pdf
stringlengths
49
199
aff
stringlengths
1
1.36k
year
stringclasses
19 values
technical_novelty_avg
float64
0
4
video
stringlengths
21
47
doi
stringlengths
31
63
presentation_avg
float64
0
4
proceeding
stringlengths
43
129
presentation
stringclasses
796 values
sess
stringclasses
576 values
technical_novelty
stringclasses
700 values
arxiv
stringlengths
10
16
author
stringlengths
1
1.96k
site
stringlengths
37
191
keywords
stringlengths
2
582
oa
stringlengths
86
198
empirical_novelty_avg
float64
0
4
poster
stringlengths
57
95
openreview
stringlengths
41
45
conference
stringclasses
11 values
corr_rating_confidence
float64
-1
1
corr_rating_correctness
float64
-1
1
project
stringlengths
1
162
track
stringclasses
3 values
rating_avg
float64
0
10
rating
stringlengths
1
17
correctness
stringclasses
809 values
slides
stringlengths
32
41
title
stringlengths
2
192
github
stringlengths
3
165
authors
stringlengths
7
161
correctness_avg
float64
0
5
confidence_avg
float64
0
5
status
stringclasses
22 values
confidence
stringlengths
1
17
empirical_novelty
stringclasses
763 values
null
Montreal Institute for Learning Algorithms (MILA), D´epartement d’Informatique et de Recherche Op ´erationnelle, Universit ´e de Montr ´eal, Montr ´eal, Qu ´ebec, Canada, Associate Fellow, Canadian Institute For Advanced Research (CIFAR); Montreal Institute for Learning Algorithms (MILA), D´epartement d’Informatique et de Recherche Op ´erationnelle, Universit ´e de Montr ´eal, Montr ´eal, Qu ´ebec, Canada
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Optimization
null
0
null
null
iclr
-0.5
0
null
main
5.333333
4;6;6
null
null
Recurrent Normalization Propagation
null
null
0
3.666667
Workshop
4;4;3
null
null
Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Supervised Learning
null
0
null
null
iclr
0
0
null
main
4
2;3;7
null
null
Sample Importance in Training Deep Neural Networks
null
null
0
4
Reject
4;4;4
null
null
Facebook AI Research
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Reinforcement Learning;Games
null
0
null
null
iclr
0
0
null
main
7.333333
7;7;8
null
null
Episodic Exploration for Deep Deterministic Policies for StarCraft Micromanagement
null
null
0
4
Poster
4;4;4
null
null
Microsoft Research, Redmond, WA, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Reinforcement Learning
null
0
null
null
iclr
0
0
null
main
6
6;6;6
null
null
Implicit ReasoNet: Modeling Large-Scale Structured Relationships with Shared Memory
null
null
0
4
Reject
4;4;4
null
null
Technion - Israel Institute of Technology, Haifa, Israel
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Semi-Supervised Learning
null
0
null
null
iclr
0
0
null
main
5
4;6
null
null
Semi-supervised deep learning by metric embedding
null
null
0
4
Workshop
4;4
null
null
École Polytechnique de Montréal, Canada.; Goldsmiths College, University of London. Department of Computing.
