paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/robotic-pick-and-place-of-novel-objects-in
|
Robotic Pick-and-Place of Novel Objects in Clutter with Multi-Affordance Grasping and Cross-Domain Image Matching
|
1710.01330
|
https://arxiv.org/abs/1710.01330v5
|
https://arxiv.org/pdf/1710.01330v5.pdf
|
https://github.com/andyzeng/arc-robot-vision
| true | false | true |
torch
|
https://paperswithcode.com/paper/bert-pre-training-of-deep-bidirectional
|
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
|
1810.04805
|
https://arxiv.org/abs/1810.04805v2
|
https://arxiv.org/pdf/1810.04805v2.pdf
|
https://github.com/MLH-Fellowship/Social-BERTerfly
| false | false | true |
tf
|
https://paperswithcode.com/paper/automatic-differentiation-of-sylvester
|
Automatic differentiation of Sylvester, Lyapunov, and algebraic Riccati equations
|
2011.11430
|
https://arxiv.org/abs/2011.11430v2
|
https://arxiv.org/pdf/2011.11430v2.pdf
|
https://github.com/tachukao/autodiff-inverse-lqr
| true | true | true |
none
|
https://paperswithcode.com/paper/sensing-ambiguity-in-henry-james-the-turn-of
|
Sensing Ambiguity in Henry James' "The Turn of the Screw"
|
2011.10832
|
https://arxiv.org/abs/2011.10832v1
|
https://arxiv.org/pdf/2011.10832v1.pdf
|
https://github.com/vicmak/TurnOfTheScrew
| true | true | false |
none
|
https://paperswithcode.com/paper/two-stage-generative-adversarial-networks-for
|
Two-stage generative adversarial networks for document image binarization with color noise and background removal
|
2010.10103
|
https://arxiv.org/abs/2010.10103v3
|
https://arxiv.org/pdf/2010.10103v3.pdf
|
https://github.com/opensuh/DocumentBinarization
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/supervised-edge-attention-network-for
|
Supervised Edge Attention Network for Accurate Image Instance Segmentation
| null |
https://www.ecva.net/papers/eccv_2020/papers_ECCV/html/5884_ECCV_2020_paper.php
|
https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123720613.pdf
|
https://github.com/IPIU-detection/SEANet
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/teacher-student-consistency-for-multi-source
|
Teacher-Student Consistency For Multi-Source Domain Adaptation
|
2010.10054
|
https://arxiv.org/abs/2010.10054v1
|
https://arxiv.org/pdf/2010.10054v1.pdf
|
https://github.com/amosy3/MUST
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/mesh-denoising-with-facet-graph-convolutions
|
Mesh Denoising with Facet Graph Convolutions
| null |
https://github.com/Elensil/Facet_Graph_Convolution#abstract
|
https://hal.inria.fr/hal-03066322
|
https://github.com/Elensil/Facet_Graph_Convolution
| false | false | false |
tf
|
https://paperswithcode.com/paper/counterfactual-multi-agent-policy-gradients
|
Counterfactual Multi-Agent Policy Gradients
|
1705.08926
|
https://arxiv.org/abs/1705.08926v3
|
https://arxiv.org/pdf/1705.08926v3.pdf
|
https://github.com/opendilab/DI-engine/blob/main/ding/policy/coma.py
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/confnet2seq-full-length-answer-generation
|
ConfNet2Seq: Full Length Answer Generation from Spoken Questions
|
2006.05163
|
https://arxiv.org/abs/2006.05163v2
|
https://arxiv.org/pdf/2006.05163v2.pdf
|
https://github.com/kolk/ConfnetPointerGenBaseline
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/mmdetection-open-mmlab-detection-toolbox-and
|
MMDetection: Open MMLab Detection Toolbox and Benchmark
|
1906.07155
|
https://arxiv.org/abs/1906.07155v1
|
https://arxiv.org/pdf/1906.07155v1.pdf
|
https://github.com/IPIU-detection/SEANet
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/joint-multi-leaf-segmentation-alignment-and
|
Joint Multi-Leaf Segmentation, Alignment and Tracking from Fluorescence Plant Videos
|
1505.00353
|
http://arxiv.org/abs/1505.00353v2
|
http://arxiv.org/pdf/1505.00353v2.pdf
|
https://github.com/xiyinmsu/PlantVision
| true | false | false |
none
|
https://paperswithcode.com/paper/meta-reinforcement-learning-by-tracking-task
|
Meta-Reinforcement Learning by Tracking Task Non-stationarity
