sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-14 02:38:35
filename
stringlengths
29
29
hash
stringlengths
32
32
A385374
a(n) is the number of partitions of n into tau(n) distinct parts.
[ "1", "0", "1", "0", "2", "0", "3", "0", "3", "1", "5", "0", "6", "5", "6", "1", "8", "0", "9", "0", "27", "34", "11", "0", "40", "64", "72", "14", "14", "0", "15", "44", "150", "169", "185", "0", "18", "249", "270", "5", "20", "11", "21", "454", "532", "478", "23", "0", "176", "1057", "672", "1360", "26", "288", "864", "434", "972", "1033", "29", "0", "30", "1285", "4494", "4011", "1495" ]
[ "nonn", "look", "new" ]
12
1
5
[ "A000005", "A060016", "A385374", "A385375" ]
null
Felix Huber, Jul 06 2025
2025-07-11T15:35:08
oeisdata/seq/A385/A385374.seq
027ddce142e4d724c7d600270cc79b09
A385376
Expansion of e.g.f. 1/(1 - 2 * arcsin(x))^(1/2).
[ "1", "1", "3", "16", "117", "1104", "12687", "172320", "2698377", "47880960", "949330203", "20801387520", "499149710205", "13018307696640", "366673138800615", "11092295404707840", "358685609335654545", "12346621534211604480", "450741642786156589875", "17395372731952677519360", "707614393333663454022405" ]
[ "nonn" ]
13
0
3
[ "A001147", "A189780", "A385343", "A385346", "A385376", "A385377" ]
null
Seiichi Manyama, Jun 27 2025
2025-06-27T04:33:56
oeisdata/seq/A385/A385376.seq
b069179e6dc93ea7979fce848c7c0577
A385377
Expansion of e.g.f. 1/(1 - 3 * arcsin(x))^(1/3).
[ "1", "1", "4", "29", "296", "3929", "64096", "1241437", "27834496", "709117073", "20232018944", "639064971293", "22138797783040", "834595012185193", "34013250713804800", "1490126154034917917", "69836524615835156480", "3486395656135414573985", "184703404516197170544640", "10349751400296465164293405" ]
[ "nonn" ]
10
0
3
[ "A007559", "A189780", "A385343", "A385347", "A385376", "A385377" ]
null
Seiichi Manyama, Jun 27 2025
2025-06-27T08:49:26
oeisdata/seq/A385/A385377.seq
56cc3523ea853138024e4c78531b9718
A385378
The maximum possible number of distinct factors in the factorization of n into prime powers (A246655).
[ "0", "1", "1", "1", "1", "2", "1", "2", "1", "2", "1", "2", "1", "2", "2", "2", "1", "2", "1", "2", "2", "2", "1", "3", "1", "2", "2", "2", "1", "3", "1", "2", "2", "2", "2", "2", "1", "2", "2", "3", "1", "3", "1", "2", "2", "2", "1", "3", "1", "2", "2", "2", "1", "3", "2", "3", "2", "2", "1", "3", "1", "2", "2", "3", "2", "3", "1", "2", "2", "3", "1", "3", "1", "2", "2", "2", "2", "3", "1", "3", "2", "2", "1", "3", "2", "2", "2" ]
[ "nonn", "easy" ]
10
1
6
[ "A000430", "A000961", "A001221", "A003056", "A004709", "A024923", "A077761", "A086435", "A118914", "A246655", "A254578", "A375272", "A376885", "A384422", "A385378", "A385379" ]
null
Amiram Eldar, Jun 27 2025
2025-06-29T10:09:52
oeisdata/seq/A385/A385378.seq
381407d67b3c6faaf15906de3a6c3ed6
A385379
The maximum possible number of distinct composite prime powers (A246547) in the factorization of n into prime powers.
[ "0", "0", "0", "1", "0", "0", "0", "1", "1", "0", "0", "1", "0", "0", "0", "1", "0", "1", "0", "1", "0", "0", "0", "1", "1", "0", "1", "1", "0", "0", "0", "2", "0", "0", "0", "2", "0", "0", "0", "1", "0", "0", "0", "1", "1", "0", "0", "1", "1", "1", "0", "1", "0", "1", "0", "1", "0", "0", "0", "1", "0", "0", "1", "2", "0", "0", "0", "1", "0", "0", "0", "2", "0", "0", "1", "1", "0", "0", "0", "1", "1", "0", "0", "1", "0", "0", "0" ]
[ "nonn", "easy" ]
7
1
32
[ "A001694", "A005117", "A052146", "A077761", "A118914", "A246547", "A246655", "A376679", "A385378", "A385379", "A385380" ]
null
Amiram Eldar, Jun 27 2025
2025-06-29T10:09:48
oeisdata/seq/A385/A385379.seq
bd62512bde9cef36e6df7979eb0742ef
A385380
Partial products of the sequence nonprime powers of primes (A025475).
[ "1", "4", "32", "288", "4608", "115200", "3110400", "99532800", "4877107200", "312134860800", "25282923724800", "3059233770700800", "382404221337600000", "48947740331212800000", "8272168115974963200000", "2010136852181916057600000", "514595034158570510745600000", "148717964871826877605478400000" ]
[ "nonn", "easy" ]
7
1
2
[ "A001694", "A024923", "A025475", "A025487", "A181800", "A385379", "A385380" ]
null
Amiram Eldar, Jun 27 2025
2025-06-27T16:26:50
oeisdata/seq/A385/A385380.seq
9bf53ccf116941af8699ae0d40280a50
A385381
Triangle read by rows: T(n,k) is the number of polyominoes, i.e., connected nonempty subsets of square cells (or vertices), of the n X k flat torus, up to cyclic shifts and reflections of rows and columns; 1 <= k <= n.
[ "1", "2", "5", "3", "10", "28", "4", "21", "102", "801", "5", "40", "382", "6790", "129550", "6", "86", "1788", "68569", "2694721" ]
[ "nonn", "tabl", "more" ]
6
1
2
[ "A385381", "A385382", "A385384", "A385386" ]
null
Pontus von Brömssen, Jun 27 2025
2025-06-29T11:08:19
oeisdata/seq/A385/A385381.seq
3babcca3d54d6bbe294f245342c3d037
A385382
Number of polyominoes, i.e., connected nonempty subsets of square cells (or vertices), of the n X n flat torus, up to cyclic shifts and reflections of rows and columns.
[ "1", "5", "28", "801", "129550" ]
[ "nonn", "more" ]
5
1
2
[ "A385381", "A385382", "A385383", "A385384", "A385387" ]
null
Pontus von Brömssen, Jun 27 2025
2025-06-29T11:07:25
oeisdata/seq/A385/A385382.seq
bec3b97b32173e4c6e6e41e074f28bc0
A385383
Irregular triangle read by rows: T(n,k) is the number of polyominoes of size k, i.e., connected subsets of k square cells (or vertices), of the n X n flat torus, up to cyclic shifts and reflections of rows and columns; 1 <= k <= n^2.
[ "1", "1", "2", "1", "1", "1", "2", "3", "5", "6", "6", "3", "1", "1", "1", "2", "3", "9", "17", "44", "81", "150", "163", "161", "88", "56", "16", "8", "1", "1", "1", "2", "3", "9", "21", "62", "168", "490", "1324", "3370", "7433", "13905", "20961", "24927", "23008", "16766", "9825", "4669", "1831", "576", "157", "32", "8", "1", "1" ]
[ "nonn", "tabf" ]
5
1
3
[ "A056780", "A385382", "A385383", "A385385", "A385388" ]
null
Pontus von Brömssen, Jun 27 2025
2025-06-29T11:07:29
oeisdata/seq/A385/A385383.seq
30bb17b9ec51a6df28972858828de9cb
A385384
Number of polyominoes, i.e., connected nonempty subsets of square cells (or vertices), of the n X n flat torus, up to cyclic shifts and reflections of rows and columns, as well as interchange of rows and columns.
[ "1", "4", "19", "437", "65325" ]
[ "nonn", "more" ]
5
1
2
[ "A385382", "A385384", "A385385", "A385389" ]
null
Pontus von Brömssen, Jun 27 2025
2025-06-29T11:07:37
oeisdata/seq/A385/A385384.seq
3e0eea5b4bfc5d42eb2935fa4814b895
A385385
Irregular triangle read by rows: T(n,k) is the number of polyominoes of size k, i.e., connected subsets of k square cells (or vertices), of the n X n flat torus, up to cyclic shifts and reflections of rows and columns, as well as interchange of rows and columns; 1 <= k <= n^2.
[ "1", "1", "1", "1", "1", "1", "1", "2", "3", "4", "4", "2", "1", "1", "1", "1", "2", "5", "10", "23", "44", "80", "87", "86", "49", "32", "10", "5", "1", "1", "1", "1", "2", "5", "12", "32", "88", "249", "675", "1699", "3747", "6993", "10538", "12531", "11580", "8458", "4975", "2378", "943", "305", "87", "19", "5", "1", "1" ]
[ "nonn", "tabf" ]
7
1
8
[ "A000105", "A369605", "A385383", "A385384", "A385385", "A385390" ]
null
Pontus von Brömssen, Jun 27 2025
2025-06-29T11:07:40
oeisdata/seq/A385/A385385.seq
bf1466b8b566758d547119a42aa78197
A385386
Triangle read by rows: T(n,k) is the number of polysticks, i.e., connected nonempty subsets of edges, of the n X k flat torus, up to cyclic shifts and reflections of rows and columns; 1 <= k <= n.
[ "3", "7", "40", "14", "225", "6432", "26", "1768", "255451", "43918404" ]
[ "nonn", "tabl", "more" ]
5
1
1
[ "A385381", "A385386", "A385387", "A385389" ]
null
Pontus von Brömssen, Jun 27 2025
2025-06-29T11:07:32
oeisdata/seq/A385/A385386.seq
d7472c1f8ec56c11f2d9f0261909e703
A385387
Number of polysticks, i.e., connected nonempty subsets of edges, of the n X n flat torus, up to cyclic shifts and reflections of rows and columns.
[ "3", "40", "6432", "43918404" ]
[ "nonn", "more" ]
5
1
1
[ "A385382", "A385386", "A385387", "A385388", "A385389" ]
null
Pontus von Brömssen, Jun 27 2025
2025-06-29T11:07:44
oeisdata/seq/A385/A385387.seq
c3e1cf2f8a2e73933e06be6c48b58374
A385388
Irregular triangle read by rows: T(n,k) is the number of polysticks of size k, i.e., connected subsets of k edges, of the n X n flat torus, up to cyclic shifts and reflections of rows and columns; 1 <= k <= 2*n^2.