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Supervised Learning;Applications
null
0
null
null
iclr
0
0
null
main
3
3;3;3
null
null
Sequence generation with a physiologically plausible model of handwriting and Recurrent Mixture Density Networks
null
null
0
3.666667
Reject
3;3;5
null
null
Google Brain
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
9
9;9;9
null
null
Neural Architecture Search with Reinforcement Learning
null
null
0
4.333333
Oral
5;4;4
null
null
Google Brain; MILA, Universit ´e de Montr ´eal
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Applications;Unsupervised Learning
null
0
null
null
iclr
0
0
null
main
5.666667
5;6;6
null
null
Counterpoint by Convolution
null
null
0
4
Reject
4;5;3
null
null
NVIDIA, USA; Department of Computer Science, University of Illinois at Urbana-Champaign, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Reinforcement Learning
null
0
null
null
iclr
-0.755929
0
null
main
6.666667
5;7;8
null
null
Reinforcement Learning through Asynchronous Advantage Actor-Critic on a GPU
https://github.com/NVlabs/GA3C
null
0
4.333333
Poster
5;5;3
null
null
MILA - Université de Montréal
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Optimization
null
0
null
null
iclr
0
0
null
main
7.333333
7;7;8
null
null
Recurrent Batch Normalization
null
null
0
4
Poster
4;4;4
null
null
Language Technologies Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Optimization
null
0
null
null
iclr
0
0
null
main
5.333333
5;5;6
null
null
Improving Stochastic Gradient Descent with Feedback
null
null
0
4
Reject
4;4;4
null
null
OpenAI; Preferred Networks, Inc., ATR Cognitive Mechanisms Laboratories, Kyoto University; Google Brain
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Deep learning;Semi-Supervised Learning
null
0
null
null
iclr
0
0
null
main
6.666667
6;7;7
null
null
Adversarial Training Methods for Semi-Supervised Text Classification
null
null
0
4
Poster
4;5;3
null
null
OpenAI, International Computer Science Institute; UC Berkeley, Department of Electrical Engineering and Computer Sciences
2017
0
null
null
0
null
null
null
null
null
null
null
Computer vision;Deep learning;Reinforcement Learning
null
0
null
null
iclr
-0.5
0
http://rll.berkeley.edu/visual_servoing
main
7.333333
7;7;8
null
null
Learning Visual Servoing with Deep Features and Fitted Q-Iteration
null
null
0
3.333333
Poster
3;4;3
null
null
Robotics and Biology Laboratory, Technische Universität Berlin, Germany; Robotics and Mechatronics Center, German Aerospace Center (DLR), Wessling, Germany; Ecole Nationale Supérieure de Techniques Avancées (ENSTA-ParisTech), Paris, France
2017
0
null
null
0
null
null
null
null
null
null
null
Reinforcement Learning;Unsupervised Learning
null
0
null
null
iclr
-0.5
0
null
main
5.666667
5;6;6
null
null
Unsupervised Learning of State Representations for Multiple Tasks
null
null
0
3.666667
Reject
4;4;3
null
null
Stanford University, Stanford, CA, USA; Salesforce Research, Palo Alto, CA, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Deep learning
null
0
null
null
iclr
0
0
null
main
7
6;7;8
null
null
Tying Word Vectors and Word Classifiers: A Loss Framework for Language Modeling
null
null
0
4
Poster
4;4;4
null
null
Google Brain
2017
0
null
null
0
null
null
null
null
null
null
null
Theory
null
0
null
null
iclr
0.5
0
null
main
4.666667
4;5;5
null
null
Short and Deep: Sketching and Neural Networks
null
null
0
2.666667
Workshop
2;4;2
null
null
Department of Electrical and Computer Engineering, McGill University, Montréal, Québec, Canada
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Applications;Optimization
null
0
null
null
iclr
-0.5
0
null
main
6.333333
6;6;7
null
null
Sparsely-Connected Neural Networks: Towards Efficient VLSI Implementation of Deep Neural Networks
null
null
0
3.333333
Poster
3;4;3
null
null
Department of Computer Science, University of the British Columbia, Vancouver, Canada
2017
0
null
null
0
null
null
null
null
null
null
null
Reinforcement Learning;Applications
null
0
null
null
iclr
0
0
null
main
6
6;6;6
null
null
Learning Locomotion Skills Using DeepRL: Does the Choice of Action Space Matter?
null
null
0
3.666667
Reject
3;4;4
null
null
Department of Computer Science, University College London
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
5.666667
5;6;6
null
null
Learning Python Code Suggestion with a Sparse Pointer Network
null
null
0
4
