name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
mul_left_eq_self₀
Mathlib/Algebra/GroupWithZero/Basic.lean
theorem mul_left_eq_self₀ : a * b = b ↔ a = 1 ∨ b = 0 := calc a * b = b ↔ a * b = 1 * b
M₀ : Type u_1 inst✝ : CancelMonoidWithZero M₀ a b : M₀ ⊢ a * b = b ↔ a * b = 1 * b
rw [one_mul]
no goals
1cb8410ec0539713
not_uncountable_iff
Mathlib/Data/Countable/Defs.lean
lemma not_uncountable_iff : ¬Uncountable α ↔ Countable α
α : Sort u ⊢ ¬Uncountable α ↔ Countable α
rw [uncountable_iff_not_countable, not_not]
no goals
00dd98f7f7556bb5
intervalIntegral.continuousOn_primitive_interval_left
Mathlib/MeasureTheory/Integral/DominatedConvergence.lean
theorem continuousOn_primitive_interval_left (h_int : IntegrableOn f (uIcc a b) μ) : ContinuousOn (fun x => ∫ t in x..b, f t ∂μ) (uIcc a b)
E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E a b : ℝ μ : Measure ℝ f : ℝ → E inst✝ : NoAtoms μ h_int : IntegrableOn f [[b, a]] μ ⊢ ContinuousOn (fun x => ∫ (t : ℝ) in x..b, f t ∂μ) [[b, a]]
simp only [integral_symm b]
E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E a b : ℝ μ : Measure ℝ f : ℝ → E inst✝ : NoAtoms μ h_int : IntegrableOn f [[b, a]] μ ⊢ ContinuousOn (fun x => -∫ (t : ℝ) in b..x, f t ∂μ) [[b, a]]
f2a5f8820cfc225b
NumberField.mixedEmbedding.normAtPlace_real
Mathlib/NumberTheory/NumberField/CanonicalEmbedding/Basic.lean
theorem normAtPlace_real (w : InfinitePlace K) (c : ℝ) : normAtPlace w ((fun _ ↦ c, fun _ ↦ c) : (mixedSpace K)) = |c|
K : Type u_1 inst✝ : Field K w : InfinitePlace K c : ℝ ⊢ (normAtPlace w) (fun x => c, fun x => ↑c) = |c|
rw [show ((fun _ ↦ c, fun _ ↦ c) : (mixedSpace K)) = c • 1 by ext <;> simp, normAtPlace_smul, map_one, mul_one]
no goals
142af2ef6d8da7ec
Irrational.eventually_forall_le_dist_cast_div
Mathlib/Topology/Instances/Irrational.lean
theorem eventually_forall_le_dist_cast_div (hx : Irrational x) (n : ℕ) : ∀ᶠ ε : ℝ in 𝓝 0, ∀ m : ℤ, ε ≤ dist x (m / n)
case intro.intro x : ℝ hx : Irrational x n : ℕ A : IsClosed (range fun m => (↑n)⁻¹ * ↑m) B : x ∉ range fun m => (↑n)⁻¹ * ↑m ε : ℝ ε0 : ε > 0 hε : ball x ε ⊆ (range fun m => (↑n)⁻¹ * ↑m)ᶜ δ : ℝ hδ : δ ≤ ε m : ℤ hlt : dist (↑m / ↑n) x < δ ⊢ False
refine hε (ball_subset_ball hδ hlt) ⟨m, ?_⟩
case intro.intro x : ℝ hx : Irrational x n : ℕ A : IsClosed (range fun m => (↑n)⁻¹ * ↑m) B : x ∉ range fun m => (↑n)⁻¹ * ↑m ε : ℝ ε0 : ε > 0 hε : ball x ε ⊆ (range fun m => (↑n)⁻¹ * ↑m)ᶜ δ : ℝ hδ : δ ≤ ε m : ℤ hlt : dist (↑m / ↑n) x < δ ⊢ (fun m => (↑n)⁻¹ * ↑m) m = ↑m / ↑n
be2d5b844aa1fb4f
SimpleGraph.chromaticNumber_bot
Mathlib/Combinatorics/SimpleGraph/Coloring.lean
theorem chromaticNumber_bot [Nonempty V] : (⊥ : SimpleGraph V).chromaticNumber = 1
V : Type u inst✝ : Nonempty V ⊢ ⊥.chromaticNumber = 1
have : (⊥ : SimpleGraph V).Colorable 1 := ⟨.mk 0 <| by simp⟩
V : Type u inst✝ : Nonempty V this : ⊥.Colorable 1 ⊢ ⊥.chromaticNumber = 1
86642397865942bd
IsIntegrallyClosed.eq_map_mul_C_of_dvd
Mathlib/RingTheory/Polynomial/GaussLemma.lean
theorem IsIntegrallyClosed.eq_map_mul_C_of_dvd [IsIntegrallyClosed R] {f : R[X]} (hf : f.Monic) {g : K[X]} (hg : g ∣ f.map (algebraMap R K)) : ∃ g' : R[X], g'.map (algebraMap R K) * (C <| leadingCoeff g) = g
case h R : Type u_1 inst✝⁴ : CommRing R K : Type u_2 inst✝³ : Field K inst✝² : Algebra R K inst✝¹ : IsFractionRing R K inst✝ : IsIntegrallyClosed R f : R[X] hf : f.Monic g : K[X] hg : g ∣ map (algebraMap R K) f g_ne_0 : g ≠ 0 g' : R[X] hg' : map (algebraMap R K) g' = g * C g.leadingCoeff⁻¹ ⊢ map (algebraMap R K) g' * C g.leadingCoeff = g
rw [hg', mul_assoc, ← C_mul, inv_mul_cancel₀ (leadingCoeff_ne_zero.mpr g_ne_0), C_1, mul_one]
no goals
918c3567824cf666
Batteries.UnionFind.lt_rankD_findAux
Mathlib/.lake/packages/batteries/Batteries/Data/UnionFind/Basic.lean
theorem lt_rankD_findAux {self : UnionFind} {x : Fin self.size} : parentD (findAux self x).s i ≠ i → self.rank i < self.rank (parentD (findAux self x).s i)
case isFalse i : Nat self : UnionFind x : Fin self.size h'✝ : ¬self.arr[↑x].parent = ↑x h : ¬i = ↑x h' : parentD (self.findAux ⟨self.arr[↑x].parent, ⋯⟩).s i ≠ i this : self.rankMax - self.rank self.arr[↑x].parent < self.rankMax - self.rank ↑x ⊢ self.rank i < self.rank (parentD (self.findAux ⟨self.arr[↑x].parent, ⋯⟩).s i)
apply lt_rankD_findAux h'
no goals
bf3344308c344af2
List.dropInfix?_go_eq_some_iff
Mathlib/.lake/packages/batteries/Batteries/Data/List/Lemmas.lean
theorem dropInfix?_go_eq_some_iff [BEq α] {i l acc p s : List α} : dropInfix?.go i l acc = some (p, s) ↔ ∃ p', p = acc.reverse ++ p' ∧ -- `i` is an infix up to `==` (∃ i', l = p' ++ i' ++ s ∧ i' == i) ∧ -- and there is no shorter prefix for which that is the case (∀ p'' i'' s'', l = p'' ++ i'' ++ s'' → i'' == i → p''.length ≥ p'.length)
case h_2.h_1.mpr.intro.intro.intro.intro.intro.inr.intro.intro.inr.intro.intro α : Type u_1 inst✝ : BEq α i acc s x✝² x✝¹ : List α a : α x✝ : Option (List α) i' : List α h₂ : (i' == i) = true p' : List α h : (a :: (p' ++ i' ++ s)).dropPrefix? i = none w : ∀ (p'' i'' s'' : List α), a :: (p' ++ i' ++ s) = p'' ++ i'' ++ s'' → (i'' == i) = true → p''.length ≥ (a :: p').length p'' i'' s'' : List α h₃ : p' ++ (i' ++ s) = p'' ++ (i'' ++ s'') h₄ : (i'' == i) = true ⊢ p'.length ≤ p''.length
rw [← append_assoc] at h₃
case h_2.h_1.mpr.intro.intro.intro.intro.intro.inr.intro.intro.inr.intro.intro α : Type u_1 inst✝ : BEq α i acc s x✝² x✝¹ : List α a : α x✝ : Option (List α) i' : List α h₂ : (i' == i) = true p' : List α h : (a :: (p' ++ i' ++ s)).dropPrefix? i = none w : ∀ (p'' i'' s'' : List α), a :: (p' ++ i' ++ s) = p'' ++ i'' ++ s'' → (i'' == i) = true → p''.length ≥ (a :: p').length p'' i'' s'' : List α h₃ : p' ++ i' ++ s = p'' ++ (i'' ++ s'') h₄ : (i'' == i) = true ⊢ p'.length ≤ p''.length
2a30116d5cc9db54
Finset.mulEnergy_empty_left
Mathlib/Combinatorics/Additive/Energy.lean
@[to_additive (attr := simp)] lemma mulEnergy_empty_left : Eₘ[∅, t] = 0
α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Mul α t : Finset α ⊢ Eₘ[∅, t] = 0
simp [mulEnergy]
no goals
68ed322687dae6da
interior_Ici'
Mathlib/Topology/Order/DenselyOrdered.lean
theorem interior_Ici' {a : α} (ha : (Iio a).Nonempty) : interior (Ici a) = Ioi a
α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a : α ha : (Iio a).Nonempty ⊢ interior (Ici a) = Ioi a
rw [← compl_Iio, interior_compl, closure_Iio' ha, compl_Iic]
no goals
67c68fb7a49efdf1
Unitization.starMap_inr
Mathlib/Algebra/Algebra/Unitization.lean
@[simp high] lemma starMap_inr (φ : A →⋆ₙₐ[R] B) (a : A) : starMap φ (inr a) = inr (φ a)
R : Type u_1 A : Type u_2 B : Type u_3 inst✝¹² : CommSemiring R inst✝¹¹ : StarRing R inst✝¹⁰ : NonUnitalSemiring A inst✝⁹ : StarRing A inst✝⁸ : Module R A inst✝⁷ : SMulCommClass R A A inst✝⁶ : IsScalarTower R A A inst✝⁵ : NonUnitalSemiring B inst✝⁴ : StarRing B inst✝³ : Module R B inst✝² : SMulCommClass R B B inst✝¹ : IsScalarTower R B B inst✝ : StarModule R B φ : A →⋆ₙₐ[R] B a : A ⊢ (starMap φ) ↑a = ↑(φ a)
simp
no goals
7b776f9ea6f62df4
CoxeterSystem.prod_alternatingWord_eq_prod_alternatingWord_sub
Mathlib/GroupTheory/Coxeter/Basic.lean
theorem prod_alternatingWord_eq_prod_alternatingWord_sub (i i' : B) (m : ℕ) (hm : m ≤ M i i' * 2) : π (alternatingWord i i' m) = π (alternatingWord i' i (M i i' * 2 - m))
case intro.inl B : Type u_1 W : Type u_3 inst✝ : Group W M : CoxeterMatrix B cs : CoxeterSystem M W i i' : B m : ℕ k : ℤ ⊢ 1 * (cs.simple i * cs.simple i') ^ k = 1 * (cs.simple i' * cs.simple i) ^ (↑(M.M i i') - k)
rw [zpow_sub, zpow_natCast, simple_mul_simple_pow' cs i i', ← inv_zpow]
case intro.inl B : Type u_1 W : Type u_3 inst✝ : Group W M : CoxeterMatrix B cs : CoxeterSystem M W i i' : B m : ℕ k : ℤ ⊢ 1 * (cs.simple i * cs.simple i') ^ k = 1 * (1 * (cs.simple i' * cs.simple i)⁻¹ ^ k)
8b276f2d43ad82bd
ZMod.valMinAbs_mul_two_eq_iff
Mathlib/Data/ZMod/ValMinAbs.lean
lemma valMinAbs_mul_two_eq_iff (a : ZMod n) : a.valMinAbs * 2 = n ↔ 2 * a.val = n
n : ℕ a : ZMod (n + 1) h : ¬a.val ≤ n.succ / 2 ⊢ ¬a.valMinAbs * 2 = ↑(n + 1)
intro he
n : ℕ a : ZMod (n + 1) h : ¬a.val ≤ n.succ / 2 he : a.valMinAbs * 2 = ↑(n + 1) ⊢ False
23849678f97214de
geometric_hahn_banach_open
Mathlib/Analysis/NormedSpace/HahnBanach/Separation.lean
theorem geometric_hahn_banach_open (hs₁ : Convex ℝ s) (hs₂ : IsOpen s) (ht : Convex ℝ t) (disj : Disjoint s t) : ∃ (f : E →L[ℝ] ℝ) (u : ℝ), (∀ a ∈ s, f a < u) ∧ ∀ b ∈ t, u ≤ f b
case inr.intro.inr.intro E : Type u_2 inst✝⁴ : TopologicalSpace E inst✝³ : AddCommGroup E inst✝² : Module ℝ E s t : Set E inst✝¹ : IsTopologicalAddGroup E inst✝ : ContinuousSMul ℝ E hs₁ : Convex ℝ s hs₂ : IsOpen s ht : Convex ℝ t disj : Disjoint s t a₀ : E ha₀ : a₀ ∈ s b₀ : E hb₀ : b₀ ∈ t x₀ : E := b₀ - a₀ C : Set E := x₀ +ᵥ s - t this✝¹ : 0 ∈ C this✝ : Convex ℝ C this : x₀ ∉ C ⊢ ∃ f u, (∀ a ∈ s, f a < u) ∧ ∀ b ∈ t, u ≤ f b
obtain ⟨f, hf₁, hf₂⟩ := separate_convex_open_set ‹0 ∈ C› ‹_› (hs₂.sub_right.vadd _) ‹x₀ ∉ C›
case inr.intro.inr.intro.intro.intro E : Type u_2 inst✝⁴ : TopologicalSpace E inst✝³ : AddCommGroup E inst✝² : Module ℝ E s t : Set E inst✝¹ : IsTopologicalAddGroup E inst✝ : ContinuousSMul ℝ E hs₁ : Convex ℝ s hs₂ : IsOpen s ht : Convex ℝ t disj : Disjoint s t a₀ : E ha₀ : a₀ ∈ s b₀ : E hb₀ : b₀ ∈ t x₀ : E := b₀ - a₀ C : Set E := x₀ +ᵥ s - t this✝¹ : 0 ∈ C this✝ : Convex ℝ C this : x₀ ∉ C f : E →L[ℝ] ℝ hf₁ : f x₀ = 1 hf₂ : ∀ x ∈ C, f x < 1 ⊢ ∃ f u, (∀ a ∈ s, f a < u) ∧ ∀ b ∈ t, u ≤ f b
2f61733fca4a9fa5
List.prev_getElem
Mathlib/Data/List/Cycle.lean
theorem prev_getElem (l : List α) (h : Nodup l) (i : Nat) (hi : i < l.length) : prev l l[i] (get_mem _ _) = (l[(i + (l.length - 1)) % l.length]'(Nat.mod_lt _ (by omega))) := match l with | [] => by simp at hi | x::l => by induction l generalizing i x with | nil => simp | cons y l hl => rcases i with (_ | _ | i) · simp [getLast_eq_getElem] · simp only [mem_cons, nodup_cons] at h push_neg at h simp only [zero_add, getElem_cons_succ, getElem_cons_zero, List.prev_cons_cons_of_ne _ _ _ _ h.left.left.symm, length, add_comm, Nat.add_sub_cancel_left, Nat.mod_self] · rw [prev_ne_cons_cons] · convert hl i.succ y h.of_cons (Nat.le_of_succ_le_succ hi) using 1 have : ∀ k hk, (y :: l)[k] = (x :: y :: l)[k + 1]'(Nat.succ_lt_succ hk)
