sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-19 00:40:46
filename
stringlengths
29
29
hash
stringlengths
32
32
A013901
a(n) = 21^(5*n + 4).
[ "194481", "794280046581", "3243919932521508681", "13248496640331026125580781", "54108198377272584130510593262881", "220983347100817338120002444455525554981", "902518308877795191433240103403256374623457081", "3685975927806112219127687339549342762856035687969181" ]
[ "nonn" ]
19
0
1
[ "A009965", "A013901" ]
null
N. J. A. Sloane
2022-09-08T08:44:38
oeisdata/seq/A013/A013901.seq
7b747dc64f0f767ad87e4d828aa1585e
A013902
a(n) = 22^(5*n + 1).
[ "22", "113379904", "584318301411328", "3011361496339065143296", "15519448971100888972574851072", "79981528839832616637508874879893504", "412195366437884247746798137865015318806528", "2124303230726006271483826780841554627491524509696", "10947877107572929152919737180202022857988400441953615872" ]
[ "nonn" ]
21
0
1
[ "A009966", "A013902" ]
null
N. J. A. Sloane
2024-05-25T22:50:45
oeisdata/seq/A013/A013902.seq
c56ce9bef0c4ed88da8f4f6bd8579f2f
A013903
a(n) = 22^(5*n + 2).
[ "484", "2494357888", "12855002631049216", "66249952919459433152512", "341427877364219557396646723584", "1759593634476317566025195247357657088", "9068298061633453450429559033030337013743616", "46734671075972137972644189178514201804813539213312" ]
[ "nonn" ]
18
0
1
[ "A009966", "A013903" ]
null
N. J. A. Sloane
2022-09-08T08:44:38
oeisdata/seq/A013/A013903.seq
80cf3d0fad975ef60861d06c0e172184
A013904
a(n) = 22^(5*n + 3).
[ "10648", "54875873536", "282810057883082752", "1457498964228107529355264", "7511413302012830262726227918848", "38711059958478986452554295441868455936", "199502557355935975909450298726667414302359552", "1028162763671387035398172161927312439705897862692864" ]
[ "nonn" ]
16
0
1
[ "A009966", "A013904" ]
null
N. J. A. Sloane
2022-09-08T08:44:38
oeisdata/seq/A013/A013904.seq
ad144a6fc283cee1cdb5cfc42396ab3e
A013905
22^(5n+4).
[ "234256", "1207269217792", "6221821273427820544", "32064977213018365645815808", "165251092644282265779977014214656", "851643319086537701956194499721106030592", "4389056261830591470007906571986683114651910144", "22619580800770514778759787562400873673529752979243008" ]
[ "nonn", "easy" ]
17
0
1
null
null
N. J. A. Sloane, Dec 11 1996
2022-09-08T08:44:38
oeisdata/seq/A013/A013905.seq
b221ef0f6f007b44dea79db5a9fa7441
A013906
a(n) = 23^(5*n + 1).
[ "23", "148035889", "952809757913927", "6132610415680998648961", "39471584120695485887249589623", "254052654154149545721997685422868689", "1635170022196481349560959748587682926364327", "10524515126174167358877236351104092889324551536161", "67739389260745218861137988047774370539553852007909099223" ]
[ "nonn" ]
22
0
1
[ "A009967", "A013906", "A016861" ]
null
N. J. A. Sloane
2022-09-08T08:44:38
oeisdata/seq/A013/A013906.seq
bbcba11cdd8d65d978bab4ec73022192
A013907
a(n) = 23^(5*n + 2).
[ "529", "3404825447", "21914624432020321", "141050039560662968926103", "907846434775996175406740561329", "5843211045545439551605946764725979847", "37608910510519071039902074217516707306379521", "242063847902005849254176436075394136454464685331703" ]
[ "nonn" ]
22
0
1
[ "A009967", "A013907" ]
null
N. J. A. Sloane
2022-09-08T08:44:38
oeisdata/seq/A013/A013907.seq
ed91fa973b5af2a0fa54245d3a8e1320
A013908
a(n) = 23^(5*n + 3).
[ "12167", "78310985281", "504036361936467383", "3244150909895248285300369", "20880467999847912034355032910567", "134393854047545109686936775588697536481", "865004941741938633917747707002884268046728983", "5567468501746134532846058029734065138452687762629169" ]
[ "nonn" ]
16
0
1
[ "A009967", "A013908" ]
null
N. J. A. Sloane
2022-09-08T08:44:38
oeisdata/seq/A013/A013908.seq
8f76f7ca951c4180db825cba5fa8c187
A013909
a(n) = 23^(5*n + 4).
[ "279841", "1801152661463", "11592836324538749809", "74615470927590710561908487", "480250763996501976790165756943041", "3091058643093537522799545838540043339063", "19895113660064588580108197261066338165074766609", "128051775540161094255459334683883498184411818540470887" ]
[ "nonn" ]
18
0
1
[ "A009967", "A013909" ]
null
N. J. A. Sloane
2022-09-08T08:44:38
oeisdata/seq/A013/A013909.seq
d0d99de285c75c1d03860fcc3345656f
A013910
a(n) = 24^(5*n + 1).
[ "24", "191102976", "1521681143169024", "12116574790945106558976", "96479729228174488169059713024", "768231807465763655682670928358014976", "6117141027690268863066571918245810640257024" ]
[ "nonn" ]
28
0
1
[ "A009968", "A013910" ]
null
N. J. A. Sloane
2022-09-08T08:44:38
oeisdata/seq/A013/A013910.seq
bfa03c81da7c02c93c085d2581745ff3
A013911
a(n) = 24^(5*n + 2).
[ "576", "4586471424", "36520347436056576", "290797794982682557415424", "2315513501476187716057433112576", "18437563379178327736384102280592359424", "146811384664566452713597726037899455366168576", "1169003855003308785972158379694803112885582691303424" ]
[ "nonn", "easy" ]
28
0
1
[ "A009968", "A013911" ]
null
N. J. A. Sloane
2022-09-08T08:44:38
oeisdata/seq/A013/A013911.seq
9223ea1266d7127e0a53c017ed68ffbb
A013912
a(n) = 24^(5*n + 3).
[ "13824", "110075314176", "876488338465357824", "6979147079584381377970176", "55572324035428505185378394701824", "442501521100279865673218454734216626176", "3523473231949594865126345424909586928788045824", "28056092520079410863331801112675274709253984591282176" ]
[ "nonn", "easy" ]
31
0
1
[ "A009968", "A013912" ]
null
N. J. A. Sloane
2022-09-08T08:44:38
oeisdata/seq/A013/A013912.seq
3bb30f700563dae391fe234128346ea7
A013913
a(n) = 24^(5*n + 4).
[ "331776", "2641807540224", "21035720123168587776", "167499529910025153071284224", "1333735776850284124449081472843776", "10620036506406716776157242913621199028224", "84563357566790276763032290197830086290913099776", "673346220481905860719963226704206593022095630190772224" ]
[ "nonn", "easy" ]
38
0
1
null
null
N. J. A. Sloane
2022-09-08T08:44:38
oeisdata/seq/A013/A013913.seq
d8f68de2309d361f2ef48b4c5e5712c1
A013914
Number of distinct nonzero absolute values of Sum_{j=1..n} sigma_j * exp(i * Pi * j / n) where sigma_j = +- 1.
[ "1", "1", "1", "2", "3", "4", "8", "12", "16", "33", "62", "67", "186", "316", "280", "1040", "1963", "1702", "6830", "10751", "8679", "45838", "88255", "56292", "264838", "624778", "348817", "2208496", "4526585" ]
[ "nonn", "nice" ]
9
1
4
null
null
David Broadhurst
2018-08-24T20:19:54
oeisdata/seq/A013/A013914.seq
7068d5db1bf061e67b859aa33f7d6959
A013915
a(n) = F(n) + L(n) + n, where F(n) (A000045) and L(n) (A000204) are Fibonacci and Lucas numbers respectively.
[ "3", "3", "7", "10", "16", "24", "37", "57", "89", "140", "222", "354", "567", "911", "1467", "2366", "3820", "6172", "9977", "16133", "26093", "42208", "68282", "110470", "178731", "289179", "467887", "757042", "1224904", "1981920", "3206797", "5188689", "8395457", "13584116", "21979542", "35563626", "57543135" ]
[ "nonn", "easy" ]
22
0
1
null
null
Mohammad K. Azarian
2022-09-08T08:44:38
oeisdata/seq/A013/A013915.seq
994311a60b33e82a7e73d424ba1a02ff
A013916
Numbers k such that the sum of the first k primes is prime.
[ "1", "2", "4", "6", "12", "14", "60", "64", "96", "100", "102", "108", "114", "122", "124", "130", "132", "146", "152", "158", "162", "178", "192", "198", "204", "206", "208", "214", "216", "296", "308", "326", "328", "330", "332", "334", "342", "350", "356", "358", "426", "446", "458", "460", "464", "480", "484", "488", "512", "530", "536", "548", "568", "620", "630", "676", "680" ]
[ "nonn", "nice" ]
57
1
2
[ "A007504", "A013916", "A013917", "A013918" ]
null
N. J. A. Sloane, Renaud Lifchitz (100637.64(AT)CompuServe.COM)
2022-09-08T08:44:38
oeisdata/seq/A013/A013916.seq
3b3c7d5c9cb84db98659f39bc40f42d8
A013917
a(n) is prime and sum of all primes <= a(n) is prime.
