sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-14 02:38:35
filename
stringlengths
29
29
hash
stringlengths
32
32
A385611
Numbers that can be written as s^w + t^x + u^y + v^z with 1 < s < t < u and {s,t,u,v} = {w,x,y,z} (the sequence of exponents can be any permutation of s,t,u,v).
[ "202", "245", "254", "322", "340", "348", "377", "383", "400", "422", "460", "465", "468", "532", "545", "548", "568", "603", "628", "688", "700", "730", "736", "738", "739", "845", "865", "876", "892", "922", "936", "961", "977", "1002", "1029", "1033", "1036", "1092", "1122", "1138", "1174", "1205", "1234", "1236", "1265", "1269", "1338", "1403", "1407", "1433" ]
[ "nonn", "new" ]
18
1
1
[ "A001597", "A385232", "A385233", "A385611" ]
null
Jean-Marc Rebert, Jul 04 2025
2025-07-08T22:11:20
oeisdata/seq/A385/A385611.seq
2bbf5281d82089b4e65246ba5d594667
A385612
Decimal expansion zeta''''(0) (negated).
[ "2", "3", "9", "9", "7", "1", "0", "3", "1", "8", "8", "0", "1", "3", "7", "0", "7", "9", "5", "8", "9", "8", "7", "2", "1", "9", "5", "2", "7", "7", "4", "1", "0", "0", "5", "6", "6", "1", "8", "9", "1", "1", "3", "9", "9", "3", "4", "9", "2", "1", "7", "0", "3", "4", "2", "4", "9", "7", "6", "0", "0", "9", "3", "3", "3", "0", "4", "6", "3", "8", "2", "9", "3", "8", "6", "3", "3", "4", "4", "9", "9", "1", "3", "8", "2", "8", "6", "1", "8", "2", "2", "7", "5", "7", "8", "1", "3", "3", "4", "6", "9", "4", "9", "0", "3" ]
[ "nonn", "cons", "new" ]
26
2
1
[ "A001620", "A061444", "A075700", "A082633", "A086279", "A086280", "A257549", "A261508", "A385612" ]
null
Artur Jasinski, Jul 04 2025
2025-07-05T09:59:11
oeisdata/seq/A385/A385612.seq
66be226d45c3506e3dfc4435e8e9beb2
A385614
Numbers of the form x^x + y^y, 1 < x < y.
[ "31", "260", "283", "3129", "3152", "3381", "46660", "46683", "46912", "49781", "823547", "823570", "823799", "826668", "870199", "16777220", "16777243", "16777472", "16780341", "16823872", "17600759", "387420493", "387420516", "387420745", "387423614", "387467145", "388244032", "404197705", "10000000004" ]
[ "nonn", "easy", "new" ]
26
1
1
[ "A000312", "A173054", "A385232", "A385614" ]
null
Sean A. Irvine, Jul 04 2025
2025-07-06T06:38:22
oeisdata/seq/A385/A385614.seq
d006b686ec0a1c339966fcadd36b8bf2
A385615
Star numbers corresponding to the point numbers in A385330.
[ "1", "2", "2", "3", "2", "3", "3", "4", "2", "4", "3", "4", "2", "3", "4", "5", "3", "4", "2", "5", "4", "5", "3", "5", "4", "2", "3", "5", "6", "4", "5", "6", "3", "4", "6", "2", "5", "6", "4", "5", "3", "6", "5", "4", "6", "7", "2", "3", "5", "7", "6", "4", "7", "5", "6", "3", "7", "4", "6", "2", "5", "7", "6", "4", "7", "5", "3", "6", "7", "8", "5", "4", "6", "7", "2", "8", "3", "5", "8", "7", "6", "4", "8", "7", "5", "6", "8" ]
[ "nonn", "tabf", "new" ]
6
1
2
[ "A385330", "A385615" ]
null
Sean A. Irvine and Tamas Sandor Nagy, Jul 08 2025
2025-07-09T05:32:05
oeisdata/seq/A385/A385615.seq
50bd2dcee185476b7016a0e8a69a31b7
A385617
G.f. A(x) satisfies A(x) = 1/( 1 - x*(A(x) + A(2*x)) ).
[ "1", "2", "10", "82", "1062", "22646", "846570", "58644858", "7808479582", "2038568219422", "1054007965984050", "1084591195956246130", "2226674324358059364150", "9131600163886719149539590", "74851744440590132840318820090", "1226745312860243142951267683147178", "40204124737879503807503331117931168974" ]
[ "nonn", "new" ]
14
0
2
[ "A000051", "A015083", "A047749", "A385617", "A385618", "A385622" ]
null
Seiichi Manyama, Jul 05 2025
2025-07-05T09:16:52
oeisdata/seq/A385/A385617.seq
ca0f0e4b1c29f5b0762be568d1d6da82
A385618
G.f. A(x) satisfies A(x) = 1/( 1 - x*(A(2*x) + A(3*x)) ).
[ "1", "2", "14", "230", "9014", "913334", "254986934", "203241812630", "471322195238102", "3214892041613961206", "64937611960188470964662", "3901256965326759127330935830", "699101347969640933511109922382422", "374397435055450676411068538643233721206", "599979003238812649083869782544110463986119734" ]
[ "nonn", "new" ]
13
0
2
[ "A007689", "A015083", "A015084", "A047749", "A385617", "A385618" ]
null
Seiichi Manyama, Jul 05 2025
2025-07-05T09:58:48
oeisdata/seq/A385/A385618.seq
405a594a3927b31d71af76475379902c
A385619
E.g.f. A(x) satisfies A(x) = exp( x*(A(x) + A(2*x)) ).
[ "1", "2", "16", "320", "14176", "1363872", "288285760", "135499302976", "142083696478720", "331241746024775168", "1705949708332396248064", "19272264281263882812337152", "474329882865823082358501265408", "25275628582523724268037232839274496", "2899873213836728319564120809900380069888" ]
[ "nonn", "new" ]
11
0
2
[ "A385617", "A385619" ]
null
Seiichi Manyama, Jul 05 2025
2025-07-05T09:29:23
oeisdata/seq/A385/A385619.seq
d9b00521ef16d9f6339e4555c6d24861
A385620
E.g.f. A(x) satisfies A(x) = exp( x*(A(2*x) + A(3*x)) ).
[ "1", "2", "24", "1064", "158144", "78427712", "130391102464", "725657074158592", "13450842239318679552", "825492067428121929359360", "166724642619378284453845213184", "110175812687250637947409895640473600", "236918101449618886434191300434062010777600", "1649425480856495624442166311045759714226010423296" ]
[ "nonn", "new" ]
13
0
2
[ "A058014", "A096538", "A385526", "A385620" ]
null
Seiichi Manyama, Jul 05 2025
2025-07-05T09:59:02
oeisdata/seq/A385/A385620.seq
875563473c842a7445ffbbeea7f38f18
A385621
E.g.f. A(x) satisfies A(x) = exp( x*(A(x) + A(3*x))/2 ).
[ "1", "1", "5", "88", "5301", "1115376", "823422553", "2109689685664", "18480955532693321", "545890697425512822016", "53732023859661557312932461", "17451409191554766719804179944960", "18549102840350232594174973144785505021", "64075761168350693656591055399719635872352256", "715103564008507527975398262955305194708318040264449" ]
[ "nonn", "new" ]
12
0
3
[ "A007051", "A385621", "A385622" ]
null
Seiichi Manyama, Jul 05 2025
2025-07-05T09:58:53
oeisdata/seq/A385/A385621.seq
ed794ed33ea8c3d57431288846c25e51
A385622
G.f. A(x) satisfies A(x) = 1/( 1 - x*(A(x) + A(3*x))/2 ).
[ "1", "1", "3", "20", "321", "13847", "1718124", "630600310", "691143519765", "2269026118814651", "22336295204505116859", "659523795328845920952570", "58417979762116119140729740620", "15523000838307934869469597031994180", "12374377440444177691000805646758968904928", "29593162781962095695448333383964939013238970030" ]
[ "nonn", "new" ]
13
0
3
[ "A007051", "A385617", "A385621", "A385622" ]
null
Seiichi Manyama, Jul 05 2025
2025-07-05T09:58:49
oeisdata/seq/A385/A385622.seq
8aeb0bc94aeca559594e46f37a97e887
A385623
Array read by ascending antidiagonals: A(n,k) is the number obtained by concatenation of n with k in that order, with k >= 0.
[ "0", "10", "1", "20", "11", "2", "30", "21", "12", "3", "40", "31", "22", "13", "4", "50", "41", "32", "23", "14", "5", "60", "51", "42", "33", "24", "15", "6", "70", "61", "52", "43", "34", "25", "16", "7", "80", "71", "62", "53", "44", "35", "26", "17", "8", "90", "81", "72", "63", "54", "45", "36", "27", "18", "9", "100", "91", "82", "73", "64", "55", "46", "37", "28", "19", "10", "110", "101", "92", "83", "74", "65", "56", "47", "38", "29", "110", "11" ]
[ "nonn", "base", "easy", "look", "tabl", "new" ]
17
0
2
[ "A001477", "A008592", "A017281", "A017293", "A017305", "A017317", "A017329", "A017341", "A017353", "A017365", "A017377", "A020338", "A055642", "A385623", "A385624" ]
null
Stefano Spezia, Jul 05 2025
2025-07-11T15:37:30
oeisdata/seq/A385/A385623.seq
4c97d4c1674f4cbeb4a7b3a40e4a2d0d
A385624
Antidiagonal sums of the array defined in A385623.
[ "0", "11", "33", "66", "110", "165", "231", "308", "396", "495", "605", "816", "1128", "1541", "2055", "2670", "3386", "4203", "5121", "6140", "7260", "8481", "9803", "11226", "12750", "14375", "16101", "17928", "19856", "21885", "24015", "26246", "28578", "31011", "33545", "36180", "38916", "41753", "44691", "47730", "50870", "54111", "57453", "60896" ]
[ "nonn", "base", "new" ]
12
0
2
[ "A385623", "A385624" ]
null
Stefano Spezia, Jul 05 2025
2025-07-09T23:50:50
oeisdata/seq/A385/A385624.seq
040709216e6fdab4424fa15c2a697a73
A385625
Sum of the divisors d of n with an odd number of primes not exceeding d.