case h.e'_3 α : Type u_1 inst✝ : DecidableEq α l✝ : List α y : α l : List α hl : ∀ (i : ℕ) (x : α), (x :: l).Nodup → ∀ (hi : i < (x :: l).length), (x :: l).prev (x :: l)[i] ⋯ = (x :: l)[(i + ((x :: l).length - 1)) % (x :: l).length] x : α h : (x :: y :: l).Nodup i : ℕ hi : i + 1 + 1 < (x :: y :: l).length this : ∀ (k : ℕ) (hk : k < (y :: l).length), (y :: l)[k] = (x :: y :: l)[k + 1] ⊢ (x :: y :: l)[(i + 1 + 1 + ((x :: y :: l).length - 1)) % (x :: y :: l).length] = (x :: y :: l)[(i.succ + ((y :: l).length - 1)) % (y :: l).length + 1]
congr
case h.e'_3.e_i α : Type u_1 inst✝ : DecidableEq α l✝ : List α y : α l : List α hl : ∀ (i : ℕ) (x : α), (x :: l).Nodup → ∀ (hi : i < (x :: l).length), (x :: l).prev (x :: l)[i] ⋯ = (x :: l)[(i + ((x :: l).length - 1)) % (x :: l).length] x : α h : (x :: y :: l).Nodup i : ℕ hi : i + 1 + 1 < (x :: y :: l).length this : ∀ (k : ℕ) (hk : k < (y :: l).length), (y :: l)[k] = (x :: y :: l)[k + 1] ⊢ (i + 1 + 1 + ((x :: y :: l).length - 1)) % (x :: y :: l).length = (i.succ + ((y :: l).length - 1)) % (y :: l).length + 1
9ab0f8d6d9da20dc
Real.inv_sign
Mathlib/Data/Real/Sign.lean
theorem inv_sign (r : ℝ) : (sign r)⁻¹ = sign r
case inr.inr r : ℝ hp : r.sign = 1 ⊢ r.sign⁻¹ = r.sign
rw [hp]
case inr.inr r : ℝ hp : r.sign = 1 ⊢ 1⁻¹ = 1
be6545dd2dc24fd8
List.mapFinIdx_eq_mapFinIdx_iff
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/MapIdx.lean
theorem mapFinIdx_eq_mapFinIdx_iff {l : List α} {f g : (i : Nat) → α → (h : i < l.length) → β} : l.mapFinIdx f = l.mapFinIdx g ↔ ∀ (i : Nat) (h : i < l.length), f i l[i] h = g i l[i] h
α : Type u_1 β : Type u_2 l : List α f g : (i : Nat) → α → i < l.length → β ⊢ (∃ h, ∀ (i : Nat) (h_1 : i < l.length), (l.mapFinIdx f)[i] = g i l[i] h_1) ↔ ∀ (i : Nat) (h : i < l.length), f i l[i] h = g i l[i] h
simp [Fin.forall_iff]
no goals
729dedc47897c4be
MeasureTheory.pdf_of_not_aemeasurable
Mathlib/Probability/Density.lean
theorem pdf_of_not_aemeasurable {_ : MeasurableSpace Ω} {ℙ : Measure Ω} {μ : Measure E} {X : Ω → E} (hX : ¬AEMeasurable X ℙ) : pdf X ℙ μ =ᵐ[μ] 0
Ω : Type u_1 E : Type u_2 inst✝ : MeasurableSpace E x✝ : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E X : Ω → E hX : ¬AEMeasurable X ℙ ⊢ rnDeriv 0 μ =ᶠ[ae μ] 0
exact rnDeriv_zero μ
no goals
126a8f10dcaa5b27
Finset.small_pos_neg_pos_mul
Mathlib/Combinatorics/Additive/SmallTripling.lean
@[to_additive] private lemma small_pos_neg_pos_mul (hA : #(A ^ 3) ≤ K * #A) : #(A * A⁻¹ * A) ≤ K ^ 3 * #A
G : Type u_1 inst✝¹ : DecidableEq G inst✝ : Group G A : Finset G K : ℝ hA : ↑(#(A ^ 3)) ≤ K * ↑(#A) hA₀ : A.Nonempty this : 0 ≤ K ⊢ ↑(#(A * (A * A⁻¹))) * ↑(#(A * A)) = ↑(#(A * A * A⁻¹)) * ↑(#(A ^ 2))
simp [pow_succ, mul_assoc]
no goals
3191000204fbb864
HomologicalComplex.cylinder.πCompι₀Homotopy.inrX_nullHomotopy_f
Mathlib/Algebra/Homology/HomotopyCofiber.lean
lemma inrX_nullHomotopy_f (j : ι) : inrX K j ≫ (nullHomotopicMap K).f j = inrX K j ≫ (π K ≫ ι₀ K - 𝟙 _).f j
C : Type u_1 inst✝⁴ : Category.{u_3, u_1} C inst✝³ : Preadditive C ι : Type u_2 c : ComplexShape ι K : HomologicalComplex C c inst✝² : DecidableRel c.Rel inst✝¹ : ∀ (i : ι), HasBinaryBiproduct (K.X i) (K.X i) inst✝ : HasHomotopyCofiber (biprod.lift (𝟙 K) (-𝟙 K)) hc : ∀ (j : ι), ∃ i, c.Rel i j j : ι ⊢ biprod.lift (𝟙 K) (-𝟙 K) ≫ biprod.snd = (biprod.inl - biprod.inr) ≫ biprod.snd
simp
no goals
5ad448f88d86edef
WeierstrassCurve.Affine.degree_polynomial
Mathlib/AlgebraicGeometry/EllipticCurve/Affine.lean
@[simp] lemma degree_polynomial [Nontrivial R] : W'.polynomial.degree = 2
R : Type r inst✝¹ : CommRing R W' : Affine R inst✝ : Nontrivial R ⊢ { a := 0, b := 1, c := { a := 0, b := 0, c := W'.a₁, d := W'.a₃ }.toPoly, d := { a := -1, b := -W'.a₂, c := -W'.a₄, d := -W'.a₆ }.toPoly }.toPoly.degree = 2
exact Cubic.degree_of_b_ne_zero' one_ne_zero
no goals
1caef35f1804e142
CategoryTheory.Limits.IsZero.hasProjectiveDimensionLT_zero
Mathlib/CategoryTheory/Abelian/Projective/Dimension.lean
lemma Limits.IsZero.hasProjectiveDimensionLT_zero (hX : IsZero X) : HasProjectiveDimensionLT X 0
C : Type u inst✝¹ : Category.{v, u} C inst✝ : Abelian C X : C hX : IsZero X this : HasExt C := HasExt.standard C ⊢ HasProjectiveDimensionLT X 0
rw [hasProjectiveDimensionLT_iff]
C : Type u inst✝¹ : Category.{v, u} C inst✝ : Abelian C X : C hX : IsZero X this : HasExt C := HasExt.standard C ⊢ ∀ (i : ℕ), 0 ≤ i → ∀ ⦃Y : C⦄ (e : Ext X Y i), e = 0
f0254761bc9fcaab
continuousOn_update_iff
Mathlib/Topology/Separation/Basic.lean
theorem continuousOn_update_iff [T1Space X] [DecidableEq X] [TopologicalSpace Y] {f : X → Y} {s : Set X} {x : X} {y : Y} : ContinuousOn (Function.update f x y) s ↔ ContinuousOn f (s \ {x}) ∧ (x ∈ s → Tendsto f (𝓝[s \ {x}] x) (𝓝 y))
case refine_2 X : Type u_1 Y : Type u_2 inst✝³ : TopologicalSpace X inst✝² : T1Space X inst✝¹ : DecidableEq X inst✝ : TopologicalSpace Y f : X → Y s : Set X x : X y : Y H : ContinuousOn f (s \ {x}) z : X hzx : z ≠ x hzs : z ∈ s ⊢ (fun a => a ∈ {x} → False) ∈ 𝓝 z
exact isOpen_ne.mem_nhds hzx
no goals
a296cad250456eac
MeasureTheory.integral_fin_nat_prod_eq_prod
Mathlib/MeasureTheory/Integral/Pi.lean
theorem integral_fin_nat_prod_eq_prod {n : ℕ} {E : Fin n → Type*} [∀ i, MeasureSpace (E i)] [∀ i, SigmaFinite (volume : Measure (E i))] (f : (i : Fin n) → E i → 𝕜) : ∫ x : (i : Fin n) → E i, ∏ i, f i (x i) = ∏ i, ∫ x, f i x
case zero 𝕜 : Type u_1 inst✝² : RCLike 𝕜 E : Fin 0 → Type u_2 inst✝¹ : (i : Fin 0) → MeasureSpace (E i) inst✝ : ∀ (i : Fin 0), SigmaFinite volume f : (i : Fin 0) → E i → 𝕜 ⊢ ∫ (x : (i : Fin 0) → E i), ∏ i : Fin 0, f i (x i) = ∏ i : Fin 0, ∫ (x : E i), f i x
simp only [volume_pi, Finset.univ_eq_empty, Finset.prod_empty, integral_const, pi_empty_univ, ENNReal.one_toReal, smul_eq_mul, mul_one, pow_zero, one_smul]
no goals
657f0fd4de2ed11e
Fin.dfoldrM_loop
Mathlib/.lake/packages/batteries/Batteries/Data/Fin/Fold.lean
theorem dfoldrM_loop [Monad m] [LawfulMonad m] (f : (i : Fin (n+1)) → α i.succ → m (α i.castSucc)) (x) : dfoldrM.loop (n+1) α f (i+1) h x = dfoldrM.loop n (α ∘ succ) (f ·.succ) i (by omega) x >>= f 0
case zero m : Type u_1 → Type u_2 n : Nat α : Fin (n + 1 + 1) → Type u_1 inst✝¹ : Monad m inst✝ : LawfulMonad m f : (i : Fin (n + 1)) → α i.succ → m (α i.castSucc) h : 0 + 1 < n + 1 + 1 x : α ⟨0 + 1, h⟩ ⊢ f ⟨0, ⋯⟩ x >>= dfoldrM.loop (n + 1) α f 0 ⋯ = f 0 x >>= pure
rfl
no goals
b74a59ce684ddcb3
MeasureTheory.Integrable.smul_measure
Mathlib/MeasureTheory/Function/L1Space/Integrable.lean
theorem Integrable.smul_measure {f : α → β} (h : Integrable f μ) {c : ℝ≥0∞} (hc : c ≠ ∞) : Integrable f (c • μ)
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ : Measure α inst✝ : NormedAddCommGroup β f : α → β h : MemLp f 1 μ c : ℝ≥0∞ hc : c ≠ ⊤ ⊢ MemLp f 1 (c • μ)
exact h.smul_measure hc
no goals
c9a6952834a810b3
intervalIntegral.measure_integral_sub_linear_isLittleO_of_tendsto_ae'
Mathlib/MeasureTheory/Integral/FundThmCalculus.lean
theorem measure_integral_sub_linear_isLittleO_of_tendsto_ae' [IsMeasurablyGenerated l'] [TendstoIxxClass Ioc l l'] (hfm : StronglyMeasurableAtFilter f l' μ) (hf : Tendsto f (l' ⊓ ae μ) (𝓝 c)) (hl : μ.FiniteAtFilter l') (hu : Tendsto u lt l) (hv : Tendsto v lt l) : (fun t => (∫ x in u t..v t, f x ∂μ) - ∫ _ in u t..v t, c ∂μ) =o[lt] fun t => ∫ _ in u t..v t, (1 : ℝ) ∂μ
case neg ι : Type u_1 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E f : ℝ → E c : E l l' : Filter ℝ lt : Filter ι μ : Measure ℝ u v : ι → ℝ inst✝¹ : l'.IsMeasurablyGenerated inst✝ : TendstoIxxClass Ioc l l' hfm : StronglyMeasurableAtFilter f l' μ hf : Tendsto f (l' ⊓ ae μ) (𝓝 c) hl : μ.FiniteAtFilter l' hu : Tendsto u lt l hv : Tendsto v lt l hE : ¬CompleteSpace E ⊢ (fun t => ∫ (x : ℝ) in u t..v t, f x ∂μ - ∫ (x : ℝ) in u t..v t, c ∂μ) =o[lt] fun t => ∫ (x : ℝ) in u t..v t, 1 ∂μ
simp [intervalIntegral, integral, hE]
no goals
890770c8df7add59
DihedralGroup.orderOf_sr
Mathlib/GroupTheory/SpecificGroups/Dihedral.lean
theorem orderOf_sr (i : ZMod n) : orderOf (sr i) = 2
case hg1 n : ℕ i : ZMod n ⊢ sr i ≠ 1
simp [← r_zero]
no goals
782d4d28e2598f6d
isUnit_zero_iff
Mathlib/Algebra/GroupWithZero/Units/Basic.lean
theorem isUnit_zero_iff : IsUnit (0 : M₀) ↔ (0 : M₀) = 1 := ⟨fun ⟨⟨_, a, (a0 : 0 * a = 1), _⟩, rfl⟩ => by rwa [zero_mul] at a0, fun h => @isUnit_of_subsingleton _ _ (subsingleton_of_zero_eq_one h) 0⟩
M₀ : Type u_2 inst✝ : MonoidWithZero M₀ x✝ : IsUnit 0 a : M₀ a0 : 0 * a = 1 inv_val✝ : a * 0 = 1 ⊢ 0 = 1
rwa [zero_mul] at a0
no goals
698e6d12376fa5ba
List.getLast_filter_of_pos
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Lemmas.lean
theorem getLast_filter_of_pos {p : α → Bool} {l : List α} (w : l ≠ []) (h : p (getLast l w) = true) : getLast (filter p l) (ne_nil_of_mem (mem_filter.2 ⟨getLast_mem w, h⟩)) = getLast l w
case h α : Type u_1 p : α → Bool l : List α w : l ≠ [] h : p (l.getLast w) = true ⊢ p (l.reverse.head ⋯) = true
simp_all
no goals
fff70265a48e3d7c
Composition.sizeUpTo_sizeUpTo_add
Mathlib/Analysis/Analytic/Composition.lean
theorem sizeUpTo_sizeUpTo_add (a : Composition n) (b : Composition a.length) {i j : ℕ} (hi : i < b.length) (hj : j < blocksFun b ⟨i, hi⟩) : sizeUpTo a (sizeUpTo b i + j) = sizeUpTo (a.gather b) i + sizeUpTo (sigmaCompositionAux a b ⟨i, (length_gather a b).symm ▸ hi⟩) j
case succ n : ℕ a : Composition n b : Composition a.length i : ℕ hi : i < b.length j : ℕ IHj : j < b.blocksFun ⟨i, hi⟩ → a.sizeUpTo (b.sizeUpTo i + j) = (a.gather b).sizeUpTo i + (a.sigmaCompositionAux b ⟨i, ⋯⟩).sizeUpTo j hj : j + 1 < b.blocksFun ⟨i, hi⟩ A : j < b.blocksFun ⟨i, hi⟩ B : j < (a.sigmaCompositionAux b ⟨i, ⋯⟩).length C : b.sizeUpTo i + j < b.sizeUpTo (i + 1) D : b.sizeUpTo i + j < a.length this : b.sizeUpTo i + j.succ = (b.sizeUpTo i + j).succ ⊢ (a.gather b).sizeUpTo i + ({ blocks := (a.blocks.splitWrtComposition b)[i], blocks_pos := ⋯, blocks_sum := ⋯ }.sizeUpTo j + a.blocks[b.sizeUpTo i + j]) = (a.gather b).sizeUpTo i + ({ blocks := (a.blocks.splitWrtComposition b)[i], blocks_pos := ⋯, blocks_sum := ⋯ }.sizeUpTo j + (a.blocks.splitWrtComposition b)[i][j])
