name
stringlengths 3
112
| file
stringlengths 21
116
| statement
stringlengths 17
8.64k
| state
stringlengths 7
205k
| tactic
stringlengths 3
4.55k
| result
stringlengths 7
205k
| id
stringlengths 16
16
|
---|---|---|---|---|---|---|
AlgebraicTopology.DoldKan.HigherFacesVanish.induction
|
Mathlib/AlgebraicTopology/DoldKan/Faces.lean
|
theorem induction {Y : C} {n q : ℕ} {φ : Y ⟶ X _⦋n + 1⦌} (v : HigherFacesVanish q φ) :
HigherFacesVanish (q + 1) (φ ≫ (𝟙 _ + Hσ q).f (n + 1))
|
case neg.inr.H.h.mk
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
q a m : ℕ
φ : Y ⟶ X _⦋m + 1 + 1⦌
v : HigherFacesVanish q φ
hqn : ¬m + 1 < q
ha : q + a = m + 1
ham : a ≤ m
ham'' : a = m
val✝ : ℕ
isLt✝ : val✝ < m + 1 + 1
hj₁ : m + 1 + 1 ≤ ↑⟨val✝, isLt✝⟩ + (q + 1)
hj₂ : ¬a = ↑⟨val✝, isLt✝⟩
haj : a < ↑⟨val✝, isLt✝⟩
⊢ ↑⟨a + 1, ⋯⟩ = ↑⟨val✝, isLt✝⟩.castSucc
|
dsimp
|
case neg.inr.H.h.mk
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
q a m : ℕ
φ : Y ⟶ X _⦋m + 1 + 1⦌
v : HigherFacesVanish q φ
hqn : ¬m + 1 < q
ha : q + a = m + 1
ham : a ≤ m
ham'' : a = m
val✝ : ℕ
isLt✝ : val✝ < m + 1 + 1
hj₁ : m + 1 + 1 ≤ ↑⟨val✝, isLt✝⟩ + (q + 1)
hj₂ : ¬a = ↑⟨val✝, isLt✝⟩
haj : a < ↑⟨val✝, isLt✝⟩
⊢ a + 1 = val✝
|
69ef2d77296be0d2
|
Std.DHashMap.Raw.get?_eq_none
|
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/RawLemmas.lean
|
theorem get?_eq_none [LawfulBEq α] (h : m.WF) {a : α} : ¬a ∈ m → m.get? a = none
|
α : Type u
β : α → Type v
m : Raw α β
inst✝² : BEq α
inst✝¹ : Hashable α
inst✝ : LawfulBEq α
h : m.WF
a : α
⊢ ¬a ∈ m → m.get? a = none
|
simpa [mem_iff_contains] using get?_eq_none_of_contains_eq_false h
|
no goals
|
459dad1ede5c0c63
|
Vector.mapFinIdx_eq_append_iff
|
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Vector/MapIdx.lean
|
theorem mapFinIdx_eq_append_iff {l : Vector α (n + m)} {f : (i : Nat) → α → (h : i < n + m) → β}
{l₁ : Vector β n} {l₂ : Vector β m} :
l.mapFinIdx f = l₁ ++ l₂ ↔
∃ (l₁' : Vector α n) (l₂' : Vector α m), l = l₁' ++ l₂' ∧
l₁'.mapFinIdx (fun i a h => f i a (by omega)) = l₁ ∧
l₂'.mapFinIdx (fun i a h => f (i + n) a (by omega)) = l₂
|
α : Type u_1
n m : Nat
β : Type u_2
l : Vector α (n + m)
f : (i : Nat) → α → i < n + m → β
l₁ : Vector β n
l₂ : Vector β m
⊢ l.mapFinIdx f = l₁ ++ l₂ ↔
∃ l₁' l₂',
l = l₁' ++ l₂' ∧ (l₁'.mapFinIdx fun i a h => f i a ⋯) = l₁ ∧ (l₂'.mapFinIdx fun i a h => f (i + n) a ⋯) = l₂
|
rcases l with ⟨l, h⟩
|
case mk
α : Type u_1
n m : Nat
β : Type u_2
f : (i : Nat) → α → i < n + m → β
l₁ : Vector β n
l₂ : Vector β m
l : Array α
h : l.size = n + m
⊢ { toArray := l, size_toArray := h }.mapFinIdx f = l₁ ++ l₂ ↔
∃ l₁' l₂',
{ toArray := l, size_toArray := h } = l₁' ++ l₂' ∧
(l₁'.mapFinIdx fun i a h => f i a ⋯) = l₁ ∧ (l₂'.mapFinIdx fun i a h => f (i + n) a ⋯) = l₂
|
9b4b91865ad16511
|
Polynomial.roots_map_of_map_ne_zero_of_card_eq_natDegree
|
Mathlib/Algebra/Polynomial/Roots.lean
|
theorem roots_map_of_map_ne_zero_of_card_eq_natDegree [IsDomain A] [IsDomain B] {p : A[X]}
(f : A →+* B) (h : p.map f ≠ 0) (hroots : p.roots.card = p.natDegree) :
p.roots.map f = (p.map f).roots :=
eq_of_le_of_card_le (map_roots_le h) <| by
simpa only [Multiset.card_map, hroots] using (p.map f).card_roots'.trans natDegree_map_le
|
A : Type u_1
B : Type u_2
inst✝³ : CommRing A
inst✝² : CommRing B
inst✝¹ : IsDomain A
inst✝ : IsDomain B
p : A[X]
f : A →+* B
h : map f p ≠ 0
hroots : p.roots.card = p.natDegree
⊢ (map f p).roots.card ≤ (Multiset.map (⇑f) p.roots).card
|
simpa only [Multiset.card_map, hroots] using (p.map f).card_roots'.trans natDegree_map_le
|
no goals
|
504acb872e83339b
|
not_specializes_iff_exists_closed
|
Mathlib/Topology/Inseparable.lean
|
theorem not_specializes_iff_exists_closed : ¬x ⤳ y ↔ ∃ S : Set X, IsClosed S ∧ x ∈ S ∧ y ∉ S
|
X : Type u_1
inst✝ : TopologicalSpace X
x y : X
⊢ (∃ s, IsClosed s ∧ x ∈ s ∧ y ∉ s) ↔ ∃ S, IsClosed S ∧ x ∈ S ∧ y ∉ S
|
rfl
|
no goals
|
7ea91698b4952923
|
List.sublist_insertionSort'
|
Mathlib/Data/List/Sort.lean
|
theorem sublist_insertionSort' {l c : List α} (hs : c.Sorted r) (hc : c <+~ l) :
c <+ insertionSort r l
|
case intro.intro.cons.cons₂
α : Type u
r : α → α → Prop
inst✝³ : DecidableRel r
inst✝² : IsAntisymm α r
inst✝¹ : IsTotal α r
inst✝ : IsTrans α r
a : α
tail✝ c : List α
hs : Sorted r c
l₁✝ : List α
hc : a :: l₁✝ ~ c
h : l₁✝ <+ tail✝
ih : c.erase a <+ insertionSort r tail✝
hm : a ∈ c
⊢ c <+ insertionSort r (a :: tail✝)
|
have he := orderedInsert_erase _ _ hm hs
|
case intro.intro.cons.cons₂
α : Type u
r : α → α → Prop
inst✝³ : DecidableRel r
inst✝² : IsAntisymm α r
inst✝¹ : IsTotal α r
inst✝ : IsTrans α r
a : α
tail✝ c : List α
hs : Sorted r c
l₁✝ : List α
hc : a :: l₁✝ ~ c
h : l₁✝ <+ tail✝
ih : c.erase a <+ insertionSort r tail✝
hm : a ∈ c
he : orderedInsert r a (c.erase a) = c
⊢ c <+ insertionSort r (a :: tail✝)
|
870111a403d3360d
|
ProbabilityTheory.geometricPMFRealSum
|
Mathlib/Probability/Distributions/Geometric.lean
|
lemma geometricPMFRealSum (hp_pos : 0 < p) (hp_le_one : p ≤ 1) :
HasSum (fun n ↦ geometricPMFReal p n) 1
|
p : ℝ
hp_pos : 0 < p
hp_le_one : p ≤ 1
this : HasSum (fun i => (1 - p) ^ i * p) 1
⊢ HasSum (fun n => (1 - p) ^ n * p) 1
|
exact this
|
no goals
|
afaf3b0c211ee9c5
|
Submodule.fg_iSup
|
Mathlib/RingTheory/Finiteness/Basic.lean
|
theorem fg_iSup {ι : Sort*} [Finite ι] (N : ι → Submodule R M) (h : ∀ i, (N i).FG) :
(iSup N).FG
|
R : Type u_1
M : Type u_2
inst✝³ : Semiring R
inst✝² : AddCommMonoid M
inst✝¹ : Module R M
ι : Sort u_3
inst✝ : Finite ι
N : ι → Submodule R M
h : ∀ (i : ι), (N i).FG
⊢ (iSup N).FG
|
cases nonempty_fintype (PLift ι)
|
case intro
R : Type u_1
M : Type u_2
inst✝³ : Semiring R
inst✝² : AddCommMonoid M
inst✝¹ : Module R M
ι : Sort u_3
inst✝ : Finite ι
N : ι → Submodule R M
h : ∀ (i : ι), (N i).FG
val✝ : Fintype (PLift ι)
⊢ (iSup N).FG
|
d9c53e4dab4a2c3e
|
Array.foldr_induction
|
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Lemmas.lean
|
theorem foldr_induction
{as : Array α} (motive : Nat → β → Prop) {init : β} (h0 : motive as.size init) {f : α → β → β}
(hf : ∀ i : Fin as.size, ∀ b, motive (i.1 + 1) b → motive i.1 (f as[i] b)) :
motive 0 (as.foldr f init)
|
α : Type u_1
β : Type u_2
as : Array α
motive : Nat → β → Prop
init : β
h0 : motive as.size init
f : α → β → β
hf : ∀ (i : Fin as.size) (b : β), motive (↑i + 1) b → motive (↑i) (f as[i] b)
i : Nat
b : β
hi✝ : i ≤ as.size
H : motive i b
hi : ¬i = 0
⊢ motive 0
(match i, hi✝ with
| 0, x => b
| i.succ, h => foldrM.fold f as 0 i ⋯ (f as[i] b))
|
split
|
case h_1
α : Type u_1
β : Type u_2
as : Array α
motive : Nat → β → Prop
init : β
h0 : motive as.size init
f : α → β → β
hf : ∀ (i : Fin as.size) (b : β), motive (↑i + 1) b → motive (↑i) (f as[i] b)
b : β
x✝² : Nat
x✝¹ : x✝² ≤ as.size
x✝ : 0 ≤ as.size
H : motive 0 b
hi : ¬0 = 0
⊢ motive 0 b
case h_2
α : Type u_1
β : Type u_2
as : Array α
motive : Nat → β → Prop
init : β
h0 : motive as.size init
f : α → β → β
hf : ∀ (i : Fin as.size) (b : β), motive (↑i + 1) b → motive (↑i) (f as[i] b)
b : β
x✝¹ : Nat
x✝ : x✝¹ ≤ as.size
i✝ : Nat
h✝ : i✝ + 1 ≤ as.size
H : motive i✝.succ b
hi : ¬i✝.succ = 0
⊢ motive 0 (foldrM.fold f as 0 i✝ ⋯ (f as[i✝] b))
|
36c52e13ffc37b61
|
FirstOrder.Language.Theory.IsComplete.models_not_iff
|
Mathlib/ModelTheory/Satisfiability.lean
|
theorem models_not_iff (h : T.IsComplete) (φ : L.Sentence) : T ⊨ᵇ φ.not ↔ ¬T ⊨ᵇ φ
|
case inr
L : Language
T : L.Theory
h : T.IsComplete
φ : L.Sentence
hφn : T ⊨ᵇ Formula.not φ
⊢ T ⊨ᵇ Formula.not φ ↔ ¬T ⊨ᵇ φ
|
simp only [hφn, true_iff]
|
case inr
L : Language
T : L.Theory
h : T.IsComplete
φ : L.Sentence
hφn : T ⊨ᵇ Formula.not φ
⊢ ¬T ⊨ᵇ φ
|
000fa928de0bef51
|
HNNExtension.NormalWord.t_pow_smul_eq_unitsSMul
|
Mathlib/GroupTheory/HNNExtension.lean
|
theorem t_pow_smul_eq_unitsSMul (u : ℤˣ) (w : NormalWord d) :
(t ^ (u : ℤ) : HNNExtension G A B φ) • w = unitsSMul φ u w
|
G : Type u_1
inst✝ : Group G
A B : Subgroup G
φ : ↥A ≃* ↥B
d : TransversalPair G A B
u : ℤˣ
w : NormalWord d
⊢ t ^ ↑u • w = unitsSMul φ u w
|
rcases Int.units_eq_one_or u with (rfl | rfl) <;>
simp [instHSMul, SMul.smul, MulAction.toEndHom, Equiv.Perm.inv_def]
|
no goals
|
5e0245b3a208b8b5
|
Filter.IsApproximateUnit.nhds_one
|
Mathlib/Topology/ApproximateUnit.lean
|
/-- In a topological unital magma, `𝓝 1` is an approximate unit. -/
lemma nhds_one [ContinuousMul α] : IsApproximateUnit (𝓝 (1 : α)) where
tendsto_mul_left m
|
α : Type u_1
inst✝² : TopologicalSpace α
inst✝¹ : MulOneClass α
inst✝ : ContinuousMul α
m : α
⊢ Tendsto (fun x => m * x) (𝓝 1) (𝓝 m)
|
simpa using tendsto_id (x := 𝓝 1) |>.const_mul m
|
no goals
|
8c11f27e5c645308
|
list_reverse'
|
Mathlib/Computability/Primrec.lean
|
theorem list_reverse' :
haveI := prim H
Primrec (@List.reverse β) :=
letI := prim H
(list_foldl' H .id (const []) <| to₂ <| ((list_cons' H).comp snd fst).comp snd).of_eq
(suffices ∀ l r, List.foldl (fun (s : List β) (b : β) => b :: s) r l = List.reverseAux l r from
fun l => this l []
fun l => by induction l <;> simp [*, List.reverseAux])
|
β : Type u_2
inst✝ : Primcodable β
H : Nat.Primrec fun n => encode (decode n)
this : Primcodable (List β) := prim H
l : List β
⊢ ∀ (r : List β), List.foldl (fun s b => b :: s) r l = l.reverseAux r
|
induction l <;> simp [*, List.reverseAux]
|
no goals
|
07b242f65261af1b
|
AddCommGrp.Colimits.Quot.map_ι
|
Mathlib/Algebra/Category/Grp/Colimits.lean
|
@[simp]
lemma Quot.map_ι [DecidableEq J] {j j' : J} {f : j ⟶ j'} (x : F.obj j) :
Quot.ι F j' (F.map f x) = Quot.ι F j x
|
J : Type u
inst✝¹ : Category.{v, u} J
F : J ⥤ AddCommGrp
inst✝ : DecidableEq J
j j' : J
f : j ⟶ j'
x : ↑(F.obj j)
⊢ ((QuotientAddGroup.mk' (Relations F)).comp (DFinsupp.singleAddHom (fun j => ↑(F.obj j)) j'))
((ConcreteCategory.hom (F.map f)) x) =
((QuotientAddGroup.mk' (Relations F)).comp (DFinsupp.singleAddHom (fun j => ↑(F.obj j)) j)) x
|
refine eq_of_sub_eq_zero ?_
|
J : Type u
inst✝¹ : Category.{v, u} J
F : J ⥤ AddCommGrp
inst✝ : DecidableEq J
j j' : J
f : j ⟶ j'
x : ↑(F.obj j)
⊢ ((QuotientAddGroup.mk' (Relations F)).comp (DFinsupp.singleAddHom (fun j => ↑(F.obj j)) j'))
((ConcreteCategory.hom (F.map f)) x) -
((QuotientAddGroup.mk' (Relations F)).comp (DFinsupp.singleAddHom (fun j => ↑(F.obj j)) j)) x =
0
|
14bc73f0adb070cf
|
TopCat.range_pullback_to_prod
|
Mathlib/Topology/Category/TopCat/Limits/Pullbacks.lean
|
theorem range_pullback_to_prod {X Y Z : TopCat} (f : X ⟶ Z) (g : Y ⟶ Z) :
Set.range (prod.lift (pullback.fst f g) (pullback.snd f g)) =
{ x | (Limits.prod.fst ≫ f) x = (Limits.prod.snd ≫ g) x }
|
case h.mpr
X Y Z : TopCat
f : X ⟶ Z
g : Y ⟶ Z
x : ↑(X ⨯ Y)
h : (ConcreteCategory.hom f) (prod.fst.hom' x, ?m.36223).1 = (ConcreteCategory.hom g) (?m.36335, prod.snd.hom' x).2
⊢ x ∈ Set.range ⇑(ConcreteCategory.hom (prod.lift (pullback.fst f g) (pullback.snd f g)))
|
use (pullbackIsoProdSubtype f g).inv ⟨⟨_, _⟩, h⟩
|
case h
X Y Z : TopCat
f : X ⟶ Z
g : Y ⟶ Z
x : ↑(X ⨯ Y)
h :
(ConcreteCategory.hom f) (prod.fst.hom' x, prod.snd.hom' x).1 =
