paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/conditional-neural-processes
|
Conditional Neural Processes
|
1807.01613
|
http://arxiv.org/abs/1807.01613v1
|
http://arxiv.org/pdf/1807.01613v1.pdf
|
https://github.com/wesselb/NeuralProcesses.jl
| false | false | true |
none
|
https://paperswithcode.com/paper/supervised-multimodal-bitransformers-for
|
Supervised Multimodal Bitransformers for Classifying Images and Text
|
1909.02950
|
https://arxiv.org/abs/1909.02950v2
|
https://arxiv.org/pdf/1909.02950v2.pdf
|
https://github.com/IsaacRodgz/multimodal-transformers-movies
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/adversarial-audio-synthesis
|
Adversarial Audio Synthesis
|
1802.04208
|
http://arxiv.org/abs/1802.04208v3
|
http://arxiv.org/pdf/1802.04208v3.pdf
|
https://github.com/MaxHolmberg96/WaveGAN
| false | false | true |
tf
|
https://paperswithcode.com/paper/towards-faster-reasoners-by-using-transparent
|
Towards Faster Reasoners By Using Transparent Huge Pages
|
2004.14378
|
https://arxiv.org/abs/2004.14378v1
|
https://arxiv.org/pdf/2004.14378v1.pdf
|
https://github.com/daajoe/thp_docker_build
| false | false | true |
none
|
https://paperswithcode.com/paper/challenging-euclidean-topological
|
Challenging Euclidean Topological Autoencoders
| null |
https://openreview.net/forum?id=P3dZuOUnyEY
|
https://openreview.net/pdf?id=P3dZuOUnyEY
|
https://github.com/BorgwardtLab/topo-ae-distances
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/yolov3-an-incremental-improvement
|
YOLOv3: An Incremental Improvement
|
1804.02767
|
http://arxiv.org/abs/1804.02767v1
|
http://arxiv.org/pdf/1804.02767v1.pdf
|
https://github.com/harsh2011/Yolov3-Detector
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/high-quality-monocular-depth-estimation-via
|
High Quality Monocular Depth Estimation via Transfer Learning
|
1812.11941
|
http://arxiv.org/abs/1812.11941v2
|
http://arxiv.org/pdf/1812.11941v2.pdf
|
https://github.com/Noopuragr/DepthModel
| false | false | true |
tf
|
https://paperswithcode.com/paper/tednet-a-pytorch-toolkit-for-tensor
|
TedNet: A Pytorch Toolkit for Tensor Decomposition Networks
|
2104.05018
|
https://arxiv.org/abs/2104.05018v2
|
https://arxiv.org/pdf/2104.05018v2.pdf
|
https://github.com/tnbar/tednet
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/annual-modulations-from-secular-variations
|
Annual modulations from secular variations: not relaxing DAMA?
|
2003.03340
|
https://arxiv.org/abs/2003.03340v2
|
https://arxiv.org/pdf/2003.03340v2.pdf
|
https://github.com/piacent/bayes_analysis
| true | true | true |
none
|
https://paperswithcode.com/paper/task-programming-learning-data-efficient
|
Task Programming: Learning Data Efficient Behavior Representations
|
2011.13917
|
https://arxiv.org/abs/2011.13917v2
|
https://arxiv.org/pdf/2011.13917v2.pdf
|
https://github.com/neuroethology/TREBA
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/cubic-function-fields-with-prescribed
|
Cubic function fields with prescribed ramification
|
2003.06673
|
https://arxiv.org/abs/2003.06673v2
|
https://arxiv.org/pdf/2003.06673v2.pdf
|
https://github.com/JRSijsling/parshin_experiments
| true | true | true |
none
|
https://paperswithcode.com/paper/can-multi-label-classification-networks-know-1
|
Can multi-label classification networks know what they don’t know?
