pdf
stringlengths
49
199
aff
stringlengths
1
1.36k
year
stringclasses
19 values
technical_novelty_avg
float64
0
4
video
stringlengths
21
47
doi
stringlengths
31
63
presentation_avg
float64
0
4
proceeding
stringlengths
43
129
presentation
stringclasses
796 values
sess
stringclasses
576 values
technical_novelty
stringclasses
700 values
arxiv
stringlengths
10
16
author
stringlengths
1
1.96k
site
stringlengths
37
191
keywords
stringlengths
2
582
oa
stringlengths
86
198
empirical_novelty_avg
float64
0
4
poster
stringlengths
57
95
openreview
stringlengths
41
45
conference
stringclasses
11 values
corr_rating_confidence
float64
-1
1
corr_rating_correctness
float64
-1
1
project
stringlengths
1
162
track
stringclasses
3 values
rating_avg
float64
0
10
rating
stringlengths
1
17
correctness
stringclasses
809 values
slides
stringlengths
32
41
title
stringlengths
2
192
github
stringlengths
3
165
authors
stringlengths
7
161
correctness_avg
float64
0
5
confidence_avg
float64
0
5
status
stringclasses
22 values
confidence
stringlengths
1
17
empirical_novelty
stringclasses
763 values
null
Facebook AI Research, New York, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing
null
0
null
null
iclr
0
0
null
main
6
5;6;7
null
null
Dialogue Learning With Human-in-the-Loop
null
null
0
3.666667
Poster
4;3;4
null
null
AGH University of Science and Technology, Department of Computer Science, Krakow, Poland
2017
0
null
null
0
null
null
null
null
null
Karol Grzegorczyk & Marcin Kurdziel, AGH University of Science and Technology , Department of Computer Science , Krakow, Poland , {kgr,kurdziel}@agh.edu.pl
null
Natural language processing;Transfer Learning
null
0
null
null
iclr
-0.944911
0
null
main
5.666667
5;6;6
null
null
Binary Paragraph Vectors
null
null
0
3.333333
Reject
5;3;2
null
null
Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Microsoft Research, Cambridge, CB1 2FB, UK
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Semi-Supervised Learning
null
0
null
null
iclr
0.5
0
null
main
6
4;7;7
null
null
Neural Program Lattices
null
null
0
4.333333
Poster
4;4;5
null
null
Tsinghua National Laboratory for Information Science and Technology, Department of Electronic Engineering, Tsinghua University, Beijing, China; Department of Electronic Engineering, Tsinghua University, Beijing, China
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Deep learning;Applications
null
0
null
null
iclr
0
0
null
main
3.333333
3;3;4
null
null
Learning to Understand: Incorporating Local Contexts with Global Attention for Sentiment Classification
null
null
0
4
Reject
4;4;4
null
null
Department of Electrical and Computer Engineering, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing
null
0
null
null
iclr
0
0
null
main
7
7;7;7
null
null
Geometry of Polysemy
null
null
0
3.666667
Poster
4;3;4
null
null
School of Computer Science, McGill University, Montreal, QC, Canada
2017
0
null
null
0
null
null
null
null
null
null
null
Reinforcement Learning;Deep learning
null
0
null
null
iclr
-0.5
0
null
main
3.666667
3;4;4
null
null
Investigating Recurrence and Eligibility Traces in Deep Q-Networks
null
null
0
4.666667
Reject
5;5;4
null
null
College of Computer Science, Northeastern University, MA 02115, USA; Microsoft Research, WA 98052, USA; Department of Engineering Science, University of Oxford, Oxford OX13PJ, UK; Department of Psychology, Stanford University, CA 94305, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Semi-Supervised Learning;Deep learning;Computer vision
null
0
null
null
iclr
0.866025
0
null
main
5.666667
5;6;6
null
null
Learning Disentangled Representations in Deep Generative Models
null
null
0
4
Reject
3;4;5
null
null
Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Poland; Electrical and Computer Engineering, Purdue University, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning
null
0
null
null
iclr
0
0
null
main
4
3;4;4;5
null
null
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation
null
null
0
4
Reject
4;4;4;4
null
null
Department of Computer Science, Aalto University, Finland; School of Information Sciences, University of Tampere, Finland
2017
0
null
null
0
null
null
null
null
null
null
null
Unsupervised Learning
null
0
null
null
iclr
0
0
null
main