[ "2", "1", "2", "3", "6", "11", "8", "7", "2", "1", "2", "3", "10", "24", "76", "213", "522", "982", "1308", "1274", "972", "593", "288", "114", "38", "10", "2", "1", "2", "3", "10", "28", "104", "387", "1518", "5799", "21336", "73400", "230462", "644155", "1556484", "3151899", "5183442", "6823550", "7342196", "6639409", "5131834", "3433229", "1992710", "1007190", "440148", "166572", "53566", "14806", "3356", "682", "104", "20", "2", "1" ]
[ "nonn", "tabf" ]
6
1
1
[ "A385383", "A385387", "A385388", "A385390" ]
null
Pontus von Brömssen, Jun 27 2025
2025-06-29T11:07:48
oeisdata/seq/A385/A385388.seq
bd79df241435c4fa7ac61526ee492da3
A385389
Number of polysticks, i.e., connected nonempty subsets of edges, of the n X n flat torus, up to cyclic shifts and reflections of rows and columns, as well as interchange of rows and columns.
[ "2", "23", "3257", "21961750" ]
[ "nonn", "more" ]
5
1
1
[ "A385384", "A385387", "A385389", "A385390" ]
null
Pontus von Brömssen, Jun 27 2025
2025-06-29T11:07:51
oeisdata/seq/A385/A385389.seq
4415e93873d8139252256c84312aba6b
A385390
Irregular triangle read by rows: T(n,k) is the number of polysticks of size k, i.e., connected subsets of k edges, of the n X n flat torus, up to cyclic shifts and reflections of rows and columns, as well as interchange of rows and columns; 1 <= k <= 2*n^2.
[ "1", "1", "1", "2", "3", "7", "4", "4", "1", "1", "1", "2", "5", "14", "38", "111", "261", "500", "654", "648", "486", "305", "144", "61", "19", "6", "1", "1", "1", "2", "5", "16", "52", "199", "759", "2921", "10668", "36761", "115231", "322237", "778242", "1576259", "2591721", "3412285", "3671098", "3320276", "2565917", "1717088", "996355", "503860", "220074", "83408", "26783", "7438", "1678", "351", "52", "11", "1", "1" ]
[ "nonn", "tabf" ]
7
1
4
[ "A019988", "A333333", "A385385", "A385388", "A385389", "A385390" ]
null
Pontus von Brömssen, Jun 27 2025
2025-06-29T11:07:56
oeisdata/seq/A385/A385390.seq
6143f9e4b1a0f29c33caf4683f2c9031
A385391
a(n) is the smallest integer k such that A384237(k) = n.
[ "1", "2", "6", "12", "66", "30", "210", "390", "1365", "2310", "3990", "10920", "2730", "84630", "53130", "87780", "114114", "760760", "2042040", "1345890", "285285", "1902810", "570570", "1141140", "25571910", "30240210", "2282280", "358888530", "514083570", "413092680", "998887890", "761140380" ]
[ "nonn", "more", "new" ]
21
1
2
[ "A002110", "A065295", "A384237", "A384854", "A385100", "A385391" ]
null
Michel Marcus and Juri-Stepan Gerasimov, Jun 27 2025
2025-06-30T19:00:33
oeisdata/seq/A385/A385391.seq
f21faca93494180e4ea76777d4c1269b
A385392
The number of divisors d of n such that -(d^d) = d (mod n).
[ "1", "2", "1", "1", "1", "3", "1", "1", "1", "2", "1", "1", "1", "2", "2", "1", "1", "2", "1", "2", "1", "2", "1", "2", "1", "2", "1", "1", "1", "3", "1", "1", "1", "2", "2", "1", "1", "2", "1", "1", "1", "4", "1", "1", "1", "2", "1", "1", "1", "2", "1", "2", "1", "2", "1", "1", "1", "2", "1", "2", "1", "2", "1", "1", "1", "3", "1", "1", "1", "5", "1", "2", "1", "2", "1", "1", "1", "3", "1", "1", "1", "2", "1", "1", "1", "2", "1", "1", "1", "2", "2", "1", "1", "2", "1", "2", "1", "2", "1", "1" ]
[ "nonn", "new" ]
19
1
2
[ "A032741", "A065295", "A384237", "A384781", "A384854", "A385103", "A385392" ]
null
Juri-Stepan Gerasimov, Jun 27 2025
2025-07-02T18:34:27
oeisdata/seq/A385/A385392.seq
638b56d470ea6210ef0dbf4d3d44382c
A385393
a(n) = (Sum_{k=0..n} (binomial(n, k) mod 4)) / 2^bitcount(n).
[ "1", "1", "2", "2", "2", "2", "3", "2", "2", "2", "3", "3", "3", "3", "3", "2", "2", "2", "3", "3", "3", "3", "4", "3", "3", "3", "4", "3", "3", "3", "3", "2", "2", "2", "3", "3", "3", "3", "4", "3", "3", "3", "4", "4", "4", "4", "4", "3", "3", "3", "4", "3", "4", "4", "4", "3", "3", "3", "4", "3", "3", "3", "3", "2", "2", "2", "3", "3", "3", "3", "4", "3", "3", "3", "4", "4", "4", "4", "4", "3", "3", "3", "4", "4", "4", "4", "5" ]
[ "nonn" ]
26
0
3
[ "A000120", "A001316", "A384715", "A385393", "A385394" ]
null
Peter Luschny, Jun 27 2025
2025-06-28T13:44:14
oeisdata/seq/A385/A385393.seq
97abd812a6379bb6b8563c829d4c3477
A385394
a(n) = (Sum_{k=0..n} (binomial(n, k) mod 8)) / 2^bitcount(n).
[ "1", "1", "2", "2", "8", "4", "8", "4", "8", "8", "6", "6", "10", "8", "5", "4", "8", "8", "10", "8", "12", "6", "11", "6", "10", "10", "11", "7", "9", "7", "7", "4", "8", "8", "10", "8", "16", "12", "15", "10", "12", "12", "9", "9", "13", "11", "10", "6", "10", "10", "13", "11", "15", "11", "11", "7", "9", "9", "10", "7", "11", "7", "7", "4", "8", "8", "10", "8", "16", "12", "15", "10", "16", "16", "15", "13" ]
[ "nonn", "changed" ]
27
0
3
[ "A000120", "A001316", "A385285", "A385393", "A385394" ]
null
Peter Luschny, Jun 27 2025
2025-06-30T21:53:02
oeisdata/seq/A385/A385394.seq
a69897b934bd0478bb39983481f0b96e
A385395
Triangle read by rows: T(n, k) = [A047999(n, k) = 1 or A385456(n, k) = 1], where [.] is the Iverson bracket.
[ "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "1", "0", "1", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "0", "0", "1", "1", "1", "1", "1", "0", "1", "0", "0", "1", "0", "1", "1", "1", "1", "1", "1", "1", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1" ]
[ "nonn", "tabl", "new" ]
24
0
null
[ "A047999", "A385395", "A385456" ]
null
Peter Luschny, Jul 03 2025
2025-07-06T02:53:27
oeisdata/seq/A385/A385395.seq
b304f28f77de6b828b52ecb02938d867
A385396
Numbers k such that 8 does not divide binomial(k, j) for any j in 0..k.
[ "0", "1", "2", "3", "4", "5", "6", "7", "9", "11", "13", "15", "19", "23", "27", "31", "39", "47", "55", "63", "79", "95", "111", "127", "159", "191", "223", "255", "319", "383", "447", "511", "639", "767", "895", "1023", "1279", "1535", "1791", "2047", "2559", "3071", "3583", "4095", "5119", "6143", "7167", "8191", "10239", "12287", "14335", "16383", "20479", "24575" ]
[ "nonn", "changed" ]
21
1
3
[ "A000225", "A052955", "A385396" ]
null
Peter Luschny, Jun 28 2025
2025-06-30T09:57:24
oeisdata/seq/A385/A385396.seq
8d51fdcc234d910a9176c4d5b9a85c77
A385397
Numbers x such that there exist three integers 0<x<=y, z>0 and w>0 such that sigma(x)^3 = sigma(y)^3 = x^3 + y^3 + z^3 + w^3.
[ "153", "216", "255", "324", "672", "735", "1074", "1170", "1218", "2430", "2655", "2736", "3482", "4148", "4605", "4935", "5220", "5446", "5916", "6048", "7140", "9340", "11000", "11160", "12768", "14090", "14098", "14980", "17220", "17696", "18984", "21068", "21948", "22128", "23022", "23205", "24297", "24570", "25284", "25740", "29058", "29640", "30240", "30690", "31008", "31190", "32760", "37140", "39840" ]
[ "nonn", "hard", "new" ]
15
1
1
[ "A000203", "A385325", "A385356", "A385397" ]
null
S. I. Dimitrov, Jun 27 2025
2025-07-01T23:17:18
oeisdata/seq/A385/A385397.seq
4c722c79aafd8c4bcbac90b219852df1
A385398
Numbers m >= 1 such that Sum_{k = 1..m} gcd(m, floor(m / k)) > Sum_{k = 1..m} gcd(m, ceiling(m / k)).
[ "407", "539", "559", "637", "671", "793", "803", "949", "1037", "1067", "1159", "1241", "1273", "1331", "1469", "1649", "1679", "1727", "1817", "1843", "1853", "1919", "2057", "2159", "2197", "2231", "2299", "2321", "2507", "2651", "2669", "2743", "2783", "2813", "2873", "2983", "2987", "3007", "3077", "3133", "3161", "3179", "3193", "3211", "3379" ]
[ "nonn", "new" ]
9
1
1
[ "A018804", "A384628", "A385398", "A385402" ]
null
Ctibor O. Zizka, Jun 27 2025
2025-07-02T19:41:43
oeisdata/seq/A385/A385398.seq
8e2366e4e13643058bc1c7db38323ab7
A385399
a(n) is the number of free polyominoids that have faces aligned to precisely 2 planes.
[ "0", "1", "5", "33", "197", "1461", "11278", "93486", "799261" ]
[ "nonn", "more" ]
7
1
3
[ "A000105", "A075679", "A385399", "A385400" ]
null
John Mason, Jun 27 2025
2025-06-28T11:15:06
oeisdata/seq/A385/A385399.seq
ba6481e569b2fe941bd1ad21c83423de
A385400
a(n) is the number of free polyominoids that have faces aligned to precisely 3 planes.