rw [getElem_of_eq (getElem_splitWrtComposition _ _ _ _), getElem_drop, getElem_take' _ _ C]
no goals
43568ecc50088850
isClosed_Ioo_iff
Mathlib/Topology/Order/DenselyOrdered.lean
theorem isClosed_Ioo_iff {a b : α} : IsClosed (Set.Ioo a b) ↔ b ≤ a
α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a b : α ⊢ IsClosed (Ioo a b) ↔ b ≤ a
refine ⟨fun h => le_of_not_lt fun hab => ?_, by simp_all⟩
α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a b : α h : IsClosed (Ioo a b) hab : a < b ⊢ False
85aac5ac9cc53185
Orientation.kahler_mul
Mathlib/Analysis/InnerProductSpace/TwoDim.lean
theorem kahler_mul (a x y : E) : o.kahler x a * o.kahler a y = ‖a‖ ^ 2 * o.kahler x y
case a E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) a x y : E ⊢ ((o.kahler x) a * (o.kahler a) y).re = (↑(‖a‖ ^ 2) * (o.kahler x) y).re
simp only [o.kahler_apply_apply, Complex.add_im, Complex.add_re, Complex.I_im, Complex.I_re, Complex.mul_im, Complex.mul_re, Complex.ofReal_im, Complex.ofReal_re, Complex.real_smul]
case a E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) a x y : E ⊢ (inner x a + ((o.areaForm x) a * 0 - 0 * 1)) * (inner a y + ((o.areaForm a) y * 0 - 0 * 1)) - (0 + ((o.areaForm x) a * 1 + 0 * 0)) * (0 + ((o.areaForm a) y * 1 + 0 * 0)) = ‖a‖ ^ 2 * (inner x y + ((o.areaForm x) y * 0 - 0 * 1)) - 0 * (0 + ((o.areaForm x) y * 1 + 0 * 0))
579eb46c30f78600
toIocMod_add_toIocDiv_zsmul
Mathlib/Algebra/Order/ToIntervalMod.lean
theorem toIocMod_add_toIocDiv_zsmul (a b : α) : toIocMod hp a b + toIocDiv hp a b • p = b
α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b : α ⊢ toIocMod hp a b + toIocDiv hp a b • p = b
rw [toIocMod, sub_add_cancel]
no goals
5bccd736bcb7957f
CategoryTheory.Retract.hasProjectiveDimensionLT
Mathlib/CategoryTheory/Abelian/Projective/Dimension.lean
lemma Retract.hasProjectiveDimensionLT {X Y : C} (h : Retract X Y) (n : ℕ) [HasProjectiveDimensionLT Y n] : HasProjectiveDimensionLT X n
C : Type u inst✝² : Category.{v, u} C inst✝¹ : Abelian C X Y : C h : Retract X Y n : ℕ inst✝ : HasProjectiveDimensionLT Y n this : HasExt C := HasExt.standard C i : ℕ hi : n ≤ i T : C x : Ext X T i ⊢ x = 0
rw [← x.mk₀_id_comp, ← h.retract, ← Ext.mk₀_comp_mk₀, Ext.comp_assoc_of_second_deg_zero, ((Ext.mk₀ h.r).comp x (zero_add i)).eq_zero_of_hasProjectiveDimensionLT n hi, Ext.comp_zero]
no goals
985db82b65314f96
Orientation.inner_mul_areaForm_sub'
Mathlib/Analysis/InnerProductSpace/TwoDim.lean
theorem inner_mul_areaForm_sub' (a x : E) : ⟪a, x⟫ • ω a - ω a x • innerₛₗ ℝ a = ‖a‖ ^ 2 • ω x
case pos E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) a x : E ha : a = 0 ⊢ inner a x • o.areaForm a - (o.areaForm a) x • (innerₛₗ ℝ) a = ‖a‖ ^ 2 • o.areaForm x
simp [ha]
no goals
4e6e1b3ea7eb9571
Ideal.span_singleton_absNorm
Mathlib/RingTheory/Ideal/Norm/AbsNorm.lean
theorem span_singleton_absNorm {I : Ideal S} (hI : (Ideal.absNorm I).Prime) : Ideal.span (singleton (Ideal.absNorm I : ℤ)) = I.comap (algebraMap ℤ S)
S : Type u_1 inst✝³ : CommRing S inst✝² : Nontrivial S inst✝¹ : IsDedekindDomain S inst✝ : Module.Free ℤ S I : Ideal S hI : Nat.Prime (absNorm I) this : (span {↑(absNorm I)}).IsPrime ⊢ span {↑(absNorm I)} ≠ ⊥
rw [Ne, span_singleton_eq_bot]
S : Type u_1 inst✝³ : CommRing S inst✝² : Nontrivial S inst✝¹ : IsDedekindDomain S inst✝ : Module.Free ℤ S I : Ideal S hI : Nat.Prime (absNorm I) this : (span {↑(absNorm I)}).IsPrime ⊢ ¬↑(absNorm I) = 0
09c2b8399dcaa577
bsupr_limsup_dimH
Mathlib/Topology/MetricSpace/HausdorffDimension.lean
theorem bsupr_limsup_dimH (s : Set X) : ⨆ x ∈ s, limsup dimH (𝓝[s] x).smallSets = dimH s
case refine_1 X : Type u_2 inst✝¹ : EMetricSpace X inst✝ : SecondCountableTopology X s : Set X x : X x✝ : x ∈ s ⊢ ∀ᶠ (n : Set X) in (𝓝[s] x).smallSets, dimH n ≤ dimH s
exact eventually_smallSets.2 ⟨s, self_mem_nhdsWithin, fun t => dimH_mono⟩
no goals
ce953fa85a665a27
Complex.one_sub_prime_cpow_ne_zero
Mathlib/Analysis/SpecialFunctions/Pow/Real.lean
lemma one_sub_prime_cpow_ne_zero {p : ℕ} (hp : p.Prime) {s : ℂ} (hs : 1 < s.re) : 1 - (p : ℂ) ^ (-s) ≠ 0
p : ℕ hp : Nat.Prime p s : ℂ hs : 1 < s.re H : 1 = ↑p ^ (-s) ⊢ False
have := norm_prime_cpow_le_one_half ⟨p, hp⟩ hs
p : ℕ hp : Nat.Prime p s : ℂ hs : 1 < s.re H : 1 = ↑p ^ (-s) this : ‖↑↑⟨p, hp⟩ ^ (-s)‖ ≤ 1 / 2 ⊢ False
347b3c0a49844399
SetTheory.Game.birthday_eq_zero
Mathlib/SetTheory/Game/Birthday.lean
theorem birthday_eq_zero {x : Game} : birthday x = 0 ↔ x = 0
case mp x : Game h : x.birthday = 0 ⊢ x = 0
let ⟨y, hy₁, hy₂⟩ := birthday_eq_pGameBirthday x
case mp x : Game h : x.birthday = 0 y : PGame hy₁ : ⟦y⟧ = x hy₂ : y.birthday = x.birthday ⊢ x = 0
adf47eec13e763d8
FractionalIdeal.div_spanSingleton
Mathlib/RingTheory/FractionalIdeal/Operations.lean
theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J
case neg R₁ : Type u_3 inst✝⁴ : CommRing R₁ K : Type u_4 inst✝³ : Field K inst✝² : Algebra R₁ K inst✝¹ : IsFractionRing R₁ K inst✝ : IsDomain R₁ J : FractionalIdeal R₁⁰ K d : K hd : ¬d = 0 h_spand : spanSingleton R₁⁰ d ≠ 0 ⊢ J / spanSingleton R₁⁰ d = 1 / spanSingleton R₁⁰ d * J
apply le_antisymm
case neg.a R₁ : Type u_3 inst✝⁴ : CommRing R₁ K : Type u_4 inst✝³ : Field K inst✝² : Algebra R₁ K inst✝¹ : IsFractionRing R₁ K inst✝ : IsDomain R₁ J : FractionalIdeal R₁⁰ K d : K hd : ¬d = 0 h_spand : spanSingleton R₁⁰ d ≠ 0 ⊢ J / spanSingleton R₁⁰ d ≤ 1 / spanSingleton R₁⁰ d * J case neg.a R₁ : Type u_3 inst✝⁴ : CommRing R₁ K : Type u_4 inst✝³ : Field K inst✝² : Algebra R₁ K inst✝¹ : IsFractionRing R₁ K inst✝ : IsDomain R₁ J : FractionalIdeal R₁⁰ K d : K hd : ¬d = 0 h_spand : spanSingleton R₁⁰ d ≠ 0 ⊢ 1 / spanSingleton R₁⁰ d * J ≤ J / spanSingleton R₁⁰ d
3a4f3cf63940a3cf
Filter.mem_pi
Mathlib/Order/Filter/Pi.lean
theorem mem_pi {s : Set (∀ i, α i)} : s ∈ pi f ↔ ∃ I : Set ι, I.Finite ∧ ∃ t : ∀ i, Set (α i), (∀ i, t i ∈ f i) ∧ I.pi t ⊆ s
case mp ι : Type u_1 α : ι → Type u_2 f : (i : ι) → Filter (α i) s : Set ((i : ι) → α i) ⊢ s ∈ pi f → ∃ I, I.Finite ∧ ∃ t, (∀ (i : ι), t i ∈ f i) ∧ I.pi t ⊆ s
simp only [pi, mem_iInf', mem_comap, pi_def]
case mp ι : Type u_1 α : ι → Type u_2 f : (i : ι) → Filter (α i) s : Set ((i : ι) → α i) ⊢ (∃ I, I.Finite ∧ ∃ V, (∀ (i : ι), ∃ t ∈ f i, eval i ⁻¹' t ⊆ V i) ∧ (∀ i ∉ I, V i = univ) ∧ s = ⋂ i ∈ I, V i ∧ s = ⋂ i, V i) → ∃ I, I.Finite ∧ ∃ t, (∀ (i : ι), t i ∈ f i) ∧ ⋂ a ∈ I, eval a ⁻¹' t a ⊆ s
2c2dd46cf85728eb
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.confirmRupHint_preserves_motive
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/RupAddSound.lean
theorem confirmRupHint_preserves_motive {n : Nat} (f : DefaultFormula n) (rupHints : Array Nat) (idx : Fin rupHints.size) (acc : Array Assignment × CNF.Clause (PosFin n) × Bool × Bool) (ih : ConfirmRupHintFoldEntailsMotive f idx.1 acc) : ConfirmRupHintFoldEntailsMotive f (idx.1 + 1) ((confirmRupHint f.clauses) acc rupHints[idx])
case isTrue n : Nat f : DefaultFormula n rupHints : Array Nat idx : Fin rupHints.size acc : Array Assignment × CNF.Clause (PosFin n) × Bool × Bool hsize : acc.fst.size = n h1 : Limplies (PosFin n) f acc.fst h2 : acc.snd.snd.fst = true → Incompatible (PosFin n) acc.fst f acc2_eq_false : acc.2.2.snd = false ∧ acc.2.2.fst = false x✝¹ : Option (Option (DefaultClause n)) c : DefaultClause n hc : f.clauses[rupHints[↑idx]]? = some (some c) c_in_f : c ∈ f.toList x✝ : ReduceResult (PosFin n) l : PosFin n b : Bool heq : c.reduce acc.fst = reducedToUnit (l, b) h✝ : hasAssignment b acc.fst[l.val]! = true ⊢ (acc.fst, acc.2.fst, false, false).fst.size = n ∧ Limplies (PosFin n) f (acc.fst, acc.2.fst, false, false).fst ∧ ((acc.fst, acc.2.fst, false, false).snd.snd.fst = true → Incompatible (PosFin n) (acc.fst, acc.2.fst, false, false).fst f)
simp [h1, hsize]
no goals
610b60376ef97394
Field.primitive_element_inf_aux
Mathlib/FieldTheory/PrimitiveElement.lean
theorem primitive_element_inf_aux [Algebra.IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E α β : E inst✝¹ : Algebra F E inst✝ : Algebra.IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* (Polynomial.map ιFE g).SplittingField := algebraMap E (Polynomial.map ιFE g).SplittingField c : F hc : ∀ α' ∈ (Polynomial.map (ιEE'.comp ιFE) f).roots, ∀ β' ∈ (Polynomial.map (ιEE'.comp ιFE) g).roots, -(α' - ιEE' α) / (β' - ιEE' β) ≠ (ιEE'.comp ιFE) c γ : E := α + c • β β_in_Fγ : β ∈ F⟮γ⟯ ⊢ ∃ γ, F⟮α, β⟯ = F⟮γ⟯
use γ
case h F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E α β : E inst✝¹ : Algebra F E inst✝ : Algebra.IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* (Polynomial.map ιFE g).SplittingField := algebraMap E (Polynomial.map ιFE g).SplittingField c : F hc : ∀ α' ∈ (Polynomial.map (ιEE'.comp ιFE) f).roots, ∀ β' ∈ (Polynomial.map (ιEE'.comp ιFE) g).roots, -(α' - ιEE' α) / (β' - ιEE' β) ≠ (ιEE'.comp ιFE) c γ : E := α + c • β β_in_Fγ : β ∈ F⟮γ⟯ ⊢ F⟮α, β⟯ = F⟮γ⟯
c759c025da469f0d
IsGalois.of_card_aut_eq_finrank
Mathlib/FieldTheory/Galois/Basic.lean
theorem of_card_aut_eq_finrank [FiniteDimensional F E] (h : Fintype.card (E ≃ₐ[F] E) = finrank F E) : IsGalois F E
case h F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E inst✝ : FiniteDimensional F E h : Fintype.card (E ≃ₐ[F] E) = finrank F E p : 0 < finrank (↥(fixedField ⊤)) E ⊢ fixedField ⊤ = ⊥
classical rw [← IntermediateField.finrank_eq_one_iff, ← mul_left_inj' (ne_of_lt p).symm, finrank_mul_finrank, ← h, one_mul, IntermediateField.finrank_fixedField_eq_card] apply Fintype.card_congr exact { toFun := fun g => ⟨g, Subgroup.mem_top g⟩ invFun := (↑) left_inv := fun g => rfl right_inv := fun _ => by ext; rfl }
no goals
3fb9be27b8da33a5
Matroid.fundCocircuit_isCocircuit
Mathlib/Data/Matroid/Circuit.lean
lemma fundCocircuit_isCocircuit (he : e ∈ B) (hB : M.IsBase B) : M.IsCocircuit <| M.fundCocircuit e B
α : Type u_1 M : Matroid α e : α B : Set α he : e ∈ B hB : M.IsBase B ⊢ e ∈ M✶.closure (M.E \ B)
rw [hB.compl_isBase_dual.closure_eq, dual_ground]
α : Type u_1 M : Matroid α e : α B : Set α he : e ∈ B hB : M.IsBase B ⊢ e ∈ M.E
9f804a51a0212ed5
Cardinal.mk_biUnion_le_lift
Mathlib/SetTheory/Cardinal/Basic.lean