[ "2", "3", "7", "13", "37", "43", "281", "311", "503", "541", "557", "593", "619", "673", "683", "733", "743", "839", "881", "929", "953", "1061", "1163", "1213", "1249", "1277", "1283", "1307", "1321", "1949", "2029", "2161", "2203", "2213", "2237", "2243", "2297", "2357", "2393", "2411", "2957", "3137", "3251", "3257", "3301", "3413", "3461", "3491" ]
[ "nonn" ]
25
1
1
[ "A013916", "A013917", "A013918" ]
null
N. J. A. Sloane, Renaud Lifchitz (100637.64(AT)CompuServe.COM)
2021-10-19T11:21:39
oeisdata/seq/A013/A013917.seq
41279352b50eaed02a9af7f10f0bce8e
A013918
Primes equal to the sum of the first k primes for some k.
[ "2", "5", "17", "41", "197", "281", "7699", "8893", "22039", "24133", "25237", "28697", "32353", "37561", "38921", "43201", "44683", "55837", "61027", "66463", "70241", "86453", "102001", "109147", "116533", "119069", "121631", "129419", "132059", "263171", "287137", "325019", "329401", "333821", "338279", "342761" ]
[ "nonn" ]
51
1
1
[ "A000040", "A007504", "A010051", "A013916", "A013917", "A013918", "A189153" ]
null
N. J. A. Sloane, Renaud Lifchitz (100637.64(AT)CompuServe.COM)
2024-12-24T22:12:13
oeisdata/seq/A013/A013918.seq
ab220d7d2a2dfcc06cacf63d0f0ee9a7
A013919
Numbers n such that sum of first n composites is composite.
[ "1", "2", "3", "4", "6", "7", "8", "9", "10", "11", "12", "13", "15", "16", "18", "19", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31", "32", "33", "34", "38", "39", "40", "41", "42", "44", "45", "46", "49", "50", "51", "52", "55", "56", "57", "58", "59", "60", "61", "62", "65", "66", "67", "69", "70", "71", "72", "76", "77", "78", "79", "80", "81", "82", "83", "84", "85", "87", "88", "89", "90", "91", "92", "93" ]
[ "nonn" ]
15
1
2
[ "A013919", "A013920", "A013921" ]
null
N. J. A. Sloane, Henri Lifchitz
2013-10-16T17:44:05
oeisdata/seq/A013/A013919.seq
666452a2bb8417782edfcbf7b043fd9b
A013920
Composite numbers k such that the sum of all composites <= k is composite.
[ "4", "6", "8", "9", "12", "14", "15", "16", "18", "20", "21", "22", "25", "26", "28", "30", "33", "34", "35", "36", "38", "39", "40", "42", "44", "45", "46", "48", "49", "50", "55", "56", "57", "58", "60", "63", "64", "65", "69", "70", "72", "74", "77", "78", "80", "81", "82", "84", "85", "86", "90", "91", "92", "94", "95", "96", "98", "104", "105", "106", "108", "110", "111", "112", "114", "115", "116", "118", "119" ]
[ "nonn" ]
12
1
1
[ "A013919", "A013920", "A013921" ]
null
N. J. A. Sloane, Henri Lifchitz
2021-10-02T15:14:35
oeisdata/seq/A013/A013920.seq
cc9e398602817d65aaa0a6f4e92d7f23
A013921
Composite numbers that are equal to the sum of the first k composites for some k.
[ "4", "10", "18", "27", "49", "63", "78", "94", "112", "132", "153", "175", "224", "250", "305", "335", "400", "434", "469", "505", "543", "582", "622", "664", "708", "753", "799", "847", "896", "946", "1158", "1214", "1271", "1329", "1389", "1514", "1578", "1643", "1846", "1916", "1988", "2062", "2290", "2368", "2448", "2529", "2611", "2695", "2780", "2866" ]
[ "nonn" ]
24
1
1
[ "A013919", "A013920", "A013921", "A053767" ]
null
N. J. A. Sloane, Henri Lifchitz
2022-11-26T13:21:03
oeisdata/seq/A013/A013921.seq
f514fa8f5cb50f72abfa48f1377ad224
A013922
Number of labeled connected graphs with n nodes and 0 cutpoints (blocks or nonseparable graphs).
[ "0", "1", "1", "10", "238", "11368", "1014888", "166537616", "50680432112", "29107809374336", "32093527159296128", "68846607723033232640", "290126947098532533378816", "2417684612523425600721132544", "40013522702538780900803893881856" ]
[ "nonn", "easy", "nice" ]
39
1
4
[ "A002218", "A004115", "A013922", "A095983", "A123534" ]
null
Stanley Selkow (sms(AT)owl.WPI.EDU)
2020-12-27T19:25:53
oeisdata/seq/A013/A013922.seq
33db29fbd0089c308880ce48ac7f77a6
A013923
Number of labeled connected graphs with n vertices and 1 cutpoint.
[ "3", "16", "250", "8496", "540568", "61672192", "12608406288", "4697459302400", "3256012245850496", "4276437400678311936", "10796431791679078528256", "52955364458428847588956160", "508511231062550463852707804160", "9611398894866376672902234634977280" ]
[ "nonn" ]
17
3
1
[ "A013923", "A370064" ]
null
Stanley Selkow (sms(AT)owl.WPI.EDU)
2024-02-26T01:21:46
oeisdata/seq/A013/A013923.seq
be3ea88ae265aa303f81758c9bb491be
A013924
Number of labeled connected graphs with n nodes and 2 cutpoints.
[ "12", "180", "4560", "211680", "17186624", "2416430016", "597615868800", "266262716016000", "218583901063537152", "336744209796848156160", "987653716558634390487040", "5576385411303897176201779200", "61117320790343064985205192540160" ]
[ "nonn" ]
18
4
1
[ "A013924", "A370064" ]
null
Stanley Selkow (sms(AT)owl.WPI.EDU)
2024-02-26T01:20:57
oeisdata/seq/A013/A013924.seq
fd3e206bafae05d0d85fed2970a00d69
A013925
Number of labeled connected graphs with n nodes and 3 cutpoints.
[ "60", "1920", "75600", "4663680", "469336896", "79132032000", "23121510192000", "12082931084928000", "11564306171310537216", "20625639730671895535616", "69501783433272242637312000", "447403458171641201324598067200", "5550030610876067133522251137105920" ]
[ "nonn" ]
19
5
1
[ "A013925", "A370064" ]
null
Stanley Selkow (sms(AT)owl.WPI.EDU)
2024-02-26T01:21:30
oeisdata/seq/A013/A013925.seq
13c9d771892c1e04849c127233da26a1
A013926
a(n) = (2*n)! * D_{2*n}, where D_{2*n} = (1/Pi) * Integral_{x=0..oo} [1 - x^(2*n) / Product_{j=1..n} (x^2+j^2)] dx.
[ "1", "28", "1434", "118960", "14611150", "2494744728", "565526968692", "164368956804288", "59603021615454678", "26379919529434077640", "13996517446366589638636", "8769645281519454489332448", "6406629794568469259015608204" ]
[ "nonn" ]
11
1
2
null
null
Micha Hofri (hofri(AT)cs.rice.edu)
2025-06-29T07:15:48
oeisdata/seq/A013/A013926.seq
8b6c6eab7d61cb6bd430b5fbc78d6e7e
A013927
Begin with 2n cards in n piles of 2, the piles being {1,1},{2,2},{3,3},...,{n,n}. How many transpositions of adjacent (single) cards are needed to reverse the order of the piles?
[ "0", "2", "5", "10", "15", "23", "31", "40" ]
[ "nonn", "more" ]
20
1
2
null
null
N. J. A. Sloane
2023-05-12T12:05:54
oeisdata/seq/A013/A013927.seq
384c716c8525fc1985d4a454e156f870
A013928
Number of (positive) squarefree numbers < n.
[ "0", "1", "2", "3", "3", "4", "5", "6", "6", "6", "7", "8", "8", "9", "10", "11", "11", "12", "12", "13", "13", "14", "15", "16", "16", "16", "17", "17", "17", "18", "19", "20", "20", "21", "22", "23", "23", "24", "25", "26", "26", "27", "28", "29", "29", "29", "30", "31", "31", "31", "31", "32", "32", "33", "33", "34", "34", "35", "36", "37", "37", "38", "39", "39", "39", "40", "41", "42", "42", "43", "44", "45", "45", "46", "47", "47", "47", "48", "49", "50", "50", "50", "51" ]
[ "nonn", "easy", "changed" ]
108
1
3
[ "A000720", "A002321", "A005117", "A013928", "A057627", "A066779", "A081239", "A107079", "A158819", "A179211", "A179215", "A284584" ]
null
Henri Lifchitz
2025-07-15T15:38:32
oeisdata/seq/A013/A013928.seq
09d37d4cb96c7222802c874ede588cac
A013929
Numbers that are not squarefree. Numbers that are divisible by a square greater than 1. The complement of A005117.
