paper_url
stringlengths
36
81
paper_title
stringlengths
1
242
paper_arxiv_id
stringlengths
9
16
paper_url_abs
stringlengths
18
314
paper_url_pdf
stringlengths
21
935
repo_url
stringlengths
26
200
is_official
bool
2 classes
mentioned_in_paper
bool
2 classes
mentioned_in_github
bool
2 classes
framework
stringclasses
9 values
https://paperswithcode.com/paper/deep-architectures-for-neural-machine
Deep Architectures for Neural Machine Translation
1707.07631
http://arxiv.org/abs/1707.07631v1
http://arxiv.org/pdf/1707.07631v1.pdf
https://github.com/Avmb/deep-nmt-architectures
true
true
false
none
https://paperswithcode.com/paper/generalization-and-equilibrium-in-generative
Generalization and Equilibrium in Generative Adversarial Nets (GANs)
1703.00573
http://arxiv.org/abs/1703.00573v5
http://arxiv.org/pdf/1703.00573v5.pdf
https://github.com/PrincetonML/MIX-plus-GANs
true
true
true
none
https://paperswithcode.com/paper/neural-factorization-machines-for-sparse
Neural Factorization Machines for Sparse Predictive Analytics
1708.05027
http://arxiv.org/abs/1708.05027v1
http://arxiv.org/pdf/1708.05027v1.pdf
https://github.com/hexiangnan/neural_factorization_machine
true
true
false
tf
https://paperswithcode.com/paper/how-intelligent-are-convolutional-neural
How intelligent are convolutional neural networks?
1709.06126
http://arxiv.org/abs/1709.06126v2
http://arxiv.org/pdf/1709.06126v2.pdf
https://github.com/zhennany/synthetic
true
true
true
none
https://paperswithcode.com/paper/learning-a-rotation-invariant-detector-with
Learning a Rotation Invariant Detector with Rotatable Bounding Box
1711.09405
http://arxiv.org/abs/1711.09405v1
http://arxiv.org/pdf/1711.09405v1.pdf
https://github.com/liulei01/DRBox
true
true
true
none
https://paperswithcode.com/paper/denoising-adversarial-autoencoders
Denoising Adversarial Autoencoders
1703.01220
http://arxiv.org/abs/1703.01220v4
http://arxiv.org/pdf/1703.01220v4.pdf
https://github.com/ToniCreswell/DAAE_
true
true
false
none
https://paperswithcode.com/paper/texture-synthesis-with-recurrent-variational
Texture Synthesis with Recurrent Variational Auto-Encoder
1712.08838
http://arxiv.org/abs/1712.08838v1
http://arxiv.org/pdf/1712.08838v1.pdf
https://github.com/MoustafaMeshry/draw
true
true
false
tf
https://paperswithcode.com/paper/toward-controlled-generation-of-text
Toward Controlled Generation of Text
1703.00955
http://arxiv.org/abs/1703.00955v4
http://arxiv.org/pdf/1703.00955v4.pdf
https://github.com/asyml/texar
true
true
false
tf
https://paperswithcode.com/paper/deep-uq-learning-deep-neural-network
Deep UQ: Learning deep neural network surrogate models for high dimensional uncertainty quantification
1802.00850
http://arxiv.org/abs/1802.00850v1
http://arxiv.org/pdf/1802.00850v1.pdf
https://github.com/rohitkt10/deep-uq-paper
true
true
false
tf
https://paperswithcode.com/paper/tensorflow-quantum-a-software-framework-for
TensorFlow Quantum: A Software Framework for Quantum Machine Learning
2003.02989
https://arxiv.org/abs/2003.02989v2
https://arxiv.org/pdf/2003.02989v2.pdf
https://github.com/tensorflow/quantum
true
true
true
tf
https://paperswithcode.com/paper/action-segmentation-with-joint-self
Action Segmentation with Joint Self-Supervised Temporal Domain Adaptation
2003.02824
https://arxiv.org/abs/2003.02824v3
https://arxiv.org/pdf/2003.02824v3.pdf
https://github.com/cmhungsteve/SSTDA
true
true
true
pytorch
https://paperswithcode.com/paper/dancing-to-music
Dancing to Music
1911.02001
https://arxiv.org/abs/1911.02001v1
https://arxiv.org/pdf/1911.02001v1.pdf
https://github.com/NVlabs/Dance2Music
true
true
true
pytorch
https://paperswithcode.com/paper/deep-reinforcement-learning-control-of
Deep Reinforcement Learning Control of Quantum Cartpoles
