code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import itertools import math def __lowerCAmelCase ( lowercase : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __lowerCAmelCase ( ) -> Optional[int]: """simple docstring""" snake_case : Union[str, Any] = 2 while True: if is_prime(lowercase ): yield num num += 1 def __lowerCAmelCase ( lowercase : int = 1_0001 ) -> int: """simple docstring""" return next(itertools.islice(prime_generator() , nth - 1 , lowercase ) ) if __name__ == "__main__": print(F'''{solution() = }''')
203
"""simple docstring""" def __lowerCAmelCase ( ) -> Union[str, Any]: """simple docstring""" snake_case : Dict = [] snake_case : List[Any] = 1 while len(lowercase ) < 1e6: constant.append(str(lowercase ) ) i += 1 snake_case : Tuple = "".join(lowercase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
203
1
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar _A = TypeVar('''T''') class A ( Generic[T] ): def __init__( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = data lowerCAmelCase_ = None def __str__( self ): """simple docstring""" return f"{self.data}" class A ( Generic[T] ): def __init__( self ): """simple docstring""" lowerCAmelCase_ = None def __iter__( self ): """simple docstring""" lowerCAmelCase_ = self.top while node: yield node.data lowerCAmelCase_ = node.next def __str__( self ): """simple docstring""" return "->".join([str(UpperCamelCase__ ) for item in self] ) def __len__( self ): """simple docstring""" return len(tuple(iter(self ) ) ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return self.top is None def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = Node(UpperCamelCase__ ) if not self.is_empty(): lowerCAmelCase_ = self.top lowerCAmelCase_ = node def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" if self.is_empty(): raise IndexError('''pop from empty stack''' ) assert isinstance(self.top, UpperCamelCase__ ) lowerCAmelCase_ = self.top lowerCAmelCase_ = self.top.next return pop_node.data def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" if self.is_empty(): raise IndexError('''peek from empty stack''' ) assert self.top is not None return self.top.data def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = None if __name__ == "__main__": from doctest import testmod testmod()
370
import pprint import requests _A = '''https://zenquotes.io/api''' def __UpperCamelCase ( ): return requests.get(API_ENDPOINT_URL + '''/today''' ).json() def __UpperCamelCase ( ): return requests.get(API_ENDPOINT_URL + '''/random''' ).json() if __name__ == "__main__": _A = random_quotes() pprint.pprint(response)
167
0
def A_ ( a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = current_set.copy() for row_index, row in enumerate(a ): SCREAMING_SNAKE_CASE_ : List[str] = row[0] for column_index, column in enumerate(a ): if magnitude == 0: SCREAMING_SNAKE_CASE_ : Tuple = column continue SCREAMING_SNAKE_CASE_ : List[Any] = column / magnitude # Subtract to cancel term SCREAMING_SNAKE_CASE_ : Tuple = current_set[0] SCREAMING_SNAKE_CASE_ : Any = [first_row] SCREAMING_SNAKE_CASE_ : str = current_set[1::] for row in current_set: SCREAMING_SNAKE_CASE_ : int = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(a ) continue for column_index in range(len(a ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(a ) # Create next recursion iteration set if len(final_set[0] ) != 3: SCREAMING_SNAKE_CASE_ : List[str] = final_set[0] SCREAMING_SNAKE_CASE_ : List[Any] = [] SCREAMING_SNAKE_CASE_ : Optional[Any] = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) SCREAMING_SNAKE_CASE_ : int = simplify(a ) for i in range(len(a ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , a ) SCREAMING_SNAKE_CASE_ : List[str] = resultant return final_set def A_ ( a ): """simple docstring""" if len(a ) == 0: raise IndexError('solve_simultaneous() requires n lists of length n+1' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = len(a ) + 1 if any(len(a ) != _length for item in equations ): raise IndexError('solve_simultaneous() requires n lists of length n+1' ) for row in equations: if any(not isinstance(a , (int, float) ) for column in row ): raise ValueError('solve_simultaneous() requires lists of integers' ) if len(a ) == 1: return [equations[0][-1] / equations[0][0]] SCREAMING_SNAKE_CASE_ : List[str] = equations.copy() if any(0 in row for row in data_set ): SCREAMING_SNAKE_CASE_ : Optional[int] = data_set.copy() SCREAMING_SNAKE_CASE_ : List[Any] = [] for row_index, row in enumerate(a ): if 0 not in row: SCREAMING_SNAKE_CASE_ : Optional[Any] = data_set.pop(a ) break if not full_row: raise ValueError('solve_simultaneous() requires at least 1 full equation' ) data_set.insert(0 , a ) SCREAMING_SNAKE_CASE_ : Optional[int] = data_set.copy() SCREAMING_SNAKE_CASE_ : Dict = simplify(a ) SCREAMING_SNAKE_CASE_ : Any = simplified[::-1] SCREAMING_SNAKE_CASE_ : list = [] for row in simplified: SCREAMING_SNAKE_CASE_ : int = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue SCREAMING_SNAKE_CASE_ : Tuple = row.copy()[: len(a ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(a ) == 0: solutions.append(0 ) continue SCREAMING_SNAKE_CASE_ : Any = temp_row[1::] SCREAMING_SNAKE_CASE_ : List[str] = temp_row[::-1] for column_index, column in enumerate(a ): current_solution -= column * solutions[column_index] solutions.append(a ) SCREAMING_SNAKE_CASE_ : Dict = [] for item in solutions: final.append(float(round(a , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase : Tuple = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
253
def A_ ( a ): """simple docstring""" return "".join(chr(ord(a ) - 3_2 ) if 'a' <= char <= 'z' else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
253
1
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging __a: Any = logging.get_logger(__name__) class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = "linear" SCREAMING_SNAKE_CASE = "cosine" SCREAMING_SNAKE_CASE = "cosine_with_restarts" SCREAMING_SNAKE_CASE = "polynomial" SCREAMING_SNAKE_CASE = "constant" SCREAMING_SNAKE_CASE = "constant_with_warmup" SCREAMING_SNAKE_CASE = "piecewise_constant" def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase = -1 ): return LambdaLR(_lowerCamelCase , lambda UpperCAmelCase : 1 , last_epoch=_lowerCamelCase ) def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = -1 ): def lr_lambda(UpperCAmelCase ): if current_step < num_warmup_steps: return float(_lowerCamelCase ) / float(max(1.0 , _lowerCamelCase ) ) return 1.0 return LambdaLR(_lowerCamelCase , _lowerCamelCase , last_epoch=_lowerCamelCase ) def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = -1 ): lowercase__ : List[Any] = {} lowercase__ : str = step_rules.split(''',''' ) for rule_str in rule_list[:-1]: lowercase__ : int = rule_str.split(''':''' ) lowercase__ : Union[str, Any] = int(_lowerCamelCase ) lowercase__ : List[str] = float(_lowerCamelCase ) lowercase__ : Union[str, Any] = value lowercase__ : Any = float(rule_list[-1] ) def create_rules_function(UpperCAmelCase , UpperCAmelCase ): def rule_func(UpperCAmelCase ) -> float: lowercase__ : Optional[int] = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(_lowerCamelCase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func lowercase__ : List[str] = create_rules_function(_lowerCamelCase , _lowerCamelCase ) return LambdaLR(_lowerCamelCase , _lowerCamelCase , last_epoch=_lowerCamelCase ) def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=-1 ): def lr_lambda(UpperCAmelCase ): if current_step < num_warmup_steps: return float(_lowerCamelCase ) / float(max(1 , _lowerCamelCase ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 0.5 , UpperCAmelCase = -1 ): def lr_lambda(UpperCAmelCase ): if current_step < num_warmup_steps: return float(_lowerCamelCase ) / float(max(1 , _lowerCamelCase ) ) lowercase__ : List[Any] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(_lowerCamelCase ) * 2.0 * progress )) ) return LambdaLR(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 1 , UpperCAmelCase = -1 ): def lr_lambda(UpperCAmelCase ): if current_step < num_warmup_steps: return float(_lowerCamelCase ) / float(max(1 , _lowerCamelCase ) ) lowercase__ : Tuple = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(_lowerCamelCase ) * progress) % 1.0) )) ) return LambdaLR(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=1E-7 , UpperCAmelCase=1.0 , UpperCAmelCase=-1 ): lowercase__ : int = optimizer.defaults["lr"] if not (lr_init > lr_end): raise ValueError(F"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" ) def lr_lambda(UpperCAmelCase ): if current_step < num_warmup_steps: return float(_lowerCamelCase ) / float(max(1 , _lowerCamelCase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: lowercase__ : Dict = lr_init - lr_end lowercase__ : Optional[Any] = num_training_steps - num_warmup_steps lowercase__ : Tuple = 1 - (current_step - num_warmup_steps) / decay_steps lowercase__ : Tuple = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) __a: List[str] = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 1.0 , UpperCAmelCase = -1 , ): lowercase__ : Optional[int] = SchedulerType(_lowerCamelCase ) lowercase__ : Any = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(_lowerCamelCase , last_epoch=_lowerCamelCase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(_lowerCamelCase , step_rules=_lowerCamelCase , last_epoch=_lowerCamelCase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F"""{name} requires `num_warmup_steps`, please provide that argument.""" ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(_lowerCamelCase , num_warmup_steps=_lowerCamelCase , last_epoch=_lowerCamelCase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F"""{name} requires `num_training_steps`, please provide that argument.""" ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( _lowerCamelCase , num_warmup_steps=_lowerCamelCase , num_training_steps=_lowerCamelCase , num_cycles=_lowerCamelCase , last_epoch=_lowerCamelCase , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( _lowerCamelCase , num_warmup_steps=_lowerCamelCase , num_training_steps=_lowerCamelCase , power=_lowerCamelCase , last_epoch=_lowerCamelCase , ) return schedule_func( _lowerCamelCase , num_warmup_steps=_lowerCamelCase , num_training_steps=_lowerCamelCase , last_epoch=_lowerCamelCase )
370
'''simple docstring''' def __UpperCamelCase ( ): lowercase__ : Any = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] lowercase__ : Any = 6 lowercase__ : Optional[Any] = 1 lowercase__ : int = 1901 lowercase__ : List[str] = 0 while year < 2001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 lowercase__ : List[Any] = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 lowercase__ : Any = day - 29 else: if day > days_per_month[month - 1]: month += 1 lowercase__ : List[Any] = day - days_per_month[month - 2] if month > 12: year += 1 lowercase__ : Dict = 1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
214
0
def __lowercase ( __lowerCAmelCase : int = 1_0_0_0 ): a__ = 3 a__ = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 1_5 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f"""{solution() = }""")
240
def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : str ): def get_matched_characters(__lowerCAmelCase : str , __lowerCAmelCase : str ) -> str: a__ = [] a__ = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): a__ = int(max(0 , i - limit ) ) a__ = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(__lowerCAmelCase ) a__ = F'{_stra[0:_stra.index(__lowerCAmelCase )]} {_stra[_stra.index(__lowerCAmelCase ) + 1:]}' return "".join(__lowerCAmelCase ) # matching characters a__ = get_matched_characters(__lowerCAmelCase , __lowerCAmelCase ) a__ = get_matched_characters(__lowerCAmelCase , __lowerCAmelCase ) a__ = len(__lowerCAmelCase ) # transposition a__ = ( len([(ca, ca) for ca, ca in zip(__lowerCAmelCase , __lowerCAmelCase ) if ca != ca] ) // 2 ) if not match_count: a__ = 0.0 else: a__ = ( 1 / 3 * ( match_count / len(__lowerCAmelCase ) + match_count / len(__lowerCAmelCase ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters a__ = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('''hello''', '''world'''))
240
1
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. lowercase__ = {"""LayoutLMv2Config""", """LayoutLMv3Config"""} @is_pipeline_test class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowerCamelCase__ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: lowerCamelCase__ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: lowerCamelCase__ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def A_ ( self , lowercase , lowercase , lowercase ): _lowerCamelCase : Tuple = ZeroShotClassificationPipeline( model=lowercase , tokenizer=lowercase , candidate_labels=['polics', 'health'] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def A_ ( self , lowercase , lowercase ): _lowerCamelCase : Union[str, Any] = classifier('Who are you voting for in 2020?' , candidate_labels='politics' ) self.assertEqual(lowercase , {'sequence': ANY(lowercase ), 'labels': [ANY(lowercase )], 'scores': [ANY(lowercase )]} ) # No kwarg _lowerCamelCase : Dict = classifier('Who are you voting for in 2020?' , ['politics'] ) self.assertEqual(lowercase , {'sequence': ANY(lowercase ), 'labels': [ANY(lowercase )], 'scores': [ANY(lowercase )]} ) _lowerCamelCase : List[str] = classifier('Who are you voting for in 2020?' , candidate_labels=['politics'] ) self.assertEqual(lowercase , {'sequence': ANY(lowercase ), 'labels': [ANY(lowercase )], 'scores': [ANY(lowercase )]} ) _lowerCamelCase : str = classifier('Who are you voting