| null |
https://openreview.net/forum?id=enKhMfthDFS
|
https://openreview.net/pdf?id=enKhMfthDFS
|
https://github.com/deeplearning-wisc/multi-label-ood
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/general-audio-tagging-with-ensembling
|
General audio tagging with ensembling convolutional neural network and statistical features
|
1810.12832
|
http://arxiv.org/abs/1810.12832v1
|
http://arxiv.org/pdf/1810.12832v1.pdf
|
https://github.com/r0mer0m/learning_audio_modeling
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/learning-to-benchmark-determining-best
|
Learning to Benchmark: Determining Best Achievable Misclassification Error from Training Data
|
1909.07192
|
https://arxiv.org/abs/1909.07192v1
|
https://arxiv.org/pdf/1909.07192v1.pdf
|
https://github.com/mrtnoshad/Bayes_Error_Estimator
| false | false | true |
none
|
https://paperswithcode.com/paper/bert-has-a-mouth-and-it-must-speak-bert-as-a
|
BERT has a Mouth, and It Must Speak: BERT as a Markov Random Field Language Model
|
1902.04094
|
http://arxiv.org/abs/1902.04094v2
|
http://arxiv.org/pdf/1902.04094v2.pdf
|
https://github.com/vatsal199/Obedient_BERT
| false | false | true |
none
|
https://paperswithcode.com/paper/a-unified-successive-pseudo-convex
|
A Unified Successive Pseudo-Convex Approximation Framework
|
1506.04972
|
https://arxiv.org/abs/1506.04972v2
|
https://arxiv.org/pdf/1506.04972v2.pdf
|
https://github.com/optyang/STELA
| false | false | true |
none
|
https://paperswithcode.com/paper/cutmix-regularization-strategy-to-train
|
CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features
|
1905.04899
|
https://arxiv.org/abs/1905.04899v2
|
https://arxiv.org/pdf/1905.04899v2.pdf
|
https://github.com/Kaushal28/CutMix-Regularization-using-PyTorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/on-the-texture-bias-for-few-shot-cnn
|
On the Texture Bias for Few-Shot CNN Segmentation
|
2003.04052
|
https://arxiv.org/abs/2003.04052v3
|
https://arxiv.org/pdf/2003.04052v3.pdf
|
https://github.com/rezazad68/fewshot-segmentation
| true | true | true |
tf
|
https://paperswithcode.com/paper/kermit-complementing-transformer
|
KERMIT: Complementing Transformer Architectures with Encoders of Explicit Syntactic Interpretations
| null |
https://aclanthology.org/2020.emnlp-main.18
|
https://aclanthology.org/2020.emnlp-main.18.pdf
|
https://github.com/ART-Group-it/KERMIT
| true | false | false |
none
|
https://paperswithcode.com/paper/solving-even-parity-problems-using-traceless
|
Solving even-parity problems using traceless genetic programming
|
2110.02014
|
https://arxiv.org/abs/2110.02014v1
|
https://arxiv.org/pdf/2110.02014v1.pdf
|
https://github.com/mihaioltean/traceless-genetic-programming
| true | true | false |
none
|
https://paperswithcode.com/paper/inception-v4-inception-resnet-and-the-impact
|
Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning
|
1602.07261
|
http://arxiv.org/abs/1602.07261v2
|
http://arxiv.org/pdf/1602.07261v2.pdf
|
https://github.com/waynecoffee9/Traffic-Sign-Classifier
| false | false | true |
tf
|
https://paperswithcode.com/paper/the-winnability-of-klondike-and-many-other
|
The Winnability of Klondike Solitaire and Many Other Patience Games
|
1906.12314
|
https://arxiv.org/abs/1906.12314v5
|
https://arxiv.org/pdf/1906.12314v5.pdf
|
https://github.com/thecharlieblake/Solvitaire
| true | false | false |
none
|
https://paperswithcode.com/paper/dynaslam-tracking-mapping-and-inpainting-in
|
DynaSLAM: Tracking, Mapping and Inpainting in Dynamic Scenes
|
1806.05620
|
http://arxiv.org/abs/1806.05620v2
|
http://arxiv.org/pdf/1806.05620v2.pdf
|
https://github.com/linmeeka/slamProject
| false | false | true |
tf
|
https://paperswithcode.com/paper/multinet-real-time-joint-semantic-reasoning
|
MultiNet: Real-time Joint Semantic Reasoning for Autonomous Driving
|
1612.07695
|
http://arxiv.org/abs/1612.07695v2
|
http://arxiv.org/pdf/1612.07695v2.pdf
|
https://github.com/ziyuan400/video_segmentation
| false | false | true |
