = drp(self.points, eps) else: self.points = spt(self.points, max_dist_error, max_speed_error) return self
def simplify(self, eps, max_dist_error, max_speed_error, topology_only=False)
In-place segment simplification See `drp` and `compression` modules Args: eps (float): Distance threshold for the `drp` function max_dist_error (float): Max distance error, in meters max_speed_error (float): Max speed error, in km/h topology_only (bool, optional): True to only keep topology, not considering times when simplifying. Defaults to False. Returns: :obj:`Segment`
4.118866
3.576848
1.151535
for prev, point in pairwise(self.points): point.compute_metrics(prev) return self
def compute_metrics(self)
Computes metrics for each point Returns: :obj:`Segment`: self
13.237811
10.555717
1.254089
self.location_from = infer_location( self.points[0], location_query, max_distance, google_key, foursquare_client_id, foursquare_client_secret, limit ) self.location_to = infer_location( self.points[-1], location_query, max_distance, google_key, foursquare_client_id, foursquare_client_secret, limit ) return self
def infer_location( self, location_query, max_distance, google_key, foursquare_client_id, foursquare_client_secret, limit )
In-place location inferring See infer_location function Args: Returns: :obj:`Segment`: self
1.717447
1.806729
0.950583
self.transportation_modes = speed_clustering(clf, self.points, min_time) return self
def infer_transportation_mode(self, clf, min_time)
In-place transportation mode inferring See infer_transportation_mode function Args: Returns: :obj:`Segment`: self
7.807756
12.580415
0.620628
self.points = sort_segment_points(self.points, segment.points) return self
def merge_and_fit(self, segment)
Merges another segment with this one, ordering the points based on a distance heuristic Args: segment (:obj:`Segment`): Segment to merge with Returns: :obj:`Segment`: self
8.499692
6.403974
1.327253
i = 0 point_arr = point.gen2arr() def closest_in_line(pointA, pointB): temp = closest_point(pointA.gen2arr(), pointB.gen2arr(), point_arr) return Point(temp[1], temp[0], None) for (p_a, p_b) in pairwise(self.points): candidate = closest_in_line(p_a, p_b) if candidate.distance(point) <= thr: if p_a.distance(point) <= thr: return i, p_a elif p_b.distance(point) <= thr: return i + 1, p_b else: return i, candidate i = i + 1 return -1, None
def closest_point_to(self, point, thr=20.0)
Finds the closest point in the segment to a given point Args: point (:obj:`Point`) thr (float, optional): Distance threshold, in meters, to be considered the same point. Defaults to 20.0 Returns: (int, Point): Index of the point. -1 if doesn't exist. A point is given if it's along the segment
3.000734
3.193637
0.939598
reverse = False if start > end: temp = start start = end end = temp reverse = True seg = self.copy() seg.points = seg.points[start:end+1] if reverse: seg.points = list(reversed(seg.points)) return seg
def slice(self, start, end)
Creates a copy of the current segment between indexes. If end > start, points are reverted Args: start (int): Start index end (int): End index Returns: :obj:`Segment`
2.951529
2.719097
1.085481
points = [point.to_json() for point in self.points] return { 'points': points, 'transportationModes': self.transportation_modes, 'locationFrom': self.location_from.to_json() if self.location_from != None else None, 'locationTo': self.location_to.to_json() if self.location_to != None else None }
def to_json(self)
Converts segment to a JSON serializable format Returns: :obj:`dict`
2.408675
2.733025
0.881322
points = [] for point in gpx_segment.points: points.append(Point.from_gpx(point)) return Segment(points)
def from_gpx(gpx_segment)
Creates a segment from a GPX format. No preprocessing is done. Arguments: gpx_segment (:obj:`gpxpy.GPXTrackSegment`) Return: :obj:`Segment`
2.649294
3.090527
0.857231
points = [] for point in json['points']: points.append(Point.from_json(point)) return Segment(points)
def from_json(json)
Creates a segment from a JSON file. No preprocessing is done. Arguments: json (:obj:`dict`): JSON representation. See to_json. Return: :obj:`Segment`
3.335582
4.18033
0.797923
points = points[:n_points] lat = [] lon = [] last = None for point in points: if last is not None: lat.append(last.lat-point.lat) lon.append(last.lon-point.lon) last = point dts = np.mean([p.dt for p in points]) lons = np.mean(lon) lats = np.mean(lat) gen_sample = [] last = points[0] for _ in range(n_points): point = Point(last.lat+lats, last.lon+lons, None) point.dt = dts # point.compute_metrics(last) gen_sample.append(point) last = point return gen_sample
def extrapolate_points(points, n_points)
Extrapolate a number of points, based on the first ones Args: points (:obj:`list` of :obj:`Point`) n_points (int): number of points to extrapolate Returns: :obj:`list` of :obj:`Point`
2.796012
2.936589
0.952129
n_points = 10 return kalman_filter(extrapolate_points(points, n_points) + points, noise)[n_points:]
def with_extrapolation(points, noise, n_points)
Smooths a set of points, but it extrapolates some points at the beginning Args: points (:obj:`list` of :obj:`Point`) noise (float): Expected noise, the higher it is the more the path will be smoothed. Returns: :obj:`list` of :obj:`Point`
7.251376
10.512538
0.689784
# noise_sample = 20 n_points = len(points)/2 break_point = n_points points_part = copy.deepcopy(points) points_part = list(reversed(points_part)) part = kalman_filter(points_part, noise) total = kalman_filter(points, noise) result = list(reversed(part))[:break_point] + total[break_point:] result[break_point] = point_mean(part[break_point], total[break_point]) return result
def with_inverse(points, noise)