theorem mk_biUnion_le_lift {α : Type u} {ι : Type v} (A : ι → Set α) (s : Set ι) : lift.{v} #(⋃ x ∈ s, A x) ≤ lift.{u} #s * ⨆ x : s, lift.{v} #(A x.1)
α : Type u ι : Type v A : ι → Set α s : Set ι ⊢ lift.{v, u} #↑(⋃ x, A ↑x) ≤ lift.{u, v} #↑s * ⨆ x, lift.{v, u} #↑(A ↑x)
apply mk_iUnion_le_lift
no goals
d8c9f880707f7e65
Bool.right_le_or
Mathlib/Data/Bool/Basic.lean
theorem right_le_or : ∀ x y : Bool, y ≤ (x || y)
⊢ ∀ (x y : Bool), y ≤ (x || y)
decide
no goals
31daf6d66171fb30
BitVec.lt_of_getMsbD
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Lemmas.lean
theorem lt_of_getMsbD {x : BitVec w} {i : Nat} : getMsbD x i = true → i < w
w : Nat x : BitVec w i : Nat h : i < w ⊢ x.getMsbD i = true → i < w
simp [h]
no goals
ca368506eb0e50ad
Array.foldl_induction
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Lemmas.lean
theorem foldl_induction {as : Array α} (motive : Nat → β → Prop) {init : β} (h0 : motive 0 init) {f : β → α → β} (hf : ∀ i : Fin as.size, ∀ b, motive i.1 b → motive (i.1 + 1) (f b as[i])) : motive as.size (as.foldl f init)
α : Type u_1 β : Type u_2 as : Array α motive : Nat → β → Prop init : β h0 : motive 0 init f : β → α → β hf : ∀ (i : Fin as.size) (b : β), motive (↑i) b → motive (↑i + 1) (f b as[i]) i j : Nat b : β h₁ : j ≤ as.size h₂ : as.size ≤ i + j H : motive j b hj : j < as.size ⊢ motive as.size (match i with | 0 => pure b | i'.succ => let_fun this := ⋯; do let __do_lift ← f b as[j] foldlM.loop f as as.size ⋯ i' (j + 1) __do_lift)
split
case h_1 α : Type u_1 β : Type u_2 as : Array α motive : Nat → β → Prop init : β h0 : motive 0 init f : β → α → β hf : ∀ (i : Fin as.size) (b : β), motive (↑i) b → motive (↑i + 1) (f b as[i]) j : Nat b : β h₁ : j ≤ as.size H : motive j b hj : j < as.size i✝ : Nat h₂ : as.size ≤ 0 + j ⊢ motive as.size (pure b) case h_2 α : Type u_1 β : Type u_2 as : Array α motive : Nat → β → Prop init : β h0 : motive 0 init f : β → α → β hf : ∀ (i : Fin as.size) (b : β), motive (↑i) b → motive (↑i + 1) (f b as[i]) j : Nat b : β h₁ : j ≤ as.size H : motive j b hj : j < as.size i✝ i'✝ : Nat h₂ : as.size ≤ i'✝.succ + j ⊢ motive as.size (let_fun this := ⋯; do let __do_lift ← f b as[j] foldlM.loop f as as.size ⋯ i'✝ (j + 1) __do_lift)
e35b353412732eec
torusIntegral_dim1
Mathlib/MeasureTheory/Integral/TorusIntegral.lean
theorem torusIntegral_dim1 (f : ℂ¹ → E) (c : ℂ¹) (R : ℝ¹) : (∯ x in T(c, R), f x) = ∮ z in C(c 0, R 0), f fun _ => z
E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : (Fin 1 → ℂ) → E c : Fin 1 → ℂ R : Fin 1 → ℝ H₁ : (⇑(MeasurableEquiv.funUnique (Fin 1) ℝ).symm ⁻¹' Icc 0 fun x => 2 * π) = Icc 0 (2 * π) ⊢ torusMap c R = fun θ x => circleMap (c 0) (R 0) (θ 0)
ext θ i : 2
case h.h E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : (Fin 1 → ℂ) → E c : Fin 1 → ℂ R : Fin 1 → ℝ H₁ : (⇑(MeasurableEquiv.funUnique (Fin 1) ℝ).symm ⁻¹' Icc 0 fun x => 2 * π) = Icc 0 (2 * π) θ : Fin 1 → ℝ i : Fin 1 ⊢ torusMap c R θ i = circleMap (c 0) (R 0) (θ 0)
34148b6ecc6aa62c
Nimber.add_zero
Mathlib/SetTheory/Nimber/Basic.lean
theorem add_zero (a : Nimber) : a + 0 = a
case a.h₁ a a' : Nimber ha : a' < a ⊢ a' ≠ a
exact ha.ne
no goals
03f116e4360d0b64
IsLocalRing.quotient_span_eq_top_iff_span_eq_top
Mathlib/RingTheory/LocalRing/Quotient.lean
theorem quotient_span_eq_top_iff_span_eq_top (s : Set S) : span (R ⧸ p) ((Ideal.Quotient.mk (I := pS)) '' s) = ⊤ ↔ span R s = ⊤
case mp.hN' R : Type u_1 S : Type u_2 inst✝⁴ : CommRing R inst✝³ : CommRing S inst✝² : Algebra R S inst✝¹ : IsLocalRing R inst✝ : Module.Finite R S s : Set S H : restrictScalars R (span (R ⧸ p) (⇑(Ideal.Quotient.mk pS) '' s)) = map (IsScalarTower.toAlgHom R S (S ⧸ pS)) (span R s) hs : span (R ⧸ p) (⇑(Ideal.Quotient.mk pS) '' s) = ⊤ ⊢ ⊤.FG
exact Module.finite_def.mp ‹_›
no goals
c2f006104663815d
Composition.mem_range_embedding
Mathlib/Combinatorics/Enumerative/Composition.lean
theorem mem_range_embedding (j : Fin n) : j ∈ Set.range (c.embedding (c.index j))
n : ℕ c : Composition n j : Fin n ⊢ j ∈ Set.range ⇑(c.embedding (c.index j))
have : c.embedding (c.index j) (c.invEmbedding j) ∈ Set.range (c.embedding (c.index j)) := Set.mem_range_self _
n : ℕ c : Composition n j : Fin n this : (c.embedding (c.index j)) (c.invEmbedding j) ∈ Set.range ⇑(c.embedding (c.index j)) ⊢ j ∈ Set.range ⇑(c.embedding (c.index j))
21f3ddb51c46e27d
DirichletCharacter.IsPrimitive.completedLFunction_one_sub
Mathlib/NumberTheory/LSeries/DirichletContinuation.lean
theorem completedLFunction_one_sub {χ : DirichletCharacter ℂ N} (hχ : IsPrimitive χ) (s : ℂ) : completedLFunction χ (1 - s) = N ^ (s - 1 / 2) * rootNumber χ * completedLFunction χ⁻¹ s
case inr N : ℕ inst✝ : NeZero N χ : DirichletCharacter ℂ N hχ : χ.IsPrimitive s : ℂ hN : N ≠ 1 h_sum : ∑ j : ZMod N, χ j = 0 ⊢ completedLFunction χ (1 - s) = ↑N ^ (s - 1 / 2) * χ.rootNumber * completedLFunction χ⁻¹ s
let ε := I ^ (if χ.Even then 0 else 1)
case inr N : ℕ inst✝ : NeZero N χ : DirichletCharacter ℂ N hχ : χ.IsPrimitive s : ℂ hN : N ≠ 1 h_sum : ∑ j : ZMod N, χ j = 0 ε : ℂ := I ^ if χ.Even then 0 else 1 ⊢ completedLFunction χ (1 - s) = ↑N ^ (s - 1 / 2) * χ.rootNumber * completedLFunction χ⁻¹ s
ff38d9c55b1ef998
StarAlgebra.elemental.starAlgHomClass_ext
Mathlib/Topology/Algebra/StarSubalgebra.lean
theorem starAlgHomClass_ext [T2Space B] {F : Type*} {a : A} [FunLike F (elemental R a) B] [AlgHomClass F R _ B] [StarHomClass F _ B] {φ ψ : F} (hφ : Continuous φ) (hψ : Continuous ψ) (h : φ ⟨a, self_mem R a⟩ = ψ ⟨a, self_mem R a⟩) : φ = ψ
R : Type u_1 A : Type u_2 B : Type u_3 inst✝¹⁶ : CommSemiring R inst✝¹⁵ : StarRing R inst✝¹⁴ : TopologicalSpace A inst✝¹³ : Semiring A inst✝¹² : StarRing A inst✝¹¹ : IsTopologicalSemiring A inst✝¹⁰ : ContinuousStar A inst✝⁹ : Algebra R A inst✝⁸ : StarModule R A inst✝⁷ : TopologicalSpace B inst✝⁶ : Semiring B inst✝⁵ : StarRing B inst✝⁴ : Algebra R B inst✝³ : T2Space B F : Type u_4 a : A inst✝² : FunLike F (↥(elemental R a)) B inst✝¹ : AlgHomClass F R (↥(elemental R a)) B inst✝ : StarHomClass F (↥(elemental R a)) B φ ψ : F hφ : Continuous ⇑φ hψ : Continuous ⇑ψ h : φ ⟨a, ⋯⟩ = ψ ⟨a, ⋯⟩ x✝ x y : ↥(adjoin R {a}) hx : φ ((inclusion ⋯) x) = ψ ((inclusion ⋯) x) hy : φ ((inclusion ⋯) y) = ψ ((inclusion ⋯) y) ⊢ φ ((inclusion ⋯) (x + y)) = ψ ((inclusion ⋯) (x + y))
simp only [map_add, hx, hy]
no goals
5c269248ad380788
Complex.eq_of_isMaxOn_of_ball_subset
Mathlib/Analysis/Complex/AbsMax.lean
theorem eq_of_isMaxOn_of_ball_subset {f : E → F} {s : Set E} {z w : E} (hd : DiffContOnCl ℂ f s) (hz : IsMaxOn (norm ∘ f) s z) (hsub : ball z (dist w z) ⊆ s) : f w = f z := have H₁ : ‖f w‖ = ‖f z‖ := norm_eq_norm_of_isMaxOn_of_ball_subset hd hz hsub have H₂ : ‖f w + f z‖ = ‖f z + f z‖ := norm_eq_norm_of_isMaxOn_of_ball_subset (hd.add_const _) hz.norm_add_self hsub eq_of_norm_eq_of_norm_add_eq H₁ <| by simp only [H₂, SameRay.rfl.norm_add, H₁]
E : Type u inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℂ E F : Type v inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℂ F inst✝ : StrictConvexSpace ℝ F f : E → F s : Set E z w : E hd : DiffContOnCl ℂ f s hz : IsMaxOn (norm ∘ f) s z hsub : ball z (dist w z) ⊆ s H₁ : ‖f w‖ = ‖f z‖ H₂ : ‖f w + f z‖ = ‖f z + f z‖ ⊢ ‖f w + f z‖ = ‖f w‖ + ‖f z‖
simp only [H₂, SameRay.rfl.norm_add, H₁]
no goals
9593661ff2f483c5
Std.DHashMap.Internal.List.getKey_append_of_containsKey_eq_false
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Internal/List/Associative.lean
theorem getKey_append_of_containsKey_eq_false [BEq α] [PartialEquivBEq α] {l l' : List ((a : α) × β a)} {a : α} {h} (hl' : containsKey a l' = false) : getKey a (l ++ l') h = getKey a l ((containsKey_append_of_not_contains_right hl').symm.trans h)
α : Type u β : α → Type v inst✝¹ : BEq α inst✝ : PartialEquivBEq α l l' : List ((a : α) × β a) a : α h : containsKey a (l ++ l') = true hl' : containsKey a l' = false ⊢ getKey a (l ++ l') h = getKey a l ⋯
rw [← Option.some_inj, ← getKey?_eq_some_getKey, ← getKey?_eq_some_getKey, getKey?_append_of_containsKey_eq_false hl']
no goals
2f1b4d1b448b422c
MeasureTheory.tendsto_of_lintegral_tendsto_of_monotone
Mathlib/MeasureTheory/Integral/Lebesgue.lean
/-- If a monotone sequence of functions has an upper bound and the sequence of integrals of these functions tends to the integral of the upper bound, then the sequence of functions converges almost everywhere to the upper bound. -/ lemma tendsto_of_lintegral_tendsto_of_monotone {α : Type*} {mα : MeasurableSpace α} {f : ℕ → α → ℝ≥0∞} {F : α → ℝ≥0∞} {μ : Measure α} (hF_meas : AEMeasurable F μ) (hf_tendsto : Tendsto (fun i ↦ ∫⁻ a, f i a ∂μ) atTop (𝓝 (∫⁻ a, F a ∂μ))) (hf_mono : ∀ᵐ a ∂μ, Monotone (fun i ↦ f i a)) (h_bound : ∀ᵐ a ∂μ, ∀ i, f i a ≤ F a) (h_int_finite : ∫⁻ a, F a ∂μ ≠ ∞) : ∀ᵐ a ∂μ, Tendsto (fun i ↦ f i a) atTop (𝓝 (F a))
α : Type u_5 mα : MeasurableSpace α f : ℕ → α → ℝ≥0∞ F : α → ℝ≥0∞ μ : Measure α hF_meas : AEMeasurable F μ hf_tendsto : Tendsto (fun i => ∫⁻ (a : α), f i a ∂μ) atTop (𝓝 (∫⁻ (a : α), F a ∂μ)) hf_mono : ∀ᵐ (a : α) ∂μ, Monotone fun i => f i a h_bound : ∀ᵐ (a : α) ∂μ, ∀ (i : ℕ), f i a ≤ F a h_int_finite : ∫⁻ (a : α), F a ∂μ ≠ ⊤ this : ∀ (n : ℕ), ∃ g, Measurable g ∧ g ≤ f n ∧ ∫⁻ (a : α), f n a ∂μ = ∫⁻ (a : α), g a ∂μ ⊢ ∀ᵐ (a : α) ∂μ, Tendsto (fun i => f i a) atTop (𝓝 (F a))
choose g gmeas gf hg using this
α : Type u_5 mα : MeasurableSpace α f : ℕ → α → ℝ≥0∞ F : α → ℝ≥0∞ μ : Measure α hF_meas : AEMeasurable F μ hf_tendsto : Tendsto (fun i => ∫⁻ (a : α), f i a ∂μ) atTop (𝓝 (∫⁻ (a : α), F a ∂μ)) hf_mono : ∀ᵐ (a : α) ∂μ, Monotone fun i => f i a h_bound : ∀ᵐ (a : α) ∂μ, ∀ (i : ℕ), f i a ≤ F a h_int_finite : ∫⁻ (a : α), F a ∂μ ≠ ⊤ g : ℕ → α → ℝ≥0∞ gmeas : ∀ (n : ℕ), Measurable (g n) gf : ∀ (n : ℕ), g n ≤ f n hg : ∀ (n : ℕ), ∫⁻ (a : α), f n a ∂μ = ∫⁻ (a : α), g n a ∂μ ⊢ ∀ᵐ (a : α) ∂μ, Tendsto (fun i => f i a) atTop (𝓝 (F a))
1cdd224ac57038c3
ProperSpace.of_locallyCompactSpace
Mathlib/Analysis/Normed/Module/FiniteDimension.lean
/-- A locally compact normed vector space is proper. -/ lemma ProperSpace.of_locallyCompactSpace (𝕜 : Type*) [NontriviallyNormedField 𝕜] {E : Type*} [SeminormedAddCommGroup E] [NormedSpace 𝕜 E] [LocallyCompactSpace E] : ProperSpace E