4
4;4;4
null
null
An Information Retrieval Approach for Finding Dependent Subspaces of Multiple Views
null
null
0
4
Reject
4;4;4
null
null
Microsoft AI & Research
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
6
6;6;6
null
null
MS MARCO: A Human-Generated MAchine Reading COmprehension Dataset
null
null
0
2
Reject
3;0;3
null
null
LMNO UMR CNRS, Statistics and Data Science, University of Caen, Caen, France; DYNI, LSIS UMR CNRS, Machine Learning, AMU, University of Toulon, ENSAM, La Garde, France
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0.5
0
null
main
4.666667
4;5;5
null
null
BIOACOUSTIC SEGMENTATION BY HIERARCHICAL DIRICHLET PROCESS HIDDEN MARKOV MODEL
null
null
0
3.666667
Reject
3;3;5
null
null
Facebook AI Research; Carnegie Mellon University
2017
0
null
null
0
null
null
null
null
null
null
null
Reinforcement Learning;Applications;Games
null
0
null
null
iclr
-0.944911
0
null
main
5.666667
4;6;7
null
null
Training Agent for First-Person Shooter Game with Actor-Critic Curriculum Learning
null
null
0
4.333333
Poster
5;4;4
null
null
Facebook AI Research; Courant Institute of Mathematical Sciences
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0.654654
0
null
main
8.333333
7;8;10
null
null
Towards Principled Methods for Training Generative Adversarial Networks
null
null
0
4
Oral
4;3;5
null
null
School of Informatics, University of Edinburgh, Edinburgh, Scotland, UK; Toyota Technological Institute at Chicago, Chicago, Illinois, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Natural language processing;Unsupervised Learning
null
0
null
null
iclr
-0.5
0
null
main
4.666667
4;4;6
null
null
Multiplicative LSTM for sequence modelling
null
null
0
4.333333
Workshop
5;4;4
null
null
Oregon State University, Kelley Engineering Center, Corvallis, OR, 97331; IBM Watson, Yorktown Heights, NY 10598 USA
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Supervised Learning;Applications;Deep learning
null
0
null
null
iclr
0
0
null
main
4.666667
4;4;6
null
null
Classify or Select: Neural Architectures for Extractive Document Summarization
null
null
0
4
Reject
4;4;4
null
null
Facebook AI Research
2017
0
null
null
0
null
null
null
null
null
null
null
Theory;Deep learning;Optimization
null
0
null
null
iclr
0.5
0
null
main
5.333333
4;4;8
null
null
Symmetry-Breaking Convergence Analysis of Certain Two-layered Neural Networks with ReLU nonlinearity
null
null
0
3.666667
Workshop
4;3;4
null
null
Facebook AI Research; Google DeepMind; Facebook AI Research, University of Trento
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Reinforcement Learning;Games
null
0
null
null
iclr
0
0
null
main
7
7;7;7
null
null
Multi-Agent Cooperation and the Emergence of (Natural) Language
null
null
0
3
Oral
3;3;3
null
null
University of Massachusetts Medical School, Bedford V AMC
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Deep learning
null
0
null
null
iclr
0
0
null
main
6.666667
6;7;7
null
null
Reasoning with Memory Augmented Neural Networks for Language Comprehension
null
null
0
3
Poster
3;4;2
null
null
The University of Tokyo, Bunkyo-ku, Tokyo, Japan
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
4.333333
3;5;5
null
null
Joint Multimodal Learning with Deep Generative Models
null
null
0
4
Reject
4;5;3
null
null
Stanford University
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Deep learning
null
0
null
null
iclr
0
0
null
main
5.333333
5;5;6
null
null
Deep Biaffine Attention for Neural Dependency Parsing
null
null
0
4
Poster
4;4;4
null
null
University of Toronto & Google Brain; Google Brain
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Supervised Learning;Speech;Structured prediction
null
0
null
null
iclr
0
0
null
main
5.333333
5;5;6
null
null
Regularizing Neural Networks by Penalizing Confident Output Distributions
null
null
0
4
Reject
4;4;4
null
null
School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
8
8;8;8
null
null
Structured Attention Networks
null
null
0
4
Poster
5;3;4
null
null
Department of Neurosurgery and Hansen Experimental Physics Laboratory, Stanford University; Santa Cruz Institute for Particle Physics, University of California, Santa Cruz; Department of Physics, Stanford University; Neurosciences Graduate Program, University of California, San Diego; Departments of Statistics and Neuroscience, Columbia University; Doctoral Program in Neurobiology & Behavior, Columbia University