[ "4", "8", "9", "12", "16", "18", "20", "24", "25", "27", "28", "32", "36", "40", "44", "45", "48", "49", "50", "52", "54", "56", "60", "63", "64", "68", "72", "75", "76", "80", "81", "84", "88", "90", "92", "96", "98", "99", "100", "104", "108", "112", "116", "117", "120", "121", "124", "125", "126", "128", "132", "135", "136", "140", "144", "147", "148", "150", "152", "153", "156", "160" ]
[ "nonn", "easy" ]
239
1
1
[ "A001694", "A005117", "A008683", "A013929", "A034444", "A038109", "A114374", "A130897", "A190641", "A256012", "A332785", "A351381", "A353282" ]
null
Henri Lifchitz
2025-02-16T08:32:32
oeisdata/seq/A013/A013929.seq
e03b3c65e8fc35cff5dede1d5b7dbb84
A013930
Sum of first a(n) squarefrees is squarefree.
[ "1", "2", "3", "4", "5", "7", "9", "11", "13", "15", "17", "19", "20", "23", "25", "26", "27", "29", "32", "34", "37", "40", "41", "42", "43", "44", "46", "47", "49", "50", "51", "53", "54", "56", "58", "60", "61", "63", "64", "65", "69", "70", "71", "74", "76", "77", "79", "80", "81", "82", "83", "84", "86", "88", "89", "90", "92", "94", "95", "96", "98", "100", "102", "103", "104", "106", "107", "108", "110", "111" ]
[ "nonn" ]
14
1
2
[ "A005117", "A013930", "A013931", "A013932" ]
null
Henri Lifchitz
2021-03-07T03:14:12
oeisdata/seq/A013/A013930.seq
13d989145d67fa100ff8e4c505d5c2dd
A013931
a(n) is squarefree and sum of all squarefrees <= a(n) is squarefree.
[ "1", "2", "3", "5", "6", "10", "13", "15", "19", "22", "26", "30", "31", "35", "38", "39", "41", "43", "51", "55", "59", "65", "66", "67", "69", "70", "73", "74", "78", "79", "82", "85", "86", "89", "93", "95", "97", "102", "103", "105", "110", "111", "113", "118", "122", "123", "129", "130", "131", "133", "134", "137", "139", "142", "143", "145", "149", "154", "155", "157", "159", "163", "166", "167" ]
[ "nonn" ]
17
1
2
[ "A005117", "A013930", "A013931", "A013932" ]
null
Henri Lifchitz
2021-03-07T03:13:59
oeisdata/seq/A013/A013931.seq
b9dfeb971d5ab600f7b3ad0761edcf0f
A013932
Integers that are squarefree and also the sum of first k squarefrees for some k.
[ "1", "3", "6", "11", "17", "34", "58", "87", "123", "166", "215", "274", "305", "407", "482", "521", "562", "647", "791", "899", "1073", "1261", "1327", "1394", "1463", "1533", "1677", "1751", "1906", "1985", "2067", "2235", "2321", "2497", "2681", "2870", "2967", "3170", "3273", "3378", "3810", "3921", "4034", "4381", "4622", "4745", "5001", "5131", "5262" ]
[ "nonn" ]
19
1
2
[ "A005117", "A013930", "A013931", "A013932", "A173143" ]
null
Henri Lifchitz
2021-03-07T03:13:36
oeisdata/seq/A013/A013932.seq
d81fcbdadc8186a60825c6aab4a64c3a
A013933
Numbers k such that the sum of the first k nonsquarefree numbers is nonsquarefree.
[ "1", "2", "5", "9", "15", "16", "17", "24", "25", "26", "27", "29", "31", "32", "33", "35", "37", "40", "41", "43", "44", "45", "49", "50", "51", "58", "59", "61", "64", "66", "69", "72", "76", "77", "79", "80", "81", "82", "83", "84", "85", "88", "89", "93", "94", "95", "99", "101", "102", "103", "104", "108", "109", "110", "111", "116", "117", "118", "120", "133", "134", "137", "142", "146", "147", "149" ]
[ "nonn" ]
16
1
2
[ "A013929", "A013933", "A013934", "A013935" ]
null
Henri Lifchitz
2021-02-11T03:32:43
oeisdata/seq/A013/A013933.seq
a4792f49acf1097ec63985b623939f70
A013934
Nonsquarefree numbers k such that the sum of all nonsquarefree numbers <= k is nonsquarefree.
[ "4", "8", "16", "25", "44", "45", "48", "63", "64", "68", "72", "76", "81", "84", "88", "92", "98", "104", "108", "116", "117", "120", "126", "128", "132", "150", "152", "156", "164", "169", "175", "184", "196", "198", "204", "207", "208", "212", "216", "220", "224", "232", "234", "243", "244", "245", "256", "261", "264", "268", "270", "279", "280", "284", "288", "297", "300", "304" ]
[ "nonn" ]
16
1
1
[ "A013929", "A013933", "A013934", "A013935" ]
null
Henri Lifchitz
2021-02-11T03:32:39
oeisdata/seq/A013/A013934.seq
2ce65722b3ed9b0e364348c363e71cad
A013935
a(n) is nonsquarefree and is sum of first k nonsquarefrees for some k.
[ "4", "12", "49", "136", "343", "388", "436", "820", "884", "952", "1024", "1175", "1336", "1420", "1508", "1690", "1884", "2187", "2295", "2523", "2640", "2760", "3256", "3384", "3516", "4516", "4668", "4977", "5463", "5800", "6318", "6858", "7623", "7821", "8225", "8432", "8640", "8852", "9068", "9288", "9512", "10197", "10431", "11392" ]
[ "nonn" ]
18
1
1
[ "A013929", "A013933", "A013934", "A013935" ]
null
Henri Lifchitz
2017-06-13T02:11:33
oeisdata/seq/A013/A013935.seq
b19655b00adafacead0d83ec6c3b1240
A013936
a(n) = Sum_{k=1..n} floor(n/k^2).
[ "1", "2", "3", "5", "6", "7", "8", "10", "12", "13", "14", "16", "17", "18", "19", "22", "23", "25", "26", "28", "29", "30", "31", "33", "35", "36", "38", "40", "41", "42", "43", "46", "47", "48", "49", "53", "54", "55", "56", "58", "59", "60", "61", "63", "65", "66", "67", "70", "72", "74", "75", "77", "78", "80", "81", "83", "84", "85", "86", "88", "89", "90", "92", "96", "97", "98", "99", "101", "102", "103" ]
[ "nonn" ]
38
1
2
[ "A013936", "A046951" ]
null
N. J. A. Sloane, Henri Lifchitz
2021-08-19T11:00:07
oeisdata/seq/A013/A013936.seq
e85e6df86c7098adc877b0ce433277ec
A013937
a(n) = Sum_{k=1..n} floor(n/k^3).
[ "0", "1", "2", "3", "4", "5", "6", "7", "9", "10", "11", "12", "13", "14", "15", "16", "18", "19", "20", "21", "22", "23", "24", "25", "27", "28", "29", "31", "32", "33", "34", "35", "37", "38", "39", "40", "41", "42", "43", "44", "46", "47", "48", "49", "50", "51", "52", "53", "55", "56", "57", "58", "59", "60", "62", "63", "65", "66", "67", "68", "69", "70", "71", "72", "75", "76", "77", "78", "79", "80", "81", "82" ]
[ "nonn" ]
32
0
3
[ "A005187", "A006218", "A011371", "A013936", "A013937", "A013939" ]
null
N. J. A. Sloane, Henri Lifchitz
2021-05-26T09:40:00
oeisdata/seq/A013/A013937.seq
5af86a34b02f3460c196ebf39354b6e6
A013938
a(n) = Sum_{k=1..n} floor(n/k^4).
[ "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31", "32", "34", "35", "36", "37", "38", "39", "40", "41", "42", "43", "44", "45", "46", "47", "48", "49", "51", "52", "53", "54", "55", "56", "57", "58", "59", "60", "61", "62", "63", "64", "65", "66", "68", "69", "70", "71", "72", "73", "74", "75", "76", "77", "78", "79", "80", "81", "82", "83", "85", "87" ]
[ "nonn" ]
21
1
2
[ "A013936", "A013937", "A013938" ]
null
N. J. A. Sloane, Henri Lifchitz
2021-05-26T13:03:51
oeisdata/seq/A013/A013938.seq
bdb795b973895ce937245df91875009d
A013939
Partial sums of sequence A001221 (number of distinct primes dividing n).
[ "0", "1", "2", "3", "4", "6", "7", "8", "9", "11", "12", "14", "15", "17", "19", "20", "21", "23", "24", "26", "28", "30", "31", "33", "34", "36", "37", "39", "40", "43", "44", "45", "47", "49", "51", "53", "54", "56", "58", "60", "61", "64", "65", "67", "69", "71", "72", "74", "75", "77", "79", "81", "82", "84", "86", "88", "90", "92", "93", "96", "97", "99", "101", "102", "104", "107", "108", "110", "112" ]
[ "nonn", "easy", "nice" ]
100
1
3
[ "A000040", "A001222", "A005187", "A006218", "A011371", "A013936", "A013939", "A022559", "A027748", "A048803", "A048865", "A077761", "A082287", "A093614", "A346617" ]
null
N. J. A. Sloane, Henri Lifchitz
2025-06-01T18:06:39
oeisdata/seq/A013/A013939.seq
3485fe332633fbf80411e96a268bfa42
A013940
a(n) = Sum_{k=1..n} floor(n/prime(k)^2).
