pdf
stringlengths
49
199
aff
stringlengths
1
1.36k
year
stringclasses
19 values
technical_novelty_avg
float64
0
4
video
stringlengths
21
47
doi
stringlengths
31
63
presentation_avg
float64
0
4
proceeding
stringlengths
43
129
presentation
stringclasses
796 values
sess
stringclasses
576 values
technical_novelty
stringclasses
700 values
arxiv
stringlengths
10
16
author
stringlengths
1
1.96k
site
stringlengths
37
191
keywords
stringlengths
2
582
oa
stringlengths
86
198
empirical_novelty_avg
float64
0
4
poster
stringlengths
57
95
openreview
stringlengths
41
45
conference
stringclasses
11 values
corr_rating_confidence
float64
-1
1
corr_rating_correctness
float64
-1
1
project
stringlengths
1
162
track
stringclasses
3 values
rating_avg
float64
0
10
rating
stringlengths
1
17
correctness
stringclasses
809 values
slides
stringlengths
32
41
title
stringlengths
2
192
github
stringlengths
3
165
authors
stringlengths
7
161
correctness_avg
float64
0
5
confidence_avg
float64
0
5
status
stringclasses
22 values
confidence
stringlengths
1
17
empirical_novelty
stringclasses
763 values
null
California Institute of Technology; Janelia Research Campus HHMI
2017
0
null
null
0
null
null
null
null
null
null
null
Unsupervised Learning;Semi-Supervised Learning;Reinforcement Learning;Applications
null
0
null
null
iclr
-0.5
0
null
main
6.666667
6;7;7
null
null
Learning Recurrent Representations for Hierarchical Behavior Modeling
null
null
0
3.666667
Poster
4;4;3
null
null
New York University; University of Montreal
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Natural language processing;Reinforcement Learning
null
0
null
null
iclr
0
0
null
main
5.666667
4;6;7
null
null
Dynamic Neural Turing Machine with Continuous and Discrete Addressing Schemes
null
null
0
4
Reject
4;4;4
null
null
Department of Computer Science, Worcester Polytechnic Institute, Worcester, MA 01609, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Unsupervised Learning;Deep learning
null
0
null
null
iclr
-0.327327
0
null
main
6
5;6;7
null
null
Skip-graph: Learning graph embeddings with an encoder-decoder model
null
null
0
2.666667
Reject
4;1;3
null
null
Facebook AI Research, New York; Facebook AI Research, Menlo Park
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Speech;Structured prediction
null
0
null
null
iclr
1
0
null
main
6.5
6;7
null
null
Wav2Letter: an End-to-End ConvNet-based Speech Recognition System
null
null
0
4.5
Reject
4;5
null
null
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Universitat Paderborn
2017
0
null
null
0
null
null
null
null
null
null
null
Theory;Deep learning
null
0
null
null
iclr
0
0
null
main
3
3;3;3
null
null
The Incredible Shrinking Neural Network: New Perspectives on Learning Representations Through The Lens of Pruning
null
null
0
4
Reject
4;4;4
null
null
Hebrew University of Jerusalem
2017
0
null
null
0
null
null
null
null
null
null
null
Theory;Deep learning
null
0
null
null
iclr
0.5
0
null
main
6.666667
6;7;7
null
null
Inductive Bias of Deep Convolutional Networks through Pooling Geometry
null
null
0
3.666667
Poster
3;5;3
null
null
UMR CNRS NIA 7260, Aix Marseille Univ., Marseille, France; Teklia SAS, Paris, France; A2iA SAS, Paris, France; UMR CNRS LSIS 7296, AMU, Univ. Toulon, ENSAM, IUF, France
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0.755929
0
null
main
5.333333
4;5;7
null
null
Cortical-Inspired Open-Bigram Representation for Handwritten Word Recognition
null
null
0
4.666667
Reject
4;5;5
null
null
IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Optimization
null
0
null
null
iclr
0
0
null
main
5
4;5;6
null
null
Inefficiency of stochastic gradient descent with larger mini-batches (and more learners)
null
null
0
3.666667
Reject
4;3;4
null
null
Department of Brain and Cognitive Sciences, MIT; Department of Electrical Engineering and Computer Science, MIT
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Unsupervised Learning
null
0
null
null
iclr
0
0
null
main
7.333333
6;7;9
null
null
A Compositional Object-Based Approach to Learning Physical Dynamics
null
null
0
4
Poster
4;4;4
null
null
Department of Computer Science, University of California, Berkeley, Berkeley, CA 94720, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning
null
0
null
null
iclr
0.866025
0