1910.09200
https://arxiv.org/abs/1910.09200v4
https://arxiv.org/pdf/1910.09200v4.pdf
https://github.com/Z-T-WANG/DeepReinforcementLearningControlOfQuantumCartpoles
true
true
true
pytorch
https://paperswithcode.com/paper/nonlinear-classifiers-for-ranking-problems
Nonlinear classifiers for ranking problems based on kernelized SVM
2002.11436
https://arxiv.org/abs/2002.11436v2
https://arxiv.org/pdf/2002.11436v2.pdf
https://github.com/VaclavMacha/ClassificationOnTop_new.jl
true
true
true
none
https://paperswithcode.com/paper/weakly-and-semi-supervised-panoptic
Weakly- and Semi-Supervised Panoptic Segmentation
1808.03575
http://arxiv.org/abs/1808.03575v3
http://arxiv.org/pdf/1808.03575v3.pdf
https://github.com/qizhuli/Weakly-Supervised-Panoptic-Segmentation
true
true
true
none
https://paperswithcode.com/paper/multi-task-self-supervised-learning-for-1
Multi-task self-supervised learning for Robust Speech Recognition
2001.09239
https://arxiv.org/abs/2001.09239v2
https://arxiv.org/pdf/2001.09239v2.pdf
https://github.com/santi-pdp/pase
true
true
true
pytorch
https://paperswithcode.com/paper/a-model-to-search-for-synthesizable-molecules
A Model to Search for Synthesizable Molecules
1906.05221
https://arxiv.org/abs/1906.05221v2
https://arxiv.org/pdf/1906.05221v2.pdf
https://github.com/john-bradshaw/molecule-chef
true
true
true
pytorch
https://paperswithcode.com/paper/adversarial-policy-gradient-for-deep-learning
Adversarial Policy Gradient for Deep Learning Image Augmentation
1909.04108
https://arxiv.org/abs/1909.04108v1
https://arxiv.org/pdf/1909.04108v1.pdf
https://github.com/victorychain/Adversarial-Policy-Gradient-Augmentation
true
true
true
pytorch
https://paperswithcode.com/paper/improved-regularization-of-convolutional
Improved Regularization of Convolutional Neural Networks with Cutout
1708.04552
http://arxiv.org/abs/1708.04552v2
http://arxiv.org/pdf/1708.04552v2.pdf
https://github.com/uoguelph-mlrg/Cutout
true
true
true
pytorch
https://paperswithcode.com/paper/real-time-vision-based-depth-reconstruction
Real-time Vision-based Depth Reconstruction with NVidia Jetson
1907.07210
https://arxiv.org/abs/1907.07210v1
https://arxiv.org/pdf/1907.07210v1.pdf
https://github.com/CnnDepth/tx2_fcnn_node
true
true
true
tf
https://paperswithcode.com/paper/a-kernel-perspective-for-regularizing-deep
A Kernel Perspective for Regularizing Deep Neural Networks
1810.00363
https://arxiv.org/abs/1810.00363v4
https://arxiv.org/pdf/1810.00363v4.pdf
https://github.com/albietz/kernel_reg
true
true
true
pytorch
https://paperswithcode.com/paper/query-guided-end-to-end-person-search
Query-guided End-to-End Person Search
1905.01203
https://arxiv.org/abs/1905.01203v1
https://arxiv.org/pdf/1905.01203v1.pdf
https://github.com/munjalbharti/Query-guided-End-to-End-Person-Search
true
true
true
none
https://paperswithcode.com/paper/r2cnn-multi-dimensional-attention-based
SCRDet: Towards More Robust Detection for Small, Cluttered and Rotated Objects
1811.07126
https://arxiv.org/abs/1811.07126v4
https://arxiv.org/pdf/1811.07126v4.pdf
https://github.com/DetectionTeamUCAS/R2CNN-Plus-Plus_Tensorflow
true
true
true
tf
https://paperswithcode.com/paper/towards-query-efficient-black-box-attacks-an
Towards Query Efficient Black-box Attacks: An Input-free Perspective
1809.02918
http://arxiv.org/abs/1809.02918v1
http://arxiv.org/pdf/1809.02918v1.pdf
https://github.com/yalidu/input-free-attack
true
true
true
tf
https://paperswithcode.com/paper/texar-a-modularized-versatile-and-extensible-1
Texar: A Modularized, Versatile, and Extensible Toolkit for Text Generation
1809.00794
https://arxiv.org/abs/1809.00794v2
https://arxiv.org/pdf/1809.00794v2.pdf
https://github.com/asyml/texar
true
true
true
tf