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Applications
null
0
null
null
iclr
0.693375
0
null
main
6.333333
4;7;8
null
null
Multilayer Recurrent Network Models of Primate Retinal Ganglion Cell Responses
null
null
0
4.333333
Poster
4;4;5
null
null
Google, New York, NY; University of Washington, Seattle, WA
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing
null
0
null
null
iclr
0
0
null
main
6.333333
6;6;7
null
null
Learning Recurrent Span Representations for Extractive Question Answering
null
null
0
4
Reject
3;5;4
null
null
Department of Computer Science, University College London, London, UK
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
6
5;6;7
null
null
Programming With a Differentiable Forth Interpreter
null
null
0
2.666667
Workshop
2;4;2
null
null
UC Berkeley, Department of Electrical Engineering and Computer Science; OpenAI
2017
0
null
null
0
null
null
null
null
null
null
null
Reinforcement Learning;Deep learning
null
0
null
null
iclr
-1
0
null
main
3.333333
3;3;4
null
null
RL^2: Fast Reinforcement Learning via Slow Reinforcement Learning
null
null
0
3.666667
Reject
4;4;3
null
null
Department of Computer Science, University of California, Irvine, Irvine, CA 92697 USA
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
5.333333
5;5;6
null
null
Energy-Based Spherical Sparse Coding
null
null
0
4
Reject
4;4;4
null
null
School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK; Renishaw plc, Research Ave, North, Edinburgh, UK
2017
0
null
null
0
null
null
null
null
null
null
null
Computer vision;Unsupervised Learning;Applications
null
0
null
null
iclr
1
0
null
main
5.666667
5;6;6
null
null
Neural Photo Editing with Introspective Adversarial Networks
null
null
0
3.666667
Poster
3;4;4
null
null
QUV A Lab, Informatics Institute, University of Amsterdam, Amsterdam, Netherlands
2017
0
null
null
0
null
null
null
null
null
null
null
Computer vision;Deep learning;Applications
null
0
null
null
iclr
1
0
null
main
7.333333
6;8;8
null
null
Sigma Delta Quantized Networks
null
null
0
3.666667
Poster
3;4;4
null
null
Informatics Institute, University of Amsterdam
2017
0
null
null
0
null
null
null
null
null
null
null
Optimization;Deep learning;Computer vision
null
0
null
null
iclr
-0.944911
0
null
main
5.333333
4;5;7
null
null
Recurrent Inference Machines for Solving Inverse Problems
null
null
0
3.666667
Reject
4;4;3
null
null
Computer Science and Artificial Intelligence Lab, MIT
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Supervised Learning;Structured prediction
null
0
null
null
iclr
0
0
null
main
6.333333
6;6;7
null
null
Tree-structured decoding with doubly-recurrent neural networks
null
null
0
4
Poster
4;4;4
null
null
School of Computer Science, Carnegie Mellon University
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Deep learning;Supervised Learning
null
0
null
null
iclr
0.5
0
null
main
6.333333
6;6;7
null
null
Gated-Attention Readers for Text Comprehension
https://github.com/bdhingra/ga-reader
null
0
2
Reject
0;3;3
null
null
University of California, Berkeley; Toyota Technological Institute at Chicago
2017
0
null
null
0
null
null
null
null
null
Dan Hendrycks and Kevin Gimpel
null
Computer vision
null
0
null
null
iclr
0
0
null
main
6
6;6;6
null
null
A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks
github.com/hendrycks/error-detection
null
0
3
Poster
3;3;3
null
null
Adobe Systems Inc, Noida, Uttar Pradesh, India; Department of Computer Science, IIT Kanpur, Uttar Pradesh, India; Department of Electronics and Electrical Comm. Engg., IIT Kharagpur, West Bengal, India
2017
0
null
null
0
null
null
null
null
null
null
null
Computer vision;Deep learning;Optimization
null
0
null
null
iclr
0.866025
0
null
main
8
7;8;9
null
null
Introspection:Accelerating Neural Network Training By Learning Weight Evolution
null
null
0
4.666667
Poster
4;5;5
null
null
Snap Research; Microsoft Research; Beckman Institute, University of Illinois at Urbana-Champaign
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
1
0
null
main
6.666667
6;7;7
null
null
