pdf
stringlengths
49
199
aff
stringlengths
1
1.36k
year
stringclasses
19 values
technical_novelty_avg
float64
0
4
video
stringlengths
21
47
doi
stringlengths
31
63
presentation_avg
float64
0
4
proceeding
stringlengths
43
129
presentation
stringclasses
796 values
sess
stringclasses
576 values
technical_novelty
stringclasses
700 values
arxiv
stringlengths
10
16
author
stringlengths
1
1.96k
site
stringlengths
37
191
keywords
stringlengths
2
582
oa
stringlengths
86
198
empirical_novelty_avg
float64
0
4
poster
stringlengths
57
95
openreview
stringlengths
41
45
conference
stringclasses
11 values
corr_rating_confidence
float64
-1
1
corr_rating_correctness
float64
-1
1
project
stringlengths
1
162
track
stringclasses
3 values
rating_avg
float64
0
10
rating
stringlengths
1
17
correctness
stringclasses
809 values
slides
stringlengths
32
41
title
stringlengths
2
192
github
stringlengths
3
165
authors
stringlengths
7
161
correctness_avg
float64
0
5
confidence_avg
float64
0
5
status
stringclasses
22 values
confidence
stringlengths
1
17
empirical_novelty
stringclasses
763 values
null
2017
0
null
null
0
null
null
null
null
null
null
null
Supervised Learning
null
0
null
null
iclr
0
0
null
main
3
3;3;3
null
null
Efficient Calculation of Polynomial Features on Sparse Matrices
null
null
0
2.333333
Reject
3;3;1
null
null
null
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Unsupervised Learning;Structured prediction
null
0
null
null
iclr
1
0
null
main
8
7;8;9
null
null
The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables
null
null
0
4
Poster
3;4;5
null
null
Department of Computer Science, University of California, Irvine
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Unsupervised Learning;Semi-Supervised Learning
null
0
null
null
iclr
0.5
0
null
main
6.666667
4;8;8
null
null
Stick-Breaking Variational Autoencoders
null
null
0
4.333333
Poster
4;4;5
null
null
Department of Computer Science and Engineering, Hong Kong University of Science and Technology
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Applications;Optimization
null
0
null
null
iclr
0
0
null
main
7
7;7;7
null
null
Loss-aware Binarization of Deep Networks
null
null
0
3.333333
Poster
4;3;3
null
null
Technion - Israel Institute of Technology, Haifa, Israel
2017
0
null
null
0
null
null
null
null
null
null
null
Unsupervised Learning;Deep learning;Computer vision
null
0
null
null
iclr
0
0
null
main
6
5;6;7
null
null
Deep unsupervised learning through spatial contrasting
null
null
0
4
Reject
4;4;4
null
null
Stanford University; DeepScale∗& UC Berkeley
2017
0
null
null
0
null
null
null
null
null
null
null
Computer vision;Deep learning
null
0
null
null
iclr
-0.5
0
null
main
6.333333
5;7;7
null
null
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size
https://github.com/DeepScale/SqueezeNet
null
0
3.666667
Reject
4;4;3
null
null
Criteo Research
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0.5
0
null
main
5
3;5;7
null
null
Efficient iterative policy optimization
null
null
0
3
Reject
2;4;3
null
null
University of Oxford and DeepMind; DeepMind
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Deep learning;Semi-Supervised Learning
null
0
null
null
iclr
0
0
null
main
6.666667
6;7;7
null
null
The Neural Noisy Channel
null
null
0
4
Poster
4;4;4
null
null
University of Cambridge, UK; University of Cambridge, UK; Uber AI Labs, USA; DeepMind, UK; Google Brain, USA; UC Berkeley, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Reinforcement Learning
null
0
null
null
iclr
-0.816497
0
null
main
7.25
7;7;7;8
null
null
Q-Prop: Sample-Efficient Policy Gradient with An Off-Policy Critic
null
null
0
4
Oral
4;5;4;3
null
null
DeepMind, London, UK
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
7.666667
7;8;8
null
null
Reinforcement Learning with Unsupervised Auxiliary Tasks