(ConcreteCategory.hom g) (prod.fst.hom' x, prod.snd.hom' x).2
⊢ (ConcreteCategory.hom (prod.lift (pullback.fst f g) (pullback.snd f g)))
((ConcreteCategory.hom (pullbackIsoProdSubtype f g).inv) ⟨(prod.fst.hom' x, prod.snd.hom' x), h⟩) =
x
|
4b3b4b2af80f752f
|
Std.Tactic.BVDecide.BVExpr.bitblast.blastShiftRightConst.go_denote_eq
|
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BVExpr/Circuit/Lemmas/Operations/ShiftRight.lean
|
theorem go_denote_eq (aig : AIG α) (distance : Nat) (input : AIG.RefVec aig w)
(assign : α → Bool) (curr : Nat) (hcurr : curr ≤ w) (s : AIG.RefVec aig curr) :
∀ (idx : Nat) (hidx1 : idx < w),
curr ≤ idx
→
⟦
(go aig input distance curr hcurr s).aig,
(go aig input distance curr hcurr s).vec.get idx hidx1,
assign
⟧
=
if hidx : (distance + idx) < w then
⟦aig, input.get (distance + idx) (by omega), assign⟧
else
false
|
case isTrue.inl.isTrue.isFalse
α : Type
inst✝¹ : Hashable α
inst✝ : DecidableEq α
w : Nat
aig : AIG α
distance : Nat
input : aig.RefVec w
assign : α → Bool
curr : Nat
hcurr : curr ≤ w
s : aig.RefVec curr
idx : Nat
hidx1 : idx < w
hidx2 : curr ≤ idx
res : RefVecEntry α w
h✝² : curr < w
heq : curr = idx
h✝¹ : distance + curr < w
hgo : go aig input distance (curr + 1) ⋯ (s.push (input.get (distance + curr) ⋯)) = res
h✝ : ¬distance + idx < w
⊢ ⟦assign, { aig := res.aig, ref := res.vec.get idx hidx1 }⟧ = false
|
omega
|
no goals
|
5fc3536d0b25a58c
|
Nat.Partrec.Code.evaln_prim
|
Mathlib/Computability/PartrecCode.lean
|
theorem evaln_prim : Primrec fun a : (ℕ × Code) × ℕ => evaln a.1.1 a.1.2 a.2 :=
have :
Primrec₂ fun (_ : Unit) (n : ℕ) =>
let a := ofNat (ℕ × Code) n
(List.range a.1).map (evaln a.1 a.2) :=
Primrec.nat_strong_rec _ (hG.comp Primrec.snd).to₂ fun _ p => by
simp only [G, prod_ofNat_val, ofNat_nat, List.length_map, List.length_range,
Nat.pair_unpair, Option.some_inj]
refine List.map_congr_left fun n => ?_
have : List.range p = List.range (Nat.pair p.unpair.1 (encode (ofNat Code p.unpair.2)))
|
case succ.comp.intro.some
x✝ : Unit
p n : ℕ
this : List.range p = List.range (Nat.pair (unpair p).1 (encode (ofNat Code (unpair p).2)))
k' : ℕ
k : ℕ := k' + 1
nk : n ≤ k'
cf cg : Code
hg :
∀ {k' : ℕ} {c' : Code} {n : ℕ},
Nat.pair k' (encode c') < Nat.pair k (encode (cf.comp cg)) →
Nat.Partrec.Code.lup
(List.map (fun n => List.map (evaln (unpair n).1 (ofNat Code (unpair n).2)) (List.range (unpair n).1))
(List.range (Nat.pair k (encode (cf.comp cg)))))
(k', c') n =
evaln k' c' n
lf : encode cf < encode (cf.comp cg)
lg : encode cg < encode (cf.comp cg)
val✝ : ℕ
⊢ ((some val✝).bind fun x =>
Nat.Partrec.Code.lup
(List.map (fun n => List.map (evaln (unpair n).1 (ofNat Code (unpair n).2)) (List.range (unpair n).1))
(List.range (Nat.pair (k' + 1) (encode (cf.comp cg)))))
(k' + 1, cf) x) =
(some val✝).bind fun x => evaln (k' + 1) cf x
|
simp [k, hg (Nat.pair_lt_pair_right _ lf)]
|
no goals
|
5a06f75ab46fe8c4
|
List.sublist_flatten_iff
|
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Sublist.lean
|
theorem sublist_flatten_iff {L : List (List α)} {l} :
l <+ L.flatten ↔
∃ L' : List (List α), l = L'.flatten ∧ ∀ i (_ : i < L'.length), L'[i] <+ L[i]?.getD []
|
case cons.mpr.intro.intro.nil
α : Type u_1
l' : List α
L : List (List α)
ih : ∀ {l : List α}, l <+ L.flatten ↔ ∃ L', l = L'.flatten ∧ ∀ (i : Nat) (x : i < L'.length), L'[i] <+ L[i]?.getD []
h : ∀ (i : Nat) (x : i < [].length), [][i] <+ (l' :: L)[i]?.getD []
⊢ ∃ l₁ l₂,
[].flatten = l₁ ++ l₂ ∧ l₁ <+ l' ∧ ∃ L', l₂ = L'.flatten ∧ ∀ (i : Nat) (x : i < L'.length), L'[i] <+ L[i]?.getD []
|
exact ⟨[], [], by simp, by simp, [], by simp, fun i x => by cases x⟩
|
no goals
|
2d054bb50b16d9ba
|
List.Vector.insertIdx_comm
|
Mathlib/Data/Vector/Basic.lean
|
theorem insertIdx_comm (a b : α) (i j : Fin (n + 1)) (h : i ≤ j) :
∀ v : Vector α n,
(v.insertIdx a i).insertIdx b j.succ = (v.insertIdx b j).insertIdx a (Fin.castSucc i)
| ⟨l, hl⟩ => by
refine Subtype.eq ?_
simp only [insertIdx_val, Fin.val_succ, Fin.castSucc, Fin.coe_castAdd]
apply List.insertIdx_comm
· assumption
· rw [hl]
exact Nat.le_of_succ_le_succ j.2
|
case x
α : Type u_1
n : ℕ
a b : α
i j : Fin (n + 1)
h : i ≤ j
l : List α
hl : l.length = n
⊢ ↑i ≤ ↑j
|
assumption
|
no goals
|
e169c22cbc8ad2b0
|
Std.Sat.AIG.mkGateCached.go_eval_eq_mkGate_eval
|
Mathlib/.lake/packages/lean4/src/lean/Std/Sat/AIG/CachedLemmas.lean
|
theorem mkGateCached.go_eval_eq_mkGate_eval {aig : AIG α} {input : GateInput aig} :
⟦go aig input, assign⟧ = ⟦aig.mkGate input, assign⟧
|
case h_2.h_9
α : Type
inst✝¹ : Hashable α
inst✝ : DecidableEq α
assign : α → Bool
aig : AIG α
input : aig.GateInput
x✝¹⁰ : Option (CacheHit aig.decls (Decl.gate input.lhs.ref.gate input.rhs.ref.gate input.lhs.inv input.rhs.inv))
heq✝ : aig.cache.get? (Decl.gate input.lhs.ref.gate input.rhs.ref.gate input.lhs.inv input.rhs.inv) = none
x✝⁹ x✝⁸ : Decl α
linv✝ rinv✝ : Bool
x✝⁷ : aig.decls[input.lhs.ref.gate] = Decl.const true → input.lhs.inv = true → False
x✝⁶ : aig.decls[input.lhs.ref.gate] = Decl.const false → input.lhs.inv = false → False
x✝⁵ : aig.decls[input.rhs.ref.gate] = Decl.const true → input.rhs.inv = true → False
x✝⁴ : aig.decls[input.rhs.ref.gate] = Decl.const false → input.rhs.inv = false → False
x✝³ : aig.decls[input.lhs.ref.gate] = Decl.const true → input.lhs.inv = false → input.rhs.inv = false → False
x✝² : aig.decls[input.lhs.ref.gate] = Decl.const false → input.lhs.inv = true → input.rhs.inv = false → False
x✝¹ : aig.decls[input.rhs.ref.gate] = Decl.const true → input.lhs.inv = false → input.rhs.inv = false → False
x✝ : aig.decls[input.rhs.ref.gate] = Decl.const false → input.lhs.inv = false → input.rhs.inv = true → False
⊢ ⟦assign,
if (input.lhs.ref.gate == input.rhs.ref.gate && input.lhs.inv == false && input.rhs.inv == false) = true then
{ aig := { decls := aig.decls, cache := aig.cache, invariant := ⋯ },
ref := { gate := input.lhs.ref.gate, hgate := ⋯ } }
else
if (input.lhs.ref.gate == input.rhs.ref.gate && input.lhs.inv == !input.rhs.inv) = true then
{ decls := aig.decls, cache := aig.cache, invariant := ⋯ }.mkConstCached false
else
{
aig :=
{ decls := aig.decls.push (Decl.gate input.lhs.ref.gate input.rhs.ref.gate input.lhs.inv input.rhs.inv),
cache :=
Cache.insert aig.decls aig.cache
(Decl.gate input.lhs.ref.gate input.rhs.ref.gate input.lhs.inv input.rhs.inv),
invariant := ⋯ },
ref := { gate := aig.decls.size, hgate := ⋯ } }⟧ =
⟦assign, aig.mkGate input⟧
|
split
|
case h_2.h_9.isTrue
α : Type
inst✝¹ : Hashable α
inst✝ : DecidableEq α
assign : α → Bool
aig : AIG α
input : aig.GateInput
x✝¹⁰ : Option (CacheHit aig.decls (Decl.gate input.lhs.ref.gate input.rhs.ref.gate input.lhs.inv input.rhs.inv))
heq✝ : aig.cache.get? (Decl.gate input.lhs.ref.gate input.rhs.ref.gate input.lhs.inv input.rhs.inv) = none
x✝⁹ x✝⁸ : Decl α
linv✝ rinv✝ : Bool
x✝⁷ : aig.decls[input.lhs.ref.gate] = Decl.const true → input.lhs.inv = true → False
x✝⁶ : aig.decls[input.lhs.ref.gate] = Decl.const false → input.lhs.inv = false → False
x✝⁵ : aig.decls[input.rhs.ref.gate] = Decl.const true → input.rhs.inv = true → False
x✝⁴ : aig.decls[input.rhs.ref.gate] = Decl.const false → input.rhs.inv = false → False
x✝³ : aig.decls[input.lhs.ref.gate] = Decl.const true → input.lhs.inv = false → input.rhs.inv = false → False
x✝² : aig.decls[input.lhs.ref.gate] = Decl.const false → input.lhs.inv = true → input.rhs.inv = false → False
x✝¹ : aig.decls[input.rhs.ref.gate] = Decl.const true → input.lhs.inv = false → input.rhs.inv = false → False
x✝ : aig.decls[input.rhs.ref.gate] = Decl.const false → input.lhs.inv = false → input.rhs.inv = true → False
h✝ : (input.lhs.ref.gate == input.rhs.ref.gate && input.lhs.inv == false && input.rhs.inv == false) = true
⊢ ⟦assign,
{ aig := { decls := aig.decls, cache := aig.cache, invariant := ⋯ },
ref := { gate := input.lhs.ref.gate, hgate := ⋯ } }⟧ =
⟦assign, aig.mkGate input⟧
case h_2.h_9.isFalse
α : Type
inst✝¹ : Hashable α
inst✝ : DecidableEq α
assign : α → Bool
aig : AIG α
input : aig.GateInput
x✝¹⁰ : Option (CacheHit aig.decls (Decl.gate input.lhs.ref.gate input.rhs.ref.gate input.lhs.inv input.rhs.inv))
heq✝ : aig.cache.get? (Decl.gate input.lhs.ref.gate input.rhs.ref.gate input.lhs.inv input.rhs.inv) = none
x✝⁹ x✝⁸ : Decl α
linv✝ rinv✝ : Bool
x✝⁷ : aig.decls[input.lhs.ref.gate] = Decl.const true → input.lhs.inv = true → False
x✝⁶ : aig.decls[input.lhs.ref.gate] = Decl.const false → input.lhs.inv = false → False
x✝⁵ : aig.decls[input.rhs.ref.gate] = Decl.const true → input.rhs.inv = true → False
x✝⁴ : aig.decls[input.rhs.ref.gate] = Decl.const false → input.rhs.inv = false → False
x✝³ : aig.decls[input.lhs.ref.gate] = Decl.const true → input.lhs.inv = false → input.rhs.inv = false → False
x✝² : aig.decls[input.lhs.ref.gate] = Decl.const false → input.lhs.inv = true → input.rhs.inv = false → False
x✝¹ : aig.decls[input.rhs.ref.gate] = Decl.const true → input.lhs.inv = false → input.rhs.inv = false → False
x✝ : aig.decls[input.rhs.ref.gate] = Decl.const false → input.lhs.inv = false → input.rhs.inv = true → False
h✝ : ¬(input.lhs.ref.gate == input.rhs.ref.gate && input.lhs.inv == false && input.rhs.inv == false) = true
⊢ ⟦assign,
if (input.lhs.ref.gate == input.rhs.ref.gate && input.lhs.inv == !input.rhs.inv) = true then
{ decls := aig.decls, cache := aig.cache, invariant := ⋯ }.mkConstCached false
else
{
aig :=
{ decls := aig.decls.push (Decl.gate input.lhs.ref.gate input.rhs.ref.gate input.lhs.inv input.rhs.inv),
cache :=
Cache.insert aig.decls aig.cache
(Decl.gate input.lhs.ref.gate input.rhs.ref.gate input.lhs.inv input.rhs.inv),
invariant := ⋯ },
ref := { gate := aig.decls.size, hgate := ⋯ } }⟧ =
⟦assign, aig.mkGate input⟧
|
d44cc6ef1a811f57
|
ENNReal.toReal_add_le
|
Mathlib/Data/ENNReal/Real.lean
|
theorem toReal_add_le : (a + b).toReal ≤ a.toReal + b.toReal :=
if ha : a = ∞ then by simp only [ha, top_add, top_toReal, zero_add, toReal_nonneg]
else
if hb : b = ∞ then by simp only [hb, add_top, top_toReal, add_zero, toReal_nonneg]
else le_of_eq (toReal_add ha hb)
|
a b : ℝ≥0∞
ha : a = ⊤
⊢ (a + b).toReal ≤ a.toReal + b.toReal
|
simp only [ha, top_add, top_toReal, zero_add, toReal_nonneg]
|
no goals
|
7639cc337e185f1a
|
BitVec.cons_append_append
|
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Lemmas.lean
|
theorem cons_append_append (x : BitVec w₁) (y : BitVec w₂) (z : BitVec w₃) (a : Bool) :
(cons a x) ++ y ++ z = (cons a (x ++ y ++ z)).cast (by omega)
|
case neg
w₁ w₂ w₃ : Nat
x : BitVec w₁
y : BitVec w₂
z : BitVec w₃
a : Bool
i : Nat
h : i < w₁ + 1 + w₂ + w₃
h₀ : ¬i < w₁ + w₂ + w₃
⊢ (if i < w₃ then z.getLsbD i else if i - w₃ < w₂ then y.getLsbD (i - w₃) else a) = a
|
by_cases h₂ : i < w₃
|
case pos
w₁ w₂ w₃ : Nat
x : BitVec w₁
y : BitVec w₂
z : BitVec w₃
a : Bool
i : Nat
h : i < w₁ + 1 + w₂ + w₃
h₀ : ¬i < w₁ + w₂ + w₃
h₂ : i < w₃
⊢ (if i < w₃ then z.getLsbD i else if i - w₃ < w₂ then y.getLsbD (i - w₃) else a) = a
case neg