https://paperswithcode.com/paper/automatic-program-synthesis-of-long-programs
Automatic Program Synthesis of Long Programs with a Learned Garbage Collector
1809.04682
http://arxiv.org/abs/1809.04682v2
http://arxiv.org/pdf/1809.04682v2.pdf
https://github.com/amitz25/PCCoder
true
true
true
pytorch
https://paperswithcode.com/paper/acquisition-of-localization-confidence-for
Acquisition of Localization Confidence for Accurate Object Detection
1807.11590
http://arxiv.org/abs/1807.11590v1
http://arxiv.org/pdf/1807.11590v1.pdf
https://github.com/vacancy/PreciseRoIPooling
true
true
true
pytorch
https://paperswithcode.com/paper/a-repetition-code-of-15-qubits
A repetition code of 15 qubits
1709.00990
https://arxiv.org/abs/1709.00990v3
https://arxiv.org/pdf/1709.00990v3.pdf
https://github.com/decodoku/repetition_code
true
true
true
none
https://paperswithcode.com/paper/eddy-saturation-of-the-southern-ocean-a
Eddy saturation of the Southern Ocean: a baroclinic versus barotropic perspective
1906.08442
https://arxiv.org/abs/1906.08442v3
https://arxiv.org/pdf/1906.08442v3.pdf
https://github.com/navidcy/EddySaturation-MOM6
true
true
false
none
https://paperswithcode.com/paper/topic-modeling-with-wasserstein-autoencoders-1
Topic Modeling with Wasserstein Autoencoders
1907.12374
https://arxiv.org/abs/1907.12374v2
https://arxiv.org/pdf/1907.12374v2.pdf
https://github.com/awslabs/w-lda
true
true
false
mxnet
https://paperswithcode.com/paper/neural-duplicate-question-detection-without-1
Neural Duplicate Question Detection without Labeled Training Data
1911.05594
https://arxiv.org/abs/1911.05594v2
https://arxiv.org/pdf/1911.05594v2.pdf
https://github.com/UKPLab/emnlp2019-duplicate_question_detection
true
true
false
none
https://paperswithcode.com/paper/neural-attribution-for-semantic-bug
Neural Attribution for Semantic Bug-Localization in Student Programs
null
http://papers.nips.cc/paper/9358-neural-attribution-for-semantic-bug-localization-in-student-programs
http://papers.nips.cc/paper/9358-neural-attribution-for-semantic-bug-localization-in-student-programs.pdf
https://bitbucket.org/iiscseal/nbl
true
true
false
none
https://paperswithcode.com/paper/understanding-contrastive-representation-1
Understanding Contrastive Representation Learning through Geometry on the Hypersphere
null
https://proceedings.icml.cc/static/paper_files/icml/2020/5503-Paper.pdf
https://proceedings.icml.cc/static/paper_files/icml/2020/5503-Paper.pdf
https://github.com/SsnL/align_uniform
true
true
false
pytorch
https://paperswithcode.com/paper/vision-based-dynamic-offside-line-marker-for
Vision Based Dynamic Offside Line Marker for Soccer Games
1804.06438
http://arxiv.org/abs/1804.06438v1
http://arxiv.org/pdf/1804.06438v1.pdf
https://github.com/surajkra/Offside_Tracker_EECS504
true
true
true
none
https://paperswithcode.com/paper/colors-in-context-a-pragmatic-neural-model
Colors in Context: A Pragmatic Neural Model for Grounded Language Understanding
1703.10186
http://arxiv.org/abs/1703.10186v2
http://arxiv.org/pdf/1703.10186v2.pdf
https://github.com/futurulus/colors-in-context
false
false
true
none
https://paperswithcode.com/paper/draw-a-recurrent-neural-network-for-image
DRAW: A Recurrent Neural Network For Image Generation
1502.04623
http://arxiv.org/abs/1502.04623v2
http://arxiv.org/pdf/1502.04623v2.pdf
https://github.com/MoustafaMeshry/draw
false
false
true
tf
https://paperswithcode.com/paper/conceptnet-55-an-open-multilingual-graph-of
ConceptNet 5.5: An Open Multilingual Graph of General Knowledge
1612.03975
http://arxiv.org/abs/1612.03975v2
http://arxiv.org/pdf/1612.03975v2.pdf
https://github.com/LuminosoInsight/conceptnet-vector-ensemble
false
false
true
none
https://paperswithcode.com/paper/conceptnet-at-semeval-2017-task-2-extending