|
2105.08834
|
https://arxiv.org/abs/2105.08834v1
|
https://arxiv.org/pdf/2105.08834v1.pdf
|
https://github.com/riccardopoiani/trio-non-stationary-meta-rl
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/rotate-to-attend-convolutional-triplet
|
Rotate to Attend: Convolutional Triplet Attention Module
|
2010.03045
|
https://arxiv.org/abs/2010.03045v2
|
https://arxiv.org/pdf/2010.03045v2.pdf
|
https://github.com/LandskapeAI/triplet-attention
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/efficient-sampling-policy-for-selecting-a
|
Efficient Sampling Policy for Selecting a Good Enough Subset
|
2111.14534
|
https://arxiv.org/abs/2111.14534v1
|
https://arxiv.org/pdf/2111.14534v1.pdf
|
https://github.com/gongbozhang-pku/Good-Enough-Selection
| true | false | false |
none
|
https://paperswithcode.com/paper/autofocus-layer-for-semantic-segmentation
|
Autofocus Layer for Semantic Segmentation
|
1805.08403
|
http://arxiv.org/abs/1805.08403v3
|
http://arxiv.org/pdf/1805.08403v3.pdf
|
https://github.com/luvgold/auotofoucus3D-Brats
| false | false | true |
tf
|
https://paperswithcode.com/paper/bengali-abstractive-news-summarization-bans-a
|
Bengali Abstractive News Summarization(BANS): A Neural Attention Approach
|
2012.01747
|
https://arxiv.org/abs/2012.01747v1
|
https://arxiv.org/pdf/2012.01747v1.pdf
|
https://github.com/Prithwiraj12/Bengali-Deep-News-Summarization
| true | true | false |
tf
|
https://paperswithcode.com/paper/transferable-visual-words-exploiting-the
|
Transferable Visual Words: Exploiting the Semantics of Anatomical Patterns for Self-supervised Learning
|
2102.10680
|
https://arxiv.org/abs/2102.10680v1
|
https://arxiv.org/pdf/2102.10680v1.pdf
|
https://github.com/JLiangLab/TransVW
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/locally-checkable-problems-in-rooted-trees
|
Locally Checkable Problems in Rooted Trees
|
2102.09277
|
https://arxiv.org/abs/2102.09277v5
|
https://arxiv.org/pdf/2102.09277v5.pdf
|
https://github.com/jendas1/rooted-tree-classifier
| true | true | false |
none
|
https://paperswithcode.com/paper/sprint-ultrafast-protein-protein-interaction
|
SPRINT: Ultrafast protein-protein interaction prediction of the entire human interactome
|
1705.06848
|
http://arxiv.org/abs/1705.06848v1
|
http://arxiv.org/pdf/1705.06848v1.pdf
|
https://github.com/lucian-ilie/SPRINT
| true | true | false |
none
|
https://paperswithcode.com/paper/profiler-a-fast-and-versatile-new-program-for
|
$Profiler$ - A Fast and Versatile New Program for Decomposing Galaxy Light Profiles
|
1607.08620
|
http://arxiv.org/abs/1607.08620v1
|
http://arxiv.org/pdf/1607.08620v1.pdf
|
https://github.com/BogdanCiambur/PROFILER
| true | true | false |
none
|
https://paperswithcode.com/paper/cell-veto-monte-carlo-algorithm-for-long
|
Cell-veto Monte Carlo algorithm for long-range systems
|
1606.06780
|
http://arxiv.org/abs/1606.06780v2
|
http://arxiv.org/pdf/1606.06780v2.pdf
|
https://github.com/Cell-veto/postlhc
| true | true | false |
none
|
https://paperswithcode.com/paper/an-accelerometer-based-calculator-for
|
An Accelerometer Based Calculator for Visually Impaired People Using Mobile Devices
|
1604.07660
|
http://arxiv.org/abs/1604.07660v1
|
http://arxiv.org/pdf/1604.07660v1.pdf
|
https://github.com/ereneld/accelerometerbasedcalculatorios
| true | true | false |
none
|
https://paperswithcode.com/paper/identification-of-port-hamiltonian-systems
|
Identification of Port-Hamiltonian Systems from Frequency Response Data
|
1911.00080
|
https://arxiv.org/abs/1911.00080v1
|
https://arxiv.org/pdf/1911.00080v1.pdf
|
https://github.com/mpimd-csc/Identify_PortHamiltonian_Realization
| false | false | true |
none
|
https://paperswithcode.com/paper/using-gaia-dr2-to-constrain-local-dark-matter
|
Using Gaia DR2 to Constrain Local Dark Matter Density and Thin Dark Disk
|
1808.05603
|
https://arxiv.org/abs/1808.05603v2
|
https://arxiv.org/pdf/1808.05603v2.pdf
|
https://github.com/bbsonjohn/darkdisk
| false | false | true |