w₁ w₂ w₃ : Nat
x : BitVec w₁
y : BitVec w₂
z : BitVec w₃
a : Bool
i : Nat
h : i < w₁ + 1 + w₂ + w₃
h₀ : ¬i < w₁ + w₂ + w₃
h₂ : ¬i < w₃
⊢ (if i < w₃ then z.getLsbD i else if i - w₃ < w₂ then y.getLsbD (i - w₃) else a) = a
|
eb023eee426d5364
|
Nat.mul_mod
|
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Nat/Lemmas.lean
|
theorem mul_mod (a b n : Nat) : a * b % n = (a % n) * (b % n) % n
|
a b n : Nat
⊢ a * b % n = a % n * (b % n) % n
|
rw (occs := [1]) [← mod_add_div a n]
|
a b n : Nat
⊢ (a % n + n * (a / n)) * b % n = a % n * (b % n) % n
|
6886db5637d70c32
|
isometry_subsingleton
|
Mathlib/Topology/MetricSpace/Isometry.lean
|
theorem _root_.isometry_subsingleton [Subsingleton α] : Isometry f := fun x y => by
rw [Subsingleton.elim x y]; simp
|
α : Type u
β : Type v
inst✝² : PseudoEMetricSpace α
inst✝¹ : PseudoEMetricSpace β
f : α → β
inst✝ : Subsingleton α
x y : α
⊢ edist (f y) (f y) = edist y y
|
simp
|
no goals
|
defcf28595a70634
|
Stream'.Seq.map_cons
|
Mathlib/Data/Seq/Seq.lean
|
theorem map_cons (f : α → β) (a) : ∀ s, map f (cons a s) = cons (f a) (map f s)
| ⟨s, al⟩ => by apply Subtype.eq; dsimp [cons, map]; rw [Stream'.map_cons]; rfl
|
case a
α : Type u
β : Type v
f : α → β
a : α
s : Stream' (Option α)
al : s.IsSeq
⊢ ↑(map f (cons a ⟨s, al⟩)) = ↑(cons (f a) (map f ⟨s, al⟩))
|
dsimp [cons, map]
|
case a
α : Type u
β : Type v
f : α → β
a : α
s : Stream' (Option α)
al : s.IsSeq
⊢ Stream'.map (Option.map f) (some a :: s) = some (f a) :: Stream'.map (Option.map f) s
|
53104f98914cff40
|
MeasureTheory.indicatorConstLp_eq_toSpanSingleton_compLp
|
Mathlib/MeasureTheory/Function/LpSpace/Basic.lean
|
theorem indicatorConstLp_eq_toSpanSingleton_compLp {s : Set α} [NormedSpace ℝ F]
(hs : MeasurableSet s) (hμs : μ s ≠ ∞) (x : F) :
indicatorConstLp 2 hs hμs x =
(ContinuousLinearMap.toSpanSingleton ℝ x).compLp (indicatorConstLp 2 hs hμs (1 : ℝ))
|
case h
α : Type u_1
F : Type u_5
m0 : MeasurableSpace α
μ : Measure α
inst✝¹ : NormedAddCommGroup F
s : Set α
inst✝ : NormedSpace ℝ F
hs : MeasurableSet s
hμs : μ s ≠ ⊤
x : F
⊢ (s.indicator fun x_1 => x) =ᶠ[ae μ] ↑↑((ContinuousLinearMap.toSpanSingleton ℝ x).compLp (indicatorConstLp 2 hs hμs 1))
|
have h_compLp :=
(ContinuousLinearMap.toSpanSingleton ℝ x).coeFn_compLp (indicatorConstLp 2 hs hμs (1 : ℝ))
|
case h
α : Type u_1
F : Type u_5
m0 : MeasurableSpace α
μ : Measure α
inst✝¹ : NormedAddCommGroup F
s : Set α
inst✝ : NormedSpace ℝ F
hs : MeasurableSet s
hμs : μ s ≠ ⊤
x : F
h_compLp :
∀ᵐ (a : α) ∂μ,
↑↑((ContinuousLinearMap.toSpanSingleton ℝ x).compLp (indicatorConstLp 2 hs hμs 1)) a =
(ContinuousLinearMap.toSpanSingleton ℝ x) (↑↑(indicatorConstLp 2 hs hμs 1) a)
⊢ (s.indicator fun x_1 => x) =ᶠ[ae μ] ↑↑((ContinuousLinearMap.toSpanSingleton ℝ x).compLp (indicatorConstLp 2 hs hμs 1))
|
08936ba25b43e072
|
MvPolynomial.weightedHomogeneousComponent_of_isWeightedHomogeneous_ne
|
Mathlib/RingTheory/MvPolynomial/WeightedHomogeneous.lean
|
theorem weightedHomogeneousComponent_of_isWeightedHomogeneous_ne
{m n : M} {p : MvPolynomial σ R} (hp : IsWeightedHomogeneous w p m) (hn : n ≠ m) :
weightedHomogeneousComponent w n p = 0
|
case a
R : Type u_1
M : Type u_2
inst✝¹ : CommSemiring R
σ : Type u_3
inst✝ : AddCommMonoid M
w : σ → M
m n : M
p : MvPolynomial σ R
hp : IsWeightedHomogeneous w p m
hn : n ≠ m
x : σ →₀ ℕ
⊢ coeff x ((weightedHomogeneousComponent w n) p) = coeff x 0
|
rw [coeff_weightedHomogeneousComponent]
|
case a
R : Type u_1
M : Type u_2
inst✝¹ : CommSemiring R
σ : Type u_3
inst✝ : AddCommMonoid M
w : σ → M
m n : M
p : MvPolynomial σ R
hp : IsWeightedHomogeneous w p m
hn : n ≠ m
x : σ →₀ ℕ
⊢ (if (weight w) x = n then coeff x p else 0) = coeff x 0
|
1179645efc5cef8b
|
Computation.corec_eq
|
Mathlib/Data/Seq/Computation.lean
|
theorem corec_eq (f : β → α ⊕ β) (b : β) : destruct (corec f b) = rmap (corec f) (f b)
|
case inr.h.a
α : Type u
β : Type v
f : β → α ⊕ β
b b' : β
h : f b = Sum.inr b'
⊢ ↑(tail ⟨Stream'.corec' (Corec.f f) (Sum.inr b), ⋯⟩) = ↑⟨Stream'.corec' (Corec.f f) (Sum.inr b'), ⋯⟩
|
dsimp [corec, tail]
|
case inr.h.a
α : Type u
β : Type v
f : β → α ⊕ β
b b' : β
h : f b = Sum.inr b'
⊢ (Stream'.corec' (Corec.f f) (Sum.inr b)).tail = Stream'.corec' (Corec.f f) (Sum.inr b')
|
166f587b1a2f0c6c
|
Bool.or_eq_true
|
Mathlib/.lake/packages/lean4/src/lean/Init/SimpLemmas.lean
|
theorem Bool.or_eq_true (a b : Bool) : ((a || b) = true) = (a = true ∨ b = true)
|
a b : Bool
⊢ ((a || b) = true) = (a = true ∨ b = true)
|
cases a <;> cases b <;> decide
|
no goals
|
d7b01d786d216268
|
Tactic.NormNum.int_gcd_helper
|
Mathlib/Tactic/NormNum/GCD.lean
|
theorem int_gcd_helper {x y : ℤ} {x' y' d : ℕ}
(hx : x.natAbs = x') (hy : y.natAbs = y') (h : Nat.gcd x' y' = d) :
Int.gcd x y = d
|
x y : ℤ
⊢ x.gcd y = x.natAbs.gcd y.natAbs
|
rw [Int.gcd_def]
|
no goals
|
dd9684f50d890c94
|
Ordinal.bsup_comp
|
Mathlib/SetTheory/Ordinal/Arithmetic.lean
|
theorem bsup_comp {o o' : Ordinal.{max u v}} {f : ∀ a < o, Ordinal.{max u v w}}
(hf : ∀ {i j} (hi) (hj), i ≤ j → f i hi ≤ f j hj) {g : ∀ a < o', Ordinal.{max u v}}
(hg : blsub.{_, u} o' g = o) :
(bsup.{_, w} o' fun a ha => f (g a ha) (by rw [← hg]; apply lt_blsub)) = bsup.{_, w} o f
|
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
o o' : Ordinal.{max u v}
f : (a : Ordinal.{max u v}) → a < o → Ordinal.{max u v w}
hf : ∀ {i j : Ordinal.{max u v}} (hi : i < o) (hj : j < o), i ≤ j → f i hi ≤ f j hj
g : (a : Ordinal.{max u v}) → a < o' → Ordinal.{max u v}
hg : o'.blsub g = o
a : Ordinal.{max u v}
ha : a < o'
⊢ g a ha < o'.blsub g
|
apply lt_blsub
|
no goals
|
2780919a3a9c7fa6
|
LinearIndependent.linearIndependent_of_exact_of_retraction
|
Mathlib/LinearAlgebra/Basis/Exact.lean
|
lemma LinearIndependent.linearIndependent_of_exact_of_retraction
(hainj : Function.Injective a) (hsa : ∀ i, s (v (a i)) = 0)
(hli : LinearIndependent R v) :
LinearIndependent R (g ∘ v ∘ a)
|
case intro
R : Type u_1
M : Type u_2
K : Type u_3
P : Type u_4
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup K
inst✝³ : AddCommGroup P
inst✝² : Module R M
inst✝¹ : Module R K
inst✝ : Module R P
f : K →ₗ[R] M
g : M →ₗ[R] P
s : M →ₗ[R] K
hfg : Function.Exact ⇑f ⇑g
ι : Type u_5
κ : Type u_6
v : ι → M
a : κ → ι
hainj : Function.Injective a
hsa : ∀ (i : κ), s (v (a i)) = 0
hli : LinearIndependent R v
y : K
hy : f y ∈ Submodule.span R (Set.range (v ∘ a))
hz : s (f y) = 0
hs : (s ∘ₗ f) y = LinearMap.id y
⊢ f y = 0
|
simp only [LinearMap.coe_comp, Function.comp_apply, LinearMap.id_coe, id_eq] at hs
|
case intro
R : Type u_1
M : Type u_2
K : Type u_3
P : Type u_4
inst✝⁶ : Ring R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup K
inst✝³ : AddCommGroup P
inst✝² : Module R M
inst✝¹ : Module R K
inst✝ : Module R P
f : K →ₗ[R] M
g : M →ₗ[R] P
s : M →ₗ[R] K
hfg : Function.Exact ⇑f ⇑g
ι : Type u_5
κ : Type u_6
v : ι → M
a : κ → ι
hainj : Function.Injective a
hsa : ∀ (i : κ), s (v (a i)) = 0
hli : LinearIndependent R v
y : K
hy : f y ∈ Submodule.span R (Set.range (v ∘ a))
hz : s (f y) = 0
hs : s (f y) = y
⊢ f y = 0
|
5ee9e42b46e28024
|
CochainComplex.HomComplex.Cochain.leftShift_comp
|
Mathlib/Algebra/Homology/HomotopyCategory/HomComplexShift.lean
|
lemma leftShift_comp (a n' : ℤ) (hn' : n + a = n') {m t t' : ℤ} (γ' : Cochain L M m)
(h : n + m = t) (ht' : t + a = t') :
(γ.comp γ' h).leftShift a t' ht' = (a * m).negOnePow • (γ.leftShift a n' hn').comp γ'
(by rw [← ht', ← h, ← hn', add_assoc, add_comm a, add_assoc])
|
case h.e_a.e_a
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : Preadditive C
K L M : CochainComplex C ℤ
n : ℤ
γ : Cochain K L n
a n' : ℤ
hn' : n + a = n'
m t t' : ℤ
γ' : Cochain L M m
h : n + m = t
ht' : t + a = t'
p q : ℤ
hpq : p + t' = q
h' : n' + m = t'
⊢ (a * (n' + m)).negOnePow = (a * m).negOnePow * (a * n').negOnePow
|
rw [add_comm n', mul_add, Int.negOnePow_add]
|
no goals
|
28ce55181ad3bbd7
|
MeasureTheory.hausdorffMeasure_pi_real
|
Mathlib/MeasureTheory/Measure/Hausdorff.lean
|
theorem hausdorffMeasure_pi_real {ι : Type*} [Fintype ι] :
(μH[Fintype.card ι] : Measure (ι → ℝ)) = volume
|
ι : Type u_4
inst✝ : Fintype ι
a b : ι → ℚ
H : ∀ (i : ι), a i < b i
I : ∀ (i : ι), 0 ≤ ↑(b i) - ↑(a i)
γ : ℕ → Type u_4 := fun n => (i : ι) → Fin ⌈(↑(b i) - ↑(a i)) * ↑n⌉₊
t : (n : ℕ) → γ n → Set (ι → ℝ) := fun n f => univ.pi fun i => Icc (↑(a i) + ↑↑(f i) / ↑n) (↑(a i) + (↑↑(f i) + 1) / ↑n)
A : Tendsto (fun n => 1 / ↑n) atTop (𝓝 0)
B : ∀ᶠ (n : ℕ) in atTop, ∀ (i : γ n), diam (t n i) ≤ 1 / ↑n
⊢ ∀ᶠ (n : ℕ) in atTop, (univ.pi fun i => Ioo ↑(a i) ↑(b i)) ⊆ ⋃ i, t n i
|
refine eventually_atTop.2 ⟨1, fun n hn => ?_⟩
|
ι : Type u_4
inst✝ : Fintype ι
a b : ι → ℚ
H : ∀ (i : ι), a i < b i
I : ∀ (i : ι), 0 ≤ ↑(b i) - ↑(a i)
γ : ℕ → Type u_4 := fun n => (i : ι) → Fin ⌈(↑(b i) - ↑(a i)) * ↑n⌉₊
t : (n : ℕ) → γ n → Set (ι → ℝ) := fun n f => univ.pi fun i => Icc (↑(a i) + ↑↑(f i) / ↑n) (↑(a i) + (↑↑(f i) + 1) / ↑n)
A : Tendsto (fun n => 1 / ↑n) atTop (𝓝 0)
B : ∀ᶠ (n : ℕ) in atTop, ∀ (i : γ n), diam (t n i) ≤ 1 / ↑n
n : ℕ
hn : n ≥ 1
⊢ (univ.pi fun i => Ioo ↑(a i) ↑(b i)) ⊆ ⋃ i, t n i
|
90212ad5e070d6f0
|
Nat.div_eq_of_lt
|
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Nat/Div/Basic.lean
|
theorem div_eq_of_lt (h₀ : a < b) : a / b = 0
|
case hnc
a b : Nat
h₀ : a < b
⊢ ¬(0 < b ∧ b ≤ a)
|
intro h₁
|
case hnc
a b : Nat
h₀ : a < b
h₁ : 0 < b ∧ b ≤ a
⊢ False
|
3fee51e2316178d3
|
intervalIntegral.integral_undef
|
Mathlib/MeasureTheory/Integral/IntervalIntegral.lean
|
theorem integral_undef (h : ¬IntervalIntegrable f μ a b) : ∫ x in a..b, f x ∂μ = 0
|
E : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
a b : ℝ
f : ℝ → E
μ : Measure ℝ
h : ¬IntervalIntegrable f μ a b
⊢ ∫ (x : ℝ) in a..b, f x ∂μ = 0
|
rw [intervalIntegrable_iff] at h
|
E : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
a b : ℝ
f : ℝ → E
μ : Measure ℝ
h : ¬IntegrableOn f (Ι a b) μ
⊢ ∫ (x : ℝ) in a..b, f x ∂μ = 0
|
ba2879a32248b222
|
Set.card_prod_singleton
|
Mathlib/SetTheory/Cardinal/Finite.lean
|
lemma card_prod_singleton (s : Set α) (b : β) : Nat.card (s ×ˢ {b}) = Nat.card s
|
α : Type u_1
β : Type u_2
s : Set α
b : β
⊢ Nat.card ↑(s ×ˢ {b}) = Nat.card ↑s
|
rw [prod_singleton, Nat.card_image_of_injective (Prod.mk.inj_right b)]
|
no goals
|
2ccc6f0e633f68f7
|
List.eraseIdx_modify_of_lt
|
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Nat/Modify.lean
|
theorem eraseIdx_modify_of_lt (f : α → α) (i j) (l : List α) (h : j < i) :
(modify f i l).eraseIdx j = (l.eraseIdx j).modify f (i - 1)
|
case neg.isFalse.isFalse
α : Type u_1
f : α → α
i j : Nat
l : List α
h : j < i
k : Nat
h₁ : k < ((modify f i l).eraseIdx j).length
h₂ : k < (modify f (i - 1) (l.eraseIdx j)).length
h' : ¬i - 1 = k
h✝¹ : ¬k < j
h✝ : ¬i = k + 1
⊢ l[k + 1] = l[k + 1]
|
rfl
|
no goals
|
87b3ea59efce4e47
|
Function.zero_of_even_and_odd
|
Mathlib/Algebra/Group/EvenFunction.lean
|
/--
If `f` is both even and odd, and its target is a torsion-free commutative additive group,
then `f = 0`.