[ "0", "2", "0", "2", "5", "8", "0", "2", "0", "7", "11", "20", "0", "2", "5", "2", "17", "26", "0", "7", "0", "13", "23", "44", "30", "28", "27", "30", "0", "13", "31", "34", "44", "53", "40", "74", "0", "2", "0", "7", "41", "50", "0", "13", "5", "25", "47", "92", "49", "82", "68", "80", "0", "53", "16", "30", "0", "2", "59", "85", "0", "33", "0", "34", "5", "52", "67", "121", "92", "112", "0", "98", "73", "76", "105", "78", "88", "112", "0", "7", "27", "43", "83", "174", "107", "88", "87", "101", "0", "31", "0", "25", "31", "49", "5", "124", "97", "149" ]
[ "nonn", "easy", "new" ]
11
1
2
[ "A000203", "A000720", "A071986", "A345219", "A385625", "A385628" ]
null
Wesley Ivan Hurt, Jul 05 2025
2025-07-05T09:36:13
oeisdata/seq/A385/A385625.seq
c91cae111acf4ccb26ecafd7548b65dc
A385626
Table read by rows: T(n, k) = binomial(n, k) * fibonomial(n, k).
[ "1", "1", "1", "1", "2", "1", "1", "6", "6", "1", "1", "12", "36", "12", "1", "1", "25", "150", "150", "25", "1", "1", "48", "600", "1200", "600", "48", "1", "1", "91", "2184", "9100", "9100", "2184", "91", "1", "1", "168", "7644", "61152", "127400", "61152", "7644", "168", "1", "1", "306", "25704", "389844", "1559376", "1559376", "389844", "25704", "306", "1" ]
[ "nonn", "tabl", "new" ]
9
0
5
[ "A003266", "A007318", "A010048", "A385626", "A385630" ]
null
Peter Luschny, Jul 05 2025
2025-07-05T09:58:36
oeisdata/seq/A385/A385626.seq
e1dc6f5621bfd58fb6863b44d8048180
A385627
Table read by rows: T(n, k) = (binomial(n, k) * fibonomial(n, k)) mod 2.
[ "1", "1", "1", "1", "0", "1", "1", "0", "0", "1", "1", "0", "0", "0", "1", "1", "1", "0", "0", "1", "1", "1", "0", "0", "0", "0", "0", "1", "1", "1", "0", "0", "0", "0", "1", "1", "1", "0", "0", "0", "0", "0", "0", "0", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "1", "1", "1", "0", "0", "0", "0", "1", "1", "1", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1" ]
[ "nonn", "tabl", "new" ]
10
0
null
[ "A007318", "A010048", "A047999", "A385395", "A385456", "A385626", "A385627", "A385630" ]
null
Peter Luschny, Jul 06 2025
2025-07-07T03:18:42
oeisdata/seq/A385/A385627.seq
ba8eb06436dd1e25b17e9ccb43a072db
A385628
Sum of the divisors d of n with an even number of primes not exceeding d.
[ "1", "1", "4", "5", "1", "4", "8", "13", "13", "11", "1", "8", "14", "22", "19", "29", "1", "13", "20", "35", "32", "23", "1", "16", "1", "14", "13", "26", "30", "59", "1", "29", "4", "1", "8", "17", "38", "58", "56", "83", "1", "46", "44", "71", "73", "47", "1", "32", "8", "11", "4", "18", "54", "67", "56", "90", "80", "88", "1", "83", "62", "63", "104", "93", "79", "92", "1", "5", "4", "32", "72", "97", "1", "38", "19", "62", "8", "56", "80", "179", "94", "83", "1", "50", "1", "44", "33", "79", "90", "203", "112", "143", "97", "95", "115" ]
[ "nonn", "easy", "new" ]
8
1
3
[ "A000203", "A000720", "A131377", "A345220", "A385625", "A385628" ]
null
Wesley Ivan Hurt, Jul 05 2025
2025-07-05T09:36:40
oeisdata/seq/A385/A385628.seq
49781a2f895854050018b7ba3a008414
A385630
a(n) = n! * Prod_{k=1..n} Fibonacci(k).
[ "1", "1", "2", "12", "144", "3600", "172800", "15724800", "2641766400", "808380518400", "444609285120000", "435272490132480000", "752150862948925440000", "2278264963872295157760000", "12024682479317973842657280000", "110025844685759460660314112000000", "1737528139277513402747680456704000000" ]
[ "nonn", "new" ]
8
0
3
[ "A000045", "A000142", "A003266", "A385630" ]
null
Peter Luschny, Jul 05 2025
2025-07-05T09:58:42
oeisdata/seq/A385/A385630.seq
4b12d372cdcb4a26dd9fea3a63880ed3
A385631
Products of five consecutive integers whose prime divisors are consecutive primes starting at 2.
[ "120", "720", "2520", "6720", "15120", "30240", "55440", "240240", "360360" ]
[ "nonn", "fini", "full", "new" ]
8
1
1
[ "A052787", "A055932", "A217056", "A385189", "A385415", "A385631" ]
null
Ken Clements, Jul 05 2025
2025-07-09T16:36:07
oeisdata/seq/A385/A385631.seq
b4e82280c59a8450d6ad4f23d087af61
A385633
a(n) = a(n-1) + a(n-3), with a(0) = 1, a(1) = 4, a(2) = 8.
[ "1", "4", "8", "9", "13", "21", "30", "43", "64", "94", "137", "201", "295", "432", "633", "928", "1360", "1993", "2921", "4281", "6274", "9195", "13476", "19750", "28945", "42421", "62171", "91116", "133537", "195708", "286824", "420361", "616069", "902893", "1323254", "1939323", "2842216", "4165470", "6104793", "8947009", "13112479", "19217272" ]
[ "nonn", "easy", "new" ]
15
0
2
[ "A000930", "A179070", "A385633" ]
null
Greg Dresden and Saim Usmani, Jul 05 2025
2025-07-09T22:14:59
oeisdata/seq/A385/A385633.seq
5eaed7082e3759d2fb9a282b5d78c515
A385634
Period 8: repeat [1, 3, 7, 2, 6, 5, 4, 8].
[ "1", "3", "7", "2", "6", "5", "4", "8", "1", "3", "7", "2", "6", "5", "4", "8", "1", "3", "7", "2", "6", "5", "4", "8", "1", "3", "7", "2", "6", "5", "4", "8", "1", "3", "7", "2", "6", "5", "4", "8", "1", "3", "7", "2", "6", "5", "4", "8", "1", "3", "7", "2", "6", "5", "4", "8", "1", "3", "7", "2", "6", "5", "4", "8", "1", "3", "7", "2", "6", "5", "4", "8", "1", "3", "7", "2", "6", "5", "4", "8", "1", "3", "7", "2", "6", "5", "4", "8" ]
[ "nonn", "easy", "new" ]
27
0
2
[ "A385491", "A385634" ]
null
Christopher W Moriarty, Jul 05 2025
2025-07-13T11:08:59
oeisdata/seq/A385/A385634.seq
cb5f7379f9daf70565cf47ae0e1baccb
A385635
G.f. satisfies A(x) = x + Product_{n>=2} A(x^n) with A(0) = 1.
[ "1", "1", "1", "1", "2", "2", "4", "4", "8", "8", "13", "15", "26", "26", "41", "48", "73", "80", "119", "136", "198", "225", "313", "367", "518", "585", "797", "941", "1264", "1466", "1953", "2285", "3022", "3524", "4571", "5391", "6993", "8152", "10440", "12316", "15684", "18370", "23236", "27327", "34389", "40364", "50370", "59292", "73880", "86547", "107080", "125976", "155266", "182058" ]
[ "nonn", "new" ]
9
0
5
[ "A129374", "A129375", "A385635" ]
null
Paul D. Hanna, Jul 05 2025
2025-07-06T05:08:02
oeisdata/seq/A385/A385635.seq
acada605003d3e9103f9a1cd45accbcf
A385636
Numbers k where sin(sqrt(k)) reaches successive record high values.
[ "0", "1", "2", "60", "61", "62", "200", "417", "2687", "1536009", "57157270", "81436635", "143005063" ]
[ "nonn", "more", "new" ]
15
1
3
[ "A046959", "A046964", "A046965", "A385636" ]
null
Artur Jasinski, Jul 05 2025
2025-07-13T00:53:24
oeisdata/seq/A385/A385636.seq
e39833834a6a310529d08280296a25de
A385640
Numbers k such that the sum of the digits of k divides k and the sum of the digits of k^2 divides k^2.
[ "1", "2", "3", "6", "9", "10", "12", "18", "20", "21", "24", "30", "36", "42", "45", "48", "54", "60", "63", "72", "80", "84", "90", "100", "102", "108", "110", "111", "112", "117", "120", "126", "132", "140", "144", "150", "156", "162", "180", "190", "198", "200", "201", "204", "207", "210", "216", "220", "234", "240", "243", "252", "264", "270", "288", "300", "306", "315" ]
[ "nonn", "base", "easy", "new" ]
21
1
2
[ "A005349", "A007953", "A385640", "A385656" ]
null
Vighnesh Patil, Jul 05 2025
2025-07-09T10:13:31
oeisdata/seq/A385/A385640.seq
e87d35ab3952cac6f00e7f2f06e8d4de
A385642
G.f. A(x) satisfies 2*(1-x) = Sum_{n=-oo..+oo} (x - A(x)^n)^(n+1) * (A(x) - x^n)^(n+1).
[ "1", "1", "1", "2", "4", "8", "13", "35", "86", "191", "447", "1103", "2810", "6974", "17471", "44795", "115279", "296474", "763834", "1981967", "5164628", "13473784", "35236723", "92443470", "243157407", "640688394", "1691077318", "4472493065", "11849608512", "31441695581", "83545685025", "222309673546", "592337513731", "1580160709355", "4220133780310" ]
[ "nonn", "new" ]
9
1
4
null
null
Paul D. Hanna, Jul 05 2025
2025-07-06T05:18:24
oeisdata/seq/A385/A385642.seq
b2231157e36c8829acdaa6fdc2d542df
A385643
Galileo sequence with ratio k = 5: a(1) = 1, a(2) = k, a(2*n-1) = floor(((k + 1)*a(n) -1)/2), and a(2*n) = floor((k + 1)*a(n)/2) + 1 for n > 2.