none
|
https://paperswithcode.com/paper/githru-visual-analytics-for-understanding
|
Githru: Visual Analytics for Understanding Software Development History Through Git Metadata Analysis
|
2009.03115
|
https://arxiv.org/abs/2009.03115v2
|
https://arxiv.org/pdf/2009.03115v2.pdf
|
https://github.com/githru/githru
| true | true | true |
none
|
https://paperswithcode.com/paper/a-gaia-dr2-view-of-the-open-cluster
|
A Gaia DR2 view of the Open Cluster population in the Milky Way
|
1805.08726
|
https://arxiv.org/abs/1805.08726v2
|
https://arxiv.org/pdf/1805.08726v2.pdf
|
https://github.com/ignotur/Random-forest-open-cluster
| false | false | true |
none
|
https://paperswithcode.com/paper/on-hypothesis-testing-trials-factor
|
On hypothesis testing, trials factor, hypertests and the BumpHunter
|
1101.0390
|
https://arxiv.org/abs/1101.0390v2
|
https://arxiv.org/pdf/1101.0390v2.pdf
|
https://github.com/lovaslin/pyBumpHunter
| false | false | true |
none
|
https://paperswithcode.com/paper/client-based-control-channel-analysis-for
|
Client-Based Control Channel Analysis for Connectivity Estimation in LTE Networks
|
1701.03304
|
https://arxiv.org/abs/1701.03304v1
|
https://arxiv.org/pdf/1701.03304v1.pdf
|
https://github.com/falkenber9/falcon
| false | false | true |
none
|
https://paperswithcode.com/paper/discover-your-competition-in-lte-client-based
|
Discover Your Competition in LTE: Client-Based Passive Data Rate Prediction by Machine Learning
|
1711.06820
|
https://arxiv.org/abs/1711.06820v2
|
https://arxiv.org/pdf/1711.06820v2.pdf
|
https://github.com/falkenber9/falcon
| false | false | true |
none
|
https://paperswithcode.com/paper/problem-agnostic-speech-embeddings-for-multi
|
Problem-Agnostic Speech Embeddings for Multi-Speaker Text-to-Speech with SampleRNN
|
1906.00733
|
https://arxiv.org/abs/1906.00733v3
|
https://arxiv.org/pdf/1906.00733v3.pdf
|
https://github.com/santi-pdp/pase
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/mugnet-multi-resolution-graph-neural-network
|
MuGNet: Multi-Resolution Graph Neural Network for Large-Scale Pointcloud Segmentation
| null |
https://arxiv.org/abs/2009.08924?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%253A+arxiv%252FQSXk+%2528ExcitingAds%2521+cs+updates+on+arXiv.org%2529
|
https://arxiv.org/abs/2009.08924?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%253A+arxiv%252FQSXk+%2528ExcitingAds%2521+cs+updates+on+arXiv.org%2529
|
https://github.com/liuyuex97/MuGNet
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/implementing-perceptron-models-with-qubits
|
Implementing perceptron models with qubits
|
1905.06728
|
https://arxiv.org/abs/1905.06728v2
|
https://arxiv.org/pdf/1905.06728v2.pdf
|
https://github.com/therooler/pennylane-qllh
| false | false | true |
tf
|
https://paperswithcode.com/paper/faster-family-wise-error-control-for
|
Faster Family-wise Error Control for Neuroimaging with a Parametric Bootstrap
|
1708.05037
|
http://arxiv.org/abs/1708.05037v2
|
http://arxiv.org/pdf/1708.05037v2.pdf
|
https://bitbucket.org/simonvandekar/param-boot
| true | true | false |
none
|
https://paperswithcode.com/paper/decentralized-baseband-processing-for-massive
|
Decentralized Baseband Processing for Massive MU-MIMO Systems
|
1702.04458
|
http://arxiv.org/abs/1702.04458v2
|
http://arxiv.org/pdf/1702.04458v2.pdf
|
https://github.com/VIP-Group/DBP
| true | true | false |
none
|
https://paperswithcode.com/paper/aerial-imagery-pixel-level-segmentation
|
Aerial Imagery Pixel-level Segmentation
|
2012.02024
|
https://arxiv.org/abs/2012.02024v1
|
https://arxiv.org/pdf/2012.02024v1.pdf
|
https://github.com/mrheffels/aerial-imagery-segmentation
| true | true | false |
tf
|
https://paperswithcode.com/paper/on-the-adoption-usage-and-evolution-of-kotlin
|
On the adoption, usage and evolution of Kotlin Features on Android development
|
1907.09003
|
http://arxiv.org/abs/1907.09003v3
|
http://arxiv.org/pdf/1907.09003v3.pdf
|
https://github.com/UPHF/kotlin_features
| true | true | false |