-/
lemma zero_of_even_and_odd [Neg α] (he : f.Even) (ho : f.Odd) : f = 0
|
α : Type u_3
β : Type u_4
inst✝² : AddCommGroup β
inst✝¹ : NoZeroSMulDivisors ℕ β
f : α → β
inst✝ : Neg α
he : Function.Even f
ho : Function.Odd f
⊢ f = 0
|
ext r
|
case h
α : Type u_3
β : Type u_4
inst✝² : AddCommGroup β
inst✝¹ : NoZeroSMulDivisors ℕ β
f : α → β
inst✝ : Neg α
he : Function.Even f
ho : Function.Odd f
r : α
⊢ f r = 0 r
|
a839ade93a23de6c
|
ContinuousLinearMap.smulRight_one_eq_iff
|
Mathlib/Topology/Algebra/Module/LinearMap.lean
|
theorem smulRight_one_eq_iff {f f' : M₂} :
smulRight (1 : R₁ →L[R₁] R₁) f = smulRight (1 : R₁ →L[R₁] R₁) f' ↔ f = f'
|
R₁ : Type u_1
inst✝⁵ : Semiring R₁
M₂ : Type u_6
inst✝⁴ : TopologicalSpace M₂
inst✝³ : AddCommMonoid M₂
inst✝² : Module R₁ M₂
inst✝¹ : TopologicalSpace R₁
inst✝ : ContinuousSMul R₁ M₂
f f' : M₂
⊢ smulRight 1 f = smulRight 1 f' ↔ f = f'
|
simp only [ContinuousLinearMap.ext_ring_iff, smulRight_apply, one_apply, one_smul]
|
no goals
|
3689fa4c87d81eda
|
Subalgebra.isAlgebraic_iff
|
Mathlib/RingTheory/Algebraic/Defs.lean
|
theorem Subalgebra.isAlgebraic_iff (S : Subalgebra R A) :
S.IsAlgebraic ↔ Algebra.IsAlgebraic R S
|
R : Type u
A : Type v
inst✝² : CommRing R
inst✝¹ : Ring A
inst✝ : Algebra R A
S : Subalgebra R A
⊢ (∀ x ∈ S, _root_.IsAlgebraic R x) ↔ Algebra.IsAlgebraic R ↥S
|
rw [Subtype.forall', Algebra.isAlgebraic_def]
|
R : Type u
A : Type v
inst✝² : CommRing R
inst✝¹ : Ring A
inst✝ : Algebra R A
S : Subalgebra R A
⊢ (∀ (x : ↥S), _root_.IsAlgebraic R ↑x) ↔ ∀ (x : ↥S), _root_.IsAlgebraic R x
|
07f4073c806448dc
|
hasConstantSpeedOnWith_zero_iff
|
Mathlib/Analysis/ConstantSpeed.lean
|
theorem hasConstantSpeedOnWith_zero_iff :
HasConstantSpeedOnWith f s 0 ↔ ∀ᵉ (x ∈ s) (y ∈ s), edist (f x) (f y) = 0
|
case mpr
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : ℝ → E
s : Set ℝ
h : eVariationOn f s = 0
x : ℝ
x✝¹ : x ∈ s
y : ℝ
x✝ : y ∈ s
⊢ eVariationOn f (s ∩ Icc x y) ≤ 0
|
rw [← h]
|
case mpr
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : ℝ → E
s : Set ℝ
h : eVariationOn f s = 0
x : ℝ
x✝¹ : x ∈ s
y : ℝ
x✝ : y ∈ s
⊢ eVariationOn f (s ∩ Icc x y) ≤ eVariationOn f s
|
88820ed0bbab983a
|
PMF.integral_eq_tsum
|
Mathlib/Probability/ProbabilityMassFunction/Integrals.lean
|
theorem integral_eq_tsum (p : PMF α) (f : α → E) (hf : Integrable f p.toMeasure) :
∫ a, f a ∂(p.toMeasure) = ∑' a, (p a).toReal • f a := calc
_ = ∫ a in p.support, f a ∂(p.toMeasure)
|
α : Type u_1
inst✝⁴ : MeasurableSpace α
inst✝³ : MeasurableSingletonClass α
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
p : PMF α
f : α → E
hf : Integrable f p.toMeasure
⊢ ∫ (a : α), f a ∂p.toMeasure = ∫ (a : α) in p.support, f a ∂p.toMeasure
|
rw [restrict_toMeasure_support p]
|
no goals
|
a530d74688305c42
|
List.flatten_eq_append_iff
|
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Lemmas.lean
|
theorem flatten_eq_append_iff {xs : List (List α)} {ys zs : List α} :
xs.flatten = ys ++ zs ↔
(∃ as bs, xs = as ++ bs ∧ ys = as.flatten ∧ zs = bs.flatten) ∨
∃ as bs c cs ds, xs = as ++ (bs ++ c :: cs) :: ds ∧ ys = as.flatten ++ bs ∧
zs = c :: cs ++ ds.flatten
|
case mp.cons.inr.intro.intro.nil
α : Type u_1
zs : List α
xs : List (List α)
ih :
∀ {ys : List α},
xs.flatten = ys ++ zs →
(∃ as bs, xs = as ++ bs ∧ ys = as.flatten ∧ zs = bs.flatten) ∨
∃ as bs c cs ds, xs = as ++ (bs ++ c :: cs) :: ds ∧ ys = as.flatten ++ bs ∧ zs = c :: cs ++ ds.flatten
ys : List α
h : zs = [] ++ xs.flatten
⊢ (∃ as bs, (ys ++ []) :: xs = as ++ bs ∧ ys = as.flatten ∧ [] ++ xs.flatten = bs.flatten) ∨
∃ as bs c cs ds,
(ys ++ []) :: xs = as ++ (bs ++ c :: cs) :: ds ∧ ys = as.flatten ++ bs ∧ [] ++ xs.flatten = c :: cs ++ ds.flatten
|
exact .inl ⟨[ys], xs, by simp⟩
|
no goals
|
af7f3e2e06ab592a
|
AlgebraicGeometry.ValuativeCriterion.Existence.of_specializingMap
|
Mathlib/AlgebraicGeometry/ValuativeCriterion.lean
|
lemma of_specializingMap (H : (topologically @SpecializingMap).universally f) :
ValuativeCriterion.Existence f
|
X Y : Scheme
f : X ⟶ Y
R : Type u
commRing✝ : CommRing R
domain✝ : IsDomain R
valuationRing✝ : ValuationRing R
K : Type u
field✝ : Field K
algebra✝ : Algebra R K
isFractionRing✝ : IsFractionRing R K
i₁ : Spec (CommRingCat.of K) ⟶ X
i₂ : Spec (CommRingCat.of R) ⟶ Y
w : i₁ ≫ f = Spec.map (CommRingCat.ofHom (algebraMap R K)) ≫ i₂
this✝³ : IsDomain ↑(CommRingCat.of R)
this✝² : ValuationRing ↑(CommRingCat.of R)
this✝¹ : Field ↑(CommRingCat.of K) := field✝
H : topologically (@SpecializingMap) (pullback.fst i₂ f)
lft : Spec (CommRingCat.of K) ⟶ pullback i₂ f := pullback.lift (Spec.map (CommRingCat.ofHom (algebraMap R K))) i₁ ⋯
x : ↑↑(pullback i₂ f).toPresheafedSpace
h₁ : flip (fun x1 x2 => x1 ⤳ x2) x ((ConcreteCategory.hom lft.base) (closedPoint ↑(CommRingCat.of K)))
h₂ : (ConcreteCategory.hom (pullback.fst i₂ f).base) x = closedPoint R
e : CommRingCat.of R ≅ (Spec (CommRingCat.of R)).presheaf.stalk ((ConcreteCategory.hom (pullback.fst i₂ f).base) x) :=
(stalkClosedPointIso (CommRingCat.of R)).symm ≪≫ (Spec (CommRingCat.of R)).presheaf.stalkCongr ⋯
α : CommRingCat.of R ⟶ (pullback i₂ f).presheaf.stalk x := e.hom ≫ Scheme.Hom.stalkMap (pullback.fst i₂ f) x
this✝ : IsLocalHom (CommRingCat.Hom.hom e.hom)
this : IsLocalHom (CommRingCat.Hom.hom α)
β : (pullback i₂ f).presheaf.stalk x ⟶ CommRingCat.of K :=
(pullback i₂ f).presheaf.stalkSpecializes h₁ ≫ Scheme.stalkClosedPointTo lft
⊢ (Scheme.ΓSpecIso (CommRingCat.of R)).inv ≫
(Spec (CommRingCat.of R)).presheaf.germ ⊤ (closedPoint R) True.intro ≫
(Spec (CommRingCat.of R)).presheaf.stalkSpecializes ⋯ ≫
Scheme.Hom.stalkMap (pullback.fst i₂ f) x ≫
(pullback i₂ f).presheaf.stalkSpecializes h₁ ≫ Scheme.stalkClosedPointTo lft =
CommRingCat.ofHom (algebraMap R K)
|
simp only [TopCat.Presheaf.germ_stalkSpecializes_assoc, Scheme.stalkMap_germ_assoc]
|
X Y : Scheme
f : X ⟶ Y
R : Type u
commRing✝ : CommRing R
domain✝ : IsDomain R
valuationRing✝ : ValuationRing R
K : Type u
field✝ : Field K
algebra✝ : Algebra R K
isFractionRing✝ : IsFractionRing R K
i₁ : Spec (CommRingCat.of K) ⟶ X
i₂ : Spec (CommRingCat.of R) ⟶ Y
w : i₁ ≫ f = Spec.map (CommRingCat.ofHom (algebraMap R K)) ≫ i₂
this✝³ : IsDomain ↑(CommRingCat.of R)
this✝² : ValuationRing ↑(CommRingCat.of R)
this✝¹ : Field ↑(CommRingCat.of K) := field✝
H : topologically (@SpecializingMap) (pullback.fst i₂ f)
lft : Spec (CommRingCat.of K) ⟶ pullback i₂ f := pullback.lift (Spec.map (CommRingCat.ofHom (algebraMap R K))) i₁ ⋯
x : ↑↑(pullback i₂ f).toPresheafedSpace
h₁ : flip (fun x1 x2 => x1 ⤳ x2) x ((ConcreteCategory.hom lft.base) (closedPoint ↑(CommRingCat.of K)))
h₂ : (ConcreteCategory.hom (pullback.fst i₂ f).base) x = closedPoint R
e : CommRingCat.of R ≅ (Spec (CommRingCat.of R)).presheaf.stalk ((ConcreteCategory.hom (pullback.fst i₂ f).base) x) :=
(stalkClosedPointIso (CommRingCat.of R)).symm ≪≫ (Spec (CommRingCat.of R)).presheaf.stalkCongr ⋯
α : CommRingCat.of R ⟶ (pullback i₂ f).presheaf.stalk x := e.hom ≫ Scheme.Hom.stalkMap (pullback.fst i₂ f) x
this✝ : IsLocalHom (CommRingCat.Hom.hom e.hom)
this : IsLocalHom (CommRingCat.Hom.hom α)
β : (pullback i₂ f).presheaf.stalk x ⟶ CommRingCat.of K :=
(pullback i₂ f).presheaf.stalkSpecializes h₁ ≫ Scheme.stalkClosedPointTo lft
⊢ (Scheme.ΓSpecIso (CommRingCat.of R)).inv ≫
Scheme.Hom.app (pullback.fst i₂ f) ⊤ ≫
(pullback i₂ f).presheaf.germ (pullback.fst i₂ f ⁻¹ᵁ ⊤) ((ConcreteCategory.hom lft.base) (closedPoint K)) ⋯ ≫
Scheme.stalkClosedPointTo lft =
CommRingCat.ofHom (algebraMap R K)
|
3a778dfa0b125889
|
MeasureTheory.integral_comp_mul_right_Ioi
|
Mathlib/MeasureTheory/Integral/IntegralEqImproper.lean
|
theorem integral_comp_mul_right_Ioi (g : ℝ → E) (a : ℝ) {b : ℝ} (hb : 0 < b) :
(∫ x in Ioi a, g (x * b)) = b⁻¹ • ∫ x in Ioi (a * b), g x
|
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
g : ℝ → E
a b : ℝ
hb : 0 < b
⊢ ∫ (x : ℝ) in Ioi a, g (x * b) = b⁻¹ • ∫ (x : ℝ) in Ioi (a * b), g x
|
simpa only [mul_comm] using integral_comp_mul_left_Ioi g a hb
|
no goals
|
aadbbf664ca9a87a
|
CliffordAlgebra.map_mul_map_of_isOrtho_of_mem_evenOdd
|
Mathlib/LinearAlgebra/CliffordAlgebra/Prod.lean
|
theorem map_mul_map_of_isOrtho_of_mem_evenOdd
{i₁ i₂ : ZMod 2} (hm₁ : m₁ ∈ evenOdd Q₁ i₁) (hm₂ : m₂ ∈ evenOdd Q₂ i₂) :
map f₁ m₁ * map f₂ m₂ = (-1 : ℤˣ) ^ (i₂ * i₁) • (map f₂ m₂ * map f₁ m₁)
|
case mem.mk.mem_mul.intro.e_a.e_a.mem.mk.algebraMap
R : Type u_1
M₁ : Type u_2
M₂ : Type u_3
N : Type u_4
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M₁
inst✝⁴ : AddCommGroup M₂
inst✝³ : AddCommGroup N
inst✝² : Module R M₁
inst✝¹ : Module R M₂
inst✝ : Module R N
Q₁ : QuadraticForm R M₁
Q₂ : QuadraticForm R M₂
Qₙ : QuadraticForm R N
f₁ : Q₁ →qᵢ Qₙ
f₂ : Q₂ →qᵢ Qₙ
hf : ∀ (x : M₁) (y : M₂), QuadraticMap.IsOrtho Qₙ (f₁ x) (f₂ y)
m₁ m₁' : CliffordAlgebra Q₁
i₁n i : ℕ
x₁ : CliffordAlgebra Q₁
_hx₁ : x₁ ∈ LinearMap.range (ι Q₁) ^ i
v₁ : M₁
m₂' : CliffordAlgebra Q₂
i₂n : ℕ
r✝ : R
⊢ (ι Qₙ) (f₁ v₁) * (map f₂) ((algebraMap R (CliffordAlgebra Q₂)) r✝) =
(-1) ^ ↑0 • ((map f₂) ((algebraMap R (CliffordAlgebra Q₂)) r✝) * (ι Qₙ) (f₁ v₁))
|
rw [AlgHom.commutes, Nat.cast_zero, uzpow_zero, one_smul, Algebra.commutes]
|
no goals
|
5d22b1ae3fcf44bc
|
mem_tangentConeAt_of_pow_smul
|
Mathlib/Analysis/Calculus/TangentCone.lean
|
theorem mem_tangentConeAt_of_pow_smul {r : 𝕜} (hr₀ : r ≠ 0) (hr : ‖r‖ < 1)
(hs : ∀ᶠ n : ℕ in atTop, x + r ^ n • y ∈ s) : y ∈ tangentConeAt 𝕜 s x
|
case refine_2
𝕜 : Type u_1
inst✝³ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝² : AddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : TopologicalSpace E
x y : E
s : Set E
r : 𝕜
hr₀ : r ≠ 0
hr : ‖r‖ < 1
hs : ∀ᶠ (n : ℕ) in atTop, x + r ^ n • y ∈ s
⊢ Tendsto (fun n => (fun n => (r ^ n)⁻¹) n • (fun n => r ^ n • y) n) atTop (𝓝 y)
|
simp only [inv_smul_smul₀ (pow_ne_zero _ hr₀), tendsto_const_nhds]
|
no goals
|
11a02259301344c3
|
SmoothBumpCovering.embeddingPiTangent_injOn
|
Mathlib/Geometry/Manifold/WhitneyEmbedding.lean
|
theorem embeddingPiTangent_injOn : InjOn f.embeddingPiTangent s
|
ι : Type uι
E : Type uE
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : FiniteDimensional ℝ E
H : Type uH
inst✝⁵ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝⁴ : TopologicalSpace M
inst✝³ : ChartedSpace H M
inst✝² : IsManifold I ∞ M
inst✝¹ : T2Space M
inst✝ : Fintype ι
s : Set M
f : SmoothBumpCovering ι I M s
x : M
hx : x ∈ s
y : M
a✝ : y ∈ s
h : f.embeddingPiTangent x = f.embeddingPiTangent y
⊢ x = y
|
simp only [embeddingPiTangent_coe, funext_iff] at h
|
ι : Type uι
E : Type uE
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : FiniteDimensional ℝ E
H : Type uH
inst✝⁵ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝⁴ : TopologicalSpace M
inst✝³ : ChartedSpace H M
inst✝² : IsManifold I ∞ M
inst✝¹ : T2Space M
inst✝ : Fintype ι
s : Set M
f : SmoothBumpCovering ι I M s
x : M
hx : x ∈ s
y : M
a✝ : y ∈ s
h :
∀ (x_1 : ι),
(↑(f.toFun x_1) x • ↑(extChartAt I (f.c x_1)) x, ↑(f.toFun x_1) x) =
(↑(f.toFun x_1) y • ↑(extChartAt I (f.c x_1)) y, ↑(f.toFun x_1) y)
⊢ x = y
|
4e36074bfefbb5d5
|
Nat.digits_eq_cons_digits_div
|
Mathlib/Data/Nat/Digits.lean
|
theorem digits_eq_cons_digits_div {b n : ℕ} (h : 1 < b) (w : n ≠ 0) :
digits b n = (n % b) :: digits b (n / b)
|
b n : ℕ
h : 1 < b
w : n ≠ 0
⊢ b.digits n = n % b :: b.digits (n / b)
|
rcases b with (_ | _ | b)
|
case zero
n : ℕ
w : n ≠ 0
h : 1 < 0
⊢ digits 0 n = n % 0 :: digits 0 (n / 0)
case succ.zero
n : ℕ
w : n ≠ 0
h : 1 < 0 + 1
⊢ (0 + 1).digits n = n % (0 + 1) :: (0 + 1).digits (n / (0 + 1))
case succ.succ
n : ℕ
w : n ≠ 0
b : ℕ
h : 1 < b + 1 + 1
⊢ (b + 1 + 1).digits n = n % (b + 1 + 1) :: (b + 1 + 1).digits (n / (b + 1 + 1))
|
7cabbb56ad772e66
|
PowerSeries.trunc_zero
|
Mathlib/RingTheory/PowerSeries/Trunc.lean
|
theorem trunc_zero (n) : trunc n (0 : R⟦X⟧) = 0 :=
Polynomial.ext fun m => by
