name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
Pell.exists_of_not_isSquare
Mathlib/NumberTheory/Pell.lean
theorem exists_of_not_isSquare (h₀ : 0 < d) (hd : ¬IsSquare d) : ∃ x y : ℤ, x ^ 2 - d * y ^ 2 = 1 ∧ y ≠ 0
case intro.intro.intro.intro.intro.intro.intro.intro.refine_1 d : ℤ h₀ : 0 < d hd : ¬IsSquare d ξ : ℝ := √↑d hξ : Irrational ξ M : ℤ hM₁ : 2 * |ξ| + 1 < ↑M hM : {q | |q.num ^ 2 - d * ↑q.den ^ 2| < M}.Infinite m : ℤ hm : {q | q.num ^ 2 - d * ↑q.den ^ 2 = m}.Infinite this : NeZero m.natAbs f : ℚ → ZMod m.natAbs × ZMod m.natAbs := fun q => (↑q.num, ↑q.den) q₁ : ℚ h₁ : q₁.num ^ 2 - d * ↑q₁.den ^ 2 = m q₂ : ℚ h₂ : q₂.num ^ 2 - d * ↑q₂.den ^ 2 = m hne : q₁ ≠ q₂ hqf : f q₁ = f q₂ hq1 : ↑q₁.num = ↑q₂.num hq2 : ↑q₁.den = ↑q₂.den hd₁ : m ∣ q₁.num * q₂.num - d * (↑q₁.den * ↑q₂.den) hd₂ : m ∣ q₁.num * ↑q₂.den - q₂.num * ↑q₁.den hm₀ : ↑m ≠ 0 ⊢ ((↑q₁.num * ↑q₂.num - ↑d * (↑q₁.den * ↑q₂.den)) / ↑m) ^ 2 - ↑d * ((↑q₁.num * ↑q₂.den - ↑q₂.num * ↑q₁.den) / ↑m) ^ 2 = 1
field_simp [hm₀]
case intro.intro.intro.intro.intro.intro.intro.intro.refine_1 d : ℤ h₀ : 0 < d hd : ¬IsSquare d ξ : ℝ := √↑d hξ : Irrational ξ M : ℤ hM₁ : 2 * |ξ| + 1 < ↑M hM : {q | |q.num ^ 2 - d * ↑q.den ^ 2| < M}.Infinite m : ℤ hm : {q | q.num ^ 2 - d * ↑q.den ^ 2 = m}.Infinite this : NeZero m.natAbs f : ℚ → ZMod m.natAbs × ZMod m.natAbs := fun q => (↑q.num, ↑q.den) q₁ : ℚ h₁ : q₁.num ^ 2 - d * ↑q₁.den ^ 2 = m q₂ : ℚ h₂ : q₂.num ^ 2 - d * ↑q₂.den ^ 2 = m hne : q₁ ≠ q₂ hqf : f q₁ = f q₂ hq1 : ↑q₁.num = ↑q₂.num hq2 : ↑q₁.den = ↑q₂.den hd₁ : m ∣ q₁.num * q₂.num - d * (↑q₁.den * ↑q₂.den) hd₂ : m ∣ q₁.num * ↑q₂.den - q₂.num * ↑q₁.den hm₀ : ↑m ≠ 0 ⊢ (↑q₁.num * ↑q₂.num - ↑d * (↑q₁.den * ↑q₂.den)) ^ 2 - ↑d * (↑q₁.num * ↑q₂.den - ↑q₂.num * ↑q₁.den) ^ 2 = ↑m ^ 2
e113d5ba2b34ead4
MeasureTheory.integral_norm_eq_pos_sub_neg
Mathlib/MeasureTheory/Integral/SetIntegral.lean
theorem integral_norm_eq_pos_sub_neg {f : X → ℝ} (hfi : Integrable f μ) : ∫ x, ‖f x‖ ∂μ = ∫ x in {x | 0 ≤ f x}, f x ∂μ - ∫ x in {x | f x ≤ 0}, f x ∂μ := have h_meas : NullMeasurableSet {x | 0 ≤ f x} μ := aestronglyMeasurable_const.nullMeasurableSet_le hfi.1 calc ∫ x, ‖f x‖ ∂μ = ∫ x in {x | 0 ≤ f x}, ‖f x‖ ∂μ + ∫ x in {x | 0 ≤ f x}ᶜ, ‖f x‖ ∂μ
X : Type u_1 mX : MeasurableSpace X μ : Measure X f : X → ℝ hfi : Integrable f μ h_meas : NullMeasurableSet {x | 0 ≤ f x} μ ⊢ ∫ (x : X) in {x | 0 ≤ f x}, f x ∂μ - ∫ (x : X) in {x | 0 ≤ f x}ᶜ, f x ∂μ = ∫ (x : X) in {x | 0 ≤ f x}, f x ∂μ - ∫ (x : X) in {x | f x ≤ 0}, f x ∂μ
rw [← setIntegral_neg_eq_setIntegral_nonpos hfi.1, compl_setOf]
X : Type u_1 mX : MeasurableSpace X μ : Measure X f : X → ℝ hfi : Integrable f μ h_meas : NullMeasurableSet {x | 0 ≤ f x} μ ⊢ ∫ (x : X) in {x | 0 ≤ f x}, f x ∂μ - ∫ (x : X) in {a | ¬0 ≤ f a}, f x ∂μ = ∫ (x : X) in {x | 0 ≤ f x}, f x ∂μ - ∫ (x : X) in {x | f x < 0}, f x ∂μ
f2b7c21cff431d30
Dioph.DiophList.forall
Mathlib/NumberTheory/Dioph.lean
theorem DiophList.forall (l : List (Set <| α → ℕ)) (d : l.Forall Dioph) : Dioph {v | l.Forall fun S : Set (α → ℕ) => v ∈ S}
α : Type u S : Set (α → ℕ) l : List (Set (α → ℕ)) IH : List.Forall Dioph l → ∃ β pl, ∀ (v : α → ℕ), List.Forall (fun S => S v) l ↔ ∃ t, List.Forall (fun p => p (v ⊗ t) = 0) pl d : Dioph S ∧ List.Forall Dioph l β : Type u p : Poly (α ⊕ β) pe : ∀ (v : α → ℕ), S v ↔ ∃ t, p (v ⊗ t) = 0 dl : List.Forall Dioph l γ : Type u pl : List (Poly (α ⊕ γ)) ple : ∀ (v : α → ℕ), List.Forall (fun S => S v) l ↔ ∃ t, List.Forall (fun p => p (v ⊗ t) = 0) pl v : α → ℕ x✝ : ∃ t, p ((v ⊗ t) ∘ (inl ⊗ inr ∘ inl)) = 0 ∧ List.Forall ((fun p => p (v ⊗ t) = 0) ∘ fun q => Poly.map (inl ⊗ inr ∘ inr) q) pl t : β ⊕ γ → ℕ hl : p ((v ⊗ t) ∘ (inl ⊗ inr ∘ inl)) = 0 hr : List.Forall ((fun p => p (v ⊗ t) = 0) ∘ fun q => Poly.map (inl ⊗ inr ∘ inr) q) pl s : α ⊕ β ⊢ ((v ⊗ t) ∘ (inl ⊗ inr ∘ inl)) s = (v ⊗ t ∘ inl) s
rcases s with a | b <;> rfl
no goals
a9cad34cc59a8de2
Function.Injective.swap_apply
Mathlib/Logic/Equiv/Basic.lean
theorem Function.Injective.swap_apply [DecidableEq α] [DecidableEq β] {f : α → β} (hf : Function.Injective f) (x y z : α) : Equiv.swap (f x) (f y) (f z) = f (Equiv.swap x y z)
case pos α : Sort u_1 β : Sort u_4 inst✝¹ : DecidableEq α inst✝ : DecidableEq β f : α → β hf : Injective f x y z : α hx : ¬z = x hy : z = y ⊢ (Equiv.swap (f x) (f y)) (f z) = f ((Equiv.swap x y) z)
simp [hy]
no goals
5a77f0c1662562ff
IsRightRegular.pow_iff
Mathlib/Algebra/Regular/Basic.lean
/-- An element `a` is right-regular if and only if a positive power of `a` is right-regular. -/ lemma IsRightRegular.pow_iff (n0 : 0 < n) : IsRightRegular (a ^ n) ↔ IsRightRegular a where mp
R : Type u_1 inst✝ : Monoid R a : R n : ℕ n0 : 0 < n ⊢ IsRightRegular (a ^ n) → IsRightRegular a
rw [← Nat.succ_pred_eq_of_pos n0, pow_succ']
R : Type u_1 inst✝ : Monoid R a : R n : ℕ n0 : 0 < n ⊢ IsRightRegular (a * a ^ n.pred) → IsRightRegular a
056429850e79d74b
Algebra.norm_algebraMap
Mathlib/RingTheory/Norm/Defs.lean
theorem norm_algebraMap {L : Type*} [Ring L] [Algebra K L] (x : K) : norm K (algebraMap K L x) = x ^ finrank K L
case pos K : Type u_3 inst✝² : Field K L : Type u_4 inst✝¹ : Ring L inst✝ : Algebra K L x : K H : ∃ s, Nonempty (Basis { x // x ∈ s } K L) ⊢ (norm K) ((algebraMap K L) x) = x ^ finrank K L
rw [norm_algebraMap_of_basis H.choose_spec.some, finrank_eq_card_basis H.choose_spec.some]
no goals
3f209e0d016f1813
Std.Tactic.BVDecide.Normalize.BitVec.add_not
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Normalize/BitVec.lean
theorem BitVec.add_not (a : BitVec w) : a + ~~~a = (-1#w)
case pred w : Nat a : BitVec w i✝ : Nat a✝ : i✝ < w ⊢ (a + ~~~a).getLsbD i✝ = (-1#w).getLsbD i✝
simp [BitVec.negOne_eq_allOnes]
no goals
b9c543678fe88492
hasFDerivAt_integral_of_dominated_loc_of_lip'
Mathlib/Analysis/Calculus/ParametricIntegral.lean
theorem hasFDerivAt_integral_of_dominated_loc_of_lip' {F' : α → H →L[𝕜] E} (ε_pos : 0 < ε) (hF_meas : ∀ x ∈ ball x₀ ε, AEStronglyMeasurable (F x) μ) (hF_int : Integrable (F x₀) μ) (hF'_meas : AEStronglyMeasurable F' μ) (h_lipsch : ∀ᵐ a ∂μ, ∀ x ∈ ball x₀ ε, ‖F x a - F x₀ a‖ ≤ bound a * ‖x - x₀‖) (bound_integrable : Integrable (bound : α → ℝ) μ) (h_diff : ∀ᵐ a ∂μ, HasFDerivAt (F · a) (F' a) x₀) : Integrable F' μ ∧ HasFDerivAt (fun x ↦ ∫ a, F x a ∂μ) (∫ a, F' a ∂μ) x₀
α : Type u_1 inst✝⁶ : MeasurableSpace α μ : Measure α 𝕜 : Type u_2 inst✝⁵ : RCLike 𝕜 E : Type u_3 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedSpace 𝕜 E H : Type u_4 inst✝¹ : NormedAddCommGroup H inst✝ : NormedSpace 𝕜 H F : H → α → E x₀ : H bound : α → ℝ ε : ℝ F' : α → H →L[𝕜] E ε_pos : 0 < ε hF_meas : ∀ x ∈ ball x₀ ε, AEStronglyMeasurable (F x) μ hF_int : Integrable (F x₀) μ hF'_meas : AEStronglyMeasurable F' μ bound_integrable : Integrable bound μ h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀ x₀_in : x₀ ∈ ball x₀ ε nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹ b : α → ℝ := fun a => |bound a| b_int : Integrable b μ b_nonneg : ∀ (a : α), 0 ≤ b a h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ x ∈ ball x₀ ε, ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖ x : H x_in : x ∈ ball x₀ ε ⊢ ∀ᵐ (a : α) ∂μ, ‖F x₀ a - F x a‖ ≤ ε * b a
simp only [norm_sub_rev (F x₀ _)]
α : Type u_1 inst✝⁶ : MeasurableSpace α μ : Measure α 𝕜 : Type u_2 inst✝⁵ : RCLike 𝕜 E : Type u_3 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedSpace 𝕜 E H : Type u_4 inst✝¹ : NormedAddCommGroup H inst✝ : NormedSpace 𝕜 H F : H → α → E x₀ : H bound : α → ℝ ε : ℝ F' : α → H →L[𝕜] E ε_pos : 0 < ε hF_meas : ∀ x ∈ ball x₀ ε, AEStronglyMeasurable (F x) μ hF_int : Integrable (F x₀) μ hF'_meas : AEStronglyMeasurable F' μ bound_integrable : Integrable bound μ h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀ x₀_in : x₀ ∈ ball x₀ ε nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹ b : α → ℝ := fun a => |bound a| b_int : Integrable b μ b_nonneg : ∀ (a : α), 0 ≤ b a h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ x ∈ ball x₀ ε, ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖ x : H x_in : x ∈ ball x₀ ε ⊢ ∀ᵐ (a : α) ∂μ, ‖F x a - F x₀ a‖ ≤ ε * b a
a8f4bcb6e23b7fde
Set.iUnionLift_unary
Mathlib/Data/Set/UnionLift.lean
theorem iUnionLift_unary (u : T → T) (ui : ∀ i, S i → S i) (hui : ∀ (i) (x : S i), u (Set.inclusion (show S i ⊆ T from hT'.symm ▸ Set.subset_iUnion S i) x) = Set.inclusion (show S i ⊆ T from hT'.symm ▸ Set.subset_iUnion S i) (ui i x)) (uβ : β → β) (h : ∀ (i) (x : S i), f i (ui i x) = uβ (f i x)) (x : T) : iUnionLift S f hf T (le_of_eq hT') (u x) = uβ (iUnionLift S f hf T (le_of_eq hT') x)
α : Type u_1 ι : Sort u_2 β : Sort u_3 S : ι → Set α f : (i : ι) → ↑(S i) → β hf : ∀ (i j : ι) (x : α) (hxi : x ∈ S i) (hxj : x ∈ S j), f i ⟨x, hxi⟩ = f j ⟨x, hxj⟩ ui : (i : ι) → ↑(S i) → ↑(S i) uβ : β → β h : ∀ (i : ι) (x : ↑(S i)), f i (ui i x) = uβ (f i x) u : ↑(iUnion S) → ↑(iUnion S) hui : ∀ (i : ι) (x : ↑(S i)), u (inclusion ⋯ x) = inclusion ⋯ (ui i x) x : ↑(iUnion S) i : ι hi : ↑x ∈ S i ⊢ x = inclusion ⋯ ⟨↑x, hi⟩
cases x
case mk α : Type u_1 ι : Sort u_2 β : Sort u_3 S : ι → Set α f : (i : ι) → ↑(S i) → β hf : ∀ (i j : ι) (x : α) (hxi : x ∈ S i) (hxj : x ∈ S j), f i ⟨x, hxi⟩ = f j ⟨x, hxj⟩ ui : (i : ι) → ↑(S i) → ↑(S i) uβ : β → β h : ∀ (i : ι) (x : ↑(S i)), f i (ui i x) = uβ (f i x) u : ↑(iUnion S) → ↑(iUnion S) hui : ∀ (i : ι) (x : ↑(S i)), u (inclusion ⋯ x) = inclusion ⋯ (ui i x) i : ι val✝ : α property✝ : val✝ ∈ iUnion S hi : ↑⟨val✝, property✝⟩ ∈ S i ⊢ ⟨val✝, property✝⟩ = inclusion ⋯ ⟨↑⟨val✝, property✝⟩, hi⟩
8bebe07162d0a4b8
Matrix.proj_comp_diagLinearMap
Mathlib/Data/Matrix/Basic.lean
@[simp] lemma proj_comp_diagLinearMap (i : m) : LinearMap.proj i ∘ₗ diagLinearMap m R α = entryLinearMap R α i i
m : Type u_2 R : Type u_7 α : Type v inst✝² : Semiring R inst✝¹ : AddCommMonoid α inst✝ : Module R α i : m ⊢ LinearMap.proj i ∘ₗ diagLinearMap m R α = entryLinearMap R α i i
simp [LinearMap.ext_iff]
no goals
c5dcd6fc14c46d62
Fintype.card_lt_of_injective_of_not_mem
Mathlib/Data/Fintype/Card.lean
theorem card_lt_of_injective_of_not_mem (f : α → β) (h : Function.Injective f) {b : β} (w : b ∉ Set.range f) : card α < card β := calc card α = (univ.map ⟨f, h⟩).card := (card_map _).symm _ < card β := Finset.card_lt_univ_of_not_mem (x := b) <| by rwa [← mem_coe, coe_map, coe_univ, Set.image_univ]
α : Type u_1 β : Type u_2 inst✝¹ : Fintype α inst✝ : Fintype β f : α → β h : Injective f b : β w : b ∉ Set.range f ⊢ b ∉ map { toFun := f, inj' := h } univ
rwa [← mem_coe, coe_map, coe_univ, Set.image_univ]
no goals
e18650c5b90d203a
Vector.mapFinIdx_eq_ofFn
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Vector/MapIdx.lean
theorem mapFinIdx_eq_ofFn {as : Vector α n} {f : (i : Nat) → α → (h : i < n) → β} : as.mapFinIdx f = Vector.ofFn fun i : Fin n => f i as[i] i.2
α : Type u_1 n : Nat β : Type u_2 as : Vector α n f : (i : Nat) → α → i < n → β ⊢ as.mapFinIdx f = ofFn fun i => f (↑i) as[i] ⋯
rcases as with ⟨as, rfl⟩
case mk α : Type u_1 β : Type u_2 as : Array α f : (i : Nat) → α → i < as.size → β ⊢ { toArray := as, size_toArray := ⋯ }.mapFinIdx f = ofFn fun i => f ↑i { toArray := as, size_toArray := ⋯ }[i] ⋯
933ba1cd9752d8b1
ZetaAsymptotics.tendsto_riemannZeta_sub_one_div_nhds_right
Mathlib/NumberTheory/Harmonic/ZetaAsymp.lean