none
|
https://paperswithcode.com/paper/deep-learning-to-generate-in-silico-chemical
|
Deep learning to generate in silico chemical property libraries and candidate molecules for small molecule identification in complex samples
|
1905.08411
|
http://arxiv.org/abs/1905.08411v1
|
http://arxiv.org/pdf/1905.08411v1.pdf
|
https://github.com/pnnl/darkchem
| true | true | false |
tf
|
https://paperswithcode.com/paper/rowhammer-and-beyond
|
RowHammer and Beyond
|
1903.11056
|
http://arxiv.org/abs/1903.11056v1
|
http://arxiv.org/pdf/1903.11056v1.pdf
|
https://github.com/google/rowhammer-test
| true | true | false |
none
|
https://paperswithcode.com/paper/radynversion-learning-to-invert-a-solar-flare
|
RADYNVERSION: Learning to Invert a Solar Flare Atmosphere with Invertible Neural Networks
|
1901.08626
|
http://arxiv.org/abs/1901.08626v2
|
http://arxiv.org/pdf/1901.08626v2.pdf
|
https://github.com/Goobley/Radynversion
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/arja-automated-repair-of-java-programs-via
|
ARJA: Automated Repair of Java Programs via Multi-Objective Genetic Programming
|
1712.07804
|
http://arxiv.org/abs/1712.07804v1
|
http://arxiv.org/pdf/1712.07804v1.pdf
|
https://github.com/yyxhdy/SeededBugs
| true | true | false |
none
|
https://paperswithcode.com/paper/kern
|
KERN
|
1710.09145
|
http://arxiv.org/abs/1710.09145v1
|
http://arxiv.org/pdf/1710.09145v1.pdf
|
https://github.com/ska-sa/meqtrees-cattery
| true | true | false |
none
|
https://paperswithcode.com/paper/re-run-repeat-reproduce-reuse-replicate
|
Re-run, Repeat, Reproduce, Reuse, Replicate: Transforming Code into Scientific Contributions
|
1708.08205
|
https://arxiv.org/abs/1708.08205v2
|
https://arxiv.org/pdf/1708.08205v2.pdf
|
https://github.com/benureau/r5
| true | true | false |
none
|
https://paperswithcode.com/paper/multiscale-information-decomposition-exact
|
Multiscale Information Decomposition: Exact Computation for Multivariate Gaussian Processes
|
1706.07136
|
http://arxiv.org/abs/1706.07136v2
|
http://arxiv.org/pdf/1706.07136v2.pdf
|
https://github.com/danielemarinazzo/multiscale_PID
| true | true | false |
none
|
https://paperswithcode.com/paper/compressing-recurrent-neural-networks-with
|
Compressing Recurrent Neural Networks with Tensor Ring for Action Recognition
|
1811.07503
|
http://arxiv.org/abs/1811.07503v1
|
http://arxiv.org/pdf/1811.07503v1.pdf
|
https://github.com/tnbar/tednet
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/bayesian-adaptive-n-of-1-trials-for
|
Bayesian adaptive N-of-1 trials for estimating population and individual treatment effects
|
1911.00878
|
http://arxiv.org/abs/1911.00878v3
|
http://arxiv.org/pdf/1911.00878v3.pdf
|
https://github.com/SenarathneSGJ/Adaptive_N-of-1_trials_design
| true | true | false |
none
|
https://paperswithcode.com/paper/interactive-discovery-system-for-direct
|
Interactive Discovery System for Direct Democracy
|
1807.04448
|
http://arxiv.org/abs/1807.04448v1
|
http://arxiv.org/pdf/1807.04448v1.pdf
|
https://github.com/elaragon/decide-topics
| true | true | true |
none
|
https://paperswithcode.com/paper/encryptgan-image-steganography-with-domain
|
EncryptGAN: Image Steganography with Domain Transform
|
1905.11582
|
http://arxiv.org/abs/1905.11582v2
|
http://arxiv.org/pdf/1905.11582v2.pdf
|
https://github.com/zhengziqiang/EncryptGAN
| true | true | true |
tf
|
https://paperswithcode.com/paper/deep-active-inference
|
Deep Active Inference
|
1709.02341
|
http://arxiv.org/abs/1709.02341v5
|
http://arxiv.org/pdf/1709.02341v5.pdf
|
https://github.com/kaiu85/deepAI_paper
| true | true | true |
none
|
https://paperswithcode.com/paper/setiburst-a-robotic-commensal-realtime-multi
|
SETIBURST: A Robotic, Commensal, Realtime Multi-Science Backend for the Arecibo Telescope
|
1701.04538
|
http://arxiv.org/abs/1701.04538v1
|
http://arxiv.org/pdf/1701.04538v1.pdf
|
https://github.com/griffinfoster/alfaburst-survey
| false | false | true |
none
|
https://paperswithcode.com/paper/an-adaptive-partition-of-unity-method-for