tf
|
https://paperswithcode.com/paper/squeeze-and-excitation-networks
|
Squeeze-and-Excitation Networks
|
1709.01507
|
https://arxiv.org/abs/1709.01507v4
|
https://arxiv.org/pdf/1709.01507v4.pdf
|
https://github.com/tsubasawb/DeepLearning_Paper
| false | false | true |
none
|
https://paperswithcode.com/paper/mobilenets-efficient-convolutional-neural
|
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
|
1704.04861
|
http://arxiv.org/abs/1704.04861v1
|
http://arxiv.org/pdf/1704.04861v1.pdf
|
https://github.com/tsubasawb/DeepLearning_Paper
| false | false | true |
none
|
https://paperswithcode.com/paper/policyspace-a-modeling-platform
|
PolicySpace: a modeling platform
|
1801.00259
|
http://arxiv.org/abs/1801.00259v1
|
http://arxiv.org/pdf/1801.00259v1.pdf
|
https://github.com/IpeaDISET/PolicySpace
| false | false | true |
none
|
https://paperswithcode.com/paper/self-critical-sequence-training-for-image
|
Self-critical Sequence Training for Image Captioning
|
1612.00563
|
http://arxiv.org/abs/1612.00563v2
|
http://arxiv.org/pdf/1612.00563v2.pdf
|
https://github.com/xiaobai714/image_caption
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/flexible-marginal-models-for-dependent-data
|
Flexible Marginal Models for Dependent Data
|
2204.07188
|
https://arxiv.org/abs/2204.07188v1
|
https://arxiv.org/pdf/2204.07188v1.pdf
|
https://github.com/awstringer1/mam
| true | true | false |
none
|
https://paperswithcode.com/paper/unsupervised-representation-learning-with-1
|
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
|
1511.06434
|
http://arxiv.org/abs/1511.06434v2
|
http://arxiv.org/pdf/1511.06434v2.pdf
|
https://github.com/gagan16/DcGan-Tensorflow
| false | false | true |
tf
|
https://paperswithcode.com/paper/you-only-look-once-unified-real-time-object
|
You Only Look Once: Unified, Real-Time Object Detection
|
1506.02640
|
http://arxiv.org/abs/1506.02640v5
|
http://arxiv.org/pdf/1506.02640v5.pdf
|
https://github.com/leon-liangwu/py-caffe-yolo
| false | false | true |
caffe2
|
https://paperswithcode.com/paper/ask-me-anything-dynamic-memory-networks-for
|
Ask Me Anything: Dynamic Memory Networks for Natural Language Processing
|
1506.07285
|
http://arxiv.org/abs/1506.07285v5
|
http://arxiv.org/pdf/1506.07285v5.pdf
|
https://github.com/scakc/QAwiki
| false | false | true |
none
|
https://paperswithcode.com/paper/video-to-video-synthesis
|
Video-to-Video Synthesis
|
1808.06601
|
http://arxiv.org/abs/1808.06601v2
|
http://arxiv.org/pdf/1808.06601v2.pdf
|
https://github.com/divyanshpuri02/divyansh.github.io
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/diversity-in-valuing-social-contact-and-risk
|
Diversity in Valuing Social Contact and Risk Tolerance Lead to the Emergence of Homophily in Populations Facing Infectious Threats
|
2111.11362
|
https://arxiv.org/abs/2111.11362v1
|
https://arxiv.org/pdf/2111.11362v1.pdf
|
https://github.com/kazarraha/socdistmodel
| true | true | false |
none
|
https://paperswithcode.com/paper/bag-of-tricks-for-efficient-text
|
Bag of Tricks for Efficient Text Classification
|
1607.01759
|
http://arxiv.org/abs/1607.01759v3
|
http://arxiv.org/pdf/1607.01759v3.pdf
|
https://github.com/FengJiaChunFromSYSU/fastText
| false | false | true |
none
|
https://paperswithcode.com/paper/fcos-fully-convolutional-one-stage-object
|
FCOS: Fully Convolutional One-Stage Object Detection
|
1904.01355
|
https://arxiv.org/abs/1904.01355v5
|
https://arxiv.org/pdf/1904.01355v5.pdf
|
https://github.com/abcxs/maskrcnn-contest
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/retinamask-learning-to-predict-masks-improves
|
RetinaMask: Learning to predict masks improves state-of-the-art single-shot detection for free
|
1901.03353
|
http://arxiv.org/abs/1901.03353v1
|
http://arxiv.org/pdf/1901.03353v1.pdf
|
https://github.com/abcxs/maskrcnn-contest
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/how-to-make-chord-correct
|
How to Make Chord Correct
|
1502.06461
|