/-- First version of the limit formula, with a limit over real numbers tending to 1 from above. -/ lemma tendsto_riemannZeta_sub_one_div_nhds_right : Tendsto (fun s : ℝ ↦ riemannZeta s - 1 / (s - 1)) (𝓝[>] 1) (𝓝 γ)
aux2 : Tendsto (fun s => ∑' (n : ℕ), 1 / (↑n + 1) ^ s - 1 / (s - 1)) (𝓝[>] 1) (𝓝 (1 - term_tsum 1)) this : ∑' (b : ℕ), term (b + 1) 1 = 1 - γ ⊢ Tendsto (fun s => ∑' (n : ℕ), 1 / (↑n + 1) ^ s - 1 / (s - 1)) (𝓝[>] 1) (𝓝 γ)
rw [← term_tsum, eq_sub_iff_add_eq, ← eq_sub_iff_add_eq'] at this
aux2 : Tendsto (fun s => ∑' (n : ℕ), 1 / (↑n + 1) ^ s - 1 / (s - 1)) (𝓝[>] 1) (𝓝 (1 - term_tsum 1)) this : γ = 1 - term_tsum 1 ⊢ Tendsto (fun s => ∑' (n : ℕ), 1 / (↑n + 1) ^ s - 1 / (s - 1)) (𝓝[>] 1) (𝓝 γ)
ceaf7d9b7ead9630
CoxeterSystem.prod_leftInvSeq
Mathlib/GroupTheory/Coxeter/Inversion.lean
theorem prod_leftInvSeq (ω : List B) : prod (lis ω) = (π ω)⁻¹
case h B : Type u_1 W : Type u_2 inst✝ : Group W M : CoxeterMatrix B cs : CoxeterSystem M W ω : List B ⊢ ∀ a ∈ cs.rightInvSeq ω.reverse, a⁻¹ = id a
intro t ht
case h B : Type u_1 W : Type u_2 inst✝ : Group W M : CoxeterMatrix B cs : CoxeterSystem M W ω : List B t : W ht : t ∈ cs.rightInvSeq ω.reverse ⊢ t⁻¹ = id t
761854a10de60b7d
HomologicalComplex.cycles_left_exact
Mathlib/Algebra/Homology/HomologySequence.lean
/-- If `0 ⟶ X₁ ⟶ X₂ ⟶ X₃` is an exact sequence of homological complex, then `0 ⟶ X₁.cycles i ⟶ X₂.cycles i ⟶ X₃.cycles i` is exact. This lemma states the exactness at `X₂.cycles i`, while the fact that `X₁.cycles i ⟶ X₂.cycles i` is a mono is an instance. -/ lemma cycles_left_exact (S : ShortComplex (HomologicalComplex C c)) (hS : S.Exact) [Mono S.f] (i : ι) [S.X₁.HasHomology i] [S.X₂.HasHomology i] [S.X₃.HasHomology i] : (ShortComplex.mk (cyclesMap S.f i) (cyclesMap S.g i) (by rw [← cyclesMap_comp, S.zero, cyclesMap_zero])).Exact
C : Type u_1 ι : Type u_2 inst✝⁵ : Category.{u_3, u_1} C inst✝⁴ : Abelian C c : ComplexShape ι S : ShortComplex (HomologicalComplex C c) hS : S.Exact inst✝³ : Mono S.f i : ι inst✝² : S.X₁.HasHomology i inst✝¹ : S.X₂.HasHomology i inst✝ : S.X₃.HasHomology i this : Mono (S.map (eval C c i)).f hi : IsLimit (KernelFork.ofι (S.map (eval C c i)).f ⋯) A : C k : A ⟶ (ShortComplex.mk (cyclesMap S.f i) (cyclesMap S.g i) ⋯).X₂ hk : k ≫ (ShortComplex.mk (cyclesMap S.f i) (cyclesMap S.g i) ⋯).g = 0 ⊢ { l // l ≫ (ShortComplex.mk (cyclesMap S.f i) (cyclesMap S.g i) ⋯).f = k }
dsimp at k hk ⊢
C : Type u_1 ι : Type u_2 inst✝⁵ : Category.{u_3, u_1} C inst✝⁴ : Abelian C c : ComplexShape ι S : ShortComplex (HomologicalComplex C c) hS : S.Exact inst✝³ : Mono S.f i : ι inst✝² : S.X₁.HasHomology i inst✝¹ : S.X₂.HasHomology i inst✝ : S.X₃.HasHomology i this : Mono (S.map (eval C c i)).f hi : IsLimit (KernelFork.ofι (S.map (eval C c i)).f ⋯) A : C k : A ⟶ S.X₂.cycles i hk : k ≫ cyclesMap S.g i = 0 ⊢ { l // l ≫ cyclesMap S.f i = k }
bd33f56af82f3219
IntervalIntegrable.comp_mul_left
Mathlib/MeasureTheory/Integral/IntervalIntegral.lean
theorem comp_mul_left (hf : IntervalIntegrable f volume a b) (c : ℝ) : IntervalIntegrable (fun x => f (c * x)) volume (a / c) (b / c)
case h.e'_6 E : Type u_3 inst✝ : NormedAddCommGroup E f : ℝ → E a b : ℝ hf : IntegrableOn f [[a, b]] volume c : ℝ hc : c ≠ 0 A : MeasurableEmbedding fun x => x * c⁻¹ ⊢ ((fun x => f (c * x)) ∘ fun x => x * c⁻¹) = f
ext
case h.e'_6.h E : Type u_3 inst✝ : NormedAddCommGroup E f : ℝ → E a b : ℝ hf : IntegrableOn f [[a, b]] volume c : ℝ hc : c ≠ 0 A : MeasurableEmbedding fun x => x * c⁻¹ x✝ : ℝ ⊢ ((fun x => f (c * x)) ∘ fun x => x * c⁻¹) x✝ = f x✝
9cd6ab038c92d131
EuclideanDomain.divRadical_ne_zero
Mathlib/RingTheory/Radical.lean
theorem divRadical_ne_zero {a : E} (ha : a ≠ 0) : divRadical a ≠ 0
E : Type u_1 inst✝² : EuclideanDomain E inst✝¹ : NormalizationMonoid E inst✝ : UniqueFactorizationMonoid E a : E ha : a ≠ 0 ⊢ divRadical a ≠ 0
rw [← radical_mul_divRadical a] at ha
E : Type u_1 inst✝² : EuclideanDomain E inst✝¹ : NormalizationMonoid E inst✝ : UniqueFactorizationMonoid E a : E ha : radical a * divRadical a ≠ 0 ⊢ divRadical a ≠ 0
eb7a079e52705035
CompleteLattice.ωScottContinuous.bot
Mathlib/Order/OmegaCompletePartialOrder.lean
lemma ωScottContinuous.bot : ωScottContinuous (⊥ : α → β)
α : Type u_2 β : Type u_3 inst✝¹ : OmegaCompletePartialOrder α inst✝ : CompleteLattice β ⊢ ωScottContinuous ⊥
rw [← sSup_empty]
α : Type u_2 β : Type u_3 inst✝¹ : OmegaCompletePartialOrder α inst✝ : CompleteLattice β ⊢ ωScottContinuous (SupSet.sSup ∅)
05f864cd5a6804ed
mem_affineSpan_iff_eq_weightedVSubOfPoint_vadd
Mathlib/LinearAlgebra/AffineSpace/Combination.lean
theorem mem_affineSpan_iff_eq_weightedVSubOfPoint_vadd [Nontrivial k] (p : ι → P) (j : ι) (q : P) : q ∈ affineSpan k (Set.range p) ↔ ∃ (s : Finset ι) (w : ι → k), q = s.weightedVSubOfPoint p (p j) w +ᵥ p j
case mpr.intro.intro ι : Type u_1 k : Type u_2 V : Type u_3 P : Type u_4 inst✝⁴ : Ring k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : Nontrivial k p : ι → P j : ι s : Finset ι w : ι → k w' : ι → k := Function.update w j (1 - (s \ {j}).sum w) h₁ : (insert j s).sum w' = 1 hww : ∀ (i : ι), i ≠ j → w i = w' i ⊢ (Finset.affineCombination k (insert j s) p) w' ∈ affineSpan k (Set.range p)
exact affineCombination_mem_affineSpan h₁ p
no goals
40a3291069dee08b
MeasureTheory.Measure.snd_map_swap
Mathlib/MeasureTheory/Measure/Prod.lean
@[simp] lemma snd_map_swap : (ρ.map Prod.swap).snd = ρ.fst
α : Type u_1 β : Type u_2 inst✝¹ : MeasurableSpace α inst✝ : MeasurableSpace β ρ : Measure (α × β) ⊢ map (Prod.snd ∘ Prod.swap) ρ = ρ.fst
rfl
no goals
1a31f8bcea60747e
MvPolynomial.totalDegree_list_prod
Mathlib/Algebra/MvPolynomial/Degrees.lean
theorem totalDegree_list_prod : ∀ s : List (MvPolynomial σ R), s.prod.totalDegree ≤ (s.map MvPolynomial.totalDegree).sum | [] => by rw [List.prod_nil, totalDegree_one, List.map_nil, List.sum_nil] | p::ps => by rw [List.prod_cons, List.map, List.sum_cons] exact le_trans (totalDegree_mul _ _) (add_le_add_left (totalDegree_list_prod ps) _)
R : Type u σ : Type u_1 inst✝ : CommSemiring R p : MvPolynomial σ R ps : List (MvPolynomial σ R) ⊢ (p * ps.prod).totalDegree ≤ p.totalDegree + (List.map totalDegree ps).sum
exact le_trans (totalDegree_mul _ _) (add_le_add_left (totalDegree_list_prod ps) _)
no goals
78300a0977ad5ffe
CategoryTheory.mono_iff_isIso_fst
Mathlib/CategoryTheory/Limits/EpiMono.lean
lemma mono_iff_isIso_fst (hc : IsLimit c) : Mono f ↔ IsIso c.fst
case mpr.mk.intro C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y : C f : X ⟶ Y c : PullbackCone f f hc : IsLimit c a✝ : IsIso c.fst φ : X ⟶ c.pt hφ₁ : φ ≫ c.fst = 𝟙 X hφ₂ : φ ≫ c.snd = 𝟙 X this : IsSplitEpi φ ⊢ c.fst = c.snd
rw [← cancel_epi φ, hφ₁, hφ₂]
no goals
1598d09ec371f088
FractionalIdeal.count_well_defined
Mathlib/RingTheory/DedekindDomain/Factorization.lean
theorem count_well_defined {I : FractionalIdeal R⁰ K} (hI : I ≠ 0) {a : R} {J : Ideal R} (h_aJ : I = spanSingleton R⁰ ((algebraMap R K) a)⁻¹ * ↑J) : count K v I = ((Associates.mk v.asIdeal).count (Associates.mk J).factors - (Associates.mk v.asIdeal).count (Associates.mk (Ideal.span {a})).factors : ℤ)
R : Type u_1 inst✝⁴ : CommRing R K : Type u_2 inst✝³ : Field K inst✝² : Algebra R K inst✝¹ : IsFractionRing R K inst✝ : IsDedekindDomain R v : HeightOneSpectrum R I : FractionalIdeal R⁰ K hI : I ≠ 0 a : R J : Ideal R h_aJ : I = spanSingleton R⁰ ((algebraMap R K) a)⁻¹ * ↑J ⊢ count K v I = ↑((Associates.mk v.asIdeal).count (Associates.mk J).factors) - ↑((Associates.mk v.asIdeal).count (Associates.mk (Ideal.span {a})).factors)
set a₁ := choose (exists_eq_spanSingleton_mul I)
R : Type u_1 inst✝⁴ : CommRing R K : Type u_2 inst✝³ : Field K inst✝² : Algebra R K inst✝¹ : IsFractionRing R K inst✝ : IsDedekindDomain R v : HeightOneSpectrum R I : FractionalIdeal R⁰ K hI : I ≠ 0 a : R J : Ideal R h_aJ : I = spanSingleton R⁰ ((algebraMap R K) a)⁻¹ * ↑J a₁ : R := choose ⋯ ⊢ count K v I = ↑((Associates.mk v.asIdeal).count (Associates.mk J).factors) - ↑((Associates.mk v.asIdeal).count (Associates.mk (Ideal.span {a})).factors)
59f81f9cebadacb0
isLocalStructomorphOn_contDiffGroupoid_iff
Mathlib/Geometry/Manifold/ContMDiff/Atlas.lean
theorem isLocalStructomorphOn_contDiffGroupoid_iff (f : PartialHomeomorph M M') : LiftPropOn (contDiffGroupoid n I).IsLocalStructomorphWithinAt f f.source ↔ ContMDiffOn I I n f f.source ∧ ContMDiffOn I I n f.symm f.target
𝕜 : Type u_1 inst✝⁸ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace 𝕜 E H : Type u_3 inst✝⁵ : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝⁴ : TopologicalSpace M inst✝³ : ChartedSpace H M n : WithTop ℕ∞ inst✝² : IsManifold I n M M' : Type u_5 inst✝¹ : TopologicalSpace M' inst✝ : ChartedSpace H M' IsM' : IsManifold I n M' f : PartialHomeomorph M M' h : LiftPropOn (contDiffGroupoid n I).IsLocalStructomorphWithinAt (↑f) f.source X : M' hX : X ∈ f.symm.source x : M := ↑f.symm X hx : x ∈ f.source c : PartialHomeomorph M H := chartAt H x c' : PartialHomeomorph M' H := chartAt H X hxf : (contDiffGroupoid n I).IsLocalStructomorphWithinAt (↑(chartAt H (↑f x)) ∘ ↑f ∘ ↑(chartAt H x).symm) (↑(chartAt H x).symm ⁻¹' f.source) (↑(chartAt H x) x) h2x : ↑(chartAt H X) X ∈ ↑(chartAt H X).symm ⁻¹' f.symm.source e : PartialHomeomorph H H he : e ∈ contDiffGroupoid n I h2e : e.source ⊆ (c.symm ≫ₕ f ≫ₕ c').source hef : EqOn (↑c' ∘ ↑f ∘ ↑c.symm) (↑e) e.source hex : ↑c x ∈ e.source ⊢ ↑c' X = (↑c' ∘ ↑f ∘ ↑c.symm) (↑c x)
dsimp only [Function.comp_def]
𝕜 : Type u_1 inst✝⁸ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace 𝕜 E H : Type u_3 inst✝⁵ : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝⁴ : TopologicalSpace M inst✝³ : ChartedSpace H M n : WithTop ℕ∞ inst✝² : IsManifold I n M M' : Type u_5 inst✝¹ : TopologicalSpace M' inst✝ : ChartedSpace H M' IsM' : IsManifold I n M' f : PartialHomeomorph M M' h : LiftPropOn (contDiffGroupoid n I).IsLocalStructomorphWithinAt (↑f) f.source X : M' hX : X ∈ f.symm.source x : M := ↑f.symm X hx : x ∈ f.source c : PartialHomeomorph M H := chartAt H x c' : PartialHomeomorph M' H := chartAt H X hxf : (contDiffGroupoid n I).IsLocalStructomorphWithinAt (↑(chartAt H (↑f x)) ∘ ↑f ∘ ↑(chartAt H x).symm) (↑(chartAt H x).symm ⁻¹' f.source) (↑(chartAt H x) x) h2x : ↑(chartAt H X) X ∈ ↑(chartAt H X).symm ⁻¹' f.symm.source e : PartialHomeomorph H H he : e ∈ contDiffGroupoid n I h2e : e.source ⊆ (c.symm ≫ₕ f ≫ₕ c').source hef : EqOn (↑c' ∘ ↑f ∘ ↑c.symm) (↑e) e.source hex : ↑c x ∈ e.source ⊢ ↑c' X = ↑c' (↑f (↑c.symm (↑c x)))
52ce8090c899c270
Real.Gamma_ne_zero
Mathlib/Analysis/SpecialFunctions/Gamma/Basic.lean
theorem Gamma_ne_zero {s : ℝ} (hs : ∀ m : ℕ, s ≠ -m) : Gamma s ≠ 0
case a n✝ : ℕ n_ih : ∀ {s : ℝ}, (∀ (m : ℕ), s ≠ -↑m) → -↑n✝ < s → Gamma s ≠ 0 s : ℝ hs : ∀ (m : ℕ), s ≠ -↑m hs' : -↑n✝ + -1 < s ⊢ -↑n✝ < s + 1
linarith
no goals
b27fef48da598597
Matroid.IsCircuit.closure_diff_singleton_eq
Mathlib/Data/Matroid/Circuit.lean
lemma IsCircuit.closure_diff_singleton_eq (hC : M.IsCircuit C) (e : α) : M.closure (C \ {e}) = M.closure C := (em (e ∈ C)).elim (fun he ↦ by rw [(hC.diff_singleton_isBasis he).closure_eq_closure]) (fun he ↦ by rw [diff_singleton_eq_self he])
α : Type u_1 M : Matroid α C : Set α hC : M.IsCircuit C e : α he : e ∉ C ⊢ M.closure (C \ {e}) = M.closure C