Smooths a set of points It smooths them twice, once in given order, another one in the reverse order. The the first half of the results will be taken from the reverse order and the second half from the normal order. Args: points (:obj:`list` of :obj:`Point`) noise (float): Expected noise, the higher it is the more the path will be smoothed. Returns: :obj:`list` of :obj:`Point`
4.582646
4.616345
0.9927
final_segments = [] for segment in segments: final_segments.append([]) for point in segment: if point.dt > min_time: final_segments.append([]) final_segments[-1].append(point) return final_segments
def temporal_segmentation(segments, min_time)
Segments based on time distant points Args: segments (:obj:`list` of :obj:`list` of :obj:`Point`): segment points min_time (int): minimum required time for segmentation
2.957546
3.123665
0.946819
# segments = [points for points in segments if len(points) > 1] result_segments = [] prev_segment = None for i, segment in enumerate(segments): if len(segment) >= 1: continue cluster = clusters[i] if prev_segment is None: prev_segment = segment else: cluster_dt = 0 if len(cluster) > 0: cluster_dt = abs(cluster[0].time_difference(cluster[-1])) if cluster_dt <= min_time: prev_segment.extend(segment) else: prev_segment.append(segment[0]) result_segments.append(prev_segment) prev_segment = segment if prev_segment is not None: result_segments.append(prev_segment) return result_segments
def correct_segmentation(segments, clusters, min_time)
Corrects the predicted segmentation This process prevents over segmentation Args: segments (:obj:`list` of :obj:`list` of :obj:`Point`): segments to correct min_time (int): minimum required time for segmentation
2.287929
2.39242
0.956324
# min time / sample rate dt_average = np.median([point.dt for point in points]) min_samples = min_time / dt_average data = [point.gen3arr() for point in points] data = StandardScaler().fit_transform(data) print 'min_samples: %f' % min_samples db_cluster = DBSCAN(eps=eps, min_samples=min_samples).fit(data) labels = db_cluster.labels_ n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0) segments = [[] for _ in range(n_clusters_+1)] clusters = [[] for _ in range(n_clusters_+1)] current_segment = 0 print 'clusters' print n_clusters_ if n_clusters_ == 1: segments = temporal_segmentation([points], min_time) return [segment for segment in segments if len(segment) > 1] # split segments identified with dbscan for i, label in enumerate(labels): if label != -1 and label + 1 != current_segment: current_segment = label + 1 point = points[i] if label == -1: segments[current_segment].append(point) else: clusters[label + 1].append(point) if len(segments) == 0 or sum([len(s) for s in segments]): segments = [points] segments = temporal_segmentation(segments, min_time) # segments = temporal_segmentation(correct_segmentation(segments, clusters, min_time), min_time) return [segment for segment in segments if len(segment) > 1]
def spatiotemporal_segmentation(points, eps, min_time)
Splits a set of points into multiple sets of points based on spatio-temporal stays DBSCAN is used to predict possible segmentations, furthermore we check to see if each clusters is big enough in time (>=min_time). If that's the case than the segmentation is considered valid. When segmenting, the last point of the ith segment will be the same of the (i-1)th segment. Segments are identified through clusters. The last point of a clusters, that comes after a sub-segment A, will be present on the sub-segment A. Args: points (:obj:`list` of :obj:`Point`): segment's points eps (float): Epsilon to feed to the DBSCAN algorithm. Maximum distance between two samples, to be considered in the same cluster. min_time (float): Minimum time of a stay Returns: :obj:`list` of :obj:`list` of :obj:`Point`: Initial set of points in different segments
3.045516
3.007309
1.012705
kalman = ikalman.filter(noise) for point in points: kalman.update_velocity2d(point.lat, point.lon, point.dt) (lat, lon) = kalman.get_lat_long() point.lat = lat point.lon = lon return points
def kalman_filter(points, noise)
Smooths points with kalman filter See https://github.com/open-city/ikalman Args: points (:obj:`list` of :obj:`Point`): points to smooth noise (float): expected noise
4.555761
5.255282
0.866892
for segment in track.segments: tmodes = segment.transportation_modes points = segment.points features = [] labels = [] for tmode in tmodes: points_part = points[tmode['from']:tmode['to']] if len(points_part) > 0: features.append(extract_features_2(points_part)) labels.append(tmode['label']) clf.learn(features, labels)
def learn_transportation_mode(track, clf)
Inserts transportation modes of a track into a classifier Args: track (:obj:`Track`) clf (:obj:`Classifier`)
3.249549
3.246859
1.000829
max_bin = -1 for point in points: max_bin = max(max_bin, point.vel) max_bin = int(round(max_bin)) + 1 # inits histogram histogram = [0] * max_bin time = 0 # fills histogram for point in points: bin_index = int(round(point.vel)) histogram[bin_index] += point.dt time += point.dt result = [] if time == 0: return result for _ in range(n_tops): max_index = np.argmax(histogram) value = histogram[max_index] / time result.extend([max_index, value]) histogram[max_index] = -1 return result
def extract_features(points, n_tops)
Feature extractor Args: points (:obj:`list` of :obj:`Point`) n_tops (int): Number of top speeds to extract Returns: :obj:`list` of float: with length (n_tops*2). Where the ith even element is the ith top speed and the i+1 element is the percentage of time spent on that speed
2.993296
3.01335
0.993345
data = [0] for before, after in pairwise(points): data.append(before.vel - after.vel) return data
def speed_difference(points)