Reject
4;4;4
null
null
University of California Berkeley; DeepMind, Canadian Institute for Advanced Research; DeepMind
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Reinforcement Learning
null
0
null
null
iclr
0.333333
0
null
main
6.75
6;7;7;7
null
null
Learning to Perform Physics Experiments via Deep Reinforcement Learning
null
null
0
3.25
Poster
3;4;3;3
null
null
Department of Information and Computer Science, Keio University, Hiyoshi 3-14-1, Kohokuku, Yokohama City, Kanagawa, Japan
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Unsupervised Learning
null
0
null
null
iclr
-0.188982
0
null
main
4.666667
3;5;6
null
null
Fuzzy paraphrases in learning word representations with a lexicon
null
null
0
3.666667
Reject
4;3;4
null
null
NA VER LABS Corp. & NA VER Corp., Gyeonggi-do 13561, Republic of Korea; School of Computer Science and Engineering & Interdisciplinary Program in Cognitive Science, Seoul National University & Surromind Robotics, Seoul 08826, Republic of Korea; School of Computer Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea; Interdisciplinary Program in Cognitive Science, Seoul National University, Seoul 08826, Republic of Korea; School of Computing, KAIST, Daejeon 34141, Republic of Korea
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Supervised Learning;Multi-modal learning
null
0
null
null
iclr
0.5
0
null
main
6.666667
6;7;7
null
null
Hadamard Product for Low-rank Bilinear Pooling
null
null
0
3.666667
Poster
3;5;3
null
null
Microsoft Research, Redmond, WA 98052, USA; Department of Engineering Science - University of Oxford; Department of Engineering Science - University of Oxford & Alan Turing Institute
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
-0.866025
0
null
main
7
6;7;8
null
null
Learning to superoptimize programs
null
null
0
4.333333
Poster
5;4;4
null
null
Microsoft Research; Department of Computer Science and Engineering, University of California, San Diego
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Reinforcement Learning;Applications
null
0
null
null
iclr
-0.866025
0
null
main
4.333333
4;4;5
null
null
Combating Deep Reinforcement Learning's Sisyphean Curse with Intrinsic Fear
null
null
0
3
Reject
3;4;2
null
null
IBM Watson, Yorktown Heights, NY, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Deep learning;Supervised Learning
null
0
null
null
iclr
0
0
null
main
5
4;5;6
null
null
End-to-End Answer Chunk Extraction and Ranking for Reading Comprehension
null
null
0
3
Reject
3;3;3
null
null
Department of Information Engineering, The Chinese University of Hong Kong; Noah’s Ark Lab, Huawei Technologies Co. Ltd.
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
-0.5
0
null
main
4.666667
4;5;5
null
null
Collaborative Deep Embedding via Dual Networks
null
null
0
3.666667
Reject
4;4;3
null
null
Department of Information Science and Technology, The University of Tokyo
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning
null
0
null
null
iclr
0.654654
0
null
main
5.666667
4;6;7
null
null
Development of JavaScript-based deep learning platform and application to distributed training
null
null
0
3
Workshop
2;4;3
null
null
´Ecole polytechnique, Palaiseau, France; Facebook AI Research, Menlo Park, CA
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing
null
0
null
null
iclr
-0.4842
0
null
main
5.25
4;5;5;7
null
null
Iterative Refinement for Machine Translation
null
null
0
3.75
Reject
4;5;3;3
null
null
Electrical Engineering Department, The Technion - Israel Institute of Technology, Haifa 32000, Israel
2017
0
null
null
0
null
null
null
null
null
Put All Your Authors Here, Separated by Commas
null
Reinforcement Learning;Deep learning
null
0
null
null
iclr
0
0
null
main
4
4;4;4
null
null
Spatio-Temporal Abstractions in Reinforcement Learning Through Neural Encoding
null
null
0
4.666667
Reject
4;5;5
null
null
IBM Watson Research, Yorktown Heights, NY; Computer Science, UMass Amherst; Computer Science & Engineering, University of Michigan
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Deep learning;Reinforcement Learning
null
0
null
null
iclr
0.5
0
null
main
6.666667
6;7;7
null
null
Learning to Query, Reason, and Answer Questions On Ambiguous Texts
null
null
0
3.333333
Poster
3;3;4
null
null
Microsoft Research, USA and Carnegie Mellon University, USA; Microsoft Research, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Structured prediction