|
An adaptive partition of unity method for multivariate Chebyshev polynomial approximations
|
1805.00423
|
http://arxiv.org/abs/1805.00423v3
|
http://arxiv.org/pdf/1805.00423v3.pdf
|
https://github.com/kevinwaiton/PUchebfun
| true | true | true |
none
|
https://paperswithcode.com/paper/hazelnut-a-bidirectionally-typed-structure
|
Hazelnut: A Bidirectionally Typed Structure Editor Calculus
|
1607.04180
|
https://arxiv.org/abs/1607.04180v5
|
https://arxiv.org/pdf/1607.04180v5.pdf
|
https://github.com/hazelgrove/hazelnut-dynamics-agda
| false | false | true |
none
|
https://paperswithcode.com/paper/live-functional-programming-with-typed-holes
|
Live Functional Programming with Typed Holes
|
1805.00155
|
http://arxiv.org/abs/1805.00155v4
|
http://arxiv.org/pdf/1805.00155v4.pdf
|
https://github.com/hazelgrove/hazelnut-dynamics-agda
| true | true | true |
none
|
https://paperswithcode.com/paper/on-location-relevance-and-diversity-in-human
|
On Location Relevance and Diversity in Human Mobility Data
|
2010.10198
|
http://arxiv.org/abs/2010.10198v1
|
http://arxiv.org/pdf/2010.10198v1.pdf
|
https://github.com/SeqScan/SeqScan-D
| true | true | false |
none
|
https://paperswithcode.com/paper/automatic-analysis-and-influence-of
|
Automatic Analysis and Influence of Hierarchical Structure on Melody, Rhythm and Harmony in Popular Music
|
2010.07518
|
http://arxiv.org/abs/2010.07518v1
|
http://arxiv.org/pdf/2010.07518v1.pdf
|
https://github.com/Dsqvival/hierarchical-structure-analysis
| true | true | false |
none
|
https://paperswithcode.com/paper/centering-noisy-images-with-application-to
|
Centering noisy images with application to cryo-EM
|
2009.04810
|
http://arxiv.org/abs/2009.04810v1
|
http://arxiv.org/pdf/2009.04810v1.pdf
|
https://github.com/nirsharon/RACER
| true | true | false |
none
|
https://paperswithcode.com/paper/model-selection-for-estimation-of-causal
|
Model selection for estimation of causal parameters
|
2008.12892
|
https://arxiv.org/abs/2008.12892v2
|
https://arxiv.org/pdf/2008.12892v2.pdf
|
https://github.com/rothenhaeusler/tms
| true | true | false |
none
|
https://paperswithcode.com/paper/macsen-a-voice-assistant-for-speakers-of-a
|
Macsen: A Voice Assistant for Speakers of a Lesser Resourced Language
| null |
https://aclanthology.org/2020.sltu-1.27
|
https://aclanthology.org/2020.sltu-1.27.pdf
|
https://github.com/techiaith/macsen-sgwrsfot
| true | false | false |
none
|
https://paperswithcode.com/paper/fault-slip-in-hydraulic-stimulation-of
|
Fault slip in hydraulic stimulation of geothermal reservoirs: governing mechanisms and process-structure interaction
|
2008.11190
|
https://arxiv.org/abs/2008.11190v2
|
https://arxiv.org/pdf/2008.11190v2.pdf
|
https://github.com/IvarStefansson/Fault-Slip-in-Hydraulic-Stimulation-of-Geothermal-Reservoirs
| true | true | false |
none
|
https://paperswithcode.com/paper/a-group-theoretic-perspective-on
|
A group theoretic perspective on entanglements of division fields
|
2008.09886
|
https://arxiv.org/abs/2008.09886v3
|
https://arxiv.org/pdf/2008.09886v3.pdf
|
https://github.com/jmorrow4692/Entanglements
| true | true | false |
none
|
https://paperswithcode.com/paper/on-bayesian-inference-for-the-extended
|
On Bayesian inference for the Extended Plackett-Luce model
|
2002.05953
|
http://arxiv.org/abs/2002.05953v1
|
http://arxiv.org/pdf/2002.05953v1.pdf
|
https://github.com/srjresearch/ExtendedPL
| true | true | false |
none
|
https://paperswithcode.com/paper/boundary-solution-based-on-rescaling-method
|
Boundary solution based on rescaling method: recoup the first and second-order statistics of neuron network dynamics
|
2002.02381
|
http://arxiv.org/abs/2002.02381v1
|
http://arxiv.org/pdf/2002.02381v1.pdf
|
https://github.com/ceciliaromaro/recoup-the-first-and-second-order-statistics-of-neuron-network-dynamics
| true | true | false |
none
|
https://paperswithcode.com/paper/cold-start-aware-user-and-product-attention
|