𝕜 : Type u_1 inst✝³ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝² : SeminormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : LocallyCompactSpace E r : ℝ rpos : 0 < r hr : IsCompact (closedBall 0 r) c : 𝕜 hc : 1 < ‖c‖ n : ℕ this : c ^ n ≠ 0 ⊢ IsCompact (closedBall 0 (‖c‖ ^ n * r))
simpa [_root_.smul_closedBall' this] using hr.smul (c ^ n)
no goals
d9806832454f6786
CategoryTheory.isPreconnected_induction
Mathlib/CategoryTheory/IsConnected.lean
theorem isPreconnected_induction [IsPreconnected J] (Z : J → Sort*) (h₁ : ∀ {j₁ j₂ : J} (_ : j₁ ⟶ j₂), Z j₁ → Z j₂) (h₂ : ∀ {j₁ j₂ : J} (_ : j₁ ⟶ j₂), Z j₂ → Z j₁) {j₀ : J} (x : Z j₀) (j : J) : Nonempty (Z j) := (induct_on_objects { j | Nonempty (Z j) } ⟨x⟩ (fun f => ⟨by rintro ⟨y⟩; exact ⟨h₁ f y⟩, by rintro ⟨y⟩; exact ⟨h₂ f y⟩⟩) j :)
case intro J : Type u₁ inst✝¹ : Category.{v₁, u₁} J inst✝ : IsPreconnected J Z : J → Sort u_1 h₁ : {j₁ j₂ : J} → (j₁ ⟶ j₂) → Z j₁ → Z j₂ h₂ : {j₁ j₂ : J} → (j₁ ⟶ j₂) → Z j₂ → Z j₁ j₀ : J x : Z j₀ j j₁✝ j₂✝ : J f : j₁✝ ⟶ j₂✝ y : Z j₁✝ ⊢ j₂✝ ∈ {j | Nonempty (Z j)}
exact ⟨h₁ f y⟩
no goals
8fd9ae1c40916cd1
Matrix.eval_matrixOfPolynomials_eq_vandermonde_mul_matrixOfPolynomials
Mathlib/LinearAlgebra/Vandermonde.lean
theorem eval_matrixOfPolynomials_eq_vandermonde_mul_matrixOfPolynomials {n : ℕ} (v : Fin n → R) (p : Fin n → R[X]) (h_deg : ∀ i, (p i).natDegree ≤ i) : Matrix.of (fun i j => ((p j).eval (v i))) = (Matrix.vandermonde v) * (Matrix.of (fun (i j : Fin n) => (p j).coeff i))
case a R : Type u_1 inst✝ : CommRing R n : ℕ v : Fin n → R p : Fin n → R[X] h_deg : ∀ (i : Fin n), (p i).natDegree ≤ ↑i i j : Fin n this : (p j).support ⊆ range n ⊢ ((p j).sum fun e a => (RingHom.id R) a * v i ^ e) = ∑ x : Fin n, of (fun i j => v i ^ ↑j) i x * of (fun i j => (p j).coeff ↑i) x j
rw [sum_eq_of_subset _ (fun j => zero_mul ((v i) ^ j)) this, ← Fin.sum_univ_eq_sum_range]
case a R : Type u_1 inst✝ : CommRing R n : ℕ v : Fin n → R p : Fin n → R[X] h_deg : ∀ (i : Fin n), (p i).natDegree ≤ ↑i i j : Fin n this : (p j).support ⊆ range n ⊢ ∑ i_1 : Fin n, (RingHom.id R) ((p j).coeff ↑i_1) * v i ^ ↑i_1 = ∑ x : Fin n, of (fun i j => v i ^ ↑j) i x * of (fun i j => (p j).coeff ↑i) x j
9ae3c6287bae2d19
WeakFEPair.Λ_residue_zero
Mathlib/NumberTheory/LSeries/AbstractFuncEq.lean
theorem Λ_residue_zero : Tendsto (fun s : ℂ ↦ s • P.Λ s) (𝓝[≠] 0) (𝓝 (-P.f₀))
E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E P : WeakFEPair E ⊢ Tendsto (fun s => s • P.Λ₀ s - s • (1 / s) • P.f₀ - s • (P.ε / (↑P.k - s)) • P.g₀) (𝓝[≠] 0) (𝓝 (0 • P.Λ₀ 0 - P.f₀ - 0))
refine ((Tendsto.mono_left ?_ nhdsWithin_le_nhds).sub ?_).sub ?_
case refine_1 E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E P : WeakFEPair E ⊢ Tendsto (fun s => s • P.Λ₀ s) (𝓝 0) (𝓝 (0 • P.Λ₀ 0)) case refine_2 E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E P : WeakFEPair E ⊢ Tendsto (fun s => s • (1 / s) • P.f₀) (𝓝[≠] 0) (𝓝 P.f₀) case refine_3 E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E P : WeakFEPair E ⊢ Tendsto (fun s => s • (P.ε / (↑P.k - s)) • P.g₀) (𝓝[≠] 0) (𝓝 0)
ae6236b4fb4a7ef0
Sym.coe_equivNatSumOfFintype_symm_apply
Mathlib/Data/Finsupp/Multiset.lean
@[simp] lemma coe_equivNatSumOfFintype_symm_apply [Fintype α] (P : {P : α → ℕ // ∑ i, P i = n}) : ((equivNatSumOfFintype α n).symm P : Multiset α) = ∑ a, ((P : α → ℕ) a) • {a}
case mk α : Type u_1 inst✝¹ : DecidableEq α n : ℕ inst✝ : Fintype α P : α → ℕ hP : ∑ i : α, P i = n ⊢ Finsupp.toMultiset (Finsupp.equivFunOnFinite.symm P) = (Multiset.map (fun a => ↑⟨P, hP⟩ a • {a}) univ.val).sum
ext a
case mk.a α : Type u_1 inst✝¹ : DecidableEq α n : ℕ inst✝ : Fintype α P : α → ℕ hP : ∑ i : α, P i = n a : α ⊢ Multiset.count a (Finsupp.toMultiset (Finsupp.equivFunOnFinite.symm P)) = Multiset.count a (Multiset.map (fun a => ↑⟨P, hP⟩ a • {a}) univ.val).sum
702aa4a986a2f605
finprod_cond_eq_prod_of_cond_iff
Mathlib/Algebra/BigOperators/Finprod.lean
theorem finprod_cond_eq_prod_of_cond_iff (f : α → M) {p : α → Prop} {t : Finset α} (h : ∀ {x}, f x ≠ 1 → (p x ↔ x ∈ t)) : (∏ᶠ (i) (_ : p i), f i) = ∏ i ∈ t, f i
α : Type u_1 M : Type u_5 inst✝ : CommMonoid M f : α → M p : α → Prop t : Finset α h : ∀ {x : α}, f x ≠ 1 → (p x ↔ x ∈ t) s : Set α := {x | p x} this : mulSupport (s.mulIndicator f) ⊆ ↑t ⊢ ∏ i ∈ t, s.mulIndicator f i = ∏ i ∈ t, f i
refine Finset.prod_congr rfl fun x hx => mulIndicator_apply_eq_self.2 fun hxs => ?_
α : Type u_1 M : Type u_5 inst✝ : CommMonoid M f : α → M p : α → Prop t : Finset α h : ∀ {x : α}, f x ≠ 1 → (p x ↔ x ∈ t) s : Set α := {x | p x} this : mulSupport (s.mulIndicator f) ⊆ ↑t x : α hx : x ∈ t hxs : x ∉ s ⊢ f x = 1
d1687f56373c7d13
Set.graphOn_univ_inj
Mathlib/Data/Set/Function.lean
lemma graphOn_univ_inj {g : α → β} : univ.graphOn f = univ.graphOn g ↔ f = g
α : Type u_1 β : Type u_2 f g : α → β ⊢ graphOn f univ = graphOn g univ ↔ f = g
simp
no goals
0cad94e96f19a2c5
WeierstrassCurve.Projective.negAddY_eq'
Mathlib/AlgebraicGeometry/EllipticCurve/Projective.lean
lemma negAddY_eq' {P Q : Fin 3 → R} (hP : W'.Equation P) (hQ : W'.Equation Q) : W'.negAddY P Q * (P z * Q z) ^ 2 = (P y * Q z - Q y * P z) * ((P y * Q z - Q y * P z) ^ 2 * P z * Q z + W'.a₁ * (P y * Q z - Q y * P z) * P z * Q z * (P x * Q z - Q x * P z) - W'.a₂ * P z * Q z * (P x * Q z - Q x * P z) ^ 2 - P x * Q z * (P x * Q z - Q x * P z) ^ 2 - Q x * P z * (P x * Q z - Q x * P z) ^ 2 - P x * Q z * (P x * Q z - Q x * P z) ^ 2) + P y * Q z * (P x * Q z - Q x * P z) ^ 3
R : Type r inst✝ : CommRing R W' : Projective R P Q : Fin 3 → R hP : W'.Equation P hQ : W'.Equation Q ⊢ W'.negAddY P Q * (P z * Q z) ^ 2 = (P y * Q z - Q y * P z) * ((P y * Q z - Q y * P z) ^ 2 * P z * Q z + W'.a₁ * (P y * Q z - Q y * P z) * P z * Q z * (P x * Q z - Q x * P z) - W'.a₂ * P z * Q z * (P x * Q z - Q x * P z) ^ 2 - P x * Q z * (P x * Q z - Q x * P z) ^ 2 - Q x * P z * (P x * Q z - Q x * P z) ^ 2 - P x * Q z * (P x * Q z - Q x * P z) ^ 2) + P y * Q z * (P x * Q z - Q x * P z) ^ 3
linear_combination (norm := (rw [negAddY]; ring1)) (2 * Q y * P z * Q z ^ 3 - P y * Q z ^ 4) * (equation_iff _).mp hP + (Q y * P z ^ 4 - 2 * P y * P z ^ 3 * Q z) * (equation_iff _).mp hQ
no goals
1350480939e3501d
Set.ncard_singleton
Mathlib/Data/Set/Card.lean
theorem ncard_singleton (a : α) : ({a} : Set α).ncard = 1
α : Type u_1 a : α ⊢ {a}.ncard = 1
simp [ncard]
no goals
4e248f62061f37fe
lipschitzGroup.involute_act_ι_mem_range_ι
Mathlib/LinearAlgebra/CliffordAlgebra/SpinGroup.lean
theorem involute_act_ι_mem_range_ι [Invertible (2 : R)] {x : (CliffordAlgebra Q)ˣ} (hx : x ∈ lipschitzGroup Q) (b : M) : involute (Q := Q) ↑x * ι Q b * ↑x⁻¹ ∈ LinearMap.range (ι Q)
case one R : Type u_1 inst✝³ : CommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M Q : QuadraticForm R M inst✝ : Invertible 2 x : (CliffordAlgebra Q)ˣ b : M ⊢ involute ↑1 * (ι Q) b * ↑1⁻¹ ∈ LinearMap.range (ι Q)
simp_rw [inv_one, Units.val_one, map_one, one_mul, mul_one, LinearMap.mem_range_self]
no goals
0035a32f523e5bf4
infinite_not_isOfFinOrder
Mathlib/GroupTheory/OrderOfElement.lean
theorem infinite_not_isOfFinOrder {x : G} (h : ¬IsOfFinOrder x) : { y : G | ¬IsOfFinOrder y }.Infinite
G : Type u_1 inst✝ : LeftCancelMonoid G x : G h : ¬IsOfFinOrder x s : Set G := (fun n => x ^ n) '' {n | 0 < n} hs : s ⊆ {y | ¬IsOfFinOrder y} this : s.Infinite ⊢ {y | ¬IsOfFinOrder y}.Infinite
exact this.mono hs
no goals
56e04058092d4731
SimpleGraph.TripartiteFromTriangles.map_toTriangle_disjoint
Mathlib/Combinatorics/SimpleGraph/Triangle/Tripartite.lean
lemma map_toTriangle_disjoint [ExplicitDisjoint t] : (t.map toTriangle : Set (Finset (α ⊕ β ⊕ γ))).Pairwise fun x y ↦ (x ∩ y : Set (α ⊕ β ⊕ γ)).Subsingleton
case refine_1.intro α : Type u_1 β : Type u_2 γ : Type u_3 t : Finset (α × β × γ) inst✝³ : DecidableEq α inst✝² : DecidableEq β inst✝¹ : DecidableEq γ inst✝ : ExplicitDisjoint t a : α b : β c : γ habc : (a, b, c) ∈ t z : γ hxyz : (a, b, z) ∈ t h' : ¬toTriangle (a, b, c) = toTriangle (a, b, z) this : a = a → b = b → ¬c = z ⊢ False
exact this rfl rfl (ExplicitDisjoint.inj₂ habc hxyz)
no goals
baa93415b8cbec8b
IsBaseChange.of_lift_unique
Mathlib/RingTheory/IsTensorProduct.lean
theorem IsBaseChange.of_lift_unique (h : ∀ (Q : Type max v₁ v₂ v₃) [AddCommMonoid Q], ∀ [Module R Q] [Module S Q], ∀ [IsScalarTower R S Q], ∀ g : M →ₗ[R] Q, ∃! g' : N →ₗ[S] Q, (g'.restrictScalars R).comp f = g) : IsBaseChange S f
R : Type u_1 M : Type v₁ N : Type v₂ S : Type v₃ inst✝⁸ : AddCommMonoid M inst✝⁷ : AddCommMonoid N inst✝⁶ : CommSemiring R inst✝⁵ : CommSemiring S inst✝⁴ : Algebra R S inst✝³ : Module R M inst✝² : Module R N inst✝¹ : Module S N inst✝ : IsScalarTower R S N f : M →ₗ[R] N h : ∀ (Q : Type (max v₁ v₂ v₃)) [inst : AddCommMonoid Q] [inst_1 : Module R Q] [inst_2 : Module S Q] [inst_3 : IsScalarTower R S Q] (g : M →ₗ[R] Q), ∃! g', ↑R g' ∘ₗ f = g g : N →ₗ[S] ULift.{v₂, max v₁ v₃} (S ⊗[R] M) hg : ↑R g ∘ₗ f = ↑ULift.moduleEquiv.symm ∘ₗ (mk R S M) 1 f' : S ⊗[R] M →ₗ[R] N := TensorProduct.lift (↑R ((Algebra.ofId S (Module.End S (M →ₗ[R] N))).toLinearMap.flip f)) ⊢ S ⊗[R] M →ₗ[S] N
refine { f' with map_smul' := fun s x => TensorProduct.induction_on x ?_ (fun s' y => smul_assoc s s' _) fun x y hx hy => ?_ }
case refine_1 R : Type u_1 M : Type v₁ N : Type v₂ S : Type v₃ inst✝⁸ : AddCommMonoid M inst✝⁷ : AddCommMonoid N inst✝⁶ : CommSemiring R inst✝⁵ : CommSemiring S inst✝⁴ : Algebra R S inst✝³ : Module R M inst✝² : Module R N inst✝¹ : Module S N inst✝ : IsScalarTower R S N f : M →ₗ[R] N h : ∀ (Q : Type (max v₁ v₂ v₃)) [inst : AddCommMonoid Q] [inst_1 : Module R Q] [inst_2 : Module S Q] [inst_3 : IsScalarTower R S Q] (g : M →ₗ[R] Q), ∃! g', ↑R g' ∘ₗ f = g g : N →ₗ[S] ULift.{v₂, max v₁ v₃} (S ⊗[R] M) hg : ↑R g ∘ₗ f = ↑ULift.moduleEquiv.symm ∘ₗ (mk R S M) 1 f' : S ⊗[R] M →ₗ[R] N := TensorProduct.lift (↑R ((Algebra.ofId S (Module.End S (M →ₗ[R] N))).toLinearMap.flip f)) s : S x : S ⊗[R] M ⊢ f'.toFun (s • 0) = (RingHom.id S) s • f'.toFun 0 case refine_2 R : Type u_1 M : Type v₁ N : Type v₂ S : Type v₃ inst✝⁸ : AddCommMonoid M inst✝⁷ : AddCommMonoid N inst✝⁶ : CommSemiring R inst✝⁵ : CommSemiring S inst✝⁴ : Algebra R S inst✝³ : Module R M inst✝² : Module R N inst✝¹ : Module S N inst✝ : IsScalarTower R S N f : M →ₗ[R] N h : ∀ (Q : Type (max v₁ v₂ v₃)) [inst : AddCommMonoid Q] [inst_1 : Module R Q] [inst_2 : Module S Q] [inst_3 : IsScalarTower R S Q] (g : M →ₗ[R] Q), ∃! g', ↑R g' ∘ₗ f = g g : N →ₗ[S] ULift.{v₂, max v₁ v₃} (S ⊗[R] M) hg : ↑R g ∘ₗ f = ↑ULift.moduleEquiv.symm ∘ₗ (mk R S M) 1 f' : S ⊗[R] M →ₗ[R] N := TensorProduct.lift (↑R ((Algebra.ofId S (Module.End S (M →ₗ[R] N))).toLinearMap.flip f)) s : S x✝ x y : S ⊗[R] M hx : f'.toFun (s • x) = (RingHom.id S) s • f'.toFun x hy : f'.toFun (s • y) = (RingHom.id S) s • f'.toFun y ⊢ f'.toFun (s • (x + y)) = (RingHom.id S) s • f'.toFun (x + y)