[ "0", "0", "2", "16", "239", "3154", "42225", "561178", "7459089" ]
[ "nonn", "more" ]
6
1
3
[ "A000105", "A075679", "A385399", "A385400" ]
null
John Mason, Jun 27 2025
2025-06-28T11:15:11
oeisdata/seq/A385/A385400.seq
a0cbd932d0893e41379bbe6b26d05bf3
A385401
Left-truncatable perfect powers: every suffix is a perfect power.
[ "1", "4", "8", "9", "49", "64", "81" ]
[ "nonn", "base", "fini", "full" ]
9
1
2
[ "A001597", "A001694", "A164839", "A164840", "A202271", "A385401" ]
null
Stefano Spezia, Jun 27 2025
2025-06-28T10:05:21
oeisdata/seq/A385/A385401.seq
e0c36ec9be11a0202c5ff9dc0462d952
A385402
Numbers m >= 1 such that Sum_{k = 1..m} gcd(m, floor(m / k)) = Sum_{k = 1..m} gcd(m, ceiling(m / k)).
[ "1", "2", "3", "5", "7", "11", "13", "17", "19", "23", "29", "31", "35", "37", "41", "43", "47", "53", "59", "61", "67", "71", "73", "77", "79", "83", "89", "95", "97", "101", "103", "107", "109", "113", "119", "125", "127", "131", "137", "139", "143", "149", "151", "157", "163", "167", "173", "179", "181", "187", "191", "193", "197", "199", "209", "211", "221" ]
[ "nonn", "new" ]
6
1
2
[ "A018804", "A384628", "A385398", "A385402" ]
null
Ctibor O. Zizka, Jun 27 2025
2025-07-02T17:50:03
oeisdata/seq/A385/A385402.seq
8437af01419b738e83d0bb87984628bc
A385403
Minimum number of triples that cover {1..n}, such that every 2-coloring of {1..n} results in at least one monochromatic triple.
[ "10", "10", "7", "8", "8", "8" ]
[ "nonn", "more", "new" ]
12
5
1
[ "A111384", "A383181", "A385403" ]
null
David Dewan, Jun 27 2025
2025-07-03T03:04:42
oeisdata/seq/A385/A385403.seq
ac4081c1f0a9a5a38e57740a156faeaf
A385404
Numbers that can be split into two at any place between their digits such that the resulting numbers are always a nonprime on the left and a prime on the right.
[ "12", "13", "15", "17", "42", "43", "45", "47", "62", "63", "65", "67", "82", "83", "85", "87", "92", "93", "95", "97", "123", "143", "147", "153", "167", "183", "423", "443", "447", "453", "467", "483", "497", "623", "637", "643", "647", "653", "667", "683", "697", "813", "817", "823", "843", "847", "853", "867", "873", "883", "913", "917", "923", "937", "943", "947", "953", "967", "983", "997" ]
[ "nonn", "base", "fini", "full" ]
20
1
1
[ "A024785", "A125524", "A125664", "A385404" ]
null
Tamas Sandor Nagy, Jun 27 2025
2025-06-27T16:26:33
oeisdata/seq/A385/A385404.seq
05a613df4252042c0dfaa80b0183c34f
A385406
Triangle read by rows: T(n, k) = n*(n+1)/2 - floor((n-1)/2) - (-1)^k * floor(k/2).
[ "1", "3", "2", "5", "4", "6", "9", "8", "10", "7", "13", "12", "14", "11", "15", "19", "18", "20", "17", "21", "16", "25", "24", "26", "23", "27", "22", "28", "33", "32", "34", "31", "35", "30", "36", "29", "41", "40", "42", "39", "43", "38", "44", "37", "45", "51", "50", "52", "49", "53", "48", "54", "47", "55", "46", "61", "60", "62", "59", "63", "58", "64", "57", "65", "56", "66", "73", "72", "74", "71", "75", "70", "76", "69", "77", "68", "78", "67" ]
[ "nonn", "easy", "tabl" ]
10
1
2
[ "A006003", "A080827", "A128918", "A213399", "A385406" ]
null
Werner Schulte, Jun 27 2025
2025-06-28T12:53:00
oeisdata/seq/A385/A385406.seq
529bb28d8d539d8ba5fe15b26cddebc7
A385407
Number of strings of length n defined on {0, 1, 2, 3} that contain one or no 1's, two or no 2's, three or no 3's and any number of 0's.
[ "1", "2", "4", "11", "31", "86", "282", "939", "2781", "7186", "16496", "34387", "66299", "119926", "205766", "337731", "533817", "816834", "1215196", "1763771", "2504791", "3488822", "4775794", "6436091", "8551701", "11217426", "14542152", "18650179", "23682611", "29798806", "37177886", "46020307", "56549489", "69013506", "83686836", "100872171" ]
[ "nonn", "easy", "new" ]
16
0
2
[ "A385312", "A385407" ]
null
Enrique Navarrete, Jun 27 2025
2025-07-03T01:02:50
oeisdata/seq/A385/A385407.seq
f08974b0eb320b75ba194811c1c0dae4
A385408
Sum over all ordered partitions of [n] of 6^j for an ordered partition with j inversions.
[ "1", "1", "8", "388", "113480", "199246816", "2099255895008", "132708276995157568", "50336523318422432038400", "114556539064849604787867141376", "1564256035642651626332994903500876288", "128158392280785912677966097933268099449960448", "62999559569114394473388668602373642996554916532377600" ]
[ "nonn" ]
12
0
3
[ "A000670", "A381299", "A381426", "A385408" ]
null
Alois P. Heinz, Jun 27 2025
2025-06-27T18:25:41
oeisdata/seq/A385/A385408.seq
548438858247338a7f8331f340210ece
A385409
a(n) is the smallest positive integer k such that the Diophantine equation x^3 + y^3 + z^3 + w^3 = k^2, where 0 < x < y < z < w has exactly n integer solutions.
[ "10", "42", "39", "153", "126", "276", "273", "312", "315", "476", "588", "336", "546", "777", "1053", "756", "1216", "1386", "1560", "1134", "1323", "1488", "1365", "1368", "1344", "1596", "2366", "2496", "2988", "1680", "2548", "1736", "2184", "3003", "3720", "2520", "3185", "3552", "2268", "3564", "4095", "3213", "4578", "4392", "5208", "4004", "4599", "5733" ]
[ "nonn", "new" ]
11
1
1
[ "A024975", "A025419", "A377444", "A384430", "A385354", "A385409" ]
null
Zhining Yang, Jun 27 2025
2025-07-08T18:37:22
oeisdata/seq/A385/A385409.seq
0d50b942222d06f7a4870da54068e2c9
A385410
Multiples k of b that are not perfect powers and whose trailing digits form a power of b, where 1 < b < k.
[ "12", "14", "15", "18", "21", "22", "24", "28", "33", "34", "35", "38", "39", "42", "44", "45", "48", "51", "52", "54", "55", "58", "62", "63", "65", "66", "68", "69", "72", "74", "75", "77", "78", "82", "84", "85", "88", "91", "92", "93", "94", "95", "96", "98", "99", "102", "104", "105", "108", "110", "111", "112", "114", "115", "116", "118", "120", "122", "123", "124", "126", "129" ]
[ "nonn", "base", "easy", "new" ]
20
1
1
[ "A002808", "A007916", "A106543", "A384714", "A385410", "A385411", "A385412" ]
null
Stefano Spezia and Michael De Vlieger, Jun 28 2025
2025-07-05T05:15:02
oeisdata/seq/A385/A385410.seq
90a49f4aaa4397dd1a08167e47dd3c8c
A385412
Numbers k that are not perfect powers and whose trailing digits form a power of b, where 1 < b < k.
[ "11", "12", "13", "14", "15", "17", "18", "19", "21", "22", "23", "24", "26", "28", "29", "31", "33", "34", "35", "37", "38", "39", "41", "42", "43", "44", "45", "46", "47", "48", "51", "52", "53", "54", "55", "56", "57", "58", "59", "61", "62", "63", "65", "66", "67", "68", "69", "71", "72", "73", "74", "75", "76", "77", "78", "79", "82", "83", "84", "85", "86", "87", "88", "89", "91", "92" ]
[ "nonn", "base", "easy", "new" ]
10
1
1
[ "A007916", "A384714", "A385410", "A385411", "A385412" ]
null
Stefano Spezia and Michael De Vlieger, Jun 30 2025
2025-07-05T05:15:16
oeisdata/seq/A385/A385412.seq
8cd21181ecaa3c7a45d9ffccecf29bfc
A385413
Number of solid standard Young tableaux of 2n cells and height >= n.
[ "1", "3", "23", "261", "3787", "63395", "1191041", "24547919", "549727747", "13239969349", "340470351905", "9279758909457", "266461484866363" ]
[ "nonn", "more" ]
8
0
2
[ "A215120", "A385413" ]
null
Alois P. Heinz, Jun 27 2025
2025-06-28T19:46:12
oeisdata/seq/A385/A385413.seq
91995d440152f1b47a685725769896c2
A385415
Products of three consecutive integers whose prime divisors are consecutive primes starting at 2.
[ "6", "24", "60", "120", "210", "720", "3360", "9240", "117600", "166320", "970200", "43243200", "85765680" ]
[ "nonn", "fini", "full", "new" ]
19
1
1
[ "A007531", "A055932", "A385189", "A385415" ]
null
Ken Clements, Jun 28 2025
2025-07-09T16:37:00
oeisdata/seq/A385/A385415.seq
d5f5403e8d67e86f09776abbd2bf15fa
A385416
The number of unordered factorizations of n into exponentially odd numbers (A268335).
[ "1", "1", "1", "1", "1", "2", "1", "2", "1", "2", "1", "2", "1", "2", "2", "2", "1", "2", "1", "2", "2", "2", "1", "4", "1", "2", "2", "2", "1", "5", "1", "3", "2", "2", "2", "3", "1", "2", "2", "4", "1", "5", "1", "2", "2", "2", "1", "5", "1", "2", "2", "2", "1", "4", "2", "4", "2", "2", "1", "6", "1", "2", "2", "4", "2", "5", "1", "2", "2", "5", "1", "5", "1", "2", "2", "2", "2", "5", "1", "5", "2", "2", "1", "6", "2", "2", "2" ]
[ "nonn" ]
8
1
6
[ "A001055", "A005117", "A050361", "A118914", "A246551", "A268335", "A385416", "A385417" ]
null
Amiram Eldar, Jun 28 2025
2025-06-29T10:09:44
oeisdata/seq/A385/A385416.seq
897cf4f04a14f04226dd292ed567724b
A385417
Numbers with a record number of unordered factorizations into exponentially odd numbers (A268335).