Cold-Start Aware User and Product Attention for Sentiment Classification
|
1806.05507
|
http://arxiv.org/abs/1806.05507v1
|
http://arxiv.org/pdf/1806.05507v1.pdf
|
https://github.com/rktamplayo/HCSC
| true | true | false |
tf
|
https://paperswithcode.com/paper/a-data-set-of-piercing-needle-through
|
A data-set of piercing needle through deformable objects for Deep Learning from Demonstrations
|
2012.02458
|
https://arxiv.org/abs/2012.02458v1
|
https://arxiv.org/pdf/2012.02458v1.pdf
|
https://github.com/imanlab/d-lfd
| true | true | true |
tf
|
https://paperswithcode.com/paper/flexwatts-a-power-and-workload-aware-hybrid
|
FlexWatts: A Power- and Workload-Aware Hybrid Power Delivery Network for Energy-Efficient Microprocessors
|
2009.09094
|
http://arxiv.org/abs/2009.09094v1
|
http://arxiv.org/pdf/2009.09094v1.pdf
|
https://github.com/CMU-SAFARI/PDNspot
| true | true | false |
none
|
https://paperswithcode.com/paper/local-variables-and-quantum-relational-hoare
|
Local Variables and Quantum Relational Hoare Logic
|
2007.14155
|
http://arxiv.org/abs/2007.14155v1
|
http://arxiv.org/pdf/2007.14155v1.pdf
|
https://github.com/dominique-unruh/qrhl-local-variables-isabelle
| true | true | false |
none
|
https://paperswithcode.com/paper/rethinking-fun-frequency-domain-utilization
|
Rethinking FUN: Frequency-Domain Utilization Networks
|
2012.03357
|
https://arxiv.org/abs/2012.03357v1
|
https://arxiv.org/pdf/2012.03357v1.pdf
|
https://github.com/kfir99/FUN
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/selfpose-3d-egocentric-pose-estimation-from-a
|
SelfPose: 3D Egocentric Pose Estimation from a Headset Mounted Camera
|
2011.01519
|
https://arxiv.org/abs/2011.01519v1
|
https://arxiv.org/pdf/2011.01519v1.pdf
|
https://github.com/facebookresearch/xR-EgoPose
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/balancing-rational-and-other-regarding
|
Balancing Rational and Other-Regarding Preferences in Cooperative-Competitive Environments
|
2102.12307
|
https://arxiv.org/abs/2102.12307v1
|
https://arxiv.org/pdf/2102.12307v1.pdf
|
https://github.com/jbr-ai-labs/BAROCCO
| false | true | false |
pytorch
|
https://paperswithcode.com/paper/one-shot-video-object-segmentation
|
One-Shot Video Object Segmentation
|
1611.05198
|
http://arxiv.org/abs/1611.05198v4
|
http://arxiv.org/pdf/1611.05198v4.pdf
|
https://github.com/Mind23-2/MindCode-5/tree/main/OSVOS
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/reducing-network-agnostophobia
|
Reducing Network Agnostophobia
|
1811.04110
|
http://arxiv.org/abs/1811.04110v2
|
http://arxiv.org/pdf/1811.04110v2.pdf
|
https://github.com/ROBOTICSENGINEER/Reducing-Network-Agnostophobia-Center-Loss
| false | false | false |
tf
|
https://paperswithcode.com/paper/boundary-topological-entanglement-entropy-in
|
Boundary topological entanglement entropy in two and three dimensions
|
2012.05244
|
https://arxiv.org/abs/2012.05244v2
|
https://arxiv.org/pdf/2012.05244v2.pdf
|
https://github.com/JCBridgeman/UnitaryPremodularCategoryData
| true | true | false |
none
|
https://paperswithcode.com/paper/securing-deep-spiking-neural-networks-against
|
Securing Deep Spiking Neural Networks against Adversarial Attacks through Inherent Structural Parameters
|
2012.05321
|
https://arxiv.org/abs/2012.05321v1
|
https://arxiv.org/pdf/2012.05321v1.pdf
|
https://github.com/rda-ela/SNN-Adversarial-Attacks
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/learning-from-an-exploring-demonstrator
|
Learning from an Exploring Demonstrator: Optimal Reward Estimation for Bandits
|
2106.14866
|
https://arxiv.org/abs/2106.14866v2
|
https://arxiv.org/pdf/2106.14866v2.pdf
|
https://github.com/wenshuoguo/inverse-bandit-code-release
| true | true | true |
none
|
https://paperswithcode.com/paper/mali-a-memory-efficient-and-reverse-accurate-1
|
MALI: A memory efficient and reverse accurate integrator for Neural ODEs
|
2102.04668
|
https://arxiv.org/abs/2102.04668v2
|
https://arxiv.org/pdf/2102.04668v2.pdf
|
https://github.com/juntang-zhuang/TorchDiffEqPack