f4d4256bf13274f3
MeasureTheory.SignedMeasure.of_inter_eq_of_symmDiff_eq_zero_positive
Mathlib/MeasureTheory/Decomposition/Jordan.lean
theorem of_inter_eq_of_symmDiff_eq_zero_positive (hu : MeasurableSet u) (hv : MeasurableSet v) (hw : MeasurableSet w) (hsu : 0 ≤[u] s) (hsv : 0 ≤[v] s) (hs : s (u ∆ v) = 0) : s (w ∩ u) = s (w ∩ v)
α : Type u_1 inst✝ : MeasurableSpace α s : SignedMeasure α u v w : Set α hu : MeasurableSet u hv : MeasurableSet v hw : MeasurableSet w hsu : 0 ≤[u] s hsv : 0 ≤[v] s hs : ↑s (u ∆ v) = 0 hwuv : ↑s ((w ∩ u) ∆ (w ∩ v)) = 0 ⊢ ↑s (w ∩ u) = ↑s (w ∩ v)
obtain ⟨huv, hvu⟩ := of_diff_eq_zero_of_symmDiff_eq_zero_positive (hw.inter hu) (hw.inter hv) (restrict_le_restrict_subset _ _ hu hsu (w.inter_subset_right)) (restrict_le_restrict_subset _ _ hv hsv (w.inter_subset_right)) hwuv
case intro α : Type u_1 inst✝ : MeasurableSpace α s : SignedMeasure α u v w : Set α hu : MeasurableSet u hv : MeasurableSet v hw : MeasurableSet w hsu : 0 ≤[u] s hsv : 0 ≤[v] s hs : ↑s (u ∆ v) = 0 hwuv : ↑s ((w ∩ u) ∆ (w ∩ v)) = 0 huv : ↑s ((w ∩ u) \ (w ∩ v)) = 0 hvu : ↑s ((w ∩ v) \ (w ∩ u)) = 0 ⊢ ↑s (w ∩ u) = ↑s (w ∩ v)
f9268e003122084b
ForInStep.bindList_cons'
Mathlib/.lake/packages/batteries/Batteries/Control/ForInStep/Lemmas.lean
theorem ForInStep.bindList_cons' [Monad m] [LawfulMonad m] (f : α → β → m (ForInStep β)) (s : ForInStep β) (a l) : s.bindList f (a::l) = s.bind (f a) >>= (·.bindList f l)
m : Type u_1 → Type u_2 α : Type u_3 β : Type u_1 inst✝¹ : Monad m inst✝ : LawfulMonad m f : α → β → m (ForInStep β) s : ForInStep β a : α l : List α ⊢ bindList f (a :: l) s = do let x ← s.bind (f a) bindList f l x
simp
no goals
5cf1ad3c52f00b5d
Set.indicator_smul_apply
Mathlib/Algebra/Module/Basic.lean
lemma indicator_smul_apply (s : Set α) (r : α → R) (f : α → M) (a : α) : indicator s (fun a ↦ r a • f a) a = r a • indicator s f a
α : Type u_1 R : Type u_2 M : Type u_3 inst✝¹ : Zero M inst✝ : SMulZeroClass R M s : Set α r : α → R f : α → M a : α ⊢ s.indicator (fun a => r a • f a) a = r a • s.indicator f a
dsimp only [indicator]
α : Type u_1 R : Type u_2 M : Type u_3 inst✝¹ : Zero M inst✝ : SMulZeroClass R M s : Set α r : α → R f : α → M a : α ⊢ (if a ∈ s then r a • f a else 0) = r a • if a ∈ s then f a else 0
9045b92b42c07472
DividedPowers.dpow_sum'
Mathlib/RingTheory/DividedPowers/Basic.lean
theorem dpow_sum' {M : Type*} [AddCommMonoid M] {I : AddSubmonoid M} (dpow : ℕ → M → A) (dpow_zero : ∀ {x} (_ : x ∈ I), dpow 0 x = 1) (dpow_add : ∀ {n x y} (_ : x ∈ I) (_ : y ∈ I), dpow n (x + y) = (antidiagonal n).sum fun k ↦ dpow k.1 x * dpow k.2 y) (dpow_eval_zero : ∀ {n : ℕ} (_ : n ≠ 0), dpow n 0 = 0) {ι : Type*} [DecidableEq ι] {s : Finset ι} {x : ι → M} (hx : ∀ i ∈ s, x i ∈ I) {n : ℕ} : dpow n (s.sum x) = (s.sym n).sum fun k ↦ s.prod fun i ↦ dpow (Multiset.count i k) (x i)
A : Type u_1 inst✝² : CommSemiring A M : Type u_2 inst✝¹ : AddCommMonoid M I : AddSubmonoid M dpow : ℕ → M → A dpow_zero : ∀ {x : M}, x ∈ I → dpow 0 x = 1 dpow_eval_zero : ∀ {n : ℕ}, n ≠ 0 → dpow n 0 = 0 ι : Type u_3 inst✝ : DecidableEq ι x : ι → M dpow_add : ∀ {n : ℕ} {x y : M}, x ∈ I → y ∈ I → dpow n (x + y) = ∑ x_3 ∈ range n.succ, dpow x_3 x * dpow (n - x_3) y a : ι s : Finset ι ha : a ∉ s ih : (∀ i ∈ s, x i ∈ I) → ∀ {n : ℕ}, dpow n (s.sum x) = ∑ k ∈ s.sym n, ∏ i ∈ s, dpow (Multiset.count i ↑k) (x i) hx : ∀ i ∈ insert a s, x i ∈ I n : ℕ hx' : ∀ i ∈ s, x i ∈ I m : (i : Fin n.succ) × Sym ι (n - ↑i) hm : m ∈ univ.sigma fun a => s.sym (n - ↑a) ⊢ (fun m x => Sym.fill a m.fst m.snd) m hm ∈ (insert a s).sym n
simp only [succ_eq_add_one, mem_sym_iff, mem_insert, Sym.mem_fill_iff]
A : Type u_1 inst✝² : CommSemiring A M : Type u_2 inst✝¹ : AddCommMonoid M I : AddSubmonoid M dpow : ℕ → M → A dpow_zero : ∀ {x : M}, x ∈ I → dpow 0 x = 1 dpow_eval_zero : ∀ {n : ℕ}, n ≠ 0 → dpow n 0 = 0 ι : Type u_3 inst✝ : DecidableEq ι x : ι → M dpow_add : ∀ {n : ℕ} {x y : M}, x ∈ I → y ∈ I → dpow n (x + y) = ∑ x_3 ∈ range n.succ, dpow x_3 x * dpow (n - x_3) y a : ι s : Finset ι ha : a ∉ s ih : (∀ i ∈ s, x i ∈ I) → ∀ {n : ℕ}, dpow n (s.sum x) = ∑ k ∈ s.sym n, ∏ i ∈ s, dpow (Multiset.count i ↑k) (x i) hx : ∀ i ∈ insert a s, x i ∈ I n : ℕ hx' : ∀ i ∈ s, x i ∈ I m : (i : Fin n.succ) × Sym ι (n - ↑i) hm : m ∈ univ.sigma fun a => s.sym (n - ↑a) ⊢ ∀ (a_1 : ι), ↑m.fst ≠ 0 ∧ a_1 = a ∨ a_1 ∈ m.snd → a_1 = a ∨ a_1 ∈ s
991ee9aaa08f10a1
IsUnit.div
Mathlib/Algebra/Group/Units/Defs.lean
@[to_additive] lemma div (ha : IsUnit a) (hb : IsUnit b) : IsUnit (a / b)
α : Type u inst✝ : DivisionMonoid α a b : α ha : IsUnit a hb : IsUnit b ⊢ IsUnit (a / b)
rw [div_eq_mul_inv]
α : Type u inst✝ : DivisionMonoid α a b : α ha : IsUnit a hb : IsUnit b ⊢ IsUnit (a * b⁻¹)
8356aa3753022b97
DifferentiableAt.inversion
Mathlib/Geometry/Euclidean/Inversion/Calculus.lean
theorem DifferentiableAt.inversion (hc : DifferentiableAt ℝ c a) (hR : DifferentiableAt ℝ R a) (hx : DifferentiableAt ℝ x a) (hne : x a ≠ c a) : DifferentiableAt ℝ (fun a ↦ inversion (c a) (R a) (x a)) a
E : Type u_1 F : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F c x : E → F R : E → ℝ a : E hc : DifferentiableWithinAt ℝ c univ a hR : DifferentiableWithinAt ℝ R univ a hx : DifferentiableWithinAt ℝ x univ a hne : x a ≠ c a ⊢ DifferentiableWithinAt ℝ (fun a => inversion (c a) (R a) (x a)) univ a
exact hc.inversion hR hx hne
no goals
ec4976b9d72d9a2a
exists_continuous_add_one_of_isCompact_nnreal
Mathlib/MeasureTheory/Integral/RieszMarkovKakutani/Basic.lean
lemma exists_continuous_add_one_of_isCompact_nnreal {s₀ s₁ : Set X} {t : Set X} (s₀_compact : IsCompact s₀) (s₁_compact : IsCompact s₁) (t_compact : IsCompact t) (disj : Disjoint s₀ s₁) (hst : s₀ ∪ s₁ ⊆ t) : ∃ (f₀ f₁ : C_c(X, ℝ≥0)), EqOn f₀ 1 s₀ ∧ EqOn f₁ 1 s₁ ∧ EqOn (f₀ + f₁) 1 t
case h.refine_2 X : Type u_1 inst✝² : TopologicalSpace X inst✝¹ : T2Space X inst✝ : LocallyCompactSpace X s₀ s₁ t : Set X s₀_compact : IsCompact s₀ s₁_compact : IsCompact s₁ t_compact : IsCompact t disj : Disjoint s₀ s₁ hst : s₀ ∪ s₁ ⊆ t so : Fin 2 → Set X := fun j => if j = 0 then s₀ᶜ else s₁ᶜ hso : so = fun j => if j = 0 then s₀ᶜ else s₁ᶜ soopen : ∀ (j : Fin 2), IsOpen (so j) hsot : t ⊆ ⋃ j, so j f : Fin 2 → C(X, ℝ) f_supp_in_so : ∀ (i : Fin 2), tsupport ⇑(f i) ⊆ so i sum_f_one_on_t : EqOn (∑ i : Fin 2, ⇑(f i)) 1 t f_in_icc : ∀ (i : Fin 2) (x : X), (f i) x ∈ Icc 0 1 f_hcs : ∀ (i : Fin 2), HasCompactSupport ⇑(f i) sum_one_x : ∀ x ∈ t, (f 0) x + (f 1) x = 1 x : X hx : x ∈ s₁ ⊢ { toContinuousMap := f 0, hasCompactSupport' := ⋯ }.nnrealPart x = 1 x
simp only [Fin.isValue, nnrealPart_apply, CompactlySupportedContinuousMap.coe_mk, Pi.one_apply, Real.toNNReal_eq_one]
case h.refine_2 X : Type u_1 inst✝² : TopologicalSpace X inst✝¹ : T2Space X inst✝ : LocallyCompactSpace X s₀ s₁ t : Set X s₀_compact : IsCompact s₀ s₁_compact : IsCompact s₁ t_compact : IsCompact t disj : Disjoint s₀ s₁ hst : s₀ ∪ s₁ ⊆ t so : Fin 2 → Set X := fun j => if j = 0 then s₀ᶜ else s₁ᶜ hso : so = fun j => if j = 0 then s₀ᶜ else s₁ᶜ soopen : ∀ (j : Fin 2), IsOpen (so j) hsot : t ⊆ ⋃ j, so j f : Fin 2 → C(X, ℝ) f_supp_in_so : ∀ (i : Fin 2), tsupport ⇑(f i) ⊆ so i sum_f_one_on_t : EqOn (∑ i : Fin 2, ⇑(f i)) 1 t f_in_icc : ∀ (i : Fin 2) (x : X), (f i) x ∈ Icc 0 1 f_hcs : ∀ (i : Fin 2), HasCompactSupport ⇑(f i) sum_one_x : ∀ x ∈ t, (f 0) x + (f 1) x = 1 x : X hx : x ∈ s₁ ⊢ (f 0) x = 1
c2d96a23593bed78
CategoryTheory.MorphismProperty.rlp_retracts
Mathlib/CategoryTheory/MorphismProperty/LiftingProperty.lean
@[simp] lemma rlp_retracts : T.retracts.rlp = T.rlp
case a C : Type u inst✝ : Category.{v, u} C T : MorphismProperty C ⊢ T.retracts.rlp ≤ T.rlp
exact antitone_rlp T.le_retracts
no goals
e9cff8f695494cc4
AnalyticOnNhd.eqOn_zero_or_eventually_ne_zero_of_preconnected
Mathlib/Analysis/Analytic/IsolatedZeros.lean
theorem eqOn_zero_or_eventually_ne_zero_of_preconnected (hf : AnalyticOnNhd 𝕜 f U) (hU : IsPreconnected U) : EqOn f 0 U ∨ ∀ᶠ x in codiscreteWithin U, f x ≠ 0
case h 𝕜 : Type u_1 inst✝² : NontriviallyNormedField 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E f : 𝕜 → E U : Set 𝕜 hf : AnalyticOnNhd 𝕜 f U hU : IsPreconnected U x : 𝕜 hx : x ∈ U hx2 : (U \ {x | ¬f x = 0})ᶜ ∉ 𝓝[≠] x nh : ∀ᶠ (x : 𝕜) in 𝓝[≠] x, ¬(fun z => f z = 0) x a : 𝕜 ha : ¬f a = 0 ⊢ a ∈ (U \ {x | ¬f x = 0})ᶜ
simp_all
no goals
5009e0fa4f7f373d
Polynomial.coeff_le_of_roots_le
Mathlib/Topology/Algebra/Polynomial.lean
theorem coeff_le_of_roots_le {p : F[X]} {f : F →+* K} {B : ℝ} (i : ℕ) (h1 : p.Monic) (h2 : Splits f p) (h3 : ∀ z ∈ (map f p).roots, ‖z‖ ≤ B) : ‖(map f p).coeff i‖ ≤ B ^ (p.natDegree - i) * p.natDegree.choose i
case inr.inl F : Type u_3 K : Type u_4 inst✝¹ : CommRing F inst✝ : NormedField K p : F[X] f : F →+* K B : ℝ i : ℕ h1 : p.Monic h2 : Splits f p h3 : ∀ z ∈ (map f p).roots, ‖z‖ ≤ B hB : 0 ≤ B hi : (map f p).natDegree < i ⊢ 0 ≤ B ^ ((map f p).natDegree - i) * ↑((map f p).natDegree.choose i)
positivity
no goals
15177c00698e7d89
SetTheory.PGame.mul_moveRight_inr
Mathlib/SetTheory/Game/Basic.lean
theorem mul_moveRight_inr {x y : PGame} {i j} : (x * y).moveRight (toRightMovesMul (Sum.inr (i, j))) = x.moveRight i * y + x * y.moveLeft j - x.moveRight i * y.moveLeft j