[ "1", "5", "14", "16", "41", "43", "47", "49", "122", "124", "128", "130", "140", "142", "146", "148", "365", "367", "371", "373", "383", "385", "389", "391", "419", "421", "425", "427", "437", "439", "443", "445", "1094", "1096", "1100", "1102", "1112", "1114", "1118", "1120", "1148", "1150", "1154", "1156", "1166", "1168", "1172", "1174", "1256", "1258", "1262" ]
[ "nonn", "easy", "look", "new" ]
8
1
2
[ "A005408", "A037861", "A385587", "A385610", "A385643" ]
null
Stefano Spezia, Jul 06 2025
2025-07-09T18:57:56
oeisdata/seq/A385/A385643.seq
d86f7ea728434d8ded4ff9351804244e
A385644
Swap multiplication and exponentiation in the canonical prime factorization of n.
[ "2", "3", "4", "5", "8", "7", "6", "6", "32", "11", "64", "13", "128", "243", "8", "17", "64", "19", "1024", "2187", "2048", "23", "216", "10", "8192", "9", "16384", "29", "14134776518227074636666380005943348126619871175004951664972849610340958208", "31", "10", "177147", "131072", "78125", "4096", "37", "524288", "1594323", "7776", "41" ]
[ "nonn", "new" ]
32
2
1
[ "A000026", "A001414", "A005361", "A008474", "A385644" ]
null
Jens Ahlström, Jul 06 2025
2025-07-12T08:37:06
oeisdata/seq/A385/A385644.seq
6568c07944b031a7394a04f31d27a0c9
A385647
Decimal expansion of 1 - log(2)/2.
[ "6", "5", "3", "4", "2", "6", "4", "0", "9", "7", "2", "0", "0", "2", "7", "3", "4", "5", "2", "9", "1", "3", "8", "3", "9", "3", "9", "2", "7", "0", "9", "1", "1", "7", "1", "5", "9", "6", "2", "2", "4", "9", "9", "3", "2", "8", "1", "9", "8", "7", "2", "3", "7", "2", "9", "3", "9", "6", "5", "9", "9", "9", "5", "2", "5", "3", "3", "0", "3", "1", "8", "9", "0", "1", "5", "1", "5", "2", "6", "4", "2", "1", "9", "7", "0", "6", "8", "3", "3", "6" ]
[ "nonn", "cons", "easy", "new" ]
19
0
1
[ "A002162", "A091651", "A382854", "A385647" ]
null
Paolo Xausa, Jul 06 2025
2025-07-07T11:53:53
oeisdata/seq/A385/A385647.seq
35f9254dbaec743068f83e810a2847ee
A385648
G.f. A(x) satisfies A(x) = 1/( 1 - x*(A(x) + A(2*x))^2 ).
[ "1", "4", "64", "1872", "91328", "7563648", "1115422976", "306988895488", "162926170881024", "169827391985854464", "350891899856754294784", "1443597302250006622052352", "11851990053153536620868173824", "194396568906445310993071164686336", "6373487768490075927307409156798611456" ]
[ "nonn", "new" ]
10
0
2
[ "A171192", "A385617", "A385648", "A385649", "A385650" ]
null
Seiichi Manyama, Jul 06 2025
2025-07-06T10:39:39
oeisdata/seq/A385/A385648.seq
31f0a8a4d887e25f2380bdd167fcb2fe
A385649
G.f. A(x) satisfies A(x) = 1/( 1 - x*(A(x) + A(2*x))^3 ).
[ "1", "8", "352", "29696", "4263424", "1049470976", "462206058496", "380751228633088", "605491779706159104", "1892234112450731442176", "11725274627114715154743296", "144692808471111027067403108352", "3563512028948515548768609167736832", "175339259291213196115801459160952864768" ]
[ "nonn", "new" ]
10
0
2
[ "A171193", "A385617", "A385648", "A385649", "A385651" ]
null
Seiichi Manyama, Jul 06 2025
2025-07-06T10:39:35
oeisdata/seq/A385/A385649.seq
57f9068876ff30d7ceaef84cd9e96acb
A385650
E.g.f. A(x) satisfies A(x) = exp( x*(A(x) + A(2*x))^2 ).
[ "1", "4", "112", "8800", "1586944", "624664064", "536747751424", "1018102925488128", "4288756843049058304", "40076190507961751044096", "826422665125748814526283776", "37363126329930414708850363990016", "3679235193626553722088195031035805696", "784317990902751658071943156321585144528896" ]
[ "nonn", "new" ]
10
0
2
[ "A168600", "A385619", "A385648", "A385650", "A385651" ]
null
Seiichi Manyama, Jul 06 2025
2025-07-06T10:39:49
oeisdata/seq/A385/A385650.seq
ba52d74dec2ef9b3458565e0686b068a
A385651
E.g.f. A(x) satisfies A(x) = exp( x*(A(x) + A(2*x))^3 ).
[ "1", "8", "640", "150272", "81879040", "97446821888", "252536538529792", "1441194498488532992", "18238881125752291459072", "511646632486244583515095040", "31662959021226253504069431721984", "4295217009165735294411016058313900032", "1268984197722535033624735101886101792489472" ]
[ "nonn", "new" ]
11
0
2
[ "A168601", "A385619", "A385649", "A385650", "A385651" ]
null
Seiichi Manyama, Jul 06 2025
2025-07-06T10:39:42
oeisdata/seq/A385/A385651.seq
59985c2540ad240e55d6c28d75147f71
A385652
Maximum frequency of gpf(k) for 2 <= k <= n, where gpf(k) = A006530(k) is the greatest prime factor of k.
[ "1", "1", "2", "2", "2", "2", "3", "3", "3", "3", "4", "4", "4", "4", "4", "4", "5", "5", "5", "5", "5", "5", "6", "6", "6", "7", "7", "7", "7", "7", "7", "7", "7", "7", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "9", "9", "9", "9", "9", "9", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "11", "11", "11", "11", "11", "11", "11", "11", "12" ]
[ "nonn", "new" ]
12
2
3
[ "A006530", "A078899", "A385503", "A385652", "A385653", "A385654" ]
null
Pontus von Brömssen, Jul 06 2025
2025-07-13T19:21:22
oeisdata/seq/A385/A385652.seq
16c07f61897685f7bb754c9f275ac056
A385653
Least k such that A385652(k) = n.
[ "2", "4", "8", "12", "18", "24", "27", "36", "48", "54", "72", "80", "90", "100", "120", "125", "135", "150", "160", "180", "196", "210", "224", "245", "252", "280", "294", "315", "336", "343", "350", "378", "392", "420", "441", "448", "490", "504", "525", "560", "567", "588", "630", "672", "686", "700", "735", "756", "784", "840", "875", "882", "896", "945", "980" ]
[ "nonn", "new" ]
11
1
1
[ "A006530", "A078899", "A289662", "A385503", "A385652", "A385653", "A385654" ]
null
Pontus von Brömssen, Jul 06 2025
2025-07-13T19:21:52
oeisdata/seq/A385/A385653.seq
853a5d27ddd1b3940833a2ba2c26b69f
A385654
Greatest prime factor of A385653(n).
[ "2", "2", "2", "3", "3", "3", "3", "3", "3", "3", "3", "5", "5", "5", "5", "5", "5", "5", "5", "5", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "13", "13", "13", "13", "13", "7", "13", "13", "13", "13", "13", "13" ]
[ "nonn", "new" ]
9
1
1
[ "A006530", "A289662", "A385503", "A385652", "A385653", "A385654" ]
null
Pontus von Brömssen, Jul 06 2025
2025-07-13T19:22:01
oeisdata/seq/A385/A385654.seq
b4c0e91d073c810d39ccb7fa60c7279d
A385656
Numbers k such that the sum of the decimal digits of k^2 divides k^2.
[ "1", "2", "3", "6", "9", "10", "12", "15", "18", "20", "21", "24", "30", "36", "39", "42", "45", "48", "49", "51", "52", "54", "60", "63", "65", "66", "68", "72", "78", "80", "84", "88", "90", "96", "100", "102", "104", "105", "108", "110", "111", "112", "117", "120", "126", "132", "138", "140", "144", "148", "150", "156", "162", "168", "174", "180", "182", "190", "198", "200", "201", "204", "207" ]
[ "nonn", "base", "easy", "new" ]
25
1
2
[ "A005349", "A007953", "A034706", "A118547", "A385640", "A385656" ]
null
Vighnesh Patil, Jul 06 2025
2025-07-09T16:50:05
oeisdata/seq/A385/A385656.seq
18ea89033f039855f4cbc9f577aca515
A385659
Decimal expansion of log_10(1 + 1/3).
[ "1", "2", "4", "9", "3", "8", "7", "3", "6", "6", "0", "8", "2", "9", "9", "9", "5", "3", "1", "3", "2", "4", "4", "9", "8", "8", "6", "1", "9", "3", "8", "7", "0", "7", "4", "4", "3", "3", "6", "2", "5", "0", "8", "9", "8", "7", "3", "3", "5", "2", "1", "2", "1", "7", "7", "9", "0", "9", "8", "9", "2", "8", "1", "9", "4", "8", "9", "8", "7", "2", "2", "5", "7", "6", "5", "1", "8", "7", "8", "9", "5", "9", "3", "0", "8", "8", "6" ]
[ "nonn", "cons", "easy", "new" ]
24
0
2
[ "A007524", "A104140", "A154203", "A154580", "A385659" ]
null
Marco Ripà, Jul 06 2025
2025-07-13T11:08:48
oeisdata/seq/A385/A385659.seq
7b115d9961d1bcbe6023367dfc8e00c6
A385684
Numbers k such that (38^k - 3^k)/35 is prime.
[ "2", "3", "19", "101", "229", "1031", "2393", "3121", "4021" ]
[ "nonn", "hard", "more", "new" ]
4
1
1
[ "A062587", "A062589", "A127996", "A127997", "A128344", "A204940", "A217320", "A225807", "A229542", "A375161", "A375236", "A377031", "A385684" ]
null
Robert Price, Jul 06 2025
2025-07-10T23:18:23
oeisdata/seq/A385/A385684.seq
f7b9d12bd082008f165127c280cf93fd
A385685
Sequence where k is appended after every k! occurrences of 1, with multiple values following a 1 listed in order.