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/direct-design-of-biquad-filter-cascades-with
|
Direct design of biquad filter cascades with deep learning by sampling random polynomials
|
2110.03691
|
https://arxiv.org/abs/2110.03691v2
|
https://arxiv.org/pdf/2110.03691v2.pdf
|
https://github.com/csteinmetz1/iirnet
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/woodbury-transformations-for-deep-generative
|
Woodbury Transformations for Deep Generative Flows
|
2002.12229
|
https://arxiv.org/abs/2002.12229v3
|
https://arxiv.org/pdf/2002.12229v3.pdf
|
https://github.com/yolu1055/WoodburyTransformations
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/using-inverse-optimization-to-learn-cost
|
Using Inverse Optimization to Learn Cost Functions in Generalized Nash Games
|
2102.12415
|
https://arxiv.org/abs/2102.12415v1
|
https://arxiv.org/pdf/2102.12415v1.pdf
|
https://github.com/sallen7/IO_GNEP
| true | true | false |
none
|
https://paperswithcode.com/paper/causal-discovery-with-unobserved-confounding
|
Causal Discovery with Unobserved Confounding and non-Gaussian Data
|
2007.11131
|
https://arxiv.org/abs/2007.11131v2
|
https://arxiv.org/pdf/2007.11131v2.pdf
|
https://github.com/ysamwang/ngBap
| true | true | false |
none
|
https://paperswithcode.com/paper/swagan-a-style-based-wavelet-driven
|
SWAGAN: A Style-based Wavelet-driven Generative Model
|
2102.06108
|
https://arxiv.org/abs/2102.06108v1
|
https://arxiv.org/pdf/2102.06108v1.pdf
|
https://github.com/dkn16/stylegan2-pytorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/rounding-error-using-low-precision
|
Rounding error using low precision approximate random variables
|
2012.09739
|
https://arxiv.org/abs/2012.09739v1
|
https://arxiv.org/pdf/2012.09739v1.pdf
|
https://github.com/oliversheridanmethven/low_precision_approximate_random_variables
| true | true | false |
none
|
https://paperswithcode.com/paper/draw-your-neural-networks
|
Draw your Neural Networks
|
2012.09609
|
https://arxiv.org/abs/2012.09609v1
|
https://arxiv.org/pdf/2012.09609v1.pdf
|
https://github.com/jatinsha/sketch
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/impact-of-non-normal-error-distributions-on
|
Impact of non-normal error distributions on the benchmarking and ranking of Quantum Machine Learning models
|
2004.02524
|
https://arxiv.org/abs/2004.02524v1
|
https://arxiv.org/pdf/2004.02524v1.pdf
|
https://github.com/ppernot/ML2020
| true | false | true |
none
|
https://paperswithcode.com/paper/analyzing-and-improving-the-image-quality-of
|
Analyzing and Improving the Image Quality of StyleGAN
|
1912.04958
|
https://arxiv.org/abs/1912.04958v2
|
https://arxiv.org/pdf/1912.04958v2.pdf
|
https://github.com/dkn16/stylegan2-pytorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/training-effective-ensemble-on-imbalanced
|
Self-paced Ensemble for Highly Imbalanced Massive Data Classification
|
1909.03500
|
https://arxiv.org/abs/1909.03500v3
|
https://arxiv.org/pdf/1909.03500v3.pdf
|
https://github.com/ZhiningLiu1998/self-paced-ensemble
| true | true | true |
none
|
https://paperswithcode.com/paper/node-feature-extraction-by-self-supervised-1
|
Node Feature Extraction by Self-Supervised Multi-scale Neighborhood Prediction
|
2111.00064
|
https://arxiv.org/abs/2111.00064v3
|
https://arxiv.org/pdf/2111.00064v3.pdf
|
https://github.com/elichienxD/SAGN_with_SLE
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/the-weighted-kendall-and-high-order-kernels
|
The Weighted Kendall and High-order Kernels for Permutations
|
1802.08526
|
http://arxiv.org/abs/1802.08526v2
|
http://arxiv.org/pdf/1802.08526v2.pdf
|
https://github.com/YunlongJiao/weightedkendall
| true | true | true |
none
|
https://paperswithcode.com/paper/collision-free-trajectory-optimization-in
|
Collision-Free Trajectory Optimization in Cluttered Environments Using Sums-of-Squares Programming
|
2404.05242
|
https://arxiv.org/abs/2404.05242v2
|
https://arxiv.org/pdf/2404.05242v2.pdf
|
https://github.com/lyl00/minimum_scaling_free_region