case mk.mk α✝¹ β✝¹ : Type u_1 a✝³ : α✝¹ → PGame a✝² : β✝¹ → PGame i : (mk α✝¹ β✝¹ a✝³ a✝²).RightMoves α✝ β✝ : Type u_1 a✝¹ : α✝ → PGame a✝ : β✝ → PGame j : (mk α✝ β✝ a✝¹ a✝).LeftMoves ⊢ (mk α✝¹ β✝¹ a✝³ a✝² * mk α✝ β✝ a✝¹ a✝).moveRight (toRightMovesMul (Sum.inr (i, j))) = (mk α✝¹ β✝¹ a✝³ a✝²).moveRight i * mk α✝ β✝ a✝¹ a✝ + mk α✝¹ β✝¹ a✝³ a✝² * (mk α✝ β✝ a✝¹ a✝).moveLeft j - (mk α✝¹ β✝¹ a✝³ a✝²).moveRight i * (mk α✝ β✝ a✝¹ a✝).moveLeft j
rfl
no goals
65d0c21dcfd64a62
FirstOrder.Language.Hom.range_eq_map
Mathlib/ModelTheory/Substructures.lean
theorem range_eq_map (f : M →[L] N) : f.range = map f ⊤
L : Language M : Type w N : Type u_1 inst✝¹ : L.Structure M inst✝ : L.Structure N f : M →[L] N ⊢ f.range = Substructure.map f ⊤
ext
case h L : Language M : Type w N : Type u_1 inst✝¹ : L.Structure M inst✝ : L.Structure N f : M →[L] N x✝ : N ⊢ x✝ ∈ f.range ↔ x✝ ∈ Substructure.map f ⊤
8b0dba7354f1f4ba
FormalMultilinearSeries.comp_partialSum
Mathlib/Analysis/Analytic/Composition.lean
theorem comp_partialSum (q : FormalMultilinearSeries 𝕜 F G) (p : FormalMultilinearSeries 𝕜 E F) (M N : ℕ) (z : E) : q.partialSum M (∑ i ∈ Finset.Ico 1 N, p i fun _j => z) = ∑ i ∈ compPartialSumTarget 0 M N, q.compAlongComposition p i.2 fun _j => z
case h.mk 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace 𝕜 G q : FormalMultilinearSeries 𝕜 F G p : FormalMultilinearSeries 𝕜 E F M N : ℕ z : E k : ℕ blocks_fun : Fin k → ℕ H : ⟨k, blocks_fun⟩ ∈ compPartialSumSource 0 M N ⊢ ∀ (i : ℕ) (him : i < ⟨k, blocks_fun⟩.fst) (hin : i < (compChangeOfVariables 0 M N ⟨k, blocks_fun⟩ H).snd.length), ((p (⟨k, blocks_fun⟩.snd ⟨i, him⟩)) fun _j => z) = p.applyComposition (compChangeOfVariables 0 M N ⟨k, blocks_fun⟩ H).snd (fun _j => z) ⟨i, hin⟩
intros
case h.mk 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace 𝕜 G q : FormalMultilinearSeries 𝕜 F G p : FormalMultilinearSeries 𝕜 E F M N : ℕ z : E k : ℕ blocks_fun : Fin k → ℕ H : ⟨k, blocks_fun⟩ ∈ compPartialSumSource 0 M N i✝ : ℕ him✝ : i✝ < ⟨k, blocks_fun⟩.fst hin✝ : i✝ < (compChangeOfVariables 0 M N ⟨k, blocks_fun⟩ H).snd.length ⊢ ((p (⟨k, blocks_fun⟩.snd ⟨i✝, him✝⟩)) fun _j => z) = p.applyComposition (compChangeOfVariables 0 M N ⟨k, blocks_fun⟩ H).snd (fun _j => z) ⟨i✝, hin✝⟩
87e4d5de6857eb93
not_mulDissociated
Mathlib/Combinatorics/Additive/Dissociation.lean
@[to_additive (attr := simp)] lemma not_mulDissociated : ¬ MulDissociated s ↔ ∃ t : Finset α, ↑t ⊆ s ∧ ∃ u : Finset α, ↑u ⊆ s ∧ t ≠ u ∧ ∏ x ∈ t, x = ∏ x ∈ u, x
α : Type u_1 inst✝ : CommGroup α s : Set α ⊢ (∃ x, ↑x ⊆ s ∧ ∃ x_1, ↑x_1 ⊆ s ∧ ∏ x ∈ x, x = ∏ x ∈ x_1, x ∧ ¬x = x_1) ↔ ∃ t, ↑t ⊆ s ∧ ∃ u, ↑u ⊆ s ∧ ¬t = u ∧ ∏ x ∈ t, x = ∏ x ∈ u, x
aesop
no goals
6251bda22602c701
Lean.Grind.ite_true_false
Mathlib/.lake/packages/lean4/src/lean/Init/Grind/Norm.lean
theorem ite_true_false {_ : Decidable p} : (ite p True False) = p
p : Prop x✝ : Decidable p ⊢ (if p then True else False) = p
by_cases p <;> simp
no goals
9df15ab4f0db74ad
GromovHausdorff.ghDist_le_of_approx_subsets
Mathlib/Topology/MetricSpace/GromovHausdorff.lean
theorem ghDist_le_of_approx_subsets {s : Set X} (Φ : s → Y) {ε₁ ε₂ ε₃ : ℝ} (hs : ∀ x : X, ∃ y ∈ s, dist x y ≤ ε₁) (hs' : ∀ x : Y, ∃ y : s, dist x (Φ y) ≤ ε₃) (H : ∀ x y : s, |dist x y - dist (Φ x) (Φ y)| ≤ ε₂) : ghDist X Y ≤ ε₁ + ε₂ / 2 + ε₃
X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y s : Set X Φ : ↑s → Y ε₁ ε₂ ε₃ : ℝ hs : ∀ (x : X), ∃ y ∈ s, dist x y ≤ ε₁ hs' : ∀ (x : Y), ∃ y, dist x (Φ y) ≤ ε₃ H : ∀ (x y : ↑s), |dist x y - dist (Φ x) (Φ y)| ≤ ε₂ δ : ℝ δ0 : 0 < δ xX : X h✝ : xX ∈ univ xs : X hxs : xs ∈ s Dxs : dist xX xs ≤ ε₁ sne : s.Nonempty this✝⁶ : Nonempty ↑s := Nonempty.to_subtype sne this✝⁵ : 0 ≤ ε₂ this✝⁴ : ∀ (p q : ↑s), |dist p q - dist (Φ p) (Φ q)| ≤ 2 * (ε₂ / 2 + δ) this✝³ : MetricSpace (X ⊕ Y) := glueMetricApprox (fun x => ↑x) (fun x => Φ x) (ε₂ / 2 + δ) ⋯ this✝⁴ Fl : X → X ⊕ Y := inl Fr : Y → X ⊕ Y := inr Il : Isometry Fl Ir : Isometry Fr this✝² : ghDist X Y ≤ hausdorffDist (range Fl) (range Fr) this✝¹ : hausdorffDist (range Fl) (range Fr) ≤ hausdorffDist (range Fl) (Fl '' s) + hausdorffDist (Fl '' s) (range Fr) this✝ : hausdorffDist (Fl '' s) (range Fr) ≤ hausdorffDist (Fl '' s) (Fr '' range Φ) + hausdorffDist (Fr '' range Φ) (range Fr) this : 0 ≤ ε₁ x : X x✝ : x ∈ s ⊢ dist x x ≤ ε₁
simpa only [dist_self]
no goals
ca73aa8d17706ff3
Algebra.smoothLocus_eq_compl_support_inter
Mathlib/RingTheory/Smooth/Locus.lean
lemma smoothLocus_eq_compl_support_inter [EssFiniteType R A] : smoothLocus R A = (Module.support A (H1Cotangent R A))ᶜ ∩ Module.freeLocus A (Ω[A⁄R])
R A : Type u inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A inst✝ : EssFiniteType R A p : PrimeSpectrum A this✝ : LocalizedModule p.asIdeal.primeCompl (Ω[A⁄R]) ≃ₗ[A] Ω[Localization.AtPrime p.asIdeal⁄R] this : LocalizedModule p.asIdeal.primeCompl (Ω[A⁄R]) ≃ₗ[Localization.AtPrime p.asIdeal] Ω[Localization.AtPrime p.asIdeal⁄R] ⊢ Module.Free (Localization.AtPrime p.asIdeal) (Ω[Localization.AtPrime p.asIdeal⁄R]) ↔ Module.Free (Localization.AtPrime p.asIdeal) (LocalizedModule p.asIdeal.primeCompl (Ω[A⁄R]))
exact ⟨fun H ↦ H.of_equiv' this.symm, fun H ↦ H.of_equiv' this⟩
no goals
ff988bcda6ac40cb
IsOpen.exists_smooth_support_eq
Mathlib/Analysis/Calculus/BumpFunction/FiniteDimension.lean
theorem IsOpen.exists_smooth_support_eq {s : Set E} (hs : IsOpen s) : ∃ f : E → ℝ, f.support = s ∧ ContDiff ℝ ∞ f ∧ Set.range f ⊆ Set.Icc 0 1
E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : FiniteDimensional ℝ E s : Set E hs : IsOpen s h's : s.Nonempty ι : Type (max 0 u_1) := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ∞ f ∧ range f ⊆ Icc 0 1 } T : Set ι T_count : T.Countable hT : ⋃ f ∈ T, support ↑f = s g0 : ℕ → ι hg : T = range g0 g : ℕ → E → ℝ := fun n => ↑(g0 n) g_s : ∀ (n : ℕ), support (g n) ⊆ s s_g : ∀ x ∈ s, ∃ n, x ∈ support (g n) g_smooth : ∀ (n : ℕ), ContDiff ℝ ∞ (g n) g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n) g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x δ : ℕ → ℝ≥0 δpos : ∀ (i : ℕ), 0 < δ i c : ℝ≥0 δc : HasSum δ c c_lt : c < 1 n : ℕ R : ℕ → ℝ hR : ∀ (i : ℕ) (x : E), ‖iteratedFDeriv ℝ i (fun x => g n x) x‖ ≤ R i M : ℝ := (Finset.image R (Finset.range (n + 1))).max' ⋯ ⊔ 1 δnpos : 0 < δ n IR : ∀ i ≤ n, R i ≤ M ⊢ ∃ r, 0 < r ∧ ∀ i ≤ n, ∀ (x : E), ‖iteratedFDeriv ℝ i (r • g n) x‖ ≤ ↑(δ n)
refine ⟨M⁻¹ * δ n, by positivity, fun i hi x => ?_⟩
E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : FiniteDimensional ℝ E s : Set E hs : IsOpen s h's : s.Nonempty ι : Type (max 0 u_1) := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ∞ f ∧ range f ⊆ Icc 0 1 } T : Set ι T_count : T.Countable hT : ⋃ f ∈ T, support ↑f = s g0 : ℕ → ι hg : T = range g0 g : ℕ → E → ℝ := fun n => ↑(g0 n) g_s : ∀ (n : ℕ), support (g n) ⊆ s s_g : ∀ x ∈ s, ∃ n, x ∈ support (g n) g_smooth : ∀ (n : ℕ), ContDiff ℝ ∞ (g n) g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n) g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x δ : ℕ → ℝ≥0 δpos : ∀ (i : ℕ), 0 < δ i c : ℝ≥0 δc : HasSum δ c c_lt : c < 1 n : ℕ R : ℕ → ℝ hR : ∀ (i : ℕ) (x : E), ‖iteratedFDeriv ℝ i (fun x => g n x) x‖ ≤ R i M : ℝ := (Finset.image R (Finset.range (n + 1))).max' ⋯ ⊔ 1 δnpos : 0 < δ n IR : ∀ i ≤ n, R i ≤ M i : ℕ hi : i ≤ n x : E ⊢ ‖iteratedFDeriv ℝ i ((M⁻¹ * ↑(δ n)) • g n) x‖ ≤ ↑(δ n)
415898bf3b6091fb
Plausible.TotalFunction.apply_eq_dlookup
Mathlib/Testing/Plausible/Functions.lean
theorem apply_eq_dlookup (m : List (Σ _ : α, β)) (y : β) (x : α) : (withDefault m y).apply x = (m.dlookup x).getD y
case neg.a α : Type u β : Type v inst✝ : DecidableEq α y : β x : α m : List ((_ : α) × β) ih : Option.map Sigma.snd (List.find? (fun x_1 => decide (x_1.fst = x)) m) = List.dlookup x m fst : α snd : β heq : ¬fst = x ⊢ ⟨fst, snd⟩.fst ≠ x
simp [heq]
no goals
ff22460d80a20ae8
MulChar.apply_mem_algebraAdjoin_of_pow_eq_one
Mathlib/NumberTheory/MulChar/Lemmas.lean
/-- The values of a multiplicative character `χ` such that `χ^n = 1` are contained in `ℤ[μ]` when `μ` is a primitive `n`th root of unity. -/ lemma apply_mem_algebraAdjoin_of_pow_eq_one {χ : MulChar F R} {n : ℕ} [NeZero n] (hχ : χ ^ n = 1) {μ : R} (hμ : IsPrimitiveRoot μ n) (a : F) : χ a ∈ Algebra.adjoin ℤ {μ}
F : Type u_1 inst✝⁴ : Field F inst✝³ : Finite F R : Type u_2 inst✝² : CommRing R inst✝¹ : IsDomain R χ : MulChar F R n : ℕ inst✝ : NeZero n hχ : χ ^ n = 1 μ : R hμ : IsPrimitiveRoot μ n a : F ⊢ χ a ∈ Algebra.adjoin ℤ {μ}
rcases eq_or_ne a 0 with rfl | h
case inl F : Type u_1 inst✝⁴ : Field F inst✝³ : Finite F R : Type u_2 inst✝² : CommRing R inst✝¹ : IsDomain R χ : MulChar F R n : ℕ inst✝ : NeZero n hχ : χ ^ n = 1 μ : R hμ : IsPrimitiveRoot μ n ⊢ χ 0 ∈ Algebra.adjoin ℤ {μ} case inr F : Type u_1 inst✝⁴ : Field F inst✝³ : Finite F R : Type u_2 inst✝² : CommRing R inst✝¹ : IsDomain R χ : MulChar F R n : ℕ inst✝ : NeZero n hχ : χ ^ n = 1 μ : R hμ : IsPrimitiveRoot μ n a : F h : a ≠ 0 ⊢ χ a ∈ Algebra.adjoin ℤ {μ}
7781d0f060e3ce37
TensorProduct.rTensor_injective_of_forall_vanishesTrivially
Mathlib/LinearAlgebra/TensorProduct/Vanishing.lean
theorem rTensor_injective_of_forall_vanishesTrivially (hMN : ∀ {l : ℕ} {m : Fin l → M} {n : Fin l → N}, ∑ i, m i ⊗ₜ n i = (0 : M ⊗[R] N) → VanishesTrivially R m n) (M' : Submodule R M) : Injective (rTensor N M'.subtype)
R : Type u_1 inst✝⁴ : CommRing R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M N : Type u_3 inst✝¹ : AddCommGroup N inst✝ : Module R N hMN : ∀ {l : ℕ} {m : Fin l → M} {n : Fin l → N}, ∑ i : Fin l, m i ⊗ₜ[R] n i = 0 → VanishesTrivially R m n M' : Submodule R M ⊢ Injective ⇑(rTensor N M'.subtype)
apply (injective_iff_map_eq_zero _).mpr
R : Type u_1 inst✝⁴ : CommRing R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M N : Type u_3 inst✝¹ : AddCommGroup N inst✝ : Module R N hMN : ∀ {l : ℕ} {m : Fin l → M} {n : Fin l → N}, ∑ i : Fin l, m i ⊗ₜ[R] n i = 0 → VanishesTrivially R m n M' : Submodule R M ⊢ ∀ (a : ↥M' ⊗[R] N), (rTensor N M'.subtype) a = 0 → a = 0
3e74d15b86771baa
AkraBazziRecurrence.eventually_atTop_sumTransform_ge
Mathlib/Computability/AkraBazzi/AkraBazzi.lean
lemma eventually_atTop_sumTransform_ge : ∃ c > 0, ∀ᶠ (n : ℕ) in atTop, ∀ i, c * g n ≤ sumTransform (p a b) g (r i n) n