[ "1", "1", "2", "1", "1", "2", "1", "1", "2", "3", "1", "1", "2", "1", "1", "2", "1", "1", "2", "3", "1", "1", "2", "1", "1", "2", "1", "1", "2", "3", "1", "1", "2", "1", "1", "2", "1", "1", "2", "3", "4", "1", "1", "2", "1", "1", "2", "1", "1", "2", "3", "1", "1", "2", "1", "1", "2", "1", "1", "2", "3", "1", "1", "2", "1", "1", "2", "1", "1", "2", "3", "1", "1", "2", "1", "1", "2", "1", "1", "2", "3", "4", "1", "1", "2", "1", "1", "2", "1", "1", "2", "3" ]
[ "nonn", "new" ]
17
0
3
[ "A000142", "A382093", "A385685", "A385686" ]
null
Jwalin Bhatt, Jul 06 2025
2025-07-12T08:34:13
oeisdata/seq/A385/A385685.seq
05c134d700c21ecbb62534705ba3b949
A385686
Decimal expansion of exp((Sum_{k>=2} log(k)/k!)/(e-1)).
[ "1", "4", "2", "1", "0", "3", "7", "9", "5", "9", "7", "3", "1", "9", "6", "0", "7", "1", "5", "3", "3", "7", "8", "1", "4", "4", "8", "9", "0", "5", "9", "2", "8", "5", "6", "9", "5", "3", "9", "8", "2", "5", "7", "1", "7", "4", "2", "9", "3", "2", "0", "0", "7", "8", "6", "8", "1", "0", "2", "8", "0", "5", "1", "8", "1", "5", "8", "2", "2", "1", "6", "1", "7", "5", "8", "0", "8", "3", "0", "7", "1", "7", "9", "7", "5" ]
[ "nonn", "cons", "new" ]
18
1
2
[ "A296301", "A306243", "A382095", "A385685", "A385686" ]
null
Jwalin Bhatt, Jul 06 2025
2025-07-13T16:29:14
oeisdata/seq/A385/A385686.seq
a33ca42e494ff1d47d968be44f03d670
A385687
E.g.f. A(x) satisfies A(x) = exp( x*((A(x) + A(-x))/2)^2 ).
[ "1", "1", "1", "7", "25", "341", "2161", "44115", "404209", "11010025", "132273601", "4508793983", "67085545033", "2747071330173", "48765277295281", "2331905267846731", "48106649137922017", "2631174441142423505", "61862217319644572161", "3809106344377237185399", "100542158725584301036921" ]
[ "nonn", "new" ]
18
0
4
[ "A058014", "A143546", "A360987", "A385687", "A385688", "A385690" ]
null
Seiichi Manyama, Jul 06 2025
2025-07-07T10:46:56
oeisdata/seq/A385/A385687.seq
a243f01414097ecc7d49c7eb71fdd2df
A385688
E.g.f. A(x) satisfies A(x) = exp( x*((A(x) + A(-x))/2)^3 ).
[ "1", "1", "1", "10", "37", "736", "4861", "145552", "1392553", "55772416", "700205401", "35139710464", "546584937229", "32977620613120", "612127803448981", "43150087404292096", "930914421449463505", "75083676142358560768", "1846230024226716759601", "167681514857730519728128", "4629062510444281987051381" ]
[ "nonn", "new" ]
16
0
4
[ "A058014", "A143547", "A360988", "A385687", "A385688" ]
null
Seiichi Manyama, Jul 06 2025
2025-07-07T10:46:46
oeisdata/seq/A385/A385688.seq
0cba3582f5e3a4715803822b5651cb83
A385689
a(n) = 6*binomial(n,4) + 6*binomial(n,3) + 4*binomial(n,2) + 2*n + 1.
[ "1", "3", "9", "25", "63", "141", "283", "519", "885", "1423", "2181", "3213", "4579", "6345", "8583", "11371", "14793", "18939", "23905", "29793", "36711", "44773", "54099", "64815", "77053", "90951", "106653", "124309", "144075", "166113", "190591", "217683", "247569", "280435", "316473", "355881", "398863", "445629", "496395", "551383", "610821", "674943" ]
[ "nonn", "easy", "new" ]
11
0
2
[ "A127873", "A385689" ]
null
Enrique Navarrete, Jul 07 2025
2025-07-12T22:41:55
oeisdata/seq/A385/A385689.seq
a98f05f48785395baf9276c6dfff767f
A385690
E.g.f. A(x) satisfies A(x) = exp( x*A(x)*(A(x) + A(-x))/2 ).
[ "1", "1", "3", "25", "233", "3901", "62707", "1591493", "36539953", "1246111705", "37259797091", "1597211237425", "58891746904729", "3041999861503253", "133421178853319827", "8066042741507516701", "410229480337750129889", "28415048957473232282161", "1644249408980809155863491" ]
[ "nonn", "new" ]
11
0
3
[ "A217138", "A385687", "A385690", "A385692" ]
null
Seiichi Manyama, Jul 07 2025
2025-07-07T10:46:40
oeisdata/seq/A385/A385690.seq
39087e4c7c55cb2e4f87c56dc3943d43
A385691
E.g.f. A(x) satisfies A(x) = exp( x*(A(x) + A(w*x) + A(w^2*x))/3 ), where w = exp(2*Pi*i/3).
[ "1", "1", "1", "1", "5", "21", "61", "568", "4257", "20917", "286451", "3099141", "21555865", "390273898", "5524889553", "49790422501", "1121734897937", "19631020478229", "217441607213557", "5862333450708460", "122222268766006641", "1606671304363320805", "50443794604147639487", "1220712011020970521461" ]
[ "nonn", "new" ]
14
0
5
[ "A058014", "A124753", "A385691" ]
null
Seiichi Manyama, Jul 07 2025
2025-07-07T10:21:30
oeisdata/seq/A385/A385691.seq
7f1c77df41ea676b11b4c3a3253c658f
A385692
E.g.f. A(x) satisfies A(x) = exp( x*A(x)*(A(x) + A(w*x) + A(w^2*x))/3 ), where w = exp(2*Pi*i/3).
[ "1", "1", "3", "16", "189", "2256", "32167", "767313", "16423185", "385872832", "13923826371", "431494792224", "14162204393053", "685135173015801", "27831222972658029", "1174037911440510736", "71264909409165117009", "3582888868151242791360", "184756481500401258020443", "13494513883839138274687425" ]
[ "nonn", "new" ]
8
0
3
[ "A385690", "A385692" ]
null
Seiichi Manyama, Jul 07 2025
2025-07-07T10:21:06
oeisdata/seq/A385/A385692.seq
c185ba6dae1dd376cf90deda457532c4
A385694
Decimal expansion of the volume of a triaugmented hexagonal prism with unit edge.
[ "3", "3", "0", "5", "1", "8", "2", "9", "9", "2", "5", "3", "9", "8", "6", "3", "4", "6", "4", "6", "9", "2", "0", "1", "3", "8", "7", "4", "3", "6", "3", "6", "5", "7", "5", "8", "9", "6", "9", "9", "0", "4", "3", "8", "1", "8", "4", "0", "4", "0", "4", "4", "9", "7", "8", "6", "7", "2", "0", "5", "0", "3", "3", "8", "1", "7", "3", "2", "6", "5", "7", "6", "4", "5", "9", "4", "2", "5", "3", "5", "7", "5", "0", "4", "6", "9", "1", "3", "0", "4" ]
[ "nonn", "cons", "easy", "new" ]
8
1
1
[ "A010503", "A104956", "A385259", "A385569", "A385578", "A385694" ]
null
Paolo Xausa, Jul 07 2025
2025-07-11T22:32:37
oeisdata/seq/A385/A385694.seq
7f8e9ef4e67085484131865e57ae37d0
A385695
Decimal expansion of the volume of an augmented dodecahedron with unit edge.
[ "7", "9", "6", "4", "6", "2", "1", "7", "9", "3", "0", "2", "0", "4", "5", "6", "5", "3", "9", "3", "9", "9", "7", "6", "9", "4", "8", "9", "8", "1", "0", "2", "0", "3", "2", "5", "5", "1", "6", "4", "4", "4", "1", "2", "2", "7", "6", "3", "7", "3", "1", "6", "9", "2", "2", "6", "5", "2", "0", "2", "4", "2", "3", "1", "3", "6", "0", "5", "1", "6", "6", "5", "8", "4", "3", "4", "4", "0", "0", "4", "4", "4", "7", "8", "4", "1", "5", "9", "1", "4" ]
[ "nonn", "cons", "easy", "new" ]
11
1
1
[ "A002163", "A102769", "A179552", "A385695", "A385696", "A385802", "A385804" ]
null
Paolo Xausa, Jul 08 2025
2025-07-13T07:07:07
oeisdata/seq/A385/A385695.seq
52abe9307809cc06150a2bb6a9594a96
A385696
Decimal expansion of the surface area of an augmented dodecahedron with unit edge.
[ "2", "1", "0", "9", "0", "3", "1", "4", "9", "1", "5", "9", "3", "9", "7", "3", "2", "7", "6", "7", "2", "5", "8", "4", "3", "9", "6", "7", "8", "1", "5", "7", "0", "4", "6", "0", "5", "2", "1", "5", "9", "6", "2", "2", "4", "3", "7", "3", "7", "5", "1", "5", "7", "4", "0", "6", "3", "4", "7", "8", "0", "0", "5", "0", "1", "5", "7", "7", "4", "7", "5", "1", "8", "5", "4", "3", "4", "6", "2", "8", "5", "9", "1", "0", "0", "8", "2", "8", "6", "3" ]
[ "nonn", "cons", "easy", "new" ]
10
2
1
[ "A002194", "A010476", "A385695", "A385696", "A385803", "A385805" ]
null
Paolo Xausa, Jul 08 2025
2025-07-13T07:07:36
oeisdata/seq/A385/A385696.seq
1b2cd5e9ef6bbca92cb17096235f9944
A385698
E.g.f. A(x) satisfies A(x) = exp( x*(A(x) + A(-x))*(A(x) + A(w*x) + A(w^2*x))/6 ), where w = exp(2*Pi*i/3).