ConceptNet at SemEval-2017 Task 2: Extending Word Embeddings with Multilingual Relational Knowledge
1704.03560
http://arxiv.org/abs/1704.03560v2
http://arxiv.org/pdf/1704.03560v2.pdf
https://github.com/LuminosoInsight/conceptnet-vector-ensemble
false
false
true
none
https://paperswithcode.com/paper/incorporating-copying-mechanism-in-sequence
Incorporating Copying Mechanism in Sequence-to-Sequence Learning
1603.06393
http://arxiv.org/abs/1603.06393v3
http://arxiv.org/pdf/1603.06393v3.pdf
https://github.com/majumderb/sanskrit-ocr
false
false
true
tf
https://paperswithcode.com/paper/transition-based-dependency-parsing-with-2
Transition-Based Dependency Parsing with Stack Long Short-Term Memory
1505.08075
http://arxiv.org/abs/1505.08075v1
http://arxiv.org/pdf/1505.08075v1.pdf
https://github.com/mstrise/dep2label
false
false
true
pytorch
https://paperswithcode.com/paper/deconvolutional-paragraph-representation
Deconvolutional Paragraph Representation Learning
1708.04729
http://arxiv.org/abs/1708.04729v3
http://arxiv.org/pdf/1708.04729v3.pdf
https://github.com/tuvuumass/SCoPE
false
false
true
tf
https://paperswithcode.com/paper/a-hierarchical-neural-autoencoder-for
A Hierarchical Neural Autoencoder for Paragraphs and Documents
1506.01057
http://arxiv.org/abs/1506.01057v2
http://arxiv.org/pdf/1506.01057v2.pdf
https://github.com/tuvuumass/SCoPE
false
false
true
tf
https://paperswithcode.com/paper/character-level-convolutional-networks-for
Character-level Convolutional Networks for Text Classification
1509.01626
http://arxiv.org/abs/1509.01626v3
http://arxiv.org/pdf/1509.01626v3.pdf
https://github.com/tuvuumass/SCoPE
false
false
true
tf
https://paperswithcode.com/paper/191202288
Simplified Action Decoder for Deep Multi-Agent Reinforcement Learning
1912.02288
https://arxiv.org/abs/1912.02288v2
https://arxiv.org/pdf/1912.02288v2.pdf
https://github.com/facebookresearch/Hanabi_SPARTA
false
false
true
pytorch
https://paperswithcode.com/paper/large-scale-visual-relationship-understanding
Large-Scale Visual Relationship Understanding
1804.10660
https://arxiv.org/abs/1804.10660v4
https://arxiv.org/pdf/1804.10660v4.pdf
https://github.com/facebookresearch/Large-Scale-VRD
false
false
true
pytorch
https://paperswithcode.com/paper/solving-nonlinear-and-high-dimensional
Solving Nonlinear and High-Dimensional Partial Differential Equations via Deep Learning
1811.08782
https://arxiv.org/abs/1811.08782v1
https://arxiv.org/pdf/1811.08782v1.pdf
https://github.com/alialaradi/DeepGalerkinMethod
false
false
true
tf
https://paperswithcode.com/paper/paired-open-ended-trailblazer-poet-endlessly
Paired Open-Ended Trailblazer (POET): Endlessly Generating Increasingly Complex and Diverse Learning Environments and Their Solutions
1901.01753
http://arxiv.org/abs/1901.01753v3
http://arxiv.org/pdf/1901.01753v3.pdf
https://github.com/uber-research/poet
false
false
true
none
https://paperswithcode.com/paper/deepercut-a-deeper-stronger-and-faster-multi
DeeperCut: A Deeper, Stronger, and Faster Multi-Person Pose Estimation Model
1605.03170
http://arxiv.org/abs/1605.03170v3
http://arxiv.org/pdf/1605.03170v3.pdf
https://github.com/gyaansastra/DeepLab
false
false
true
tf
https://paperswithcode.com/paper/deep-learning-tools-for-the-measurement-of
Deep learning tools for the measurement of animal behavior in neuroscience
1909.13868
https://arxiv.org/abs/1909.13868v2
https://arxiv.org/pdf/1909.13868v2.pdf
https://github.com/gyaansastra/DeepLab
false
false
true
tf
https://paperswithcode.com/paper/squeeze-excite-guided-few-shot-segmentation
'Squeeze & Excite' Guided Few-Shot Segmentation of Volumetric Images
1902.01314
https://arxiv.org/abs/1902.01314v2
https://arxiv.org/pdf/1902.01314v2.pdf