null
main
8.333333
8;8;9
null
null
Making Neural Programming Architectures Generalize via Recursion
null
null
0
4
Oral
3;4;5
null
null
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Speech;Computer vision;Deep learning;Multi-modal learning;Unsupervised Learning;Semi-Supervised Learning
null
0
null
null
iclr
-0.5
0
null
main
5.333333
5;5;6
null
null
Learning Word-Like Units from Joint Audio-Visual Analylsis
null
null
0
4.333333
Reject
5;4;4
null
null
Microsoft Research Asia
2017
0
null
null
0
null
null
null
null
null
null
null
Computer vision;Applications
null
0
null
null
iclr
0
0
null
main
5
4;5;6
null
null
Boosting Image Captioning with Attributes
null
null
0
4.666667
Reject
5;4;5
null
null
Department of Computer Science and Software Engineering, Laval University, Quebec, Canada
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0.774597
0
null
main
5.5
4;5;6;7
null
null
Parametric Exponential Linear Unit for Deep Convolutional Neural Networks
null
null
0
4.25
Reject
4;4;4;5
null
null
Google Deepmind; Google / University of Warsaw
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0.5
0
null
main
4.333333
3;5;5
null
null
Learning Efficient Algorithms with Hierarchical Attentive Memory
null
null
0
4.333333
Reject
4;5;4
null
null
Department of Computer Science, Harbin Institute of Technology, Shenzhen, Guangdong, P.R. China; School of Information, Renmin University of China, Beijing, P.R. China
2017
0
null
null
0
null
null
null
null
null
null
null
Unsupervised Learning;Natural language processing
null
0
null
null
iclr
0
0
null
main
4.666667
4;4;6
null
null
Investigating Different Context Types and Representations for Learning Word Embeddings
null
null
0
4
Reject
5;3;4
null
null
Department of Computer Science, University of Oxford, Oxford, UK; Department of Computer Science, University of Oxford, Oxford, UK; Google DeepMind, London, UK; CIFAR, Canada
2017
0
null
null
0
null
null
null
null
null
null
null
Computer vision;Deep learning
null
0
null
null
iclr
-1
0
https://youtube.com/playlist?list=PLXkuFIFnXUAPIrXKgtIpctv2NuSo7xw3k
main
4.666667
4;4;6
null
null
LipNet: End-to-End Sentence-level Lipreading
null
null
0
3.666667
Reject
4;4;3
null
null
Visual Geometry Group, University of Oxford
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
-0.5
0
null
main
6.333333
6;6;7
null
null
Warped Convolutions: Efficient Invariance to Spatial Transformations
null
null
0
4.333333
Reject
5;4;4
null
null
U2IS, ENSTA ParisTech, Inria FLOWERS, Universit ´e Paris-Saclay
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Computer vision;Unsupervised Learning
null
0
null
null
iclr
0
0
null
main
3
3;3;3
null
null
Unsupervised Deep Learning of State Representation Using Robotic Priors
null
null
0
4.333333
Reject
5;4;4
null
null
Department of Computer Science, University of Wisconsin – Milwaukee, Milwaukee, WI, USA; Department of Computational Neuroscience, The University of Massachusetts, Lowell, Lowell, MA, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Applications;Optimization
null
0
null
null
iclr
-0.866025
0
null
main
7
6;7;8
null
null
DeepDSL: A Compilation-based Domain-Specific Language for Deep Learning
null
null
0
3.666667
Poster
4;4;3
null
null
Google Brain
2017
0
null
null
0
null
null
null
null
null
null
null
Computer vision;Deep learning;Unsupervised Learning;Reinforcement Learning;Transfer Learning
null
0
null
null
iclr
0.5
0
null
main
5.333333
4;6;6
null
null
Unsupervised Perceptual Rewards for Imitation Learning
null
null
0
4.333333
Workshop
4;5;4
null
null
Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 3G4, Canada
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Applications
null
0
null
null
iclr
0
0
null
main
6
5;6;7
null
null
Bit-Pragmatic Deep Neural Network Computing
null
null
0
2.333333
Workshop
2;3;2
null
null
Sentient Technologies, 1 California Street Suite 2300, San Francisco, CA 94111
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
-0.5
0
null
main
4.333333
4;4;5
null
null
L-SR1: A Second Order Optimization Method for Deep Learning
null
null
0
3.333333
Reject
4;3;3
null
null
Department of Engineering Science, University of Oxford; Department of Engineering Science, University of Oxford and Alan Turing Institute
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