[ "1", "6", "24", "30", "60", "96", "120", "210", "240", "420", "480", "720", "840", "1680", "2520", "3360", "5040", "6720", "9240", "10080", "13440", "15120", "18480", "27720", "30240", "36960", "55440", "73920", "110880", "147840", "166320", "221760", "332640", "443520", "665280", "720720", "887040", "960960", "1108800", "1330560", "1441440" ]
[ "nonn" ]
10
1
2
[ "A025487", "A268335", "A385416", "A385417" ]
null
Amiram Eldar, Jun 28 2025
2025-06-29T15:44:13
oeisdata/seq/A385/A385417.seq
912bf472134462bc3e42072623e0edd3
A385418
The number of unordered factorizations of n into powers of primes of the form p^(2^k-1) where p is prime and k >= 0.
[ "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "2", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "2", "1", "2", "1", "1", "1", "1", "1", "1", "1", "3", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "2", "2", "1", "1", "1", "1", "1", "1" ]
[ "nonn", "easy", "mult" ]
8
1
8
[ "A000688", "A000929", "A036537", "A046951", "A050361", "A050377", "A061704", "A188581", "A188585", "A304327", "A322885", "A362852", "A368248", "A370256", "A384912", "A384913", "A384914", "A384915", "A384916", "A385418" ]
null
Amiram Eldar, Jun 28 2025
2025-06-29T10:09:34
oeisdata/seq/A385/A385418.seq
808b5c2ee809db6d8d37b6078093ccd4
A385419
Expansion of e.g.f. 1/(1 - arcsinh(2*x))^(1/2).
[ "1", "1", "3", "11", "57", "489", "5067", "50595", "573297", "9323985", "168823443", "2679252795", "45149256105", "1121782132665", "29930127386715", "629179051311315", "13329925622622945", "472248682257228705", "17395967794618282275", "434384524558247177835", "10095605146704332967705" ]
[ "sign" ]
11
0
3
[ "A001147", "A296675", "A385343", "A385371", "A385419", "A385420" ]
null
Seiichi Manyama, Jun 28 2025
2025-06-28T10:04:56
oeisdata/seq/A385/A385419.seq
504547df52bd79013b6c81dc5eb06ea1
A385420
Expansion of e.g.f. 1/(1 - arcsinh(3*x))^(1/3).
[ "1", "1", "4", "19", "136", "1849", "28576", "383347", "6054016", "162756433", "4512553984", "94198960723", "2151597168640", "94600222614793", "3958651982848000", "103976698299157747", "2765446240371834880", "197818347558313860385", "11750108763413970288640", "335351034570439348695955" ]
[ "sign" ]
14
0
3
[ "A007559", "A296675", "A385343", "A385372", "A385419", "A385420", "A385422" ]
null
Seiichi Manyama, Jun 28 2025
2025-06-28T10:05:02
oeisdata/seq/A385/A385420.seq
955a9cb6ef502c4446cd15fef0b95920
A385421
Expansion of e.g.f. 1/(1 - arcsin(2*x))^(1/2).
[ "1", "1", "3", "19", "153", "1689", "21867", "343995", "6114993", "124933425", "2820098643", "70897706595", "1939085791305", "57898697121225", "1859540697970875", "64312039377723915", "2371651908598754145", "93246340110716523105", "3882169166979871734435", "171024539858087082582195" ]
[ "nonn" ]
12
0
3
[ "A001147", "A001586", "A189780", "A385343", "A385421", "A385422" ]
null
Seiichi Manyama, Jun 28 2025
2025-06-28T10:39:17
oeisdata/seq/A385/A385421.seq
3671d4ffcac28fe0c221bac51755c791
A385422
Expansion of e.g.f. 1/(1 - arcsin(3*x))^(1/3).
[ "1", "1", "4", "37", "424", "6889", "129376", "3004597", "78196864", "2363157937", "78520720384", "2924352594373", "118146438461440", "5232528466643737", "248845526415892480", "12778931460471237397", "699044652076991610880", "40846771050451091426785", "2526020027235443981025280" ]
[ "nonn" ]
14
0
3
[ "A007559", "A007788", "A189780", "A235135", "A385343", "A385420", "A385421", "A385422" ]
null
Seiichi Manyama, Jun 28 2025
2025-06-28T10:47:14
oeisdata/seq/A385/A385422.seq
cc1d54a8b1e2bee93d4e2c52c5320c6a
A385424
Expansion of e.g.f. exp( -LambertW(-arcsin(x)) ).
[ "1", "1", "3", "17", "137", "1465", "19499", "311873", "5829073", "124796081", "3012319315", "80960234577", "2398138520409", "77630951407529", "2726829925494011", "103300796618253825", "4198494172961579169", "182239547736082960737", "8414068749731088539299", "411754575622058760824593" ]
[ "nonn" ]
15
0
3
[ "A277502", "A381142", "A385343", "A385424", "A385425", "A385426", "A385427" ]
null
Seiichi Manyama, Jun 28 2025
2025-06-28T10:17:19
oeisdata/seq/A385/A385424.seq
bbc9dcd40f03b0429f60071186ebadfc
A385425
Expansion of e.g.f. exp( -LambertW(-arcsinh(x)) ).
[ "1", "1", "3", "15", "113", "1145", "14499", "220703", "3932865", "80342577", "1851286755", "47510525007", "1344106404849", "41562628517865", "1394711974335939", "50480840239135455", "1960392617938419969", "81309789407316485217", "3587373056789171999811", "167762667997938465311247" ]
[ "nonn" ]
21
0
3
[ "A001147", "A219503", "A385343", "A385369", "A385424", "A385425", "A385428" ]
null
Seiichi Manyama, Jun 28 2025
2025-06-28T10:01:50
oeisdata/seq/A385/A385425.seq
e64e7f2c79004e41343f2c804ef447ce
A385426
Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-arcsin(x)) ).
[ "1", "1", "3", "17", "145", "1665", "24115", "422305", "8681985", "205042625", "5471351875", "162811832625", "5345929731025", "192007183247425", "7488448738333875", "315170338129570625", "14238153926819850625", "687220571240324330625", "35293921478604240911875", "1921751625123502012140625" ]
[ "nonn" ]
12
0
3
[ "A001147", "A227464", "A381145", "A385343", "A385424", "A385426", "A385427" ]
null
Seiichi Manyama, Jun 28 2025
2025-06-28T08:45:57
oeisdata/seq/A385/A385426.seq
e59f6ed848926580bf7a6e2c84284961
A385427
E.g.f. A(x) satisfies A(x) = exp( arcsin(x * A(x)) / A(x) ).
[ "1", "1", "1", "2", "13", "100", "861", "9536", "127737", "1938896", "33240185", "639683552", "13601898245", "316356906944", "7998251969813", "218420230243840", "6405441641302641", "200779795515236608", "6699317212660139761", "237070134772942395904", "8868209937245857514365", "349657703494298519409664" ]
[ "nonn", "changed" ]
12
0
4
[ "A381148", "A385343", "A385424", "A385426", "A385427" ]
null
Seiichi Manyama, Jun 28 2025
2025-07-05T05:05:11
oeisdata/seq/A385/A385427.seq
dcd19c461be37d38eb515e0cfe377465
A385428
E.g.f. A(x) satisfies A(x) = exp( arcsinh(x * A(x)) / A(x) ).
[ "1", "1", "1", "0", "-11", "-80", "-219", "3416", "68265", "550656", "-3285975", "-194101248", "-3177823395", "-5431320960", "1202586098637", "35658624599040", "359507959906641", "-12186663090266112", "-677861502762897711", "-13768767870225444864", "126162451289700276165", "19553934035547470168064" ]
[ "sign" ]
15
0
5
[ "A001147", "A381147", "A385343", "A385369", "A385425", "A385428" ]
null
Seiichi Manyama, Jun 28 2025
2025-06-28T10:02:11
oeisdata/seq/A385/A385428.seq
c04b9f2dd8ec03ca6f6865778bbc875f
A385431
Leading digit of the decimal expansion of the prime zeta function at n.
[ "4", "1", "7", "3", "1", "8", "4", "2", "9", "4", "2", "1", "6", "3", "1", "7", "3", "1", "9", "4", "2", "1", "5", "2", "1", "7", "3", "1", "9", "4", "2", "1", "5", "2", "1", "7", "3", "1", "9", "4", "2", "1", "5", "2", "1", "7", "3", "1", "8", "4", "2", "1", "5", "2", "1", "6", "3", "1", "8", "4", "2", "1", "5", "2", "1", "6", "3", "1", "8", "4", "2", "1", "5", "2", "1", "6", "3", "1", "8", "4", "2", "1", "5", "2", "1", "6", "3" ]
[ "nonn", "easy", "base", "new" ]
13
2
1
[ "A000040", "A085541", "A085548", "A085964", "A085969", "A111395", "A385430", "A385431" ]
null
Marco Ripà, Jun 28 2025
2025-07-05T16:12:30
oeisdata/seq/A385/A385431.seq
25264a12c2303b5d224211138a0bba5f
A385432
Triangle read by rows: T(n,k) is the number of proper vertex colorings of the n-complete tripartite graph using exactly k interchangeable colors, 3 <= k <= 3*n.
[ "1", "1", "3", "3", "1", "1", "9", "30", "45", "30", "9", "1", "1", "21", "165", "598", "1032", "939", "471", "129", "18", "1", "1", "45", "750", "5655", "19653", "36465", "39250", "25560", "10278", "2545", "375", "30", "1", "1", "93", "3153", "46726", "295905", "978588", "1881306", "2232798", "1704405", "858530", "288768", "64743", "9495", "870", "45", "1", "1", "189", "12810", "364875", "3988530", "21976122", "69388462", "134794821", "1" ]
[ "nonn", "tabf", "easy", "new" ]
8
1
3
[ "A384988", "A385432" ]
null
Julian Allagan, Jun 28 2025
2025-07-03T18:39:52
oeisdata/seq/A385/A385432.seq
282f4a197bf9a812a4e06f0fdfc7aaae
A385434
Triangle of Gaussian binomial coefficients (or q-binomial coefficients) [n,k] for q = 2, reduced mod 3.