for in 2020?' , candidate_labels='politics, public health' ) self.assertEqual( lowercase , {'sequence': ANY(lowercase ), 'labels': [ANY(lowercase ), ANY(lowercase )], 'scores': [ANY(lowercase ), ANY(lowercase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 ) _lowerCamelCase : List[str] = classifier('Who are you voting for in 2020?' , candidate_labels=['politics', 'public health'] ) self.assertEqual( lowercase , {'sequence': ANY(lowercase ), 'labels': [ANY(lowercase ), ANY(lowercase )], 'scores': [ANY(lowercase ), ANY(lowercase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 ) _lowerCamelCase : int = classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='This text is about {}' ) self.assertEqual(lowercase , {'sequence': ANY(lowercase ), 'labels': [ANY(lowercase )], 'scores': [ANY(lowercase )]} ) # https://github.com/huggingface/transformers/issues/13846 _lowerCamelCase : int = classifier(['I am happy'] , ['positive', 'negative'] ) self.assertEqual( lowercase , [ {'sequence': ANY(lowercase ), 'labels': [ANY(lowercase ), ANY(lowercase )], 'scores': [ANY(lowercase ), ANY(lowercase )]} for i in range(1 ) ] , ) _lowerCamelCase : Tuple = classifier(['I am happy', 'I am sad'] , ['positive', 'negative'] ) self.assertEqual( lowercase , [ {'sequence': ANY(lowercase ), 'labels': [ANY(lowercase ), ANY(lowercase )], 'scores': [ANY(lowercase ), ANY(lowercase )]} for i in range(2 ) ] , ) with self.assertRaises(lowercase ): classifier('' , candidate_labels='politics' ) with self.assertRaises(lowercase ): classifier(lowercase , candidate_labels='politics' ) with self.assertRaises(lowercase ): classifier('Who are you voting for in 2020?' , candidate_labels='' ) with self.assertRaises(lowercase ): classifier('Who are you voting for in 2020?' , candidate_labels=lowercase ) with self.assertRaises(lowercase ): classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='Not formatting template' , ) with self.assertRaises(lowercase ): classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template=lowercase , ) self.run_entailment_id(lowercase ) def A_ ( self , lowercase ): _lowerCamelCase : Any = zero_shot_classifier.model.config _lowerCamelCase : Any = config.labelaid _lowerCamelCase : Union[str, Any] = zero_shot_classifier.entailment_id _lowerCamelCase : List[Any] = {'LABEL_0': 0, 'LABEL_1': 1, 'LABEL_2': 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) _lowerCamelCase : List[Any] = {'entailment': 0, 'neutral': 1, 'contradiction': 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) _lowerCamelCase : Any = {'ENTAIL': 0, 'NON-ENTAIL': 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) _lowerCamelCase : Tuple = {'ENTAIL': 2, 'NEUTRAL': 1, 'CONTR': 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) _lowerCamelCase : int = original_labelaid self.assertEqual(lowercase , zero_shot_classifier.entailment_id ) @require_torch def A_ ( self ): _lowerCamelCase : List[Any] = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( 'Who are you voting for in 2020?' * 100 , candidate_labels=['politics', 'public health', 'science'] ) @require_torch def A_ ( self ): _lowerCamelCase : Tuple = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , ) _lowerCamelCase : List[str] = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(lowercase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.3_33, 0.3_33, 0.3_33], } , ) @require_tf def A_ ( self ): _lowerCamelCase : Optional[int] = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='tf' , ) _lowerCamelCase : Any = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(lowercase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.3_33, 0.3_33, 0.3_33], } , ) @slow @require_torch def A_ ( self ): _lowerCamelCase : Any = pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='pt' ) _lowerCamelCase : Dict = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(lowercase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.9_76, 0.0_15, 0.0_09], } , ) _lowerCamelCase : Optional[int] = zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=lowercase , ) self.assertEqual( nested_simplify(lowercase ) , { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.8_17, 0.7_13, 0.0_18, 0.0_18], } , ) @slow @require_tf def A_ ( self ): _lowerCamelCase : int = pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='tf' ) _lowerCamelCase : List[str] = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(lowercase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.9_76, 0.0_15, 0.0_09], } , ) _lowerCamelCase : Any = zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=lowercase , ) self.assertEqual( nested_simplify(lowercase ) , { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.8_17, 0.7_13, 0.0_18, 0.0_18], } , )