null
0
null
null
iclr
-0.188982
0
null
main
6.666667
5;7;8
null
null
Neuro-Symbolic Program Synthesis
null
null
0
3.666667
Poster
4;3;4
null
null
MILA, Universit ´e de Montr ´eal
2017
0
null
null
0
null
null
null
null
null
null
null
Unsupervised Learning;Deep learning
null
0
null
null
iclr
0
0
null
main
4.333333
3;5;5
null
null
Generalizable Features From Unsupervised Learning
null
null
0
4
Workshop
4;4;4
null
null
Department of Computer Science, University of Illinois at Urbana-Champaign; Zhejiang University; Department of Computer Science, University of Illinois at Urbana-Champaign; Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign
2017
0
null
null
0
null
null
null
null
null
null
null
Reinforcement Learning;Optimization;Games
null
0
null
null
iclr
-0.5
0
null
main
7.333333
4;9;9
null
null
Learning to Play in a Day: Faster Deep Reinforcement Learning by Optimality Tightening
null
null
0
3.666667
Poster
4;4;3
null
null
Samsung US R&D Center, San Diego, CA 92121, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Theory;Deep learning
null
0
null
null
iclr
0
0
null
main
7
7;7;7
null
null
Towards the Limit of Network Quantization
null
null
0
3.333333
Poster
3;4;3
null
null
Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Supervised Learning;Applications
null
0
null
null
iclr
0.5
0
null
main
7
6;7;8
null
null
Predicting Medications from Diagnostic Codes with Recurrent Neural Networks
null
null
0
4
Poster
3;5;4
null
null
Department of Electrical Engineering, The Technion - Israel Institute of Technology, Haifa 32000, Israel; Walmart Labs, Sunnyvale, California
2017
0
null
null
0
null
null
null
null
null
null
null
Multi-modal learning;Deep learning
null
0
null
null
iclr
0
0
null
main
4.666667
4;5;5
null
null
Is a picture worth a thousand words? A Deep Multi-Modal Fusion Architecture for Product Classification in e-commerce
null
null
0
4
Reject
4;4;4
null
null
Department of Engineering Science, University of Oxford, UK
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Computer vision
null
0
null
null
iclr
-0.866025
0
null
main
6
5;6;7
null
null
Layer Recurrent Neural Networks
null
null
0
4.333333
Reject
5;4;4
null
null
Intel Labs
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
7.666667
7;8;8
null
null
Learning to Act by Predicting the Future
null
null
0
4
Oral
4;4;4
null
null
IBM Watson, V Parku 4, 140 00 Prague, Czech Republic
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Semi-Supervised Learning;Deep learning;Transfer Learning
null
0
null
null
iclr
0
0
null
main
4.333333
3;4;6
null
null
Finding a Jack-of-All-Trades: An Examination of Semi-supervised Learning in Reading Comprehension
null
null
0
4
Reject
4;4;4
null
null
Department of Electrical and Computing Engineering, University of Pittsburgh; Intel Labs; Department of Electrical and Computer Engineering, Duke University
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Optimization
null
0
null
null
iclr
0
0
null
main
6.333333
6;6;7
null
null
Faster CNNs with Direct Sparse Convolutions and Guided Pruning
null
null
0
3
Poster
3;3;3
null
null
University of Amsterdam, Canadian Institute for Advanced Research; University of Amsterdam
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
7
6;7;8
null
null
Steerable CNNs
null
null
0
3.333333
Poster
3;4;3
null
null
Aylien Ltd., Dublin, Ireland; Insight Centre for Data Analytics, National University of Ireland, Galway
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Deep learning;Transfer Learning;Unsupervised Learning
null
0
null
null
iclr
-0.866025
0
null
main
6
5;6;7
null
null
Knowledge Adaptation: Teaching to Adapt
null
null
0
3.666667
Reject
4;4;3
null
null
Facebook AI Research; Facebook AI Research, Courant Institute, New York University
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Deep learning
null
0
null
null
iclr
0
0
null
main
7
7;7;7
null
null
Tracking the World State with Recurrent Entity Networks
null
null
0
4
Poster
3;4;5
null
null
Google Brain
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning
null
0
null
null
iclr
0.5
0
null
main
5
3;6;6
null
null
Conditional Image Synthesis With Auxiliary Classifier GANs
null
null
0
4.333333
Reject
4;5;4
null
null
Twitter, Cambridge, USA
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0.755929
0
null
main
7.666667
6;8;9
null
null
Optimization as a Model for Few-Shot Learning
null
null
0
4.333333
Oral