[ "1", "1", "1", "1", "0", "1", "1", "1", "1", "1", "1", "0", "2", "0", "1", "1", "1", "2", "2", "1", "1", "1", "0", "0", "0", "0", "0", "1", "1", "1", "0", "0", "0", "0", "1", "1", "1", "0", "1", "0", "0", "0", "1", "0", "1", "1", "1", "1", "1", "0", "0", "1", "1", "1", "1", "1", "0", "2", "0", "1", "0", "1", "0", "2", "0", "1", "1", "1", "2", "2", "1", "1", "1", "1", "2", "2", "1", "1" ]
[ "nonn", "tabl" ]
24
0
13
[ "A007318", "A022166", "A385434", "A385435" ]
null
David Radcliffe, Jun 28 2025
2025-06-29T12:22:11
oeisdata/seq/A385/A385434.seq
25185d4fb3bc3942be08dae2faaf3680
A385435
Row sums of A385434.
[ "1", "2", "2", "4", "4", "8", "2", "4", "4", "8", "8", "16", "4", "8", "8", "16", "13", "26", "2", "4", "4", "8", "8", "16", "4", "8", "8", "16", "16", "32", "8", "16", "16", "32", "26", "52", "4", "8", "8", "16", "13", "26", "8", "16", "16", "32", "26", "52", "13", "26", "26", "52", "40", "80", "2", "4", "4", "8", "8", "16", "4", "8", "8", "16", "16", "32", "8", "16", "16", "32", "26", "52", "4", "8", "8" ]
[ "nonn", "tabl", "changed" ]
23
0
2
[ "A007318", "A022166", "A051638", "A385434", "A385435" ]
null
David Radcliffe, Jun 28 2025
2025-07-10T19:38:54
oeisdata/seq/A385/A385435.seq
f6f7e61d91aea819c2aa17b8ee702281
A385436
Tribonacci array of the second kind, read by upward antidiagonals.
[ "0", "2", "1", "4", "5", "3", "6", "8", "10", "7", "9", "12", "16", "20", "14", "11", "18", "23", "31", "38", "27", "13", "21", "34", "44", "58", "71", "51", "15", "25", "40", "64", "82", "108", "132", "95", "17", "29", "47", "75", "119", "152", "200", "244", "176", "19", "32", "54", "88", "139", "220", "281", "369", "450", "325", "22", "36", "60", "101", "163", "257", "406", "518", "680" ]
[ "nonn", "tabl", "new" ]
30
1
2
[ "A027084", "A035513", "A136189", "A351631", "A352103", "A372501", "A385436", "A385455", "A385532", "A385533" ]
null
A.H.M. Smeets, Jun 28 2025
2025-07-09T10:17:25
oeisdata/seq/A385/A385436.seq
f0b3432362e09082ef321a33e2ed09aa
A385437
Triangle read by rows: T(n,k) is the number of proper vertex colorings of the n-complete bipartite graph with a perfect matching removed using exactly k interchangeable colors, for n >= 1 and 2 <= k <= 2n.
[ "1", "2", "4", "1", "1", "10", "20", "9", "1", "1", "18", "92", "146", "80", "16", "1", "1", "35", "355", "1146", "1492", "850", "220", "25", "1", "1", "68", "1336", "7590", "17831", "19740", "11052", "3230", "490", "36", "1", "1", "133", "5026", "47278", "181251", "332039", "320763", "172788", "53417", "9520", "952", "49", "1", "1", "262", "19097", "287126", "1710016", "4809728", "7204912", "6180858", "3177106", "1003940", "196728", "23660", "1680", "64", "1" ]
[ "nonn", "tabf", "new" ]
8
1
2
null
null
Julian Allagan, Jun 28 2025
2025-07-03T16:39:26
oeisdata/seq/A385/A385437.seq
d365a877acf5a98e21f410c0ef8fbdca
A385440
E.g.f. A(x) satisfies A(x) = exp( arcsinh(x * A(x)^2) ).
[ "1", "1", "5", "48", "693", "13440", "328185", "9676800", "334639305", "13284311040", "595505854125", "29756856729600", "1640160546688125", "98860780014796800", "6469121228247302625", "456736803668361216000", "34607895888408878660625", "2801319062499282124800000", "241247999301688986945463125" ]
[ "nonn", "changed" ]
13
0
3
[ "A001147", "A381415", "A385343", "A385369", "A385440", "A385441", "A385442" ]
null
Seiichi Manyama, Jun 29 2025
2025-07-04T04:53:18
oeisdata/seq/A385/A385440.seq
8a600992243ec142ae5709ffb90dd17c
A385441
E.g.f. A(x) satisfies A(x) = exp( arcsinh(x * A(x)^3) ).
[ "1", "1", "7", "99", "2145", "62985", "2340135", "105306075", "5568833025", "338526428625", "23261601738375", "1783052341945875", "150846228128621025", "13961656447904590425", "1403387191229030382375", "152244874971071908900875", "17729607712540283209274625", "2206069759660369525039742625", "292095560880436494680262138375" ]
[ "nonn", "changed" ]
11
0
3
[ "A001147", "A385343", "A385369", "A385440", "A385441", "A385442" ]
null
Seiichi Manyama, Jun 29 2025
2025-07-04T04:57:29
oeisdata/seq/A385/A385441.seq
03a60f323af10548983c254af21bbae1
A385442
E.g.f. A(x) satisfies A(x) = exp( arcsinh(x * A(x)^4) ).
[ "1", "1", "9", "168", "4845", "190080", "9454725", "570286080", "40454959545", "3300640358400", "304513870485825", "31348317192192000", "3562533636856719525", "443003419150516224000", "59834227558379509360125", "8722929933255903805440000", "1365222778354029313094000625", "228317457245013328565108736000" ]
[ "nonn", "changed" ]
10
0
3
[ "A001147", "A385343", "A385369", "A385440", "A385441", "A385442" ]
null
Seiichi Manyama, Jun 29 2025
2025-07-04T05:00:35
oeisdata/seq/A385/A385442.seq
a6aac492cafd446a87ddf1c61131bde2
A385443
Expansion of e.g.f. (1/x) * Series_Reversion( x/(3*x + sqrt(9*x^2+1))^(1/3) ).
[ "1", "1", "3", "7", "-55", "-1215", "-8645", "150535", "6200145", "73698625", "-1986309325", "-119693799225", "-1993326710375", "72724743316225", "5768642653648875", "123556356142594375", "-5685256808745889375", "-559310285769833973375", "-14644269999088713108125", "813361265343230663434375" ]
[ "sign" ]
14
0
3
[ "A001147", "A384241", "A385343", "A385443", "A385444" ]
null
Seiichi Manyama, Jun 29 2025
2025-06-29T09:02:39
oeisdata/seq/A385/A385443.seq
70659447c41f25abe4ada2e65c0ce46c
A385444
Expansion of e.g.f. (1/x) * Series_Reversion( x/(4*x + sqrt(16*x^2+1))^(1/4) ).
[ "1", "1", "3", "0", "-195", "-2160", "21735", "1290240", "13253625", "-758419200", "-34777667925", "0", "59136015863925", "2148944878080000", "-60019159896320625", "-8741374232887296000", "-200253365886518319375", "23678097149478739968000", "2107410008390562322321875", "0", "-11628675802354427876266081875" ]
[ "sign" ]
17
0
3
[ "A001147", "A384241", "A385343", "A385443", "A385444" ]
null
Seiichi Manyama, Jun 29 2025
2025-06-29T09:02:34
oeisdata/seq/A385/A385444.seq
e0247e148666c6f613008847914bfcc4
A385445
Decimal expansion of (-1 + 3*phi)*sqrt(3 - phi), with the golden section phi = A001622.
[ "4", "5", "3", "0", "7", "6", "8", "5", "9", "3", "1", "8", "5", "9", "7", "5", "1", "7", "4", "3", "6", "1", "2", "2", "4", "0", "9", "0", "9", "9", "8", "1", "4", "7", "3", "2", "3", "2", "3", "8", "8", "8", "6", "9", "2", "9", "4", "6", "8", "2", "0", "9", "3", "5", "2", "5", "3", "9", "2", "8", "8", "9", "0", "5", "0", "6", "6", "3", "6", "2", "0", "7", "2", "1", "8", "6", "4", "5", "7", "0", "9", "5", "2", "9" ]
[ "nonn", "cons", "easy", "new" ]
16
1
1
[ "A001622", "A002390", "A090550", "A182007", "A385445", "A385446", "A385447", "A385448" ]
null
Wolfdieter Lang, Jul 01 2025
2025-07-07T05:23:13
oeisdata/seq/A385/A385445.seq
05142966acb4ea956f94216c0f512cda
A385446
Decimal expansion of -7 + 10*phi, with the golden section phi = A001622.
[ "9", "1", "8", "0", "3", "3", "9", "8", "8", "7", "4", "9", "8", "9", "4", "8", "4", "8", "2", "0", "4", "5", "8", "6", "8", "3", "4", "3", "6", "5", "6", "3", "8", "1", "1", "7", "7", "2", "0", "3", "0", "9", "1", "7", "9", "8", "0", "5", "7", "6", "2", "8", "6", "2", "1", "3", "5", "4", "4", "8", "6", "2", "2", "7", "0", "5", "2", "6", "0", "4", "6", "2", "8", "1", "8", "9", "0", "2", "4", "4", "9", "7", "0", "7" ]
[ "nonn", "cons", "easy", "new" ]
10
1
1
[ "A001622", "A182007", "A385445", "A385446" ]
null
Wolfdieter Lang, Jul 01 2025
2025-07-06T11:16:57
oeisdata/seq/A385/A385446.seq
175ed17b719bf519efc1b851a71719d8
A385447
Decimal expansion of sqrt(8 + 9*phi), with the golden section A001622.