[ "0", "0", "0", "1", "1", "1", "1", "2", "3", "3", "3", "4", "4", "4", "4", "5", "5", "6", "6", "7", "7", "7", "7", "8", "9", "9", "10", "11", "11", "11", "11", "12", "12", "12", "12", "14", "14", "14", "14", "15", "15", "15", "15", "16", "17", "17", "17", "18", "19", "20", "20", "21", "21", "22", "22", "23", "23", "23", "23", "24", "24", "24", "25", "26", "26", "26", "26", "27", "27", "27", "27", "29" ]
[ "nonn" ]
34
1
8
[ "A013940", "A085548" ]
null
N. J. A. Sloane, Henri Lifchitz, Dec 11 1996
2022-09-08T08:44:38
oeisdata/seq/A013/A013940.seq
9222f4e90c8515924dcc0d4eab478a2a
A013941
a(n) = Sum_{k = 1..n} floor(n/prime(k)^3).
[ "0", "0", "0", "0", "0", "0", "0", "1", "1", "1", "1", "1", "1", "1", "1", "2", "2", "2", "2", "2", "2", "2", "2", "3", "3", "3", "4", "4", "4", "4", "4", "5", "5", "5", "5", "5", "5", "5", "5", "6", "6", "6", "6", "6", "6", "6", "6", "7", "7", "7", "7", "7", "7", "8", "8", "9", "9", "9", "9", "9", "9", "9", "9", "10", "10", "10", "10", "10", "10", "10", "10", "11", "11", "11", "11" ]
[ "nonn", "easy" ]
23
1
16
[ "A013940", "A013941", "A295659" ]
null
N. J. A. Sloane, Henri Lifchitz
2022-06-26T22:45:58
oeisdata/seq/A013/A013941.seq
890ce3deed9047a2bd5c16aac77bbae8
A013942
Triangle of numbers T(n,k) = floor(2n/k), k=1..2n, read by rows.
[ "2", "1", "4", "2", "1", "1", "6", "3", "2", "1", "1", "1", "8", "4", "2", "2", "1", "1", "1", "1", "10", "5", "3", "2", "2", "1", "1", "1", "1", "1", "12", "6", "4", "3", "2", "2", "1", "1", "1", "1", "1", "1", "14", "7", "4", "3", "2", "2", "2", "1", "1", "1", "1", "1", "1", "1", "16", "8", "5", "4", "3", "2", "2", "2", "1", "1", "1", "1", "1", "1", "1", "1", "18", "9", "6", "4", "3", "3", "2", "2", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "20", "10", "6", "5", "4", "3" ]
[ "nonn", "tabf", "easy", "nice" ]
30
1
1
[ "A005843", "A010766", "A013942", "A062550" ]
null
Clark Kimberling
2022-09-26T09:20:48
oeisdata/seq/A013/A013942.seq
fbbe23dc29cde1043872511a2a5e3e2c
A013943
Period of continued fraction for sqrt(m), m = n-th nonsquare.
[ "1", "2", "1", "2", "4", "2", "1", "2", "2", "5", "4", "2", "1", "2", "6", "2", "6", "6", "4", "2", "1", "2", "4", "5", "2", "8", "4", "4", "4", "2", "1", "2", "2", "2", "3", "2", "10", "8", "6", "12", "4", "2", "1", "2", "6", "5", "6", "4", "2", "6", "7", "6", "4", "11", "4", "2", "1", "2", "10", "2", "8", "6", "8", "2", "7", "5", "4", "12", "6", "4", "4", "2", "1", "2", "2", "5", "10", "2", "6", "5", "2", "8", "8", "10", "16", "4", "4", "11", "4", "2", "1", "2", "12", "2", "2", "9", "6", "8", "15", "2", "6", "6" ]
[ "nonn", "easy" ]
35
1
2
[ "A003285", "A013943", "A035015" ]
null
Clark Kimberling
2025-02-16T08:32:32
oeisdata/seq/A013/A013943.seq
c451434b48f03877decbe3afa81bab4e
A013944
Sum of terms in period of continued fraction for square root of the n-th nonsquare.
[ "2", "3", "4", "6", "7", "5", "6", "9", "8", "10", "10", "7", "8", "12", "17", "10", "14", "18", "13", "9", "10", "15", "18", "16", "12", "25", "13", "14", "16", "11", "12", "18", "16", "15", "16", "14", "29", "20", "20", "34", "19", "13", "14", "21", "26", "22", "26", "20", "16", "22", "20", "27", "18", "36", "22", "15", "16", "24", "41", "20", "34", "24", "33", "18", "30", "20", "19", "40" ]
[ "nonn" ]
11
1
1
null
null
Clark Kimberling
2024-07-21T03:36:11
oeisdata/seq/A013/A013944.seq
9ab4c7ad527fd65f198b4974fdec7440
A013945
Least d such that period of continued fraction for sqrt(d) contains n (n^2+2 if n odd, (n/2)^2+1 if n even).
[ "3", "2", "11", "5", "27", "10", "51", "17", "83", "26", "123", "37", "171", "50", "227", "65", "291", "82", "363", "101", "443", "122", "531", "145", "627", "170", "731", "197", "843", "226", "963", "257", "1091", "290", "1227", "325", "1371", "362", "1523", "401", "1683", "442", "1851", "485", "2027", "530", "2211", "577", "2403", "626", "2603", "677", "2811" ]
[ "nonn", "easy" ]
19
1
1
[ "A002522", "A013945", "A164897" ]
null
Clark Kimberling
2017-08-09T09:20:23
oeisdata/seq/A013/A013945.seq
453e25b85747c1f9fccb6575b87fb60b
A013946
Least d for which the number with continued fraction [n,n,n,n...] is in Q(sqrt(d)).
[ "5", "2", "13", "5", "29", "10", "53", "17", "85", "26", "5", "37", "173", "2", "229", "65", "293", "82", "365", "101", "445", "122", "533", "145", "629", "170", "733", "197", "5", "226", "965", "257", "1093", "290", "1229", "13", "1373", "362", "61", "401", "1685", "442", "1853", "485", "2029", "530", "2213", "577", "2405", "626", "2605", "677", "2813", "730", "3029", "785", "3253" ]
[ "nonn" ]
30
1
1
[ "A002878", "A013946", "A077444" ]
null
Clark Kimberling
2024-03-25T12:05:58
oeisdata/seq/A013/A013946.seq
ff389bb48fa2cd341098e66f7d9c75a5
A013947
Positions of 1's in Kolakoski sequence (A000002).
[ "1", "4", "5", "7", "10", "13", "14", "16", "17", "20", "22", "23", "25", "28", "29", "31", "32", "34", "37", "40", "41", "43", "46", "48", "49", "51", "52", "55", "58", "59", "61", "64", "67", "68", "70", "71", "73", "76", "78", "79", "82", "85", "86", "88", "91", "94", "95", "97", "98", "101", "103", "104", "106", "109", "112", "113", "115", "116", "118", "121", "122", "124", "125", "128", "130", "131", "133" ]
[ "nonn", "easy" ]
15
1
2
[ "A000002", "A013947", "A013948", "A022297", "A156077" ]
null
Clark Kimberling
2022-07-27T16:35:57
oeisdata/seq/A013/A013947.seq
610eb756f44a0dbe51b6cc90e5950dc3
A013948
Positions of 2's in Kolakoski sequence (A000002).
[ "2", "3", "6", "8", "9", "11", "12", "15", "18", "19", "21", "24", "26", "27", "30", "33", "35", "36", "38", "39", "42", "44", "45", "47", "50", "53", "54", "56", "57", "60", "62", "63", "65", "66", "69", "72", "74", "75", "77", "80", "81", "83", "84", "87", "89", "90", "92", "93", "96", "99", "100", "102", "105", "107", "108", "110", "111", "114", "117", "119", "120", "123", "126", "127", "129", "132", "135" ]
[ "nonn", "easy" ]
11
1
1
[ "A000002", "A013947", "A013948", "A054353", "A078649" ]
null
Clark Kimberling
2022-07-27T16:35:30
oeisdata/seq/A013/A013948.seq
ae51fe37b68b2bedc5affce99f6826c4
A013949
Start with 1, apply 1->12, 21->21, 22->21, 2->2 (for final 2), take limit.
[ "1", "2", "2", "1", "1", "2", "1", "2", "2", "1", "2", "1", "1", "2", "2", "1", "1", "2", "2", "1", "1", "2", "1", "2", "2", "1", "1", "2", "1", "2", "2", "1", "2", "1", "1", "2", "1", "2", "2", "1", "2", "1", "1", "2", "2", "1", "1", "2", "2", "1", "2", "1", "1", "2", "2", "1", "1", "2", "2", "1", "1", "2", "1", "2", "2", "1", "1", "2", "2", "1", "1", "2", "2", "1", "1", "2", "1", "2", "2", "1", "1", "2", "1", "2", "2", "1", "2", "1", "1", "2", "1", "2", "2", "1", "1", "2", "1", "2", "2", "1", "1", "2", "1", "2", "2" ]
[ "nonn", "easy" ]
4
1
2
null
null
Clark Kimberling
2012-03-30T18:55:49
oeisdata/seq/A013/A013949.seq
4935e1258adb072081c8b28a4e0e6f67
A013950
Start with 1, apply 1->12, 21->21, 22->21, 2->2 (for final 2); a(n) = length of n-th term.