4;4;5
null
null
Google Brain
2017
0
null
null
0
null
null
null
null
null
null
null
Reinforcement Learning;Deep learning
null
0
null
null
iclr
0
0
null
main
6
6;6;6
null
null
Neural Combinatorial Optimization with Reinforcement Learning
null
null
0
4
Reject
4;4;4
null
null
University of California, Berkeley
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Applications
null
0
null
null
iclr
0
0
null
main
4.666667
4;5;5
null
null
Neural Code Completion
null
null
0
4
Reject
4;4;4
null
null
Deep Learning Technology Center, Microsoft Research; Columbia University
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Deep learning
null
0
null
null
iclr
0.866025
0
null
main
7
6;7;8
null
null
TopicRNN: A Recurrent Neural Network with Long-Range Semantic Dependency
null
null
0
3.666667
Poster
3;4;4
null
null
ETH Zürich, Zürich, Switzerland
2017
0
null
null
0
null
null
null
null
null
null
null
Reinforcement Learning;Deep learning;Games;Transfer Learning
null
0
null
null
iclr
-1
0
null
main
3.333333
2;4;4
null
null
Multi-task learning with deep model based reinforcement learning
null
null
0
4.333333
Reject
5;4;4
null
null
Salesforce Research, Palo Alto, CA 94301, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Deep learning;Applications
null
0
null
null
iclr
0
0
null
main
8
8;8;8
null
null
Dynamic Coattention Networks For Question Answering
null
null
0
3.666667
Poster
4;3;4
null
null
Carnegie Mellon University, Pittsburgh, PA, USA; Microsoft Research, Cambridge, UK; DigitalGenius Ltd., London, UK
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Reinforcement Learning
null
0
null
null
iclr
0
0
null
main
7
6;7;8
null
null
Batch Policy Gradient Methods for Improving Neural Conversation Models
null
null
0
3
Poster
3;3;3
null
null
Department of Information and Computing Sciences, Utrecht University
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Supervised Learning
null
0
null
null
iclr
-0.5
0
null
main
4.333333
3;5;5
null
null
Incremental Sequence Learning
https://edwin-de-jong.github.io/
null
0
3.666667
Reject
4;4;3
null
null
Twitter, London, UK
2017
0
null
null
0
null
null
null
null
null
null
null
Computer vision;Deep learning;Applications
null
0
null
null
iclr
0.327327
0
null
main
6.666667
5;7;8
null
null
Lossy Image Compression with Compressive Autoencoders
null
null
0
4
Poster
4;3;5
null
null
Department of Electronic Engineering, Tsinghua University, Beijing, China; Cognitive Computing Laboratory, Intel Labs China, Beijing, China
2017
0
null
null
0
null
null
null
null
null
null
null
Semi-Supervised Learning
null
0
null
null
iclr
0
0
null
main
3
3;3;3
null
null
Chess Game Concepts Emerge under Weak Supervision: A Case Study of Tic-tac-toe
null
null
0
3.333333
Reject
2;3;5
null
null
MILA, Université de Montréal; École Polytechnique de Montréal
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning
null
0
null
null
iclr
0.5
0
null
main
7.666667
7;8;8
null
null
Zoneout: Regularizing RNNs by Randomly Preserving Hidden Activations
http://github.com/teganmaharaj/zoneout
null
0
4.333333
Poster
4;4;5
null
null
NEC Labs America; University of Maryland
2017
0
null
null
0
null
null
null
null
null
null
null
Computer vision;Deep learning
null
0
null
null
iclr
-0.57735
0
null
main
6.75
6;7;7;7
null
null
Pruning Filters for Efficient ConvNets
null
null
0
4.5
Poster
5;5;4;4
null
null
School of Mathematical Sciences, Peking University, Beijing 100871, China; Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Deep learning
null
0
null
null
iclr
-0.866025
0
null
main
6
5;6;7
null
null
Deep Character-Level Neural Machine Translation By Learning Morphology
null
null
0
4.333333
Reject
5;4;4
null
null
Stanford University, Palo Alto, California; Salesforce Research, Palo Alto, California
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Deep learning;Supervised Learning
null
0
null
null
iclr
0
0
null
main
5
5;5;5
null
null
A Way out of the Odyssey: Analyzing and Combining Recent Insights for LSTMs
null
null
0
4
Reject
4;4;4
null
null
Department of Computer Science, University of Chicago, Chicago, IL 60637, USA; Toyota Technological Institute at Chicago, Chicago, IL 60637, USA
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
-0.5
0
null
main
5.666667
5;6;6
null
null
Multi-view Recurrent Neural Acoustic Word Embeddings
null
null
0
3.666667
Poster
4;3;4
null
null