5
4;5;6
null
null
Trusting SVM for Piecewise Linear CNNs
null
null
0
4
Poster
4;4;4
null
null
Department of Computer Science, University of Toronto, Ontario, ON M5S 3G4, Canada
2017
0
null
null
0
null
null
null
null
null
null
null
Applications
null
0
null
null
iclr
0.188982
0
null
main
5.666667
4;6;7
null
null
Song From PI: A Musically Plausible Network for Pop Music Generation
null
null
0
3.333333
Workshop
3;4;3
null
null
Department of Computer Science, University of Chicago, Chicago, IL 60637, USA; Microsoft Research Cambridge, Cambridge, CB1 2FB, UK
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Supervised Learning;Deep learning
null
0
null
null
iclr
0.5
0
null
main
4.333333
4;4;5
null
null
Gaussian Attention Model and Its Application to Knowledge Base Embedding and Question Answering
null
null
0
3.666667
Reject
4;3;4
null
null
LAL/LRI, CNRS/Université Paris-Saclay; MINES ParisTech, PSL Research University, CGS-I3 UMR 9217
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Unsupervised Learning
null
0
null
null
iclr
0
0
null
main
5.5
4;5;6;7
null
null
Out-of-class novelty generation: an experimental foundation
null
null
0
3.5
Reject
4;3;3;4
null
null
Department of Electrical and Computer Engineering, Duke University; Machine Learning Group, NEC Laboratories America
2017
0
null
null
0
null
null
null
null
null
null
null
Computer vision;Deep learning
null
0
null
null
iclr
-0.5
0
null
main
5
4;4;7
null
null
Adaptive Feature Abstraction for Translating Video to Language
null
null
0
4.333333
Workshop
5;4;4
null
null
Carnegie Mellon University; Carnegie Mellon University and DeepMind; DeepMind; DeepMind and University of Oxford
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Deep learning
null
0
null
null
iclr
0
0
null
main
5.333333
5;5;6
null
null
Reference-Aware Language Models
null
null
0
4
Reject
4;4;4
null
null
Department of Computer Science, University College London
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Deep learning
null
0
null
null
iclr
0
0
null
main
7
7;7;7
null
null
Frustratingly Short Attention Spans in Neural Language Modeling
null
null
0
4
Poster
4;4;4
null
null
Chubu University; Denso IT Laboratory, Inc.
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning
null
0
null
null
iclr
-0.866025
0
null
main
5
4;5;6
null
null
Ternary Weight Decomposition and Binary Activation Encoding for Fast and Compact Neural Network
null
null
0
3.333333
Reject
4;3;3
null
null
Computer Vision Center - Univ. Autònoma de Barcelona (UAB), 08193 Bellaterra, Catalonia Spain; Visual Tagging Services, Campus UAB, 08193 Bellaterra, Catalonia Spain
2017
0
null
null
0
null
null
null
null
null
null
null
Computer vision;Deep learning;Optimization
null
0
null
null
iclr
0
0
null
main
7
7;7;7
null
null
Regularizing CNNs with Locally Constrained Decorrelations
null
null
0
3.666667
Poster
4;4;3
null
null
National University of Singapore; Qihoo 360 AI Institute
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Computer vision;Supervised Learning
null
0
null
null
iclr
0
0
null
main
5.666667
5;6;6
null
null
Training Group Orthogonal Neural Networks with Privileged Information
null
null
0
4
Reject
4;4;4
null
null
Vanderbilt University; University of Michigan; Shanghai Jiao Tong University
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning
null
0
null
null
iclr
0.5
0
null
main
4.666667
4;5;5
null
null
Evaluation of Defensive Methods for DNNs against Multiple Adversarial Evasion Models
null
null
0
3.333333
Reject
3;4;3
null
null
Georgia Institute of Technology; California Institute of Technology; Sutter Health
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Applications
null
0
null
null
iclr
0.866025
0
null
main
5
4;5;6
null
null
Neural Causal Regularization under the Independence of Mechanisms Assumption
null
null
0
4.333333
Reject
4;4;5
null
null
Department of Computer Science and Engineering, York University, Toronto, CA
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Natural language processing
null
0
null
null
iclr
0
0
null
main
4.333333
3;4;6
null
null
Higher Order Recurrent Neural Networks
null
null
0
4
Reject
4;4;4
null
null