[ "1", "2", "3", "4", "6", "9", "12", "16", "22", "31", "42", "56", "76", "105", "142", "190", "258", "353", "476", "640", "870", "1183", "1594", "2152", "2924", "3961", "5342", "7230", "9810", "13265", "17916", "24272", "32886", "44447", "60106", "81432", "110220", "149001", "201646", "273086", "369442", "499649", "676380", "915616", "1238534" ]
[ "nonn" ]
4
1
2
[ "A013949", "A013950" ]
null
Clark Kimberling
2012-03-30T18:55:49
oeisdata/seq/A013/A013950.seq
1c2cc628a0be13dfc1908bd8f3e4013b
A013951
Start with 1, apply 1->12, 21->21, 22->21, 2->2 (for final 2); take limit; note positions of 1's.
[ "1", "4", "5", "7", "10", "12", "13", "16", "17", "20", "21", "23", "26", "27", "29", "32", "34", "35", "37", "40", "42", "43", "46", "47", "50", "52", "53", "56", "57", "60", "61", "63", "66", "67", "70", "71", "74", "75", "77", "80", "81", "83", "86", "88", "89", "91", "94", "95", "97", "100", "101", "103", "106", "108", "109", "111", "114", "116", "117", "120" ]
[ "nonn" ]
7
1
2
[ "A013949", "A013951" ]
null
Clark Kimberling
2018-09-02T02:16:59
oeisdata/seq/A013/A013951.seq
baf015fca26ca39b8baf0b57f5bcbf4b
A013952
Start with 1, apply 1->12, 21->21, 22->21, 2->2 (for final 2); take limit; note positions of 2's.
[ "2", "3", "6", "8", "9", "11", "14", "15", "18", "19", "22", "24", "25", "28", "30", "31", "33", "36", "38", "39", "41", "44", "45", "48", "49", "51", "54", "55", "58", "59", "62", "64", "65", "68", "69", "72", "73", "76", "78", "79", "82", "84", "85", "87", "90", "92", "93", "96", "98", "99", "102", "104", "105", "107", "110", "112", "113", "115", "118", "119" ]
[ "nonn" ]
7
1
1
[ "A013949", "A013952" ]
null
Clark Kimberling
2018-09-02T03:03:36
oeisdata/seq/A013/A013952.seq
88009aa019d98d6120d5563454f7aa16
A013953
Expansion of the modular form of level 4 and weight 1/2.
[ "1", "0", "0", "4", "-240", "0", "0", "26760", "-85995", "0", "0", "1707264", "-4096240", "0", "0", "44330496", "-91951146", "0", "0", "708938760", "-1343913984", "0", "0", "8277534720", "-14733025125", "0", "0", "77092288000", "-130880766192", "0", "0", "604139268096", "-988226335125", "0", "0", "4125992712192", "-6548115718144", "0", "0", "25168873498760" ]
[ "sign", "changed" ]
29
-3
4
[ "A000025", "A013953", "A192732" ]
null
N. J. A. Sloane
2025-07-08T02:51:09
oeisdata/seq/A013/A013953.seq
5eedb1b6139c54a341a3ac4fc5460322
A013954
a(n) = sigma_6(n), the sum of the 6th powers of the divisors of n.
[ "1", "65", "730", "4161", "15626", "47450", "117650", "266305", "532171", "1015690", "1771562", "3037530", "4826810", "7647250", "11406980", "17043521", "24137570", "34591115", "47045882", "65019786", "85884500", "115151530", "148035890", "194402650", "244156251", "313742650", "387952660", "489541650", "594823322", "741453700" ]
[ "nonn", "mult", "easy" ]
44
1
2
[ "A000203", "A001014", "A001157", "A001160", "A013665", "A013954", "A013955", "A013972", "A017665", "A017712" ]
null
N. J. A. Sloane
2025-06-29T05:30:07
oeisdata/seq/A013/A013954.seq
110d1305dc95448ca31343877436385d
A013955
a(n) = sigma_7(n), the sum of the 7th powers of the divisors of n.
[ "1", "129", "2188", "16513", "78126", "282252", "823544", "2113665", "4785157", "10078254", "19487172", "36130444", "62748518", "106237176", "170939688", "270549121", "410338674", "617285253", "893871740", "1290094638", "1801914272", "2513845188", "3404825448", "4624699020", "6103593751", "8094558822", "10465138360" ]
[ "nonn", "easy", "mult" ]
65
1
2
[ "A000203", "A001157", "A001160", "A013666", "A013954", "A013955", "A013972", "A017665", "A017712", "A087115" ]
null
N. J. A. Sloane
2023-10-29T02:34:55
oeisdata/seq/A013/A013955.seq
4be284f4bd5ba2ff35125805bf331c22
A013956
a(n) = sigma_8(n), the sum of the 8th powers of the divisors of n.
[ "1", "257", "6562", "65793", "390626", "1686434", "5764802", "16843009", "43053283", "100390882", "214358882", "431733666", "815730722", "1481554114", "2563287812", "4311810305", "6975757442", "11064693731", "16983563042", "25700456418", "37828630724", "55090232674", "78310985282", "110523825058", "152588281251" ]
[ "nonn", "mult", "easy" ]
46
1
2
[ "A000203", "A001157", "A001160", "A013667", "A013954", "A013956", "A013972", "A017665", "A017712" ]
null
N. J. A. Sloane
2025-06-29T05:30:22
oeisdata/seq/A013/A013956.seq
a656e478a0226d2b54cae999e9b7d6f2
A013957
a(n) = sigma_9(n), the sum of the 9th powers of the divisors of n.
[ "1", "513", "19684", "262657", "1953126", "10097892", "40353608", "134480385", "387440173", "1001953638", "2357947692", "5170140388", "10604499374", "20701400904", "38445332184", "68853957121", "118587876498", "198756808749", "322687697780", "513002215782", "794320419872", "1209627165996", "1801152661464" ]
[ "nonn", "mult", "easy" ]
54
1
2
[ "A000203", "A001157", "A001160", "A013667", "A013668", "A013954", "A013957", "A013972", "A017665", "A017712" ]
null
N. J. A. Sloane
2023-10-29T02:57:22
oeisdata/seq/A013/A013957.seq
7bacab62bf9c055504a80c6f8c9e2eed
A013958
a(n) = sigma_10(n), the sum of the 10th powers of the divisors of n.
[ "1", "1025", "59050", "1049601", "9765626", "60526250", "282475250", "1074791425", "3486843451", "10009766650", "25937424602", "61978939050", "137858491850", "289537131250", "576660215300", "1100586419201", "2015993900450", "3574014537275", "6131066257802", "10250010815226", "16680163512500", "26585860217050" ]
[ "nonn", "mult", "easy" ]
43
1
2
[ "A000203", "A001157", "A001160", "A013669", "A013954", "A013958", "A013972", "A017665", "A017712" ]
null
N. J. A. Sloane
2025-06-29T05:29:47
oeisdata/seq/A013/A013958.seq
190635a497e9b96be120573e929835ed
A013959
a(n) = sigma_11(n), the sum of the 11th powers of the divisors of n.
[ "1", "2049", "177148", "4196353", "48828126", "362976252", "1977326744", "8594130945", "31381236757", "100048830174", "285311670612", "743375541244", "1792160394038", "4051542498456", "8649804864648", "17600780175361", "34271896307634", "64300154115093", "116490258898220", "204900053024478" ]
[ "nonn", "mult", "easy" ]
74
1
2
[ "A000203", "A000594", "A001157", "A001160", "A013670", "A013954", "A013959", "A013972", "A017665", "A017712", "A027860", "A046694" ]
null
N. J. A. Sloane
2025-06-29T05:29:21
oeisdata/seq/A013/A013959.seq
7a1b91c48183a4a9de93f67ddd918a86
A013960
a(n) = sigma_12(n), the sum of the 12th powers of the divisors of n.
[ "1", "4097", "531442", "16781313", "244140626", "2177317874", "13841287202", "68736258049", "282430067923", "1000244144722", "3138428376722", "8918294543346", "23298085122482", "56707753666594", "129746582562692", "281543712968705", "582622237229762", "1157115988280531", "2213314919066162" ]
[ "nonn", "mult", "easy" ]
48
1
2
[ "A000203", "A001157", "A001160", "A013671", "A013954", "A013960", "A013972", "A017665", "A017712" ]
null
N. J. A. Sloane
2023-10-29T02:37:09
oeisdata/seq/A013/A013960.seq
443e9bd67f1a01303b195830e57ea772
A013961
a(n) = sigma_13(n), the sum of the 13th powers of the divisors of n.