Center for Neural Science and Courant Institute of Mathematical Sciences, New York University, New York, NY 10003, USA; Center for Neural Science, New York University, New York, NY 10003, USA; Image Processing Laboratory, Universitat de Val `encia, 46980 Paterna, Spain
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0.333333
0
null
main
8.25
8;8;8;9
null
null
End-to-end Optimized Image Compression
null
null
0
3.75
Oral
3;4;4;4
null
null
Google Inc., Mountain View, CA 94043, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Computer vision;Theory
null
0
null
null
iclr
0
0
null
main
3.666667
3;3;5
null
null
Gradients of Counterfactuals
null
null
0
4
Reject
4;4;4
null
null
University of Toronto, Toronto ON, CANADA and Canadian Institute for Advanced Research (CIFAR); University of Toronto, Toronto ON, CANADA; Baylor College of Medicine, Houston TX, USA
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0.866025
0
null
main
7
5;7;9
null
null
Normalizing the Normalizers: Comparing and Extending Network Normalization Schemes
null
null
0
4.333333
Poster
4;4;5
null
null
Department of Computer Science, University of Southern California, Los Angeles, CA 90089, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Transfer Learning
null
0
null
null
iclr
0
0
null
main
5.666667
5;6;6
null
null
Variational Recurrent Adversarial Deep Domain Adaptation
null
null
0
4
Poster
4;4;4
null
null
Stanford University; University of Cambridge, MPI Tübingen; Google Brain
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Semi-Supervised Learning;Optimization;Structured prediction
null
0
null
null
iclr
0.866025
0
null
main
6.333333
6;6;7
null
null
Categorical Reparameterization with Gumbel-Softmax
null
null
0
4
Poster
3;4;5
null
null
Facebook AI Research, New York, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing
null
0
null
null
iclr
1
0
null
main
7.333333
7;7;8
null
null
Learning through Dialogue Interactions by Asking Questions
null
null
0
3.666667
Poster
3;3;5
null
null
University of Michigan, Ann Arbor, USA and Google Brain, Mountain View, CA 94043; POSTECH, Pohang, Korea; University of Michigan, Ann Arbor, USA; Beihang University, Beijing, China; Adobe Research, San Jose, CA 95110
2017
0
null
null
0
null
null
null
null
null
null
null
Computer vision;Deep learning;Unsupervised Learning
null
0
null
null
iclr
0.5
0
null
main
6.666667
6;7;7
null
null
Decomposing Motion and Content for Natural Video Sequence Prediction
null
null
0
4.333333
Poster
4;4;5
null
null
Department of Computer Science and Engineering, University of Washington; Department of Statistics, University of Washington; Department of Computer Science and Engineering, Department of Statistics, University of Washington
2017
0
null
null
0
null
null
null
null
null
null
null
Applications
null
0
null
null
iclr
0
0
http://homes.cs.washington.edu/~thickstn/musicnet.html
main
6.666667
6;6;8
null
null
Learning Features of Music From Scratch
null
null
0
4
Poster
4;4;4
null
null
Pacific Northwest National Laboratory
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning
null
0
null
null
iclr
-0.5
0
null
main
3.666667
3;3;5
null
null
Leveraging Asynchronicity in Gradient Descent for Scalable Deep Learning
null
null
0
4.333333
Reject
5;4;4
null
null
School of Engineering and Applied Sciences, Harvard University; Language Technologies Institute, Carnegie Mellon University; Machine Learning Department, Carnegie Mellon University
2017
0
null
null
0
null
null
null
null
null
null
null
Theory;Deep learning;Supervised Learning
null
0
null
null
iclr
-1
0
null
main
7.666667
7;8;8
null
null
Dropout with Expectation-linear Regularization
null
null
0
3.333333
Poster
4;3;3
null
null
Telefónica Research
2017
0
null
null
0
null
null
null
null
null
null
null
Applications;Deep learning;Unsupervised Learning
null
0
null
null
iclr
1
0
null
main
5
3;6;6
null
null
Compact Embedding of Binary-coded Inputs and Outputs using Bloom Filters
null
null
0
3.666667
Reject
3;4;4
null
null
Institute of Numerical Mathematics, Moscow, Russia; Skolkovo Institute of Science and Technology, Moscow, Russia; Moscow Institute of Physics and Technology, Moscow, Russia; National Research University Higher School of Economics, Moscow, Russia; Institute of Numerical Mathematics, Moscow, Russia
2017
0
null
null
0
null
null
null
null
null
null
null
Supervised Learning;Optimization
null
0
null
null
iclr
-0.816497
0
null
main
6
5;6;6;7
null
null
Exponential Machines