rw [coeff_trunc, LinearMap.map_zero, Polynomial.coeff_zero]
split_ifs <;> rfl
|
R : Type u_1
inst✝ : Semiring R
n m : ℕ
⊢ (if m < n then 0 else 0) = 0
|
split_ifs <;> rfl
|
no goals
|
0be1e1bb43ff4b12
|
MeasureTheory.dist_convolution_le'
|
Mathlib/Analysis/Convolution.lean
|
theorem dist_convolution_le' {x₀ : G} {R ε : ℝ} {z₀ : E'} (hε : 0 ≤ ε) (hif : Integrable f μ)
(hf : support f ⊆ ball (0 : G) R) (hmg : AEStronglyMeasurable g μ)
(hg : ∀ x ∈ ball x₀ R, dist (g x) z₀ ≤ ε) :
dist ((f ⋆[L, μ] g : G → F) x₀) (∫ t, L (f t) z₀ ∂μ) ≤ (‖L‖ * ∫ x, ‖f x‖ ∂μ) * ε
|
𝕜 : Type u𝕜
G : Type uG
E : Type uE
E' : Type uE'
F : Type uF
inst✝¹³ : NormedAddCommGroup E
inst✝¹² : NormedAddCommGroup E'
inst✝¹¹ : NormedAddCommGroup F
f : G → E
g : G → E'
inst✝¹⁰ : NontriviallyNormedField 𝕜
inst✝⁹ : NormedSpace 𝕜 E
inst✝⁸ : NormedSpace 𝕜 E'
inst✝⁷ : NormedSpace 𝕜 F
L : E →L[𝕜] E' →L[𝕜] F
inst✝⁶ : MeasurableSpace G
μ : Measure G
inst✝⁵ : NormedSpace ℝ F
inst✝⁴ : SeminormedAddCommGroup G
inst✝³ : BorelSpace G
inst✝² : SecondCountableTopology G
inst✝¹ : μ.IsAddLeftInvariant
inst✝ : SFinite μ
x₀ : G
R ε : ℝ
z₀ : E'
hε : 0 ≤ ε
hif : Integrable f μ
hf : support f ⊆ ball 0 R
hmg : AEStronglyMeasurable g μ
hg : ∀ x ∈ ball x₀ R, dist (g x) z₀ ≤ ε
hfg : ConvolutionExistsAt f g x₀ L μ
t : G
⊢ dist ((L (f t)) (g (x₀ - t))) ((L (f t)) z₀) ≤ ‖L (f t)‖ * ε
|
by_cases ht : t ∈ support f
|
case pos
𝕜 : Type u𝕜
G : Type uG
E : Type uE
E' : Type uE'
F : Type uF
inst✝¹³ : NormedAddCommGroup E
inst✝¹² : NormedAddCommGroup E'
inst✝¹¹ : NormedAddCommGroup F
f : G → E
g : G → E'
inst✝¹⁰ : NontriviallyNormedField 𝕜
inst✝⁹ : NormedSpace 𝕜 E
inst✝⁸ : NormedSpace 𝕜 E'
inst✝⁷ : NormedSpace 𝕜 F
L : E →L[𝕜] E' →L[𝕜] F
inst✝⁶ : MeasurableSpace G
μ : Measure G
inst✝⁵ : NormedSpace ℝ F
inst✝⁴ : SeminormedAddCommGroup G
inst✝³ : BorelSpace G
inst✝² : SecondCountableTopology G
inst✝¹ : μ.IsAddLeftInvariant
inst✝ : SFinite μ
x₀ : G
R ε : ℝ
z₀ : E'
hε : 0 ≤ ε
hif : Integrable f μ
hf : support f ⊆ ball 0 R
hmg : AEStronglyMeasurable g μ
hg : ∀ x ∈ ball x₀ R, dist (g x) z₀ ≤ ε
hfg : ConvolutionExistsAt f g x₀ L μ
t : G
ht : t ∈ support f
⊢ dist ((L (f t)) (g (x₀ - t))) ((L (f t)) z₀) ≤ ‖L (f t)‖ * ε
case neg
𝕜 : Type u𝕜
G : Type uG
E : Type uE
E' : Type uE'
F : Type uF
inst✝¹³ : NormedAddCommGroup E
inst✝¹² : NormedAddCommGroup E'
inst✝¹¹ : NormedAddCommGroup F
f : G → E
g : G → E'
inst✝¹⁰ : NontriviallyNormedField 𝕜
inst✝⁹ : NormedSpace 𝕜 E
inst✝⁸ : NormedSpace 𝕜 E'
inst✝⁷ : NormedSpace 𝕜 F
L : E →L[𝕜] E' →L[𝕜] F
inst✝⁶ : MeasurableSpace G
μ : Measure G
inst✝⁵ : NormedSpace ℝ F
inst✝⁴ : SeminormedAddCommGroup G
inst✝³ : BorelSpace G
inst✝² : SecondCountableTopology G
inst✝¹ : μ.IsAddLeftInvariant
inst✝ : SFinite μ
x₀ : G
R ε : ℝ
z₀ : E'
hε : 0 ≤ ε
hif : Integrable f μ
hf : support f ⊆ ball 0 R
hmg : AEStronglyMeasurable g μ
hg : ∀ x ∈ ball x₀ R, dist (g x) z₀ ≤ ε
hfg : ConvolutionExistsAt f g x₀ L μ
t : G
ht : t ∉ support f
⊢ dist ((L (f t)) (g (x₀ - t))) ((L (f t)) z₀) ≤ ‖L (f t)‖ * ε
|
fddd5e43ba4662a2
|
mem_openSegment_iff_div
|
Mathlib/Analysis/Convex/Segment.lean
|
theorem mem_openSegment_iff_div : x ∈ openSegment 𝕜 y z ↔
∃ a b : 𝕜, 0 < a ∧ 0 < b ∧ (a / (a + b)) • y + (b / (a + b)) • z = x
|
case mp
𝕜 : Type u_1
E : Type u_2
inst✝² : LinearOrderedSemifield 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
x y z : E
⊢ x ∈ openSegment 𝕜 y z → ∃ a b, 0 < a ∧ 0 < b ∧ (a / (a + b)) • y + (b / (a + b)) • z = x
|
rintro ⟨a, b, ha, hb, hab, rfl⟩
|
case mp.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
inst✝² : LinearOrderedSemifield 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
y z : E
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ ∃ a_1 b_1, 0 < a_1 ∧ 0 < b_1 ∧ (a_1 / (a_1 + b_1)) • y + (b_1 / (a_1 + b_1)) • z = a • y + b • z
|
d4c727a9a9db7737
|
spectrum_star_mul_self_nonneg
|
Mathlib/Analysis/CStarAlgebra/ContinuousFunctionalCalculus/Basic.lean
|
/-- The `ℝ`-spectrum of an element of the form `star b * b` in a C⋆-algebra is nonnegative.
This is the key result used to establish `CStarAlgebra.instNonnegSpectrumClass`. -/
lemma spectrum_star_mul_self_nonneg {b : A} : ∀ x ∈ spectrum ℝ (star b * b), 0 ≤ x
|
case refine_1
A : Type u_2
inst✝ : CStarAlgebra A
b : A
a : A := star b * b
a_def : a = star b * b
ha : IsSelfAdjoint a
c : A := b * a⁻
h_eq_negPart_a : -(star c * c) = a⁻ ^ 3
h_c_spec₀ : SpectrumRestricts (-(star c * c)) fun x => ContinuousMap.realToNNReal x
⊢ IsSelfAdjoint (2 • (↑(ℜ c) ^ 2 + ↑(ℑ c) ^ 2))
|
exact .smul (star_trivial _) <| ((ℜ c).prop.pow 2).add ((ℑ c).prop.pow 2)
|
no goals
|
85e3b42015fe1e79
|
TopologicalSpace.IsTopologicalBasis.isQuotientMap
|
Mathlib/Topology/Bases.lean
|
theorem IsTopologicalBasis.isQuotientMap {V : Set (Set X)} (hV : IsTopologicalBasis V)
(h' : IsQuotientMap π) (h : IsOpenMap π) : IsTopologicalBasis (Set.image π '' V)
|
case h_nhds.intro.intro.intro.intro
X : Type u_1
inst✝¹ : TopologicalSpace X
Y : Type u_2
inst✝ : TopologicalSpace Y
π : X → Y
V : Set (Set X)
hV : IsTopologicalBasis V
h' : IsQuotientMap π
h : IsOpenMap π
U : Set Y
U_open : IsOpen U
x : X
y_in_U : π x ∈ U
W : Set X := π ⁻¹' U
x_in_W : x ∈ W
W_open : IsOpen W
Z : Set X
Z_in_V : Z ∈ V
x_in_Z : x ∈ Z
Z_in_W : Z ⊆ W
πZ_in_U : π '' Z ⊆ U
⊢ ∃ v ∈ image π '' V, π x ∈ v ∧ v ⊆ U
|
exact ⟨π '' Z, ⟨Z, Z_in_V, rfl⟩, ⟨x, x_in_Z, rfl⟩, πZ_in_U⟩
|
no goals
|
0b2ca271bb3ece9e
|
StrictMonoOn.exists_slope_lt_deriv
|
Mathlib/Analysis/Convex/Deriv.lean
|
theorem StrictMonoOn.exists_slope_lt_deriv {x y : ℝ} {f : ℝ → ℝ} (hf : ContinuousOn f (Icc x y))
(hxy : x < y) (hf'_mono : StrictMonoOn (deriv f) (Ioo x y)) :
∃ a ∈ Ioo x y, (f y - f x) / (y - x) < deriv f a
|
case neg
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
h : ∃ w ∈ Ioo x y, deriv f w = 0
⊢ ∃ a ∈ Ioo x y, (f y - f x) / (y - x) < deriv f a
|
rcases h with ⟨w, ⟨hxw, hwy⟩, hw⟩
|
case neg.intro.intro.intro
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
w : ℝ
hw : deriv f w = 0
hxw : x < w
hwy : w < y
⊢ ∃ a ∈ Ioo x y, (f y - f x) / (y - x) < deriv f a
|
23bb4dc8e787b3ef
|
MeasureTheory.Measure.exists_positive_of_not_mutuallySingular
|
Mathlib/MeasureTheory/Decomposition/Lebesgue.lean
|
theorem exists_positive_of_not_mutuallySingular (μ ν : Measure α) [IsFiniteMeasure μ]
[IsFiniteMeasure ν] (h : ¬ μ ⟂ₘ ν) :
∃ ε : ℝ≥0, 0 < ε ∧
∃ E : Set α, MeasurableSet E ∧ 0 < ν E
∧ ∀ A, MeasurableSet A → ε * ν (A ∩ E) ≤ μ (A ∩ E)
|
α : Type u_1
m : MeasurableSpace α
μ ν : Measure α
inst✝¹ : IsFiniteMeasure μ
inst✝ : IsFiniteMeasure ν
h : ¬μ ⟂ₘ ν
f : ℕ → Set α
hf₁ : ∀ (n : ℕ), MeasurableSet (f n)
hf₂ : ∀ (n : ℕ) (t : Set α), MeasurableSet t → ((1 / (↑n + 1)) • ν) (t ∩ f n) ≤ μ (t ∩ f n)
hf₃ : ∀ (n : ℕ) (t : Set α), MeasurableSet t → μ (t ∩ (f n)ᶜ) ≤ ((1 / (↑n + 1)) • ν) (t ∩ (f n)ᶜ)
⊢ ∃ ε, 0 < ε ∧ ∃ E, MeasurableSet E ∧ 0 < ν E ∧ ∀ (A : Set α), MeasurableSet A → ↑ε * ν (A ∩ E) ≤ μ (A ∩ E)
|
let A := ⋂ n, (f n)ᶜ
|
α : Type u_1
m : MeasurableSpace α
μ ν : Measure α
inst✝¹ : IsFiniteMeasure μ
inst✝ : IsFiniteMeasure ν
h : ¬μ ⟂ₘ ν
f : ℕ → Set α
hf₁ : ∀ (n : ℕ), MeasurableSet (f n)
hf₂ : ∀ (n : ℕ) (t : Set α), MeasurableSet t → ((1 / (↑n + 1)) • ν) (t ∩ f n) ≤ μ (t ∩ f n)
hf₃ : ∀ (n : ℕ) (t : Set α), MeasurableSet t → μ (t ∩ (f n)ᶜ) ≤ ((1 / (↑n + 1)) • ν) (t ∩ (f n)ᶜ)
A : Set α := ⋂ n, (f n)ᶜ
⊢ ∃ ε, 0 < ε ∧ ∃ E, MeasurableSet E ∧ 0 < ν E ∧ ∀ (A : Set α), MeasurableSet A → ↑ε * ν (A ∩ E) ≤ μ (A ∩ E)
|
48437d57402f42cd
|
BoxIntegral.Box.exists_taggedPartition_isHenstock_isSubordinate_homothetic
|
Mathlib/Analysis/BoxIntegral/Partition/SubboxInduction.lean
|
theorem exists_taggedPartition_isHenstock_isSubordinate_homothetic (I : Box ι)
(r : (ι → ℝ) → Ioi (0 : ℝ)) :
∃ π : TaggedPrepartition I, π.IsPartition ∧ π.IsHenstock ∧ π.IsSubordinate r ∧
(∀ J ∈ π, ∃ m : ℕ, ∀ i, (J :).upper i - J.lower i = (I.upper i - I.lower i) / 2 ^ m) ∧
π.distortion = I.distortion
|
ι : Type u_1
inst✝ : Fintype ι
I : Box ι
r : (ι → ℝ) → ↑(Ioi 0)
J : Box ι
x✝ : J ≤ I
πi : (J' : Box ι) → TaggedPrepartition J'
hP✝ : ∀ J' ∈ splitCenter J, (πi J').IsPartition
hHen : ∀ J' ∈ splitCenter J, (πi J').IsHenstock
hr : ∀ J' ∈ splitCenter J, (πi J').IsSubordinate r
a✝ : ∀ J' ∈ splitCenter J, (πi J').distortion = J'.distortion
n : Box ι → Box ι → ℕ
hn : ∀ J' ∈ splitCenter J, ∀ J ∈ πi J', ∀ (i : ι), J.upper i - J.lower i = (J'.upper i - J'.lower i) / 2 ^ n J' J
hP : ((splitCenter J).biUnionTagged πi).IsPartition
J' : Box ι
hJ' : J' ∈ (splitCenter J).biUnionTagged πi
⊢ ∃ n, ∀ (i : ι), J'.upper i - J'.lower i = (J.upper i - J.lower i) / 2 ^ n
|
rcases (splitCenter J).mem_biUnionTagged.1 hJ' with ⟨J₁, h₁, h₂⟩
|
case intro.intro
ι : Type u_1
inst✝ : Fintype ι
I : Box ι
r : (ι → ℝ) → ↑(Ioi 0)
J : Box ι
x✝ : J ≤ I
πi : (J' : Box ι) → TaggedPrepartition J'
hP✝ : ∀ J' ∈ splitCenter J, (πi J').IsPartition
hHen : ∀ J' ∈ splitCenter J, (πi J').IsHenstock
hr : ∀ J' ∈ splitCenter J, (πi J').IsSubordinate r
a✝ : ∀ J' ∈ splitCenter J, (πi J').distortion = J'.distortion
n : Box ι → Box ι → ℕ
hn : ∀ J' ∈ splitCenter J, ∀ J ∈ πi J', ∀ (i : ι), J.upper i - J.lower i = (J'.upper i - J'.lower i) / 2 ^ n J' J
hP : ((splitCenter J).biUnionTagged πi).IsPartition
J' : Box ι
hJ' : J' ∈ (splitCenter J).biUnionTagged πi
J₁ : Box ι
h₁ : J₁ ∈ splitCenter J
h₂ : J' ∈ πi J₁
⊢ ∃ n, ∀ (i : ι), J'.upper i - J'.lower i = (J.upper i - J.lower i) / 2 ^ n
|
a8a3743c45a09fc2
|
num_dvd_of_is_root
|
Mathlib/RingTheory/Polynomial/RationalRoot.lean
|
theorem num_dvd_of_is_root {p : A[X]} {r : K} (hr : aeval r p = 0) : num A r ∣ p.coeff 0
|
A : Type u_1
K : Type u_2
inst✝⁵ : CommRing A
inst✝⁴ : IsDomain A
inst✝³ : UniqueFactorizationMonoid A
inst✝² : Field K
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
p : A[X]
r : K
hr : (aeval r) p = 0
this : num A r ∣ p.coeff 0 * ↑(den A r) ^ p.natDegree
⊢ num A r ∣ p.coeff 0
|
haveI inst := Classical.propDecidable
|
A : Type u_1
K : Type u_2
inst✝⁵ : CommRing A
inst✝⁴ : IsDomain A
inst✝³ : UniqueFactorizationMonoid A
inst✝² : Field K
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
p : A[X]
r : K
hr : (aeval r) p = 0
this : num A r ∣ p.coeff 0 * ↑(den A r) ^ p.natDegree
inst : (a : Prop) → Decidable a
⊢ num A r ∣ p.coeff 0
|
51d60af78e32181a
|
PreTilt.mk_untilt_eq_coeff_zero
|
Mathlib/RingTheory/Perfectoid/Untilt.lean
|
theorem mk_untilt_eq_coeff_zero (x : PreTilt O p) :
Ideal.Quotient.mk (Ideal.span {(p : O)}) (x.untilt) = coeff (ModP O p) p 0 x
|
O : Type u_1
inst✝³ : CommRing O
p : ℕ
inst✝² : Fact (Nat.Prime p)
inst✝¹ : Fact ¬IsUnit ↑p
inst✝ : IsAdicComplete (span {↑p}) O
x : PreTilt O p
⊢ (Ideal.Quotient.mk (span {↑p})) (untilt x) = (coeff (ModP O p) p 0) x
|
simp only [untilt]
|
O : Type u_1
inst✝³ : CommRing O
p : ℕ
inst✝² : Fact (Nat.Prime p)
inst✝¹ : Fact ¬IsUnit ↑p
inst✝ : IsAdicComplete (span {↑p}) O
x : PreTilt O p
⊢ (Ideal.Quotient.mk (span {↑p})) ({ toFun := untiltFun, map_one' := ⋯, map_mul' := ⋯ } x) = (coeff (ModP O p) p 0) x
|
818366dd1349e0d6
|
LinearRecurrence.geom_sol_iff_root_charPoly
|
Mathlib/Algebra/LinearRecurrence.lean
|
theorem geom_sol_iff_root_charPoly (q : α) :
(E.IsSolution fun n ↦ q ^ n) ↔ E.charPoly.IsRoot q
|
α : Type u_1
inst✝ : CommRing α
E : LinearRecurrence α
q : α
h : q ^ E.order - ∑ x : Fin E.order, E.coeffs x * q ^ ↑x = 0
n : ℕ
x✝¹ : Fin E.order
x✝ : x✝¹ ∈ univ
⊢ q ^ n * (E.coeffs x✝¹ * q ^ ↑x✝¹) = E.coeffs x✝¹ * (q ^ n * q ^ ↑x✝¹)
|
ring
|
no goals
|
6b3dbd9966ca9e25
|
BitVec.getLsbD_replicate
|
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Lemmas.lean
|
theorem getLsbD_replicate {n w : Nat} (x : BitVec w) :
(x.replicate n).getLsbD i =
(decide (i < w * n) && x.getLsbD (i % w))
|
i n w : Nat
x : BitVec w
⊢ (replicate n x).getLsbD i = (decide (i < w * n) && x.getLsbD (i % w))
|
induction n generalizing x
|
case zero
i w : Nat
x : BitVec w
⊢ (replicate 0 x).getLsbD i = (decide (i < w * 0) && x.getLsbD (i % w))