rw [diff_singleton_eq_self he]
no goals
ec6cad5f47f1b6a7
LieModule.coe_lowerCentralSeries_ideal_le
Mathlib/Algebra/Lie/Nilpotent.lean
theorem LieModule.coe_lowerCentralSeries_ideal_le {I : LieIdeal R L} (k : ℕ) : LieSubmodule.toSubmodule (lowerCentralSeries R I I k) ≤ lowerCentralSeries R L I k
case succ.h R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L I : LieIdeal R L k : ℕ ih : ↑(lowerCentralSeries R (↥I) (↥I) k) ≤ ↑(lowerCentralSeries R L (↥I) k) ⊢ {x | ∃ x_1 n, ⁅↑x_1, ↑n⁆ = x} ⊆ {x | ∃ x_1 n, ⁅↑x_1, ↑n⁆ = x}
rintro x ⟨⟨y, -⟩, ⟨z, hz⟩, rfl : ⁅y, z⁆ = x⟩
case succ.h.intro.mk.intro.mk R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L I : LieIdeal R L k : ℕ ih : ↑(lowerCentralSeries R (↥I) (↥I) k) ≤ ↑(lowerCentralSeries R L (↥I) k) y z : ↥I hz : z ∈ lowerCentralSeries R (↥I) (↥I) k ⊢ ⁅y, z⁆ ∈ {x | ∃ x_1 n, ⁅↑x_1, ↑n⁆ = x}
e5e433f33f1be4b1
faaDiBruno_aux2
Mathlib/Analysis/Calculus/ContDiff/FaaDiBruno.lean
/-- Composing a formal multilinear series with an ordered partition extended by adding a left point to an already existing atom of index `i` corresponds to updating the `i`th block, using `p (c.partSize i + 1)` instead of `p (c.partSize i)` there. This is one of the terms that appears when differentiating in the Faa di Bruno formula, going from step `m` to step `m + 1`. -/ private lemma faaDiBruno_aux2 {m : ℕ} (q : FormalMultilinearSeries 𝕜 F G) (p : FormalMultilinearSeries 𝕜 E F) (c : OrderedFinpartition m) (i : Fin c.length) : (q.compAlongOrderedFinpartition p (c.extend (some i))).curryLeft = ((c.compAlongOrderedFinpartitionL 𝕜 E F G (q c.length)).toContinuousLinearMap (fun i ↦ p (c.partSize i)) i).comp (p (c.partSize i + 1)).curryLeft
𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace 𝕜 G m : ℕ q : FormalMultilinearSeries 𝕜 F G p : FormalMultilinearSeries 𝕜 E F c : OrderedFinpartition m e : E v : Fin m → E j : Fin c.length a✝ a : ℕ ha : a + 1 < update c.partSize j (c.partSize j + 1) j h'a : a + 1 < c.partSize j + 1 ⊢ (cons e v ∘ (fun i => cases 0 (succ ∘ c.emb j) i) ∘ Fin.cast ⋯) ⟨a + 1, ha⟩ = cons e (v ∘ c.emb j) ⟨a + 1, h'a⟩
simp [cons]
no goals
0043cf301ba04e46
OrderedFinpartition.range_emb_extendMiddle_ne_singleton_zero
Mathlib/Analysis/Calculus/ContDiff/FaaDiBruno.lean
lemma range_emb_extendMiddle_ne_singleton_zero (c : OrderedFinpartition n) (i j : Fin c.length) : range ((c.extendMiddle i).emb j) ≠ {0}
case inl n : ℕ c : OrderedFinpartition n j : Fin c.length h : range ((c.extendMiddle j).emb j) = {0} ⊢ False
have : Fin.succ (c.emb j 0) ∈ ({0} : Set (Fin n.succ)) := by rw [← h] simp only [Nat.succ_eq_add_one, mem_range] have A : (c.extendMiddle j).partSize j = c.partSize j + 1 := by simp [extendMiddle] refine ⟨Fin.cast A.symm (succ 0), ?_⟩ simp only [extendMiddle, ↓reduceDIte, comp_apply, cast_trans, cast_eq_self, cases_succ]
case inl n : ℕ c : OrderedFinpartition n j : Fin c.length h : range ((c.extendMiddle j).emb j) = {0} this : (c.emb j 0).succ ∈ {0} ⊢ False
e99d02d12c396e6f
Stream'.Seq.mem_rec_on
Mathlib/Data/Seq/Seq.lean
theorem mem_rec_on {C : Seq α → Prop} {a s} (M : a ∈ s) (h1 : ∀ b s', a = b ∨ C s' → C (cons b s')) : C s
case intro.succ α : Type u C : Seq α → Prop a : α h1 : ∀ (b : α) (s' : Seq α), a = b ∨ C s' → C (cons b s') k : ℕ IH : ∀ {s : Seq α}, some a = ↑s k → C s s : Seq α e : some a = ↑s (k + 1) ⊢ C s
cases s with | nil => injection e | cons b s' => have h_eq : (cons b s').val (Nat.succ k) = s'.val k := by cases s' using Subtype.recOn; rfl rw [h_eq] at e apply h1 _ _ (Or.inr (IH e))
no goals
6a5946c9fe3560f9
ContinuousMap.Homotopy.trans_apply
Mathlib/Topology/Homotopy/Basic.lean
theorem trans_apply {f₀ f₁ f₂ : C(X, Y)} (F : Homotopy f₀ f₁) (G : Homotopy f₁ f₂) (x : I × X) : (F.trans G) x = if h : (x.1 : ℝ) ≤ 1 / 2 then F (⟨2 * x.1, (unitInterval.mul_pos_mem_iff zero_lt_two).2 ⟨x.1.2.1, h⟩⟩, x.2) else G (⟨2 * x.1 - 1, unitInterval.two_mul_sub_one_mem_iff.2 ⟨(not_le.1 h).le, x.1.2.2⟩⟩, x.2) := show ite _ _ _ = _ by split_ifs <;> · rw [extend, ContinuousMap.coe_IccExtend, Set.IccExtend_of_mem] rfl
case neg X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y f₀ f₁ f₂ : C(X, Y) F : f₀.Homotopy f₁ G : f₁.Homotopy f₂ x : ↑I × X h✝ : ¬↑x.1 ≤ 1 / 2 ⊢ (G.curry ⟨2 * ↑x.1 - 1, ?neg.hx✝⟩) x.2 = G (⟨2 * ↑x.1 - 1, ⋯⟩, x.2) case neg.hx X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y f₀ f₁ f₂ : C(X, Y) F : f₀.Homotopy f₁ G : f₁.Homotopy f₂ x : ↑I × X h✝ : ¬↑x.1 ≤ 1 / 2 ⊢ 2 * ↑x.1 - 1 ∈ Set.Icc 0 1
rfl
no goals
97c86c1acd08df78
Nat.max_min_distrib_left
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Nat/Lemmas.lean
theorem max_min_distrib_left : ∀ (a b c : Nat), max a (min b c) = min (max a b) (max a c) | 0, _, _ => by simp only [Nat.zero_max] | _, 0, _ => by rw [Nat.zero_min, Nat.max_zero] exact Nat.min_eq_left (Nat.le_max_left ..) |>.symm | _, _, 0 => by rw [Nat.min_zero, Nat.max_zero] exact Nat.min_eq_right (Nat.le_max_left ..) |>.symm | _+1, _+1, _+1 => by simp only [Nat.succ_max_succ, Nat.succ_min_succ] exact congrArg succ <| Nat.max_min_distrib_left ..
n✝² n✝¹ n✝ : Nat ⊢ max (n✝² + 1) (min (n✝¹ + 1) (n✝ + 1)) = min (max (n✝² + 1) (n✝¹ + 1)) (max (n✝² + 1) (n✝ + 1))
simp only [Nat.succ_max_succ, Nat.succ_min_succ]
n✝² n✝¹ n✝ : Nat ⊢ (max n✝² (min n✝¹ n✝)).succ = (min (max n✝² n✝¹) (max n✝² n✝)).succ
5babdaa82bb6e3ee
List.foldr_filter
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Lemmas.lean
theorem foldr_filter (p : α → Bool) (f : α → β → β) (l : List α) (init : β) : (l.filter p).foldr f init = l.foldr (fun x y => if p x then f x y else y) init
case cons α : Type u_1 β : Type u_2 p : α → Bool f : α → β → β a : α l : List α ih : ∀ (init : β), foldr f init (filter p l) = foldr (fun x y => if p x = true then f x y else y) init l init : β ⊢ foldr f init (if p a = true then a :: filter p l else filter p l) = if p a = true then f a (foldr (fun x y => if p x = true then f x y else y) init l) else foldr (fun x y => if p x = true then f x y else y) init l
split <;> simp [ih]
no goals
643547fd2eee8a3a
Cardinal.mk_of_countable_eventually_mem
Mathlib/SetTheory/Cardinal/CountableCover.lean
/-- If a space is eventually covered by a countable family of sets, all with cardinality `a`, then the cardinality of the space is also `a`. -/ lemma mk_of_countable_eventually_mem {α : Type u} {ι : Type v} {a : Cardinal} [Countable ι] {f : ι → Set α} {l : Filter ι} [NeBot l] (ht : ∀ x, ∀ᶠ i in l, x ∈ f i) (h'f : ∀ i, #(f i) = a) : #α = a
case a.intro α : Type u ι : Type v a : Cardinal.{u} inst✝¹ : Countable ι f : ι → Set α l : Filter ι inst✝ : l.NeBot ht : ∀ (x : α), ∀ᶠ (i : ι) in l, x ∈ f i h'f : ∀ (i : ι), #↑(f i) = a i : ι ⊢ #↑(f i) ≤ #α
exact mk_set_le (f i)
no goals
d9e0f5ddad582230
Std.Tactic.BVDecide.BVExpr.bitblast.blastMul.go_denote_eq
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BVExpr/Circuit/Lemmas/Operations/Mul.lean
theorem go_denote_eq {w : Nat} (aig : AIG BVBit) (curr : Nat) (hcurr : curr + 1 ≤ w) (acc : AIG.RefVec aig w) (lhs rhs : AIG.RefVec aig w) (lexpr rexpr : BitVec w) (assign : Assignment) (hleft : ∀ (idx : Nat) (hidx : idx < w), ⟦aig, lhs.get idx hidx, assign.toAIGAssignment⟧ = lexpr.getLsbD idx) (hright : ∀ (idx : Nat) (hidx : idx < w), ⟦aig, rhs.get idx hidx, assign.toAIGAssignment⟧ = rexpr.getLsbD idx) (hacc : ∀ (idx : Nat) (hidx : idx < w), ⟦aig, acc.get idx hidx, assign.toAIGAssignment⟧ = (BitVec.mulRec lexpr rexpr curr).getLsbD idx) : ∀ (idx : Nat) (hidx : idx < w), ⟦ (go aig lhs rhs (curr + 1) acc).aig, (go aig lhs rhs (curr + 1) acc).vec.get idx hidx, assign.toAIGAssignment ⟧ = (BitVec.mulRec lexpr rexpr w).getLsbD idx
case hright.isFalse w : Nat aig : AIG BVBit curr : Nat hcurr : curr + 1 ≤ w acc lhs rhs : aig.RefVec w lexpr rexpr : BitVec w assign : Assignment hleft : ∀ (idx : Nat) (hidx : idx < w), ⟦assign.toAIGAssignment, { aig := aig, ref := lhs.get idx hidx }⟧ = lexpr.getLsbD idx hright : ∀ (idx : Nat) (hidx : idx < w), ⟦assign.toAIGAssignment, { aig := aig, ref := rhs.get idx hidx }⟧ = rexpr.getLsbD idx hacc : ∀ (idx : Nat) (hidx : idx < w), ⟦assign.toAIGAssignment, { aig := aig, ref := acc.get idx hidx }⟧ = (lexpr.mulRec rexpr curr).getLsbD idx idx✝¹ : Nat hidx✝¹ : idx✝¹ < w res : RefVecEntry BVBit w h✝² : curr + 1 < w h✝¹ : ¬aig.isConstant (rhs.get (curr + 1) h✝²) false = true hgo : go (RefVec.ite (blastAdd (blastShiftLeftConst aig { vec := lhs, distance := curr + 1 }).aig { lhs := acc.cast ⋯, rhs := (blastShiftLeftConst aig { vec := lhs, distance := curr + 1 }).vec }).aig { discr := ((rhs.cast ⋯).cast ⋯).get (curr + 1) h✝², lhs := (blastAdd (blastShiftLeftConst aig { vec := lhs, distance := curr + 1 }).aig { lhs := acc.cast ⋯, rhs := (blastShiftLeftConst aig { vec := lhs, distance := curr + 1 }).vec }).vec, rhs := (acc.cast ⋯).cast ⋯ }).aig (((lhs.cast ⋯).cast ⋯).cast ⋯) (((rhs.cast ⋯).cast ⋯).cast ⋯) (curr + 1 + 1) (RefVec.ite (blastAdd (blastShiftLeftConst aig { vec := lhs, distance := curr + 1 }).aig { lhs := acc.cast ⋯, rhs := (blastShiftLeftConst aig { vec := lhs, distance := curr + 1 }).vec }).aig { discr := ((rhs.cast ⋯).cast ⋯).get (curr + 1) h✝², lhs := (blastAdd (blastShiftLeftConst aig { vec := lhs, distance := curr + 1 }).aig { lhs := acc.cast ⋯, rhs := (blastShiftLeftConst aig { vec := lhs, distance := curr + 1 }).vec }).vec, rhs := (acc.cast ⋯).cast ⋯ }).vec = res idx : Nat hidx : idx < w hdiscr : ⟦assign.toAIGAssignment, { aig := (blastAdd (blastShiftLeftConst aig { vec := lhs, distance := curr + 1 }).aig { lhs := acc.cast ⋯, rhs := (blastShiftLeftConst aig { vec := lhs, distance := curr + 1 }).vec }).aig, ref := { gate := (rhs.get (curr + 1) h✝²).gate, hgate := ⋯ } }⟧ = true this : rexpr.getLsbD (curr + 1) = true idx✝ : Nat hidx✝ : idx✝ < w h✝ : ¬idx✝ < curr + 1 ⊢ ⟦assign.toAIGAssignment, { aig := aig, ref := lhs.get (idx✝ - (curr + 1)) ⋯ }⟧ = (decide (idx✝ < w) && !decide (idx✝ < curr + 1) && lexpr.getLsbD (idx✝ - (curr + 1)))
next hidx hdiscr => rw [hleft] simp [hdiscr, hidx]
no goals
45666f07d8b1c2e0
Std.Tactic.BVDecide.Normalize.BitVec.zero_ult'
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Normalize/BitVec.lean
theorem BitVec.zero_ult' (a : BitVec w) : (BitVec.ult 0#w a) = (!a == 0#w)
w : Nat a : BitVec w this : (0#w).ult a = true ↔ a ≠ 0#w h : (0#w).ult a = false ⊢ false = !a == 0#w
simp_all
no goals
c4d8492ddce2ea3b
List.prod_hom
Mathlib/Algebra/BigOperators/Group/List/Basic.lean
theorem prod_hom (l : List M) {F : Type*} [FunLike F M N] [MonoidHomClass F M N] (f : F) : (l.map f).prod = f l.prod
M : Type u_4 N : Type u_5 inst✝³ : Monoid M inst✝² : Monoid N l : List M F : Type u_8 inst✝¹ : FunLike F M N inst✝ : MonoidHomClass F M N f : F ⊢ (map (⇑f) l).prod = f l.prod
simp only [prod, foldr_map, ← map_one f]
M : Type u_4 N : Type u_5 inst✝³ : Monoid M inst✝² : Monoid N l : List M F : Type u_8 inst✝¹ : FunLike F M N inst✝ : MonoidHomClass F M N f : F ⊢ foldr (fun x y => f x * y) (f 1) l = f (foldr (fun x1 x2 => x1 * x2) 1 l)
590c41e34fac98c3
PicardLindelof.FunSpace.dist_next_apply_le_of_le
Mathlib/Analysis/ODE/PicardLindelof.lean
theorem dist_next_apply_le_of_le {f₁ f₂ : FunSpace v} {n : ℕ} {d : ℝ} (h : ∀ t, dist (f₁ t) (f₂ t) ≤ (v.L * |t.1 - v.t₀|) ^ n / n ! * d) (t : Icc v.tMin v.tMax) : dist (next f₁ t) (next f₂ t) ≤ (v.L * |t.1 - v.t₀|) ^ (n + 1) / (n + 1)! * d