[ "1", "1", "1", "4", "29", "256", "1501", "28715", "266001", "4590064", "99387041", "2223185152", "30919119661", "1183047504809", "21297988134879", "656259407452756", "23786602263322385", "856920025214144512", "18903506095173283273", "1086514755640058121323", "29116796997476903252841" ]
[ "nonn", "new" ]
7
0
4
[ "A385698", "A385699" ]
null
Seiichi Manyama, Jul 07 2025
2025-07-07T10:21:01
oeisdata/seq/A385/A385698.seq
3ec5c0638afacee0599739f2399c239a
A385699
G.f. A(x) satisfies A(x) = 1/( 1 - x*(A(x) + A(-x))*(A(x) + A(w*x) + A(w^2*x))/6 ), where w = exp(2*Pi*i/3).
[ "1", "1", "1", "2", "5", "13", "24", "88", "181", "523", "1616", "4891", "10540", "42009", "94953", "294102", "957259", "3028320", "6864540", "28208447", "66180997", "211105506", "703497178", "2273009790", "5283518340", "22058432677", "52795736539", "171169636087", "578132050147", "1891182035377", "4462525373212" ]
[ "nonn", "new" ]
14
0
4
[ "A047749", "A124753", "A217138", "A385698", "A385699" ]
null
Seiichi Manyama, Jul 07 2025
2025-07-07T10:46:36
oeisdata/seq/A385/A385699.seq
8de601a66cbaa01c4a415a46ffc5d8ac
A385700
Numbers such that when the leftmost digit is moved to the unit's place the result is divisible by 4.
[ "0", "4", "8", "21", "23", "25", "27", "29", "40", "42", "44", "46", "48", "61", "63", "65", "67", "69", "80", "82", "84", "86", "88", "201", "203", "205", "207", "209", "211", "213", "215", "217", "219", "221", "223", "225", "227", "229", "231", "233", "235", "237", "239", "241", "243", "245", "247", "249", "251", "253", "255", "257", "259", "261", "263", "265", "267", "269" ]
[ "nonn", "base", "easy", "look", "new" ]
19
1
2
[ "A001477", "A008585", "A008591", "A217398", "A273892", "A385700", "A385701", "A385702", "A385703" ]
null
Stefano Spezia, Jul 07 2025
2025-07-08T14:15:30
oeisdata/seq/A385/A385700.seq
410f33d6577885ea1815973713989307
A385701
Numbers such that when the leftmost digit is moved to the unit's place the result is divisible by 6.
[ "0", "6", "21", "24", "27", "42", "45", "48", "60", "63", "66", "69", "81", "84", "87", "201", "204", "207", "210", "213", "216", "219", "222", "225", "228", "231", "234", "237", "240", "243", "246", "249", "252", "255", "258", "261", "264", "267", "270", "273", "276", "279", "282", "285", "288", "291", "294", "297", "402", "405", "408", "411", "414", "417", "420", "423", "426", "429" ]
[ "nonn", "base", "easy", "look", "new" ]
16
1
2
[ "A001477", "A008585", "A008591", "A217398", "A273892", "A385700", "A385701", "A385702", "A385703" ]
null
Stefano Spezia, Jul 07 2025
2025-07-08T14:15:16
oeisdata/seq/A385/A385701.seq
4f8a0c767b91af95edb73a69a5fb037c
A385702
Numbers such that when the leftmost digit is moved to the unit's place the result is divisible by 7.
[ "0", "7", "12", "19", "24", "36", "41", "48", "53", "65", "70", "77", "82", "89", "94", "102", "109", "116", "123", "130", "137", "144", "151", "158", "165", "172", "179", "186", "193", "204", "211", "218", "225", "232", "239", "246", "253", "260", "267", "274", "281", "288", "295", "306", "313", "320", "327", "334", "341", "348", "355", "362", "369", "376", "383", "390", "397" ]
[ "nonn", "base", "easy", "new" ]
16
1
2
[ "A001477", "A008585", "A008591", "A217398", "A273892", "A385700", "A385701", "A385702", "A385703" ]
null
Stefano Spezia, Jul 07 2025
2025-07-08T14:15:07
oeisdata/seq/A385/A385702.seq
5fde8799efdea0f1977f4f7c20e06af9
A385703
Numbers such that when the leftmost digit is moved to the unit's place the result is divisible by 8.
[ "0", "8", "23", "27", "42", "46", "61", "65", "69", "80", "84", "88", "203", "207", "211", "215", "219", "223", "227", "231", "235", "239", "243", "247", "251", "255", "259", "263", "267", "271", "275", "279", "283", "287", "291", "295", "299", "402", "406", "410", "414", "418", "422", "426", "430", "434", "438", "442", "446", "450", "454", "458", "462", "466", "470", "474" ]
[ "nonn", "base", "easy", "new" ]
15
1
2
[ "A001477", "A008585", "A008591", "A217398", "A273892", "A385700", "A385701", "A385702", "A385703" ]
null
Stefano Spezia, Jul 07 2025
2025-07-08T14:14:57
oeisdata/seq/A385/A385703.seq
6188d9337a58e318c876db9699c81897
A385705
Primes p such that there exists prime q < p such that sigma(p+1)=sigma(q+1).
[ "37", "61", "109", "139", "157", "181", "193", "233", "269", "283", "347", "349", "353", "367", "373", "379", "487", "521", "541", "563", "571", "593", "613", "617", "619", "641", "643", "709", "727", "739", "797", "811", "823", "829", "853", "857", "877", "907", "983", "991", "1033", "1051", "1097", "1103", "1117", "1193", "1217", "1229", "1231", "1237" ]
[ "nonn", "easy", "new" ]
13
1
1
[ "A000040", "A000203", "A008333", "A385586", "A385705" ]
null
S. I. Dimitrov, Jul 07 2025
2025-07-08T10:42:57
oeisdata/seq/A385/A385705.seq
c6f1f4771330358aaee14ca420e92fc7
A385715
Square array read by descending antidiagonals: A(n,k) is the number of fixed n-dimensional (n,2)-polyominoids, n >= 2, of size k >= 1.
[ "1", "2", "3", "6", "18", "6", "19", "158", "60", "10", "63", "1611", "916", "140", "15", "216", "17811", "16698", "3060", "270", "21", "760", "207395", "336210", "81090", "7690", "462", "28", "2725", "2505858", "7218768", "2396434", "268005", "16226", "728", "36", "9910", "31125711", "162185112", "76020890", "10477161", "701589", "30408", "1080", "45" ]
[ "nonn", "tabl", "new" ]
16
2
2
[ "A000217", "A001168", "A075678", "A213820", "A366335", "A385291", "A385581", "A385715" ]
null
John Mason, Jul 07 2025
2025-07-13T12:51:11
oeisdata/seq/A385/A385715.seq
e86b5431bf97884297c23cd282b9261c
A385717
a(n) = a(n-1) + a(n-2) + a(n-3), with a(1) = 4, a(2) = 13, a(3) = 42.
[ "4", "13", "42", "59", "114", "215", "388", "717", "1320", "2425", "4462", "8207", "15094", "27763", "51064", "93921", "172748", "317733", "584402", "1074883", "1977018", "3636303", "6688204", "12301525", "22626032", "41615761", "76543318", "140785111", "258944190", "476272619" ]
[ "nonn", "easy", "new" ]
9
1
1
[ "A100683", "A354080", "A385717" ]
null
Greg Dresden and Jiarui Zhou, Jul 07 2025
2025-07-13T17:32:04
oeisdata/seq/A385/A385717.seq
a19df8bb3b3be8fbc145bca11082def4
A385718
Primes p such that there exists prime q < p such that sigma(q+1) = sigma(p+2) = p + q.
[ "367", "457", "691", "341647", "909091", "1803421", "2640571", "3076903", "3413191", "5228611", "6152383", "6541477", "6545197", "6695503", "10161133", "10770313", "15319693", "31128511", "31687069", "39946483", "52764031", "58886803", "104494483", "207855001", "283882153", "307912921", "309201751", "529570609", "574061053" ]
[ "nonn", "new" ]
11
1
1
[ "A000040", "A000203", "A008333", "A063990", "A259180", "A385586", "A385718" ]
null
S. I. Dimitrov, Jul 07 2025
2025-07-08T09:13:46
oeisdata/seq/A385/A385718.seq
3a11448fb76b18a915b801085b7405ce
A385720
Numbers k >= 1 such that k/A000005(k) + (k+1)/A000005(k+1) is an integer.
[ "1", "5", "6", "8", "10", "13", "22", "37", "45", "46", "58", "61", "62", "69", "73", "74", "77", "82", "89", "106", "114", "117", "126", "146", "149", "150", "154", "157", "166", "167", "178", "186", "193", "197", "198", "206", "221", "226", "233", "237", "258", "261", "262", "263", "266", "277", "278", "279", "280", "290", "293", "306", "309", "311", "312", "313" ]
[ "nonn", "new" ]
16
1
2
[ "A000005", "A005384", "A005385", "A077065", "A256072", "A385720" ]
null
Ctibor O. Zizka, Jul 07 2025
2025-07-13T16:44:05
oeisdata/seq/A385/A385720.seq
aeb0a185c5efbd2135f93bf1e3c2ab49
A385724
The least integer of n consecutive numbers where each has its sum of prime factors, with multiplicity, being a prime.
[ "17", "2", "5", "10", "1547", "8837", "1293224", "52445796", "3267037", "896531141", "183208285259" ]
[ "nonn", "more", "new" ]
10
1
1
[ "A100118", "A337310", "A385724" ]
null
Zhining Yang, Jul 08 2025
2025-07-13T15:36:15
oeisdata/seq/A385/A385724.seq
e0db780d7a5b2339041182e4e5b5f43b
A385725
E.g.f. A(x) satisfies A(x) = exp( x*(A(x) + A(i*x) + A(-x) + A(-i*x))/4 ), where i is the imaginary unit.
[ "1", "1", "1", "1", "1", "6", "31", "106", "281", "3160", "29701", "176056", "768241", "12702704", "173361371", "1466276176", "8937060081", "195180709248", "3494232292681", "38426220716416", "301057954180801", "8174141246647552", "181144607099402871", "2452803139819922176", "23494461553739152201", "762800754226165963776" ]
[ "nonn", "new" ]
10
0
6
[ "A000272", "A058014", "A118968", "A385691", "A385725" ]
null
Seiichi Manyama, Jul 08 2025
2025-07-08T07:47:22
oeisdata/seq/A385/A385725.seq
37ada687b3e500ba1f36b88c2ede8bfa
A385726
a(n) = 3^n - 6*binomial(n,4) - 6*binomial(n,3) - 4*binomial(n,2) - 2*n - 1.