https://github.com/CSCYQJ/LOCATION-SENSITIVE-LOCAL-PROTOTYPE-NETWORK
false
false
true
pytorch
https://paperswithcode.com/paper/large-covariance-estimation-by-thresholding
Large Covariance Estimation by Thresholding Principal Orthogonal Complements
1201.0175
https://arxiv.org/abs/1201.0175v2
https://arxiv.org/pdf/1201.0175v2.pdf
https://github.com/brucewuquant/POET
false
false
true
none
https://paperswithcode.com/paper/model-of-spin-liquids-with-and-without-time
Model of spin liquids with and without time-reversal symmetry
1810.09858
https://arxiv.org/abs/1810.09858v1
https://arxiv.org/pdf/1810.09858v1.pdf
https://github.com/gonghour/DMRG_for_spin-ladder_systems
false
false
true
none
https://paperswithcode.com/paper/pannuke-dataset-extension-insights-and
PanNuke Dataset Extension, Insights and Baselines
2003.10778
https://arxiv.org/abs/2003.10778v7
https://arxiv.org/pdf/2003.10778v7.pdf
https://github.com/aaparna/UNet-Image-Segmentation
false
false
true
none
https://paperswithcode.com/paper/safe-by-design-control-for-euler-lagrange
Safe-by-Design Control for Euler-Lagrange Systems
2009.03767
https://arxiv.org/abs/2009.03767v2
https://arxiv.org/pdf/2009.03767v2.pdf
https://github.com/shawcortez/safe-control-euler-lagrange
true
true
true
none
https://paperswithcode.com/paper/deep-learning-with-differential-privacy
Deep Learning with Differential Privacy
1607.00133
http://arxiv.org/abs/1607.00133v2
http://arxiv.org/pdf/1607.00133v2.pdf
https://github.com/zzzer1019/FL_DP
false
false
true
tf
https://paperswithcode.com/paper/learning-to-pivot-with-adversarial-networks
Learning to Pivot with Adversarial Networks
1611.01046
http://arxiv.org/abs/1611.01046v3
http://arxiv.org/pdf/1611.01046v3.pdf
https://github.com/faroukmokhtar/GradProject
false
false
true
none
https://paperswithcode.com/paper/search-for-supersymmetry-in-events-with-one
Search for supersymmetry in events with one lepton and multiple jets in proton-proton collisions at sqrt(s) = 13 TeV
1609.09386
https://arxiv.org/abs/1609.09386v2
https://arxiv.org/pdf/1609.09386v2.pdf
https://github.com/faroukmokhtar/GradProject
false
false
true
none
https://paperswithcode.com/paper/autoencoder-by-forest
AutoEncoder by Forest
1709.09018
http://arxiv.org/abs/1709.09018v1
http://arxiv.org/pdf/1709.09018v1.pdf
https://github.com/AntoinePassemiers/Encoder-Forest
false
false
true
none
https://paperswithcode.com/paper/semantic-segmentation-of-underwater-imagery
Semantic Segmentation of Underwater Imagery: Dataset and Benchmark
2004.01241
https://arxiv.org/abs/2004.01241v3
https://arxiv.org/pdf/2004.01241v3.pdf
https://github.com/xahidbuffon/SUIM
false
false
true
none
https://paperswithcode.com/paper/traditional-and-accelerated-gradient-descent
Traditional and accelerated gradient descent for neural architecture search
2006.15218
https://arxiv.org/abs/2006.15218v3
https://arxiv.org/pdf/2006.15218v3.pdf
https://github.com/bibliotecadebabel/EvAI
false
false
true
pytorch
https://paperswithcode.com/paper/segnet-a-deep-convolutional-encoder-decoder-1
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Robust Semantic Pixel-Wise Labelling
1505.07293
http://arxiv.org/abs/1505.07293v1
http://arxiv.org/pdf/1505.07293v1.pdf
https://github.com/xahidbuffon/SUIM
false
false
true
none
https://paperswithcode.com/paper/rethinking-atrous-convolution-for-semantic
Rethinking Atrous Convolution for Semantic Image Segmentation
1706.05587
http://arxiv.org/abs/1706.05587v3
http://arxiv.org/pdf/1706.05587v3.pdf
https://github.com/xahidbuffon/SUIM
false
false
true
none
https://paperswithcode.com/paper/repvgg-making-vgg-style-convnets-great-again
RepVGG: Making VGG-style ConvNets Great Again
2101.03697
https://arxiv.org/abs/2101.03697v3
https://arxiv.org/pdf/2101.03697v3.pdf