[ "1", "8193", "1594324", "67117057", "1220703126", "13062296532", "96889010408", "549822930945", "2541867422653", "10001220711318", "34522712143932", "107006334784468", "302875106592254", "793811662272744", "1946196290656824", "4504149450301441", "9904578032905938", "20825519793796029", "42052983462257060" ]
[ "nonn", "mult", "easy" ]
57
1
2
[ "A000203", "A001157", "A001160", "A013672", "A013954", "A013961", "A013972", "A017665", "A017712" ]
null
N. J. A. Sloane
2025-01-15T04:18:38
oeisdata/seq/A013/A013961.seq
5a5f0cfd1a650e4921256abeb97cd4da
A013962
a(n) = sigma_14(n), the sum of the 14th powers of the divisors of n.
[ "1", "16385", "4782970", "268451841", "6103515626", "78368963450", "678223072850", "4398314962945", "22876797237931", "100006103532010", "379749833583242", "1283997101947770", "3937376385699290", "11112685048647250", "29192932133689220", "72061992352890881", "168377826559400930" ]
[ "nonn", "mult", "easy" ]
47
1
2
[ "A000203", "A001157", "A001160", "A013673", "A013954", "A013962", "A013972", "A017665", "A017712" ]
null
N. J. A. Sloane
2024-12-30T04:18:01
oeisdata/seq/A013/A013962.seq
4d24fed36b5b67272c937a672f3da3ab
A013963
a(n) = sigma_15(n), the sum of the 15th powers of the divisors of n.
[ "1", "32769", "14348908", "1073774593", "30517578126", "470199366252", "4747561509944", "35185445863425", "205891146443557", "1000030517610894", "4177248169415652", "15407492847694444", "51185893014090758", "155572843119354936", "437893920912786408", "1152956690052710401", "2862423051509815794" ]
[ "nonn", "mult", "easy" ]
39
1
2
[ "A000203", "A001157", "A001160", "A013674", "A013954", "A013963", "A013972", "A017665", "A017712" ]
null
N. J. A. Sloane
2023-10-29T02:38:19
oeisdata/seq/A013/A013963.seq
30743c7f450cffa99f275bd29f52090a
A013964
a(n) = sigma_16(n), the sum of the 16th powers of the divisors of n.
[ "1", "65537", "43046722", "4295032833", "152587890626", "2821153019714", "33232930569602", "281479271743489", "1853020231898563", "10000152587956162", "45949729863572162", "184887084343023426", "665416609183179842", "2177986570740006274", "6568408508343827972", "18447025552981295105" ]
[ "nonn", "mult", "easy" ]
42
1
2
[ "A000203", "A001157", "A001160", "A013675", "A013954", "A013964", "A013972", "A017665", "A017712" ]
null
N. J. A. Sloane
2023-10-29T02:38:40
oeisdata/seq/A013/A013964.seq
26bf6e2e41d7a0c84c0d6e45bc195f0b
A013965
a(n) = sigma_17(n), the sum of the 17th powers of the divisors of n.
[ "1", "131073", "129140164", "17180000257", "762939453126", "16926788715972", "232630513987208", "2251816993685505", "16677181828806733", "100000762939584198", "505447028499293772", "2218628050709022148", "8650415919381337934", "30491579359845314184", "98526126098761952664" ]
[ "nonn", "easy", "mult" ]
49
1
2
[ "A000203", "A001157", "A001160", "A013676", "A013954", "A013965", "A013972", "A017665", "A017712" ]
null
N. J. A. Sloane
2023-10-29T02:39:02
oeisdata/seq/A013/A013965.seq
18c85b7a69e2b937a95ed62ad8227c14
A013966
a(n) = sigma_18(n), the sum of the 18th powers of the divisors of n.
[ "1", "262145", "387420490", "68719738881", "3814697265626", "101560344351050", "1628413597910450", "18014467229220865", "150094635684419611", "1000003814697527770", "5559917313492231482", "26623434909949071690", "112455406951957393130", "426880482624234915250", "1477891883850485076740" ]
[ "nonn", "mult", "easy" ]
45
1
2
[ "A000203", "A001157", "A001160", "A013677", "A013954", "A013966", "A013972", "A017665", "A017712" ]
null
N. J. A. Sloane
2023-10-29T02:33:32
oeisdata/seq/A013/A013966.seq
5536c47a865e79b374919a0161e58dbd
A013967
a(n) = sigma_19(n), the sum of the 19th powers of the divisors of n.
[ "1", "524289", "1162261468", "274878431233", "19073486328126", "609360902796252", "11398895185373144", "144115462954287105", "1350851718835253557", "10000019073486852414", "61159090448414546292", "319480609006403630044", "1461920290375446110678", "5976315357844100294616" ]
[ "nonn", "easy", "mult" ]
34
1
2
[ "A000203", "A001157", "A001160", "A013678", "A013954", "A013967", "A013972", "A017665", "A017712" ]
null
N. J. A. Sloane
2023-10-29T02:39:13
oeisdata/seq/A013/A013967.seq
256a88eb7f29b43a765509c6ea9d056e
A013968
a(n) = sigma_20(n), the sum of the 20th powers of the divisors of n.
[ "1", "1048577", "3486784402", "1099512676353", "95367431640626", "3656161927895954", "79792266297612002", "1152922604119523329", "12157665462543713203", "100000095367432689202", "672749994932560009202", "3833763649708914645906", "19004963774880799438802", "83668335217551100221154" ]
[ "nonn", "easy", "mult" ]
38
1
2
[ "A000203", "A001157", "A001160", "A013954", "A013968", "A013972", "A017665", "A017712" ]
null
N. J. A. Sloane
2023-10-29T08:36:37
oeisdata/seq/A013/A013968.seq
c9469ce21fe7f8fc60aa3a2b4fe68024
A013969
a(n) = sigma_21(n), the sum of the 21st powers of the divisors of n.
[ "1", "2097153", "10460353204", "4398048608257", "476837158203126", "21936961102828212", "558545864083284008", "9223376434903384065", "109418989141972712413", "1000000476837160300278", "7400249944258160101212", "46005141850728850805428", "247064529073450392704414", "1171356134499851307229224" ]
[ "nonn", "easy", "mult" ]
38
1
2
[ "A000203", "A001157", "A001160", "A013954", "A013969", "A013972", "A017665", "A017712" ]
null
N. J. A. Sloane
2023-10-29T08:36:41
oeisdata/seq/A013/A013969.seq
c260ccb4c806d20cf3a6b7ba6b5a4f26
A013970
a(n) = sigma_22(n), the sum of the 22nd powers of the divisors of n.
[ "1", "4194305", "31381059610", "17592190238721", "2384185791015626", "131621735227521050", "3909821048582988050", "73786993887028445185", "984770902214992292491", "10000002384185795209930", "81402749386839761113322", "552061570551763831158810", "3211838877954855105157370" ]
[ "nonn", "easy", "mult" ]
35
1
2
[ "A000203", "A001157", "A001160", "A013954", "A013970", "A013972", "A017665", "A017712" ]
null
N. J. A. Sloane
2023-10-29T08:36:44
oeisdata/seq/A013/A013970.seq
c1c16875096e4467c2423bd53937db87
A013971
a(n) = sigma_23(n), the sum of the 23rd powers of the divisors of n.
[ "1", "8388609", "94143178828", "70368752566273", "11920928955078126", "789730317205170252", "27368747340080916344", "590295880727458217985", "8862938119746644274757", "100000011920928963466734", "895430243255237372246532", "6624738056749922960468044", "41753905413413116367045798" ]
[ "nonn", "easy", "mult" ]
45
1
2
[ "A000203", "A001157", "A001160", "A013954", "A013971", "A013972", "A017665", "A017712" ]
null
N. J. A. Sloane
2023-10-29T08:36:57
oeisdata/seq/A013/A013971.seq
618b7bdd431c9315ed08a392a96dc4ef
A013972
a(n) = sigma_24(n), the sum of the 24th powers of the divisors of n.
[ "1", "16777217", "282429536482", "281474993487873", "59604644775390626", "4738381620767930594", "191581231380566414402", "4722366764344638701569", "79766443077154939399843", "1000000059604644792167842", "9849732675807611094711842", "79496851942053939878082786", "542800770374370512771595362" ]
[ "nonn", "mult", "easy" ]
51
1
2
[ "A000203", "A001157", "A001160", "A013954", "A013972", "A017665", "A017712" ]
null
N. J. A. Sloane
2025-06-29T05:29:35
oeisdata/seq/A013/A013972.seq
3a734f5791906828e2b67133de34c1b9
A013973
Expansion of Eisenstein series E_6(q) (alternate convention E_3(q)).
[ "1", "-504", "-16632", "-122976", "-532728", "-1575504", "-4058208", "-8471232", "-17047800", "-29883672", "-51991632", "-81170208", "-129985632", "-187132176", "-279550656", "-384422976", "-545530104", "-715608432", "-986161176", "-1247954400", "-1665307728", "-2066980608", "-2678616864", "-3243917376", "-4159663200" ]
[ "sign", "easy" ]
78
0
2
[ "A001160", "A004009", "A006352", "A008410", "A013973", "A013974", "A029828", "A029829", "A029830", "A029831", "A058550", "A145095", "A286346", "A286399" ]
null
N. J. A. Sloane
2025-02-16T08:32:32
oeisdata/seq/A013/A013973.seq
8891db2db1a212e4b7f99230475db810
A013974
Eisenstein series E_10(q) (alternate convention E_5(q)).