null
null
0
4
Oral
4;4;4
null
null
Department of Computer Science, Johns Hopkins University
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
3
3;3;3
null
null
Unsupervised Learning Using Generative Adversarial Training And Clustering
null
null
0
4.333333
Reject
5;4;4
null
null
Department of Electronic Engineering, Tsinghua University, Beijing 100084, China; Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Optimization;Theory
null
0
null
null
iclr
-0.866025
0
null
main
4.333333
4;4;5
null
null
Demystifying ResNet
null
null
0
4
Reject
5;4;3
null
null
Computer Vision Center, Universitat Aut `onoma de Barcelona, Bellaterra, Barcelona (Spain); Department of Computer Science, Universidade da Beira Interior, Covilh ˜a, Portugal
2017
0
null
null
0
null
null
null
null
null
null
null
Computer vision;Deep learning
null
0
null
null
iclr
-0.866025
0
null
main
5.666667
3;7;7
null
null
Understanding trained CNNs by indexing neuron selectivity
null
null
0
4
Reject
5;4;3
null
null
Samsung Research America, Mountain View, CA 94043, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Computer vision;Deep learning
null
0
null
null
iclr
0
0
null
main
4
4;4;4
null
null
Simple Black-Box Adversarial Perturbations for Deep Networks
null
null
0
3.666667
Reject
4;3;4
null
null
McGill University; Université de Montréal
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Deep learning;Reinforcement Learning;Structured prediction
null
0
null
null
iclr
0.5
0
null
main
6.666667
4;8;8
null
null
An Actor-Critic Algorithm for Sequence Prediction
null
null
0
4.333333
Poster
4;4;5
null
null
NVIDIA
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Transfer Learning
null
0
null
null
iclr
0
0
null
main
7.333333
6;7;9
null
null
Pruning Convolutional Neural Networks for Resource Efficient Inference
null
null
0
4
Poster
4;4;4
null
null
CMLA, ENS Cachan, CNRS, Universit´e Paris-Saclay, 94235 Cachan, France; Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Theory;Deep learning;Optimization
null
0
null
null
iclr
0.981981
0
null
main
6.333333
5;6;8
null
null
Understanding Trainable Sparse Coding with Matrix Factorization
null
null
0
3
Poster
2;3;4
null
null
Department of Computer Science and Information Systems, Birkbeck, University of London, London, UK
2017
0
null
null
0
null
null
null
null
null
nitbix
null
null
null
0
null
null
iclr
0
0
null
main
3.333333
3;3;4
null
null
Boosted Residual Networks
null
null
0
5
Reject
5;5;5
null
null
Redwood Center, UC Berkeley
2017
0
null
null
0
null
null
null
null
null
null
null
Computer vision;Deep learning;Supervised Learning
null
0
null
null
iclr
0.5
0
null
main
5.666667
5;6;6
null
null
Emergence of foveal image sampling from learning to attend in visual scenes
null
null
0
4.333333
Poster
4;4;5
null
null
Research School of Engineering, Australian National University; Commonwealth Scientific and Industrial Research Organisation
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Transfer Learning;Supervised Learning;Optimization
null
0
null
null
iclr
0.5
0
null
main
3.333333
3;3;4
null
null
Distributed Transfer Learning for Deep Convolutional Neural Networks by Basic Probability Assignment
null
null
0
3.666667
Reject
3;4;4
null
null
DeepMind, London, UK
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Reinforcement Learning
null
0
null
null
iclr
0
0
https://youtu.be/lNoaTyMZsWI
main
6.333333
5;7;7
null
null
Learning to Navigate in Complex Environments
null
null
0
4
Poster
4;5;3
null
null
Center for Research on Intelligent Perception and Computing, Institute of Automation, Chinese Academy of Sciences
2017
0
null
null
0
null
null
null
null
null
null
null
Computer vision;Deep learning
null
0
null
null
iclr
-1
0
null
main
4
3;3;6
null
null
What Is the Best Practice for CNNs Applied to Visual Instance Retrieval?