[ "0", "0", "0", "2", "18", "102", "446", "1668", "5676", "18260", "59049", "177147", "531441", "1594323", "4782969", "14348907", "43046721", "129140163", "387420489", "1162261467", "3486784401", "10460353203", "31381059609", "94143178827", "282429536481", "847288609443", "2541865828329", "7625597484987", "22876792454961", "68630377364883" ]
[ "nonn", "easy", "new" ]
7
0
4
[ "A383343", "A385689", "A385726" ]
null
Enrique Navarrete, Jul 08 2025
2025-07-12T18:46:32
oeisdata/seq/A385/A385726.seq
7920c6d747e3b1b80d593ad3f8713c44
A385732
Triangle read by rows: the numerators of the Lucas triangle.
[ "1", "1", "1", "1", "3", "1", "1", "4", "4", "1", "1", "7", "28", "7", "1", "1", "11", "77", "77", "11", "1", "1", "18", "66", "231", "66", "18", "1", "1", "29", "174", "957", "957", "174", "29", "1", "1", "47", "1363", "4089", "44979", "4089", "1363", "47", "1", "1", "76", "3572", "25897", "155382", "155382", "25897", "3572", "76", "1", "1", "123", "3116", "36613", "1061777", "19111986", "1061777", "36613", "3116", "123", "1" ]
[ "nonn", "tabl", "frac", "new" ]
15
0
5
[ "A003266", "A010048", "A070825", "A385732", "A385733" ]
null
Peter Luschny, Jul 08 2025
2025-07-08T22:27:13
oeisdata/seq/A385/A385732.seq
e798acdc21b89d2d9b5938bc4a8a10a7
A385733
Triangle read by rows: the denominators of the Lucas triangle.
[ "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "3", "1", "1", "1", "1", "3", "3", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "2", "2", "1", "1", "1", "1", "1", "3", "2", "14", "2", "3", "1", "1", "1", "1", "3", "3", "7", "7", "3", "3", "1", "1", "1", "1", "1", "1", "7", "77", "7", "1", "1", "1", "1", "1", "1", "1", "1", "7", "77", "77", "7", "1", "1", "1", "1", "1", "1", "3", "2", "1", "11", "99", "11", "1", "2", "3", "1", "1" ]
[ "nonn", "tabl", "frac", "new" ]
8
0
13
[ "A003266", "A010048", "A070825", "A385732", "A385733" ]
null
Peter Luschny, Jul 08 2025
2025-07-08T22:27:43
oeisdata/seq/A385/A385733.seq
b0f9273b03201a4a3ab91e12e9c3b6cb
A385734
Lucas triangle A385732/A385733 mod 2.
[ "1", "1", "1", "1", "1", "1", "1", "0", "0", "1", "1", "1", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "0", "-1", "0", "0", "1", "1", "1", "0", "-1", "-1", "0", "1", "1", "1", "1", "1", "-1", "-1", "-1", "1", "1", "1", "1", "0", "0", "1", "0", "0", "1", "0", "0", "1", "1", "1", "0", "1", "1", "0", "1", "1", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "0", "-1", "0", "0", "1", "0", "0", "-1", "0", "0", "1" ]
[ "sign", "tabl", "new" ]
6
0
null
[ "A385456", "A385732", "A385733", "A385734" ]
null
Peter Luschny, Jul 08 2025
2025-07-08T22:26:46
oeisdata/seq/A385/A385734.seq
53653b3fd16b7c927cc0fb4ef9cd41ca
A385738
For n >= 1, a(n) is the least k such that the Sum_{i=0..(n-1)} (k+i)/A000005(k+i) is an integer or a(n) = -1 if no such k exists.
[ "1", "1", "6", "6", "8", "5", "6", "23", "5", "22", "50", "26", "28", "65", "119", "145", "26", "349", "282", "375", "280", "404", "278", "369", "279", "370", "277", "276", "369", "378", "389", "378", "389", "15", "389", "13", "12", "210", "10", "9", "8", "210", "6", "212", "421", "209", "419", "3", "2", "1", "378", "419", "421", "418", "418", "1026", "373", "105", "104" ]
[ "nonn", "new" ]
12
1
3
[ "A000005", "A385738" ]
null
Ctibor O. Zizka, Jul 08 2025
2025-07-13T16:44:33
oeisdata/seq/A385/A385738.seq
3d5975036b5bc5ddd946f28c28a15cba
A385739
Primes p such that there exists a prime q < p such that sigma(q-1) = sigma(p+1) = p + q.
[ "5563", "203431", "389923", "901423", "5495263", "7418863", "28128367", "188953969", "210627577", "392753209", "402877087", "505757683", "619418689" ]
[ "nonn", "hard", "more", "new" ]
9
1
1
[ "A000040", "A000203", "A008333", "A063990", "A259180", "A385586", "A385718", "A385739" ]
null
S. I. Dimitrov, Jul 08 2025
2025-07-13T16:53:58
oeisdata/seq/A385/A385739.seq
a0bc9ae06365ef1a5a4ed8e966fdda54
A385740
Primes p such that there exists a prime q < p such that sigma(p-1) = sigma(q-1) = p + q.
[ "1163", "7583", "17099", "48857", "65963", "172859", "5408423", "6804047", "19247087", "73162367", "77695043", "109775657", "109871933", "116464757", "160454717", "175031957", "175288493", "218543393", "268382183", "303220769", "379299989", "705800723", "823155779", "889218389", "967371143" ]
[ "nonn", "hard", "more", "new" ]
10
1
1
[ "A000040", "A000203", "A008333", "A063990", "A259180", "A385586", "A385718", "A385739", "A385740" ]
null
S. I. Dimitrov, Jul 08 2025
2025-07-13T16:53:25
oeisdata/seq/A385/A385740.seq
b0e2e6209c6b206bb4a1d78541a01850
A385741
a(n) = Sum_{k=0..n} (binomial(n, k) mod 9).
[ "1", "2", "4", "8", "16", "14", "28", "38", "31", "8", "16", "32", "28", "56", "49", "62", "52", "68", "28", "56", "76", "62", "79", "122", "91", "92", "112", "8", "16", "32", "28", "56", "76", "80", "124", "140", "28", "56", "103", "80", "142", "158", "145", "146", "184", "62", "124", "158", "100", "146", "184", "188", "232", "230", "28", "56", "76", "80", "151", "158", "136", "236" ]
[ "nonn", "new" ]
29
0
2
[ "A001316", "A051638", "A384715", "A385285", "A385741" ]
null
Chai Wah Wu, Jul 09 2025
2025-07-12T02:15:55
oeisdata/seq/A385/A385741.seq
439f17d0eda5e5751da09faf18f775e5
A385743
Numbers k such that A384247(k) = A384247(k+1).
[ "1", "20", "27", "35", "63", "64", "104", "143", "194", "208", "740", "836", "1220", "1299", "1419", "1803", "1892", "2625", "3255", "3705", "3716", "3843", "4096", "5184", "5186", "5635", "5695", "7868", "10659", "13365", "16904", "17948", "18507", "18914", "21007", "22935", "25388", "25545", "27675", "30380", "31599", "32304", "32864", "34595" ]
[ "nonn", "new" ]
8
1
2
[ "A001274", "A287055", "A293184", "A301866", "A326403", "A349307", "A384247", "A385743" ]
null
Amiram Eldar, Jul 08 2025
2025-07-12T18:50:15
oeisdata/seq/A385/A385743.seq
c375c72a01f94a6a49a00350c110bd04
A385744
The number of iterations of the infinitary analog of the totient function A384247 that are required to reach from n to 1.
[ "0", "1", "2", "3", "4", "2", "3", "4", "5", "4", "5", "3", "4", "3", "5", "6", "7", "5", "6", "4", "4", "5", "6", "5", "6", "4", "6", "6", "7", "5", "6", "7", "5", "7", "6", "6", "7", "6", "6", "7", "8", "4", "5", "6", "8", "6", "7", "6", "7", "6", "8", "7", "8", "6", "8", "6", "7", "7", "8", "6", "7", "6", "7", "7", "7", "5", "6", "7", "7", "6", "7", "8", "9", "7", "7", "7", "7", "6", "7", "7", "8", "8", "9", "7", "8", "5", "7" ]
[ "nonn", "easy", "new" ]
7
1
3
[ "A003434", "A049865", "A225320", "A333609", "A384247", "A385744", "A385745", "A385746", "A385747" ]
null
Amiram Eldar, Jul 08 2025
2025-07-11T01:27:35
oeisdata/seq/A385/A385744.seq
ec8e94a3c5a908b50be01ffdfceb57d1
A385745
The sum of the iterated infinitary analog of the totient function A384247 when started at n.
[ "0", "1", "3", "6", "10", "3", "9", "10", "18", "10", "20", "9", "21", "9", "18", "33", "49", "18", "36", "21", "21", "20", "42", "18", "42", "21", "36", "36", "64", "18", "48", "49", "41", "49", "42", "42", "78", "36", "42", "49", "89", "21", "63", "48", "81", "42", "88", "48", "96", "42", "81", "78", "130", "36", "89", "42", "78", "64", "122", "42", "102", "48", "96", "96", "96", "41", "107" ]
[ "nonn", "easy", "new" ]
7
1
3
[ "A092693", "A329153", "A333611", "A384247", "A385744", "A385745", "A385746", "A385747" ]
null
Amiram Eldar, Jul 08 2025
2025-07-11T01:27:45
oeisdata/seq/A385/A385745.seq
c14e89836d06d92c032da6d81dec4ce3
A385746
Numbers that are equal to the sum of their iterated infinitary analog of the totient function A384247.
[ "3", "10", "18", "21", "48", "160", "288", "3252", "9304", "13965", "68526", "719631", "1531101", "1954782", "28900572", "39189195", "14708055957" ]
[ "nonn", "more", "new" ]
4
1
1
[ "A082897", "A286067", "A330273", "A384247", "A385744", "A385745", "A385746", "A385747" ]
null
Amiram Eldar, Jul 08 2025
2025-07-11T01:27:40
oeisdata/seq/A385/A385746.seq
8e060ea4cc94c364e5289cdfa1644077
A385747
Least number that reaches 1 after exactly n iterations of the infinitary analog of the totient function A384247.