Informatics Forum, University of Edinburgh, 10, Crichton St, Edinburgh, EH89AB, UK; Informatics Forum, University of Edinburgh, 10, Crichton St, Edinburgh, EH89AB, UK; Additional affiliation: Alan Turing Institute, British Library, 96 Euston Road, London NW1 2DB
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Unsupervised Learning;Applications;Optimization
null
0
null
null
iclr
-0.866025
0
null
main
6.333333
6;6;7
null
null
Autoencoding Variational Inference For Topic Models
null
null
0
4
Poster
4;5;3
null
null
Google, New York, NY, [email protected]; Carnegie Mellon University, Pittsburgh, PA, [email protected]; Google, New York, NY, [email protected]; Google, New York, NY, [email protected]; Google, New York, NY, [email protected]
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Deep learning;Multi-modal learning;Structured prediction
null
0
null
null
iclr
0
0
null
main
6
5;6;7
null
null
DRAGNN: A Transition-Based Framework for Dynamically Connected Neural Networks
null
null
0
3.666667
Reject
4;3;4
null
null
Google Brain, Google Inc., Mountain View, CA 94043, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning
null
0
null
null
iclr
0
0
null
main
7.666667
7;8;8
null
null
Capacity and Trainability in Recurrent Neural Networks
null
null
0
4
Poster
4;4;4
null
null
Stanford University; Google DeepMind; Google Brain
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Unsupervised Learning;Optimization
null
0
null
null
iclr
0
0
null
main
7.666667
7;7;9
null
null
Unrolled Generative Adversarial Networks
null
null
0
5
Poster
5;5;5
null
null
Faculty of Mathematics, Informatics and Mechanics, University of Warsaw; Weldon School of Biomedical Engineering, Purdue University
2017
0
null
null
0
null
null
null
null
null
null
null
Computer vision;Deep learning;Applications
null
0
null
null
iclr
1
0
null
main
4.333333
4;4;5
null
null
An Analysis of Deep Neural Network Models for Practical Applications
null
null
0
3.333333
Reject
3;3;4
null
null
Harvard University
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Deep learning;Supervised Learning
null
0
null
null
iclr
0.522233
0
null
main
6.75
6;6;7;8
null
null
Lie-Access Neural Turing Machines
null
null
0
3.75
Poster
3;4;4;4
null
null
MetaMind - A Salesforce Company, Palo Alto, CA, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Deep learning
null
0
null
null
iclr
0
0
null
main
7.666667
7;8;8
null
null
Pointer Sentinel Mixture Models
null
null
0
4
Poster
4;4;4
null
null
College of Information and Computer Sciences, University of Massachusetts, Amherst, Amherst, MA 01060, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Unsupervised Learning;Games
null
0
null
null
iclr
-0.5
0
null
main
6.666667
6;7;7
null
null
Generative Multi-Adversarial Networks
null
null
0
3.666667
Poster
4;4;3
null
null
Baidu Research; Google Brain
2017
0
null
null
0
null
null
null
null
null
null
null
Speech;Deep learning;Supervised Learning
null
0
null
null
iclr
-1
0
null
main
6.5
6;7
null
null
Exploring Sparsity in Recurrent Neural Networks
null
null
0
3.5
Poster
4;3
null
null
Department of Engineering, University of Cambridge; Also affiliated with Max-Planck Institute for Intelligent Systems, Tübingen, Germany. Work done while author was an intern at Microsoft Research.; Microsoft Research
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Supervised Learning;Applications;Structured prediction
null
0
null
null
iclr
-1
0
null
main
6.333333
6;6;7
null
null
DeepCoder: Learning to Write Programs
null
null
0
3.333333
Poster
4;4;2
null
null
Department of Computer Science, Technion-Israel Institute of Technology
2017
0
null
null
0
null
null
null
null
null
null
null
Computer vision;Deep learning;Supervised Learning;Applications
null
0
null
null
iclr
0.142857
0
null
main
6.333333
5;6;8
null
null
Learning Invariant Representations Of Planar Curves
null
null
0
3.333333
Poster
2;5;3
null
null
Department of Kinesiology, University of Waterloo, Ontario, Canada; Noah’s Ark Laboratory, Huawei Technologies, Hong Kong, China; David R. Cheriton School of Computer Science, University of Waterloo, Ontario, Canada
2017
0
null
null
0
null
null
null
null
null
null
null
Unsupervised Learning;Transfer Learning;Applications
null
0
null
null
iclr
0
0
null
main
6.333333
6;6;7
null
null
Online Bayesian Transfer Learning for Sequential Data Modeling
null
null
0
3
Poster
3;3;3
null
null