null
null
0
4.666667
Reject
5;5;4
null
null
University of Maryland, Baltimore County; U.S. Naval Research Laboratory, Code 5514
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
-1
0
null
main
3.333333
3;3;4
null
null
Deep Convolutional Neural Network Design Patterns
https://github.com/iPhysicist/CNNDesignPatterns
null
0
3.666667
Reject
4;4;3
null
null
D´epartement d’informatique, Universit ´e de Sherbrooke; Department of Computer Science, Dartmouth College; Amazon, Berlin, Germany
2017
0
null
null
0
null
null
null
null
null
null
null
Computer vision;Deep learning;Applications
null
0
null
null
iclr
0
0
null
main
6.333333
6;6;7
null
null
Recurrent Mixture Density Network for Spatiotemporal Visual Attention
null
null
0
4
Poster
4;4;4
null
null
Google Brain; Georgia Tech
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning
null
0
null
null
iclr
-1
0
null
main
7
6;7;8
null
null
Learning to Remember Rare Events
null
null
0
4
Poster
5;4;3
null
null
University of Amsterdam; University of Amsterdam, Canadian Institute for Advanced Research (CIFAR)
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Semi-Supervised Learning
null
0
null
null
iclr
0
0
null
main
7
7;7;7
null
null
Semi-Supervised Classification with Graph Convolutional Networks
null
null
0
3.666667
Poster
3;4;4
null
null
null
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
-1
0
null
main
6
4;7;7
null
null
null
null
null
0
3.333333
Reject
4;3;3
null
null
Salesforce Research; The University of Tokyo
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Deep learning
null
0
null
null
iclr
0
0
null
main
4.666667
3;5;6
null
null
A Joint Many-Task Model: Growing a Neural Network for Multiple NLP Tasks
null
null
0
4
Reject
4;4;4
null
null
´Ecole Polytechnique de Montr´eal; Lawrence Berkeley National Lab, Berkeley, CA
2017
0
null
null
0
null
null
null
null
null
null
null
Semi-Supervised Learning;Applications;Computer vision
null
0
null
null
iclr
-0.5
0
null
main
5.333333
4;6;6
null
null
Semi-Supervised Detection of Extreme Weather Events in Large Climate Datasets
null
null
0
3.666667
Reject
4;4;3
null
null
Facebook AI Research
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Supervised Learning;Applications
null
0
null
null
iclr
-0.5
0
null
main
5.666667
5;6;6
null
null
FastText.zip: Compressing text classification models
https://github.com/facebookresearch/fastText
null
0
3.666667
Reject
4;4;3
null
null
University of Cambridge; Google Research
2017
0
null
null
0
null
null
null
null
null
null
null
Semi-Supervised Learning;Natural language processing;Applications
null
0
null
null
iclr
0
0
null
main
3.333333
3;3;4
null
null
Neural Graph Machines: Learning Neural Networks Using Graphs
null
null
0
4
Reject
4;4;4
null
null
Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Supervised Learning
null
0
null
null
iclr
0.755929
0
null
main
4.666667
3;5;6
null
null
Multi-view Generative Adversarial Networks
null
null
0
3.333333
Reject
3;3;4
null
null
DYNI, LSIS, Machine Learning and Bioacoustics team, AMU, University of Toulon, ENSAM, CNRS, La Garde, France; Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Unsupervised Learning;Applications;Deep learning
null
0
null
null
iclr
-0.5
0
null
main
4.333333
4;4;5
null
null
Linear Time Complexity Deep Fourier Scattering Network and Extension to Nonlinear Invariants
null
null
0
3.666667
Reject
3;5;3
null
null
National University of Singapore; University of California, Berkeley; Google Research
2017
0
null
null
0
null
null
null
null
null
null
null
Computer vision;Unsupervised Learning
null
0
null
null
iclr
-1
0
null
main
5.333333
5;5;6
null
null
Adversarial examples for generative models
null
null
0
3.666667
Reject
4;4;3
null
null
Facebook AI Research; Facebook AI Research, WILLOW project team, Inria / ENS / CNRS
2017
0
null
null
0
null
null
null
null
null
null
null
Theory;Unsupervised Learning
null
0
null
null
iclr
0.866025
0
null
main
7.333333
7;7;8
null
null
Revisiting Classifier Two-Sample Tests
null
null
0
4
Poster
3;4;5
null
null
Department of Computer Science, Shahid Bahonar University, Kerman, Iran