[ "1", "2", "3", "4", "5", "9", "16", "17", "41", "73", "101", "197", "467", "829", "1109", "2761", "4849", "7831", "12401", "26189", "52379", "85853", "139589", "237007", "395533", "947043", "1967027", "3446033", "5396427", "9510437", "17502533", "35005067", "71202449", "90187609", "164664701", "395199461", "705113873", "1265735729", "1803553457" ]
[ "nonn", "new" ]
5
0
2
[ "A003271", "A005424", "A007755", "A333610", "A384247", "A385744", "A385745", "A385746", "A385747" ]
null
Amiram Eldar, Jul 08 2025
2025-07-12T18:50:09
oeisdata/seq/A385/A385747.seq
1d1a086c3497930a750a3f9e7c0159d6
A385748
Numbers k such that A384247(k) divides k.
[ "1", "2", "6", "8", "12", "24", "32", "54", "96", "108", "128", "192", "216", "240", "384", "486", "512", "864", "972", "1536", "1728", "1944", "2048", "2160", "3072", "3456", "4374", "6000", "6144", "7776", "8192", "8748", "13824", "15552", "17496", "19440", "24576", "27648", "31104", "32768", "39366", "49152", "54000", "55296", "61440", "65280", "69984" ]
[ "nonn", "new" ]
11
1
2
[ "A007694", "A019434", "A092506", "A298759", "A319481", "A335327", "A373057", "A384247", "A385748" ]
null
Amiram Eldar, Jul 08 2025
2025-07-12T18:50:26
oeisdata/seq/A385/A385748.seq
a66c4466f3179271adc203280fa2fcf1
A385750
a(n) = Sum_{k=0..n} Stirling2(n,k) * (n!/k!)^2.
[ "1", "1", "5", "64", "1681", "78651", "5891041", "653545390", "101785047169", "21431911982437", "5927319770834701", "2101574777340578156", "935265924020629176625", "512945332353359967175999", "341342159773993944429746793", "272012935493149854994361194426", "256689188247205271953044107166721", "284051735653584424779666013789038985" ]
[ "nonn", "new" ]
5
0
3
[ "A000110", "A064618", "A119392", "A119400", "A385750", "A385751", "A385752" ]
null
Ilya Gutkovskiy, Jul 08 2025
2025-07-11T14:52:13
oeisdata/seq/A385/A385750.seq
dca96138290ac42799698d6c21de05e4
A385751
a(n) = Sum_{k=0..n} |Stirling1(n,k)| * (n!/k!)^2.
[ "1", "1", "5", "100", "5137", "539851", "101035441", "30669875230", "14117057058945", "9364637252286181", "8603755430968248301", "10603853731438585516856", "17077610933602804111318705", "35160631271792580418277658415", "90839446923946068488317221868825", "289828370988497912073923950177143826", "1126236403418687405801564385561640043521" ]
[ "nonn", "new" ]
7
0
3
[ "A119390", "A320502", "A385750", "A385751", "A385752" ]
null
Ilya Gutkovskiy, Jul 08 2025
2025-07-11T14:51:53
oeisdata/seq/A385/A385751.seq
c695beea67afc1c94a7f88e321946b75
A385752
a(n) = Sum_{k=0..n} Stirling1(n,k) * (n!/k!)^2.
[ "1", "1", "-3", "46", "-1967", "179351", "-29861639", "8200834972", "-3456505906559", "2118756407303197", "-1811589861406160699", "2089746219541021377546", "-3164800617505630505525903", "6151223064132377579849537011", "-15052264342298428131766095419839", "45616620088948927404807879986431576", "-168785206495071742797011703980958673919" ]
[ "sign", "new" ]
5
0
3
[ "A119391", "A192554", "A385750", "A385751", "A385752" ]
null
Ilya Gutkovskiy, Jul 08 2025
2025-07-11T14:52:24
oeisdata/seq/A385/A385752.seq
6810a393d034aa3dd000273d68dade46
A385754
Positive numbers not occurring in A384797.
[ "1", "6", "16", "20", "25", "30", "33", "41", "48", "53", "57", "59", "62", "67", "74", "75", "78", "86", "90", "93", "98", "100", "107", "110", "113", "114", "123", "128", "130", "135", "138", "142", "145", "151", "153", "157", "159", "162", "165", "168", "178", "183", "191", "202", "204", "211", "212", "220", "223", "229", "232", "245", "254", "255", "283", "286", "291", "301" ]
[ "nonn", "new" ]
6
1
2
[ "A047800", "A077773", "A363762", "A384797", "A385754" ]
null
Hugo Pfoertner, Jul 08 2025
2025-07-08T14:19:58
oeisdata/seq/A385/A385754.seq
9d11452b1ca0363c3073dea61b67e3fe
A385755
Numbers k with a unique combination of bigomega(k) and sopfr(k).
[ "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "22", "23", "24", "26", "29", "30", "31", "32", "34", "35", "36", "37", "38", "41", "43", "46", "47", "48", "53", "58", "59", "61", "62", "64", "67", "70", "71", "72", "73", "74", "79", "82", "83", "86", "89", "94", "96", "97", "101", "103", "106", "107", "109", "113", "118", "122", "127", "128", "131" ]
[ "nonn", "new" ]
31
1
2
[ "A000040", "A000079", "A001222", "A001414", "A100484", "A385755", "A385756", "A385811" ]
null
Hugo Pfoertner, Jul 09 2025
2025-07-13T12:38:58
oeisdata/seq/A385/A385755.seq
5b00393d09e42e0ebb02b58836745037
A385756
Complement of A385755.
[ "20", "21", "25", "27", "28", "33", "39", "40", "42", "44", "45", "49", "50", "51", "52", "54", "55", "56", "57", "60", "63", "65", "66", "68", "69", "75", "76", "77", "78", "80", "81", "84", "85", "87", "88", "90", "91", "92", "93", "95", "98", "99", "100", "102", "104", "105", "108", "110", "111", "112", "114", "115", "116", "117", "119", "120", "121", "123", "124", "125", "126", "129" ]
[ "nonn", "new" ]
12
1
1
[ "A001222", "A001414", "A385755", "A385756", "A385811" ]
null
Hugo Pfoertner, Jul 09 2025
2025-07-11T16:40:23
oeisdata/seq/A385/A385756.seq
6296751793414ee7c1c004dad1c077cd
A385757
a(n) is the smallest number having n smaller numbers with the same number of prime factors (counted with multiplicity).
[ "3", "5", "7", "11", "13", "17", "19", "23", "26", "31", "34", "35", "38", "39", "46", "49", "51", "55", "57", "58", "62", "65", "69", "74", "77", "82", "85", "86", "87", "91", "93", "94", "95", "106", "111", "115", "118", "119", "121", "122", "123", "129", "133", "134", "141", "142", "143", "145", "146", "155", "158", "159", "161", "166", "169", "177", "178", "183", "185", "187", "194", "201", "202", "203", "205" ]
[ "nonn", "new" ]
6
1
1
[ "A001222", "A081376", "A335097", "A338483", "A385757" ]
null
Ilya Gutkovskiy, Jul 08 2025
2025-07-13T19:56:01
oeisdata/seq/A385/A385757.seq
294111880863a98aa16fc13881f34023
A385758
G.f. A(x) satisfies A(x) = 1/((1 - x) * (1 - x*A(x) - x^3*A''(x))).
[ "1", "2", "5", "25", "241", "3850", "92699", "3159424", "145529893", "8737971990", "664337673319", "62461188300465", "7121505696653881", "968606284138975286", "154985833403909522361", "28828521246104115576631", "6169483384435711859804021", "1505386674395483103372685258", "415493606617772745031305469471" ]
[ "nonn", "new" ]
13
0
2
[ "A321087", "A385758", "A385759", "A385760", "A385761", "A385762" ]
null
Seiichi Manyama, Jul 09 2025
2025-07-10T22:40:46
oeisdata/seq/A385/A385758.seq
03b1913fae80327c0ae5790505e39653
A385759
G.f. A(x) satisfies A(x) = 1/((1 - x) * (1 - x*A(x) - x^4*A'''(x))).
[ "1", "2", "5", "15", "141", "3932", "251717", "31216948", "6680698525", "2271470142438", "1153913665217481", "835435792656039975", "830424340158140342961", "1099482665756962845820704", "1891111018270919721409143729", "4137752010118540256190073466415", "11312615890237585633045672755792789" ]
[ "nonn", "new" ]
12
0
2
[ "A321087", "A385758", "A385759", "A385760", "A385761" ]
null
Seiichi Manyama, Jul 09 2025
2025-07-10T22:40:41
oeisdata/seq/A385/A385759.seq
dee26366673b245b99192b7b6baa8815
A385760
G.f. A(x) satisfies A(x) = 1/((1 - x) * (1 - x*A(x) - x^5*A''''(x))).
[ "1", "2", "5", "15", "51", "1412", "175067", "63725638", "53784616915", "90573359145678", "274256185472187231", "1383348290257488337035", "10961652126528967555229301", "130268275255842369871718355444", "2235924687457083597476492688851325", "53724798520519979444347750309693062183" ]
[ "nonn", "new" ]
12
0
2
[ "A321087", "A385758", "A385759", "A385760", "A385761" ]
null
Seiichi Manyama, Jul 09 2025
2025-07-10T22:40:35
oeisdata/seq/A385/A385760.seq
574e0dac74209667b2786405ea1db373
A385761
G.f. A(x) satisfies A(x) = 1/((1 - x) * (1 - x*A(x) - x^6*A'''''(x))).
[ "1", "2", "5", "15", "51", "188", "23291", "16862710", "42561503035", "286183563337662", "4328240254531111671", "130903298544350358627387", "7257802488822060515691899445", "689810579878520205782663179307100", "106537105206016369903910237449838232525", "25594900303804029125790200935921438169789415" ]
[ "nonn", "new" ]
11
0
2
[ "A321087", "A385758", "A385759", "A385760", "A385761" ]
null
Seiichi Manyama, Jul 09 2025
2025-07-10T22:40:15
oeisdata/seq/A385/A385761.seq
6ce07eee92571de51735aa61d3d1f408
A385762
G.f. A(x) satisfies A(x) = 1/(1 - x*A(x) - x^3*A''(x)).