https://github.com/mindspore-ecosystem/mindcv/blob/main/mindcv/models/repvgg.py
false
false
false
mindspore
https://paperswithcode.com/paper/mastering-2048-with-delayed-temporal
Mastering 2048 with Delayed Temporal Coherence Learning, Multi-Stage Weight Promotion, Redundant Encoding and Carousel Shaping
1604.05085
http://arxiv.org/abs/1604.05085v3
http://arxiv.org/pdf/1604.05085v3.pdf
https://github.com/abachurin/2048
false
false
true
tf
https://paperswithcode.com/paper/blockwise-self-attention-for-long-document
Blockwise Self-Attention for Long Document Understanding
1911.02972
https://arxiv.org/abs/1911.02972v2
https://arxiv.org/pdf/1911.02972v2.pdf
https://github.com/xptree/BlockBERT
true
true
false
none
https://paperswithcode.com/paper/automatic-discrete-differentiation-and-its
Deep Energy-Based Modeling of Discrete-Time Physics
1905.08604
https://arxiv.org/abs/1905.08604v3
https://arxiv.org/pdf/1905.08604v3.pdf
https://github.com/tksmatsubara/discrete-autograd
true
true
true
pytorch
https://paperswithcode.com/paper/understanding-and-improving-interpolation-in
Understanding and Improving Interpolation in Autoencoders via an Adversarial Regularizer
1807.07543
http://arxiv.org/abs/1807.07543v2
http://arxiv.org/pdf/1807.07543v2.pdf
https://github.com/baohq1595/aae-experiment
false
false
true
tf
https://paperswithcode.com/paper/adversarial-autoencoders
Adversarial Autoencoders
1511.05644
http://arxiv.org/abs/1511.05644v2
http://arxiv.org/pdf/1511.05644v2.pdf
https://github.com/baohq1595/aae-experiment
false
false
true
tf
https://paperswithcode.com/paper/yolov3-an-incremental-improvement
YOLOv3: An Incremental Improvement
1804.02767
http://arxiv.org/abs/1804.02767v1
http://arxiv.org/pdf/1804.02767v1.pdf
https://github.com/sadicLiu/yolov3
false
false
true
pytorch
https://paperswithcode.com/paper/high-quality-monocular-depth-estimation-via
High Quality Monocular Depth Estimation via Transfer Learning
1812.11941
http://arxiv.org/abs/1812.11941v2
http://arxiv.org/pdf/1812.11941v2.pdf
https://github.com/Intoxillectual/Monocular-Depth-Estimation-using-DenseNet169
false
false
true
tf
https://paperswithcode.com/paper/deep-complex-networks
Deep Complex Networks
1705.09792
http://arxiv.org/abs/1705.09792v4
http://arxiv.org/pdf/1705.09792v4.pdf
https://github.com/ypeleg/komplex
false
false
true
tf
https://paperswithcode.com/paper/on-complex-valued-convolutional-neural
On Complex Valued Convolutional Neural Networks
1602.09046
http://arxiv.org/abs/1602.09046v1
http://arxiv.org/pdf/1602.09046v1.pdf
https://github.com/ypeleg/komplex
false
false
true
tf
https://paperswithcode.com/paper/complex-valued-neural-networks-with-non
Complex-valued Neural Networks with Non-parametric Activation Functions
1802.08026
http://arxiv.org/abs/1802.08026v1
http://arxiv.org/pdf/1802.08026v1.pdf
https://github.com/ypeleg/komplex
false
false
true
tf
https://paperswithcode.com/paper/one-shot-visual-imitation-learning-via-meta
One-Shot Visual Imitation Learning via Meta-Learning
1709.04905
http://arxiv.org/abs/1709.04905v1
http://arxiv.org/pdf/1709.04905v1.pdf
https://github.com/ErickRosete/MAML-Imitation-Learning
false
false
true
pytorch
https://paperswithcode.com/paper/physical-layer-encryption-using-a-vernam
Physical Layer Encryption using a Vernam Cipher
1910.08262
https://arxiv.org/abs/1910.08262v1
https://arxiv.org/pdf/1910.08262v1.pdf
https://github.com/ymirsky/VPSC-py
false
false
true
none
https://paperswithcode.com/paper/wide-deep-learning-for-recommender-systems
Wide & Deep Learning for Recommender Systems
1606.07792
http://arxiv.org/abs/1606.07792v1
http://arxiv.org/pdf/1606.07792v1.pdf
https://github.com/sandeepnair2812/Deep-Learning-Based-Search-and-Recommendation-System
false
false
true
tf