2017
0
null
null
0
null
null
null
null
null
Administratr
null
Deep learning;Supervised Learning;Optimization;Computer vision
null
0
null
null
iclr
0
0
null
main
2.666667
2;3;3
null
null
New Learning Approach By Genetic Algorithm In A Convolutional Neural Network For Pattern Recognition
null
null
0
5
Reject
5;5;5
null
null
Microsoft Research, Redmond, WA, USA; University of Michigan, Ann Arbor, MI, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Reinforcement Learning;Deep learning
null
0
null
null
iclr
-0.722806
0
null
main
4.75
3;4;5;7
null
null
Communicating Hierarchical Neural Controllers for Learning Zero-shot Task Generalization
null
null
0
3
Reject
4;3;5;0
null
null
Department of Statistics, UC Berkeley, Berkeley, CA 94709, USA; Facebook AI Research, New York City, NY, 10003, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Deep learning;Applications
null
0
null
null
iclr
0
0
null
main
7
7;7;7
null
null
Automatic Rule Extraction from Long Short Term Memory Networks
null
null
0
3.333333
Poster
4;3;3
null
null
Department of Computing, Imperial College London, London, UK; Department of Bioengineering, Imperial College London, London, UK
2017
0
null
null
0
null
null
null
null
null
null
null
Unsupervised Learning;Deep learning
null
0
null
null
iclr
0
0
null
main
5.333333
4;4;8
null
null
Deep Unsupervised Clustering with Gaussian Mixture Variational Autoencoders
null
null
0
4
Reject
4;4;4
null
null
Bosch Center for Artificial Intelligence, Robert Bosch GmbH
2017
0
null
null
0
null
null
null
null
null
null
null
Computer vision;Deep learning;Supervised Learning
null
0
null
null
iclr
1
0
null
main
6.333333
5;7;7
null
null
On Detecting Adversarial Perturbations
null
null
0
3.666667
Poster
3;4;4
null
null
Montreal Institute for Learning Algorithms, Montreal, Quebec, Canada; University of Montreal, Faculty of Medicine, Montreal Heart Institute, Beaulieu-Saucier Pharmacogenomics Centre, Montreal, Quebec, Canada; University of Montreal, Faculty of Medicine, Montreal, Quebec, Canada; Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Unsupervised Learning;Supervised Learning;Applications
null
0
null
null
iclr
-0.866025
0
null
main
7
6;7;8
null
null
Diet Networks: Thin Parameters for Fat Genomics
null
null
0
3.333333
Poster
4;3;3
null
null
Facebook AI Research, Tel-Aviv, Israel
2017
0
null
null
0
null
null
null
null
null
null
null
Computer vision;Deep learning;Unsupervised Learning;Transfer Learning
null
0
null
null
iclr
0.5
0
null
main
6.666667
6;7;7
null
null
Unsupervised Cross-Domain Image Generation
null
null
0
3.333333
Poster
3;4;3
null
null
University of Adelaide; Queensland University of Technology
2017
0
null
null
0
null
null
null
null
null
null
null
Computer vision;Optimization;Structured prediction
null
0
null
null
iclr
-1
0
null
main
3.666667
3;4;4
null
null
Non-linear Dimensionality Regularizer for Solving Inverse Problems
null
null
0
4.333333
Reject
5;4;4
null
null
University of Massachusetts Boston, Boston, MA 02125; University of Massachusetts Amherst, Amherst, MA 01003
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Computer vision;Semi-Supervised Learning
null
0
null
null
iclr
0.5
0
null
main
5
4;5;6
null
null
Filling in the details: Perceiving from low fidelity visual input
null
null
0
4
Reject
3;5;4
null
null
AIFounded Inc., Toronto, ON; University of Guelph, Guelph, ON
2017
0
null
null
0
null
null
null
null
null
null
null
Unsupervised Learning
null
0
null
null
iclr
0
0
null
main
4
4;4;4
null
null
Generative Adversarial Parallelization
null
null
0
3.666667
Reject
3;4;4
null
null
The School of Computer Science, Tel Aviv University, Israel
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Theory
null
0
null
null
iclr
-1
0
null
main
5.666667
3;7;7
null
null
The loss surface of residual networks: Ensembles and the role of batch normalization
null
null
0
3.666667
Reject
5;3;3
null
null
Data Analysis Systems, Software Competence Center Hagenberg, Austria; Department of Knowledge-Based Mathematical Systems, Johannes Kepler University Linz, Austria