12
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = ["""pixel_values"""] def __init__( self , lowercase = True , lowercase = 1 / 255 , lowercase = True , lowercase = 8 , **lowercase , ): super().__init__(**lowercase ) _lowerCamelCase : Optional[Any] = do_rescale _lowerCamelCase : Union[str, Any] = rescale_factor _lowerCamelCase : Any = do_pad _lowerCamelCase : Optional[int] = pad_size def A_ ( self , lowercase , lowercase , lowercase = None , **lowercase ): return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def A_ ( self , lowercase , lowercase , lowercase = None ): _lowerCamelCase, _lowerCamelCase : Tuple = get_image_size(lowercase ) _lowerCamelCase : Union[str, Any] = (old_height // size + 1) * size - old_height _lowerCamelCase : Tuple = (old_width // size + 1) * size - old_width return pad(lowercase , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=lowercase ) def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ): _lowerCamelCase : List[str] = do_rescale if do_rescale is not None else self.do_rescale _lowerCamelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCamelCase : Any = do_pad if do_pad is not None else self.do_pad _lowerCamelCase : int = pad_size if pad_size is not None else self.pad_size _lowerCamelCase : Dict = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. _lowerCamelCase : Dict = [to_numpy_array(lowercase ) for image in images] if do_rescale: _lowerCamelCase : str = [self.rescale(image=lowercase , scale=lowercase ) for image in images] if do_pad: _lowerCamelCase : str = [self.pad(lowercase , size=lowercase ) for image in images] _lowerCamelCase : Any = [to_channel_dimension_format(lowercase , lowercase ) for image in images] _lowerCamelCase : Union[str, Any] = {'pixel_values': images} return BatchFeature(data=lowercase , tensor_type=lowercase )
12
1
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder __UpperCAmelCase = datasets.utils.logging.get_logger(__name__) class lowerCamelCase (folder_based_builder.FolderBasedBuilderConfig ): '''simple docstring''' _snake_case : bool = None _snake_case : bool = None class lowerCamelCase (folder_based_builder.FolderBasedBuilder ): '''simple docstring''' _snake_case : int = datasets.Audio() _snake_case : Optional[int] = '''audio''' _snake_case : int = AudioFolderConfig _snake_case : List[str] # definition at the bottom of the script _snake_case : Dict = AudioClassification(audio_column='''audio''' , label_column='''label''' ) __UpperCAmelCase = [ '.aiff', '.au', '.avr', '.caf', '.flac', '.htk', '.svx', '.mat4', '.mat5', '.mpc2k', '.ogg', '.paf', '.pvf', '.raw', '.rf64', '.sd2', '.sds', '.ircam', '.voc', '.w64', '.wav', '.nist', '.wavex', '.wve', '.xi', '.mp3', '.opus', ] __UpperCAmelCase = AUDIO_EXTENSIONS
29
__UpperCAmelCase = { 'Pillow': 'Pillow<10.0.0', 'accelerate': 'accelerate>=0.20.3', 'av': 'av==9.2.0', 'beautifulsoup4': 'beautifulsoup4', 'black': 'black~=23.1', 'codecarbon': 'codecarbon==1.2.0', 'cookiecutter': 'cookiecutter==1.7.3', 'dataclasses': 'dataclasses', 'datasets': 'datasets!=2.5.0', 'decord': 'decord==0.6.0', 'deepspeed': 'deepspeed>=0.9.3', 'diffusers': 'diffusers', 'dill': 'dill<0.3.5', 'evaluate': 'evaluate>=0.2.0', 'fairscale': 'fairscale>0.3', 'faiss-cpu': 'faiss-cpu', 'fastapi': 'fastapi', 'filelock': 'filelock', 'flax': 'flax>=0.4.1,<=0.7.0', 'ftfy': 'ftfy', 'fugashi': 'fugashi>=1.0', 'GitPython': 'GitPython<3.1.19', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0', 'importlib_metadata': 'importlib_metadata', 'ipadic': 'ipadic>=1.0.0,<2.0', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13', 'jaxlib': 'jaxlib>=0.1.65,<=0.4.13', 'jieba': 'jieba', 'kenlm': 'kenlm', 'keras-nlp': 'keras-nlp>=0.3.1', 'librosa': 'librosa', 'nltk': 'nltk', 'natten': 'natten>=0.14.6', 'numpy': 'numpy>=1.17', 'onnxconverter-common': 'onnxconverter-common', 'onnxruntime-tools': 'onnxruntime-tools>=1.4.2', 'onnxruntime': 'onnxruntime>=1.4.0', 'opencv-python': 'opencv-python', 'optuna': 'optuna', 'optax': 'optax>=0.0.8,<=0.1.4', 'packaging': 'packaging>=20.0', 'parameterized': 'parameterized', 'phonemizer': 'phonemizer', 'protobuf': 'protobuf', 'psutil': 'psutil', 'pyyaml': 'pyyaml>=5.1', 'pydantic': 'pydantic<2', 'pytest': 'pytest>=7.2.0', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'python': 'python>=3.8.0', 'ray[tune]': 'ray[tune]', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'rhoknp': 