Computes the speed difference between each adjacent point Args: points (:obj:`Point`) Returns: :obj:`list` of int: Indexes of changepoints
5.599298
7.688273
0.728291
data = [0] for before, after in pairwise(points): data.append(before.acc - after.acc) return data
def acc_difference(points)
Computes the accelaration difference between each adjacent point Args: points (:obj:`Point`) Returns: :obj:`list` of int: Indexes of changepoints
4.931079
6.645149
0.742057
data = data_processor(points) changepoints = pelt(normal_mean(data, np.std(data)), len(data)) changepoints.append(len(points) - 1) result = [] for start, end in pairwise(changepoints): time_diff = points[end].time_difference(points[start]) if time_diff > min_time: result.append(start) # adds the first point result.append(0) # adds the last changepoint detected result.append(len(points) - 1) return sorted(list(set(result)))
def detect_changepoints(points, min_time, data_processor=acc_difference)
Detects changepoints on points that have at least a specific duration Args: points (:obj:`Point`) min_time (float): Min time that a sub-segmented, bounded by two changepoints, must have data_processor (function): Function to extract data to feed to the changepoint algorithm. Defaults to `speed_difference` Returns: :obj:`list` of int: Indexes of changepoints
3.839811
4.15996
0.92304
if len(modes) > 0: previous = modes[0] grouped = [] for changep in modes[1:]: if changep['label'] != previous['label']: previous['to'] = changep['from'] grouped.append(previous) previous = changep previous['to'] = modes[-1]['to'] grouped.append(previous) return grouped else: return modes
def group_modes(modes)
Groups consecutive transportation modes with same label, into one Args: modes (:obj:`list` of :obj:`dict`) Returns: :obj:`list` of :obj:`dict`
3.426922
3.11665
1.099553
# get changepoint indexes changepoints = detect_changepoints(points, min_time) # info for each changepoint cp_info = [] for i in range(0, len(changepoints) - 1): from_index = changepoints[i] to_index = changepoints[i+1] info = classify(clf, points[from_index:to_index], min_time, from_index, to_index) if info: cp_info.append(info) return group_modes(cp_info)
def speed_clustering(clf, points, min_time)
Transportation mode infering, based on changepoint segmentation Args: clf (:obj:`Classifier`): Classifier to use points (:obj:`list` of :obj:`Point`) min_time (float): Min time, in seconds, before do another segmentation Returns: :obj:`list` of :obj:`dict`
3.216833
3.285367
0.97914
return sqrt((p_a.lat - p_b.lat) ** 2 + (p_a.lon - p_b.lon) ** 2)
def distance(p_a, p_b)
Euclidean distance, between two points Args: p_a (:obj:`Point`) p_b (:obj:`Point`) Returns: float: distance, in degrees
2.151346
3.059586
0.703149
if start == end: return distance(point, start) else: un_dist = abs( (end.lat-start.lat)*(start.lon-point.lon) - (start.lat-point.lat)*(end.lon-start.lon) ) n_dist = sqrt( (end.lat-start.lat)**2 + (end.lon-start.lon)**2 ) if n_dist == 0: return 0 else: return un_dist / n_dist
def point_line_distance(point, start, end)
Distance from a point to a line, formed by two points Args: point (:obj:`Point`) start (:obj:`Point`): line point end (:obj:`Point`): line point Returns: float: distance to line, in degrees
2.225309
2.376149
0.936519
dmax = 0.0 index = 0 for i in range(1, len(points)-1): dist = point_line_distance(points[i], points[0], points[-1]) if dist > dmax: index = i dmax = dist if dmax > epsilon: return drp(points[:index+1], epsilon)[:-1] + drp(points[index:], epsilon) else: return [points[0], points[-1]]
def drp(points, epsilon)
Douglas ramer peucker Based on https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm Args: points (:obj:`list` of :obj:`Point`) epsilon (float): drp threshold Returns: :obj:`list` of :obj:`Point`
2.220483
2.516533
0.882358
if len(points) <= 2: return points else: max_speed_threshold = 0 found_index = 0 for i in range(1, len(points)-1): dt1 = time_dist(points[i], points[i-1]) if dt1 == 0: dt1 = 0.000000001 vim = loc_dist(points[i], points[i-1]) / dt1 dt2 = time_dist(points[i+1], points[i]) if dt2 == 0: dt2 = 0.000000001 vi_ = loc_dist(points[i+1], points[i]) / dt2 if abs(vi_ - vim) > max_speed_threshold: max_speed_threshold = abs(vi_ - vim) found_index = i if max_speed_threshold > speed_threshold: one = td_sp(points[:found_index], speed_threshold) two = td_sp(points[found_index:], speed_threshold) one.extend(two) return one else: return [points[0], points[-1]]
def td_sp(points, speed_threshold)
Top-Down Speed-Based Trajectory Compression Algorithm Detailed in https://www.itc.nl/library/Papers_2003/peer_ref_conf/meratnia_new.pdf Args: points (:obj:`list` of :obj:`Point`): trajectory or part of it speed_threshold (float): max speed error, in km/h Returns: :obj:`list` of :obj:`Point`, compressed trajectory
1.951517
1.992927
0.979222
if len(points) <= 2: return points else: max_dist_threshold = 0 found_index = 0 delta_e = time_dist(points[-1], points[0]) * I_3600 d_lat = points[-1].lat - points[0].lat d_lon = points[-1].lon - points[0].lon for i in range(1, len(points)-1): delta_i = time_dist(points[i], points[0]) * I_3600 di_de = delta_i / delta_e point = Point( points[0].lat + d_lat * di_de, points[0].lon + d_lon * di_de, None ) dist = loc_dist(points[i], point) if dist > max_dist_threshold: max_dist_threshold = dist found_index = i if max_dist_threshold > dist_threshold: one = td_tr(points[:found_index], dist_threshold) two = td_tr(points[found_index:], dist_threshold) one.extend(two) return one else: return [points[0], points[-1]]
def td_tr(points, dist_threshold)