null
null
0
3.75
Workshop
4;4;4;3
null
null
School of Informatics, The University of Edinburgh
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning
null
0
null
null
iclr
0
0
null
main
5
4;5;6
null
null
Low-rank passthrough neural networks
null
null
0
2.666667
Reject
4;0;4
null
null
College of Information and Computer Sciences, University of Massachusetts Amherst; OpenAI; Google Brain; University of Toronto
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0.5
0
null
main
5
4;4;7
null
null
Adding Gradient Noise Improves Learning for Very Deep Networks
null
null
0
4.666667
Reject
5;4;5
null
null
Facebook AI Research
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing
null
0
null
null
iclr
-0.866025
0
null
main
6.666667
6;7;7
null
null
Efficient Softmax Approximation for GPUs
https://github.com/facebookresearch/adaptive-softmax
null
0
4
Workshop
5;4;3
null
null
Google Brain
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Deep learning;Supervised Learning
null
0
null
null
iclr
-0.866025
0
null
main
7
6;7;8
null
null
HyperNetworks
null
null
0
4.333333
Poster
5;4;4
null
null
; University of Montreal, CIFAR Senior Fellow; University of Montreal
2017
0
null
null
0
null
null
null
null
null
null
null
Unsupervised Learning
null
0
null
null
iclr
0.5
0
null
main
4.333333
4;4;5
null
null
The Variational Walkback Algorithm
null
null
0
4.666667
Reject
4;5;5
null
null
Seoul National University
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
-0.5
0
null
main
6
5;5;8
null
null
LSTM-Based System-Call Language Modeling and Ensemble Method for Host-Based Intrusion Detection
null
null
0
3.333333
Reject
3;4;3
null
null
Janelia Research Campus, HHMI, AIFounded Inc.; AIFounded Inc.; University of Toronto
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning
null
0
null
null
iclr
0
0
null
main
4.666667
4;4;6
null
null
An Empirical Analysis of Deep Network Loss Surfaces
null
null
0
4
Reject
4;4;4
null
null
Department of Computer Science and Center for Sensorimotor Neural Engineering, University of Washington, Seattle, WA 98105, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Unsupervised Learning;Computer vision;Optimization
null
0
null
null
iclr
0
0
null
main
4.333333
4;4;5
null
null
Transformational Sparse Coding
null
null
0
4
Reject
4;4;4
null
null
NYU; UC Berkeley; Google; UCLA
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
-0.5
0
null
main
7.333333
7;7;8
null
null
Hyperband: Bandit-Based Configuration Evaluation for Hyperparameter Optimization
null
null
0
4.333333
Poster
5;4;4
null
null
University of Massachusetts Amherst; OpenAI; Google Brain
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Deep learning
null
0
null
null
iclr
-0.5
0
null
main
6.333333
6;6;7
null
null
Learning a Natural Language Interface with Neural Programmer
null
null
0
3.333333
Poster
3;4;3
null
null
Maluuba Research, Montréal, Québec, Canada
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Deep learning
null
0
null
null
iclr
0
0
datasets.maluuba.com/NewsQA
main
6
6;6;6
null
null
NEWSQA: A MACHINE COMPREHENSION DATASET
null
null
0
3.666667
Reject
4;4;3
null
null
Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, United States
2017
0
null
null
0
null
null
null
null
null
null
null
Reinforcement Learning;Optimization
null
0
null
null
iclr
0
0
null
main
6.666667
6;7;7
null
null
Learning to Optimize
null
null
0
4
Poster
4;4;4
null
null
Carnegie Mellon University; Oracle Labs
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
-0.5
0
null
main
3.333333
3;3;4
null
null
Learning a Static Analyzer: A Case Study on a Toy Language
null
null
0
4.333333
Reject
5;4;4
null
null
Binghamton University, Vestal, NY 13902, USA; IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
4
4;4;4
null
null
Generative Adversarial Networks as Variational Training of Energy Based Models
https://github.com/Shuangfei/vgan
null
0
4.333333
Reject
3;5;5
null
null
ICSI and Department of Statistics, University of California at Berkeley, Berkeley, CA, 94704; Beijing Key Lab of Traffic Data Analysis and Mining, Beijing Jiaotong University, Beijing, China, 100044
2017
0
null
null
0
null
null
null
null
null
null
null
Supervised Learning
null
0
null
null
iclr
0
0
null
main
4.333333
4;4;5
null
null
Multi-label learning with semantic embeddings
null
null
0
4
Reject
4;4;4
null
null
School of Computer and Communication Sciences, Ecole polytechnique federale de Lausanne, Lausanne, Switzerland