http://arxiv.org/abs/1502.06461v2
|
http://arxiv.org/pdf/1502.06461v2.pdf
|
https://github.com/kratikagupta-developer/CHORD-Protocol-Implementation
| false | false | true |
none
|
https://paperswithcode.com/paper/cross-domain-ensemble-distillation-for-domain-2
|
Cross-Domain Ensemble Distillation for Domain Generalization
|
2211.14058
|
https://arxiv.org/abs/2211.14058v1
|
https://arxiv.org/pdf/2211.14058v1.pdf
|
https://github.com/leekyungmoon/XDED
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/190600722
|
Topological Autoencoders
|
1906.00722
|
https://arxiv.org/abs/1906.00722v5
|
https://arxiv.org/pdf/1906.00722v5.pdf
|
https://github.com/BorgwardtLab/topo-ae-distances
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/qanet-combining-local-convolution-with-global
|
QANet: Combining Local Convolution with Global Self-Attention for Reading Comprehension
|
1804.09541
|
http://arxiv.org/abs/1804.09541v1
|
http://arxiv.org/pdf/1804.09541v1.pdf
|
https://github.com/shikhar1sharma/NLP-Resources
| false | false | true |
none
|
https://paperswithcode.com/paper/on-the-fly-aligned-data-augmentation-for
|
On-the-Fly Aligned Data Augmentation for Sequence-to-Sequence ASR
|
2104.01393
|
https://arxiv.org/abs/2104.01393v2
|
https://arxiv.org/pdf/2104.01393v2.pdf
|
https://github.com/StatNLP/ada4asr
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/towards-the-automatic-anime-characters
|
Towards the Automatic Anime Characters Creation with Generative Adversarial Networks
|
1708.05509
|
http://arxiv.org/abs/1708.05509v1
|
http://arxiv.org/pdf/1708.05509v1.pdf
|
https://github.com/MasayaGit/AnimeGAN
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/video-captioning-with-recurrent-networks
|
Video captioning with recurrent networks based on frame- and video-level features and visual content classification
|
1512.02949
|
http://arxiv.org/abs/1512.02949v1
|
http://arxiv.org/pdf/1512.02949v1.pdf
|
https://github.com/rakshithShetty/captionGAN
| false | false | true |
none
|
https://paperswithcode.com/paper/fasttrack-an-open-source-software-for
|
FastTrack: an open-source software for tracking varying numbers of deformable objects
|
2011.06837
|
https://arxiv.org/abs/2011.06837v1
|
https://arxiv.org/pdf/2011.06837v1.pdf
|
https://github.com/FastTrackOrg/FastTrack
| true | true | false |
none
|
https://paperswithcode.com/paper/learning-semantically-enhanced-feature-for
|
Learning Semantically Enhanced Feature for Fine-Grained Image Classification
|
2006.13457
|
https://arxiv.org/abs/2006.13457v3
|
https://arxiv.org/pdf/2006.13457v3.pdf
|
https://github.com/YNCao/mysef
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/online-abuse-detection-the-value-of
|
Online abuse detection: the value of preprocessing and neural attention models
| null |
https://aclanthology.org/W19-1303
|
https://aclanthology.org/W19-1303.pdf
|
https://github.com/ddhruvkr/Online_Abuse_Detection
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/debface-de-biasing-face-recognition
|
Jointly De-biasing Face Recognition and Demographic Attribute Estimation
|
1911.08080
|
https://arxiv.org/abs/1911.08080v4
|
https://arxiv.org/pdf/1911.08080v4.pdf
|
https://github.com/gongsixue/DebFace
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/explaining-anomalies-detected-by-autoencoders
|
Explaining Anomalies Detected by Autoencoders Using SHAP
|
1903.02407
|
https://arxiv.org/abs/1903.02407v2
|
https://arxiv.org/pdf/1903.02407v2.pdf
|
https://github.com/ronniemi/explainAnomaliesUsingSHAP
| true | true | false |
tf
|
https://paperswithcode.com/paper/painting-with-baryons-augmenting-n-body
|
Painting with baryons: augmenting N-body simulations with gas using deep generative models
|
1903.12173
|
https://arxiv.org/abs/1903.12173v2
|
https://arxiv.org/pdf/1903.12173v2.pdf
|
https://github.com/tilmantroester/baryon_painter
| true | true | true |
none
|
https://paperswithcode.com/paper/teaching-temporal-logics-to-neural-networks
|