Top-Down Time-Ratio Trajectory Compression Algorithm Detailed in https://www.itc.nl/library/Papers_2003/peer_ref_conf/meratnia_new.pdf Args: points (:obj:`list` of :obj:`Point`): trajectory or part of it dist_threshold (float): max distance error, in meters Returns: :obj:`list` of :obj:`Point`, compressed trajectory
2.458735
2.478673
0.991956
if len(points) <= 2: return points else: is_error = False e = 1 while e < len(points) and not is_error: i = 1 while i < e and not is_error: delta_e = time_dist(points[e], points[0]) * I_3600 delta_i = time_dist(points[i], points[0]) * I_3600 di_de = 0 if delta_e != 0: di_de = delta_i / delta_e d_lat = points[e].lat - points[0].lat d_lon = points[e].lon - points[0].lon point = Point( points[0].lat + d_lat * di_de, points[0].lon + d_lon * di_de, None ) dt1 = time_dist(points[i], points[i-1]) if dt1 == 0: dt1 = 0.000000001 dt2 = time_dist(points[i+1], points[i]) if dt2 == 0: dt2 = 0.000000001 v_i_1 = loc_dist(points[i], points[i-1]) / dt1 v_i = loc_dist(points[i+1], points[i]) / dt2 if loc_dist(points[i], point) > max_dist_error or abs(v_i - v_i_1) > max_speed_error: is_error = True else: i = i + 1 if is_error: return [points[0]] + spt(points[i:len(points)], max_dist_error, max_speed_error) e = e + 1 if not is_error: return [points[0], points[len(points)-1]]
def spt(points, max_dist_error, max_speed_error)
A combination of both `td_sp` and `td_tr` Detailed in, Spatiotemporal Compression Techniques for Moving Point Objects, Nirvana Meratnia and Rolf A. de By, 2004, in Advances in Database Technology - EDBT 2004: 9th International Conference on Extending Database Technology, Heraklion, Crete, Greece, March 14-18, 2004 Args: points (:obj:`list` of :obj:`Point`) max_dist_error (float): max distance error, in meters max_speed_error (float): max speed error, in km/h Returns: :obj:`list` of :obj:`Point`
2.174048
2.154711
1.008974
if len(self.segments) > 0: return self.segments[0].points[0].time.strftime(name_format) + ".gpx" else: return "EmptyTrack"
def generate_name(self, name_format=DEFAULT_FILE_NAME_FORMAT)
Generates a name for the track The name is generated based on the date of the first point of the track, or in case it doesn't exist, "EmptyTrack" Args: name_format (str, optional): Name formar to give to the track, based on its start time. Defaults to DEFAULT_FILE_NAME_FORMAT Returns: str
5.044258
3.883963
1.29874
print noise for segment in self.segments: segment.smooth(noise, strategy) return self
def smooth(self, strategy, noise)
In-place smoothing of segments Returns: :obj:`Track`: self
8.098438
8.071951
1.003281
new_segments = [] for segment in self.segments: segmented = segment.segment(eps, min_time) for seg in segmented: new_segments.append(Segment(seg)) self.segments = new_segments return self
def segment(self, eps, min_time)
In-place segmentation of segments Spatio-temporal segmentation of each segment The number of segments may increse after this step Returns: This track
2.687103
3.249154
0.827016
for segment in self.segments: segment.simplify(eps, max_dist_error, max_speed_error, topology_only) return self
def simplify(self, eps, max_dist_error, max_speed_error, topology_only=False)
In-place simplification of segments Args: max_dist_error (float): Min distance error, in meters max_speed_error (float): Min speed error, in km/h topology_only: Boolean, optional. True to keep the topology, neglecting velocity and time accuracy (use common Douglas-Ramen-Peucker). False (default) to simplify segments keeping the velocity between points. Returns: This track
2.405652
2.929356
0.821222
for segment in self.segments: segment.infer_transportation_mode(clf, min_time) return self
def infer_transportation_mode(self, clf, min_time)
In-place transportation mode inferring of segments Returns: This track
3.5231
3.949733
0.891984
self.compute_metrics() self.remove_noise() print (smooth, seg, simplify) if smooth: self.compute_metrics() self.smooth(smooth_strategy, smooth_noise) if seg: self.compute_metrics() self.segment(seg_eps, seg_min_time) if simplify: self.compute_metrics() self.simplify(0, simplify_max_dist_error, simplify_max_speed_error) self.compute_metrics() return self
def to_trip( self, smooth, smooth_strategy, smooth_noise, seg, seg_eps, seg_min_time, simplify, simplify_max_dist_error, simplify_max_speed_error )
In-place, transformation of a track into a trip A trip is a more accurate depiction of reality than a track. For a track to become a trip it need to go through the following steps: + noise removal + smoothing + spatio-temporal segmentation + simplification At the end of these steps we have a less noisy, track that has less points, but that holds the same information. It's required that each segment has their metrics calculated or has been preprocessed. Args: name: An optional string with the name of the trip. If none is given, one will be generated by generateName Returns: This Track instance
2.377507
2.463554
0.965072
self.segments = [ segment.infer_transportation_mode(dt_threshold=dt_threshold) for segment in self.segments ] return self
def infer_transportation_modes(self, dt_threshold=10)
In-place transportation inferring of segments Returns: This track
3.928416
4.352702
0.902524
self.segments = [ segment.infer_location( location_query, max_distance, google_key, foursquare_client_id, foursquare_client_secret, limit ) for segment in self.segments ] return self
def infer_location( self, location_query, max_distance, google_key, foursquare_client_id, foursquare_client_secret, limit )
In-place location inferring of segments Returns: This track
2.259824
2.203617
1.025507
return { 'name': self.name, 'segments': [segment.to_json() for segment in self.segments], 'meta': self.meta }
def to_json(self)
Converts track to a JSON serializable format Returns: Map with the name, and segments of the track.