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
5
4;5;6
null
null
TreNet: Hybrid Neural Networks for Learning the Local Trend in Time Series
null
null
0
4.333333
Reject
4;5;4
null
null
Department of Computer Science and Engineering, University of Washington, Seattle, WA 98195, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Computer vision;Structured prediction
null
0
null
null
iclr
1
0
null
main
4.333333
4;4;5
null
null
Submodular Sum-product Networks for Scene Understanding
null
null
0
3.333333
Reject
3;3;4
null
null
Department of Computer Science and Operations Research, Universit ´e de Montr ´eal, Montreal, QC. H3C 3J7
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
-1
0
null
main
4.333333
4;4;5
null
null
Understanding intermediate layers using linear classifier probes
null
null
0
3.666667
Reject
4;4;3
null
null
Berkeley AI Research (BAIR), University of California, Berkeley; Berkeley AI Research (BAIR), University of California, Berkeley; OpenAI
2017
0
null
null
0
null
null
null
null
null
null
null
Reinforcement Learning
null
0
null
null
iclr
-0.5
0
null
main
7
6;7;8
null
null
Generalizing Skills with Semi-Supervised Reinforcement Learning
null
null
0
4
Poster
5;3;4
null
null
D-Wave Systems, Burnaby, BC V5G-4M9, Canada
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Unsupervised Learning
null
0
null
null
iclr
0.5
0
null
main
8.333333
8;8;9
null
null
Discrete Variational Autoencoders
null
null
0
3.333333
Poster
4;2;4
null
null
D´epartement Informatique, Ecole Normale Sup ´erieure, Paris, France
2017
0
null
null
0
null
null
null
null
null
null
null
Computer vision;Unsupervised Learning;Deep learning
null
0
null
null
iclr
-0.5
0
null
main
6.333333
5;7;7
null
null
A hybrid network: Scattering and Convnet
null
null
0
3.666667
Reject
4;3;4
null
null
NTT Resonant Inc.
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
4
4;4;4
null
null
CAN AI GENERATE LOVE ADVICE?: TOWARD NEURAL ANSWER GENERATION FOR NON-FACTOID QUESTIONS
null
null
0
2.666667
Reject
0;4;4
null
null
Google Brain, Department of Computing Science, University of Alberta; Google Brain
2017
0
null
null
0
null
null
null
null
null
null
null
Reinforcement Learning
null
0
null
null
iclr
0
0
null
main
7.333333
7;7;8
null
null
Improving Policy Gradient by Exploring Under-appreciated Rewards
null
null
0
4
Poster
4;4;4
null
null
CAS Key Lab of Network Data Science and Technology, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Deep learning;Unsupervised Learning;Supervised Learning
null
0
null
null
iclr
-0.866025
0
null
main
3
2;3;4
null
null
Generative Paragraph Vector
null
null
0
4.333333
Reject
5;4;4
null
null
Criteo Research, Paris, 32 Blanche, France
2017
0
null
null
0
null
null
null
null
null
null
null
Applications
null
0
null
null
iclr
0
0
null
main
3.666667
3;3;5
null
null
CONTENT2VEC: SPECIALIZING JOINT REPRESENTATIONS OF PRODUCT IMAGES AND TEXT FOR THE TASK OF PRODUCT RECOMMENDATION
null
null
0
3
Reject
3;3;3
null
null
IST Austria
2017
0
null
null
0
null
null
null
null
null
Georg Martius and Christoph H. Lampert
null
Supervised Learning;Deep learning;Structured prediction
null
0
null
null
iclr
-0.27735
0
null
main
5.333333
3;6;7
null
null
Extrapolation and learning equations
null
null
0
3.666667
Workshop
4;3;4
null
null
Toyota Technological Institute at Chicago
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Deep learning;Applications
null
0
null
null
iclr
0.866025
0
null
main
5.666667
5;6;6
null
null
Emergent Predication Structure in Vector Representations of Neural Readers
https://github.com/sohuren
null
0
4
Reject
3;5;4
null
null
Department of Bioengineering, Imperial College London, London SW7 2BP, UK
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Unsupervised Learning;Theory
null
0
null
null
iclr
0
0
null
main
3
3;3;3
null
null
Improving Sampling from Generative Autoencoders with Markov Chains
null
null
0
4.333333
Reject
5;4;4
null
null
Pacific Northwest National Laboratory, Seattle, WA; Eastern Washington University, Cheney, Washington; Pacific Northwest National Laboratory, Richland, WA
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Supervised Learning;Transfer Learning
null
0
null
null
iclr
-0.188982
0
null
main
5.333333
4;6;6
null
null
Beyond Fine Tuning: A Modular Approach to Learning on Small Data
null
null
0
3.666667
Reject
4;2;5
null