E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E v : PicardLindelof E f₁ f₂ : v.FunSpace n : ℕ d : ℝ t : ↑(Icc v.tMin v.tMax) h : ∀ (t : ↑(Icc v.tMin v.tMax)), ‖f₁.toFun t - f₂.toFun t‖ ≤ (↑v.L * |↑t - ↑v.t₀|) ^ n / ↑n ! * d τ : ℝ hτ : τ ∈ Ioc (↑v.t₀ ⊓ ↑t) (↑v.t₀ ⊔ ↑t) ⊢ ‖f₁.vComp τ - f₂.vComp τ‖ ≤ ↑v.L * ((↑v.L * |τ - ↑v.t₀|) ^ n / ↑n ! * d)
refine (v.lipschitzOnWith (v.proj τ).2).norm_sub_le_of_le (f₁.mem_closedBall _) (f₂.mem_closedBall _) ((h _).trans_eq ?_)
E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E v : PicardLindelof E f₁ f₂ : v.FunSpace n : ℕ d : ℝ t : ↑(Icc v.tMin v.tMax) h : ∀ (t : ↑(Icc v.tMin v.tMax)), ‖f₁.toFun t - f₂.toFun t‖ ≤ (↑v.L * |↑t - ↑v.t₀|) ^ n / ↑n ! * d τ : ℝ hτ : τ ∈ Ioc (↑v.t₀ ⊓ ↑t) (↑v.t₀ ⊔ ↑t) ⊢ (↑v.L * |↑(v.proj τ) - ↑v.t₀|) ^ n / ↑n ! * d = (↑v.L * |τ - ↑v.t₀|) ^ n / ↑n ! * d
9f96a1fd526331f6
with_gaugeSeminormFamily
Mathlib/Analysis/LocallyConvex/AbsConvexOpen.lean
theorem with_gaugeSeminormFamily : WithSeminorms (gaugeSeminormFamily 𝕜 E)
case refine_2 𝕜 : Type u_1 E : Type u_2 inst✝¹⁰ : RCLike 𝕜 inst✝⁹ : AddCommGroup E inst✝⁸ : TopologicalSpace E inst✝⁷ : Module 𝕜 E inst✝⁶ : Module ℝ E inst✝⁵ : IsScalarTower ℝ 𝕜 E inst✝⁴ : ContinuousSMul ℝ E inst✝³ : IsTopologicalAddGroup E inst✝² : ContinuousSMul 𝕜 E inst✝¹ : SMulCommClass ℝ 𝕜 E inst✝ : LocallyConvexSpace ℝ E s : Set E hs : ∃ i r, 0 < r ∧ s = (i.sup (gaugeSeminormFamily 𝕜 E)).ball 0 r ⊢ 0 ∈ s ∧ IsOpen s ∧ AbsConvex 𝕜 s
rcases hs with ⟨t, r, hr, rfl⟩
case refine_2.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 inst✝¹⁰ : RCLike 𝕜 inst✝⁹ : AddCommGroup E inst✝⁸ : TopologicalSpace E inst✝⁷ : Module 𝕜 E inst✝⁶ : Module ℝ E inst✝⁵ : IsScalarTower ℝ 𝕜 E inst✝⁴ : ContinuousSMul ℝ E inst✝³ : IsTopologicalAddGroup E inst✝² : ContinuousSMul 𝕜 E inst✝¹ : SMulCommClass ℝ 𝕜 E inst✝ : LocallyConvexSpace ℝ E t : Finset (AbsConvexOpenSets 𝕜 E) r : ℝ hr : 0 < r ⊢ 0 ∈ (t.sup (gaugeSeminormFamily 𝕜 E)).ball 0 r ∧ IsOpen ((t.sup (gaugeSeminormFamily 𝕜 E)).ball 0 r) ∧ AbsConvex 𝕜 ((t.sup (gaugeSeminormFamily 𝕜 E)).ball 0 r)
e22eb7b3cab52675
AddMonoidHom.exact_iff_of_surjective_of_bijective_of_injective
Mathlib/Algebra/Exact.lean
/-- When we have a commutative diagram from a sequence of two maps to another, such that the left vertical map is surjective, the middle vertical map is bijective and the right vertical map is injective, then the upper row is exact iff the lower row is. See `ShortComplex.exact_iff_of_epi_of_isIso_of_mono` in the file `Algebra.Homology.ShortComplex.Exact` for the categorical version of this result. -/ lemma exact_iff_of_surjective_of_bijective_of_injective {M₁ M₂ M₃ N₁ N₂ N₃ : Type*} [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid M₃] [AddCommMonoid N₁] [AddCommMonoid N₂] [AddCommMonoid N₃] (f : M₁ →+ M₂) (g : M₂ →+ M₃) (f' : N₁ →+ N₂) (g' : N₂ →+ N₃) (τ₁ : M₁ →+ N₁) (τ₂ : M₂ →+ N₂) (τ₃ : M₃ →+ N₃) (comm₁₂ : f'.comp τ₁ = τ₂.comp f) (comm₂₃ : g'.comp τ₂ = τ₃.comp g) (h₁ : Function.Surjective τ₁) (h₂ : Function.Bijective τ₂) (h₃ : Function.Injective τ₃) : Exact f g ↔ Exact f' g'
M₁ : Type u_8 M₂ : Type u_9 M₃ : Type u_10 N₁ : Type u_11 N₂ : Type u_12 N₃ : Type u_13 inst✝⁵ : AddCommMonoid M₁ inst✝⁴ : AddCommMonoid M₂ inst✝³ : AddCommMonoid M₃ inst✝² : AddCommMonoid N₁ inst✝¹ : AddCommMonoid N₂ inst✝ : AddCommMonoid N₃ f : M₁ →+ M₂ g : M₂ →+ M₃ f' : N₁ →+ N₂ g' : N₂ →+ N₃ τ₁ : M₁ →+ N₁ τ₂ : M₂ →+ N₂ τ₃ : M₃ →+ N₃ h₁ : Surjective ⇑τ₁ h₂ : Bijective ⇑τ₂ h₃ : Injective ⇑τ₃ comm₁₂ : ∀ (x : M₁), f' (τ₁ x) = τ₂ (f x) comm₂₃ : ∀ (x : M₂), g' (τ₂ x) = τ₃ (g x) h : Exact ⇑f ⇑g x₂ : M₂ x₁ : M₁ hy₁ : f' (τ₁ x₁) = τ₂ x₂ ⊢ τ₂ (f x₁) = τ₂ x₂
simpa only [comm₁₂] using hy₁
no goals
ba6ec98108593bea
MeasureTheory.integral_divergence_prod_Icc_of_hasFDerivWithinAt_off_countable_of_le
Mathlib/MeasureTheory/Integral/DivergenceTheorem.lean
theorem integral_divergence_prod_Icc_of_hasFDerivWithinAt_off_countable_of_le (f g : ℝ × ℝ → E) (f' g' : ℝ × ℝ → ℝ × ℝ →L[ℝ] E) (a b : ℝ × ℝ) (hle : a ≤ b) (s : Set (ℝ × ℝ)) (hs : s.Countable) (Hcf : ContinuousOn f (Icc a b)) (Hcg : ContinuousOn g (Icc a b)) (Hdf : ∀ x ∈ Ioo a.1 b.1 ×ˢ Ioo a.2 b.2 \ s, HasFDerivAt f (f' x) x) (Hdg : ∀ x ∈ Ioo a.1 b.1 ×ˢ Ioo a.2 b.2 \ s, HasFDerivAt g (g' x) x) (Hi : IntegrableOn (fun x => f' x (1, 0) + g' x (0, 1)) (Icc a b)) : (∫ x in Icc a b, f' x (1, 0) + g' x (0, 1)) = (((∫ x in a.1..b.1, g (x, b.2)) - ∫ x in a.1..b.1, g (x, a.2)) + ∫ y in a.2..b.2, f (b.1, y)) - ∫ y in a.2..b.2, f (a.1, y) := let e : (ℝ × ℝ) ≃L[ℝ] ℝ² := (ContinuousLinearEquiv.finTwoArrow ℝ ℝ).symm calc (∫ x in Icc a b, f' x (1, 0) + g' x (0, 1)) = ∑ i : Fin 2, ((∫ x in Icc (e a ∘ i.succAbove) (e b ∘ i.succAbove), ![f, g] i (e.symm <| i.insertNth (e b i) x)) - ∫ x in Icc (e a ∘ i.succAbove) (e b ∘ i.succAbove), ![f, g] i (e.symm <| i.insertNth (e a i) x))
E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f g : ℝ × ℝ → E f' g' : ℝ × ℝ → ℝ × ℝ →L[ℝ] E a b : ℝ × ℝ hle : a ≤ b s : Set (ℝ × ℝ) hs : s.Countable Hcf : ContinuousOn f (Set.Icc a b) Hcg : ContinuousOn g (Set.Icc a b) Hdf : ∀ x ∈ Set.Ioo a.1 b.1 ×ˢ Set.Ioo a.2 b.2 \ s, HasFDerivAt f (f' x) x Hdg : ∀ x ∈ Set.Ioo a.1 b.1 ×ˢ Set.Ioo a.2 b.2 \ s, HasFDerivAt g (g' x) x Hi : IntegrableOn (fun x => (f' x) (1, 0) + (g' x) (0, 1)) (Set.Icc a b) volume e : (ℝ × ℝ) ≃L[ℝ] Fin 2 → ℝ := (ContinuousLinearEquiv.finTwoArrow ℝ ℝ).symm ⊢ ((∫ (y : ℝ) in Set.Icc a.2 b.2, f (b.1, y)) - ∫ (y : ℝ) in Set.Icc a.2 b.2, f (a.1, y)) + ((∫ (x : ℝ) in Set.Icc a.1 b.1, g (x, b.2)) - ∫ (x : ℝ) in Set.Icc a.1 b.1, g (x, a.2)) = (((∫ (x : ℝ) in Set.Icc a.1 b.1, g (x, b.2)) - ∫ (x : ℝ) in Set.Icc a.1 b.1, g (x, a.2)) + ∫ (y : ℝ) in Set.Icc a.2 b.2, f (b.1, y)) - ∫ (y : ℝ) in Set.Icc a.2 b.2, f (a.1, y)
abel
no goals
8e922847faa040ee
EulerProduct.one_sub_inv_eq_geometric_of_summable_norm
Mathlib/NumberTheory/EulerProduct/Basic.lean
lemma one_sub_inv_eq_geometric_of_summable_norm {f : ℕ →*₀ F} {p : ℕ} (hp : p.Prime) (hsum : Summable fun x ↦ ‖f x‖) : (1 - f p)⁻¹ = ∑' (e : ℕ), f (p ^ e)
F : Type u_1 inst✝¹ : NormedField F inst✝ : CompleteSpace F f : ℕ →*₀ F p : ℕ hp : Nat.Prime p hsum : Summable fun x => ‖f x‖ ⊢ (1 - f p)⁻¹ = ∑' (e : ℕ), f p ^ e
refine (tsum_geometric_of_norm_lt_one <| summable_geometric_iff_norm_lt_one.mp ?_).symm
F : Type u_1 inst✝¹ : NormedField F inst✝ : CompleteSpace F f : ℕ →*₀ F p : ℕ hp : Nat.Prime p hsum : Summable fun x => ‖f x‖ ⊢ Summable fun n => f p ^ n
bde940928d778afb
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.mem_of_insertRatUnits
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/Lemmas.lean
theorem mem_of_insertRatUnits {n : Nat} (f : DefaultFormula n) (units : CNF.Clause (PosFin n)) (c : DefaultClause n) : c ∈ toList (insertRatUnits f units).1 → c ∈ units.map Clause.unit ∨ c ∈ toList f
case isFalse.inr n : Nat f : DefaultFormula n units : CNF.Clause (PosFin n) c : DefaultClause n h : some c ∈ f.clauses.toList ∨ (∃ a, (a, false) ∈ f.rupUnits.toList ∧ Std.Tactic.BVDecide.LRAT.Internal.DefaultClause.unit (a, false) = c ∨ (a, true) ∈ f.rupUnits.toList ∧ Std.Tactic.BVDecide.LRAT.Internal.DefaultClause.unit (a, true) = c) ∨ ∃ a, (a, false) ∈ (List.foldl insertUnit (f.ratUnits, f.assignments, false) units).fst.toList ∧ Std.Tactic.BVDecide.LRAT.Internal.DefaultClause.unit (a, false) = c ∨ (a, true) ∈ (List.foldl insertUnit (f.ratUnits, f.assignments, false) units).fst.toList ∧ Std.Tactic.BVDecide.LRAT.Internal.DefaultClause.unit (a, true) = c hb : ∀ (l : Literal (PosFin n)), l ∈ (f.ratUnits, f.assignments, false).fst.toList → l ∈ f.ratUnits.toList ∨ l ∈ units acc : Array (Literal (PosFin n)) × Array Assignment × Bool ih : ∀ (l : Literal (PosFin n)), l ∈ acc.fst.toList → l ∈ f.ratUnits.toList ∨ l ∈ units unit : Literal (PosFin n) unit_in_units : unit ∈ units l : Literal (PosFin n) h✝ : ¬hasAssignment unit.snd acc.2.fst[unit.fst.val]! = true l_eq_unit : l = (unit.fst, unit.snd) ⊢ l ∈ f.ratUnits.toList ∨ l ∈ units
rw [l_eq_unit]
case isFalse.inr n : Nat f : DefaultFormula n units : CNF.Clause (PosFin n) c : DefaultClause n h : some c ∈ f.clauses.toList ∨ (∃ a, (a, false) ∈ f.rupUnits.toList ∧ Std.Tactic.BVDecide.LRAT.Internal.DefaultClause.unit (a, false) = c ∨ (a, true) ∈ f.rupUnits.toList ∧ Std.Tactic.BVDecide.LRAT.Internal.DefaultClause.unit (a, true) = c) ∨ ∃ a, (a, false) ∈ (List.foldl insertUnit (f.ratUnits, f.assignments, false) units).fst.toList ∧ Std.Tactic.BVDecide.LRAT.Internal.DefaultClause.unit (a, false) = c ∨ (a, true) ∈ (List.foldl insertUnit (f.ratUnits, f.assignments, false) units).fst.toList ∧ Std.Tactic.BVDecide.LRAT.Internal.DefaultClause.unit (a, true) = c hb : ∀ (l : Literal (PosFin n)), l ∈ (f.ratUnits, f.assignments, false).fst.toList → l ∈ f.ratUnits.toList ∨ l ∈ units acc : Array (Literal (PosFin n)) × Array Assignment × Bool ih : ∀ (l : Literal (PosFin n)), l ∈ acc.fst.toList → l ∈ f.ratUnits.toList ∨ l ∈ units unit : Literal (PosFin n) unit_in_units : unit ∈ units l : Literal (PosFin n) h✝ : ¬hasAssignment unit.snd acc.2.fst[unit.fst.val]! = true l_eq_unit : l = (unit.fst, unit.snd) ⊢ (unit.fst, unit.snd) ∈ f.ratUnits.toList ∨ (unit.fst, unit.snd) ∈ units
5c2f0ea4a0a97aee
WithSeminorms.partial_sups
Mathlib/Analysis/LocallyConvex/WithSeminorms.lean
theorem partial_sups [Preorder ι] [LocallyFiniteOrderBot ι] {p : SeminormFamily 𝕜 E ι} [TopologicalSpace E] (hp : WithSeminorms p) : WithSeminorms (fun i ↦ (Finset.Iic i).sup p)
case refine_2 𝕜 : Type u_1 E : Type u_5 ι : Type u_8 inst✝⁶ : Nonempty ι inst✝⁵ : NormedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : Preorder ι inst✝¹ : LocallyFiniteOrderBot ι p : SeminormFamily 𝕜 E ι inst✝ : TopologicalSpace E hp : WithSeminorms p ⊢ Seminorm.IsBounded (fun i => (Finset.Iic i).sup p) p LinearMap.id
intro i
case refine_2 𝕜 : Type u_1 E : Type u_5 ι : Type u_8 inst✝⁶ : Nonempty ι inst✝⁵ : NormedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : Preorder ι inst✝¹ : LocallyFiniteOrderBot ι p : SeminormFamily 𝕜 E ι inst✝ : TopologicalSpace E hp : WithSeminorms p i : ι ⊢ ∃ s C, (p i).comp LinearMap.id ≤ C • s.sup fun i => (Finset.Iic i).sup p
ce17cfd18290d498
SimpleGraph.cliqueFree_bot
Mathlib/Combinatorics/SimpleGraph/Clique.lean
theorem cliqueFree_bot (h : 2 ≤ n) : (⊥ : SimpleGraph α).CliqueFree n
α : Type u_1 n : ℕ h : 2 ≤ n ⊢ ⊥.CliqueFree n
intro t ht
α : Type u_1 n : ℕ h : 2 ≤ n t : Finset α ht : ⊥.IsNClique n t ⊢ False
88c43026a060bfb8
Finsupp.ext_iff'
Mathlib/Data/Finsupp/Defs.lean
theorem ext_iff' {f g : α →₀ M} : f = g ↔ f.support = g.support ∧ ∀ x ∈ f.support, f x = g x := ⟨fun h => h ▸ ⟨rfl, fun _ _ => rfl⟩, fun ⟨h₁, h₂⟩ => ext fun a => by classical exact if h : a ∈ f.support then h₂ a h else by have hf : f a = 0 := not_mem_support_iff.1 h have hg : g a = 0
α : Type u_1 M : Type u_5 inst✝ : Zero M f g : α →₀ M x✝ : f.support = g.support ∧ ∀ x ∈ f.support, f x = g x h₁ : f.support = g.support h₂ : ∀ x ∈ f.support, f x = g x a : α ⊢ f a = g a
exact if h : a ∈ f.support then h₂ a h else by have hf : f a = 0 := not_mem_support_iff.1 h have hg : g a = 0 := by rwa [h₁, not_mem_support_iff] at h rw [hf, hg]
no goals
932fff80e8bf85f1
Polynomial.supDegree_eq_natDegree