[ "4", "7", "4", "9", "9", "7", "9", "5", "6", "8", "2", "4", "5", "4", "3", "1", "2", "6", "7", "2", "7", "2", "0", "3", "6", "9", "2", "7", "0", "3", "7", "1", "5", "4", "8", "9", "2", "7", "7", "4", "6", "6", "1", "6", "7", "4", "6", "8", "8", "0", "8", "9", "8", "0", "6", "1", "0", "3", "4", "2", "6", "0", "3", "9", "5", "7", "4", "1", "8", "8", "3", "2", "4", "0", "1", "1", "6", "5", "9", "9", "4", "0", "9", "5" ]
[ "nonn", "cons", "easy", "new" ]
13
1
1
[ "A001622", "A182007", "A385445", "A385446", "A385447" ]
null
Wolfdieter Lang, Jul 01 2025
2025-07-03T08:58:02
oeisdata/seq/A385/A385447.seq
38525a3528382a2af4f2886dc71e4ce4
A385448
Decimal expansion of sqrt(5 + 7*phi)/sqrt(11), with the golden section phi = A001622.
[ "1", "2", "1", "8", "2", "7", "8", "8", "8", "7", "3", "5", "9", "6", "6", "2", "2", "9", "1", "5", "3", "5", "4", "6", "0", "2", "6", "7", "9", "1", "7", "2", "7", "4", "7", "4", "5", "2", "0", "3", "6", "8", "7", "4", "0", "0", "5", "3", "1", "5", "5", "4", "3", "5", "6", "6", "6", "6", "9", "9", "1", "9", "0", "4", "7", "5", "6", "9", "3", "9", "7", "6", "5", "7", "4", "7", "5", "7", "2", "2", "2", "0", "5", "8" ]
[ "nonn", "cons", "easy", "new" ]
9
1
2
[ "A001622", "A010468", "A182007", "A385445", "A385448" ]
null
Wolfdieter Lang, Jul 01 2025
2025-07-03T01:09:19
oeisdata/seq/A385/A385448.seq
ab85b2231bcd75e1236fc61767e8d8cf
A385450
Decimal expansion of Sum_{k>=1} Fibonacci(k)/binomial(2*k, k).
[ "8", "4", "4", "6", "5", "7", "6", "2", "0", "0", "9", "5", "5", "9", "2", "8", "2", "3", "8", "0", "2", "6", "1", "2", "8", "3", "7", "6", "2", "3", "3", "9", "1", "9", "5", "7", "3", "6", "3", "8", "7", "6", "6", "4", "1", "8", "8", "9", "5", "8", "4", "4", "1", "6", "4", "8", "8", "5", "5", "4", "1", "9", "0", "9", "8", "2", "6", "9", "8", "6", "1", "1", "5", "2", "4", "2", "6", "8", "1", "6", "4", "8", "8", "9", "2", "7", "7", "5", "3", "7", "7", "2", "8", "7", "1", "2", "8", "5", "1", "2", "7", "3", "9", "9", "9" ]
[ "cons", "nonn", "new" ]
19
0
1
[ "A000045", "A000984", "A385450", "A385508" ]
null
Artur Jasinski, Jun 29 2025
2025-07-02T03:21:58
oeisdata/seq/A385/A385450.seq
864f255355b382103377b4cf13e0017f
A385451
Least integer k such that the sum of its anti-divisors is equal to k + n.
[ "5", "11", "14", "7", "10", "71", "13", "101", "48", "129", "18", "17", "46", "37", "22", "27", "62", "35", "28", "55", "66", "3279", "92", "49", "42", "155", "32", "1721", "154", "81", "50", "59", "38", "229", "152", "53", "222", "859", "58", "393", "190", "45", "52", "73", "68", "97", "104", "60", "128", "63", "72", "87", "436", "401", "136", "673", "142", "429", "272", "163" ]
[ "nonn", "easy", "new" ]
6
0
1
[ "A066417", "A385451", "A385490" ]
null
Paolo P. Lava, Jun 29 2025
2025-07-04T19:48:59
oeisdata/seq/A385/A385451.seq
ed7d60de1e6ff5581ccd03cddf66ec21
A385452
Numbers that are the concatenation of three (not necessarily distinct) primes whose sum is prime, and are also the product of three (not necessarily distinct) primes whose sum is prime.
[ "775", "1975", "3115", "3157", "3175", "3311", "3535", "3553", "3731", "5117", "5135", "5335", "5537", "5593", "5735", "5797", "5957", "6775", "7511", "7675", "7733", "8957", "9737", "11297", "11315", "11473", "11713", "11753", "13115", "13135", "13433", "13615", "13715", "13717", "13783", "13895", "13937", "14935", "15175", "16337", "17297", "17347", "17437", "17537", "17719", "17759" ]
[ "nonn", "base", "new" ]
16
1
1
null
null
Will Gosnell and Robert Israel, Jun 29 2025
2025-07-03T02:24:09
oeisdata/seq/A385/A385452.seq
d89837617ba80cb9f5b04f81e1bea072
A385453
Decimal expansion of 6*Sum_{k>=0} (-1)^k/(k! (k + 3)! 2^k).
[ "8", "8", "1", "0", "7", "9", "4", "5", "0", "6", "9", "1", "0", "9", "2", "1", "8", "9", "8", "9", "0", "5", "3", "7", "0", "0", "5", "8", "6", "7", "8", "5", "7", "9", "4", "9", "3", "9", "7", "4", "9", "2", "0", "9", "3", "1", "6", "4", "8", "1", "2", "7", "0", "3", "3", "7", "5", "4", "5", "0", "0", "7", "7", "3", "5", "3", "0", "0", "0", "1", "3", "6", "1", "8", "6", "3", "2", "1", "9", "7", "8", "8", "3", "5", "8", "4", "6", "7", "3", "9", "3", "9", "1", "7", "9", "1", "5", "7", "4", "9", "7", "3", "1", "6", "5" ]
[ "cons", "nonn", "new" ]
8
0
1
[ "A334383", "A385453" ]
null
Artur Jasinski, Jun 29 2025
2025-06-30T10:49:17
oeisdata/seq/A385/A385453.seq
43f0fda36a22e1efc07575724fb332f8
A385454
Difference of the largest and smallest semiperimeters of an integral rectangle with area n.
[ "0", "0", "0", "1", "0", "2", "0", "3", "4", "4", "0", "6", "0", "6", "8", "9", "0", "10", "0", "12", "12", "10", "0", "15", "16", "12", "16", "18", "0", "20", "0", "21", "20", "16", "24", "25", "0", "18", "24", "28", "0", "30", "0", "30", "32", "22", "0", "35", "36", "36", "32", "36", "0", "40", "40", "42", "36", "28", "0", "45", "0", "30", "48", "49", "48", "50", "0", "48", "44", "54", "0", "56", "0" ]
[ "nonn", "changed" ]
20
1
6
[ "A063655", "A385454" ]
null
James C. McMahon, Jun 29 2025
2025-07-01T01:06:05
oeisdata/seq/A385/A385454.seq
49fa1871ad8c274a5a246d559d773034
A385455
First prepended column of the tribonacci array of the second kind, A385436.
[ "-1", "0", "1", "2", "4", "5", "6", "7", "8", "9", "11", "12", "13", "14", "15", "17", "18", "19", "20", "21", "22", "24", "25", "26", "28", "29", "30", "31", "32", "33", "35", "36", "37", "38", "39", "41", "42", "43", "44", "45", "46", "48", "49", "50", "51", "52", "53", "55", "56", "57", "58", "59", "61", "62", "63", "64", "65", "66", "68", "69", "70", "72", "73", "74", "75", "76", "77", "79", "80", "81" ]
[ "sign", "new" ]
11
1
4
[ "A278041", "A385436", "A385455" ]
null
A.H.M. Smeets, Jun 29 2025
2025-07-09T10:17:21
oeisdata/seq/A385/A385455.seq
9bb2ef2b14f8c1d1da16d2b5acd31219
A385456
Triangle read by rows, formed by reading Fibonomial coefficients (A010048) mod 2.
[ "1", "1", "1", "1", "1", "1", "1", "0", "0", "1", "1", "1", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "0", "0", "0", "0", "1", "1", "1", "0", "0", "0", "0", "1", "1", "1", "1", "1", "0", "0", "0", "1", "1", "1", "1", "0", "0", "1", "0", "0", "1", "0", "0", "1", "1", "1", "0", "1", "1", "0", "1", "1", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1" ]
[ "nonn", "tabl", "new" ]
24
0
null
[ "A010048", "A047999", "A385456", "A385457", "A385458" ]
null
David Radcliffe, Jun 29 2025
2025-07-04T10:21:41
oeisdata/seq/A385/A385456.seq
70127cbeb89481f8538053296227c895
A385457
Number of odd entries in row n of the Fibonomial triangle (A010048).
[ "1", "2", "3", "2", "4", "6", "2", "4", "6", "4", "8", "12", "2", "4", "6", "4", "8", "12", "4", "8", "12", "8", "16", "24", "2", "4", "6", "4", "8", "12", "4", "8", "12", "8", "16", "24", "4", "8", "12", "8", "16", "24", "8", "16", "24", "16", "32", "48", "2", "4", "6", "4", "8", "12", "4", "8", "12", "8", "16", "24", "4", "8", "12", "8", "16", "24", "8", "16", "24", "16", "32", "48", "4", "8", "12", "8", "16" ]
[ "nonn", "new" ]
14
0
2
[ "A001316", "A010048", "A047999", "A385456", "A385457", "A385458" ]
null
David Radcliffe, Jun 29 2025
2025-07-03T03:34:59
oeisdata/seq/A385/A385457.seq
6ca207d46b16afd633ee905249849a45
A385458
Triangle read by rows: T(n,k) = exponent of the highest power of 2 dividing each Fibonomial coefficient fibonomial(n, k).
[ "0", "0", "0", "0", "0", "0", "0", "1", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "3", "3", "2", "3", "3", "0", "0", "0", "3", "2", "2", "3", "0", "0", "0", "0", "0", "2", "2", "2", "0", "0", "0", "0", "1", "1", "0", "3", "3", "0", "1", "1", "0", "0", "0", "1", "0", "0", "3", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "4", "4", "3", "4", "4", "1", "4", "4", "3", "4", "4", "0" ]
[ "nonn", "tabl", "new" ]
36
0
23
[ "A000120", "A007814", "A010048", "A065040", "A337923", "A385456", "A385457", "A385458", "A385608" ]
null
David Radcliffe, Jun 29 2025
2025-07-05T11:24:49
oeisdata/seq/A385/A385458.seq
ea2e223631dd8cd7f12de6cc7c44acbb
A385459
Consecutive internal states of the linear congruential pseudo-random number generator (3877*s + 29573) mod 139968 when started at 1.