2017
0
null
null
0
null
null
null
null
null
null
null
Transfer Learning;Deep learning;Computer vision
null
0
null
null
iclr
0.944911
0
null
main
7.333333
6;7;9
null
null
Central Moment Discrepancy (CMD) for Domain-Invariant Representation Learning
https://github.com/wzell/cmd
null
0
4.333333
Poster
4;4;5
null
null
Machine Learning Group, Technische Universität Berlin, Berlin, Germany
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Unsupervised Learning;Supervised Learning
null
0
null
null
iclr
-1
0
null
main
2.666667
2;3;3
null
null
Learning similarity preserving representations with neural similarity and context encoders
null
null
0
4.333333
Reject
5;4;4
null
null
Vision and Security Technology (VAST) Lab, University of Colorado, Colorado Springs, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Computer vision
null
0
null
null
iclr
0
0
null
main
6
6;6;6
null
null
Exploring LOTS in Deep Neural Networks
null
null
0
4
Reject
4;4;4
null
null
Google Inc., 1600 Amphitheatre Parkway, Mountain View, CA 94043, USA; Department of Computer Science, University of Southern California, Los Angeles, CA 90020, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Supervised Learning
null
0
null
null
iclr
-0.944911
0
null
main
5.333333
4;5;7
null
null
The Power of Sparsity in Convolutional Neural Networks
null
null
0
3.666667
Reject
4;4;3
null
null
Google; Microsoft Research; University of Texas at Arlington
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Multi-modal learning;Computer vision
null
0
null
null
iclr
0
0
null
main
4
4;4;4
null
null
Memory-augmented Attention Modelling for Videos
null
null
0
3
Reject
0;5;4
null
null
Department of Electrical and Computer Engineering, University of Florida, Gainesvillle, FL 32611, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Structured prediction;Unsupervised Learning
null
0
null
null
iclr
0
0
null
main
4
4;4;4
null
null
Perception Updating Networks: On architectural constraints for interpretable video generative models
null
null
0
3.666667
Workshop
4;4;3
null
null
Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Unsupervised Learning;Theory;Deep learning
null
0
null
null
iclr
0.188982
0
null
main
6.666667
5;7;8
null
null
An Information-Theoretic Framework for Fast and Robust Unsupervised Learning via Neural Population Infomax
null
null
0
2.333333
Poster
2;3;2
null
null
Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213; Baidu Research, Sunnyvale, CA 94089, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Computer vision
null
0
null
null
iclr
-1
0
null
main
5.666667
5;6;6
null
null
An Analysis of Feature Regularization for Low-shot Learning
null
null
0
3.333333
Reject
4;3;3
null
null
Georgia Institute of Technology; Sutter Health
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Applications
null
0
null
null
iclr
0
0
null
main
6
6;6;6
null
null
GRAM: Graph-based Attention Model for Healthcare Representation Learning
null
null
0
3.666667
Reject
4;4;3
null
null
Queen Mary, University of London
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0.944911
0
null
main
6.666667
5;7;8
null
null
Deep Multi-task Representation Learning: A Tensor Factorisation Approach
null
null
0
3.666667
Poster
3;4;4
null
null
University of Toronto and Google DeepMind; University of Toronto
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Optimization
null
0
null
null
iclr
1
0
null
main
6.5
6;7
null
null
Distributed Second-Order Optimization using Kronecker-Factored Approximations
null
null
0
3.5
Poster
3;4
null
null
The Swiss AI Lab IDSIA (USI-SUPSI); The Swiss AI Lab IDSIA (USI-SUPSI) & NNAISENSE, Lugano, Switzerland
2017
0
null
null
0
null
null
null
null
null
null
null
Theory;Deep learning;Supervised Learning
null
0
null
null
iclr
-0.866025
0
null
main
7
6;7;8
null
null
Highway and Residual Networks learn Unrolled Iterative Estimation
null
null
0
4.333333
Poster
5;4;4
null
null
Coordinated Science Laboratory and Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
7
7;7;7
null
null
Why Deep Neural Networks for Function Approximation?