Support Regularized Sparse Coding and Its Fast Encoder
null
null
0
3.666667
Poster
3;4;4
null
null
Massachusetts Institute of Technology; Microsoft Research
2017
0
null
null
0
null
null
null
null
null
null
null
Supervised Learning
null
0
null
null
iclr
-0.480384
0
null
main
5.4
4;5;5;6;7
null
null
Neural Functional Programming
null
null
0
2.6
Workshop
3;2;3;3;2
null
null
Google Brain; Montreal Institute for Learning Algorithms, University of Montreal, Montreal, QC H3T1J4
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Unsupervised Learning
null
0
null
null
iclr
0
0
null
main
7.666667
7;8;8
null
null
Density estimation using Real NVP
null
null
0
4
Poster
4;4;4
null
null
University of Texas at Austin, Austin, TX, USA; Carnegie Mellon University, Pittsburgh, PA, USA; Google, Mountain View, CA, USA
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
6
6;6;6
null
null
Joint Training of Ratings and Reviews with Recurrent Recommender Networks
null
null
0
3.666667
Reject
4;3;4
null
null
Department of EE, CSE, University of Washington; Department of GS, CSE, University of Washington; Department of Statistics, University of Washington; Department of CSE, University of Washington
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning
null
0
null
null
iclr
0.5
0
null
main
7
6;6;9
null
null
Training Compressed Fully-Connected Networks with a Density-Diversity Penalty
null
null
0
3.333333
Poster
4;2;4
null
null
Ecole Polytechnique de Montreal, Montreal, Canada; Montreal Institute for Learning Algorithms, Montreal, Canada; Ecole Polytechnique de Montreal, Montreal, Canada; CHUM Research Center, Montreal, Canada
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning
null
0
null
null
iclr
-0.5
0
null
main
5.666667
5;5;7
null
null
On orthogonality and learning recurrent networks with long term dependencies
null
null
0
4.333333
Reject
4;5;4
null
null
Department of Electrical Engineering and Computer Science, Seoul National University, Gwanak-Gu, 08826, Republic of Korea
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
-0.866025
0
null
main
5
4;5;6
null
null
Coarse Pruning of Convolutional Neural Networks with Random Masks
null
null
0
3.666667
Reject
4;4;3
null
null
Google; Pennsylvania State University; Google Brain
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
1
0
null
main
8.333333
7;9;9
null
null
Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data
null
null
0
3.666667
Oral
3;4;4
null
null
Facebook AI Research
2017
0
null
null
0
null
null
null
null
null
null
null
Computer vision;Unsupervised Learning
null
0
null
null
iclr
0.755929
0
http://joo.st/ICLR/GenerationBenchmark
main
4.666667
3;5;6
null
null
Transformation-based Models of Video Sequences
null
null
0
3.333333
Reject
3;3;4
null
null
Computer Science Department, Bar-Ilan University, Ramat-Gan, Israel
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Applications
null
0
null
null
iclr
-0.866025
0
null
main
4.666667
4;5;5
null
null
Sequence to Sequence Transduction with Hard Monotonic Attention
null
null
0
4
Reject
5;4;3
null
null
Department of Computer Science and Technology, Ocean University of China; Department of International Trade and Economy, Ocean University of China
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
3
3;3;3
null
null
Deep Error-Correcting Output Codes
null
null
0
4.666667
Reject
5;4;5
null
null
Innovative Computing Laboratory, The University of Tennessee, Knoxville; Big Data Research Center, Univ. of Electr. Sci. & Tech. of China; School of Computational Science & Engineering, Georgia Institute of Technology; School of Computer Science, Georgia Institute of Technology
2017
0
null
null
0
null
null
null
null
null
null
null
Applications;Deep learning
null
0
null
null
iclr
0
0
null
main
5
5;5
null
null
Efficient Communications in Training Large Scale Neural Networks
null
null
0
4
Reject
3;5
null
null
Dept. of Computer Science, University of Houston; Instituto Nacional de Astrofisica, Optica y Electronica, Computer Science Department; Dept. of Computing Systems and Industrial Engineering, Universidad Nacional de Colombia
2017
0
null
null
0
null
null
null
null
null
null
null
Multi-modal learning;Applications;Supervised Learning
null
0
null
null
iclr
0.327327
0
null