case h.h.hc α : Type u_1 inst✝¹ : Fintype α T : ℕ → ℝ g : ℝ → ℝ a b : α → ℝ r : α → ℕ → ℕ inst✝ : Nonempty α R : AkraBazziRecurrence T g a b r c₁ : ℝ hc₁_mem : c₁ ∈ Set.Ioo 0 1 hc₁ : ∀ᶠ (n : ℕ) in atTop, ∀ (i : α), c₁ * ↑n ≤ ↑(r i n) c₂ : ℝ hc₂_mem : c₂ > 0 hc₂ : ∀ᶠ (n : ℕ) in atTop, ∀ u ∈ Set.Icc (c₁ * ↑n) ↑n, c₂ * g ↑n ≤ g u c₃ : ℝ hc₃_mem : c₃ ∈ Set.Ioo 0 1 hc₃ : ∀ᶠ (n : ℕ) in atTop, ∀ (i : α), ↑(r i n) ≤ c₃ * ↑n hc₁_pos : 0 < c₁ hc₃' : 0 < 1 - c₃ n : ℕ hn₁ : ∀ (i : α), c₁ * ↑n ≤ ↑(r i n) hn₂ : ∀ u ∈ Set.Icc (c₁ * ↑n) ↑n, c₂ * g ↑n ≤ g u hn₃ : ∀ (i : α), ↑(r i n) ≤ c₃ * ↑n hrpos : ∀ (i : α), 0 < r i n hr_lt_n : ∀ (i : α), r i n < n hn_pos : 0 < n i : α hrpos_i : 0 < r i n g_nonneg : 0 ≤ g ↑n hp : 0 > p a b + 1 u : ℕ hu : u ∈ Ico (r i n) n ⊢ 0 < ↑u ^ (p a b + 1)
rw [Finset.mem_Ico] at hu
case h.h.hc α : Type u_1 inst✝¹ : Fintype α T : ℕ → ℝ g : ℝ → ℝ a b : α → ℝ r : α → ℕ → ℕ inst✝ : Nonempty α R : AkraBazziRecurrence T g a b r c₁ : ℝ hc₁_mem : c₁ ∈ Set.Ioo 0 1 hc₁ : ∀ᶠ (n : ℕ) in atTop, ∀ (i : α), c₁ * ↑n ≤ ↑(r i n) c₂ : ℝ hc₂_mem : c₂ > 0 hc₂ : ∀ᶠ (n : ℕ) in atTop, ∀ u ∈ Set.Icc (c₁ * ↑n) ↑n, c₂ * g ↑n ≤ g u c₃ : ℝ hc₃_mem : c₃ ∈ Set.Ioo 0 1 hc₃ : ∀ᶠ (n : ℕ) in atTop, ∀ (i : α), ↑(r i n) ≤ c₃ * ↑n hc₁_pos : 0 < c₁ hc₃' : 0 < 1 - c₃ n : ℕ hn₁ : ∀ (i : α), c₁ * ↑n ≤ ↑(r i n) hn₂ : ∀ u ∈ Set.Icc (c₁ * ↑n) ↑n, c₂ * g ↑n ≤ g u hn₃ : ∀ (i : α), ↑(r i n) ≤ c₃ * ↑n hrpos : ∀ (i : α), 0 < r i n hr_lt_n : ∀ (i : α), r i n < n hn_pos : 0 < n i : α hrpos_i : 0 < r i n g_nonneg : 0 ≤ g ↑n hp : 0 > p a b + 1 u : ℕ hu : r i n ≤ u ∧ u < n ⊢ 0 < ↑u ^ (p a b + 1)
aff66f2e59f80837
Ordinal.principal_mul_of_le_two
Mathlib/SetTheory/Ordinal/Principal.lean
theorem principal_mul_of_le_two (ho : o ≤ 2) : Principal (· * ·) o
case inl.inl o : Ordinal.{u} ho✝¹ : o ≤ 2 ho✝ : o ≤ 1 ho : o < 1 ⊢ Principal (fun x1 x2 => x1 * x2) 0
exact principal_zero
no goals
d5ce674088ebbc9e
MeasureTheory.SimpleFunc.map_setToSimpleFunc
Mathlib/MeasureTheory/Integral/SetToL1.lean
theorem map_setToSimpleFunc (T : Set α → F →L[ℝ] F') (h_add : FinMeasAdditive μ T) {f : α →ₛ G} (hf : Integrable f μ) {g : G → F} (hg : g 0 = 0) : (f.map g).setToSimpleFunc T = ∑ x ∈ f.range, T (f ⁻¹' {x}) (g x)
case neg.h_disj α : Type u_1 F : Type u_3 F' : Type u_4 G : Type u_5 inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace ℝ F inst✝² : NormedAddCommGroup F' inst✝¹ : NormedSpace ℝ F' inst✝ : NormedAddCommGroup G m : MeasurableSpace α μ : Measure α T : Set α → F →L[ℝ] F' h_add : FinMeasAdditive μ T f : α →ₛ G hf : Integrable (⇑f) μ g : G → F hg : g 0 = 0 T_empty : T ∅ = 0 hfp : ∀ x ∈ f.range, x ≠ 0 → μ (⇑f ⁻¹' {x}) ≠ ⊤ a : α hb : f a ∈ f.range h0 : ¬g (f a) = 0 h_left_eq : (T (⇑(map g f) ⁻¹' {g (f a)})) (g (f a)) = (T (⇑f ⁻¹' ↑(filter (fun b => g b = g (f a)) f.range))) (g (f a)) h_left_eq' : (T (⇑f ⁻¹' ↑(filter (fun b => g b = g (f a)) f.range))) (g (f a)) = (T (⋃ y ∈ filter (fun b => g b = g (f a)) f.range, ⇑f ⁻¹' {y})) (g (f a)) i : G _j : i ∈ filter (fun b => g b = g (f a)) f.range hi : G a✝ : hi ∈ filter (fun b => g b = g (f a)) f.range hij : i ≠ hi x : α hx : x ∈ ⇑f ⁻¹' {i} ∩ ⇑f ⁻¹' {hi} ⊢ x ∈ ∅
rw [Set.mem_inter_iff, Set.mem_preimage, Set.mem_preimage, Set.mem_singleton_iff, Set.mem_singleton_iff] at hx
case neg.h_disj α : Type u_1 F : Type u_3 F' : Type u_4 G : Type u_5 inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace ℝ F inst✝² : NormedAddCommGroup F' inst✝¹ : NormedSpace ℝ F' inst✝ : NormedAddCommGroup G m : MeasurableSpace α μ : Measure α T : Set α → F →L[ℝ] F' h_add : FinMeasAdditive μ T f : α →ₛ G hf : Integrable (⇑f) μ g : G → F hg : g 0 = 0 T_empty : T ∅ = 0 hfp : ∀ x ∈ f.range, x ≠ 0 → μ (⇑f ⁻¹' {x}) ≠ ⊤ a : α hb : f a ∈ f.range h0 : ¬g (f a) = 0 h_left_eq : (T (⇑(map g f) ⁻¹' {g (f a)})) (g (f a)) = (T (⇑f ⁻¹' ↑(filter (fun b => g b = g (f a)) f.range))) (g (f a)) h_left_eq' : (T (⇑f ⁻¹' ↑(filter (fun b => g b = g (f a)) f.range))) (g (f a)) = (T (⋃ y ∈ filter (fun b => g b = g (f a)) f.range, ⇑f ⁻¹' {y})) (g (f a)) i : G _j : i ∈ filter (fun b => g b = g (f a)) f.range hi : G a✝ : hi ∈ filter (fun b => g b = g (f a)) f.range hij : i ≠ hi x : α hx : f x = i ∧ f x = hi ⊢ x ∈ ∅
f53dabe35f13a020
Int.ediv_left_inj
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Int/DivModLemmas.lean
theorem ediv_left_inj {a b d : Int} (hda : d ∣ a) (hdb : d ∣ b) : a / d = b / d ↔ a = b
a b d : Int hda : d ∣ a hdb : d ∣ b h : a / d = b / d ⊢ a = b
rw [← Int.mul_ediv_cancel' hda, ← Int.mul_ediv_cancel' hdb, h]
no goals
68b82413b539d76b
MeasureTheory.integral_divergence_of_hasFDerivWithinAt_off_countable_aux₂
Mathlib/MeasureTheory/Integral/DivergenceTheorem.lean
theorem integral_divergence_of_hasFDerivWithinAt_off_countable_aux₂ (I : Box (Fin (n + 1))) (f : ℝⁿ⁺¹ → Eⁿ⁺¹) (f' : ℝⁿ⁺¹ → ℝⁿ⁺¹ →L[ℝ] Eⁿ⁺¹) (s : Set ℝⁿ⁺¹) (hs : s.Countable) (Hc : ContinuousOn f (Box.Icc I)) (Hd : ∀ x ∈ Box.Ioo I \ s, HasFDerivAt f (f' x) x) (Hi : IntegrableOn (∑ i, f' · (e i) i) (Box.Icc I)) : (∫ x in Box.Icc I, ∑ i, f' x (e i) i) = ∑ i : Fin (n + 1), ((∫ x in Box.Icc (I.face i), f (i.insertNth (I.upper i) x) i) - ∫ x in Box.Icc (I.face i), f (i.insertNth (I.lower i) x) i)
E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E n : ℕ I : Box (Fin (n + 1)) f : (Fin (n + 1) → ℝ) → Fin (n + 1) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] Fin (n + 1) → E s : Set (Fin (n + 1) → ℝ) hs : s.Countable Hc : ContinuousOn f (Box.Icc I) Hd : ∀ x ∈ Box.Ioo I \ s, HasFDerivAt f (f' x) x Hi : IntegrableOn (fun x => ∑ i : Fin (n + 1), (f' x) (e i) i) (Box.Icc I) volume J : ℕ →o Box (Fin (n + 1)) hJ_sub : ∀ (n_1 : ℕ), Box.Icc (J n_1) ⊆ Box.Ioo I hJl : ∀ (x : Fin (n + 1)), Tendsto (fun i => (Box.lower ∘ ⇑J) i x) atTop (𝓝 (I.lower x)) hJu : ∀ (x : Fin (n + 1)), Tendsto (fun i => (Box.upper ∘ ⇑J) i x) atTop (𝓝 (I.upper x)) hJ_sub' : ∀ (k : ℕ), Box.Icc (J k) ⊆ Box.Icc I hJ_le : ∀ (k : ℕ), J k ≤ I HcJ : ∀ (k : ℕ), ContinuousOn f (Box.Icc (J k)) HdJ : ∀ (k : ℕ), ∀ x ∈ Box.Icc (J k) \ s, HasFDerivWithinAt f (f' x) (Box.Icc (J k)) x HiJ : ∀ (k : ℕ), IntegrableOn (fun x => ∑ i : Fin (n + 1), (f' x) (e i) i) (Box.Icc (J k)) volume HJ_eq : ∀ (k : ℕ), ∫ (x : Fin (n + 1) → ℝ) in Box.Icc (J k), ∑ i : Fin (n + 1), (f' x) (e i) i = ∑ i : Fin (n + 1), ((∫ (x : Fin n → ℝ) in Box.Icc ((J k).face i), f (i.insertNth ((J k).upper i) x) i) - ∫ (x : Fin n → ℝ) in Box.Icc ((J k).face i), f (i.insertNth ((J k).lower i) x) i) i : Fin (n + 1) c : ℕ → ℝ d : ℝ hc : ∀ (k : ℕ), c k ∈ Set.Icc (I.lower i) (I.upper i) hcd : Tendsto c atTop (𝓝 d) hd : d ∈ Set.Icc (I.lower i) (I.upper i) Hic : ∀ (k : ℕ), IntegrableOn (fun x => f (i.insertNth (c k) x) i) (Box.Icc (I.face i)) volume Hid : IntegrableOn (fun x => f (i.insertNth d x) i) (Box.Icc (I.face i)) volume H : Tendsto (fun k => ∫ (x : Fin n → ℝ) in Box.Icc ((J k).face i), f (i.insertNth d x) i) atTop (𝓝 (∫ (x : Fin n → ℝ) in Box.Icc (I.face i), f (i.insertNth d x) i)) ε : ℝ εpos : 0 < ε hvol_pos : ∀ (J : Box (Fin n)), 0 < ∏ j : Fin n, (J.upper j - J.lower j) δ : ℝ δpos : δ > 0 hδ : ∀ x ∈ Box.Icc I, ∀ y ∈ Box.Icc I, dist x y ≤ δ → dist (f x) (f y) ≤ ε / ∏ j : Fin n, ((I.face i).upper j - (I.face i).lower j) k : ℕ hk : dist (c k) d < δ Hsub : Box.Icc ((J k).face i) ⊆ Box.Icc (I.face i) ⊢ ‖∫ (x : Fin n → ℝ) in Box.Icc ((J k).face i), f (i.insertNth d x) i - f (i.insertNth (c k) x) i‖ ≤ (ε / ∏ j : Fin n, ((I.face i).upper j - (I.face i).lower j)) * (volume (Box.Icc ((J k).face i))).toReal
refine norm_setIntegral_le_of_norm_le_const' (((J k).face i).measure_Icc_lt_top _) ((J k).face i).measurableSet_Icc fun x hx => ?_
E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E n : ℕ I : Box (Fin (n + 1)) f : (Fin (n + 1) → ℝ) → Fin (n + 1) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] Fin (n + 1) → E s : Set (Fin (n + 1) → ℝ) hs : s.Countable Hc : ContinuousOn f (Box.Icc I) Hd : ∀ x ∈ Box.Ioo I \ s, HasFDerivAt f (f' x) x Hi : IntegrableOn (fun x => ∑ i : Fin (n + 1), (f' x) (e i) i) (Box.Icc I) volume J : ℕ →o Box (Fin (n + 1)) hJ_sub : ∀ (n_1 : ℕ), Box.Icc (J n_1) ⊆ Box.Ioo I hJl : ∀ (x : Fin (n + 1)), Tendsto (fun i => (Box.lower ∘ ⇑J) i x) atTop (𝓝 (I.lower x)) hJu : ∀ (x : Fin (n + 1)), Tendsto (fun i => (Box.upper ∘ ⇑J) i x) atTop (𝓝 (I.upper x)) hJ_sub' : ∀ (k : ℕ), Box.Icc (J k) ⊆ Box.Icc I hJ_le : ∀ (k : ℕ), J k ≤ I HcJ : ∀ (k : ℕ), ContinuousOn f (Box.Icc (J k)) HdJ : ∀ (k : ℕ), ∀ x ∈ Box.Icc (J k) \ s, HasFDerivWithinAt f (f' x) (Box.Icc (J k)) x HiJ : ∀ (k : ℕ), IntegrableOn (fun x => ∑ i : Fin (n + 1), (f' x) (e i) i) (Box.Icc (J k)) volume HJ_eq : ∀ (k : ℕ), ∫ (x : Fin (n + 1) → ℝ) in Box.Icc (J k), ∑ i : Fin (n + 1), (f' x) (e i) i = ∑ i : Fin (n + 1), ((∫ (x : Fin n → ℝ) in Box.Icc ((J k).face i), f (i.insertNth ((J k).upper i) x) i) - ∫ (x : Fin n → ℝ) in Box.Icc ((J k).face i), f (i.insertNth ((J k).lower i) x) i) i : Fin (n + 1) c : ℕ → ℝ d : ℝ hc : ∀ (k : ℕ), c k ∈ Set.Icc (I.lower i) (I.upper i) hcd : Tendsto c atTop (𝓝 d) hd : d ∈ Set.Icc (I.lower i) (I.upper i) Hic : ∀ (k : ℕ), IntegrableOn (fun x => f (i.insertNth (c k) x) i) (Box.Icc (I.face i)) volume Hid : IntegrableOn (fun x => f (i.insertNth d x) i) (Box.Icc (I.face i)) volume H : Tendsto (fun k => ∫ (x : Fin n → ℝ) in Box.Icc ((J k).face i), f (i.insertNth d x) i) atTop (𝓝 (∫ (x : Fin n → ℝ) in Box.Icc (I.face i), f (i.insertNth d x) i)) ε : ℝ εpos : 0 < ε hvol_pos : ∀ (J : Box (Fin n)), 0 < ∏ j : Fin n, (J.upper j - J.lower j) δ : ℝ δpos : δ > 0 hδ : ∀ x ∈ Box.Icc I, ∀ y ∈ Box.Icc I, dist x y ≤ δ → dist (f x) (f y) ≤ ε / ∏ j : Fin n, ((I.face i).upper j - (I.face i).lower j) k : ℕ hk : dist (c k) d < δ Hsub : Box.Icc ((J k).face i) ⊆ Box.Icc (I.face i) x : Fin n → ℝ hx : x ∈ Box.Icc ((J k).face i) ⊢ ‖f (i.insertNth d x) i - f (i.insertNth (c k) x) i‖ ≤ ε / ∏ j : Fin n, ((I.face i).upper j - (I.face i).lower j)
d25a0c4e5a28a1f3
max_zero_add_max_neg_zero_eq_abs_self
Mathlib/Algebra/Order/Group/Abs.lean
theorem max_zero_add_max_neg_zero_eq_abs_self (a : α) : max a 0 + max (-a) 0 = |a|
α : Type u_1 inst✝ : LinearOrderedAddCommGroup α a : α ⊢ |a| = a ⊔ 0 + -a ⊔ 0
rcases le_total 0 a with (ha | ha) <;> simp [ha]
no goals
c19353226e58057f