https://paperswithcode.com/paper/deepfm-a-factorization-machine-based-neural
DeepFM: A Factorization-Machine based Neural Network for CTR Prediction
1703.04247
http://arxiv.org/abs/1703.04247v1
http://arxiv.org/pdf/1703.04247v1.pdf
https://github.com/sandeepnair2812/Deep-Learning-Based-Search-and-Recommendation-System
false
false
true
tf
https://paperswithcode.com/paper/unsupervised-representation-learning-with-1
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
1511.06434
http://arxiv.org/abs/1511.06434v2
http://arxiv.org/pdf/1511.06434v2.pdf
https://github.com/Sezoir/DCGAN-Dog-Generator
false
false
true
tf
https://paperswithcode.com/paper/oriented-point-sampling-for-plane-detection
Oriented Point Sampling for Plane Detection in Unorganized Point Clouds
1905.02553
https://arxiv.org/abs/1905.02553v1
https://arxiv.org/pdf/1905.02553v1.pdf
https://github.com/bsun7/Oriented-Point-Sampling
false
false
true
none
https://paperswithcode.com/paper/multistep-inverse-is-not-all-you-need
Multistep Inverse Is Not All You Need
2403.11940
https://arxiv.org/abs/2403.11940v2
https://arxiv.org/pdf/2403.11940v2.pdf
https://github.com/midi-lab/acdf
true
true
false
pytorch
https://paperswithcode.com/paper/160803828
Prutor: A System for Tutoring CS1 and Collecting Student Programs for Analysis
1608.03828
http://arxiv.org/abs/1608.03828v1
http://arxiv.org/pdf/1608.03828v1.pdf
https://github.com/umairzahmed/seet2020
false
false
true
none
https://paperswithcode.com/paper/pypsa-eur-an-open-optimisation-model-of-the
PyPSA-Eur: An Open Optimisation Model of the European Transmission System
1806.01613
http://arxiv.org/abs/1806.01613v1
http://arxiv.org/pdf/1806.01613v1.pdf
https://github.com/pz-max/energyworld
false
false
true
none
https://paperswithcode.com/paper/language-agnostic-bert-sentence-embedding
Language-agnostic BERT Sentence Embedding
2007.01852
https://arxiv.org/abs/2007.01852v2
https://arxiv.org/pdf/2007.01852v2.pdf
https://github.com/bojone/labse
false
false
true
tf
https://paperswithcode.com/paper/vulnerability-of-deep-reinforcement-learning
Vulnerability of Deep Reinforcement Learning to Policy Induction Attacks
1701.04143
http://arxiv.org/abs/1701.04143v1
http://arxiv.org/pdf/1701.04143v1.pdf
https://github.com/coderatwork7/attack
false
false
true
tf
https://paperswithcode.com/paper/model-free-bounds-for-multi-asset-options
Model-free bounds for multi-asset options using option-implied information and their exact computation
2006.14288
https://arxiv.org/abs/2006.14288v3
https://arxiv.org/pdf/2006.14288v3.pdf
https://github.com/qikunxiang/ModelFreePriceBounds
true
true
true
none
https://paperswithcode.com/paper/detecting-persuasive-atypicality-by-modeling
Detecting Persuasive Atypicality by Modeling Contextual Compatibility
null
http://openaccess.thecvf.com//content/ICCV2021/html/Guo_Detecting_Persuasive_Atypicality_by_Modeling_Contextual_Compatibility_ICCV_2021_paper.html
http://openaccess.thecvf.com//content/ICCV2021/papers/Guo_Detecting_Persuasive_Atypicality_by_Modeling_Contextual_Compatibility_ICCV_2021_paper.pdf
https://github.com/meiqiguo/iccv2021-atypicalitydetection
true
true
false
pytorch
https://paperswithcode.com/paper/ubermag-towards-more-effective-micromagnetic
Ubermag: Towards more effective micromagnetic workflows
2105.08355
https://arxiv.org/abs/2105.08355v1
https://arxiv.org/pdf/2105.08355v1.pdf
https://github.com/marijanbeg/2021-paper-ubermag
true
true
false
none
https://paperswithcode.com/paper/conditional-image-synthesis-with-auxiliary
Conditional Image Synthesis With Auxiliary Classifier GANs
1610.09585
http://arxiv.org/abs/1610.09585v4
http://arxiv.org/pdf/1610.09585v4.pdf
https://github.com/kushalpatil1997/text_to_image_synthesis
false
false
true
tf