3.628785
3.219127
1.127258
for (self_seg_index, track_seg_index, _) in pairings: self_s = self.segments[self_seg_index] ss_start = self_s.points[0] track_s = track.segments[track_seg_index] tt_start = track_s.points[0] tt_end = track_s.points[-1] d_start = ss_start.distance(tt_start) d_end = ss_start.distance(tt_end) if d_start > d_end: track_s = track_s.copy() track_s.points = list(reversed(track_s.points)) self_s.merge_and_fit(track_s) return self
def merge_and_fit(self, track, pairings)
Merges another track with this one, ordering the points based on a distance heuristic Args: track (:obj:`Track`): Track to merge with pairings Returns: :obj:`Segment`: self
2.369807
2.312215
1.024908
for i, segment in enumerate(self.segments): idx = segment.getPointIndex(point) if idx != -1: return i, idx return -1, -1
def get_point_index(self, point)
Gets of the closest first point Args: point (:obj:`Point`) Returns: (int, int): Segment id and point index in that segment
2.943513
3.001022
0.980837
min_lat = float("inf") min_lon = float("inf") max_lat = -float("inf") max_lon = -float("inf") for segment in self.segments: milat, milon, malat, malon = segment.bounds(thr=thr) min_lat = min(milat, min_lat) min_lon = min(milon, min_lon) max_lat = max(malat, max_lat) max_lon = max(malon, max_lon) return min_lat, min_lon, max_lat, max_lon
def bounds(self, thr=0)
Gets the bounds of this segment Returns: (float, float, float, float): Bounds, with min latitude, min longitude, max latitude and max longitude
1.825038
1.851175
0.985881
idx = index.Index() i = 0 for i, segment in enumerate(self.segments): idx.insert(i, segment.bounds(), obj=segment) final_siml = [] final_diff = [] for i, segment in enumerate(track.segments): query = idx.intersection(segment.bounds(), objects=True) res_siml = [] res_diff = [] for result in query: siml, diff = segment_similarity(segment, result.object) res_siml.append(siml) res_diff.append((result.id, i, diff)) if len(res_siml) > 0: final_siml.append(max(res_siml)) final_diff.append(res_diff[np.argmax(res_siml)]) else: final_siml.append(0) final_diff.append([]) return np.mean(final_siml), final_diff
def similarity(self, track)
Compares two tracks based on their topology This method compares the given track against this instance. It only verifies if given track is close to this one, not the other way arround Args: track (:obj:`Track`) Returns: Two-tuple with global similarity between tracks and an array the similarity between segments
2.67258
2.647629
1.009424
gpx_segments = [] for segment in self.segments: gpx_points = [] for point in segment.points: time = '' if point.time: iso_time = point.time.isoformat().split('.')[0] time = '<time>%s</time>' % iso_time gpx_points.append( u'<trkpt lat="%f" lon="%f">%s</trkpt>' % (point.lat, point.lon, time) ) points = u'\n\t\t\t'.join(gpx_points) gpx_segments.append(u'\t\t<trkseg>\n\t\t\t%s\n\t\t</trkseg>' % points) segments = u'\t\n'.join(gpx_segments) content = [ u'<?xml version="1.0" encoding="UTF-8"?>', u'<gpx xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.topografix.com/GPX/1/0" xsi:schemaLocation="http://www.topografix.com/GPX/1/0 http://www.topografix.com/GPX/1/0/gpx.xsd" version="1.0" creator="GatherMySteps">', u'\t<trk>', segments, u'\t</trk>', u'</gpx>' ] return u'\n'.join(content)
def to_gpx(self)
Converts track to a GPX format Uses GPXPY library as an intermediate format Returns: A string with the GPX/XML track
1.708252
1.770066
0.965078
tz_dt = timedelta(hours=timezone) for segment in self.segments: for point in segment.points: point.time = point.time + tz_dt return self
def timezone(self, timezone=0)
Sets the timezone of the entire track Args: timezone (int): Timezone hour delta
4.399285
4.766827
0.922896
buff = "--%s\n" % self.segments[0].points[0].time.strftime("%Y_%m_%d") # buff += "--" + day # buff += "UTC+s" # if needed def military_time(time): return time.strftime("%H%M") def stay(buff, start, end, place): if not isinstance(start, str): start = military_time(start) if not isinstance(end, str): end = military_time(end) return "%s\n%s-%s: %s" % (buff, start, end, place.label) def trip(buff, segment): trip = "%s-%s: %s -> %s" % ( military_time(segment.points[0].time), military_time(segment.points[-1].time), segment.location_from.label, segment.location_to.label ) t_modes = segment.transportation_modes if len(t_modes) == 1: trip = "%s [%s]" % (trip, t_modes[0]['label']) elif len(t_modes) > 1: modes = [] for mode in t_modes: trip_from = military_time(segment.points[mode['from']].time) trip_to = military_time(segment.points[mode['to']].time) modes.append(" %s-%s: [%s]" % (trip_from, trip_to, mode['label'])) trip = "%s\n%s" % (trip, "\n".join(modes)) return "%s\n%s" % (buff, trip) last = len(self.segments) - 1 for i, segment in enumerate(self.segments): if i == 0: buff = stay( buff, "0000", military_time(segment.points[0].time), segment.location_from ) buff = trip(buff, segment) if i is last: buff = stay( buff, military_time(segment.points[-1].time), "2359", segment.location_to ) else: next_seg = self.segments[i+1] buff = stay( buff, military_time(segment.points[-1].time), military_time(next_seg.points[0].time), segment.location_to ) return buff