Mathlib/Algebra/Polynomial/Degree/Support.lean
theorem supDegree_eq_natDegree (p : R[X]) : p.toFinsupp.supDegree id = p.natDegree
case inr R : Type u inst✝ : Semiring R p : R[X] h : p ≠ 0 ⊢ AddMonoidAlgebra.supDegree id p.toFinsupp = p.natDegree
apply WithBot.coe_injective
case inr.a R : Type u inst✝ : Semiring R p : R[X] h : p ≠ 0 ⊢ ↑(AddMonoidAlgebra.supDegree id p.toFinsupp) = ↑p.natDegree
03091986e76bfab5
Finset.prod_eq_prod_iff_of_le
Mathlib/Algebra/Order/BigOperators/Group/Finset.lean
theorem prod_eq_prod_iff_of_le {f g : ι → M} (h : ∀ i ∈ s, f i ≤ g i) : ((∏ i ∈ s, f i) = ∏ i ∈ s, g i) ↔ ∀ i ∈ s, f i = g i
ι : Type u_1 M : Type u_4 inst✝ : OrderedCancelCommMonoid M s : Finset ι f g : ι → M h : ∀ i ∈ s, f i ≤ g i ⊢ ∏ i ∈ s, f i = ∏ i ∈ s, g i ↔ ∀ i ∈ s, f i = g i
classical revert h refine Finset.induction_on s (fun _ ↦ ⟨fun _ _ h ↦ False.elim (Finset.not_mem_empty _ h), fun _ ↦ rfl⟩) fun a s ha ih H ↦ ?_ specialize ih fun i ↦ H i ∘ Finset.mem_insert_of_mem rw [Finset.prod_insert ha, Finset.prod_insert ha, Finset.forall_mem_insert, ← ih] exact mul_eq_mul_iff_eq_and_eq (H a (s.mem_insert_self a)) (Finset.prod_le_prod' fun i ↦ H i ∘ Finset.mem_insert_of_mem)
no goals
a26b5c2a23f9ab34
LinearMap.continuous_of_isClosed_graph
Mathlib/Analysis/Normed/Operator/Banach.lean
theorem LinearMap.continuous_of_isClosed_graph (hg : IsClosed (g.graph : Set <| E × F)) : Continuous g
𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_3 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : CompleteSpace E F : Type u_5 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : CompleteSpace F g : E →ₗ[𝕜] F hg : IsClosed ↑g.graph this✝ : CompleteSpace ↥g.graph := completeSpace_coe_iff_isComplete.mpr (IsClosed.isComplete hg) φ₀ : E →ₗ[𝕜] E × F := id.prod g this : LeftInverse Prod.fst ⇑φ₀ ⊢ Continuous ⇑g
let φ : E ≃ₗ[𝕜] g.graph := (LinearEquiv.ofLeftInverse this).trans (LinearEquiv.ofEq _ _ g.graph_eq_range_prod.symm)
𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_3 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : CompleteSpace E F : Type u_5 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : CompleteSpace F g : E →ₗ[𝕜] F hg : IsClosed ↑g.graph this✝ : CompleteSpace ↥g.graph := completeSpace_coe_iff_isComplete.mpr (IsClosed.isComplete hg) φ₀ : E →ₗ[𝕜] E × F := id.prod g this : LeftInverse Prod.fst ⇑φ₀ φ : E ≃ₗ[𝕜] ↥g.graph := LinearEquiv.ofLeftInverse this ≪≫ₗ LinearEquiv.ofEq (range φ₀) g.graph ⋯ ⊢ Continuous ⇑g
fb516bea31e9047b
Lake.BuildKey.eq_of_quickCmp
Mathlib/.lake/packages/lean4/src/lean/lake/Lake/Build/Key.lean
theorem eq_of_quickCmp {k k' : BuildKey} : quickCmp k k' = Ordering.eq → k = k'
m f m' f' : Name x✝ : Ordering m_eq : m.quickCmp m' = Ordering.eq ⊢ f.quickCmp f' = Ordering.eq → moduleFacet m f = moduleFacet m' f'
intro f_eq
m f m' f' : Name x✝ : Ordering m_eq : m.quickCmp m' = Ordering.eq f_eq : f.quickCmp f' = Ordering.eq ⊢ moduleFacet m f = moduleFacet m' f'
6e2940eeabc7d427
Turing.ListBlank.map_modifyNth
Mathlib/Computability/Tape.lean
theorem ListBlank.map_modifyNth {Γ Γ'} [Inhabited Γ] [Inhabited Γ'] (F : PointedMap Γ Γ') (f : Γ → Γ) (f' : Γ' → Γ') (H : ∀ x, F (f x) = f' (F x)) (n) (L : ListBlank Γ) : (L.modifyNth f n).map F = (L.map F).modifyNth f' n
Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' F : PointedMap Γ Γ' f : Γ → Γ f' : Γ' → Γ' H : ∀ (x : Γ), F.f (f x) = f' (F.f x) n : ℕ L : ListBlank Γ ⊢ map F (modifyNth f n L) = modifyNth f' n (map F L)
induction' n with n IH generalizing L <;> simp only [*, ListBlank.head_map, ListBlank.modifyNth, ListBlank.map_cons, ListBlank.tail_map]
no goals
b9a1b989ab4f3864
UniformSpace.metrizable_uniformity
Mathlib/Topology/Metrizable/Uniformity.lean
theorem UniformSpace.metrizable_uniformity (X : Type*) [UniformSpace X] [IsCountablyGenerated (𝓤 X)] : ∃ I : PseudoMetricSpace X, I.toUniformSpace = ‹_›
X : Type u_2 inst✝¹ : UniformSpace X inst✝ : (𝓤 X).IsCountablyGenerated U : ℕ → Set (X × X) hU_symm : ∀ (n : ℕ), SymmetricRel (U n) hU_comp : ∀ ⦃m n : ℕ⦄, m < n → U n ○ (U n ○ U n) ⊆ U m hB : (𝓤 X).HasAntitoneBasis U d : X → X → ℝ≥0 := fun x y => if h : ∃ n, (x, y) ∉ U n then (1 / 2) ^ Nat.find h else 0 x y : X ⊢ d x y = 0 ↔ Inseparable x y
refine Iff.trans ?_ hB.inseparable_iff_uniformity.symm
X : Type u_2 inst✝¹ : UniformSpace X inst✝ : (𝓤 X).IsCountablyGenerated U : ℕ → Set (X × X) hU_symm : ∀ (n : ℕ), SymmetricRel (U n) hU_comp : ∀ ⦃m n : ℕ⦄, m < n → U n ○ (U n ○ U n) ⊆ U m hB : (𝓤 X).HasAntitoneBasis U d : X → X → ℝ≥0 := fun x y => if h : ∃ n, (x, y) ∉ U n then (1 / 2) ^ Nat.find h else 0 x y : X ⊢ d x y = 0 ↔ ∀ (i : ℕ), True → (x, y) ∈ U i
6b4b13aa9c62ee27
Matroid.comapOn_dual_eq_of_bijOn
Mathlib/Data/Matroid/Map.lean
lemma comapOn_dual_eq_of_bijOn (h : BijOn f E N.E) : (N.comapOn E f)✶ = N✶.comapOn E f
α : Type u_1 β : Type u_2 f : α → β N : Matroid β E : Set α h : BijOn f E N.E B : Set α hB : B ⊆ (N.comapOn E f)✶.E ⊢ (N.comapOn E f)✶.IsBase B ↔ (N✶.comapOn E f).IsBase B
rw [comapOn_isBase_iff_of_bijOn (by simpa), dual_isBase_iff, comapOn_isBase_iff_of_bijOn h, dual_isBase_iff _, comapOn_ground_eq, and_iff_left diff_subset, and_iff_left (by simpa), h.injOn.image_diff_subset (by simpa), h.image_eq]
α : Type u_1 β : Type u_2 f : α → β N : Matroid β E : Set α h : BijOn f E N.E B : Set α hB : B ⊆ (N.comapOn E f)✶.E ⊢ f '' B ⊆ N.E
c484423ed0aeb005
List.Sorted.orderedInsert
Mathlib/Data/List/Sort.lean
theorem Sorted.orderedInsert (a : α) : ∀ l, Sorted r l → Sorted r (orderedInsert r a l) | [], _ => sorted_singleton a | b :: l, h => by by_cases h' : a ≼ b · -- Porting note: was -- `simpa [orderedInsert, h', h] using fun b' bm => trans h' (rel_of_sorted_cons h _ bm)` rw [List.orderedInsert, if_pos h', sorted_cons] exact ⟨forall_mem_cons.2 ⟨h', fun c hc => _root_.trans h' (rel_of_sorted_cons h _ hc)⟩, h⟩ · suffices ∀ b' : α, b' ∈ List.orderedInsert r a l → r b b' by simpa [orderedInsert, h', h.of_cons.orderedInsert a l] intro b' bm rcases (mem_orderedInsert r).mp bm with be | bm · subst b' exact (total_of r _ _).resolve_left h' · exact rel_of_sorted_cons h _ bm
case neg.inr α : Type u r : α → α → Prop inst✝² : DecidableRel r inst✝¹ : IsTotal α r inst✝ : IsTrans α r a b : α l : List α h : Sorted r (b :: l) h' : ¬r a b b' : α bm✝ : b' ∈ List.orderedInsert r a l bm : b' ∈ l ⊢ r b b'
exact rel_of_sorted_cons h _ bm
no goals
da6a875b540ed7f6
lp.norm_apply_le_norm
Mathlib/Analysis/Normed/Lp/lpSpace.lean
theorem norm_apply_le_norm (hp : p ≠ 0) (f : lp E p) (i : α) : ‖f i‖ ≤ ‖f‖
case inr α : Type u_3 E : α → Type u_4 p : ℝ≥0∞ inst✝ : (i : α) → NormedAddCommGroup (E i) hp : p ≠ 0 f : ↥(lp E p) i : α hp' : p ≠ ⊤ hp'' : 0 < p.toReal this : ∀ (i : α), 0 ≤ ‖↑f i‖ ^ p.toReal ⊢ ‖↑f i‖ ^ p.toReal ≤ ‖f‖ ^ p.toReal
convert le_hasSum (hasSum_norm hp'' f) i fun i _ => this i
no goals
f154c1ebf1cb56a2
MeasureTheory.L1.SimpleFunc.integral_eq_norm_posPart_sub
Mathlib/MeasureTheory/Integral/BochnerL1.lean
theorem integral_eq_norm_posPart_sub (f : α →₁ₛ[μ] ℝ) : integral f = ‖posPart f‖ - ‖negPart f‖
case h α : Type u_1 m : MeasurableSpace α μ : Measure α f : ↥(simpleFunc ℝ 1 μ) a✝ : α h : (toSimpleFunc (posPart f)) a✝ = (toSimpleFunc f).posPart a✝ ⊢ (toSimpleFunc f).posPart a✝ = (SimpleFunc.map norm (toSimpleFunc (posPart f))) a✝
rw [SimpleFunc.map_apply, h]
case h α : Type u_1 m : MeasurableSpace α μ : Measure α f : ↥(simpleFunc ℝ 1 μ) a✝ : α h : (toSimpleFunc (posPart f)) a✝ = (toSimpleFunc f).posPart a✝ ⊢ (toSimpleFunc f).posPart a✝ = ‖(toSimpleFunc f).posPart a✝‖
464e4ba9ec3511ad
ContinuousLinearEquiv.nhds
Mathlib/Analysis/Normed/Operator/BoundedLinearMaps.lean
theorem nhds [CompleteSpace E] (e : E ≃L[𝕜] F) : range ((↑) : (E ≃L[𝕜] F) → E →L[𝕜] F) ∈ 𝓝 (e : E →L[𝕜] F) := IsOpen.mem_nhds ContinuousLinearEquiv.isOpen (by simp)
𝕜 : Type u_1 inst✝⁵ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace 𝕜 E F : Type u_3 inst✝² : SeminormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : CompleteSpace E e : E ≃L[𝕜] F ⊢ ↑e ∈ range toContinuousLinearMap
simp
no goals
6d20ce5806ff1981
CategoryTheory.Abelian.Ext.homEquiv_chgUniv
Mathlib/Algebra/Homology/DerivedCategory/Ext/Basic.lean
lemma homEquiv_chgUniv [HasDerivedCategory.{w''} C] (e : Ext.{w} X Y n) : homEquiv.{w'', w'} (chgUniv.{w'} e) = homEquiv.{w'', w} e
C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : Abelian C inst✝² : HasExt C inst✝¹ : HasExt C X Y : C n : ℕ inst✝ : HasDerivedCategory C e : Ext X Y n ⊢ homEquiv (chgUniv e) = homEquiv e
apply SmallShiftedHom.equiv_chgUniv
no goals
870e345d0e5022f1
List.set_getElem_succ_eraseIdx_succ
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Nat/Erase.lean
theorem set_getElem_succ_eraseIdx_succ {l : List α} {i : Nat} (h : i + 1 < l.length) : (l.eraseIdx (i + 1)).set i l[i + 1] = l.eraseIdx i
case h.isTrue.isFalse α : Type u_1 l : List α i : Nat h : i + 1 < l.length n : Nat h₁ : n < ((l.eraseIdx (i + 1)).set i l[i + 1]).length h₂ : n < (l.eraseIdx i).length h✝¹ : i = n h✝ : ¬n < i ⊢ l[i + 1] = l[n + 1]
simp_all
no goals
31983ea669fb242b
Compactum.str_eq_of_le_nhds
Mathlib/Topology/Category/Compactum.lean
theorem str_eq_of_le_nhds {X : Compactum} (F : Ultrafilter X) (x : X) : ↑F ≤ 𝓝 x → X.str F = x
X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A ∈ F, S = Compactum.basic A} AA : Set (Ultrafilter X.A) := X.str ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 cond : ↑F ≤ 𝓝 x claim1 : ∀ (A : Set X.A), IsClosed A → A ∈ F → x ∈ A claim2 : ∀ A ∈ F, x ∈ Compactum.cl A claim3 : ∀ S1 ∈ T0, ∀ S2 ∈ T0, S1 ∩ S2 ∈ T0 claim4 : ∀ S ∈ T0, (AA ∩ S).Nonempty claim5 : ∀ S ∈ T0, S.Nonempty S : Set (Ultrafilter X.A) hS : S ∈ T2 ⊢ S ∈ T0 ∨ ∃ Q ∈ T0, S = AA ∩ Q
apply finiteInterClosure_insert
case cond X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A ∈ F, S = Compactum.basic A} AA : Set (Ultrafilter X.A) := X.str ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 cond : ↑F ≤ 𝓝 x claim1 : ∀ (A : Set X.A), IsClosed A → A ∈ F → x ∈ A claim2 : ∀ A ∈ F, x ∈ Compactum.cl A claim3 : ∀ S1 ∈ T0, ∀ S2 ∈ T0, S1 ∩ S2 ∈ T0 claim4 : ∀ S ∈ T0, (AA ∩ S).Nonempty claim5 : ∀ S ∈ T0, S.Nonempty S : Set (Ultrafilter X.A) hS : S ∈ T2 ⊢ FiniteInter T0 case H X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A ∈ F, S = Compactum.basic A} AA : Set (Ultrafilter X.A) := X.str ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 cond : ↑F ≤ 𝓝 x claim1 : ∀ (A : Set X.A), IsClosed A → A ∈ F → x ∈ A claim2 : ∀ A ∈ F, x ∈ Compactum.cl A claim3 : ∀ S1 ∈ T0, ∀ S2 ∈ T0, S1 ∩ S2 ∈ T0 claim4 : ∀ S ∈ T0, (AA ∩ S).Nonempty claim5 : ∀ S ∈ T0, S.Nonempty S : Set (Ultrafilter X.A) hS : S ∈ T2 ⊢ S ∈ finiteInterClosure (insert AA T0)
2b00909734780390
Prod.mk.inj_left
Mathlib/Data/Prod/Basic.lean
theorem mk.inj_left {α β : Type*} (a : α) : Function.Injective (Prod.mk a : β → α × β)
α : Type u_5 β : Type u_6 a : α b₁ b₂ : β h : (a, b₁) = (a, b₂) ⊢ b₁ = b₂
simpa only [true_and, Prod.mk.inj_iff, eq_self_iff_true] using h
no goals
f560d3394cfb1c97
continuousWithinAt_iff_lower_upperSemicontinuousWithinAt
Mathlib/Topology/Semicontinuous.lean
theorem continuousWithinAt_iff_lower_upperSemicontinuousWithinAt {f : α → γ} : ContinuousWithinAt f s x ↔ LowerSemicontinuousWithinAt f s x ∧ UpperSemicontinuousWithinAt f s x