'rhoknp>=1.1.0,<1.3.1', 'rjieba': 'rjieba', 'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1', 'ruff': 'ruff>=0.0.241,<=0.0.259', 'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0', 'sacremoses': 'sacremoses', 'safetensors': 'safetensors>=0.3.1', 'sagemaker': 'sagemaker>=2.31.0', 'scikit-learn': 'scikit-learn', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'sigopt': 'sigopt', 'starlette': 'starlette', 'sudachipy': 'sudachipy>=0.6.6', 'sudachidict_core': 'sudachidict_core>=20220729', 'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14', 'tensorflow': 'tensorflow>=2.6,<2.14', 'tensorflow-text': 'tensorflow-text<2.14', 'tf2onnx': 'tf2onnx', 'timeout-decorator': 'timeout-decorator', 'timm': 'timm', 'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14', 'torch': 'torch>=1.9,!=1.12.0', 'torchaudio': 'torchaudio', 'torchvision': 'torchvision', 'pyctcdecode': 'pyctcdecode>=0.4.0', 'tqdm': 'tqdm>=4.27', 'unidic': 'unidic>=1.0.2', 'unidic_lite': 'unidic_lite>=1.0.7', 'urllib3': 'urllib3<2.0.0', 'uvicorn': 'uvicorn', }
29
1
from __future__ import annotations from dataclasses import dataclass @dataclass class _snake_case : SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None def __lowerCamelCase ( UpperCAmelCase_ : TreeNode | None ): """simple docstring""" def is_valid_tree(UpperCAmelCase_ : TreeNode | None ) -> bool: if node is None: return True if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(UpperCAmelCase_ ): raise ValueError( '''Each node should be type of TreeNode and data should be float.''' ) def is_binary_search_tree_recursive_check( UpperCAmelCase_ : TreeNode | None , UpperCAmelCase_ : float , UpperCAmelCase_ : float ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , UpperCAmelCase_ , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , UpperCAmelCase_ ) ) return is_binary_search_tree_recursive_check(UpperCAmelCase_ , -float('''inf''' ) , float('''inf''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
367
def __lowerCamelCase ( UpperCAmelCase_ : int ): """simple docstring""" if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise TypeError('''Input value must be an \'int\' type''' ) a :Optional[int] = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
281
0
from collections import defaultdict from math import gcd def _a ( UpperCamelCase_ : int = 1_500_000 ) -> int: """simple docstring""" lowerCAmelCase__ = defaultdict(UpperCamelCase_ ) lowerCAmelCase__ = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , UpperCamelCase_ , 2 ): if gcd(UpperCamelCase_ , UpperCamelCase_ ) > 1: continue lowerCAmelCase__ = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(UpperCamelCase_ , limit + 1 , UpperCamelCase_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"{solution() = }")
340
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer a_ = logging.get_logger(__name__) a_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} a_ = { '''vocab_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-german-cased''': ( '''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json''' ), '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json''' ), }, } a_ = { '''distilbert-base-uncased''': 512, '''distilbert-base-uncased-distilled-squad''': 512, '''distilbert-base-cased''': 512, '''distilbert-base-cased-distilled-squad''': 512, '''distilbert-base-german-cased''': 512, '''distilbert-base-multilingual-cased''': 512, } a_ = { '''distilbert-base-uncased''': {'''do_lower_case''': True}, '''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True}, '''distilbert-base-cased''': {'''do_lower_case''': False}, '''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False}, '''distilbert-base-german-cased''': {'''do_lower_case''': False}, '''distilbert-base-multilingual-cased''': {'''do_lower_case''': False}, } class lowercase__ ( _UpperCAmelCase ): a_ =VOCAB_FILES_NAMES a_ =PRETRAINED_VOCAB_FILES_MAP a_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ =PRETRAINED_INIT_CONFIGURATION a_ =["""input_ids""", """attention_mask"""] a_ =DistilBertTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , )-> List[str]: '''simple docstring''' super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) lowerCAmelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , __UpperCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , __UpperCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , __UpperCAmelCase ) != tokenize_chinese_chars ): lowerCAmelCase__ = getattr(__UpperCAmelCase , normalizer_state.pop("type" ) ) lowerCAmelCase__ = do_lower_case lowerCAmelCase__ = strip_accents lowerCAmelCase__ = tokenize_chinese_chars lowerCAmelCase__ = normalizer_class(**__UpperCAmelCase ) lowerCAmelCase__ = do_lower_case def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None )-> List[str]: '''simple docstring''' lowerCAmelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> List[int]: '''simple docstring''' lowerCAmelCase__ = [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> Tuple[str]: '''simple docstring''' lowerCAmelCase__ = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