Department of Computer Science and Technology, Ocean University of China
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
3.666667
3;4;4
null
null
Marginal Deep Architectures: Deep learning for Small and Middle Scale Applications
null
null
0
4
Reject
4;4;4
null
null
UC Berkeley, Department of Electrical Engineering and Computer Science; OpenAI
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Unsupervised Learning
null
0
null
null
iclr
0
0
null
main
6.666667
6;7;7
null
null
Variational Lossy Autoencoder
null
null
0
4
Poster
4;4;4
null
null
Robotics and Biology Lab, Technische Universit ¨at Berlin, Berlin, Germany
2017
0
null
null
0
null
null
null
null
null
Rico Jonschkowski and Oliver Brock
null
Deep learning;Unsupervised Learning
null
0
null
null
iclr
0
0
null
main
3.666667
3;4;4
null
null
End-to-End Learnable Histogram Filters
null
null
0
3
Reject
3;3;3
null
null
Universidad de Buenos Aires; University of California, Berkeley
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Supervised Learning
null
0
null
null
iclr
-0.5
0
null
main
4
3;4;5
null
null
Exploring the Application of Deep Learning for Supervised Learning Problems
null
null
0
4
Reject
5;3;4
null
null
School of Computer Science, Carnegie Mellon University
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Deep learning;Transfer Learning
null
0
null
null
iclr
0
0
null
main
6.666667
5;7;8
null
null
Transfer Learning for Sequence Tagging with Hierarchical Recurrent Networks
https://github.com/kimiyoung/transfer
null
0
4
Poster
4;4;4
null
null
Engineering Faculty, Bar-Ilan University, Ramat-Gan 52900, Israel
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Optimization
null
0
null
null
iclr
0.5
0
null
main
5.666667
5;5;7
null
null
Training deep neural-networks using a noise adaptation layer
null
null
0
4.666667
Poster
4;5;5
null
null
Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Unsupervised Learning;Deep learning
null
0
null
null
iclr
-0.944911
0
null
main
4.666667
3;5;6
null
null
Inverse Problems in Computer Vision using Adversarial Imagination Priors
null
null
0
3.333333
Reject
4;3;3
null
null
ESAT-PSI, KU Leuven; Department of Computer Science, University of Amsterdam
2017
0
null
null
0
null
null
null
null
null
null
null
Computer vision;Deep learning
null
0
null
null
iclr
-0.188982
0
null
main
5.333333
4;5;7
null
null
Dynamic Steerable Frame Networks
null
null
0
3.333333
Reject
3;4;3
null
null
DYNI, LSIS, Machine Learning & Bioacoustics team, AMU, University of Toulon, ENSAM, CNRS, La Garde, France; DYNI, LSIS, Machine Learning & Bioacoustics team, AMU, University of Toulon, ENSAM, CNRS, IUF, La Garde, France; Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Applications;Supervised Learning;Deep learning;Speech
null
0
null
null
iclr
0
0
null
main
5.333333
4;6;6
null
null
Fast Chirplet Transform to Enhance CNN Machine Listening - Validation on Animal calls and Speech
null
null
0
4
Workshop
4;5;3
null
null
Department of Machine Learning, Carnegie Mellon University, Pittsburgh, PA 15213, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Unsupervised Learning
null
0
null
null
iclr
-0.5
0
null
main
5.333333
5;5;6
null
null
Annealing Gaussian into ReLU: a New Sampling Strategy for Leaky-ReLU RBM
null
null
0
4.333333
Reject
4;5;4
null
null
Nanyang Technological University, Singapore; SAP Innovation Center, Singapore; SAP, Singapore
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning
null
0
null
null
iclr
0
0
null
main
4
4;4;4
null
null
Character-aware Attention Residual Network for Sentence Representation
null
null
0
4.333333
Reject
4;4;5
null
null
University of Illinois at Urbana-Champaign; Google Brain
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Deep learning;Semi-Supervised Learning;Transfer Learning
null
0
null
null
iclr
0
0
null
main
6
5;6;7
null
null
Unsupervised Pretraining for Sequence to Sequence Learning
null
null
0
4.666667
Reject
5;4;5
null
null
TTI-Chicago, Chicago, IL 60637, USA; University of Michigan, Ann Arbor, MI 48109, USA
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
5.666667
5;5;7
null
null
Deep Variational Canonical Correlation Analysis
null
null
0
4
Reject
4;4;4
null
null
Google Brain, Oxford University; Google Brain, Wroclaw University; Google Inc.