case pos α : Type u_1 inst✝³ : TopologicalSpace α x : α s : Set α γ : Type u_3 inst✝² : LinearOrder γ inst✝¹ : TopologicalSpace γ inst✝ : OrderTopology γ f : α → γ h₁ : LowerSemicontinuousWithinAt f s x h₂ : UpperSemicontinuousWithinAt f s x v : Set γ hv : v ∈ 𝓝 (f x) Hl : ∃ l, l < f x l : γ lfx : l < f x hl : Ioc l (f x) ⊆ v Hu : ∃ u, f x < u ⊢ f ⁻¹' v ∈ 𝓝[s] x
rcases exists_Ico_subset_of_mem_nhds hv Hu with ⟨u, fxu, hu⟩
case pos.intro.intro α : Type u_1 inst✝³ : TopologicalSpace α x : α s : Set α γ : Type u_3 inst✝² : LinearOrder γ inst✝¹ : TopologicalSpace γ inst✝ : OrderTopology γ f : α → γ h₁ : LowerSemicontinuousWithinAt f s x h₂ : UpperSemicontinuousWithinAt f s x v : Set γ hv : v ∈ 𝓝 (f x) Hl : ∃ l, l < f x l : γ lfx : l < f x hl : Ioc l (f x) ⊆ v Hu : ∃ u, f x < u u : γ fxu : f x < u hu : Ico (f x) u ⊆ v ⊢ f ⁻¹' v ∈ 𝓝[s] x
78adc466397c2988
ENNReal.mul_inv
Mathlib/Data/ENNReal/Inv.lean
theorem mul_inv {a b : ℝ≥0∞} (ha : a ≠ 0 ∨ b ≠ ∞) (hb : a ≠ ∞ ∨ b ≠ 0) : (a * b)⁻¹ = a⁻¹ * b⁻¹
case neg b a : ℝ≥0 ha : ↑a ≠ 0 ∨ ↑b ≠ ⊤ hb : ↑a ≠ ⊤ ∨ ↑b ≠ 0 h'a : ¬a = 0 h'b : ¬b = 0 ⊢ a * b ≠ 0
simp [h'a, h'b]
no goals
ec641d52dcabe2dc
intervalIntegral.integral_unitInterval_deriv_eq_sub
Mathlib/MeasureTheory/Integral/FundThmCalculus.lean
/-- A variant of `intervalIntegral.integral_deriv_eq_sub`, the Fundamental theorem of calculus, involving integrating over the unit interval. -/ lemma integral_unitInterval_deriv_eq_sub [RCLike 𝕜] [NormedSpace 𝕜 E] [IsScalarTower ℝ 𝕜 E] {f f' : 𝕜 → E} {z₀ z₁ : 𝕜} (hcont : ContinuousOn (fun t : ℝ ↦ f' (z₀ + t • z₁)) (Set.Icc 0 1)) (hderiv : ∀ t ∈ Set.Icc (0 : ℝ) 1, HasDerivAt f (f' (z₀ + t • z₁)) (z₀ + t • z₁)) : z₁ • ∫ t in (0 : ℝ)..1, f' (z₀ + t • z₁) = f (z₀ + z₁) - f z₀
case h.e'_9 𝕜 : Type u_2 E : Type u_3 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : RCLike 𝕜 inst✝¹ : NormedSpace 𝕜 E inst✝ : IsScalarTower ℝ 𝕜 E f f' : 𝕜 → E z₀ z₁ : 𝕜 hcont : ContinuousOn (fun t => f' (z₀ + t • z₁)) (Icc 0 1) hderiv : ∀ t ∈ Icc 0 1, HasDerivAt f (f' (z₀ + t • z₁)) (z₀ + t • z₁) γ : ℝ → 𝕜 := fun t => z₀ + t • z₁ hint : IntervalIntegrable (z₁ • f' ∘ γ) volume 0 1 t : ℝ ht : t ∈ [[0, 1]] ⊢ z₁ = 1 • z₁
simp only [one_smul]
no goals
33b334f9c09cf4b0
Std.DHashMap.Internal.List.containsKey_of_perm
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Internal/List/Associative.lean
theorem containsKey_of_perm [BEq α] [PartialEquivBEq α] {l l' : List ((a : α) × β a)} {k : α} (h : Perm l l') : containsKey k l = containsKey k l'
case nil α : Type u β : α → Type v inst✝¹ : BEq α inst✝ : PartialEquivBEq α l l' : List ((a : α) × β a) k : α ⊢ containsKey k [] = containsKey k []
simp
no goals
70651f11be1009a2
CategoryTheory.compatiblePreservingOfFlat
Mathlib/CategoryTheory/Sites/CoverPreserving.lean
theorem compatiblePreservingOfFlat {C : Type u₁} [Category.{v₁} C] {D : Type u₁} [Category.{v₁} D] (K : GrothendieckTopology D) (G : C ⥤ D) [RepresentablyFlat G] : CompatiblePreserving K G
case compatible.h C : Type u₁ inst✝² : Category.{v₁, u₁} C D : Type u₁ inst✝¹ : Category.{v₁, u₁} D K : GrothendieckTopology D G : C ⥤ D inst✝ : RepresentablyFlat G ℱ : Sheaf K (Type u_1) Z : C T : Presieve Z x : FamilyOfElements (G.op ⋙ ℱ.val) T hx : x.Compatible Y₁ Y₂ : C X : D f₁ : X ⟶ G.obj Y₁ f₂ : X ⟶ G.obj Y₂ g₁ : Y₁ ⟶ Z g₂ : Y₂ ⟶ Z hg₁ : T g₁ hg₂ : T g₂ e : f₁ ≫ G.map g₁ = f₂ ≫ G.map g₂ c : Cone (cospan g₁ g₂ ⋙ G) := (Cones.postcompose (diagramIsoCospan (cospan g₁ g₂ ⋙ G)).inv).obj (PullbackCone.mk f₁ f₂ e) c' : Cone (c.toStructuredArrow ⋙ StructuredArrow.pre c.pt (cospan g₁ g₂) G) := IsCofiltered.cone (c.toStructuredArrow ⋙ StructuredArrow.pre c.pt (cospan g₁ g₂) G) eq₁ : f₁ = (c'.pt.hom ≫ G.map (c'.π.app left).right) ≫ eqToHom ⋯ eq₂ : f₂ = (c'.pt.hom ≫ G.map (c'.π.app right).right) ≫ eqToHom ⋯ left_eq✝¹ : (((Functor.const WalkingCospan).obj c'.pt).map Hom.inl).left ≫ (c'.π.app one).left = (c'.π.app left).left ≫ ((c.toStructuredArrow ⋙ StructuredArrow.pre c.pt (cospan g₁ g₂) G).map Hom.inl).left e₁ : (((Functor.const WalkingCospan).obj c'.pt).map Hom.inl).right ≫ (c'.π.app one).right = (c'.π.app left).right ≫ ((c.toStructuredArrow ⋙ StructuredArrow.pre c.pt (cospan g₁ g₂) G).map Hom.inl).right left_eq✝ : (((Functor.const WalkingCospan).obj c'.pt).map Hom.inr).left ≫ (c'.π.app one).left = (c'.π.app right).left ≫ ((c.toStructuredArrow ⋙ StructuredArrow.pre c.pt (cospan g₁ g₂) G).map Hom.inr).left e₂ : (((Functor.const WalkingCospan).obj c'.pt).map Hom.inr).right ≫ (c'.π.app one).right = (c'.π.app right).right ≫ ((c.toStructuredArrow ⋙ StructuredArrow.pre c.pt (cospan g₁ g₂) G).map Hom.inr).right ⊢ ℱ.val.map (G.map (c'.π.app left).right).op (eqToHom ⋯ (x g₁ hg₁)) = ℱ.val.map (G.map (c'.π.app right).right).op (eqToHom ⋯ (x g₂ hg₂))
exact hx (c'.π.app left).right (c'.π.app right).right hg₁ hg₂ (e₁.symm.trans e₂)
no goals
8ad53d89c26ce87e
MeasureTheory.upcrossingStrat_le_one
Mathlib/Probability/Martingale/Upcrossing.lean
theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1
case h.inr Ω : Type u_1 a b : ℝ f : ℕ → Ω → ℝ N n : ℕ ω : Ω i : ℕ a✝¹ : i ∈ ↑(Finset.range N) j : ℕ a✝ : j ∈ ↑(Finset.range N) hij : i ≠ j hij' : i > j ⊢ upperCrossingTime a b f N (i + 1) ω ⊓ upperCrossingTime a b f N (j + 1) ω ≤ lowerCrossingTime a b f N i ω ⊔ lowerCrossingTime a b f N j ω
rw [gt_iff_lt] at hij'
case h.inr Ω : Type u_1 a b : ℝ f : ℕ → Ω → ℝ N n : ℕ ω : Ω i : ℕ a✝¹ : i ∈ ↑(Finset.range N) j : ℕ a✝ : j ∈ ↑(Finset.range N) hij : i ≠ j hij' : j < i ⊢ upperCrossingTime a b f N (i + 1) ω ⊓ upperCrossingTime a b f N (j + 1) ω ≤ lowerCrossingTime a b f N i ω ⊔ lowerCrossingTime a b f N j ω
754b6de81a111619
Ideal.iSup_iInf_eq_top_iff_pairwise
Mathlib/RingTheory/Coprime/Ideal.lean
theorem iSup_iInf_eq_top_iff_pairwise {t : Finset ι} (h : t.Nonempty) (I : ι → Ideal R) : (⨆ i ∈ t, ⨅ (j) (_ : j ∈ t) (_ : j ≠ i), I j) = ⊤ ↔ (t : Set ι).Pairwise fun i j => I i ⊔ I j = ⊤
case refine_1.refine_2 ι : Type u_1 R : Type u_2 inst✝ : CommSemiring R I : ι → Ideal R this : DecidableEq ι a : ι ⊢ ↑((fun i => if h : i = a then ⟨1, ⋯⟩ else 0) a) = 1
simp only [dif_pos, Submodule.coe_mk, eq_self_iff_true]
no goals
814176ce92e42d47
AlgebraicGeometry.Scheme.PartialMap.equiv_of_fromSpecStalkOfMem_eq
Mathlib/AlgebraicGeometry/RationalMap.lean
lemma equiv_of_fromSpecStalkOfMem_eq [IrreducibleSpace X] {x : X} [X.IsGermInjectiveAt x] (f g : X.PartialMap Y) (hxf : x ∈ f.domain) (hxg : x ∈ g.domain) (H : f.fromSpecStalkOfMem hxf = g.fromSpecStalkOfMem hxg) : f.equiv g
case refine_2.intro.intro X Y : Scheme inst✝¹ : IrreducibleSpace ↑↑X.toPresheafedSpace x : ↑↑X.toPresheafedSpace inst✝ : X.IsGermInjectiveAt x f g : X.PartialMap Y hxf : x ∈ f.domain hxg : x ∈ g.domain H : f.fromSpecStalkOfMem hxf = g.fromSpecStalkOfMem hxg hdense : Dense (↑f.domain ⊓ ↑g.domain) this : (↑(f.domain ⊓ g.domain)).IsGermInjectiveAt ⟨x, ⋯⟩ U : (↑(f.domain ⊓ g.domain)).Opens hxU : ⟨x, ⋯⟩ ∈ U e : U.ι ≫ X.homOfLE ⋯ ≫ f.hom = U.ι ≫ X.homOfLE ⋯ ≫ g.hom ⊢ (f.restrict ((f.domain ⊓ g.domain).ι ''ᵁ U) ⋯ ⋯).hom = (g.restrict ((f.domain ⊓ g.domain).ι ''ᵁ U) ⋯ ⋯).hom
rw [← cancel_epi (Scheme.Hom.isoImage _ _).hom]
case refine_2.intro.intro X Y : Scheme inst✝¹ : IrreducibleSpace ↑↑X.toPresheafedSpace x : ↑↑X.toPresheafedSpace inst✝ : X.IsGermInjectiveAt x f g : X.PartialMap Y hxf : x ∈ f.domain hxg : x ∈ g.domain H : f.fromSpecStalkOfMem hxf = g.fromSpecStalkOfMem hxg hdense : Dense (↑f.domain ⊓ ↑g.domain) this : (↑(f.domain ⊓ g.domain)).IsGermInjectiveAt ⟨x, ⋯⟩ U : (↑(f.domain ⊓ g.domain)).Opens hxU : ⟨x, ⋯⟩ ∈ U e : U.ι ≫ X.homOfLE ⋯ ≫ f.hom = U.ι ≫ X.homOfLE ⋯ ≫ g.hom ⊢ (Hom.isoImage (f.domain ⊓ g.domain).ι U).hom ≫ (f.restrict ((f.domain ⊓ g.domain).ι ''ᵁ U) ⋯ ⋯).hom = (Hom.isoImage (f.domain ⊓ g.domain).ι U).hom ≫ (g.restrict ((f.domain ⊓ g.domain).ι ''ᵁ U) ⋯ ⋯).hom
72b5375ab01aa1fb
AffineSubspace.direction_smul
Mathlib/LinearAlgebra/AffineSpace/Pointwise.lean
@[simp] lemma direction_smul (ha : a ≠ 0) (s : AffineSubspace k V) : (a • s).direction = s.direction
case h k : Type u_2 V : Type u_3 inst✝² : Field k inst✝¹ : AddCommGroup V inst✝ : Module k V a : k ha : a ≠ 0 s : AffineSubspace k V x✝ : V ⊢ (DistribMulAction.toLinearMap k V a) x✝ = (a • LinearMap.id) x✝
simp
no goals
5d1a1f476ddefbbc
Lean.Order.Array.monotone_forIn
Mathlib/.lake/packages/lean4/src/lean/Init/Internal/Order/Lemmas.lean
theorem monotone_forIn {α : Type uu} (as : Array α) (init : β) (f : γ → (a : α) → β → m (ForInStep β)) (hmono : monotone f) : monotone (fun x => forIn as init (f x))
m : Type u → Type v inst✝³ : Monad m inst✝² : (α : Type u) → PartialOrder (m α) inst✝¹ : MonoBind m β : Type u γ : Type w inst✝ : PartialOrder γ α : Type uu as : Array α init : β f : γ → α → β → m (ForInStep β) hmono : monotone f ⊢ monotone fun x => forIn as init (f x)
apply monotone_forIn' as init _
m : Type u → Type v inst✝³ : Monad m inst✝² : (α : Type u) → PartialOrder (m α) inst✝¹ : MonoBind m β : Type u γ : Type w inst✝ : PartialOrder γ α : Type uu as : Array α init : β f : γ → α → β → m (ForInStep β) hmono : monotone f ⊢ monotone fun x a x_1 => f x a
32bac149386f206c
IsLocalization.iff_map_piEvalRingHom
Mathlib/RingTheory/Localization/Pi.lean
theorem iff_map_piEvalRingHom [Finite ι] : IsLocalization M S' ↔ IsLocalization (.pi .univ fun i ↦ M.map (Pi.evalRingHom R i)) S' := iff_of_le_of_exists_dvd M _ (fun m hm i _ ↦ ⟨m, hm, rfl⟩) fun n hn ↦ by choose m mem eq using hn have := Fintype.ofFinite ι refine ⟨∏ i, m i ⟨⟩, prod_mem fun i _ ↦ mem i _, pi_dvd_iff.mpr fun i ↦ ?_⟩ rw [Fintype.prod_apply] exact (eq i ⟨⟩).symm.dvd.trans (Finset.dvd_prod_of_mem _ <| Finset.mem_univ _)
ι : Type u_1 R : ι → Type u_2 inst✝³ : (i : ι) → CommSemiring (R i) S' : Type u_4 inst✝² : CommSemiring S' inst✝¹ : Algebra ((i : ι) → R i) S' M : Submonoid ((i : ι) → R i) inst✝ : Finite ι n : (i : ι) → R i m : (i : ι) → i ∈ Set.univ → (i : ι) → R i mem : ∀ (i : ι) (a : i ∈ Set.univ), m i a ∈ ↑M eq : ∀ (i : ι) (a : i ∈ Set.univ), (Pi.evalRingHom R i) (m i a) = n i ⊢ ∃ m ∈ M, n ∣ m
have := Fintype.ofFinite ι
ι : Type u_1 R : ι → Type u_2 inst✝³ : (i : ι) → CommSemiring (R i) S' : Type u_4 inst✝² : CommSemiring S' inst✝¹ : Algebra ((i : ι) → R i) S' M : Submonoid ((i : ι) → R i) inst✝ : Finite ι n : (i : ι) → R i m : (i : ι) → i ∈ Set.univ → (i : ι) → R i mem : ∀ (i : ι) (a : i ∈ Set.univ), m i a ∈ ↑M eq : ∀ (i : ι) (a : i ∈ Set.univ), (Pi.evalRingHom R i) (m i a) = n i this : Fintype ι ⊢ ∃ m ∈ M, n ∣ m
94563de1ce9fcebf
LucasLehmer.norm_num_ext.testTrueHelper
Mathlib/NumberTheory/LucasLehmer.lean
lemma testTrueHelper (p : ℕ) (hp : Nat.blt 1 p = true) (h : sModNatTR (2 ^ p - 1) (p - 2) = 0) : LucasLehmerTest p
p : ℕ hp : 1 < p h : sModNatTR (2 ^ p - 1) (p - 2) = 0 ⊢ LucasLehmerTest p
rw [LucasLehmerTest, LucasLehmer.residue_eq_zero_iff_sMod_eq_zero p hp, ← sModNat_eq_sMod p _ hp, ← sModNatTR_eq_sModNat, h]
p : ℕ hp : 1 < p h : sModNatTR (2 ^ p - 1) (p - 2) = 0 ⊢ ↑0 = 0
eaa9103b95197009
ContinuousMap.setOfIdeal_ofSet_eq_interior
Mathlib/Topology/ContinuousMap/Ideals.lean
theorem setOfIdeal_ofSet_eq_interior (s : Set X) : setOfIdeal (idealOfSet 𝕜 s) = interior s