def to_life(self)
Converts track to LIFE format
2.42507
2.361171
1.027062
gpx = gpxpy.parse(open(file_path, 'r')) file_name = basename(file_path) tracks = [] for i, track in enumerate(gpx.tracks): segments = [] for segment in track.segments: segments.append(Segment.from_gpx(segment)) if len(gpx.tracks) > 1: name = file_name + "_" + str(i) else: name = file_name tracks.append(Track(name, segments)) return tracks
def from_gpx(file_path)
Creates a Track from a GPX file. No preprocessing is done. Arguments: file_path (str): file path and name to the GPX file Return: :obj:`list` of :obj:`Track`
1.989899
2.192638
0.907536
segments = [Segment.from_json(s) for s in json['segments']] return Track(json['name'], segments).compute_metrics()
def from_json(json)
Creates a Track from a JSON file. No preprocessing is done. Arguments: json: map with the keys: name (optional) and segments. Return: A track instance
6.171353
6.391315
0.965584
l = math.sqrt(p[0]**2 + p[1]**2) return [0.0, 0.0] if l == 0 else [p[0]/l, p[1]/l]
def normalize(p)
Normalizes a point/vector Args: p ([float, float]): x and y coordinates Returns: float
2.296006
2.515403
0.912779
A = (p1[1] - p2[1]) B = (p2[0] - p1[0]) C = (p1[0]*p2[1] - p2[0]*p1[1]) return A, B, -C
def line(p1, p2)
Creates a line from two points From http://stackoverflow.com/a/20679579 Args: p1 ([float, float]): x and y coordinates p2 ([float, float]): x and y coordinates Returns: (float, float, float): x, y and _
1.654123
1.971616
0.838968
D = L1[0] * L2[1] - L1[1] * L2[0] Dx = L1[2] * L2[1] - L1[1] * L2[2] Dy = L1[0] * L2[2] - L1[2] * L2[0] if D != 0: x = Dx / D y = Dy / D return x, y else: return False
def intersection(L1, L2)
Intersects two line segments Args: L1 ([float, float]): x and y coordinates L2 ([float, float]): x and y coordinates Returns: bool: if they intersect (float, float): x and y of intersection, if they do
1.484655
1.605862
0.924523
return math.sqrt((b.lat-a.lat)**2 + (b.lon-a.lon)**2)
def distance_tt_point(a, b)
Euclidean distance between two (tracktotrip) points Args: a (:obj:`Point`) b (:obj:`Point`) Returns: float
2.721843
4.163023
0.653814
ap = [p[0]-a[0], p[1]-a[1]] ab = [b[0]-a[0], b[1]-a[1]] mag = float(ab[0]**2 + ab[1]**2) proj = dot(ap, ab) if mag ==0 : dist = 0 else: dist = proj / mag if dist < 0: return [a[0], a[1]] elif dist > 1: return [b[0], b[1]] else: return [a[0] + ab[0] * dist, a[1] + ab[1] * dist]
def closest_point(a, b, p)
Finds closest point in a line segment Args: a ([float, float]): x and y coordinates. Line start b ([float, float]): x and y coordinates. Line end p ([float, float]): x and y coordinates. Point to find in the segment Returns: (float, float): x and y coordinates of the closest point
1.862005
2.044882
0.910569
return distance(closest_point(a, b, p), p)
def distance_to_line(a, b, p)
Closest distance between a line segment and a point Args: a ([float, float]): x and y coordinates. Line start b ([float, float]): x and y coordinates. Line end p ([float, float]): x and y coordinates. Point to compute the distance Returns: float
5.430776
15.138209
0.358746
d = distance_to_line(a, b, p) r = (-1/float(T)) * abs(d) + 1 return r if r > 0 else 0
def distance_similarity(a, b, p, T=CLOSE_DISTANCE_THRESHOLD)
Computes the distance similarity between a line segment and a point Args: a ([float, float]): x and y coordinates. Line start b ([float, float]): x and y coordinates. Line end p ([float, float]): x and y coordinates. Point to compute the distance Returns: float: between 0 and 1. Where 1 is very similar and 0 is completely different
5.430666
6.501319
0.835318
d1 = distance_similarity(p1a, p1b, p2a, T=T) d2 = distance_similarity(p1a, p1b, p2b, T=T) return abs(d1 + d2) * 0.5
def line_distance_similarity(p1a, p1b, p2a, p2b, T=CLOSE_DISTANCE_THRESHOLD)
Line distance similarity between two line segments Args: p1a ([float, float]): x and y coordinates. Line A start p1b ([float, float]): x and y coordinates. Line A end p2a ([float, float]): x and y coordinates. Line B start p2b ([float, float]): x and y coordinates. Line B end Returns: float: between 0 and 1. Where 1 is very similar and 0 is completely different
2.056699
2.802591
0.733856
d = line_distance_similarity(p1a, p1b, p2a, p2b, T=T) a = abs(angle_similarity(normalize(line(p1a, p1b)), normalize(line(p2a, p2b)))) return d * a
def line_similarity(p1a, p1b, p2a, p2b, T=CLOSE_DISTANCE_THRESHOLD)
Similarity between two lines Args: p1a ([float, float]): x and y coordinates. Line A start p1b ([float, float]): x and y coordinates. Line A end p2a ([float, float]): x and y coordinates. Line B start p2b ([float, float]): x and y coordinates. Line B end Returns: float: between 0 and 1. Where 1 is very similar and 0 is completely different
3.029545
3.878556
0.781101
pi = points[i] pi1 = points[i1] min_lat = min(pi.lat, pi1.lat) min_lon = min(pi.lon, pi1.lon) max_lat = max(pi.lat, pi1.lat) max_lon = max(pi.lon, pi1.lon) return min_lat-thr, min_lon-thr, max_lat+thr, max_lon+thr
def bounding_box_from(points, i, i1, thr)
Creates bounding box for a line segment Args: points (:obj:`list` of :obj:`Point`) i (int): Line segment start, index in points array i1 (int): Line segment end, index in points array Returns: (float, float, float, float): with bounding box min x, min y, max x and max y