[ "1", "-264", "-135432", "-5196576", "-69341448", "-515625264", "-2665843488", "-10653352512", "-35502821640", "-102284205672", "-264515760432", "-622498190688", "-1364917062432", "-2799587834736", "-5465169838656", "-10149567696576", "-18177444679944" ]
[ "sign" ]
35
0
2
[ "A004009", "A006352", "A008410", "A013973", "A013974", "A029828", "A029829", "A029830", "A029831", "A058550" ]
null
N. J. A. Sloane
2025-02-16T08:32:32
oeisdata/seq/A013/A013974.seq
def35782bdf6f200972177db30e32cf9
A013975
Modular form of level 4 and weight 1/2.
[ "1", "0", "0", "0", "6", "504", "0", "0", "143388", "565760", "0", "0", "18473000", "51180024", "0", "0", "818626500", "1912896000", "0", "0", "20556578700", "43222528000", "0", "0", "357139677440", "697599931392", "0", "0", "4764286992816", "8806299845112", "0", "0", "51954490735875", "91956846489088", "0", "0" ]
[ "nonn", "changed" ]
7
-4
5
null
null
N. J. A. Sloane
2025-07-08T02:51:15
oeisdata/seq/A013/A013975.seq
1a761211222210e30cfce8728c839594
A013976
Number of tournaments on n nodes with a unique winner.
[ "1", "2", "6", "32", "600", "20544", "1218224", "160241152", "42129744768", "21293228876800", "22220602090444032", "45959959305969143808", "188702851949391611599872", "1566370829898884830446395392", "25801614282517307546368494213120", "851300764257208779000509484701188096" ]
[ "nonn", "nice" ]
20
1
2
[ "A013976", "A125031" ]
null
Michael Stob (stob(AT)udu.calvin.edu)
2022-09-09T22:27:19
oeisdata/seq/A013/A013976.seq
6d7f85a32458db96c52e0ad577a16a60
A013977
Molien series of 4-dimensional representation of u.g.g.r. #9.
[ "1", "10", "40", "130", "283", "513", "883", "1372", "1994", "2836", "3853", "5059", "6565", "8302", "10284", "12646", "15295", "18245", "21655", "25408", "29518", "34168", "39217", "44679", "50761", "57298", "64304", "72010", "80227", "88969", "98491", "108580", "119250", "130780", "142933", "155723", "169453", "183862", "198964", "215086", "231943", "249549", "268255", "287752" ]
[ "nonn", "changed" ]
28
0
2
null
null
N. J. A. Sloane
2025-07-08T02:51:22
oeisdata/seq/A013/A013977.seq
acd2b11ae2a01563e258aa2d613dee17
A013978
Molien series of 4-dimensional representation of u.g.g.r. #8.
[ "1", "0", "10", "20", "40", "75", "130", "179", "283", "383", "513", "678", "883", "1078", "1372", "1658", "1994", "2385", "2836", "3273", "3853", "4421", "5059", "5772", "6565", "7340", "8302", "9248", "10284", "11415", "12646", "13855", "15295", "16715", "18245", "19890" ]
[ "nonn", "easy", "changed" ]
23
0
3
null
null
N. J. A. Sloane
2025-07-08T02:51:28
oeisdata/seq/A013/A013978.seq
3dad8557fd7a6796612b963c35c60f38
A013979
Expansion of 1/(1 - x^2 - x^3 - x^4) = 1/((1 + x)*(1 - x - x^3)).
[ "1", "0", "1", "1", "2", "2", "4", "5", "8", "11", "17", "24", "36", "52", "77", "112", "165", "241", "354", "518", "760", "1113", "1632", "2391", "3505", "5136", "7528", "11032", "16169", "23696", "34729", "50897", "74594", "109322", "160220", "234813", "344136", "504355", "739169", "1083304", "1587660", "2326828", "3410133", "4997792", "7324621" ]
[ "nonn", "easy" ]
105
0
5
[ "A000045", "A000930", "A001634", "A006498", "A013979", "A023435", "A060945", "A071675", "A077889", "A078012", "A097333", "A107458" ]
null
N. J. A. Sloane
2025-01-25T02:11:22
oeisdata/seq/A013/A013979.seq
71cfa3b1fc4c26240ce2373fdbcb2ea1
A013980
Number of commutative elements in Coxeter group F_n.
[ "24", "106", "464", "2003", "8560", "36333", "153584", "647775", "2729365", "11496788", "48433965", "204115805", "860593940", "3630164290", "15319869152", "64680076487", "273183844396", "1154223866418", "4878180558021", "20622538937234", "87202351145432", "368810395465291" ]
[ "nonn" ]
14
3
1
[ "A000045", "A000108", "A013980" ]
null
Ken Fan
2024-08-06T07:13:46
oeisdata/seq/A013/A013980.seq
28cccfd859b6e005720e4763b744b2bf
A013981
Number of commutative elements in Coxeter group H_n.
[ "1", "2", "9", "44", "195", "804", "3185", "12368", "47607", "182720", "701349", "2695978", "10384231", "40083848", "155052001", "600949336", "2333344095", "9074611032", "35344215245", "137844431690", "538253680159", "2104090575136", "8233413950409" ]
[ "nonn", "easy" ]
10
0
2
null
null
Ken Fan
2020-01-21T04:37:20
oeisdata/seq/A013/A013981.seq
25fb295f23fb4b9ff02ba42eb311b734
A013982
Expansion of 1/(1-x^2-x^3-x^4-x^5).
[ "1", "0", "1", "1", "2", "3", "4", "7", "10", "16", "24", "37", "57", "87", "134", "205", "315", "483", "741", "1137", "1744", "2676", "4105", "6298", "9662", "14823", "22741", "34888", "53524", "82114", "125976", "193267", "296502", "454881", "697859", "1070626", "1642509" ]
[ "nonn", "easy", "changed" ]
35
0
5
null
null
N. J. A. Sloane
2025-07-08T02:51:36
oeisdata/seq/A013/A013982.seq
6266b996998892e4a4b44232512161ed
A013983
Expansion of 1/(1-x^2-x^3-x^4-x^5-x^6).
[ "1", "0", "1", "1", "2", "3", "5", "7", "12", "18", "29", "45", "71", "111", "175", "274", "431", "676", "1062", "1667", "2618", "4110", "6454", "10133", "15911", "24982", "39226", "61590", "96706", "151842", "238415", "374346", "587779", "922899", "1449088", "2275281", "3572527" ]
[ "nonn", "easy", "changed" ]
36
0
5
[ "A013983", "A023437" ]
null
N. J. A. Sloane
2025-07-08T02:51:43
oeisdata/seq/A013/A013983.seq
471255fb07332b40c1c5b8b1bf4dfe30
A013984
Expansion of 1/(1-x^2-x^3-x^4-x^5-x^6-x^7).
[ "1", "0", "1", "1", "2", "3", "5", "8", "12", "20", "31", "50", "79", "126", "200", "318", "506", "804", "1279", "2033", "3233", "5140", "8173", "12995", "20662", "32853", "52236", "83056", "132059", "209975", "333861", "530841", "844040", "1342028", "2133832", "3392804", "5394577" ]
[ "nonn", "easy", "changed" ]
27
0
5
null
null
N. J. A. Sloane
2025-07-08T02:51:49
oeisdata/seq/A013/A013984.seq
8ee1ef90b40f08e1383a568ce5f34c0c
A013985
Expansion of 1/(1-x^2-x^3-x^4-x^5-x^6-x^7-x^8).
[ "1", "0", "1", "1", "2", "3", "5", "8", "13", "20", "33", "52", "84", "134", "215", "344", "551", "882", "1413", "2262", "3623", "5801", "9290", "14876", "23822", "38147", "61087", "97821", "156646", "250844", "401689", "643243", "1030056", "1649477", "2641386", "4229776", "6773341" ]
[ "nonn", "easy", "changed" ]
14
0
5
[ "A000045", "A013985" ]
null
N. J. A. Sloane
2025-07-08T02:51:55
oeisdata/seq/A013/A013985.seq
bbf73089b415e586200d718d2c55e470
A013986
Expansion of 1/(1-x^2-x^3-x^4-x^5-x^6-x^7-x^8-x^9).
[ "1", "0", "1", "1", "2", "3", "5", "8", "13", "21", "33", "54", "86", "139", "223", "359", "577", "928", "1492", "2399", "3858", "6203", "9975", "16039", "25791", "41471", "66685", "107228", "172421", "277250", "445813", "716860", "1152698", "1853519", "2980426", "4792474", "7706215" ]
[ "nonn", "easy", "changed" ]
23
0
5
[ "A000045", "A013986" ]
null
N. J. A. Sloane
2025-07-08T02:52:01
oeisdata/seq/A013/A013986.seq
c523df8fd9c32c14e2aff5c2280abf30
A013987
Expansion of 1/(1-x^2-x^3-x^4-x^5-x^6-x^7-x^8-x^9-x^10).