https://paperswithcode.com/paper/skip-thought-vectors
Skip-Thought Vectors
1506.06726
http://arxiv.org/abs/1506.06726v1
http://arxiv.org/pdf/1506.06726v1.pdf
https://github.com/kushalpatil1997/text_to_image_synthesis
false
false
true
tf
https://paperswithcode.com/paper/mask-shadowgan-learning-to-remove-shadows
Mask-ShadowGAN: Learning to Remove Shadows from Unpaired Data
1903.10683
https://arxiv.org/abs/1903.10683v3
https://arxiv.org/pdf/1903.10683v3.pdf
https://github.com/mducducd/ghost-free-shadow-removal
false
false
true
tf
https://paperswithcode.com/paper/tac-gan-text-conditioned-auxiliary-classifier
TAC-GAN - Text Conditioned Auxiliary Classifier Generative Adversarial Network
1703.06412
http://arxiv.org/abs/1703.06412v2
http://arxiv.org/pdf/1703.06412v2.pdf
https://github.com/kushalpatil1997/text_to_image_synthesis
false
false
true
tf
https://paperswithcode.com/paper/towards-ghost-free-shadow-removal-via-dual
Towards Ghost-free Shadow Removal via Dual Hierarchical Aggregation Network and Shadow Matting GAN
1911.08718
https://arxiv.org/abs/1911.08718v2
https://arxiv.org/pdf/1911.08718v2.pdf
https://github.com/mducducd/ghost-free-shadow-removal
false
false
true
tf
https://paperswithcode.com/paper/single-image-reflection-separation-with
Single Image Reflection Separation with Perceptual Losses
1806.05376
http://arxiv.org/abs/1806.05376v1
http://arxiv.org/pdf/1806.05376v1.pdf
https://github.com/mducducd/ghost-free-shadow-removal
false
false
true
tf
https://paperswithcode.com/paper/estimating-or-propagating-gradients-through-1
Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation
1308.3432
http://arxiv.org/abs/1308.3432v1
http://arxiv.org/pdf/1308.3432v1.pdf
https://github.com/georgeretsi/SparsityLoss
false
false
true
pytorch
https://paperswithcode.com/paper/bias-correction-of-learned-generative-models
Bias Correction of Learned Generative Models using Likelihood-Free Importance Weighting
1906.09531
https://arxiv.org/abs/1906.09531v2
https://arxiv.org/pdf/1906.09531v2.pdf
https://github.com/kevtran23/autoregressive_bias_correction
false
false
true
pytorch
https://paperswithcode.com/paper/pano-avqa-grounded-audio-visual-question
Pano-AVQA: Grounded Audio-Visual Question Answering on 360deg Videos
null
http://openaccess.thecvf.com//content/ICCV2021/html/Yun_Pano-AVQA_Grounded_Audio-Visual_Question_Answering_on_360deg_Videos_ICCV_2021_paper.html
http://openaccess.thecvf.com//content/ICCV2021/papers/Yun_Pano-AVQA_Grounded_Audio-Visual_Question_Answering_on_360deg_Videos_ICCV_2021_paper.pdf
https://github.com/hs-yn/panoavqa
true
true
false
pytorch
https://paperswithcode.com/paper/deep-evidential-regression
Deep Evidential Regression
1910.02600
https://arxiv.org/abs/1910.02600v2
https://arxiv.org/pdf/1910.02600v2.pdf
https://github.com/deebuls/deep_evidential_regression_loss_pytorch
false
false
true
pytorch
https://paperswithcode.com/paper/automatic-fault-detection-for-deep-learning
Automatic Fault Detection for Deep Learning Programs Using Graph Transformations
2105.08095
https://arxiv.org/abs/2105.08095v2
https://arxiv.org/pdf/2105.08095v2.pdf
https://github.com/neuralint/neuralint
true
true
false
tf
https://paperswithcode.com/paper/eegnet-a-compact-convolutional-network-for
EEGNet: A Compact Convolutional Network for EEG-based Brain-Computer Interfaces
1611.08024
http://arxiv.org/abs/1611.08024v4
http://arxiv.org/pdf/1611.08024v4.pdf
https://github.com/adwaykanhere/FYP
false
false
true
pytorch
https://paperswithcode.com/paper/lewis-levenshtein-editing-for-unsupervised
LEWIS: Levenshtein Editing for Unsupervised Text Style Transfer
2105.08206
https://arxiv.org/abs/2105.08206v1
https://arxiv.org/pdf/2105.08206v1.pdf
https://github.com/machelreid/lewis
true
true
false
pytorch