main
5.666667
4;6;7
null
null
Gated Multimodal Units for Information Fusion
null
null
0
4
Workshop
4;3;5
null
null
Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 3G4, Canada
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Applications
null
0
null
null
iclr
0.200446
0
null
main
4.8
4;4;5;5;6
null
null
Tartan: Accelerating Fully-Connected and Convolutional Layers in Deep Learning Networks by Exploiting Numerical Precision Variability
null
null
0
3.2
Reject
1;3;5;5;2
null
null
Google Research, Google Brain, Google DeepMind; Department of Electrical Engineering and Computer Science, University of California, Berkeley
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
3.333333
3;3;4
null
null
Tree-Structured Variational Autoencoder
null
null
0
4
Reject
4;4;4
null
null
Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning
null
0
null
null
iclr
0.5
0
null
main
3.666667
3;4;4
null
null
Divide and Conquer with Neural Networks
null
null
0
2.666667
Reject
2;4;2
null
null
Google Brain; Google Research; Adobe Research; Columbia University
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
http://edwardlib.org/iclr2017
main
6.666667
5;7;8
null
null
Deep Probabilistic Programming
null
null
0
4
Poster
4;4;4
null
null
Bosch Research and Technology Center, Palo Alto, CA and University of Illinois at Chicago, Chicago, IL; Bosch Research and Technology Center, Palo Alto, CA; Bosch Research and Technology Center, Palo Alto, CA and Simon Fraser University, Burnaby, BC
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
4
3;4;5
null
null
Deep Symbolic Representation Learning for Heterogeneous Time-series Classification
null
null
0
3.666667
Reject
4;3;4
null
null
Criteo Research
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0.866025
0
null
main
6
4;6;8
null
null
Tighter bounds lead to improved classifiers
null
null
0
4.333333
Poster
4;4;5
null
null
OpenAI, San Francisco, CA, USA; Google Brain, Mountain View, CA, USA; Google Brain, Mountain View, CA, USA and UC Berkeley, Berkeley, CA, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Optimization;Deep learning;Applications
null
0
null
null
iclr
1
0
null
main
5.666667
5;6;6
null
null
Revisiting Distributed Synchronous SGD
null
null
0
3.666667
Reject
3;4;4
null
null
National Research University Higher School of Economics (HSE), Yandex; National Research University Higher School of Economics (HSE)
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Unsupervised Learning
null
0
null
null
iclr
0.188982
0
null
main
5.333333
4;5;7
null
null
Fast Adaptation in Generative Models with Generative Matching Networks
null
null
0
3.666667
Reject
4;3;4
null
null
Computer Science Department, New York University; Mathematics Department, University of California, Irvine; Mathematics Department, New York University
2017
0
null
null
0
null
null
null
null
null
null
null
Optimization
null
0
null
null
iclr
-0.5
0
null
main
4
2;5;5
null
null
Universality in halting time
null
null
0
3.666667
Reject
4;3;4
null
null
POSTECH, Korea; Adobe Research
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Computer vision;Multi-modal learning
null
0
null
null
iclr
-0.654654
0
null
main
5.666667
4;6;7
null
null
Progressive Attention Networks for Visual Attribute Prediction
null
null
0
4
Reject
5;3;4
null
null
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598 USA
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
4.333333
4;4;5
null
null
Machine Solver for Physics Word Problems
null
null
0
4
Reject
4;4;4
null
null
Department of Computer Science and Operations Research, University of Montreal
2017
0
null
null
0
null
null
null
null
null
null
null
Computer vision;Deep learning
null
0
null
null
iclr
0
0
null
main
6.333333
5;7;7
null
null
Incorporating long-range consistency in CNN-based texture generation
null
null
0
5
Poster
5;5;5
null
null
DeepMind, CIFAR, Oxford University; DeepMind
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Reinforcement Learning
null
0
null
null
iclr
-0.5
0
null
main
6.333333
6;6;7
null
null
Sample Efficient Actor-Critic with Experience Replay
null
null
0
3.333333
Poster
3;4;3
null
null
University College London, UK; MediaGamma Ltd, UK; Shanghai Jiao Tong University, Shanghai, China