[ "1", "33450", "104855", "85336", "132861", "49430", "53491", "121572", "91961", "63874", "65679", "65264", "135925", "31278", "82091", "9148", "84465", "115226", "122887", "11400", "137453", "76678", "18147", "121556", "29929", "30834", "40319", "2080", "115557", "6494", "12571", "58476", "132833", "80842", "65655", "112184" ]
[ "nonn", "easy", "changed" ]
9
1
2
[ "A383127", "A385365", "A385459" ]
null
Sean A. Irvine, Jun 29 2025
2025-07-06T18:21:11
oeisdata/seq/A385/A385459.seq
576c6cad1c10293628f1d8bc797e5f83
A385460
Consecutive internal states of the linear congruential pseudo-random number generator (1366*s + 150889) mod 714025 when started at 1.
[ "1", "152255", "349944", "491668", "585877", "36846", "500775", "173589", "217163", "475172", "187116", "130395", "478234", "85658", "59617", "188861", "371990", "617454", "329528", "450387", "604006", "524210", "54674", "576973", "12407", "676276", "709580", "505244", "566043", "76552", "473271", "446450", "224239", "144638" ]
[ "nonn", "easy", "changed" ]
9
1
2
[ "A385358", "A385360", "A385460" ]
null
Sean A. Irvine, Jun 29 2025
2025-07-06T18:18:26
oeisdata/seq/A385/A385460.seq
e7f01ba4e8b1c9b8752c6d06efd1681e
A385461
Consecutive internal states of the linear congruential pseudo-random number generator (8121*s + 28411) mod 134456 when started at 1.
[ "1", "36532", "94847", "116930", "88669", "97480", "121019", "84806", "54305", "23636", "107655", "61754", "11765", "108216", "46131", "63846", "59441", "51732", "103439", "109898", "125597", "18432", "65155", "67806", "83617", "79268", "122967", "38706", "1709", "58232", "48731", "68854", "123697", "50972", "116455", "130418" ]
[ "nonn", "easy", "changed" ]
9
1
2
[ "A383126", "A383127", "A385459", "A385461" ]
null
Sean A. Irvine, Jun 29 2025
2025-07-06T18:19:30
oeisdata/seq/A385/A385461.seq
badba1fe5a75de11cc22ccf55c74c9f9
A385462
Numbers t which have a proper divisor d_i(t) such that (d_i(t) + sigma(t))/t is an integer k.
[ "2", "4", "8", "10", "16", "24", "32", "44", "60", "64", "84", "128", "136", "152", "168", "184", "252", "256", "270", "336", "512", "630", "752", "756", "792", "864", "884", "924", "936", "1024", "1140", "1170", "1488", "1638", "2048", "2144", "2268", "2272", "2528", "2808", "2970", "3672", "4096", "4320", "4464", "4680", "5148", "5472", "6804", "7308", "7644", "8192", "8384" ]
[ "nonn", "new" ]
18
1
1
[ "A000005", "A000203", "A007691", "A054027", "A271816", "A364977", "A385462" ]
null
Lechoslaw Ratajczak, Jun 29 2025
2025-07-06T10:40:11
oeisdata/seq/A385/A385462.seq
6f741eba9fba08766a984352f3676cff
A385463
Consecutive internal states of the linear congruential pseudo-random number generator (7141*s + 54773) mod 259200 when started at 1.
[ "1", "61914", "246647", "97000", "149373", "119366", "197779", "13812", "190265", "10738", "11631", "167744", "151477", "110430", "149003", "69196", "148209", "101642", "120295", "92568", "122861", "13174", "40707", "180260", "104233", "219426", "111839", "101872", "207525", "144398", "103291", "231804", "115937", "76090" ]
[ "nonn", "easy", "changed" ]
9
1
2
[ "A383129", "A385358", "A385360", "A385463" ]
null
Sean A. Irvine, Jun 29 2025
2025-07-06T19:23:55
oeisdata/seq/A385/A385463.seq
bb17aa524cff6c4c7b8f4abf2625a6e2
A385464
Consecutive internal states of the linear congruential pseudo-random number generator (9301*s + 49297) mod 233280 when started at 1.
[ "1", "58598", "127215", "79852", "222509", "178626", "29563", "210920", "164697", "179614", "121031", "182628", "160645", "50042", "96339", "69856", "95153", "3030", "4447", "120284", "233181", "61618", "222635", "184152", "105289", "32846", "186423", "232660", "114677", "103914", "74371", "98768", "33825", "194182", "82319" ]
[ "nonn", "easy", "changed" ]
9
1
2
[ "A385360", "A385463", "A385464" ]
null
Sean A. Irvine, Jun 29 2025
2025-07-06T19:23:42
oeisdata/seq/A385/A385464.seq
73461ba180822f47e79ddd8f2fbe1792
A385465
Consecutive internal states of the linear congruential pseudo-random number generator (4096*s + 150889) mod 714025 when started at 1.
[ "1", "154985", "201224", "379543", "326592", "502896", "50780", "364494", "92038", "133337", "70116", "307975", "648339", "288458", "677507", "518411", "51995", "342959", "423778", "150802", "204256", "660190", "276454", "62823", "424897", "450076", "49635", "672749", "308318", "625217", "546071", "531405", "437569", "230763" ]
[ "nonn", "easy", "changed" ]
9
1
2
[ "A385358", "A385460", "A385465" ]
null
Sean A. Irvine, Jun 29 2025
2025-07-06T19:23:16
oeisdata/seq/A385/A385465.seq
cfc0c0b26435d72831c4d668182443b3
A385466
Primes that are at the end of the local maxima in the sequence of consecutive prime gaps.
[ "11", "17", "29", "37", "67", "79", "97", "107", "127", "137", "149", "191", "197", "239", "251", "277", "307", "331", "347", "367", "397", "419", "431", "439", "457", "479", "499", "521", "541", "557", "587", "631", "673", "701", "719", "751", "769", "787", "809", "821", "827", "853", "877", "907", "929", "967", "991", "1009", "1019", "1031", "1049", "1061", "1087" ]
[ "nonn", "easy", "new" ]
35
1
1
[ "A001223", "A198696", "A385466" ]
null
Emirhan Üçok, Jun 29 2025
2025-07-06T18:49:47
oeisdata/seq/A385/A385466.seq
1985e180279ebefc00cfc6f5a0ed1c00
A385467
a(n) is the number of divisors of sigma(n) that have not yet been counted in the sequence.
[ "1", "1", "2", "1", "1", "1", "1", "2", "1", "2", "0", "2", "0", "1", "0", "1", "0", "1", "2", "2", "2", "1", "0", "2", "0", "0", "1", "1", "0", "1", "0", "1", "1", "2", "0", "1", "2", "0", "0", "2", "0", "1", "3", "1", "2", "0", "0", "2", "1", "1", "0", "2", "0", "1", "0", "0", "1", "0", "0", "1", "0", "0", "2", "1", "0", "1", "3", "1", "0", "0", "0", "2", "2", "1", "0", "3", "0", "0", "0", "1", "1", "0", "0", "2", "1", "3", "0", "1" ]
[ "nonn", "easy", "new" ]
11
1
3
[ "A000005", "A000203", "A027750", "A062068", "A385467", "A385478", "A385479" ]
null
Felix Huber, Jul 01 2025
2025-07-11T09:06:20
oeisdata/seq/A385/A385467.seq
33c4cce15318b45e0211b7d266eb48a8
A385468
Expansion of e.g.f. 1/(1 - 2 * arctanh(x))^(1/2).
[ "1", "1", "3", "17", "129", "1269", "15147", "213765", "3475329", "64020585", "1317472563", "29960707545", "746086414785", "20192521440285", "590166330458715", "18525204423695565", "621571306435103745", "22199954036873457105", "840913892465144800995", "33672216851574639900705" ]
[ "nonn", "easy", "new" ]
13
0
3
[ "A001147", "A111594", "A296676", "A385376", "A385468", "A385469" ]
null
Seiichi Manyama, Jun 30 2025
2025-06-30T04:13:17
oeisdata/seq/A385/A385468.seq
716688c408f488fef7567412fd1d7bfb
A385469
Expansion of e.g.f. 1/(1 - 3 * arctanh(x))^(1/3).
[ "1", "1", "4", "30", "312", "4224", "70176", "1384032", "31590912", "819254016", "23792039424", "764912590848", "26970073390080", "1034798724320256", "42921327875788800", "1913760046417508352", "91281373260924026880", "4637755280044146032640", "250054580636566927441920", "14259891701316651909120000" ]
[ "nonn", "new" ]
11
0
3
[ "A007559", "A111594", "A296676", "A385468", "A385469" ]
null
Seiichi Manyama, Jun 30 2025
2025-06-30T10:04:06
oeisdata/seq/A385/A385469.seq
5ca8461bb75ca1b8bbef0b552535869f
A385470
Expansion of e.g.f. 1/(1 - 2 * arctanh(x)).
[ "1", "2", "8", "52", "448", "4848", "62912", "952992", "16496640", "321282816", "6952332288", "165489858048", "4297340166144", "120890184308736", "3662409013420032", "118879239686541312", "4115985952586858496", "151415632063102648320", "5897814669785134006272", "242489327746828076974080" ]
[ "nonn", "easy", "new" ]
15
0
2
[ "A111594", "A296676", "A385468", "A385470", "A385471" ]
null
Seiichi Manyama, Jun 30 2025
2025-07-04T15:15:04
oeisdata/seq/A385/A385470.seq
274411630b9a9d9a46c993fc170b90fd
A385471
Expansion of e.g.f. 1/(1 - 3 * arctanh(x)).
[ "1", "3", "18", "168", "2088", "32472", "605952", "13192848", "328268160", "9189103104", "285808290048", "9778434400512", "364965976571904", "14756982055363584", "642580290860378112", "29979230177385750528", "1491908801018949697536", "78884742832151951278080", "4416389166601900315901952" ]
[ "nonn", "easy", "new" ]
12
0
2
[ "A111594", "A296676", "A385469", "A385470", "A385471" ]
null
Seiichi Manyama, Jun 30 2025
2025-06-30T10:04:03
oeisdata/seq/A385/A385471.seq
94d22ecc7025f1d8328d94803483aa74
A385472
Expansion of e.g.f. 1/(1 - arctanh(2*x))^(1/2).