null
null
0
3.666667
Poster
3;4;4
null
null
University of Freiburg, Freiburg, Germany
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Optimization
null
0
null
null
iclr
0
0
null
main
7
7;7;7
null
null
SGDR: Stochastic Gradient Descent with Warm Restarts
https://github.com/loshchil/SGDR
null
0
4
Poster
4;5;3
null
null
Hitachi, Ltd
2017
0
null
null
0
null
null
null
null
null
null
null
Computer vision;Deep learning;Supervised Learning;Applications
null
0
null
null
iclr
0
0
null
main
2.666667
2;2;4
null
null
PREDICTION OF POTENTIAL HUMAN INTENTION USING SUPERVISED COMPETITIVE LEARNING
null
null
0
4
Reject
4;4;4
null
null
Department of Signal Processing, Tampere University of Technology, Tampere, Finland
2017
0
null
null
0
null
null
null
null
null
null
null
Theory;Deep learning;Optimization;Supervised Learning
null
0
null
null
iclr
0
0
null
main
4
4;4;4
null
null
Taming the waves: sine as activation function in deep neural networks
null
null
0
4
Reject
4;4;4
null
null
Universit´e Paris-Est, ´Ecole des Ponts ParisTech, Paris, France
2017
0
null
null
0
null
null
null
null
null
null
null
Computer vision;Deep learning;Supervised Learning
null
0
null
null
iclr
0
0
null
main
6
6;6;6
null
null
Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Transfer
https://github.com/szagoruyko/attention-transfer
null
0
4
Poster
4;4;4
null
null
Basis Technology
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Applications
null
0
null
null
iclr
0.944911
0
null
main
6.333333
5;6;8
null
null
Automated Generation of Multilingual Clusters for the Evaluation of Distributed Representations
null
null
0
3.333333
Workshop
3;3;4
null
null
DeepMind; DeepMind and University of Oxford
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0.5
0
null
main
7
6;7;8
null
null
Learning to Compose Words into Sentences with Reinforcement Learning
null
null
0
4
Poster
3;5;4
null
null
Computer Science and Engineering Department, Lehigh University, Bethlehem, PA 18015, USA; Samsung Research America (SRA)
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
4
4;4;4
null
null
DeepRebirth: A General Approach for Accelerating Deep Neural Network Execution on Mobile Devices
null
null
0
4
Reject
4;4;4
null
null
University of Montreal, CIFAR Senior Fellow; University of Montreal, CIFAR Fellow; University of Montreal; IIT Kanpur; SSNCE
2017
0
null
null
0
null
null
null
null
null
null
null
Speech;Deep learning;Unsupervised Learning;Applications
null
0
null
null
iclr
0.5
0
https://soundcloud.com/samplernn/sets
main
8.333333
8;8;9
null
null
SampleRNN: An Unconditional End-to-End Neural Audio Generation Model
https://github.com/soroushmehr/sampleRNN_ICLR2017
null
0
3.666667
Poster
3;4;4
null
null
Management Information Systems, University of Arizona; Department of Computer Science, UNC Charlotte; Machine Learning Group, NEC Laboratories America
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Natural language processing;Applications
null
0
null
null
iclr
-1
0
null
main
4.333333
4;4;5
null
null
A Context-aware Attention Network for Interactive Question Answering
null
null
0
3.666667
Reject
4;4;3
null
null
North Carolina State University; Microsoft Research
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
-1
0
null
main
4.666667
4;4;6
null
null
Parallel Stochastic Gradient Descent with Sound Combiners
null
null
0
4.666667
Reject
5;5;4
null
null
Google DeepMind
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
6
5;6;7
null
null
beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework
null
null
0
4
Poster
4;4;4
null
null
Computer Science, Dartmouth College
2017
0
null
null
0
null
null
null
null
null
null
null
Theory
null
0
null
null
iclr
0
0
null
main
3
3;3;3
null
null
Two Methods for Wild Variational Inference
null
null
0
4
Reject
4;4;4
null
null
McGill University; University of Michigan; Indian Institute of Technology Madras
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Reinforcement Learning;Transfer Learning
null
0
null
null
iclr
0
0
null
main
7
7;7;7
null
null
Attend, Adapt and Transfer: Attentive Deep Architecture for Adaptive Transfer from multiple sources in the same domain
null
null
0
3.666667
Poster
4;4;3
null
null
Microsoft Research Asia; Nankai University
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Reinforcement Learning
null
0
null
null
iclr
-0.866025
0
null
main
4
3;4;5
null
null
An Actor-critic Algorithm for Learning Rate Learning
null
null
0
4.333333
Reject
5;4;4