2017
0
null
null
0
null
null
null
null
null
null
null
Unsupervised Learning;Deep learning;Applications
null
0
null
null
iclr
1
0
null
main
4.333333
4;4;5
null
null
Cat2Vec: Learning Distributed Representation of Multi-field Categorical Data
null
null
0
4.333333
Reject
4;4;5
null
null
Intel Labs China
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Optimization
null
0
null
null
iclr
0.5
0
null
main
7.333333
7;7;8
null
null
Incremental Network Quantization: Towards Lossless CNNs with Low-precision Weights
null
null
0
3.666667
Poster
3;4;4
null
null
Department of Information and Communication Engineering, The University of Tokyo
2017
0
null
null
0
null
null
null
null
null
null
null
Computer vision;Deep learning
null
0
null
null
iclr
-0.755929
0
null
main
5.333333
4;5;7
null
null
Significance of Softmax-Based Features over Metric Learning-Based Features
null
null
0
4.333333
Reject
5;4;4
null
null
Data Lab, Volkswagen Group, 80805, München, Germany
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Unsupervised Learning
null
0
null
null
iclr
-0.5
0
null
main
6.333333
6;6;7
null
null
Deep Variational Bayes Filters: Unsupervised Learning of State Space Models from Raw Data
null
null
0
3.333333
Poster
3;4;3
null
null
Machine Intelligence Lab., SK Planet, Seongnam City, South Korea; Naver Labs, Naver Corp., Seongnam City, South Korea
2017
0
null
null
0
null
null
null
null
null
null
null
Computer vision;Deep learning;Supervised Learning;Applications
null
0
null
null
iclr
0.5
0
null
main
3.333333
3;3;4
null
null
Multi-label learning with the RNNs for Fashion Search
null
null
0
3.666667
Reject
4;3;4
null
null
School of Mathematics and Statistics, Victoria University of Wellington, Wellington, New Zealand; Disney Research, Zurich, Switzerland; School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Optimization;Theory;Supervised Learning
null
0
null
null
iclr
-0.866025
0
null
main
5.666667
3;7;7
null
null
Neural Taylor Approximations: Convergence and Exploration in Rectifier Networks
null
null
0
3
Workshop
4;3;2
null
null
College of Computing, Georgia Institute of Technology, Atlanta, GA 30332, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Applications
null
0
null
null
iclr
0
0
null
main
6
6;6;6
null
null
Recurrent Coevolutionary Feature Embedding Processes for Recommendation
null
null
0
3.666667
Reject
3;4;4
null
null
Department of Computer Science, Stanford University
2017
0
null
null
0
null
null
null
null
null
null
null
Theory;Deep learning;Unsupervised Learning
null
0
null
null
iclr
0
0
https://arxiv.org/pdf/1702.08484.pdf
main
5.333333
5;5;6
null
null
Boosted Generative Models
null
null
0
3
Reject
3;3;3
null
null
Baidu, Inc., China
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0.755929
0
null
main
5
4;5;6
null
null
HFH: Homologically Functional Hashing for Compressing Deep Neural Networks
null
null
0
3
Reject
0;5;4
null
null
Center for Language and Speech Processing, Johns Hopkins University, Baltimore, MD 21218, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Unsupervised Learning;Deep learning;Multi-modal learning
null
0
null
null
iclr
-1
0
null
main
6
5;6;7
null
null
Deep Generalized Canonical Correlation Analysis
null
null
0
4
Reject
5;4;3
null
null
IBM Thomas J. Watson Research Center, Yorktown Heights, NY USA; The Department of Computer Science, University of Southern California, Los Angeles, CA USA
2017
0
null
null
0
null
null
null
null
null
null
null
Unsupervised Learning;Computer vision;Transfer Learning;Optimization;Applications
null
0
null
null
iclr
0.5
0
null
main
5.666667
5;5;7
null
null
NEUROGENESIS-INSPIRED DICTIONARY LEARNING: ONLINE MODEL ADAPTION IN A CHANGING WORLD
null
null
0
3.666667
Reject
4;3;4
null
null
IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Transfer Learning;Natural language processing
null
0
null
null
iclr
0
0
null
main
6
5;6;7
null
null
Representation Stability as a Regularizer for Improved Text Analytics Transfer Learning
null
null
0
3.666667
Reject
4;3;4
null
null
Stanford University; Baidu Research; NVIDIA; Facebook
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning
null
0
null
null
iclr
-1
0
null
main
7
5;8;8
null
null
DSD: Dense-Sparse-Dense Training for Deep Neural Networks