case succ
i w n✝ : Nat
a✝ : ∀ (x : BitVec w), (replicate n✝ x).getLsbD i = (decide (i < w * n✝) && x.getLsbD (i % w))
x : BitVec w
⊢ (replicate (n✝ + 1) x).getLsbD i = (decide (i < w * (n✝ + 1)) && x.getLsbD (i % w))
|
0585dba2d6aa536b
|
norm_jacobiTheta₂_term_fderiv_le
|
Mathlib/NumberTheory/ModularForms/JacobiTheta/TwoVariable.lean
|
lemma norm_jacobiTheta₂_term_fderiv_le (n : ℤ) (z τ : ℂ) :
‖jacobiTheta₂_term_fderiv n z τ‖ ≤ 3 * π * |n| ^ 2 * ‖jacobiTheta₂_term n z τ‖
|
n : ℤ
z τ : ℂ
hns : ∀ (a : ℂ) (f : ℂ × ℂ →L[ℂ] ℂ), ‖a • f‖ = ‖a‖ * ‖f‖
⊢ 3 = 2 + 1
|
norm_num
|
no goals
|
5dd5ee16e07bb24c
|
lineMap_mono_left
|
Mathlib/LinearAlgebra/AffineSpace/Ordered.lean
|
theorem lineMap_mono_left (ha : a ≤ a') (hr : r ≤ 1) : lineMap a b r ≤ lineMap a' b r
|
k : Type u_1
E : Type u_2
inst✝³ : OrderedRing k
inst✝² : OrderedAddCommGroup E
inst✝¹ : Module k E
inst✝ : OrderedSMul k E
a a' b : E
r : k
ha : a ≤ a'
hr : r ≤ 1
⊢ (1 - r) • a + r • b ≤ (1 - r) • a' + r • b
|
exact add_le_add_right (smul_le_smul_of_nonneg_left ha (sub_nonneg.2 hr)) _
|
no goals
|
aae7b6dc6f444886
|
Nat.Prime.sum_four_squares
|
Mathlib/NumberTheory/SumFourSquares.lean
|
theorem Prime.sum_four_squares {p : ℕ} (hp : p.Prime) :
∃ a b c d : ℕ, a ^ 2 + b ^ 2 + c ^ 2 + d ^ 2 = p
|
case refine_2
p : ℕ
hp : Prime p
this✝¹ : Fact (Prime p)
natAbs_iff :
∀ {a b c d : ℤ} {k : ℕ},
a.natAbs ^ 2 + b.natAbs ^ 2 + c.natAbs ^ 2 + d.natAbs ^ 2 = k ↔ a ^ 2 + b ^ 2 + c ^ 2 + d ^ 2 = ↑k
hm✝ : ∃ m < p, 0 < m ∧ ∃ a b c d, a ^ 2 + b ^ 2 + c ^ 2 + d ^ 2 = m * p
m : ℕ
hmin : ∀ m_1 < m, ¬(m_1 < p ∧ 0 < m_1 ∧ ∃ a b c d, a ^ 2 + b ^ 2 + c ^ 2 + d ^ 2 = m_1 * p)
hmp : m < p
hm₀ : 0 < m
a b c d : ℕ
habcd : a ^ 2 + b ^ 2 + c ^ 2 + d ^ 2 = m * p
hm₁ : 1 < m
this✝ : NeZero m
hm : ¬2 ∣ m
f : ℕ → ℤ
hf_lt : ∀ (x : ℕ), 2 * (f x).natAbs < m
hf_mod : ∀ (x : ℕ), ↑(f x) = ↑x
r : ℕ
hr₀ : 0 < r
hrm : r < m
hr : f b ^ 2 + f a ^ 2 + f d ^ 2 + (-f c) ^ 2 = ↑(m * r)
this :
(f b * ↑a - f a * ↑b - f d * ↑c - -f c * ↑d) ^ 2 + (f b * ↑b + f a * ↑a + f d * ↑d - -f c * ↑c) ^ 2 +
(f b * ↑c - f a * ↑d + f d * ↑a + -f c * ↑b) ^ 2 +
(f b * ↑d + f a * ↑c - f d * ↑b + -f c * ↑a) ^ 2 =
↑(m * r) * ↑(m * p)
⊢ ↑(a ^ 2 + b ^ 2 + c ^ 2 + d ^ 2) = 0
|
simp [habcd]
|
no goals
|
c746a4c45b4b888b
|
FreeAlgebra.toTensor_ι
|
Mathlib/LinearAlgebra/TensorAlgebra/Basic.lean
|
theorem toTensor_ι (m : M) : FreeAlgebra.toTensor (FreeAlgebra.ι R m) = TensorAlgebra.ι R m
|
R : Type u_1
inst✝² : CommSemiring R
M : Type u_2
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
m : M
⊢ toTensor (ι R m) = (TensorAlgebra.ι R) m
|
simp [toTensor]
|
no goals
|
5296482b11d68d7a
|
ZMod.cast_descFactorial
|
Mathlib/Data/ZMod/Factorial.lean
|
theorem cast_descFactorial {n p : ℕ} (h : n ≤ p) :
(descFactorial (p - 1) n : ZMod p) = (-1) ^ n * n !
|
n p : ℕ
h : n ≤ p
⊢ ∏ i ∈ range n, ↑(p - 1 - i) = ∏ a ∈ range n, -1 * ↑(a + 1)
|
refine prod_congr rfl ?_
|
n p : ℕ
h : n ≤ p
⊢ ∀ x ∈ range n, ↑(p - 1 - x) = -1 * ↑(x + 1)
|
e51eb65f25b63875
|
MemHolder.holderWith
|
Mathlib/Topology/MetricSpace/HolderNorm.lean
|
lemma MemHolder.holderWith {r : ℝ≥0} {f : X → Y} (hf : MemHolder r f) :
HolderWith (nnHolderNorm r f) r f
|
case neg
X : Type u_1
Y : Type u_2
inst✝¹ : MetricSpace X
inst✝ : EMetricSpace Y
r : ℝ≥0
f : X → Y
hf : MemHolder r f
x₁ x₂ : X
hx : ¬x₁ = x₂
h₁ : edist x₁ x₂ ^ ↑r ≠ 0
h₂ : edist x₁ x₂ ^ ↑r ≠ ⊤
C : ℝ≥0
hC : HolderWith C r f
⊢ edist (f x₁) (f x₂) / edist x₁ x₂ ^ ↑r ≤ ↑C
|
rw [ENNReal.div_le_iff h₁ h₂]
|
case neg
X : Type u_1
Y : Type u_2
inst✝¹ : MetricSpace X
inst✝ : EMetricSpace Y
r : ℝ≥0
f : X → Y
hf : MemHolder r f
x₁ x₂ : X
hx : ¬x₁ = x₂
h₁ : edist x₁ x₂ ^ ↑r ≠ 0
h₂ : edist x₁ x₂ ^ ↑r ≠ ⊤
C : ℝ≥0
hC : HolderWith C r f
⊢ edist (f x₁) (f x₂) ≤ ↑C * edist x₁ x₂ ^ ↑r
|
3d8fc3de0d36c256
|
Vector.traverse_eq_map_id
|
Mathlib/Data/Vector/Basic.lean
|
theorem traverse_eq_map_id {α β} (f : α → β) :
∀ x : Vector α n, x.traverse ((pure : _ → Id _) ∘ f) = (pure : _ → Id _) (map f x)
|
n : ℕ
α β : Type u_6
f : α → β
⊢ ∀ (x : Vector α n), Vector.traverse (pure ∘ f) x = pure (map f x)
|
rintro ⟨x, rfl⟩
|
case mk
α β : Type u_6
f : α → β
x : List α
⊢ Vector.traverse (pure ∘ f) ⟨x, ⋯⟩ = pure (map f ⟨x, ⋯⟩)
|
cb0a8b9bac8faf9b
|
SetTheory.PGame.birthday_add
|
Mathlib/SetTheory/Game/Birthday.lean
|
theorem birthday_add : ∀ x y : PGame.{u}, (x + y).birthday = x.birthday ♯ y.birthday
| ⟨xl, xr, xL, xR⟩, ⟨yl, yr, yL, yR⟩ => by
rw [birthday_def, nadd, lsub_sum, lsub_sum]
simp only [mk_add_moveLeft_inl, mk_add_moveLeft_inr, mk_add_moveRight_inl, mk_add_moveRight_inr,
moveLeft_mk, moveRight_mk]
conv_lhs => left; left; right; intro a; rw [birthday_add (xL a) ⟨yl, yr, yL, yR⟩]
conv_lhs => left; right; right; intro b; rw [birthday_add ⟨xl, xr, xL, xR⟩ (yL b)]
conv_lhs => right; left; right; intro a; rw [birthday_add (xR a) ⟨yl, yr, yL, yR⟩]
conv_lhs => right; right; right; intro b; rw [birthday_add ⟨xl, xr, xL, xR⟩ (yR b)]
rw [max_max_max_comm]
congr <;> apply le_antisymm
any_goals
refine max_le_iff.2 ⟨?_, ?_⟩
all_goals
refine lsub_le_iff.2 fun i ↦ ?_
rw [← Order.succ_le_iff]
refine Ordinal.le_iSup (fun _ : Set.Iio _ ↦ _) ⟨_, ?_⟩
apply_rules [birthday_moveLeft_lt, birthday_moveRight_lt]
all_goals
rw [Ordinal.iSup_le_iff]
rintro ⟨i, hi⟩
obtain ⟨j, hj⟩ | ⟨j, hj⟩ := lt_birthday_iff.1 hi <;> rw [Order.succ_le_iff]
· exact lt_max_of_lt_left ((nadd_le_nadd_right hj _).trans_lt (lt_lsub _ _))
· exact lt_max_of_lt_right ((nadd_le_nadd_right hj _).trans_lt (lt_lsub _ _))
· exact lt_max_of_lt_left ((nadd_le_nadd_left hj _).trans_lt (lt_lsub _ _))
· exact lt_max_of_lt_right ((nadd_le_nadd_left hj _).trans_lt (lt_lsub _ _))
termination_by a b => (a, b)
|
case e_a.a.mk.inl.intro
xl xr : Type u
xL : xl → PGame
xR : xr → PGame
yl yr : Type u
yL : yl → PGame
yR : yr → PGame
i : Ordinal.{u}
hi : i ∈ Set.Iio (mk yl yr yL yR).birthday
j : (mk yl yr yL yR).LeftMoves
hj : i ≤ ((mk yl yr yL yR).moveLeft j).birthday
⊢ (mk xl xr xL xR).birthday ♯ ↑⟨i, hi⟩ <
(lsub fun b => (mk xl xr xL xR).birthday ♯ (yL b).birthday) ⊔
lsub fun b => (mk xl xr xL xR).birthday ♯ (yR b).birthday
|
exact lt_max_of_lt_left ((nadd_le_nadd_left hj _).trans_lt (lt_lsub _ _))
|
no goals
|
33d4fe8b94c4ad64
|
dist_integral_mulExpNegMulSq_comp_le
|
Mathlib/Analysis/SpecialFunctions/MulExpNegMulSqIntegral.lean
|
theorem dist_integral_mulExpNegMulSq_comp_le (f : E →ᵇ ℝ)
{A : Subalgebra ℝ C(E, ℝ)} (hA : A.SeparatesPoints)
(hbound : ∀ g ∈ A, ∃ C, ∀ x y : E, dist (g x) (g y) ≤ C)
(heq : ∀ g ∈ A, ∫ x, (g : E → ℝ) x ∂P = ∫ x, (g : E → ℝ) x ∂P') (hε : 0 < ε) :
|∫ x, mulExpNegMulSq ε (f x) ∂P - ∫ x, mulExpNegMulSq ε (f x) ∂P'| ≤ 6 * sqrt ε
|
case neg.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
ε : ℝ
E : Type u_2
inst✝⁶ : MeasurableSpace E
inst✝⁵ : PseudoEMetricSpace E
inst✝⁴ : BorelSpace E
inst✝³ : CompleteSpace E
inst✝² : SecondCountableTopology E
P P' : Measure E
inst✝¹ : IsFiniteMeasure P
inst✝ : IsFiniteMeasure P'
f : E →ᵇ ℝ
A : Subalgebra ℝ C(E, ℝ)
hA : A.SeparatesPoints
hbound : ∀ g ∈ A, ∃ C, ∀ (x y : E), dist (g x) (g y) ≤ C
heq : ∀ g ∈ A, ∫ (x : E), g x ∂P = ∫ (x : E), g x ∂P'
hε : 0 < ε
hPP' : ¬(P = 0 ∧ P' = 0)
const : ℝ := (P Set.univ).toReal ⊔ (P' Set.univ).toReal
pos_of_measure : 0 < const
KP : Set E
left✝¹ : KP ⊆ Set.univ
hKPco : IsCompact KP
hKPcl : IsClosed KP
KP' : Set E
left✝ : KP' ⊆ Set.univ
hKP'co : IsCompact KP'
hKP'cl : IsClosed KP'
K : Set E := KP ∪ KP'
hKco : IsCompact (KP ∪ KP')
hKcl : IsClosed (KP ∪ KP')
hKP : P KPᶜ < ENNReal.ofReal ε
hKP' : P' KP'ᶜ < ENNReal.ofReal ε
hKPbound : P (KP ∪ KP')ᶜ < ↑ε.toNNReal
hKP'bound : P' (KP ∪ KP')ᶜ < ↑ε.toNNReal
g : C(E, ℝ)
hgA : g ∈ A
hgapprox : ∀ x ∈ KP ∪ KP', ‖g x - f.toContinuousMap x‖ < √ε * const⁻¹
line1 : |∫ (x : E), ε.mulExpNegMulSq (f x) ∂P - ∫ (x : E) in K, ε.mulExpNegMulSq (f x) ∂P| < √ε
line3 : |∫ (x : E) in K, ε.mulExpNegMulSq (g x) ∂P - ∫ (x : E), ε.mulExpNegMulSq (g x) ∂P| < √ε
line5 : |∫ (x : E), ε.mulExpNegMulSq (g x) ∂P' - ∫ (x : E) in K, ε.mulExpNegMulSq (g x) ∂P'| < √ε
line7 : |∫ (x : E) in K, ε.mulExpNegMulSq (f x) ∂P' - ∫ (x : E), ε.mulExpNegMulSq (f x) ∂P'| < √ε
line2 : |∫ (x : E) in K, ε.mulExpNegMulSq (f x) ∂P - ∫ (x : E) in K, ε.mulExpNegMulSq (g x) ∂P| ≤ √ε
line6 : |∫ (x : E) in K, ε.mulExpNegMulSq (g x) ∂P' - ∫ (x : E) in K, ε.mulExpNegMulSq (f x) ∂P'| ≤ √ε
⊢ |∫ (x : E), ε.mulExpNegMulSq (f x) ∂P - ∫ (x : E), ε.mulExpNegMulSq (f x) ∂P'| ≤ 6 * √ε
|
have line4 : |∫ x, mulExpNegMulSq ε (g x) ∂P
- ∫ x, mulExpNegMulSq ε (g x) ∂P'| = 0 := by
rw [abs_eq_zero, sub_eq_zero]
exact integral_mulExpNegMulSq_comp_eq hε hbound heq hgA
|
case neg.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
ε : ℝ
E : Type u_2
inst✝⁶ : MeasurableSpace E
inst✝⁵ : PseudoEMetricSpace E
inst✝⁴ : BorelSpace E
inst✝³ : CompleteSpace E
inst✝² : SecondCountableTopology E
P P' : Measure E
inst✝¹ : IsFiniteMeasure P
inst✝ : IsFiniteMeasure P'
f : E →ᵇ ℝ
A : Subalgebra ℝ C(E, ℝ)
hA : A.SeparatesPoints
hbound : ∀ g ∈ A, ∃ C, ∀ (x y : E), dist (g x) (g y) ≤ C
heq : ∀ g ∈ A, ∫ (x : E), g x ∂P = ∫ (x : E), g x ∂P'
hε : 0 < ε
hPP' : ¬(P = 0 ∧ P' = 0)
const : ℝ := (P Set.univ).toReal ⊔ (P' Set.univ).toReal
pos_of_measure : 0 < const
KP : Set E
left✝¹ : KP ⊆ Set.univ
hKPco : IsCompact KP
hKPcl : IsClosed KP
KP' : Set E
left✝ : KP' ⊆ Set.univ
hKP'co : IsCompact KP'
hKP'cl : IsClosed KP'
K : Set E := KP ∪ KP'
hKco : IsCompact (KP ∪ KP')
hKcl : IsClosed (KP ∪ KP')
hKP : P KPᶜ < ENNReal.ofReal ε
hKP' : P' KP'ᶜ < ENNReal.ofReal ε
hKPbound : P (KP ∪ KP')ᶜ < ↑ε.toNNReal
hKP'bound : P' (KP ∪ KP')ᶜ < ↑ε.toNNReal
g : C(E, ℝ)
hgA : g ∈ A
hgapprox : ∀ x ∈ KP ∪ KP', ‖g x - f.toContinuousMap x‖ < √ε * const⁻¹
line1 : |∫ (x : E), ε.mulExpNegMulSq (f x) ∂P - ∫ (x : E) in K, ε.mulExpNegMulSq (f x) ∂P| < √ε
line3 : |∫ (x : E) in K, ε.mulExpNegMulSq (g x) ∂P - ∫ (x : E), ε.mulExpNegMulSq (g x) ∂P| < √ε
line5 : |∫ (x : E), ε.mulExpNegMulSq (g x) ∂P' - ∫ (x : E) in K, ε.mulExpNegMulSq (g x) ∂P'| < √ε
line7 : |∫ (x : E) in K, ε.mulExpNegMulSq (f x) ∂P' - ∫ (x : E), ε.mulExpNegMulSq (f x) ∂P'| < √ε
line2 : |∫ (x : E) in K, ε.mulExpNegMulSq (f x) ∂P - ∫ (x : E) in K, ε.mulExpNegMulSq (g x) ∂P| ≤ √ε
line6 : |∫ (x : E) in K, ε.mulExpNegMulSq (g x) ∂P' - ∫ (x : E) in K, ε.mulExpNegMulSq (f x) ∂P'| ≤ √ε
line4 : |∫ (x : E), ε.mulExpNegMulSq (g x) ∂P - ∫ (x : E), ε.mulExpNegMulSq (g x) ∂P'| = 0
⊢ |∫ (x : E), ε.mulExpNegMulSq (f x) ∂P - ∫ (x : E), ε.mulExpNegMulSq (f x) ∂P'| ≤ 6 * √ε
|
6c7688b02378f81c
|
CategoryTheory.Square.IsPushout.epi_f₃₄
|
Mathlib/CategoryTheory/Limits/Shapes/Pullback/Square.lean
|
lemma epi_f₃₄ [Epi sq.f₁₂] : Epi sq.f₃₄
|
C : Type u
inst✝¹ : Category.{v, u} C
sq : Square C
h : sq.IsPushout
inst✝ : Epi sq.f₁₂
⊢ Epi sq.f₁₂
|
infer_instance
|
no goals
|
1030623dfd6a47bd
|
MeasurableSpace.exists_countablyGenerated_le_of_countablySeparated
|
Mathlib/MeasureTheory/MeasurableSpace/CountablyGenerated.lean
|
theorem exists_countablyGenerated_le_of_countablySeparated [m : MeasurableSpace α]
[h : CountablySeparated α] :
∃ m' : MeasurableSpace α, @CountablyGenerated _ m' ∧ @SeparatesPoints _ m' ∧ m' ≤ m
|
α : Type u_1
m : MeasurableSpace α
h : CountablySeparated α
⊢ ∃ m', CountablyGenerated α ∧ SeparatesPoints α ∧ m' ≤ m
|
rcases h with ⟨b, bct, hbm, hb⟩
|
case mk.mk.intro.intro.intro
α : Type u_1
m : MeasurableSpace α
b : Set (Set α)
bct : b.Countable
hbm : ∀ s ∈ b, MeasurableSet s
hb : ∀ x ∈ univ, ∀ y ∈ univ, (∀ s ∈ b, x ∈ s ↔ y ∈ s) → x = y
⊢ ∃ m', CountablyGenerated α ∧ SeparatesPoints α ∧ m' ≤ m
|
103b898a8ad5e28e
|
TopologicalSpace.IsTopologicalBasis.isRetrocompact_iff_isCompact'
|
Mathlib/Topology/Constructible.lean
|
/-- Variant of `TopologicalSpace.IsTopologicalBasis.isRetrocompact_iff_isCompact` for a
non-indexed topological basis. -/
@[stacks 0069 "Iff form of (2). Note that Stacks doesn't define quasi-separated spaces."]