Teaching Temporal Logics to Neural Networks
|
2003.04218
|
https://arxiv.org/abs/2003.04218v3
|
https://arxiv.org/pdf/2003.04218v3.pdf
|
https://github.com/reactive-systems/deepltl
| true | true | true |
tf
|
https://paperswithcode.com/paper/smart-mc-sparse-matrix-estimation-with
|
SMART-MC: Characterizing the Dynamics of Multiple Sclerosis Therapy Transitions Using a Covariate-Based Markov Model
|
2412.03596
|
https://arxiv.org/abs/2412.03596v2
|
https://arxiv.org/pdf/2412.03596v2.pdf
|
https://github.com/priyamdas2/SMART-MC-MSCOR
| true | false | false |
none
|
https://paperswithcode.com/paper/ssd-single-shot-multibox-detector
|
SSD: Single Shot MultiBox Detector
|
1512.02325
|
http://arxiv.org/abs/1512.02325v5
|
http://arxiv.org/pdf/1512.02325v5.pdf
|
https://github.com/victordibia/handtracking
| false | false | true |
tf
|
https://paperswithcode.com/paper/corresponding-projections-for-orphan
|
Corresponding Projections for Orphan Screening
|
1812.00058
|
http://arxiv.org/abs/1812.00058v1
|
http://arxiv.org/pdf/1812.00058v1.pdf
|
https://github.com/diogofbraga/OrphanPrincipalComponentAnalysis
| false | false | true |
none
|
https://paperswithcode.com/paper/robustness-quantification-for-classification
|
Adversarial Robustness Guarantees for Classification with Gaussian Processes
|
1905.11876
|
https://arxiv.org/abs/1905.11876v3
|
https://arxiv.org/pdf/1905.11876v3.pdf
|
https://github.com/andreapatane/check-GPclass
| true | true | true |
none
|
https://paperswithcode.com/paper/real-time-and-accurate-object-detection-in
|
Real-Time and Accurate Object Detection in Compressed Video by Long Short-term Feature Aggregation
|
2103.14529
|
https://arxiv.org/abs/2103.14529v1
|
https://arxiv.org/pdf/2103.14529v1.pdf
|
https://github.com/hustvl/LSFA
| true | true | false |
mxnet
|
https://paperswithcode.com/paper/on-catastrophic-interference-in-atari-2600
|
On Catastrophic Interference in Atari 2600 Games
|
2002.12499
|
https://arxiv.org/abs/2002.12499v2
|
https://arxiv.org/pdf/2002.12499v2.pdf
|
https://github.com/google-research/google-research/tree/master/memento
| true | false | false |
tf
|
https://paperswithcode.com/paper/topological-control-of-synchronization
|
Topological Control of Synchronization Patterns: Trading Symmetry for Stability
|
1902.03255
|
https://arxiv.org/abs/1902.03255v1
|
https://arxiv.org/pdf/1902.03255v1.pdf
|
https://github.com/y-z-zhang/optimize_sym_cluster
| true | true | false |
none
|
https://paperswithcode.com/paper/knowledge-tracing-for-complex-problem-solving
|
Knowledge Tracing for Complex Problem Solving: Granular Rank-Based Tensor Factorization
|
2210.09013
|
https://arxiv.org/abs/2210.09013v1
|
https://arxiv.org/pdf/2210.09013v1.pdf
|
https://github.com/persai-lab/umap2021-grate
| true | true | false |
none
|
https://paperswithcode.com/paper/optimization-of-molecules-via-deep
|
Optimization of Molecules via Deep Reinforcement Learning
|
1810.08678
|
http://arxiv.org/abs/1810.08678v3
|
http://arxiv.org/pdf/1810.08678v3.pdf
|
https://github.com/google-research/google-research/tree/master/mol_dqn
| true | false | false |
tf
|
https://paperswithcode.com/paper/drop-an-octave-reducing-spatial-redundancy-in
|
Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution
|
1904.05049
|
https://arxiv.org/abs/1904.05049v3
|
https://arxiv.org/pdf/1904.05049v3.pdf
|
https://github.com/SharadGitHub/OctaveUnet
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/digging-into-self-supervised-monocular-depth
|
Digging Into Self-Supervised Monocular Depth Estimation
|
1806.01260
|
https://arxiv.org/abs/1806.01260v4
|
https://arxiv.org/pdf/1806.01260v4.pdf
|
https://github.com/FangGet/tf-monodepth2
| false | false | true |
tf
|
https://paperswithcode.com/paper/a-fully-differentiable-beam-search-decoder
|
A Fully Differentiable Beam Search Decoder
|
1902.06022
|
http://arxiv.org/abs/1902.06022v1
|
http://arxiv.org/pdf/1902.06022v1.pdf
|
https://github.com/johnhw/differentiable_sorting
| false | false | true |