https://songhan.github.io/DSD
null
0
3.333333
Poster
4;3;3
null
null
UC Berkeley, Department of Electrical Engineering and Computer Science, OpenAI; UC Berkeley, Department of Electrical Engineering and Computer Science
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Reinforcement Learning;Transfer Learning
null
0
null
null
iclr
-0.866025
0
null
main
6.333333
6;6;7
null
null
Learning Invariant Feature Spaces to Transfer Skills with Reinforcement Learning
null
null
0
4
Poster
4;5;3
null
null
Department of Electrical Engineering, Technion, Israel Institute of Technology
2017
0
null
null
0
null
null
null
null
null
null
null
Reinforcement Learning;Deep learning;Games
null
0
null
null
iclr
0
0
null
main
5.333333
4;5;7
null
null
Playing SNES in the Retro Learning Environment
null
null
0
4
Reject
4;4;4
null
null
Google DeepMind
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Computer vision;Multi-modal learning;Natural language processing
null
0
null
null
iclr
0
0
null
main
6
5;6;7
null
null
Generating Interpretable Images with Controllable Structure
null
null
0
3
Workshop
3;3;3
null
null
Google Research
2017
0
null
null
0
null
null
null
null
null
null
null
Theory;Computer vision;Deep learning;Supervised Learning
null
0
null
null
iclr
0.5
0
null
main
6.333333
6;6;7
null
null
Deep Variational Information Bottleneck
null
null
0
3.666667
Poster
4;3;4
null
null
Department of Computer Science, University of Freiburg
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Applications
null
0
null
null
iclr
0
0
null
main
7
7;7;7
null
null
Learning Curve Prediction with Bayesian Neural Networks
null
null
0
4.333333
Poster
4;5;4
null
null
1Skolkovo Institute of Science and Technology, Moscow, Russia; 2Yandex LLC, Moscow, Russia; 1Skolkovo Institute of Science and Technology, Moscow, Russia; 4Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Unsupervised Learning
null
0
null
null
iclr
-0.866025
0
null
main
5
4;5;6
null
null
Riemannian Optimization for Skip-Gram Negative Sampling
null
null
0
3.333333
Reject
4;3;3
null
null
EPFL, Switzerland
2017
0
null
null
0
null
null
null
null
null
null
null
Structured prediction
null
0
null
null
iclr
0
0
null
main
4
4;4;4
null
null
Structured Sequence Modeling with Graph Convolutional Recurrent Networks
null
null
0
4
Reject
4;4;4
null
null
Department of EECS, University of Michigan, Ann Arbor, MI 48109, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Deep learning;Applications
null
0
null
null
iclr
-1
0
null
main
6.333333
6;6;7
null
null
Sentence Ordering using Recurrent Neural Networks
null
null
0
3.666667
Reject
4;4;3
null
null
Facebook AI Research, New York, USA
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0.5
0
null
main
7.666667
7;8;8
null
null
Learning End-to-End Goal-Oriented Dialog
null
null
0
4.333333
Oral
4;4;5
null
null
Department of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Computer vision;Supervised Learning
null
0
null
null
iclr
0.333333
0
null
main
5.25
5;5;5;6
null
null
Compositional Kernel Machines
null
null
0
3.75
Workshop
4;4;3;4
null
null
Google Brain, Visiting from Carnegie Mellon University; Google Brain
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0.5
0
null
main
5
4;5;6
null
null
Learning to Protect Communications with Adversarial Neural Cryptography
null
null
0
3
Reject
2;4;3
null
null
The Robotics Institute, School of Computer Science, Carnegie Mellon University, Pittsburgh, P.A., 15213
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
4
4;4;4
null
null
OMG: Orthogonal Method of Grouping With Application of K-Shot Learning
null
null
0
4.333333
Reject
4;5;4
null
null
IBM Research, San Jose, CA 95120, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Unsupervised Learning;Applications;Deep learning
null
0
null
null
iclr
-1
0
null
main
3.333333
3;3;4
null
null
Surprisal-Driven Feedback in Recurrent Networks
null
null
0
4.666667
Reject
5;5;4
null
null
The University of Tokyo
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Unsupervised Learning
null
0
null
null
iclr
0.866025
0
null
main
5
4;5;6
null
null
b-GAN: Unified Framework of Generative Adversarial Networks
null
null
0
3.333333
Reject
3;3;4
null
null
Oracle Labs, Burlington, MA; Carnegie Mellon University, Pittsburgh, PA