1.719994
1.800133
0.955482
l_a = len(A.points) l_b = len(B.points) idx = index.Index() dex = 0 for i in range(l_a-1): idx.insert(dex, bounding_box_from(A.points, i, i+1, T), obj=[A.points[i], A.points[i+1]]) dex = dex + 1 prox_acc = [] for i in range(l_b-1): ti = B.points[i].gen2arr() ti1 = B.points[i+1].gen2arr() bb = bounding_box_from(B.points, i, i+1, T) intersects = idx.intersection(bb, objects=True) n_prox = [] i_prox = 0 a = 0 for x in intersects: a = a + 1 pi = x.object[0].gen2arr() pi1 = x.object[1].gen2arr() prox = line_similarity(ti, ti1, pi, pi1, T) i_prox = i_prox + prox n_prox.append(prox) if a != 0: prox_acc.append(i_prox / a) # prox_acc.append(max(n_prox)) else: prox_acc.append(0) return np.mean(prox_acc), prox_acc
def segment_similarity(A, B, T=CLOSE_DISTANCE_THRESHOLD)
Computes the similarity between two segments Args: A (:obj:`Segment`) B (:obj:`Segment`) Returns: float: between 0 and 1. Where 1 is very similar and 0 is completely different
2.880541
2.975181
0.96819
mid = [] j = 0 mid.append(Aps[0]) for i in range(len(Aps)-1): dist = distance_tt_point(Aps[i], Aps[i+1]) for m in range(j, len(Bps)): distm = distance_tt_point(Aps[i], Bps[m]) if dist > distm: direction = dot(normalize(line(Aps[i].gen2arr(), Aps[i+1].gen2arr())), normalize(Bps[m].gen2arr())) if direction > 0: j = m + 1 mid.append(Bps[m]) break mid.append(Aps[i+1]) for m in range(j, len(Bps)): mid.append(Bps[m]) return mid
def sort_segment_points(Aps, Bps)
Takes two line segments and sorts all their points, so that they form a continuous path Args: Aps: Array of tracktotrip.Point Bps: Array of tracktotrip.Point Returns: Array with points ordered
2.741143
2.678299
1.023464
d_lat = to_rad(latitude_1 - latitude_2) d_lon = to_rad(longitude_1 - longitude_2) lat1 = to_rad(latitude_1) lat2 = to_rad(latitude_2) #pylint: disable=invalid-name a = math.sin(d_lat/2) * math.sin(d_lat/2) + \ math.sin(d_lon/2) * math.sin(d_lon/2) * math.cos(lat1) * math.cos(lat2) c = 2 * math.atan2(math.sqrt(a), math.sqrt(1-a)) d = EARTH_RADIUS * c return d
def haversine_distance(latitude_1, longitude_1, latitude_2, longitude_2)
Haversine distance between two points, expressed in meters. Implemented from http://www.movable-type.co.uk/scripts/latlong.html
1.45954
1.454088
1.003749
# If points too distant -- compute haversine distance: if haversine or (abs(latitude_1 - latitude_2) > .2 or abs(longitude_1 - longitude_2) > .2): return haversine_distance(latitude_1, longitude_1, latitude_2, longitude_2) coef = math.cos(latitude_1 / 180. * math.pi) #pylint: disable=invalid-name x = latitude_1 - latitude_2 y = (longitude_1 - longitude_2) * coef distance_2d = math.sqrt(x * x + y * y) * ONE_DEGREE if elevation_1 is None or elevation_2 is None or elevation_1 == elevation_2: return distance_2d return math.sqrt(distance_2d ** 2 + (elevation_1 - elevation_2) ** 2)
def distance(latitude_1, longitude_1, elevation_1, latitude_2, longitude_2, elevation_2, haversine=None)
Distance between two points
2.609752
2.593591
1.006231
return distance(self.lat, self.lon, None, other.lat, other.lon, None)
def distance(self, other)
Distance between points Args: other (:obj:`Point`) Returns: float: Distance in km
4.223953
7.055758
0.598653
delta_t = self.time_difference(previous) delta_x = self.distance(previous) vel = 0 delta_v = 0 acc = 0 if delta_t != 0: vel = delta_x/delta_t delta_v = vel - previous.vel acc = delta_v/delta_t self.dt = delta_t self.dx = delta_x self.acc = acc self.vel = vel return self
def compute_metrics(self, previous)
Computes the metrics of this point Computes and updates the dt, vel and acc attributes. Args: previous (:obj:`Point`): Point before Returns: :obj:`Point`: Self
2.7577
2.507627
1.099725
return Point( lat=gpx_track_point.latitude, lon=gpx_track_point.longitude, time=gpx_track_point.time )
def from_gpx(gpx_track_point)
Creates a point from GPX representation Arguments: gpx_track_point (:obj:`gpxpy.GPXTrackPoint`) Returns: :obj:`Point`
2.124859
2.544812
0.834977
return { 'lat': self.lat, 'lon': self.lon, 'time': self.time.isoformat() if self.time is not None else None }
def to_json(self)
Creates a JSON serializable representation of this instance Returns: :obj:`dict`: For example, { "lat": 9.3470298, "lon": 3.79274, "time": "2016-07-15T15:27:53.574110" }
2.779659
2.322867
1.19665
return Point( lat=json['lat'], lon=json['lon'], time=isostr_to_datetime(json['time']) )
def from_json(json)
Creates Point instance from JSON representation Args: json (:obj:`dict`): Must have at least the following keys: lat (float), lon (float), time (string in iso format). Example, { "lat": 9.3470298, "lon": 3.79274, "time": "2016-07-15T15:27:53.574110" } json: map representation of Point instance Returns: :obj:`Point`
4.458349
4.413314
1.010204
lats = [p[1] for p in points] lons = [p[0] for p in points] return Point(np.mean(lats), np.mean(lons), None)
def compute_centroid(points)
Computes the centroid of set of points Args: points (:obj:`list` of :obj:`Point`) Returns: :obj:`Point`
2.467031
2.976096
0.828948