tf
|
https://paperswithcode.com/paper/statistical-models-for-the-analysis-of
|
Statistical Models for the Analysis of Optimization Algorithms with Benchmark Functions
|
2010.03783
|
https://arxiv.org/abs/2010.03783v4
|
https://arxiv.org/pdf/2010.03783v4.pdf
|
https://github.com/davidissamattos/statscomp
| true | false | false |
none
|
https://paperswithcode.com/paper/automatically-designing-cnn-architectures
|
Automatically designing CNN architectures using genetic algorithm for image classification
|
1808.03818
|
https://arxiv.org/abs/1808.03818v3
|
https://arxiv.org/pdf/1808.03818v3.pdf
|
https://github.com/Marius-Juston/AutoCNN
| false | false | true |
tf
|
https://paperswithcode.com/paper/an-application-of-paraexp-to-electromagnetic
|
An Application of ParaExp to Electromagnetic Wave Problems
|
1607.00368
|
https://arxiv.org/abs/1607.00368v2
|
https://arxiv.org/pdf/1607.00368v2.pdf
|
https://github.com/temf/paraexp
| true | false | false |
none
|
https://paperswithcode.com/paper/paraexp-using-leapfrog-as-integrator-for-high
|
ParaExp using Leapfrog as Integrator for High-Frequency Electromagnetic Simulations
|
1705.08019
|
https://arxiv.org/abs/1705.08019v2
|
https://arxiv.org/pdf/1705.08019v2.pdf
|
https://github.com/temf/paraexp
| true | false | false |
none
|
https://paperswithcode.com/paper/asymmetric-statistical-errors
|
Asymmetric Statistical Errors
|
physics/0406120
|
https://arxiv.org/abs/physics/0406120v1
|
https://arxiv.org/pdf/physics/0406120v1.pdf
|
https://github.com/muryelgp/asymmetric_uncertainties
| false | false | true |
none
|
https://paperswithcode.com/paper/are-undocumented-workers-the-same-as-illegal
|
Are "Undocumented Workers" the Same as "Illegal Aliens"? Disentangling Denotation and Connotation in Vector Spaces
|
2010.02976
|
https://arxiv.org/abs/2010.02976v2
|
https://arxiv.org/pdf/2010.02976v2.pdf
|
https://github.com/awebson/congressional_adversary
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/sample-efficient-actor-critic-with-experience
|
Sample Efficient Actor-Critic with Experience Replay
|
1611.01224
|
http://arxiv.org/abs/1611.01224v2
|
http://arxiv.org/pdf/1611.01224v2.pdf
|
https://github.com/Kaixhin/ACER
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/fedhca2-towards-hetero-client-federated-multi
|
FedHCA2: Towards Hetero-Client Federated Multi-Task Learning
| null |
http://openaccess.thecvf.com//content/CVPR2024/html/Lu_FedHCA2_Towards_Hetero-Client_Federated_Multi-Task_Learning_CVPR_2024_paper.html
|
http://openaccess.thecvf.com//content/CVPR2024/papers/Lu_FedHCA2_Towards_Hetero-Client_Federated_Multi-Task_Learning_CVPR_2024_paper.pdf
|
https://github.com/innovator-zero/fedhca2
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/naturalization-of-text-by-the-insertion-of
|
Naturalization of Text by the Insertion of Pauses and Filler Words
|
2011.03713
|
https://arxiv.org/abs/2011.03713v1
|
https://arxiv.org/pdf/2011.03713v1.pdf
|
https://github.com/parthvshah/naturalization
| true | false | false |
none
|
https://paperswithcode.com/paper/probabilistic-event-calculus-for-event
|
Probabilistic Event Calculus for Event Recognition
|
1207.3270
|
http://arxiv.org/abs/1207.3270v2
|
http://arxiv.org/pdf/1207.3270v2.pdf
|
https://github.com/koo5/notes2
| false | false | true |
none
|
https://paperswithcode.com/paper/mean-subtraction-and-mode-selection-in
|
Clarifying the effect of mean subtraction on Dynamic Mode Decomposition
|
2105.03607
|
https://arxiv.org/abs/2105.03607v6
|
https://arxiv.org/pdf/2105.03607v6.pdf
|
https://github.com/gowtham-ss-ragavan/msub_mdselect_dmd
| true | true | false |
none
|
https://paperswithcode.com/paper/deeperforensics-10-a-large-scale-dataset-for
|
DeeperForensics-1.0: A Large-Scale Dataset for Real-World Face Forgery Detection
|
2001.03024
|
https://arxiv.org/abs/2001.03024v2
|
https://arxiv.org/pdf/2001.03024v2.pdf
|
https://github.com/EndlessSora/DeeperForensics-1.0
| true | false | true |
none
|