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Structured prediction;Deep learning
null
0
null
null
iclr
1
0
null
main
3.333333
3;3;4
null
null
Enforcing constraints on outputs with unconstrained inference
null
null
0
4.333333
Reject
4;4;5
null
null
Facebook AI Research, New York, NY 10003, USA; Department of Computer Science, New York University, New York, NY 10012, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Deep learning
null
0
null
null
iclr
-1
0
null
main
6
4;7;7
null
null
Variable Computation in Recurrent Neural Networks
null
null
0
4.333333
Poster
5;4;4
null
null
OpenAI; Google Brain
2017
0
null
null
0
null
null
null
null
null
null
null
Supervised Learning;Computer vision
null
0
null
null
iclr
-1
0
https://youtu.be/zQ_uMenoBCk
main
5.666667
5;6;6
null
null
Adversarial examples in the physical world
null
null
0
3.333333
Workshop
4;3;3
null
null
David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada
2017
0
null
null
0
null
null
null
null
null
null
null
Unsupervised Learning;Deep learning
null
0
null
null
iclr
0.866025
0
null
main
4.666667
4;4;6
null
null
Online Structure Learning for Sum-Product Networks with Gaussian Leaves
null
null
0
2
Workshop
1;2;3
null
null
Twitter, London, UK; Twitter, London, UK and University of Copenhagen, Denmark
2017
0
null
null
0
null
null
null
null
null
Casper Kaae Sonderby, Jose Caballero, Lucas Theis, Wenzhe Shi and Ferenc Huszar
null
Theory;Computer vision;Deep learning
null
0
null
null
iclr
0.327327
0
null
main
8
7;8;9
null
null
Amortised MAP Inference for Image Super-resolution
null
null
0
3.333333
Oral
2;5;3
null
null
School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331, USA
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
-0.5
0
null
main
6.666667
6;7;7
null
null
FILTER SHAPING FOR CONVOLUTIONAL NEURAL NETWORKS
null
null
0
3.666667
Poster
4;4;3
null
null
University of Chicago; TTI Chicago
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
-0.5
0
null
main
5.666667
5;6;6
null
null
FractalNet: Ultra-Deep Neural Networks without Residuals
null
null
0
4.666667
Poster
5;4;5
null
null
Montreal Institute for Learning Algorithms, Universit ´e de Montr ´eal, CIFAR Senior Fellow; Montreal Institute for Learning Algorithms, Universit ´e de Montr ´eal
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Unsupervised Learning
null
0
null
null
iclr
0.944911
0
null
main
6.666667
6;7;7
null
null
Improving Generative Adversarial Networks with Denoising Feature Matching
null
null
0
3.666667
Poster
2;4;5
null
null
Department of Information Engineering, Universit`a degli Studi di Firenze; Department of Computer Science, Katholieke Universiteit Leuven
2017
0
null
null
0
null
null
null
null
null
null
null
Supervised Learning
null
0
null
null
iclr
1
0
null
main
4.333333
3;5;5
null
null
Shift Aggregate Extract Networks
null
null
0
2.666667
Workshop
2;3;3
null
null
Stanford University; Stanford University, NVIDIA; Tsinghua University
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning
null
0
null
null
iclr
0.650945
0
null
main
6.25
3;7;7;8
null
null
Trained Ternary Quantization
null
null
0
4
Poster
3;5;3;5
null
null
Media Laboratory, Massachusetts Institute of Technology, Cambridge MA 02139, USA
2017
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Reinforcement Learning
null
0
null
null
iclr
0
0
https://bowenbaker.github.io/metaqnn/
main
6
6;6;6
null
null
Designing Neural Network Architectures using Reinforcement Learning
https://github.com/bowenbaker/metaqnn
null
0
3.666667
Poster
4;3;4
null
null
Department of Mathematics, California State University, Long Beach, CA 90840, USA; Department of Mathematics, Loyola Marymount University, Los Angeles, CA 90045, USA
2017
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
-1
0
null
main
7.333333
7;7;8
null
null
A recurrent neural network without chaos
null
null
0
3.666667
Poster
4;4;3
null
null
Département d’informatique et de recherche opérationnelle, Université de Montréal
2017
0
null
null
0
null
null
null
null
null
null
null
Natural language processing;Deep learning
null
0
null
null
iclr
1
0
null
main
7.666667
7;8;8
null
null
Hierarchical Multiscale Recurrent Neural Networks
null
null
0
3.666667
Poster
3;4;4
null