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Deep learning;Supervised Learning
null
0
null
null
iclr
-1
0
null
main
6.333333
6;6;7
null
null
Intelligible Language Modeling with Input Switched Affine Networks
null
null
0
3.666667
Reject
4;4;3
null
null
Stanford University; Computer Science Department, Stanford University
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Deep learning
null
0
null
null
iclr
0.5
0
null
main
6.666667
6;6;8
null
null
Data Noising as Smoothing in Neural Network Language Models
null
null
0
2.666667
Poster
0;4;4
null
null
Stanford University; Google Brain
2017
0
null
null
0
null
null
null
null
null
null
null
Theory;Deep learning
null
0
null
null
iclr
0.866025
0
null
main
8.333333
8;8;9
null
null
Deep Information Propagation
null
null
0
3
Poster
2;3;4
null
null
Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea; Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
-0.866025
0
null
main
5
4;5;6
null
null
Near-Data Processing for Machine Learning
null
null
0
2.666667
Reject
4;2;2
null
null
Department of Information Engineering and Computer Science, University of Trento, Trento, Italy
2017
0
null
null
0
null
null
null
null
null
null
null
Unsupervised Learning
null
0
null
null
iclr
0
0
null
main
3.666667
3;4;4
null
null
Rule Mining in Feature Space
null
null
0
4
Reject
4;4;4
null
null
Department of Statistics, Columbia University, New York, NY 10027, USA
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
1
0
null
main
7
6;6;9
null
null
Maximum Entropy Flow Networks
null
null
0
4.333333
Poster
4;4;5
null
null
Sorbonne Universit ´es, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France
2017
0
null
null
0
null
null
null
null
null
null
null
Reinforcement Learning
null
0
null
null
iclr
0
0
null
main
4.5
4;4;5;5
null
null
Options Discovery with Budgeted Reinforcement Learning
https://github.com/aureliale/BONN-model
null
0
4.5
Reject
5;4;4;5
null
null
Harvard University; University of Cambridge; Siemens AG and Technical University of Munich; Siemens AG
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Reinforcement Learning
null
0
null
null
iclr
0
0
null
main
6.666667
6;7;7
null
null
Learning and Policy Search in Stochastic Dynamical Systems with Bayesian Neural Networks
null
null
0
3
Poster
3;3;3
null
null
3National Research University Higher School of Economics (HSE); 1Skolkovo Institute of Science and Technology, 2The Institute for Information Transmission Problems RAS (Kharkevich Institute), 3National Research University Higher School of Economics (HSE)
2017
0
null
null
0
null
null
null
null
null
null
null
Computer vision;Deep learning;Unsupervised Learning;Applications;Supervised Learning
null
0
null
null
iclr
0.866025
0
null
main
5
4;5;6
null
null
Generative Adversarial Networks for Image Steganography
null
null
0
3.333333
Reject
3;3;4
null
null
Computer Science Division, University of California, Berkeley
2017
0
null
null
0
null
null
null
null
null
null
null
Reinforcement Learning;Transfer Learning
null
0
null
null
iclr
0.866025
0
null
main
4
3;4;5
null
null
Modular Multitask Reinforcement Learning with Policy Sketches
null
null
0
4.666667
Workshop
4;5;5
null
null
Department of Computer Science, Dartmouth College
2017
0
null
null
0
null
null
null
null
null
null
null
Unsupervised Learning
null
0
null
null
iclr
0
0
null
main
4
4;4;4
null
null
Learning to Draw Samples: With Application to Amortized MLE for Generative Adversarial Learning
null
null
0
3.333333
Workshop
4;3;3
null
null
Intel Corporation, Santa Clara, CA 95054; Intel Corporation, Bangalore, India; Northwestern University, Evanston, IL 60208
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Optimization
null
0
null
null
iclr
-0.866025
0
null
main
8
6;8;10
null
null
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
null
null
0
3.333333
Oral
4;3;3
null
null
Princeton University
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0.866025
0
null
main
6
5;6;7
null
null
Nonparametrically Learning Activation Functions in Deep Neural Nets
null
null
0
4.333333
Workshop
4;4;5
null
null
Salesforce Research, Palo Alto, California
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Deep learning
null
0