lemma _root_.TopologicalSpace.IsTopologicalBasis.isRetrocompact_iff_isCompact'
(basis : IsTopologicalBasis B) (isCompact_basis : ∀ U ∈ B, IsCompact U)
(hU : IsOpen U) : IsRetrocompact U ↔ IsCompact U
|
case intro.intro
X : Type u_2
inst✝² : TopologicalSpace X
inst✝¹ : CompactSpace X
B : Set (Set X)
inst✝ : QuasiSeparatedSpace X
basis : IsTopologicalBasis B
isCompact_basis : ∀ U ∈ B, IsCompact U
s : Finset ↑B
hU : IsOpen (⋃₀ (Subtype.val '' ↑s))
hU' : IsCompact (⋃₀ (Subtype.val '' ↑s))
t : Finset ↑B
hV' : IsCompact (⋃₀ (Subtype.val '' ↑t))
hV : IsOpen (⋃₀ (Subtype.val '' ↑t))
⊢ ∀ (a b : Set X) (x : a ∈ B), ⟨a, ⋯⟩ ∈ s → ∀ (x : b ∈ B), ⟨b, ⋯⟩ ∈ t → IsCompact (a ∩ b)
|
exact fun u v hu _ hv _ ↦ (isCompact_basis _ hu).inter_of_isOpen (isCompact_basis _ hv)
(basis.isOpen hu) (basis.isOpen hv)
|
no goals
|
b008df29a824ef72
|
IsDedekindDomain.HeightOneSpectrum.intValuation_exists_uniformizer
|
Mathlib/RingTheory/DedekindDomain/AdicValuation.lean
|
theorem intValuation_exists_uniformizer :
∃ π : R, v.intValuationDef π = Multiplicative.ofAdd (-1 : ℤ)
|
case intro.intro
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDedekindDomain R
v : HeightOneSpectrum R
hv : Irreducible (Associates.mk v.asIdeal)
hlt : v.asIdeal ^ 2 < v.asIdeal
π : R
mem : π ∈ v.asIdeal
nmem : π ∉ v.asIdeal ^ 2
⊢ ∃ π, v.intValuationDef π = ↑(ofAdd (-1))
|
have hπ : Associates.mk (Ideal.span {π}) ≠ 0 := by
rw [Associates.mk_ne_zero']
intro h
rw [h] at nmem
exact nmem (Submodule.zero_mem (v.asIdeal ^ 2))
|
case intro.intro
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDedekindDomain R
v : HeightOneSpectrum R
hv : Irreducible (Associates.mk v.asIdeal)
hlt : v.asIdeal ^ 2 < v.asIdeal
π : R
mem : π ∈ v.asIdeal
nmem : π ∉ v.asIdeal ^ 2
hπ : Associates.mk (Ideal.span {π}) ≠ 0
⊢ ∃ π, v.intValuationDef π = ↑(ofAdd (-1))
|
2c1cd36bab64f29a
|
EuclideanGeometry.dist_inversion_center
|
Mathlib/Geometry/Euclidean/Inversion/Basic.lean
|
theorem dist_inversion_center (c x : P) (R : ℝ) : dist (inversion c R x) c = R ^ 2 / dist x c
|
case inr
V : Type u_1
P : Type u_2
inst✝³ : NormedAddCommGroup V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : MetricSpace P
inst✝ : NormedAddTorsor V P
c x : P
R : ℝ
hx : x ≠ c
⊢ dist (inversion c R x) c = R ^ 2 / dist x c
|
have : dist x c ≠ 0 := dist_ne_zero.2 hx
|
case inr
V : Type u_1
P : Type u_2
inst✝³ : NormedAddCommGroup V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : MetricSpace P
inst✝ : NormedAddTorsor V P
c x : P
R : ℝ
hx : x ≠ c
this : dist x c ≠ 0
⊢ dist (inversion c R x) c = R ^ 2 / dist x c
|
38c6af8d5e5eb07f
|
spectrum.zero_eq
|
Mathlib/Algebra/Algebra/Spectrum.lean
|
theorem zero_eq [Nontrivial A] : σ (0 : A) = {0}
|
𝕜 : Type u
A : Type v
inst✝³ : Field 𝕜
inst✝² : Ring A
inst✝¹ : Algebra 𝕜 A
inst✝ : Nontrivial A
⊢ {0}ᶜ ⊆ resolventSet 𝕜 0
|
intro k hk
|
𝕜 : Type u
A : Type v
inst✝³ : Field 𝕜
inst✝² : Ring A
inst✝¹ : Algebra 𝕜 A
inst✝ : Nontrivial A
k : 𝕜
hk : k ∈ {0}ᶜ
⊢ k ∈ resolventSet 𝕜 0
|
a45fede128332273
|
List.nodupKeys_dedupKeys
|
Mathlib/Data/List/Sigma.lean
|
theorem nodupKeys_dedupKeys (l : List (Sigma β)) : NodupKeys (dedupKeys l)
|
α : Type u
β : α → Type v
inst✝ : DecidableEq α
l : List (Sigma β)
⊢ (foldr (fun x => kinsert x.fst x.snd) [] l).NodupKeys
|
generalize hl : nil = l'
|
α : Type u
β : α → Type v
inst✝ : DecidableEq α
l : List (Sigma β)
l' : List (Sigma β)
hl : [] = l'
⊢ (foldr (fun x => kinsert x.fst x.snd) l' l).NodupKeys
|
32ee2d0af20e0dd7
|
SemiNormedGrp₁.isZero_of_subsingleton
|
Mathlib/Analysis/Normed/Group/SemiNormedGrp.lean
|
theorem isZero_of_subsingleton (V : SemiNormedGrp₁) [Subsingleton V] : Limits.IsZero V
|
case refine_1.hf.a.H
V : SemiNormedGrp₁
inst✝ : Subsingleton V.carrier
X : SemiNormedGrp₁
f : V ⟶ X
x : V.carrier
this : x = 0
⊢ ↑(Hom.hom f) x = ↑(Hom.hom default) x
|
simp only [this, map_zero]
|
no goals
|
043b015c5f914c60
|
MeasureTheory.IsProjectiveMeasureFamily.eq_zero_of_isEmpty
|
Mathlib/MeasureTheory/Constructions/Projective.lean
|
lemma eq_zero_of_isEmpty [h : IsEmpty (Π i, α i)]
(hP : IsProjectiveMeasureFamily P) (I : Finset ι) :
P I = 0
|
case intro
ι : Type u_1
α : ι → Type u_2
inst✝ : (i : ι) → MeasurableSpace (α i)
P : (J : Finset ι) → Measure ((j : { x // x ∈ J }) → α ↑j)
h : IsEmpty ((i : ι) → α i)
hP : IsProjectiveMeasureFamily P
I : Finset ι
i : ι
hi : IsEmpty (α i)
⊢ P I = 0
|
rw [hP (insert i I) I (I.subset_insert i)]
|
case intro
ι : Type u_1
α : ι → Type u_2
inst✝ : (i : ι) → MeasurableSpace (α i)
P : (J : Finset ι) → Measure ((j : { x // x ∈ J }) → α ↑j)
h : IsEmpty ((i : ι) → α i)
hP : IsProjectiveMeasureFamily P
I : Finset ι
i : ι
hi : IsEmpty (α i)
⊢ Measure.map (Finset.restrict₂ ⋯) (P (insert i I)) = 0
|
898c26f281fd761c
|
LinearIndependent.of_comp
|
Mathlib/LinearAlgebra/LinearIndependent/Defs.lean
|
theorem LinearIndependent.of_comp (f : M →ₗ[R] M') (hfv : LinearIndependent R (f ∘ v)) :
LinearIndependent R v
|
ι : Type u'
R : Type u_2
M : Type u_4
M' : Type u_5
v : ι → M
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M'
inst✝¹ : Module R M
inst✝ : Module R M'
f : M →ₗ[R] M'
hfv : LinearIndependent R (⇑f ∘ v)
⊢ LinearIndependent R v
|
rw [LinearIndependent, Finsupp.linearCombination_linear_comp, LinearMap.coe_comp] at hfv
|
ι : Type u'
R : Type u_2
M : Type u_4
M' : Type u_5
v : ι → M
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid M'
inst✝¹ : Module R M
inst✝ : Module R M'
f : M →ₗ[R] M'
hfv : Injective (⇑f ∘ ⇑(Finsupp.linearCombination R v))
⊢ LinearIndependent R v
|
ae1e4341bbf2fa45
|
Matrix.zpow_add
|
Mathlib/LinearAlgebra/Matrix/ZPow.lean
|
theorem zpow_add {A : M} (ha : IsUnit A.det) (m n : ℤ) : A ^ (m + n) = A ^ m * A ^ n
|
case hz
n' : Type u_1
inst✝² : DecidableEq n'
inst✝¹ : Fintype n'
R : Type u_2
inst✝ : CommRing R
A : M
ha : IsUnit A.det
m : ℤ
⊢ A ^ (m + 0) = A ^ m * A ^ 0
|
simp
|
no goals
|
825209b07812538f
|
aestronglyMeasurable_withDensity_iff
|
Mathlib/MeasureTheory/Function/StronglyMeasurable/Lemmas.lean
|
theorem aestronglyMeasurable_withDensity_iff {E : Type*} [NormedAddCommGroup E]
[NormedSpace ℝ E] {f : α → ℝ≥0} (hf : Measurable f) {g : α → E} :
AEStronglyMeasurable g (μ.withDensity fun x => (f x : ℝ≥0∞)) ↔
AEStronglyMeasurable (fun x => (f x : ℝ) • g x) μ
|
case h
α : Type u_1
m : MeasurableSpace α
μ : Measure α
E : Type u_4
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : α → ℝ≥0
hf : Measurable f
g g' : α → E
g'meas : StronglyMeasurable g'
hg' : ∀ᵐ (x : α) ∂μ, ↑(f x) ≠ 0 → g x = g' x
A : MeasurableSet {x | f x ≠ 0}
a : α
ha : ↑(f a) ≠ 0 → g a = g' a
h'a : f a ≠ 0
this : ↑(f a) ≠ 0
⊢ ↑(f a) • g a = ↑(f a) • g' a
|
rw [ha this]
|
no goals
|
7323180b64a0b378
|
MonoidAlgebra.mul_apply_antidiagonal
|
Mathlib/Algebra/MonoidAlgebra/Defs.lean
|
theorem mul_apply_antidiagonal [Mul G] (f g : MonoidAlgebra k G) (x : G) (s : Finset (G × G))
(hs : ∀ {p : G × G}, p ∈ s ↔ p.1 * p.2 = x) : (f * g) x = ∑ p ∈ s, f p.1 * g p.2
|
case pos
k : Type u₁
G : Type u₂
inst✝¹ : Semiring k
inst✝ : Mul G
f g : MonoidAlgebra k G
x : G
s : Finset (G × G)
hs : ∀ {p : G × G}, p ∈ s ↔ p.1 * p.2 = x
F : G × G → k := fun p => if p.1 * p.2 = x then f p.1 * g p.2 else 0
p : G × G
hps : p ∈ s
hp : p ∈ s → f p.1 ≠ 0 → g p.2 = 0
h1 : f p.1 = 0
⊢ f p.1 * g p.2 = 0
|
rw [h1, zero_mul]
|
no goals
|
9d57548495c4125c
|
Equiv.Perm.Disjoint.cycleOf_mul_distrib
|
Mathlib/GroupTheory/Perm/Cycle/Factors.lean
|
theorem Disjoint.cycleOf_mul_distrib [DecidableRel f.SameCycle] [DecidableRel g.SameCycle]
[DecidableRel (f * g).SameCycle] [DecidableRel (g * f).SameCycle] (h : f.Disjoint g) (x : α) :
(f * g).cycleOf x = f.cycleOf x * g.cycleOf x
|
α : Type u_2
f g : Perm α
inst✝³ : DecidableRel f.SameCycle
inst✝² : DecidableRel g.SameCycle
inst✝¹ : DecidableRel (f * g).SameCycle
inst✝ : DecidableRel (g * f).SameCycle
h : f.Disjoint g
x : α
⊢ (f * g).cycleOf x = f.cycleOf x * g.cycleOf x
|
rcases (disjoint_iff_eq_or_eq.mp h) x with hfx | hgx
|
case inl
α : Type u_2
f g : Perm α
inst✝³ : DecidableRel f.SameCycle
inst✝² : DecidableRel g.SameCycle
inst✝¹ : DecidableRel (f * g).SameCycle
inst✝ : DecidableRel (g * f).SameCycle
h : f.Disjoint g
x : α
hfx : f x = x
⊢ (f * g).cycleOf x = f.cycleOf x * g.cycleOf x
case inr
α : Type u_2
f g : Perm α
inst✝³ : DecidableRel f.SameCycle
inst✝² : DecidableRel g.SameCycle
inst✝¹ : DecidableRel (f * g).SameCycle
inst✝ : DecidableRel (g * f).SameCycle
h : f.Disjoint g
x : α
hgx : g x = x
⊢ (f * g).cycleOf x = f.cycleOf x * g.cycleOf x
|
85be380522875376
|
CategoryTheory.Limits.hasProduct_of_equiv_of_iso
|
Mathlib/CategoryTheory/Limits/Shapes/Products.lean
|
lemma hasProduct_of_equiv_of_iso (f : α → C) (g : β → C)
[HasProduct f] (e : β ≃ α) (iso : ∀ j, g j ≅ f (e j)) : HasProduct g
|
β : Type w
α✝ : Type w₂
C : Type u
inst✝¹ : Category.{v, u} C
f : α✝ → C
g : β → C
inst✝ : HasProduct f
e : β ≃ α✝
iso : (j : β) → g j ≅ f (e j)
this : HasLimit ((Discrete.equivalence e).functor ⋙ Discrete.functor f)
α : Discrete.functor g ≅ (Discrete.equivalence e).functor ⋙ Discrete.functor f
⊢ HasProduct g
|
exact hasLimitOfIso α.symm
|
no goals
|
99fd822bbe5fac16
|
monotoneOn_of_sub_one_le
|
Mathlib/Algebra/Order/SuccPred.lean
|
lemma monotoneOn_of_sub_one_le (hs : s.OrdConnected) :
(∀ a, ¬ IsMin a → a ∈ s → a - 1 ∈ s → f (a - 1) ≤ f a) → MonotoneOn f s
|
α : Type u_2
β : Type u_3
inst✝⁵ : PartialOrder α
inst✝⁴ : Preorder β
inst✝³ : Sub α
inst✝² : One α
inst✝¹ : PredSubOrder α
inst✝ : IsPredArchimedean α
s : Set α
f : α → β
hs : s.OrdConnected
⊢ (∀ (a : α), ¬IsMin a → a ∈ s → a - 1 ∈ s → f (a - 1) ≤ f a) → MonotoneOn f s