https://paperswithcode.com/paper/3d-object-reconstruction-from-hand-object
|
3D Object Reconstruction from Hand-Object Interactions
|
1704.00529
|
http://arxiv.org/abs/1704.00529v1
|
http://arxiv.org/pdf/1704.00529v1.pdf
|
https://github.com/dimtziwnas/InHandScanningICCV15_Reconstruction
| true | false | false |
none
|
https://paperswithcode.com/paper/simple-and-effective-vae-training-with
|
Simple and Effective VAE Training with Calibrated Decoders
|
2006.13202
|
https://arxiv.org/abs/2006.13202v3
|
https://arxiv.org/pdf/2006.13202v3.pdf
|
https://github.com/orybkin/sigma-vae
| true | false | false |
tf
|
https://paperswithcode.com/paper/multi-agent-generative-adversarial-imitation
|
Multi-Agent Generative Adversarial Imitation Learning
|
1807.09936
|
http://arxiv.org/abs/1807.09936v1
|
http://arxiv.org/pdf/1807.09936v1.pdf
|
https://github.com/ermongroup/multiagent-gail
| false | false | true |
none
|
https://paperswithcode.com/paper/where-s-crypto-automated-identification-and
|
Where's Crypto?: Automated Identification and Classification of Proprietary Cryptographic Primitives in Binary Code
|
2009.04274
|
https://arxiv.org/abs/2009.04274v1
|
https://arxiv.org/pdf/2009.04274v1.pdf
|
https://github.com/wheres-crypto/wheres-crypto
| true | true | false |
none
|
https://paperswithcode.com/paper/scalable-learning-of-non-decomposable
|
Scalable Learning of Non-Decomposable Objectives
|
1608.04802
|
http://arxiv.org/abs/1608.04802v2
|
http://arxiv.org/pdf/1608.04802v2.pdf
|
https://github.com/tensorflow/models/tree/master/research/global_objectives
| false | false | true |
tf
|
https://paperswithcode.com/paper/you-only-derive-once-yodo-automatic
|
You Only Derive Once (YODO): Automatic Differentiation for Efficient Sensitivity Analysis in Bayesian Networks
|
2206.08687
|
https://arxiv.org/abs/2206.08687v1
|
https://arxiv.org/pdf/2206.08687v1.pdf
|
https://github.com/rballester/yodo
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/mri-to-ct-translation-with-gans
|
MRI to CT Translation with GANs
|
1901.05259
|
http://arxiv.org/abs/1901.05259v1
|
http://arxiv.org/pdf/1901.05259v1.pdf
|
https://github.com/bodokaiser/mrtoct-pytorch
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/music-genre-classification-using-machine
|
Music Genre Classification using Machine Learning Techniques
|
1804.01149
|
http://arxiv.org/abs/1804.01149v1
|
http://arxiv.org/pdf/1804.01149v1.pdf
|
https://github.com/HareeshBahuleyan/music-genre-classification
| true | true | true |
tf
|
https://paperswithcode.com/paper/rainfall-runoff-prediction-at-multiple
|
Rainfall-Runoff Prediction at Multiple Timescales with a Single Long Short-Term Memory Network
|
2010.07921
|
https://arxiv.org/abs/2010.07921v1
|
https://arxiv.org/pdf/2010.07921v1.pdf
|
https://github.com/gauchm/mts-lstm
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/empty-cities-a-dynamic-object-invariant-space
|
Empty Cities: a Dynamic-Object-Invariant Space for Visual SLAM
|
2010.07646
|
https://arxiv.org/abs/2010.07646v1
|
https://arxiv.org/pdf/2010.07646v1.pdf
|
https://github.com/bertabescos/EmptyCities_SLAM
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/new-evolutionary-computation-models-and-their
|
New Evolutionary Computation Models and their Applications to Machine Learning
|
2110.00468
|
https://arxiv.org/abs/2110.00468v1
|
https://arxiv.org/pdf/2110.00468v1.pdf
|
https://github.com/mihaioltean/traceless-genetic-programming
| true | false | false |
none
|
https://paperswithcode.com/paper/vehicle-predictive-trajectory-patterns-from
|
Vehicle predictive trajectory patterns from isochronous data
|
2010.05026
|
https://arxiv.org/abs/2010.05026v2
|
https://arxiv.org/pdf/2010.05026v2.pdf
|
https://github.com/Seeker3000/AUD
| true | false | false |
none
|
https://paperswithcode.com/paper/a-run-and-tumble-model-with-autochemotaxis
|
A Run-and-Tumble Model with Autochemotaxis
|
2009.03221
|
https://arxiv.org/abs/2009.03221v1
|
https://arxiv.org/pdf/2009.03221v1.pdf