[ "1", "1", "3", "23", "201", "2529", "36027", "633975", "12445521", "282376065", "7045758003", "196111046295", "5929900611225", "195773173735905", "6950809317622635", "265652001656970615", "10828342476187312545", "470368564694268015105", "21643209863062015977315", "1053344875062427351601175" ]
[ "nonn", "easy", "new" ]
12
0
3
[ "A001147", "A111594", "A296676", "A385472", "A385473" ]
null
Seiichi Manyama, Jun 30 2025
2025-06-30T09:58:18
oeisdata/seq/A385/A385472.seq
a7d51efd91560d682366ada53d3e5b1c
A385473
Expansion of e.g.f. 1/(1 - arctanh(3*x))^(1/3).
[ "1", "1", "4", "46", "568", "10624", "218656", "5702752", "163568128", "5497133824", "201702168064", "8319367856128", "371416377318400", "18185429803469824", "955872746109276160", "54228988018125125632", "3278679608280623841280", "211600457615794941460480", "14461966051190623712051200" ]
[ "nonn", "easy", "new" ]
10
0
3
[ "A007559", "A111594", "A296676", "A385472", "A385473" ]
null
Seiichi Manyama, Jun 30 2025
2025-06-30T09:58:14
oeisdata/seq/A385/A385473.seq
b43a5aba8d986c65deb412af9290dd1c
A385477
Composite numbers whose digits are odd prime numbers.
[ "33", "35", "55", "57", "75", "77", "333", "335", "355", "357", "375", "377", "533", "535", "537", "553", "555", "573", "575", "735", "737", "753", "755", "775", "777", "3333", "3335", "3337", "3353", "3355", "3357", "3375", "3377", "3535", "3537", "3553", "3555", "3573", "3575", "3577", "3735", "3737", "3753", "3755", "3757", "3773", "3775", "3777", "5335", "5337", "5353", "5355", "5357" ]
[ "nonn", "base", "new" ]
22
1
1
[ "A061371", "A061372", "A087363", "A320062", "A385477" ]
null
Enrique Navarrete, Jun 30 2025
2025-07-08T03:05:33
oeisdata/seq/A385/A385477.seq
64d5cbad9d2c1d6f8599a276ae23824d
A385478
a(n) is the smallest divisor of sigma(n) that is not element of the union of the sets of divisors of sigma(k) for 1 <= k < n; or 0 if no such divisor exists.
[ "1", "3", "2", "7", "6", "12", "8", "5", "13", "9", "0", "14", "0", "24", "0", "31", "0", "39", "10", "21", "16", "36", "0", "30", "0", "0", "40", "56", "0", "72", "0", "63", "48", "27", "0", "91", "19", "0", "0", "45", "0", "96", "11", "84", "26", "0", "0", "62", "57", "93", "0", "49", "0", "120", "0", "0", "80", "0", "0", "168", "0", "0", "52", "127", "0", "144", "17", "126", "0", "0", "0", "65", "37" ]
[ "nonn", "easy", "new" ]
7
1
2
[ "A000005", "A000203", "A027750", "A062068", "A385467", "A385478", "A385479" ]
null
Felix Huber, Jul 01 2025
2025-07-06T18:53:54
oeisdata/seq/A385/A385478.seq
51cd4ad2f68be80b120e806668dfcece
A385479
a(n) is the cardinality of the union of the sets of divisors of sigma(k) for 1 <= k <= n.
[ "1", "2", "4", "5", "6", "7", "8", "10", "11", "13", "13", "15", "15", "16", "16", "17", "17", "18", "20", "22", "24", "25", "25", "27", "27", "27", "28", "29", "29", "30", "30", "31", "32", "34", "34", "35", "37", "37", "37", "39", "39", "40", "43", "44", "46", "46", "46", "48", "49", "50", "50", "52", "52", "53", "53", "53", "54", "54", "54", "55", "55", "55", "57", "58", "58", "59", "62", "63" ]
[ "nonn", "new" ]
11
1
2
[ "A000005", "A000203", "A027750", "A062068", "A385467", "A385478", "A385479" ]
null
Felix Huber, Jul 01 2025
2025-07-07T10:34:50
oeisdata/seq/A385/A385479.seq
1848c1dd9ce396dc97a732ecf45e0280
A385480
Sum of the orders of every automorphism group of order n.
[ "1", "1", "2", "8", "4", "8", "6", "212", "54", "24", "10", "64", "12", "48", "8", "20936", "16", "552", "18", "132", "54", "120", "22", "856", "500", "168", "11844", "216", "28", "192", "30", "10047248", "20", "288", "24", "2856", "36", "360", "180", "2128", "40", "468", "42", "520", "216", "528", "46", "61696", "2058", "13080", "32", "876", "52", "320400", "150", "3960" ]
[ "nonn", "new" ]
7
1
3
[ "A137316", "A385480" ]
null
Miles Englezou, Jun 30 2025
2025-07-04T01:24:57
oeisdata/seq/A385/A385480.seq
e3d06b013eedc2b135bd7908f9cb6c41
A385481
Primes whose decimal expansion consists of the concatenation of ij, iijj, iiijjj,..., and m i’s followed by m j’s, i != j, where 1<= i, j <= 9 and m > 0.
[ "13", "17", "19", "23", "29", "31", "37", "41", "43", "47", "53", "59", "61", "67", "71", "73", "79", "83", "89", "97", "31331133311133331111", "37337733377733337777", "43443344433344443333", "49449944499944449999" ]
[ "nonn", "base", "new" ]
20
1
1
[ "A034845", "A059170", "A385481" ]
null
Gonzalo Martínez, Jun 30 2025
2025-07-05T16:41:59
oeisdata/seq/A385/A385481.seq
0caacb851fa6426e2a02469da2d12840
A385482
a(n) is the least number k such that k*n is a binary Niven number (A049445).
[ "1", "1", "2", "1", "2", "1", "3", "1", "2", "1", "5", "1", "10", "3", "4", "1", "2", "1", "12", "1", "1", "3", "3", "1", "12", "5", "3", "3", "4", "2", "5", "1", "2", "1", "12", "1", "5", "6", "4", "1", "5", "1", "4", "3", "4", "2", "12", "1", "12", "6", "4", "3", "4", "2", "1", "3", "4", "2", "5", "1", "6", "5", "2", "1", "2", "1", "12", "1", "1", "6", "4", "1", "6", "3", "4", "3", "4", "2", "5", "1", "1", "3", "4", "1", "4" ]
[ "nonn", "easy", "base", "new" ]
12
1
3
[ "A049445", "A144261", "A363788", "A385482", "A385483", "A385484", "A385485" ]
null
Amiram Eldar, Jun 30 2025
2025-07-01T10:14:08
oeisdata/seq/A385/A385482.seq
2f5ad662eca21b08d617185e35c57390
A385483
Where records occur in A385482.
[ "1", "3", "7", "11", "13", "19", "103", "391", "1811", "3589", "5147", "6683", "21883", "46159", "64133", "149839", "151013", "318377", "650543", "1279211", "42559939", "43120271", "55201423", "198069181", "265237811", "929670011", "930260173", "1879562281", "3320654641", "5390681357", "52883996713", "78842843063", "250434427519" ]
[ "nonn", "base", "new" ]
8
1
2
[ "A049445", "A144364", "A385482", "A385483", "A385484", "A385486" ]
null
Amiram Eldar, Jun 30 2025
2025-07-01T01:10:47
oeisdata/seq/A385/A385483.seq
46200c5f75df9f13910327a83d9cb7f3
A385484
Records in A385482.
[ "1", "2", "3", "5", "10", "12", "42", "84", "88", "90", "99", "130", "165", "184", "187", "209", "221", "252", "299", "434", "450", "459", "486", "525", "555", "611", "675", "702", "726", "858", "899", "975", "984", "1034", "1036", "1104", "1107", "1197", "1275", "1357" ]
[ "nonn", "base", "more", "new" ]
6
1
2
[ "A049445", "A144363", "A385482", "A385483", "A385484", "A385487" ]
null
Amiram Eldar, Jun 30 2025
2025-07-01T01:10:43
oeisdata/seq/A385/A385484.seq
4f82b4969ef16c2923d6b7c329cabde3
A385485
a(n) is the least number k such that k*n is not a binary Niven number (A049445).
[ "3", "7", "1", "7", "1", "5", "1", "7", "1", "3", "1", "29", "1", "1", "1", "7", "1", "3", "1", "5", "3", "1", "1", "29", "1", "1", "1", "1", "1", "1", "1", "7", "1", "3", "1", "13", "1", "1", "1", "5", "1", "5", "1", "1", "1", "1", "1", "29", "1", "1", "1", "1", "1", "1", "3", "1", "1", "1", "1", "17", "1", "1", "1", "7", "1", "3", "1", "7", "3", "1", "1", "13", "1", "1", "1", "1", "1", "1", "1", "5", "3", "1", "1", "17", "1" ]
[ "nonn", "easy", "base", "new" ]
13
1
1
[ "A000120", "A049445", "A065878", "A144262", "A385482", "A385485", "A385486", "A385487" ]
null
Amiram Eldar, Jun 30 2025
2025-07-01T10:14:05
oeisdata/seq/A385/A385485.seq
2fd93cfec566a389722a8873906c3329
A385486
Where records occur in A385485.
[ "1", "2", "12", "126", "252", "504", "2040", "4080", "16380", "32760", "65520", "524286", "1048572", "4194300", "8388600", "134217720", "268435440", "7516192740", "10737418230", "21474836460", "137438953440", "274877906880", "274877906940", "549755813880" ]
[ "nonn", "base", "more", "new" ]
10
1
2
[ "A049445", "A144376", "A385483", "A385485", "A385486", "A385487" ]
null
Amiram Eldar, Jun 30 2025
2025-07-02T22:34:47
oeisdata/seq/A385/A385486.seq
3c92bab5c23cd32ae847f69125a28f8f
A385487
Records in A385485.
[ "3", "7", "29", "65", "69", "81", "257", "259", "4097", "4113", "4129", "262145", "262149", "1048577", "1048583", "16777217", "16777219", "38347927", "214748365", "214748369", "4294967297", "4294967299", "68719476737", "68719476769" ]
[ "nonn", "base", "more", "new" ]
10
1
1
[ "A049445", "A144375", "A385484", "A385485", "A385486", "A385487" ]
null
Amiram Eldar, Jun 30 2025
2025-07-02T22:34:17
oeisdata/seq/A385/A385487.seq
53e5575970df4dab4120f8f29be3f934