null
null
iclr
0
0
null
main
6.666667
6;7;7
null
null
Quasi-Recurrent Neural Networks
null
null
0
4
Poster
4;4;4
null
null
Department of Computer Science, Harvey Mudd College, 301 Platt Boulevard
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Deep learning;Supervised Learning;Structured prediction
null
0
null
null
iclr
1
0
null
main
8.333333
7;9;9
null
null
Learning Graphical State Transitions
null
null
0
2.666667
Oral
2;3;3
null
null
Allen Institute for Artificial Intelligence; University of Washington; University of Washington, Allen Institute for Artificial Intelligence
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Deep learning
null
0
null
null
iclr
-0.5
0
null
main
7.666667
7;8;8
null
null
Bidirectional Attention Flow for Machine Comprehension
null
null
0
4.666667
Poster
5;4;5
null
null
MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Theory;Applications
null
0
null
null
iclr
0
0
null
main
4.333333
4;4;5
null
null
Representing inferential uncertainty in deep neural networks through sampling
null
null
0
4
Reject
4;4;4
null
null
Facebook AI Research; Georgia Institute of Technology; Virginia Tech
2017
0
null
null
0
null
null
null
null
null
null
null
Computer vision;Deep learning;Unsupervised Learning
null
0
null
null
iclr
0.693375
0
null
main
6.333333
6;6;7
null
null
LR-GAN: Layered Recursive Generative Adversarial Networks for Image Generation
null
null
0
2.333333
Poster
0;3;4
null
null
Reasoning and Learning Lab, School of Computer Science, McGill University; Montreal Institute for Learning Algorithms, Université de Montréal
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Applications
null
0
null
null
iclr
0
0
null
main
5.333333
4;5;7
null
null
Towards an automatic Turing test: Learning to evaluate dialogue responses
null
null
0
4
Workshop
4;4;4
null
null
College of Computer Science and Information Engineering, Hefei University of Technology, Hefei, China, 230009; Systems and Information Sciences lab, LSIS CNRS & Univ. of Sud-Toulon Var - La Garde, France
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
2.75
2;3;3;3
null
null
Pedestrian Detection Based On Fast R-CNN and Batch Normalization
null
null
0
5
Reject
5;5;5;5
null
null
Sorbonne Universities, UPMC Univ Paris 06, CNRS, LIP6 UMR 7606, Institut VEDECOM, 77 rue des chantiers, 78000, Versailles; Sorbonne Universities, UPMC Univ Paris 06, CNRS, LIP6 UMR 7606, 4 place Jussieu 75005 Paris, France
2017
0
null
null
0
null
null
null
null
null
null
null
Applications;Deep learning
null
0
null
null
iclr
0
0
null
main
4
4;4;4
null
null
Modelling Relational Time Series using Gaussian Embeddings
null
null
0
4
Reject
5;3;4
null
null
School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada
2017
0
null
null
0
null
null
null
null
null
null
null
Unsupervised Learning
null
0
null
null
iclr
-0.755929
0
null
main
5.666667
4;6;7
null
null
Dataset Augmentation in Feature Space
null
null
0
4.666667
Workshop
5;5;4
null
null
School of Informatics, University of Edinburgh, Edinburgh, UK
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
-0.5
0
null
main
7.333333
6;8;8
null
null
Towards a Neural Statistician
null
null
0
3.333333
Poster
4;4;2
null
null
Google Brain, London, UK; Google Brain; Google Research
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Deep learning
null
0
null
null
iclr
0.5
0
null
main
6.333333
5;7;7
null
null
Generating Long and Diverse Responses with Neural Conversation Models
null
null
0
3.333333
Reject
3;3;4
null
null
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Structured prediction;Computer vision;Supervised Learning;Semi-Supervised Learning
null
0
null
null
iclr
-1
0
null
main
5.666667
5;5;7
null
null
Deep Learning with Sets and Point Clouds
null
null
0
3
Workshop
4;4;1
null
null
National Laboratory of Pattern Recognition, Chinese Academy of Sciences; Georgia Institute of Technology
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Unsupervised Learning;Structured prediction
null
0
null
null
iclr
0
0
null
main
7
7;7;7
null
null
Recurrent Hidden Semi-Markov Model
null
null
0
3.666667
Poster
3;4;4
null
null
University of Amsterdam; University of Amsterdam, Canadian Institute for Advanced Research (CIFAR)