cluster.append(point) points = [p.gen2arr() for p in cluster] # Estimates the epsilon eps = estimate_meters_to_deg(max_distance, precision=6) p_cluster = DBSCAN(eps=eps, min_samples=min_samples) p_cluster.fit(points) clusters = {} for i, label in enumerate(p_cluster.labels_): if label in clusters.keys(): clusters[label].append(points[i]) else: clusters[label] = [points[i]] centroids = [] biggest_centroid_l = -float("inf") biggest_centroid = None for label, n_cluster in clusters.items(): centroid = compute_centroid(n_cluster) centroids.append(centroid) if label >= 0 and len(n_cluster) >= biggest_centroid_l: biggest_centroid_l = len(n_cluster) biggest_centroid = centroid if biggest_centroid is None: biggest_centroid = compute_centroid(points) return biggest_centroid, cluster
def update_location_centroid(point, cluster, max_distance, min_samples)
Updates the centroid of a location cluster with another point Args: point (:obj:`Point`): Point to add to the cluster cluster (:obj:`list` of :obj:`Point`): Location cluster max_distance (float): Max neighbour distance min_samples (int): Minimum number of samples Returns: (:obj:`Point`, :obj:`list` of :obj:`Point`): Tuple with the location centroid and new point cluster (given cluster + given point)
3.045444
3.113983
0.97799
if not client_id: return [] if not client_secret: return [] if from_cache(FS_CACHE, point, max_distance): return from_cache(FS_CACHE, point, max_distance) url = FOURSQUARE_URL % (client_id, client_secret, point.lat, point.lon, max_distance) req = requests.get(url) if req.status_code != 200: return [] response = req.json() result = [] venues = response['response']['venues'] for venue in venues: name = venue['name'] distance = venue['location']['distance'] categories = [c['shortName'] for c in venue['categories']] result.append({ 'label': name, 'distance': distance, 'types': categories, 'suggestion_type': 'FOURSQUARE' }) # final_results = sorted(result, key=lambda elm: elm['distance']) foursquare_insert_cache(point, result) return result
def query_foursquare(point, max_distance, client_id, client_secret)
Queries Squarespace API for a location Args: point (:obj:`Point`): Point location to query max_distance (float): Search radius, in meters client_id (str): Valid Foursquare client id client_secret (str): Valid Foursquare client secret Returns: :obj:`list` of :obj:`dict`: List of locations with the following format: { 'label': 'Coffee house', 'distance': 19, 'types': 'Commerce', 'suggestion_type': 'FOURSQUARE' }
2.584619
2.319753
1.114178
if not key: return [] if from_cache(GG_CACHE, point, max_distance): return from_cache(GG_CACHE, point, max_distance) req = requests.get(GOOGLE_PLACES_URL % ( point.lat, point.lon, max_distance, key )) if req.status_code != 200: return [] response = req.json() results = response['results'] # l = len(results) final_results = [] for local in results: final_results.append({ 'label': local['name'], 'distance': Point(local['geometry']['location']['lat'], local['geometry']['location']['lng'], None).distance(point), # 'rank': (l-i)/float(l), 'types': local['types'], 'suggestion_type': 'GOOGLE' }) google_insert_cache(point, final_results) return final_results
def query_google(point, max_distance, key)
Queries google maps API for a location Args: point (:obj:`Point`): Point location to query max_distance (float): Search radius, in meters key (str): Valid google maps api key Returns: :obj:`list` of :obj:`dict`: List of locations with the following format: { 'label': 'Coffee house', 'types': 'Commerce', 'suggestion_type': 'GOOGLE' }
3.280071
2.960341
1.108005
locations = [] if location_query is not None: queried_locations = location_query(point, max_distance) for (label, centroid, _) in queried_locations: locations.append({ 'label': unicode(label, 'utf-8'), 'distance': centroid.distance(point), # 'centroid': centroid, 'suggestion_type': 'KB' }) api_locations = [] if len(locations) <= limit: if google_key: google_locs = query_google(point, max_distance, google_key) api_locations.extend(google_locs) if foursquare_client_id and foursquare_client_secret: foursquare_locs = query_foursquare( point, max_distance, foursquare_client_id, foursquare_client_secret ) api_locations.extend(foursquare_locs) if len(locations) > 0 or len(api_locations) > 0: locations = sorted(locations, key=lambda d: d['distance']) api_locations = sorted(api_locations, key=lambda d: d['distance']) locations = (locations + api_locations)[:limit] return Location(locations[0]['label'], point, locations) else: return Location('#?', point, [])
def infer_location( point, location_query, max_distance, google_key, foursquare_client_id, foursquare_client_secret, limit )
Infers the semantic location of a (point) place. Args: points (:obj:`Point`): Point location to infer location_query: Function with signature, (:obj:`Point`, int) -> (str, :obj:`Point`, ...) max_distance (float): Max distance to a position, in meters google_key (str): Valid google maps api key foursquare_client_id (str): Valid Foursquare client id foursquare_client_secret (str): Valid Foursquare client secret limit (int): Results limit Returns: :obj:`Location`: with top match, and alternatives
2.476165
2.434209
1.017236