[ "1", "1", "2", "9", "80", "1204", "27788", "918831", "41389972", "2443323132", "183303840972", "17050267807478", "1926895029660880", "260150110806399232", "41365993162914888760", "7652990621445212758255", "1630131235132495370561820", "396129991240222795968202788", "108937459572870420021782788268" ]
[ "nonn", "new" ]
11
0
3
[ "A000108", "A088716", "A385762", "A385763", "A385764", "A385765" ]
null
Seiichi Manyama, Jul 09 2025
2025-07-09T10:14:28
oeisdata/seq/A385/A385762.seq
98eec609073fb661864e72e3e8c02b2b
A385763
G.f. A(x) satisfies A(x) = 1/(1 - x*A(x) - x^4*A'''(x)).
[ "1", "1", "2", "5", "44", "1188", "74880", "9211479", "1962123260", "665169218468", "337242780292376", "243827199998597254", "242120748323922920272", "320325994582940359050400", "550640627320172764415124000", "1204251372776149567847238889047", "3291219553094816112273747054673476" ]
[ "nonn", "new" ]
12
0
3
[ "A000108", "A088716", "A385762", "A385763", "A385764", "A385765" ]
null
Seiichi Manyama, Jul 09 2025
2025-07-09T10:14:32
oeisdata/seq/A385/A385763.seq
1f85f73e9f36cb257a2e118014b4fb01
A385764
G.f. A(x) satisfies A(x) = 1/(1 - x*A(x) - x^5*A''''(x)).
[ "1", "1", "2", "5", "14", "378", "46500", "16879869", "14229776750", "23948731244678", "72492823741526156", "365581334105823084634", "2896500982661242290253612", "34419121542689992919239814260", "590735385934420874267059790772360", "14193599152271246770955912922939691797", "465024889616667096875210999651863472880846" ]
[ "nonn", "new" ]
12
0
3
[ "A000108", "A088716", "A385762", "A385763", "A385764", "A385765" ]
null
Seiichi Manyama, Jul 09 2025
2025-07-09T10:14:21
oeisdata/seq/A385/A385764.seq
2d4a62560176ddba38c8d6484343fdcd
A385765
G.f. A(x) satisfies A(x) = 1/(1 - x*A(x) - x^6*A'''''(x)).
[ "1", "1", "2", "5", "14", "42", "5172", "3739389", "9434483630", "63428037194102", "959222215928392076", "29009757539769286481866", "1608387988236777669667251772", "152866019594999736359695792369300", "23609086665918990295149462904374925800", "5671917808033245221993631555503554148332485" ]
[ "nonn", "new" ]
12
0
3
[ "A000108", "A088716", "A385761", "A385762", "A385763", "A385764", "A385765" ]
null
Seiichi Manyama, Jul 09 2025
2025-07-09T10:14:11
oeisdata/seq/A385/A385765.seq
39125a879218ba5e1ed8bd7bcc7f469f
A385766
G.f. A(x) satisfies A(x) = 1/((1 - x) * (1 - x*A(x)^2 - x^2*A(x)*A'(x))).
[ "1", "2", "9", "66", "629", "7071", "89609", "1248355", "18820831", "303879698", "5215803877", "94656100969", "1808853399445", "36282216181916", "761902799960049", "16714472406574829", "382369378451581045", "9107117241193913850", "225512045313741357841", "5798133159909683869788" ]
[ "nonn", "new" ]
17
0
2
[ "A321087", "A385766", "A385767" ]
null
Seiichi Manyama, Jul 09 2025
2025-07-10T10:58:56
oeisdata/seq/A385/A385766.seq
7e3aad3088946186bbf998bdcaf69c23
A385767
G.f. A(x) satisfies A(x) = 1/((1 - x) * (1 - x*A(x)^3 - x^2*A(x)^2*A'(x))).
[ "1", "2", "11", "103", "1240", "17405", "272647", "4652676", "85204285", "1657791964", "34030090459", "733238701637", "16520229963511", "388058679087053", "9481616930642904", "240524381652918706", "6324953229391777117", "172191111285984106951", "4847629590517906310392", "140987258808372483601766" ]
[ "nonn", "new" ]
12
0
2
[ "A321087", "A349289", "A385766", "A385767" ]
null
Seiichi Manyama, Jul 09 2025
2025-07-10T22:40:12
oeisdata/seq/A385/A385767.seq
0a744e86f20ce985f0b993c52f5ab0a1
A385768
Primes having only {0, 4, 9} as digits.
[ "409", "449", "499", "4049", "4099", "4409", "4909", "4999", "9049", "9949", "40009", "40099", "40499", "40949", "44449", "44909", "49009", "49409", "49499", "49999", "90499", "94009", "94049", "94099", "94949", "94999", "99409", "400009", "400409", "400949", "404009", "404099", "404449", "409099", "409499", "409909", "409999" ]
[ "nonn", "base", "easy", "new" ]
16
1
1
[ "A000040", "A020466", "A385768", "A385776" ]
null
Jason Bard, Jul 09 2025
2025-07-12T21:20:38
oeisdata/seq/A385/A385768.seq
507f564f46ba8068032d91ce544378a3
A385769
Primes having only {0, 5, 9} as digits.
[ "5", "59", "509", "599", "5009", "5059", "5099", "9059", "50599", "50909", "55009", "59009", "59509", "59999", "90059", "90599", "95009", "95959", "99559", "500009", "500509", "500909", "505559", "509909", "509959", "550009", "550909", "559099", "590099", "590599", "590959", "599009", "599959", "599999", "900959" ]
[ "nonn", "base", "easy", "new" ]
18
1
1
[ "A000040", "A020468", "A030433", "A385769", "A385776" ]
null
Jason Bard, Jul 09 2025
2025-07-12T21:20:42
oeisdata/seq/A385/A385769.seq
f89245f7cdf5c1c6ec83957dd88e525d
A385770
Primes having only {0, 6, 7} as digits.
[ "7", "67", "607", "677", "6007", "6067", "6607", "7607", "60077", "60607", "66067", "67607", "67777", "70067", "70607", "70667", "76607", "76667", "76777", "606077", "606607", "607007", "607067", "607667", "660067", "660607", "666067", "666607", "666667", "666707", "670777", "676007", "677077", "677767", "700067" ]
[ "nonn", "base", "easy", "new" ]
13
1
1
[ "A000040", "A020469", "A030432", "A385770", "A385776" ]
null
Jason Bard, Jul 09 2025
2025-07-12T21:20:46
oeisdata/seq/A385/A385770.seq
5b3cdb439b36b6f16804b33354765bdd
A385771
Primes having only {0, 7, 8} as digits.
[ "7", "787", "877", "887", "7877", "8087", "8707", "8807", "8887", "70877", "78007", "78707", "78787", "78877", "78887", "80077", "80777", "87877", "87887", "88007", "88807", "700087", "700877", "707887", "708007", "777787", "777877", "778777", "780707", "780877", "780887", "787777", "787807", "788077", "788087", "800077" ]
[ "nonn", "base", "easy", "new" ]
14
1
1
[ "A000040", "A020470", "A030432", "A385771", "A385776" ]
null
Jason Bard, Jul 09 2025
2025-07-12T21:20:54
oeisdata/seq/A385/A385771.seq
c0dc1e6f397fa4724bc7f5700d0e6f9c
A385772
Primes having only {0, 8, 9} as digits.
[ "89", "809", "8009", "8089", "8999", "80809", "80909", "80989", "89009", "89809", "89899", "89909", "89989", "90089", "90989", "98009", "98809", "98899", "98909", "98999", "99089", "99809", "99989", "800089", "800909", "800999", "809909", "880909", "888809", "888989", "889909", "890809", "890999", "898889", "899009", "900089" ]
[ "nonn", "base", "easy", "new" ]
13
1
1
[ "A000040", "A020472", "A030433", "A385772", "A385776" ]
null
Jason Bard, Jul 09 2025
2025-07-12T21:20:58
oeisdata/seq/A385/A385772.seq
651b0d283ed089741edafb0f9ae6c0db
A385773
Primes having only {1, 2, 5} as digits.
[ "2", "5", "11", "151", "211", "251", "521", "1151", "1511", "2111", "2221", "2251", "2521", "2551", "5521", "11251", "11551", "12211", "12251", "12511", "15121", "15511", "15551", "21121", "21211", "21221", "21521", "22111", "22511", "25111", "25121", "51151", "51511", "51521", "51551", "52121", "52511", "55511", "111121", "111211" ]
[ "nonn", "base", "easy", "new" ]
14
1
1
[ "A000040", "A020453", "A024050", "A385773", "A385776" ]
null
Jason Bard, Jul 09 2025
2025-07-12T21:21:02
oeisdata/seq/A385/A385773.seq
9a36cfaec13a242e198302f4831abda7
A385774
Primes having only {1, 2, 6} as digits.
[ "2", "11", "61", "211", "661", "1621", "2111", "2161", "2221", "2621", "6121", "6211", "6221", "6661", "11161", "11261", "11621", "12161", "12211", "12611", "16111", "16661", "21121", "21211", "21221", "21611", "21661", "22111", "22621", "26111", "26161", "26261", "61121", "61211", "61261", "66161", "66221", "111121", "111211" ]
[ "nonn", "base", "easy", "new" ]
13
1
1
[ "A000040", "A020450", "A020454", "A385774", "A385776" ]
null
Jason Bard, Jul 09 2025
2025-07-12T21:21:06
oeisdata/seq/A385/A385774.seq
bd4371fee5481ca1712a2e1ecf7b5357
A385775
Primes having only {1, 2, 8} as digits.
[ "2", "11", "181", "211", "281", "811", "821", "881", "1181", "1811", "2111", "2221", "2281", "8111", "8221", "8821", "11821", "12211", "12281", "12821", "18121", "18181", "18211", "21121", "21211", "21221", "21821", "21881", "22111", "22811", "28111", "28181", "28211", "81181", "81281", "82811", "88211", "88811", "111121" ]
[ "nonn", "base", "easy", "new" ]
13
1
1
[ "A000040", "A020450", "A020456", "A385775", "A385776" ]
null
Jason Bard, Jul 09 2025
2025-07-12T21:20:15
oeisdata/seq/A385/A385775.seq
434c277ff0a2b4c6f800d81d9bba8c14