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Optimization
null
0
null
null
iclr
0
0
null
main
7
7;7;7
null
null
Soft Weight-Sharing for Neural Network Compression
null
null
0
3.333333
Poster
3;4;3
null
null
Department of Computer Science, University of Illinois at Urbana-Champaign
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning
null
0
null
null
iclr
-0.5
0
null
main
4.333333
3;5;5
null
null
A Simple yet Effective Method to Prune Dense Layers of Neural Networks
null
null
0
3.666667
Reject
4;4;3
null
null
Department of Computing, The Hong Kong Polytechnic University, Hong Kong; Montreal Institute for Learning Algorithms, Université de Montréal, Montréal, QC H3T 1J4, Canada; David R. Cheriton School of Computer Science, University Of Waterloo, Waterloo, ON N2L 3G1, Canada
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Unsupervised Learning
null
0
null
null
iclr
0
0
null
main
6
4;7;7
null
null
Mode Regularized Generative Adversarial Networks
null
null
0
4
Poster
4;4;4
null
null
MILA Lab, University of Montreal, Canada; Center for Processing Speech and Images, KU Leuven, Belgium; INRIA Galen, University of Paris-Saclay, France; INRIA Parietal, Saclay, France
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0.866025
0
null
main
6
5;6;7
null
null
Learning to Discover Sparse Graphical Models
null
null
0
2.666667
Workshop
2;3;3
null
null
University of Toronto; Tsinghua University
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
-0.5
0
null
main
5.333333
5;5;6
null
null
Efficient Summarization with Read-Again and Copy Mechanism
null
null
0
4.333333
Reject
4;5;4
null
null
Not provided
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing
null
0
null
null
iclr
-0.5
0
Not provided
main
4.333333
4;4;5
null
null
Beyond Bilingual: Multi-sense Word Embeddings using Multilingual Context
Not provided
null
0
3.333333
Reject
3;4;3
null
null
Microsoft Research
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Supervised Learning
null
0
null
null
iclr
-0.755929
0
null
main
4.666667
2;4;8
null
null
Lifelong Perceptual Programming By Example
null
null
0
4.333333
Workshop
5;4;4
null
null
Department of Electrical Engineering and Computer Sciences, UC Berkeley, Berkeley, California, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Supervised Learning;Games;Theory
null
0
null
null
iclr
-0.5
0
null
main
5
3;5;7
null
null
Recursive Regression with Neural Networks: Approximating the HJI PDE Solution
null
null
0
3
Workshop
5;1;3
null
null
School of Information Systems, Singapore Management University
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Deep learning
null
0
null
null
iclr
0.866025
0
null
main
7
6;7;8
null
null
A Compare-Aggregate Model for Matching Text Sequences
null
null
0
4.666667
Poster
4;5;5
null
null
Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, USA; School of Informatics and Computing, Indiana University, Bloomington, IN, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Computer vision;Natural language processing
null
0
null
null
iclr
0
0
null
main
5.333333
4;6;6
null
null
Diverse Beam Search: Decoding Diverse Solutions from Neural Sequence Models
null
null
0
4
Reject
4;4;4
null
null
null
2017
0
null
null
0
null
null
null
null
null
null
null
Unsupervised Learning
null
0
null
null
iclr
0
0
null
main
7
6;7;8
null
null
Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy
null
null
0
3.333333
Poster
3;4;3
null
null
NVIDIA Research, Austin, TX 78717, USA; Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Optimization;Deep learning
null
0
null
null
iclr
-1
0
null
main
4.333333
4;4;5
null
null
Training Long Short-Term Memory With Sparsified Stochastic Gradient Descent
null
null
0
3.666667
Reject
4;4;3
null
null
School of Computer Science and Communication, KTH, Stockholm, Sweden
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
4
4;4;4
null
null
The Preimage of Rectifier Network Activities
null
null
0
3
Reject
4;0;5
null
null
Vicarious, San Francisco, CA, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Unsupervised Learning
null
0
null
null
iclr
0
0
null
main
4.666667
4;5;5
null
null
Hierarchical compositional feature learning
null
null
0
4
Reject
4;4;4
null