| true | true | true |
none
|
https://paperswithcode.com/paper/you-only-look-twice-rapid-multi-scale-object
|
You Only Look Twice: Rapid Multi-Scale Object Detection In Satellite Imagery
|
1805.09512
|
http://arxiv.org/abs/1805.09512v1
|
http://arxiv.org/pdf/1805.09512v1.pdf
|
https://github.com/zk2ly/Glass_insulator_defect_detection
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/chatgpt-for-digital-forensic-investigation
|
ChatGPT for Digital Forensic Investigation: The Good, The Bad, and The Unknown
|
2307.10195
|
https://arxiv.org/abs/2307.10195v1
|
https://arxiv.org/pdf/2307.10195v1.pdf
|
https://github.com/markscanlonucd/chatgpt-for-digital-forensics
| true | true | false |
none
|
https://paperswithcode.com/paper/bilinear-representation-for-language-based
|
Bilinear Representation for Language-based Image Editing Using Conditional Generative Adversarial Networks
|
1903.07499
|
http://arxiv.org/abs/1903.07499v1
|
http://arxiv.org/pdf/1903.07499v1.pdf
|
https://github.com/vtddggg/BilinearGAN_for_LBIE
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/non-commutative-blahut-arimoto-algorithms
|
Computing Quantum Channel Capacities
|
1905.01286
|
https://arxiv.org/abs/1905.01286v4
|
https://arxiv.org/pdf/1905.01286v4.pdf
|
https://github.com/sagnikb/quantum-blahut-arimoto
| false | false | true |
none
|
https://paperswithcode.com/paper/beyond-part-models-person-retrieval-with
|
Beyond Part Models: Person Retrieval with Refined Part Pooling (and a Strong Convolutional Baseline)
|
1711.09349
|
http://arxiv.org/abs/1711.09349v3
|
http://arxiv.org/pdf/1711.09349v3.pdf
|
https://github.com/Mind23-2/MindCode-5/tree/main/pcb_rpp
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/convtransformer-a-convolutional-transformer
|
ConvTransformer: A Convolutional Transformer Network for Video Frame Synthesis
|
2011.10185
|
https://arxiv.org/abs/2011.10185v2
|
https://arxiv.org/pdf/2011.10185v2.pdf
|
https://github.com/harryzhu123/ConvTransformer
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/decoupling-semantic-context-and-color
|
Decoupling Semantic Context and Color Correlation with multi-class cross branch regularization
|
1810.07901
|
http://arxiv.org/abs/1810.07901v2
|
http://arxiv.org/pdf/1810.07901v2.pdf
|
https://github.com/tejgvsl/Color-constancy
| true | false | false |
tf
|
https://paperswithcode.com/paper/visual-transformers-token-based-image
|
Visual Transformers: Token-based Image Representation and Processing for Computer Vision
|
2006.03677
|
https://arxiv.org/abs/2006.03677v4
|
https://arxiv.org/pdf/2006.03677v4.pdf
|
https://github.com/aws-samples/amazon-sagemaker-visual-transformer
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/learning-by-fixing-solving-math-word-problems
|
Learning by Fixing: Solving Math Word Problems with Weak Supervision
|
2012.10582
|
https://arxiv.org/abs/2012.10582v2
|
https://arxiv.org/pdf/2012.10582v2.pdf
|
https://github.com/evelinehong/LBF
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/deep-co-attention-network-for-multi-view
|
Deep Co-Attention Network for Multi-View Subspace Learning
|
2102.07751
|
https://arxiv.org/abs/2102.07751v1
|
https://arxiv.org/pdf/2102.07751v1.pdf
|
https://github.com/Leo02016/ANTS
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/bridging-textual-and-tabular-data-for-cross
|
Bridging Textual and Tabular Data for Cross-Domain Text-to-SQL Semantic Parsing
|
2012.12627
|
https://arxiv.org/abs/2012.12627v2
|
https://arxiv.org/pdf/2012.12627v2.pdf
|
https://github.com/salesforce/TabularSemanticParsing
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/autoprof-i-an-automated-non-parametric-light
|
AutoProf -- I. An automated non-parametric light profile pipeline for modern galaxy surveys
|
2106.13809
|
https://arxiv.org/abs/2106.13809v2
|
https://arxiv.org/pdf/2106.13809v2.pdf
|
https://github.com/ConnorStoneAstro/AutoProf
| true | true | false |
pytorch
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.