[ "1", "0", "1", "1", "2", "3", "5", "8", "13", "21", "34", "54", "88", "141", "228", "367", "592", "954", "1538", "2479", "3996", "6441", "10383", "16736", "26978", "43486", "70097", "112991", "182134", "293587", "473242", "762833", "1229634", "1982084", "3194982", "5150088", "8301584", "13381575", "21570168", "34769609", "56046190" ]
[ "nonn", "easy", "changed" ]
21
0
5
[ "A000045", "A013987" ]
null
N. J. A. Sloane
2025-07-08T02:52:08
oeisdata/seq/A013/A013987.seq
2dc7e82ac18d430811a78d109af841fe
A013988
Triangle read by rows, the inverse Bell transform of n!*binomial(5,n) (without column 0).
[ "1", "5", "1", "55", "15", "1", "935", "295", "30", "1", "21505", "7425", "925", "50", "1", "623645", "229405", "32400", "2225", "75", "1", "21827575", "8423415", "1298605", "103600", "4550", "105", "1", "894930575", "358764175", "59069010", "5235405", "271950", "8330", "140", "1", "42061737025", "17398082625", "3016869625", "289426830", "16929255", "621810", "14070", "180", "1" ]
[ "easy", "nonn", "tabl" ]
43
1
2
[ "A000369", "A001497", "A004747", "A008277", "A008543", "A010054", "A011801", "A013988", "A028844", "A049224", "A264428" ]
null
Wolfdieter Lang
2023-10-03T13:14:33
oeisdata/seq/A013/A013988.seq
1797302400345f872260d3a2fa175a56
A013989
a(n) = (n+1)*(a(n-1)/n + a(n-2)), with a(0)=1, a(1)=2.
[ "1", "2", "6", "16", "50", "156", "532", "1856", "6876", "26200", "104456", "428352", "1821976", "7959056", "35857200", "165592576", "785514512", "3812387616", "18948962656", "96194028800", "498931946016", "2638959243712", "14234346694976" ]
[ "nonn", "easy" ]
43
0
2
[ "A000085", "A013989" ]
null
N. J. A. Sloane, Dan Hoey, 1996
2023-07-06T07:02:01
oeisdata/seq/A013/A013989.seq
ae5fe556d4b555c640c48b9e23eaa9d5
A013990
Number of edge-disjoint paths between opposite corners of n X n grid.
[ "1", "1", "2", "16", "800", "323632", "1086297184", "30766606427588", "7466577706821521924", "15681997226277809235573754", "286995508313697459220070082104780", "45988915870193885369543805313062149050276" ]
[ "nonn", "hard" ]
9
0
3
[ "A013990", "A013991", "A013992", "A013993", "A013994", "A013995", "A013996", "A013997" ]
null
Dan Hoey
2018-09-24T02:02:30
oeisdata/seq/A013/A013990.seq
a44b389b1aaeac901f3209cbf2a34699
A013991
Number of edge-disjoint paths between opposite corners of a 2 X n grid.
[ "1", "1", "4", "16", "72", "335", "1562", "7273", "33850", "157534", "733148", "3412005", "15879172", "73900265", "343925312", "1600598044", "7449042040", "34667184251", "161338016046", "750852888177", "3494403076902", "16262643529850", "75684907767980", "352230881365025", "1639251436594792", "7628931517771089" ]
[ "nonn", "easy" ]
21
0
3
[ "A013990", "A013991", "A013992", "A013993", "A013994", "A013995", "A013996", "A013997" ]
null
Dan Hoey
2022-09-08T08:44:39
oeisdata/seq/A013/A013991.seq
d5cd2e03691a17f21c775dd130bba721
A013992
Number of edge-disjoint paths between opposite corners of 3 X n grid.
[ "1", "1", "8", "72", "800", "9754", "121130", "1508919", "18787340", "233941432", "2912502538", "36262251784", "451462592746", "5620827261214", "69979671635586", "871259379376415", "10847277968319460", "135050246142276024", "1681392997487494568", "20933580943579610208", "260625895660539796224" ]
[ "nonn" ]
12
0
3
[ "A013990", "A013991", "A013992", "A013993", "A013994", "A013995", "A013996", "A013997" ]
null
Dan Hoey
2018-09-18T04:46:31
oeisdata/seq/A013/A013992.seq
64d0f190f1dfe74dc71a3ceb2f89f93a
A013993
Number of edge-disjoint paths between opposite corners of 4 X n grid.
[ "1", "1", "16", "335", "9754", "323632", "11171466", "389866263", "13662905466", "479251547011", "16821606120516", "590415835527858", "20726430358013659", "727543012137899046", "25540208938124629118", "896540705406585866451" ]
[ "nonn" ]
11
0
3
[ "A013990", "A013991", "A013992", "A013993", "A013994", "A013995", "A013996", "A013997" ]
null
Dan Hoey
2018-09-19T04:05:31
oeisdata/seq/A013/A013993.seq
2e70e4718fac1caef59af94f6efc8147
A013994
Number of edge-disjoint paths between opposite corners of 5xn grid.
[ "1", "1", "32", "1562", "121130", "11171466", "1086297184", "107939069941", "10816244385930", "1088622220193884", "109714281030331408", "11069298856395333635", "1116902915717574810660", "112738159254434557027160" ]
[ "nonn" ]
11
0
3
[ "A013990", "A013991", "A013992", "A013993", "A013994", "A013995", "A013996", "A013997" ]
null
Dan Hoey
2018-09-19T04:05:22
oeisdata/seq/A013/A013994.seq
446eee7dcd5e732f95d5dd1ac2b1642c
A013995
Number of edge-disjoint paths between opposite corners of 6 X n grid.
[ "1", "1", "64", "7273", "1508919", "389866263", "107939069941", "30766606427588", "8900924886661736", "2592366455926147562", "758069487021252428263", "222005624352493942917379", "65098736121811226967665264" ]
[ "nonn" ]
11
0
3
[ "A013990", "A013991", "A013992", "A013993", "A013994", "A013995", "A013996", "A013997" ]
null
Dan Hoey
2018-09-20T15:14:10
oeisdata/seq/A013/A013995.seq
26b41addfecaaf72b086e859eb43918b
A013996
Number of edge-disjoint paths between opposite corners of 7 X n grid.
[ "1", "1", "128", "33850", "18787340", "13662905466", "10816244385930", "8900924886661736", "7466577706821521924", "6332745788043635410871", "5399881205287667310503858", "4621213692709052543074522862" ]
[ "nonn" ]
9
0
3
null
null
Dan Hoey
2018-09-20T15:13:45
oeisdata/seq/A013/A013996.seq
5be88a7ee5fc4d80ba14502d5e488a2d
A013997
Number of edge-disjoint paths between opposite corners of 8 X n grid.
[ "1", "1", "256", "157534", "233941432", "479251547011", "1088622220193884", "2592366455926147562", "6332745788043635410871", "15681997226277809235573754", "39167604588475049043393511660" ]
[ "nonn" ]
9
0
3
null
null
Dan Hoey
2018-09-20T17:48:54
oeisdata/seq/A013/A013997.seq
2283106344315099ed4c04a9f455d4f4
A013998
Unrestricted Perrin pseudoprimes.
[ "271441", "904631", "16532714", "24658561", "27422714", "27664033", "46672291", "102690901", "130944133", "196075949", "214038533", "517697641", "545670533", "801123451", "855073301", "903136901", "970355431", "1091327579", "1133818561", "1235188597", "1389675541", "1502682721", "2059739221", "2304156469", "2976407809", "3273820903" ]
[ "nonn" ]
127
1
1
[ "A000010", "A001608", "A013998", "A018187", "A173656" ]
null
R. K. Guy
2025-02-16T08:32:32
oeisdata/seq/A013/A013998.seq
38802beae628bc6ee90c9d822eb55196
A013999
From applying the "rational mean" to the number e.
[ "1", "1", "2", "8", "42", "258", "1824", "14664", "132360", "1326120", "14606640", "175448160", "2282469840", "31972303440", "479793807360", "7679384173440", "130586660507520", "2351111258805120", "44679858911251200", "893744703503769600", "18771276190401504000", "413017883356110278400" ]
[ "nonn" ]
43
0
3
[ "A000271", "A013999" ]
null
Domingo Gomez Morin (Dgomezm(AT)etheron.net)
2023-11-11T14:23:12
oeisdata/seq/A013/A013999.seq
d66b8d779042ee14d855bbd1fe6aa852
A014000
First coordinate of fundamental unit of real quadratic field with discriminant A003658(n), n >= 2.
[ "0", "1", "2", "1", "3", "2", "5", "8", "2", "19", "5", "3", "27", "10", "3", "15", "131", "4", "17", "7", "11", "943", "170", "4", "4", "197", "447", "24", "13", "5035", "9", "5", "37", "118", "703", "11", "1520", "15371", "79", "35", "1595", "6", "87", "11", "28", "37", "25", "98", "10847", "6", "13", "3482", "6", "57731", "604", "24335", "63", "48", "1637147", "13", "478763" ]
[ "nonn" ]
42
2
3
[ "A003652", "A003658", "A014000", "A014046", "A014077" ]
null
Eric Rains (rains(AT)caltech.edu)
2019-12-14T01:46:42
oeisdata/seq/A014/A014000.seq
12d8ee42e743b37f7e6701dacbd7699c