|
https://github.com/Louminator/Plankton_Signal_RT
| true | true | false |
none
|
https://paperswithcode.com/paper/zinet-linking-chinese-characters-spanning
|
ZiNet: Linking Chinese Characters Spanning Three Thousand Years
| null |
https://aclanthology.org/2022.findings-acl.242
|
https://aclanthology.org/2022.findings-acl.242.pdf
|
https://github.com/yangchijlu/ancientchinesecharsim
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/low-dose-ct-image-denoising-using-a
|
Low Dose CT Image Denoising Using a Generative Adversarial Network with Wasserstein Distance and Perceptual Loss
|
1708.00961
|
http://arxiv.org/abs/1708.00961v2
|
http://arxiv.org/pdf/1708.00961v2.pdf
|
https://github.com/SSinyu/WGAN-VGG
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/190807906
|
PCRNet: Point Cloud Registration Network using PointNet Encoding
|
1908.07906
|
https://arxiv.org/abs/1908.07906v2
|
https://arxiv.org/pdf/1908.07906v2.pdf
|
https://github.com/vinits5/pcrnet
| true | true | true |
tf
|
https://paperswithcode.com/paper/human-and-automatic-detection-of-generated
|
Automatic Detection of Generated Text is Easiest when Humans are Fooled
|
1911.00650
|
https://arxiv.org/abs/1911.00650v2
|
https://arxiv.org/pdf/1911.00650v2.pdf
|
https://github.com/kirubarajan/roft
| false | false | true |
none
|
https://paperswithcode.com/paper/correlation-aware-deep-generative-model-for
|
Correlation-aware Deep Generative Model for Unsupervised Anomaly Detection
|
2002.07349
|
https://arxiv.org/abs/2002.07349v3
|
https://arxiv.org/pdf/2002.07349v3.pdf
|
https://github.com/haoyfan/CADGMM
| true | false | true |
tf
|
https://paperswithcode.com/paper/towards-ai-complete-question-answering-a-set
|
Towards AI-Complete Question Answering: A Set of Prerequisite Toy Tasks
|
1502.05698
|
http://arxiv.org/abs/1502.05698v10
|
http://arxiv.org/pdf/1502.05698v10.pdf
|
https://github.com/kirubarajan/roft
| false | false | true |
none
|
https://paperswithcode.com/paper/verification-of-hierarchical-artifact-systems
|
Verification of Hierarchical Artifact Systems
|
1604.00967
|
http://arxiv.org/abs/1604.00967v1
|
http://arxiv.org/pdf/1604.00967v1.pdf
|
https://github.com/oi02lyl/has-verifier
| false | false | true |
none
|
https://paperswithcode.com/paper/discontinuous-transition-of-molecular
|
Discontinuous transition of molecular-hydrogen chain to the quasi-atomic state: Exact diagonalization - ab initio approach
|
1506.03356
|
https://arxiv.org/abs/1506.03356v2
|
https://arxiv.org/pdf/1506.03356v2.pdf
|
https://bitbucket.org/azja/qmt
| true | true | false |
none
|
https://paperswithcode.com/paper/metallization-of-solid-molecular-hydrogen-in
|
Metallization of solid molecular hydrogen in two dimensions: Mott-Hubbard-type transition
|
1702.06575
|
https://arxiv.org/abs/1702.06575v1
|
https://arxiv.org/pdf/1702.06575v1.pdf
|
https://bitbucket.org/azja/qmt
| true | false | false |
none
|
https://paperswithcode.com/paper/combined-shared-and-distributed-memory-ab
|
Combined shared and distributed memory ab-initio computations of molecular-hydrogen systems in the correlated state: process pool solution and two-level parallelism
|
1504.00500
|
https://arxiv.org/abs/1504.00500v3
|
https://arxiv.org/pdf/1504.00500v3.pdf
|
https://bitbucket.org/azja/qmt
| true | true | false |
none
|
https://paperswithcode.com/paper/dot-ring-nanostructure-rigorous-analysis-of
|
Dot-ring nanostructure: Rigorous analysis of many-electron effects
|
1605.01195
|
https://arxiv.org/abs/1605.01195v1
|
https://arxiv.org/pdf/1605.01195v1.pdf
|
https://bitbucket.org/azja/qmt
| true | true | false |
none
|
https://paperswithcode.com/paper/automatic-design-of-mechanical-metamaterial
|
Automatic Design of Mechanical Metamaterial Actuators
|
2002.03032
|
https://arxiv.org/abs/2002.03032v1
|
https://arxiv.org/pdf/2002.03032v1.pdf
|
https://github.com/ComplexityBiosystems/metamech_datasets
| false | false | true |
none
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.