null
null
Massachusetts Institute of Technology; University of California, Berkeley; Google Brain; Google DeepMind
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning
null
0
null
null
iclr
1
0
null
main
9.666667
9;10;10
null
null
Understanding deep learning requires rethinking generalization
null
null
0
3.666667
Oral
3;4;4
null
null
Courant Institute of Mathematical Sciences and Centre for Data Science, New York University, New York, NY 10012, USA; Lunit Inc., Seoul, South Korea
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Supervised Learning
null
0
null
null
iclr
0
0
null
main
3
2;3;4
null
null
Semantic Noise Modeling for Better Representation Learning
null
null
0
4
Reject
4;4;4
null
null
Department of Electronics and Information Systems (ELIS), Ghent University – iMinds, IDLab; Former member, currently unaffiliated
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning
null
0
null
null
iclr
0.5
0
null
main
5.333333
5;5;6
null
null
A Differentiable Physics Engine for Deep Learning in Robotics
null
null
0
3.333333
Workshop
4;2;4
null
null
Microsoft Research; School of Computer Science and Technology, University of Science and Technology of China
2017
0
null
null
0
null
null
null
null
null
null
null
Reinforcement Learning;Deep learning;Optimization
null
0
null
null
iclr
-0.866025
0
null
main
5.666667
4;6;7
null
null
Neural Data Filter for Bootstrapping Stochastic Gradient Descent
null
null
0
3
Workshop
5;4;0
null
null
Princeton University
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Unsupervised Learning
null
0
null
null
iclr
-1
0
null
main
7.333333
7;7;8
null
null
A Simple but Tough-to-Beat Baseline for Sentence Embeddings
null
null
0
3.666667
Poster
4;4;3
null
null
UC Berkeley, Department of Mathematics; OpenAI; UC Berkeley, Department of Electrical Engineering and Computer Sciences; Ghent University – imec, Department of Information Technology
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Reinforcement Learning;Games
null
0
null
null
iclr
0.944911
0
null
main
5.666667
4;6;7
null
null
#Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning
null
null
0
3.666667
Reject
3;4;4
null
null
Massachusetts Institute of Technology; Carnegie Mellon University; Google Brain
2017
0
null
null
0
null
null
null
null
null
null
null
Speech;Applications;Natural language processing;Deep learning
null
0
null
null
iclr
-0.5
0
null
main
7.333333
7;7;8
null
null
Latent Sequence Decompositions
null
null
0
4.333333
Poster
4;5;4
null
null
UC Berkeley; UCLA
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning
null
0
null
null
iclr
0
0
null
main
6.333333
6;6;7
null
null
Paleo: A Performance Model for Deep Neural Networks
https://github.com/TalwalkarLab/paleo
null
0
4
Poster
4;4;4
null
null
Maluuba Research, Montréal, QC, Canada
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
4.666667
4;4;6
null
null
Towards Information-Seeking Agents
null
null
0
4
Reject
4;4;4
null
null
Indian Institute of Technology Madras; University of California Berkeley; University of Washington Seattle; NITK Surathkal
2017
0
null
null
0
null
null
null
null
null
null
null
Reinforcement Learning;Applications
null
0
null
null
iclr
0.5
0
null
main
7.333333
7;7;8
null
null
EPOpt: Learning Robust Neural Network Policies Using Model Ensembles
null
null
0
2.666667
Poster
4;0;4
null
null
Department of Computer Science, The University of Texas at Austin, 2317 Speedway, Stop D9500 Austin, TX 78712, USA; Microsoft Research, Vigyan, 9 Lavelle Road, Bengaluru 560001, India
2017
0
null
null
0
null
null
null
null
null
null
null
Theory
null
0
null
null
iclr
-1
0
null
main
5.333333
5;5;6
null
null
On Robust Concepts and Small Neural Nets
null
null
0
3.333333
Workshop
4;4;2
null
null
Department of Computer Science, Brigham Young University, Provo, UT 84602, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning
null
0
null
null
iclr
-0.866025
0
null
main
4.333333
4;4;5
null
null
Improving Invariance and Equivariance Properties of Convolutional Neural Networks
null
null
0
4
Reject
5;4;3
null
null
LIMSI-CNRS / Orsay, France
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Deep learning
null
0
null
null
iclr
-0.866025
0
null
main
3
2;3;4
null
null
Opening the vocabulary of neural language models with character-level word representations
null
null
0
4.333333
Reject
5;4;4
null
null
EECS, University of California, Merced
2017
0
null
null
0
null
null
null
null
null
null
null