X : Type u_1 𝕜 : Type u_2 inst✝³ : RCLike 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X s : Set X x : X hx : x ∈ (closure sᶜ)ᶜ g : C(X, ℝ) hgs : Set.EqOn (⇑g) 0 (closure sᶜ) hgx : Set.EqOn (⇑g) 1 {x} ⊢ ∀ ⦃x : X⦄, x ∈ sᶜ → { toFun := fun x => ↑(g x), continuous_toFun := ⋯ } x = 0
simpa only [coe_mk, ofReal_eq_zero] using fun x hx => hgs (subset_closure hx)
no goals
a35c4c838ab5318e
Part.ne_none_iff
Mathlib/Data/Part.lean
theorem ne_none_iff {o : Part α} : o ≠ none ↔ ∃ x, o = some x
case mp α : Type u_1 o : Part α ⊢ o ≠ none → ∃ x, o = some x
rw [Ne, eq_none_iff', not_not]
case mp α : Type u_1 o : Part α ⊢ o.Dom → ∃ x, o = some x
8b4d3dd1ed4af4f0
mellin_inversion
Mathlib/Analysis/MellinInversion.lean
theorem mellin_inversion (σ : ℝ) (f : ℝ → E) {x : ℝ} (hx : 0 < x) (hf : MellinConvergent f σ) (hFf : VerticalIntegrable (mellin f) σ) (hfx : ContinuousAt f x) : mellinInv σ (mellin f) x = f x
E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E σ : ℝ f : ℝ → E x : ℝ hx : 0 < x hFf : VerticalIntegrable (mellin f) σ volume hfx : ContinuousAt f x g : ℝ → E := fun u => rexp (-σ * u) • f (rexp (-u)) hf : Integrable g volume ⊢ Integrable (𝓕 g) volume
have h2π : 2 * π ≠ 0 := by norm_num; exact pi_ne_zero
E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E σ : ℝ f : ℝ → E x : ℝ hx : 0 < x hFf : VerticalIntegrable (mellin f) σ volume hfx : ContinuousAt f x g : ℝ → E := fun u => rexp (-σ * u) • f (rexp (-u)) hf : Integrable g volume h2π : 2 * π ≠ 0 ⊢ Integrable (𝓕 g) volume
eb76f337444b2548
Finsupp.lmapDomain_supported
Mathlib/LinearAlgebra/Finsupp/Supported.lean
theorem lmapDomain_supported (f : α → α') (s : Set α) : (supported M R s).map (lmapDomain M R f) = supported M R (f '' s)
case inr α : Type u_1 M : Type u_2 R : Type u_5 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M α' : Type u_7 f : α → α' s : Set α h✝ : Nonempty α ⊢ map (lmapDomain M R f) (supported M R s) = supported M R (f '' s)
refine le_antisymm (map_le_iff_le_comap.2 <| le_trans (supported_mono <| Set.subset_preimage_image _ _) (supported_comap_lmapDomain M R _ _)) ?_
case inr α : Type u_1 M : Type u_2 R : Type u_5 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M α' : Type u_7 f : α → α' s : Set α h✝ : Nonempty α ⊢ supported M R (f '' s) ≤ map (lmapDomain M R f) (supported M R s)
b5dabd5eeb5a8ed9
MeasurableSpace.measurableSet_injective
Mathlib/MeasureTheory/MeasurableSpace/Defs.lean
theorem MeasurableSpace.measurableSet_injective : Injective (@MeasurableSet α) | ⟨_, _, _, _⟩, ⟨_, _, _, _⟩, _ => by congr
α : Type u_1 MeasurableSet'✝¹ : Set α → Prop measurableSet_empty✝¹ : MeasurableSet'✝¹ ∅ measurableSet_compl✝¹ : ∀ (s : Set α), MeasurableSet'✝¹ s → MeasurableSet'✝¹ sᶜ measurableSet_iUnion✝¹ : ∀ (f : ℕ → Set α), (∀ (i : ℕ), MeasurableSet'✝¹ (f i)) → MeasurableSet'✝¹ (⋃ i, f i) MeasurableSet'✝ : Set α → Prop measurableSet_empty✝ : MeasurableSet'✝ ∅ measurableSet_compl✝ : ∀ (s : Set α), MeasurableSet'✝ s → MeasurableSet'✝ sᶜ measurableSet_iUnion✝ : ∀ (f : ℕ → Set α), (∀ (i : ℕ), MeasurableSet'✝ (f i)) → MeasurableSet'✝ (⋃ i, f i) x✝ : MeasurableSet = MeasurableSet ⊢ { MeasurableSet' := MeasurableSet'✝¹, measurableSet_empty := measurableSet_empty✝¹, measurableSet_compl := measurableSet_compl✝¹, measurableSet_iUnion := measurableSet_iUnion✝¹ } = { MeasurableSet' := MeasurableSet'✝, measurableSet_empty := measurableSet_empty✝, measurableSet_compl := measurableSet_compl✝, measurableSet_iUnion := measurableSet_iUnion✝ }
congr
no goals
7bfabe7d36364237
Polynomial.comap_C_surjective
Mathlib/RingTheory/Spectrum/Prime/Polynomial.lean
lemma comap_C_surjective : Function.Surjective (comap (R := R) C)
R : Type u_1 inst✝ : CommRing R x : PrimeSpectrum R ⊢ ∃ a, (comap C) a = x
refine ⟨comap (evalRingHom 0) x, ?_⟩
R : Type u_1 inst✝ : CommRing R x : PrimeSpectrum R ⊢ (comap C) ((comap (evalRingHom 0)) x) = x
a38f7d5d2f40ea08
SetTheory.PGame.subsingleton_short_example
Mathlib/SetTheory/Game/Short.lean
theorem subsingleton_short_example : ∀ x : PGame, Subsingleton (Short x) | mk xl xr xL xR => ⟨fun a b => by cases a; cases b congr! · funext x apply @Subsingleton.elim _ (subsingleton_short_example (xL x)) -- Decreasing goal in Lean 4 is `Subsequent (xL x) (mk α β L R)` -- where `α`, `β`, `L`, and `R` are fresh hypotheses only propositionally -- equal to `xl`, `xr`, `xL`, and `xR`. -- (In Lean 3 it was `(mk xl xr xL xR)` instead.) · funext x apply @Subsingleton.elim _ (subsingleton_short_example (xR x))⟩ termination_by x => x -- We need to unify a bunch of hypotheses before `pgame_wf_tac` can work. decreasing_by all_goals { subst_vars simp only [mk.injEq, heq_eq_eq, true_and] at * casesm* _ ∧ _ subst_vars pgame_wf_tac }
α✝ β✝ : Type u_1 L✝ : α✝ → PGame R✝ : β✝ → PGame L xL : α✝ → PGame inst✝³ : Fintype α✝ x✝⁵ : (i : α✝) → (xL i).Short inst✝² : Fintype α✝ x✝⁴ : (i : α✝) → (xL i).Short R xR : β✝ → PGame inst✝¹ : Fintype β✝ x✝³ : (j : β✝) → (xR j).Short inst✝ : Fintype β✝ x✝² : (j : β✝) → (xR j).Short x : β✝ x✝¹ : ∀ (y : PGame), (invImage (fun x => x) instWellFoundedRelation).1 y (mk α✝ β✝ L R) → Subsingleton y.Short x✝ : ∀ (y : PGame), (invImage (fun x => x) instWellFoundedRelation).1 y (mk α✝ β✝ xL xR) → Subsingleton y.Short h✝¹ : mk α✝ β✝ xL xR = mk α✝ β✝ L R h✝ : mk α✝ β✝ xL xR = mk α✝ β✝ L✝ R✝ ⊢ (xR x).Subsequent (mk α✝ β✝ L R)
simp only [mk.injEq, heq_eq_eq, true_and] at *
α✝ β✝ : Type u_1 L✝ : α✝ → PGame R✝ : β✝ → PGame L xL : α✝ → PGame inst✝³ : Fintype α✝ x✝⁵ : (i : α✝) → (xL i).Short inst✝² : Fintype α✝ x✝⁴ : (i : α✝) → (xL i).Short R xR : β✝ → PGame inst✝¹ : Fintype β✝ x✝³ : (j : β✝) → (xR j).Short inst✝ : Fintype β✝ x✝² : (j : β✝) → (xR j).Short x : β✝ x✝¹ : ∀ (y : PGame), InvImage WellFoundedRelation.rel (fun x => x) y (mk α✝ β✝ L R) → Subsingleton y.Short x✝ : ∀ (y : PGame), InvImage WellFoundedRelation.rel (fun x => x) y (mk α✝ β✝ xL xR) → Subsingleton y.Short h✝¹ : xL = L ∧ xR = R h✝ : xL = L✝ ∧ xR = R✝ ⊢ (xR x).Subsequent (mk α✝ β✝ L R)
6d51ac4df0c8eec6
SimplexCategory.eq_id_of_epi
Mathlib/AlgebraicTopology/SimplexCategory/Basic.lean
theorem eq_id_of_epi {x : SimplexCategory} (i : x ⟶ x) [Epi i] : i = 𝟙 _
case hf x : SimplexCategory i : x ⟶ x inst✝ : Epi i ⊢ Function.Bijective ⇑(Hom.toOrderHom i)
rw [Fintype.bijective_iff_surjective_and_card i.toOrderHom, ← epi_iff_surjective, eq_self_iff_true, and_true]
case hf x : SimplexCategory i : x ⟶ x inst✝ : Epi i ⊢ Epi i
235eb9dd9a765d3a
Std.DHashMap.Internal.Raw₀.getKey_erase
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Internal/RawLemmas.lean
theorem getKey_erase [EquivBEq α] [LawfulHashable α] (h : m.1.WF) {k a : α} {h'} : (m.erase k).getKey a h' = m.getKey a (contains_of_contains_erase _ h h')
α : Type u β : α → Type v m : Raw₀ α β inst✝³ : BEq α inst✝² : Hashable α inst✝¹ : EquivBEq α inst✝ : LawfulHashable α h : m.val.WF k a : α h' : (m.erase k).contains a = true ⊢ (m.erase k).getKey a h' = m.getKey a ⋯
simp_to_model [erase] using List.getKey_eraseKey
no goals
688c5bcf80adbc8f
CStarAlgebra.nnnorm_sub_mul_self_le
Mathlib/Analysis/CStarAlgebra/ApproximateUnit.lean
/-- This is a common reasoning sequence in C⋆-algebra theory. If `0 ≤ x ≤ y ≤ 1`, then the norm of `z - y * z` is controlled by the norm of `star z * (1 - x) * z`, which is advantageous because the latter is nonnegative. This is a key step in establishing the existence of an increasing approximate unit in general C⋆-algebras. -/ lemma nnnorm_sub_mul_self_le {A : Type*} [CStarAlgebra A] [PartialOrder A] [StarOrderedRing A] {x y : A} (z : A) (hx₀ : 0 ≤ x) (hy : y ∈ Set.Icc x 1) {c : ℝ≥0} (h : ‖star z * (1 - x) * z‖₊ ≤ c ^ 2) : ‖z - y * z‖₊ ≤ c
A : Type u_2 inst✝² : CStarAlgebra A inst✝¹ : PartialOrder A inst✝ : StarOrderedRing A x y z : A hx₀ : 0 ≤ x hy : y ∈ Set.Icc x 1 c : ℝ≥0 h : ‖star z * (1 - x) * z‖₊ ≤ c ^ 2 ⊢ ‖star z * (1 - star y) * ((1 - y) * z)‖₊ ≤ c ^ 2
have hy₀ : y ∈ Set.Icc 0 1 := ⟨hx₀.trans hy.1, hy.2⟩
A : Type u_2 inst✝² : CStarAlgebra A inst✝¹ : PartialOrder A inst✝ : StarOrderedRing A x y z : A hx₀ : 0 ≤ x hy : y ∈ Set.Icc x 1 c : ℝ≥0 h : ‖star z * (1 - x) * z‖₊ ≤ c ^ 2 hy₀ : y ∈ Set.Icc 0 1 ⊢ ‖star z * (1 - star y) * ((1 - y) * z)‖₊ ≤ c ^ 2
15d297d9f0844bcb
List.of_findIdx?_eq_none
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Find.lean
theorem of_findIdx?_eq_none {xs : List α} {p : α → Bool} (w : xs.findIdx? p = none) : ∀ i : Nat, match xs[i]? with | some a => ¬ p a | none => true
case cons α : Type u_1 p : α → Bool x : α xs : List α i : Nat ih : findIdx? p xs = none → ∀ (i : Nat), match xs[i]? with | some a => p a = false | none => True w : (if p x = true then some 0 else Option.map (fun i => i + 1) (findIdx? p xs)) = none ⊢ match (x :: xs)[i]? with | some a => p a = false | none => True
cases i with | zero => split at w <;> simp_all | succ i => simp only [getElem?_cons_succ] apply ih split at w <;> simp_all
no goals
d56cb53d2789be3d
Substring.ValidFor.nextn
Mathlib/.lake/packages/batteries/Batteries/Data/String/Lemmas.lean
theorem nextn : ∀ {s}, ValidFor l (m₁ ++ m₂) r s → ∀ n, s.nextn n ⟨utf8Len m₁⟩ = ⟨utf8Len m₁ + utf8Len (m₂.take n)⟩ | _, _, 0 => by simp [Substring.nextn] | s, h, n+1 => by simp only [Substring.nextn] match m₂ with | [] => simp at h; simp [h.next_stop, h.nextn_stop] | c::m₂ => rw [h.next] have := @nextn l (m₁ ++ [c]) m₂ r s (by simp [h]) n simp at this; rw [this]; simp [Nat.add_assoc, Nat.add_comm, Nat.add_left_comm]
l m₁ m₂✝ r : List Char s : Substring n : Nat c : Char m₂ : List Char h : ValidFor l (m₁ ++ c :: m₂) r s this : s.nextn n { byteIdx := utf8Len m₁ + c.utf8Size } = { byteIdx := utf8Len m₁ + c.utf8Size + utf8Len (List.take n m₂) } ⊢ { byteIdx := utf8Len m₁ + c.utf8Size + utf8Len (List.take n m₂) } = { byteIdx := utf8Len m₁ + utf8Len (List.take (n + 1) (c :: m₂)) }
simp [Nat.add_assoc, Nat.add_comm, Nat.add_left_comm]
no goals
52154dc030661365
Real.exists_natCast_add_one_lt_pow_of_one_lt
Mathlib/Data/Real/Archimedean.lean
/-- Exponentiation is eventually larger than linear growth. -/ lemma exists_natCast_add_one_lt_pow_of_one_lt (ha : 1 < a) : ∃ m : ℕ, (m + 1 : ℝ) < a ^ m
a : ℝ ha : 1 < a ⊢ ∃ m, ↑m + 1 < a ^ m
obtain ⟨k, posk, hk⟩ : ∃ k : ℕ, 0 < k ∧ 1 / k + 1 < a := by contrapose! ha refine le_of_forall_lt_rat_imp_le ?_ intro q hq refine (ha q.den (by positivity)).trans ?_ rw [← le_sub_iff_add_le, div_le_iff₀ (by positivity), sub_mul, one_mul] norm_cast at hq ⊢ rw [← q.num_div_den, one_lt_div (by positivity)] at hq rw [q.mul_den_eq_num] norm_cast at hq ⊢ omega
case intro.intro a : ℝ ha : 1 < a k : ℕ posk : 0 < k hk : 1 / ↑k + 1 < a ⊢ ∃ m, ↑m + 1 < a ^ m
62482ea338b44352
CliffordAlgebraComplex.ofComplex_comp_toComplex
Mathlib/LinearAlgebra/CliffordAlgebra/Equivs.lean
theorem ofComplex_comp_toComplex : ofComplex.comp toComplex = AlgHom.id ℝ (CliffordAlgebra Q)
case a.h ⊢ ((ofComplex.comp toComplex).toLinearMap ∘ₗ ι Q) 1 = ((AlgHom.id ℝ (CliffordAlgebra Q)).toLinearMap ∘ₗ ι Q) 1
dsimp only [LinearMap.comp_apply, Subtype.coe_mk, AlgHom.id_apply, AlgHom.toLinearMap_apply, AlgHom.comp_apply]
case a.h ⊢ ofComplex (toComplex ((ι Q) 1)) = (ι Q) 1
6e16e9494689a2d6
Submodule.span_induction₂
Mathlib/LinearAlgebra/Span/Defs.lean