|
simpa [Order.pred_eq_sub_one] using monotoneOn_of_pred_le hs (f := f)
|
no goals
|
5da4af8c353feb02
|
IsCyclic.normalizer_le_centralizer
|
Mathlib/GroupTheory/Transfer.lean
|
theorem normalizer_le_centralizer (hP : IsCyclic P) : P.normalizer ≤ centralizer (P : Set G)
|
case neg
G : Type u_3
inst✝¹ : Group G
inst✝ : Finite G
P : Sylow (Nat.card G).minFac G
hP : IsCyclic ↥↑P
hn : ¬Nat.card G = 1
this : Fact (Nat.Prime (Nat.card G).minFac)
key : Nat.card (↥(↑P).normalizer ⧸ (↑P).normalizerMonoidHom.ker) ∣ Nat.card (MulAut ↥↑P)
⊢ (↑P).normalizer ≤ centralizer ↑P
|
rw [normalizerMonoidHom_ker, ← index, ← relindex] at key
|
case neg
G : Type u_3
inst✝¹ : Group G
inst✝ : Finite G
P : Sylow (Nat.card G).minFac G
hP : IsCyclic ↥↑P
hn : ¬Nat.card G = 1
this : Fact (Nat.Prime (Nat.card G).minFac)
key : (centralizer ↑↑P).relindex (↑P).normalizer ∣ Nat.card (MulAut ↥↑P)
⊢ (↑P).normalizer ≤ centralizer ↑P
|
319753e59f979dd9
|
fastJacobiSymAux.eq_jacobiSym
|
Mathlib/NumberTheory/LegendreSymbol/JacobiSymbol.lean
|
theorem fastJacobiSymAux.eq_jacobiSym {a b : ℕ} {flip : Bool} {ha0 : a > 0}
(hb2 : b % 2 = 1) (hb1 : b > 1) :
fastJacobiSymAux a b flip ha0 = if flip then -J(a | b) else J(a | b)
|
case ind.isFalse.isFalse.isFalse.isTrue
a : ℕ
IH :
∀ m < a,
∀ {b : ℕ} {flip : Bool} {ha0 : m > 0},
b % 2 = 1 → b > 1 → fastJacobiSymAux m b flip ha0 = if flip = true then -J(↑m | b) else J(↑m | b)
b : ℕ
flip : Bool
ha0 : a > 0
hb2 : b % 2 = 1
hb1 : b > 1
ha4 : ¬a % 4 = 0
ha2 : ¬a % 2 = 0
ha1 : ¬a = 1
hba : b % a = 0
⊢ 0 = if flip = true then -J(↑a | b) else J(↑a | b)
|
suffices J(a | b) = 0 by simp [this]
|
case ind.isFalse.isFalse.isFalse.isTrue
a : ℕ
IH :
∀ m < a,
∀ {b : ℕ} {flip : Bool} {ha0 : m > 0},
b % 2 = 1 → b > 1 → fastJacobiSymAux m b flip ha0 = if flip = true then -J(↑m | b) else J(↑m | b)
b : ℕ
flip : Bool
ha0 : a > 0
hb2 : b % 2 = 1
hb1 : b > 1
ha4 : ¬a % 4 = 0
ha2 : ¬a % 2 = 0
ha1 : ¬a = 1
hba : b % a = 0
⊢ J(↑a | b) = 0
|
eb8492f9d280dbdb
|
Polynomial.irreducible_iff_lt_natDegree_lt
|
Mathlib/Algebra/Polynomial/FieldDivision.lean
|
theorem irreducible_iff_lt_natDegree_lt {p : R[X]} (hp0 : p ≠ 0) (hpu : ¬ IsUnit p) :
Irreducible p ↔ ∀ q, Monic q → natDegree q ∈ Finset.Ioc 0 (natDegree p / 2) → ¬ q ∣ p
|
R : Type u
inst✝ : Field R
p : R[X]
hp0 : p ≠ 0
hpu : ¬IsUnit p
⊢ p * C p.leadingCoeff⁻¹ ≠ 1
|
contrapose! hpu
|
R : Type u
inst✝ : Field R
p : R[X]
hp0 : p ≠ 0
hpu : p * C p.leadingCoeff⁻¹ = 1
⊢ IsUnit p
|
2c75e02ddb99f96c
|
List.Sublist.lookup_eq_none
|
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Find.lean
|
theorem Sublist.lookup_eq_none {l₁ l₂ : List (α × β)} (h : l₁ <+ l₂) :
l₂.lookup k = none → l₁.lookup k = none
|
α : Type u_2
inst✝¹ : BEq α
inst✝ : LawfulBEq α
β : Type u_1
k : α
l₁ l₂ : List (α × β)
h : l₁ <+ l₂
⊢ findSome? (fun p => if (k == p.fst) = true then some p.snd else none) l₂ = none →
findSome? (fun p => if (k == p.fst) = true then some p.snd else none) l₁ = none
|
exact h.findSome?_eq_none
|
no goals
|
f5e6da48595de346
|
convexJoin_right_comm
|
Mathlib/Analysis/Convex/Join.lean
|
theorem convexJoin_right_comm (s t u : Set E) :
convexJoin 𝕜 (convexJoin 𝕜 s t) u = convexJoin 𝕜 (convexJoin 𝕜 s u) t
|
𝕜 : Type u_2
E : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t u : Set E
⊢ convexJoin 𝕜 (convexJoin 𝕜 s t) u = convexJoin 𝕜 (convexJoin 𝕜 s u) t
|
simp_rw [convexJoin_assoc, convexJoin_comm]
|
no goals
|
ee37511d3262b5dd
|
CategoryTheory.IsVanKampenColimit.of_iso
|
Mathlib/CategoryTheory/Limits/VanKampen.lean
|
theorem IsVanKampenColimit.of_iso {F : J ⥤ C} {c c' : Cocone F} (H : IsVanKampenColimit c)
(e : c ≅ c') : IsVanKampenColimit c'
|
J : Type v'
inst✝¹ : Category.{u', v'} J
C : Type u
inst✝ : Category.{v, u} C
F : J ⥤ C
c c' : Cocone F
H : IsVanKampenColimit c
e : c ≅ c'
⊢ IsVanKampenColimit c'
|
intro F' c'' α f h hα
|
J : Type v'
inst✝¹ : Category.{u', v'} J
C : Type u
inst✝ : Category.{v, u} C
F : J ⥤ C
c c' : Cocone F
H : IsVanKampenColimit c
e : c ≅ c'
F' : J ⥤ C
c'' : Cocone F'
α : F' ⟶ F
f : c''.pt ⟶ c'.pt
h : α ≫ c'.ι = c''.ι ≫ (Functor.const J).map f
hα : NatTrans.Equifibered α
⊢ Nonempty (IsColimit c'') ↔ ∀ (j : J), IsPullback (c''.ι.app j) (α.app j) f (c'.ι.app j)
|
256639f190b732be
|
Polynomial.Monic.not_irreducible_iff_exists_add_mul_eq_coeff
|
Mathlib/Algebra/Polynomial/Monic.lean
|
lemma Monic.not_irreducible_iff_exists_add_mul_eq_coeff (hm : p.Monic) (hnd : p.natDegree = 2) :
¬Irreducible p ↔ ∃ c₁ c₂, p.coeff 0 = c₁ * c₂ ∧ p.coeff 1 = c₁ + c₂
|
case inr.mp.intro.intro.intro.intro.intro
R : Type u
inst✝¹ : CommSemiring R
inst✝ : NoZeroDivisors R
h✝ : Nontrivial R
a b : R[X]
ha : a.Monic
hb : b.Monic
hdb : b.natDegree ∈ Ioc 0 (2 / 2)
hm : (a * b).Monic
hnd : (a * b).natDegree = 2
⊢ ∃ c₁ c₂, (a * b).coeff 0 = c₁ * c₂ ∧ (a * b).coeff 1 = c₁ + c₂
|
simp only [zero_lt_two, Nat.div_self, Nat.Ioc_succ_singleton, zero_add, mem_singleton] at hdb
|
case inr.mp.intro.intro.intro.intro.intro
R : Type u
inst✝¹ : CommSemiring R
inst✝ : NoZeroDivisors R
h✝ : Nontrivial R
a b : R[X]
ha : a.Monic
hb : b.Monic
hm : (a * b).Monic
hnd : (a * b).natDegree = 2
hdb : b.natDegree = 1
⊢ ∃ c₁ c₂, (a * b).coeff 0 = c₁ * c₂ ∧ (a * b).coeff 1 = c₁ + c₂
|
4179f7de5fe1c617
|
Opens.pretopology_ofGrothendieck
|
Mathlib/CategoryTheory/Sites/Spaces.lean
|
theorem pretopology_ofGrothendieck :
Pretopology.ofGrothendieck _ (Opens.grothendieckTopology T) = Opens.pretopology T
|
case a
T : Type u
inst✝ : TopologicalSpace T
X : Opens T
R : Presieve X
hR : R ∈ (Pretopology.ofGrothendieck (Opens T) (grothendieckTopology T)).coverings X
x : T
hx : x ∈ X
⊢ ∃ U f, R f ∧ x ∈ U
|
rcases hR x hx with ⟨U, f, ⟨V, g₁, g₂, hg₂, _⟩, hU⟩
|
case a.intro.intro.intro.intro.intro.intro.intro
T : Type u
inst✝ : TopologicalSpace T
X : Opens T
R : Presieve X
hR : R ∈ (Pretopology.ofGrothendieck (Opens T) (grothendieckTopology T)).coverings X
x : T
hx : x ∈ X
U : Opens T
f : U ⟶ X
hU : x ∈ U
V : Opens T
g₁ : U ⟶ V
g₂ : V ⟶ X
hg₂ : R g₂
right✝ : g₁ ≫ g₂ = f
⊢ ∃ U f, R f ∧ x ∈ U
|
b501eae4e0ee380f
|
Polynomial.cyclotomic_pos
|
Mathlib/RingTheory/Polynomial/Cyclotomic/Eval.lean
|
theorem cyclotomic_pos {n : ℕ} (hn : 2 < n) {R} [LinearOrderedCommRing R] (x : R) :
0 < eval x (cyclotomic n R)
|
case h.inl.h
R : Type u_1
inst✝ : LinearOrderedCommRing R
x : R
n : ℕ
ih : ∀ m < n, 2 < m → 0 < eval x (cyclotomic m R)
hn : 2 < n
hn' : 0 < n
hn'' : 1 < n
this : eval x (cyclotomic n R) * eval x (∏ x ∈ n.properDivisors.erase 1, cyclotomic x R) = ∑ i ∈ range n, x ^ i
h : 0 < ∑ i ∈ range n, x ^ i
⊢ 0 < eval x (cyclotomic n R) * ?h.inl.b
|
rwa [this]
|
no goals
|
0959ed2b08a19c09
|
Polynomial.isJacobsonRing_polynomial_of_isJacobsonRing
|
Mathlib/RingTheory/Jacobson/Ring.lean
|
theorem isJacobsonRing_polynomial_of_isJacobsonRing (hR : IsJacobsonRing R) :
IsJacobsonRing R[X]
|
R : Type u_1
inst✝ : CommRing R
hR : IsJacobsonRing R
I : Ideal R[X]
hI : I.IsPrime
R' : Subring (R[X] ⧸ I) := ((Ideal.Quotient.mk I).comp C).range
i : R →+* ↥R' := ((Ideal.Quotient.mk I).comp C).rangeRestrict
hi : Function.Surjective ⇑i
⊢ I.jacobson = I
|
have hi' : RingHom.ker (mapRingHom i) ≤ I := by
intro f hf
apply polynomial_mem_ideal_of_coeff_mem_ideal I f
intro n
replace hf := congrArg (fun g : Polynomial ((Ideal.Quotient.mk I).comp C).range => g.coeff n) hf
change (Polynomial.map ((Ideal.Quotient.mk I).comp C).rangeRestrict f).coeff n = 0 at hf
rw [coeff_map, Subtype.ext_iff] at hf
rwa [mem_comap, ← Quotient.eq_zero_iff_mem, ← RingHom.comp_apply]
|
R : Type u_1
inst✝ : CommRing R
hR : IsJacobsonRing R
I : Ideal R[X]
hI : I.IsPrime
R' : Subring (R[X] ⧸ I) := ((Ideal.Quotient.mk I).comp C).range
i : R →+* ↥R' := ((Ideal.Quotient.mk I).comp C).rangeRestrict
hi : Function.Surjective ⇑i
hi' : RingHom.ker (mapRingHom i) ≤ I
⊢ I.jacobson = I
|
60e32d0d54e0756e
|
bsupr_limsup_dimH
|
Mathlib/Topology/MetricSpace/HausdorffDimension.lean
|
theorem bsupr_limsup_dimH (s : Set X) : ⨆ x ∈ s, limsup dimH (𝓝[s] x).smallSets = dimH s
|
case refine_2
X : Type u_2
inst✝¹ : EMetricSpace X
inst✝ : SecondCountableTopology X
s : Set X
r : ℝ≥0∞
hr : r < dimH s
⊢ r ≤ ⨆ x ∈ s, limsup dimH (𝓝[s] x).smallSets
|
rcases exists_mem_nhdsWithin_lt_dimH_of_lt_dimH hr with ⟨x, hxs, hxr⟩
|
case refine_2.intro.intro
X : Type u_2
inst✝¹ : EMetricSpace X
inst✝ : SecondCountableTopology X
s : Set X
r : ℝ≥0∞
hr : r < dimH s
x : X
hxs : x ∈ s
hxr : ∀ t ∈ 𝓝[s] x, r < dimH t
⊢ r ≤ ⨆ x ∈ s, limsup dimH (𝓝[s] x).smallSets
|
ce953fa85a665a27
|
Ordinal.iSup_nadd_of_monotone
|
Mathlib/SetTheory/Ordinal/NaturalOps.lean
|
theorem iSup_nadd_of_monotone {a b} (f : Ordinal.{u} → Ordinal.{u}) (h : Monotone f) :
⨆ x : Iio (a ♯ b), f x = max (⨆ a' : Iio a, f (a'.1 ♯ b)) (⨆ b' : Iio b, f (a ♯ b'.1))
|
case mk.inl.intro.intro
a b : Ordinal.{u}
f : Ordinal.{u} → Ordinal.{u}
h : Monotone f
i : Ordinal.{u}
hi✝ : i ∈ Iio (a ♯ b)
x : Ordinal.{u}
hx : x < a
hi : i ≤ x ♯ b
⊢ f ↑⟨i, hi✝⟩ ≤ (⨆ a', f (↑a' ♯ b)) ⊔ ⨆ b', f (a ♯ ↑b')
|
exact le_max_of_le_left ((h hi).trans <| Ordinal.le_iSup (fun x : Iio a ↦ _) ⟨x, hx⟩)
|
no goals
|
7c2661beebea9618
|
Fin.heq_fun_iff
|
Mathlib/Data/Fin/Basic.lean
|
theorem heq_fun_iff {α : Sort*} {k l : ℕ} (h : k = l) {f : Fin k → α} {g : Fin l → α} :
HEq f g ↔ ∀ i : Fin k, f i = g ⟨(i : ℕ), h ▸ i.2⟩
|
α : Sort u_1
k l : ℕ
h : k = l
f : Fin k → α
g : Fin l → α
⊢ HEq f g ↔ ∀ (i : Fin k), f i = g ⟨↑i, ⋯⟩
|
subst h
|
α : Sort u_1
k : ℕ
f g : Fin k → α
⊢ HEq f g ↔ ∀ (i : Fin k), f i = g ⟨↑i, ⋯⟩
|
46fa2fb1b0d128c9
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.