Optimization;Deep learning
null
0
null
null
iclr
0.870388
0
http://eecs.ucmerced.edu
main
5.25
4;5;6;6
null
null
ParMAC: distributed optimisation of nested functions, with application to binary autoencoders
null
null
0
3.5
Reject
2;4;4;4
null
null
DeepMind, London, UK
2017
0
null
null
0
null
null
null
null
null
null
null
Theory;Deep learning;Supervised Learning;Optimization
null
0
null
null
iclr
-0.866025
0
null
main
4.333333
3;5;5
null
null
Local minima in training of deep networks
null
null
0
4
Reject
5;3;4
null
null
School of Design, Victoria University of Wellington, Wellington, New Zealand
2017
0
null
null
0
null
null
null
null
null
null
null
Unsupervised Learning;Deep learning;Computer vision
null
0
null
null
iclr
-0.5
0
null
main
5.333333
5;5;6
null
null
Sampling Generative Networks
null
null
0
3.333333
Reject
3;4;3
null
null
University of California, Berkeley; Shanghai Jiao Tong University
2017
0
null
null
0
null
null
null
null
null
null
null
Computer vision;Deep learning;Applications
null
0
null
null
iclr
0
0
null
main
6
5;6;7
null
null
Delving into Transferable Adversarial Examples and Black-box Attacks
null
null
0
3
Poster
3;3;3
null
null
Department of Computer Science, University of Virginia, Charlottesville, VA 22901, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning
null
0
null
null
iclr
-0.5
0
null
main
4.333333
3;5;5
null
null
A Theoretical Framework for Robustness of (Deep) Classifiers against Adversarial Samples
null
null
0
3.333333
Workshop
4;4;2
null
null
COPPE/PESC, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Poli, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
2017
0
null
null
0
null
null
null
null
null
null
null
Computer vision;Deep learning;Optimization
null
0
null
null
iclr
-1
0
null
main
5.333333
5;5;6
null
null
Learning Identity Mappings with Residual Gates
null
null
0
4.666667
Reject
5;5;4
null
null
MILA, Université de Montréal; Language Technologies Institute, Carnegie Mellon University; Maluuba Research
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning
null
0
null
null
iclr
-1
0
null
main
7.666667
7;8;8
null
null
Calibrating Energy-based Generative Adversarial Networks
null
null
0
4.333333
Poster
5;4;4
null
null
University of Edinburgh, UK; UC Irvine, USA; Ecole Polytechnique de Montreal, CA; Microsoft Research, USA; University of Washington, USA; University of Alberta, CA
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Transfer Learning
null
0
null
null
iclr
0
0
null
main
7
7;7
null
null
Do Deep Convolutional Nets Really Need to be Deep and Convolutional?
null
null
0
3.5
Poster
3;4
null
null
Computer Science Department, Cornell University; Computer Science Department, Huazhong University of Science and Technology
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Computer vision;Applications
null
0
null
null
iclr
-1
0
null
main
3.666667
3;4;4
null
null
Deep Neural Networks and the Tree of Life
null
null
0
4.333333
Reject
5;4;4
null
null
babylon health, London, UK; University of Cambridge, UK
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Transfer Learning;Applications
null
0
null
null
iclr
0.866025
0
null
main
7
6;7;8
null
null
Offline bilingual word vectors, orthogonal transformations and the inverted softmax
null
null
0
4.333333
Poster
3;5;5
null
null
University of Chicago; Toyota Technological Institute at Chicago
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
6
5;6;7
null
null
Adjusting for Dropout Variance in Batch Normalization and Weight Initialization
github.com/hendrycks/init
null
0
4
Reject
4;4;4
null
null
Institute of Physiology (iDN), Medical University of Graz, Austria; Department of Computer Science, University of Bari, Italy
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
1
0
null
main
5
3;6;6
null
null
Encoding and Decoding Representations with Sum- and Max-Product Networks
null
null
0
3.666667
Reject
3;4;4
null
null
New York University; Adobe Research
2017
0
null
null
0
null
null
null
null
null
null
null
Unsupervised Learning;Deep learning
null
0
null
null
iclr
-0.301511
0
null
main
5.75
5;5;6;7
null
null
Inference and Introspection in Deep Generative Models of Sparse Data
null
null
0
3.5
Reject
4;3;4;3
null
null
Politecnico di Milano; University of Oxford; University of Montreal
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Optimization
null
0
null
null
iclr
1
0
null
main
6.333333
6;6;7
null
null
Mollifying Networks
null
null
0
4.333333
Poster
4;4;5
null