theorem span_induction₂ {N : Type*} [AddCommMonoid N] [Module R N] {t : Set N} {p : (x : M) → (y : N) → x ∈ span R s → y ∈ span R t → Prop} (mem_mem : ∀ (x) (y) (hx : x ∈ s) (hy : y ∈ t), p x y (subset_span hx) (subset_span hy)) (zero_left : ∀ y hy, p 0 y (zero_mem _) hy) (zero_right : ∀ x hx, p x 0 hx (zero_mem _)) (add_left : ∀ x y z hx hy hz, p x z hx hz → p y z hy hz → p (x + y) z (add_mem hx hy) hz) (add_right : ∀ x y z hx hy hz, p x y hx hy → p x z hx hz → p x (y + z) hx (add_mem hy hz)) (smul_left : ∀ (r : R) x y hx hy, p x y hx hy → p (r • x) y (smul_mem _ r hx) hy) (smul_right : ∀ (r : R) x y hx hy, p x y hx hy → p x (r • y) hx (smul_mem _ r hy)) {a : M} {b : N} (ha : a ∈ Submodule.span R s) (hb : b ∈ Submodule.span R t) : p a b ha hb
case add R : Type u_1 M : Type u_4 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M s : Set M N : Type u_9 inst✝¹ : AddCommMonoid N inst✝ : Module R N t : Set N p : (x : M) → (y : N) → x ∈ span R s → y ∈ span R t → Prop mem_mem : ∀ (x : M) (y : N) (hx : x ∈ s) (hy : y ∈ t), p x y ⋯ ⋯ zero_left : ∀ (y : N) (hy : y ∈ span R t), p 0 y ⋯ hy zero_right : ∀ (x : M) (hx : x ∈ span R s), p x 0 hx ⋯ add_left : ∀ (x y : M) (z : N) (hx : x ∈ span R s) (hy : y ∈ span R s) (hz : z ∈ span R t), p x z hx hz → p y z hy hz → p (x + y) z ⋯ hz add_right : ∀ (x : M) (y z : N) (hx : x ∈ span R s) (hy : y ∈ span R t) (hz : z ∈ span R t), p x y hx hy → p x z hx hz → p x (y + z) hx ⋯ smul_left : ∀ (r : R) (x : M) (y : N) (hx : x ∈ span R s) (hy : y ∈ span R t), p x y hx hy → p (r • x) y ⋯ hy smul_right : ∀ (r : R) (x : M) (y : N) (hx : x ∈ span R s) (hy : y ∈ span R t), p x y hx hy → p x (r • y) hx ⋯ a : M b : N ha : a ∈ span R s x✝ y✝ : N hx✝ : x✝ ∈ span R t hy✝ : y✝ ∈ span R t h₁ : p a x✝ ha hx✝ h₂ : p a y✝ ha hy✝ ⊢ p a (x✝ + y✝) ha ⋯
exact add_right _ _ _ _ _ _ h₁ h₂
no goals
01464e356200a5dc
MeasureTheory.OuterMeasure.le_boundedBy
Mathlib/MeasureTheory/OuterMeasure/OfFunction.lean
theorem le_boundedBy {μ : OuterMeasure α} : μ ≤ boundedBy m ↔ ∀ s, μ s ≤ m s
α : Type u_1 m : Set α → ℝ≥0∞ μ : OuterMeasure α s : Set α ⊢ μ s ≤ ⨆ (_ : s.Nonempty), m s ↔ μ s ≤ m s
rcases s.eq_empty_or_nonempty with h | h <;> simp [h, Set.not_nonempty_empty]
no goals
183b093e01d98013
ProbabilityTheory.strong_law_aux5
Mathlib/Probability/StrongLaw.lean
theorem strong_law_aux5 : ∀ᵐ ω, (fun n : ℕ => ∑ i ∈ range n, truncation (X i) i ω - ∑ i ∈ range n, X i ω) =o[atTop] fun n : ℕ => (n : ℝ)
Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) ℙ hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) ℙ ℙ hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω A : ∑' (j : ℕ), ℙ {ω | X j ω ∈ Set.Ioi ↑j} < ⊤ ω : Ω hω : ∀ᶠ (n : ℕ) in atTop, X n ω ∉ Set.Ioi ↑n n : ℕ hn : X n ω ∉ Set.Ioi ↑n npos : n ∈ Set.Ioi 0 h : ¬(-↑n < X n ω ∧ X n ω ≤ ↑n) ⊢ -↑n < X n ω
apply lt_of_lt_of_le _ (hnonneg n ω)
Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) ℙ hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) ℙ ℙ hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω A : ∑' (j : ℕ), ℙ {ω | X j ω ∈ Set.Ioi ↑j} < ⊤ ω : Ω hω : ∀ᶠ (n : ℕ) in atTop, X n ω ∉ Set.Ioi ↑n n : ℕ hn : X n ω ∉ Set.Ioi ↑n npos : n ∈ Set.Ioi 0 h : ¬(-↑n < X n ω ∧ X n ω ≤ ↑n) ⊢ -↑n < 0
89dd352ac6ec4b05
Ordinal.le_of_dvd
Mathlib/SetTheory/Ordinal/Arithmetic.lean
theorem le_of_dvd : ∀ {a b : Ordinal}, b ≠ 0 → a ∣ b → a ≤ b -- Porting note: `⟨b, rfl⟩ => by` → `⟨b, e⟩ => by subst e` | a, _, b0, ⟨b, e⟩ => by subst e -- Porting note: `Ne` is required. simpa only [mul_one] using mul_le_mul_left' (one_le_iff_ne_zero.2 fun h : b = 0 => by simp only [h, mul_zero, Ne, not_true_eq_false] at b0) a
a b : Ordinal.{u_4} b0 : a * b ≠ 0 h : b = 0 ⊢ False
simp only [h, mul_zero, Ne, not_true_eq_false] at b0
no goals
0fe35c6d81df8019
starConvex_iff_forall_ne_pos
Mathlib/Analysis/Convex/Star.lean
theorem starConvex_iff_forall_ne_pos (hx : x ∈ s) : StarConvex 𝕜 x s ↔ ∀ ⦃y⦄, y ∈ s → x ≠ y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s
case inl 𝕜 : Type u_1 E : Type u_2 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E x : E s : Set E hx : x ∈ s h : ∀ ⦃y : E⦄, y ∈ s → x ≠ y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s y : E hy : y ∈ s b : 𝕜 hb : 0 ≤ b ha : 0 ≤ 0 hab : 0 + b = 1 ⊢ 0 • x + b • y ∈ s
rw [zero_add] at hab
case inl 𝕜 : Type u_1 E : Type u_2 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E x : E s : Set E hx : x ∈ s h : ∀ ⦃y : E⦄, y ∈ s → x ≠ y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s y : E hy : y ∈ s b : 𝕜 hb : 0 ≤ b ha : 0 ≤ 0 hab : b = 1 ⊢ 0 • x + b • y ∈ s
23990e0ad8bbd28b
List.mem_eraseIdx_iff_getElem?
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Nat/Basic.lean
theorem mem_eraseIdx_iff_getElem? {x : α} {l} {k} : x ∈ eraseIdx l k ↔ ∃ i ≠ k, l[i]? = some x
case mpr.intro α : Type u_1 x : α l : List α k i : Nat h : l[i]? = some x h' : i < l.length ⊢ ∃ x_1, l[i]? = some x
exact ⟨h', h⟩
no goals
b696caa5872e7aba
PrincipalSeg.eq
Mathlib/Order/InitialSeg.lean
theorem eq [IsWellOrder β s] (f g : r ≺i s) (a) : f a = g a
α : Type u_1 β : Type u_2 r : α → α → Prop s : β → β → Prop inst✝ : IsWellOrder β s f g : r ≺i s a : α ⊢ f.toRelEmbedding a = g.toRelEmbedding a
rw [Subsingleton.elim f g]
no goals
ba22f4fac7e87dc5
ProbabilityTheory.Kernel.indepSets_piiUnionInter_of_disjoint
Mathlib/Probability/Independence/Kernel.lean
theorem indepSets_piiUnionInter_of_disjoint {s : ι → Set (Set Ω)} {S T : Set ι} (h_indep : iIndepSets s κ μ) (hST : Disjoint S T) : IndepSets (piiUnionInter s S) (piiUnionInter s T) κ μ
case inr α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : Kernel α Ω μ : Measure α s : ι → Set (Set Ω) S T : Set ι h_indep : iIndepSets s κ μ hST : Disjoint S T t1 t2 : Set Ω p1 : Finset ι hp1 : ↑p1 ⊆ S f1 : ι → Set Ω ht1_m : ∀ x ∈ p1, f1 x ∈ s x ht1_eq : t1 = ⋂ x ∈ p1, f1 x p2 : Finset ι hp2 : ↑p2 ⊆ T f2 : ι → Set Ω ht2_m : ∀ x ∈ p2, f2 x ∈ s x ht2_eq : t2 = ⋂ x ∈ p2, f2 x g : ι → Set Ω := fun i => (if i ∈ p1 then f1 i else univ) ∩ if i ∈ p2 then f2 i else univ i : ι hi2 : i ∈ p2 ⊢ g i ∈ s i
have hi1 : i ∉ p1 := fun hip1 => Set.disjoint_right.mp hST (hp2 hi2) (hp1 hip1)
case inr α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : Kernel α Ω μ : Measure α s : ι → Set (Set Ω) S T : Set ι h_indep : iIndepSets s κ μ hST : Disjoint S T t1 t2 : Set Ω p1 : Finset ι hp1 : ↑p1 ⊆ S f1 : ι → Set Ω ht1_m : ∀ x ∈ p1, f1 x ∈ s x ht1_eq : t1 = ⋂ x ∈ p1, f1 x p2 : Finset ι hp2 : ↑p2 ⊆ T f2 : ι → Set Ω ht2_m : ∀ x ∈ p2, f2 x ∈ s x ht2_eq : t2 = ⋂ x ∈ p2, f2 x g : ι → Set Ω := fun i => (if i ∈ p1 then f1 i else univ) ∩ if i ∈ p2 then f2 i else univ i : ι hi2 : i ∈ p2 hi1 : i ∉ p1 ⊢ g i ∈ s i
139cefbe3a1213c8
MeasureTheory.LevyProkhorov.continuous_equiv_probabilityMeasure
Mathlib/MeasureTheory/Measure/LevyProkhorovMetric.lean
/-- The identity map `LevyProkhorov (ProbabilityMeasure Ω) → ProbabilityMeasure Ω` is continuous. -/ lemma LevyProkhorov.continuous_equiv_probabilityMeasure : Continuous (LevyProkhorov.equiv (α := ProbabilityMeasure Ω))
case h.refine_4.bc Ω : Type u_1 inst✝² : MeasurableSpace Ω inst✝¹ : PseudoMetricSpace Ω inst✝ : OpensMeasurableSpace Ω μs : ℕ → LevyProkhorov (ProbabilityMeasure Ω) ν : LevyProkhorov (ProbabilityMeasure Ω) hμs : Tendsto μs atTop (𝓝 ν) P : ProbabilityMeasure Ω := (equiv (ProbabilityMeasure Ω)) ν Ps : ℕ → ProbabilityMeasure Ω := fun n => (equiv (ProbabilityMeasure Ω)) (μs n) f✝ f : Ω →ᵇ ℝ f_nn : 0 ≤ f f_zero : ¬‖f‖ = 0 norm_f_pos : 0 < ‖f‖ δ : ℝ δ_pos : 0 < δ εs : ℕ → ℝ left✝ : StrictAnti εs εs_lim : Tendsto εs atTop (𝓝 0) ε_of_room : Tendsto (fun x => dist (μs x) ν + εs x) atTop (𝓝 0) ε_of_room' : Tendsto (fun n => dist (μs n) ν + εs n) atTop (𝓝[>] 0) key : Tendsto ((fun ε => ∫ (t : ℝ) in Ioc 0 ‖f‖, (↑(P (thickening ε {a | t ≤ f a}))).toReal) ∘ fun n => dist (μs n) ν + εs n) atTop (𝓝 (∫ (t : ℝ) in Ioc 0 ‖f‖, (↑(P {a | t ≤ f a})).toReal)) aux : ∀ (z : ℝ), Iio (z + δ / 2) ∈ 𝓝 z n : ℕ hn : ((fun ε => ∫ (t : ℝ) in Ioc 0 ‖f‖, (↑(P (thickening ε {a | t ≤ f a}))).toReal) ∘ fun n => dist (μs n) ν + εs n) n < (∫ (t : ℝ) in Ioc 0 ‖f‖, (↑(P {a | t ≤ f a})).toReal) + δ / 2 hn' : dist (μs n) ν + εs n < ‖f‖⁻¹ * δ / 2 εs_pos : 0 < εs n bound : ∫ (ω : Ω), f ω ∂↑(Ps n) ≤ (∫ (t : ℝ) in Ioc 0 ‖f‖, (↑P (thickening (dist (μs n) ν + εs n) {a | t ≤ f a})).toReal) + (dist (μs n) ν + εs n) * ‖f‖ ⊢ δ / 2 + ‖f‖ * (dist (μs n) ν + εs n) ≤ δ
calc δ / 2 + ‖f‖ * (dist (μs n) ν + εs n) _ ≤ δ / 2 + ‖f‖ * (‖f‖⁻¹ * δ / 2) := by gcongr _ = δ := by field_simp; ring
no goals
e3f8df53302ac07c
MeasureTheory.L1.setToL1_zero_left'
Mathlib/MeasureTheory/Integral/SetToL1.lean
theorem setToL1_zero_left' (hT : DominatedFinMeasAdditive μ T C) (h_zero : ∀ s, MeasurableSet s → μ s < ∞ → T s = 0) (f : α →₁[μ] E) : setToL1 hT f = 0
case h α : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F m : MeasurableSpace α μ : Measure α inst✝ : CompleteSpace F T : Set α → E →L[ℝ] F C : ℝ hT : DominatedFinMeasAdditive μ T C h_zero : ∀ (s : Set α), MeasurableSet s → μ s < ⊤ → T s = 0 f✝ : ↥(Lp E 1 μ) f : ↥(simpleFunc E 1 μ) ⊢ (ContinuousLinearMap.comp 0 (coeToLp α E ℝ)) f = (setToL1SCLM α E μ hT) f
rw [setToL1SCLM_zero_left' hT h_zero f, ContinuousLinearMap.zero_comp, ContinuousLinearMap.zero_apply]
no goals
245a78bf3c494998
LindemannWeierstrass.exp_polynomial_approx_aux
Mathlib/NumberTheory/Transcendental/Lindemann/Init/AnalyticalPart.lean
theorem exp_polynomial_approx_aux (f : ℤ[X]) (s : ℂ) : ∃ c ≥ 0, ∀ p ≠ 0, ‖P (map (algebraMap ℤ ℂ) (X ^ (p - 1) * f ^ p)) s‖ ≤ c ^ p
case intro f : ℤ[X] s : ℂ this : Bornology.IsBounded ((fun x => (x * ‖s‖ ⊔ 1) * ‖(aeval (↑x * s)) f‖) '' Set.Ioc 0 1) c : ℝ p : ℕ x : ℝ hx : x ∈ Set.Ioc 0 1 h : |(x * ‖s‖ ⊔ 1) * ‖(aeval (↑x * s)) f‖| ≤ c ⊢ ‖eval (x • s) (map (algebraMap ℤ ℂ) (X ^ (p - 1) * f ^ p))‖ ≤ c ^ p
refine le_trans ?_ (pow_le_pow_left₀ (abs_nonneg _) h _)
case intro f : ℤ[X] s : ℂ this : Bornology.IsBounded ((fun x => (x * ‖s‖ ⊔ 1) * ‖(aeval (↑x * s)) f‖) '' Set.Ioc 0 1) c : ℝ p : ℕ x : ℝ hx : x ∈ Set.Ioc 0 1 h : |(x * ‖s‖ ⊔ 1) * ‖(aeval (↑x * s)) f‖| ≤ c ⊢ ‖eval (x • s) (map (algebraMap ℤ ℂ) (X ^ (p - 1) * f ^ p))‖ ≤ |(x * ‖s‖ ⊔ 1) * ‖(aeval (↑x * s)) f‖| ^ p
0670d5e568c4c9db
MeasureTheory.IsStoppingTime.measurableSet_lt
Mathlib/Probability/Process/Stopping.lean
theorem IsStoppingTime.measurableSet_lt (hτ : IsStoppingTime f τ) (i : ι) : MeasurableSet[f i] {ω | τ ω < i}
case intro.inr Ω : Type u_1 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i i' : ι hi'_lub : IsLUB (Set.Iio i) i' h_Iio_eq_Iic : Set.Iio i = Set.Iic i' h_lt_eq_preimage : {ω | τ ω < i} = τ ⁻¹' Set.Iio i ⊢ MeasurableSet (τ ⁻¹' Set.Iic i')
exact f.mono (lub_Iio_le i hi'_lub) _ (hτ.measurableSet_le i')
no goals
426cbd39a96c6c6e
Nat.primeFactorsPiBij_surj
Mathlib/Algebra/Order/Antidiag/Nat.lean
theorem primeFactorsPiBij_surj (d n : ℕ) (hn : Squarefree n) (t : Fin d → ℕ) (ht : t ∈ finMulAntidiag d n) : ∃ (g : _) (hg : g ∈ pi n.primeFactors fun _ => univ), Nat.primeFactorsPiBij d n g hg = t
d n : ℕ hn : Squarefree n t : Fin d → ℕ ht : t ∈ d.finMulAntidiag n f : (p : ℕ) → p ∈ n.primeFactors → Fin d hf : ∀ (p : ℕ) (hp : p ∈ n.primeFactors), (fun i => p ∣ t i) (f p hp) hf_unique : ∀ (p : ℕ) (hp : p ∈ n.primeFactors) (y : Fin d), (fun i => p ∣ t i) y → y = f p hp i : Fin d this : t i ∣ n ⊢ ∏ a ∈ (t i).primeFactors, a = t i
exact prod_primeFactors_of_squarefree <| hn.squarefree_of_dvd this
no goals
2aabf1c65448b553