340
1
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version A__ : int = logging.getLogger(__name__) require_version('''pytorch_lightning>=1.0.4''') A__ : List[str] = { '''base''': AutoModel, '''sequence-classification''': AutoModelForSequenceClassification, '''question-answering''': AutoModelForQuestionAnswering, '''pretraining''': AutoModelForPreTraining, '''token-classification''': AutoModelForTokenClassification, '''language-modeling''': AutoModelWithLMHead, '''summarization''': AutoModelForSeqaSeqLM, '''translation''': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization A__ : Any = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } A__ : List[Any] = sorted(arg_to_scheduler.keys()) A__ : Optional[Any] = '''{''' + ''', '''.join(arg_to_scheduler_choices) + '''}''' class snake_case__ ( pl.LightningModule ): def __init__( self : Tuple , __a : argparse.Namespace , __a : Dict=None , __a : List[str]="base" , __a : int=None , __a : Optional[Any]=None , __a : Dict=None , **__a : Union[str, Any] , ) -> List[str]: '''simple docstring''' super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(__a ) __snake_case : Tuple = 0 __snake_case : Optional[Any] = Path(self.hparams.output_dir ) __snake_case : List[Any] = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: __snake_case : Optional[Any] = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=__a , **__a , ) else: __snake_case : PretrainedConfig = config __snake_case : Optional[Any] = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(self.hparams , __a , __a ): assert hasattr(self.config , __a ), f'''model config doesn\'t have a `{p}` attribute''' setattr(self.config , __a , getattr(self.hparams , __a ) ) if tokenizer is None: __snake_case : Dict = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=__a , ) else: __snake_case : PreTrainedTokenizer = tokenizer __snake_case : Dict = MODEL_MODES[mode] if model is None: __snake_case : Union[str, Any] = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=__a , ) else: __snake_case : Optional[Any] = model def A_ ( self : int , *__a : int , **__a : Any ) -> int: '''simple docstring''' __snake_case : List[Any] = self.model_type.from_pretrained(*__a , **__a ) def A_ ( self : Tuple ) -> Dict: '''simple docstring''' __snake_case : List[str] = arg_to_scheduler[self.hparams.lr_scheduler] __snake_case : Optional[Any] = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) __snake_case : Tuple = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1} return scheduler def A_ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' __snake_case : str = self.model __snake_case : str = ['bias', 'LayerNorm.weight'] __snake_case : Optional[Any] = [ { 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters 'weight_decay': self.hparams.weight_decay, }, { 'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] if self.hparams.adafactor: __snake_case : str = Adafactor( __a , lr=self.hparams.learning_rate , scale_parameter=__a , relative_step=__a ) else: __snake_case : Any = AdamW( __a , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) __snake_case : Dict = optimizer __snake_case : List[Any] = self.get_lr_scheduler() return [optimizer], [scheduler] def A_ ( self : Union[str, Any] , __a : str , __a : Tuple ) -> str: '''simple docstring''' return self.validation_step(__a , __a ) def A_ ( self : List[Any] , __a : Tuple ) -> List[Any]: '''simple docstring''' return self.validation_end(__a ) def A_ ( self : int ) -> int: '''simple docstring''' __snake_case : int = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores __snake_case : List[Any] = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def A_ ( self : Optional[int] , __a : Tuple ) -> int: '''simple docstring''' if stage == "test": __snake_case : Union[str, Any] = len(self.test_dataloader().dataset ) else: __snake_case : Dict = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=__a ) __snake_case : int = len(self.train_dataloader().dataset ) def A_ ( self : Union[str, Any] , __a : str , __a : int , __a : bool = False ) -> Union[str, Any]: '''simple docstring''' raise NotImplementedError('You must implement this for your task' ) def A_ ( self : int ) -> Optional[Any]: '''simple docstring''' return self.train_loader def A_ ( self : Union[str, Any] ) -> int: '''simple docstring''' return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=__a ) def A_ ( self : Dict ) -> Dict: '''simple docstring''' return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=__a ) def A_ ( self : str , __a : Dict ) -> str: '''simple docstring''' return os.path.join( self.hparams.data_dir , 'cached_{}_{}_{}'.format( __a , list(filter(__a , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def A_ ( self : List[str] , __a : Dict[str, Any] ) -> None: '''simple docstring''' __snake_case : List[Any] = self.output_dir.joinpath('best_tfmr' ) __snake_case : Optional[int] = self.step_count self.model.save_pretrained(__a ) self.tokenizer.save_pretrained(__a ) @staticmethod def A_ ( __a : str , __a : Any ) -> Optional[Any]: '''simple docstring''' parser.add_argument( '--model_name_or_path' , default=__a , type=__a , required=__a , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--config_name' , default='' , type=__a , help='Pretrained config name or path if not the same as model_name' ) parser.add_argument( '--tokenizer_name' , default=__a , type=__a , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument( '--cache_dir' , default=str(Path(__a ).parent / 'test_run' / 'cache' ) , type=__a , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , ) parser.add_argument( '--encoder_layerdrop' , type=__a , help='Encoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--decoder_layerdrop' , type=__a , help='Decoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--dropout' , type=__a , help='Dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--attention_dropout' , type=__a , help='Attention dropout probability (Optional). Goes into model.config' , ) parser.add_argument('--learning_rate' , default=5e-5 , type=__a , help='The initial learning rate for Adam.' ) parser.add_argument( '--lr_scheduler' , default='linear' , choices=__a , metavar=__a , type=__a , help='Learning rate scheduler' , ) parser.add_argument('--weight_decay' , default=0.0 , type=__a , help='Weight decay if we apply some.' ) parser.add_argument('--adam_epsilon' , default=1e-8 , type=__a , help='Epsilon for Adam optimizer.' ) parser.add_argument('--warmup_steps' , default=0 , type=__a , help='Linear warmup over warmup_steps.' ) parser.add_argument('--num_workers' , default=4 , type=__a , help='kwarg passed to DataLoader' ) parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=__a ) parser.add_argument('--train_batch_size' , default=32 , type=__a ) parser.add_argument('--eval_batch_size' , default=32 , type=__a ) parser.add_argument('--adafactor' , action='store_true' ) class snake_case__ ( pl.Callback ): def A_ ( self : int , __a : Optional[int] , __a : Optional[Any] ) -> Dict: '''simple docstring''' if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class snake_case__ ( pl.Callback ): def A_ ( self : Tuple , __a : List[str] , __a : Dict ) -> Any: '''simple docstring''' # print(pl_module.model.rag) for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(__a ) class snake_case__ ( pl.Callback ): def A_ ( self : int , __a : int , __a : int ) -> str: '''simple docstring''' __snake_case : Optional[int] = trainer.lr_schedulers[0]['scheduler'] __snake_case : Optional[int] = {f'''lr_group_{i}''': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(__a ) def A_ ( self : Optional[int] , __a : pl.Trainer , __a : pl.LightningModule ) -> Union[str, Any]: '''simple docstring''' rank_zero_info('***** Validation results *****' ) __snake_case : Union[str, Any] = trainer.callback_metrics # Log results for key in sorted(__a ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(__a , str(metrics[key] ) ) ) def A_ ( self : str , __a : pl.Trainer , __a : pl.LightningModule ) -> Union[str, Any]: '''simple docstring''' rank_zero_info('***** Test results *****' ) __snake_case : Optional[int] = trainer.callback_metrics # Log and save results to file __snake_case : Optional[Any] = os.path.join(pl_module.hparams.output_dir , 'test_results.txt' ) with open(__a , 'w' ) as writer: for key in sorted(__a ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(__a , str(metrics[key] ) ) ) writer.write('{} = {}\n'.format(__a , str(metrics[key] ) ) ) def a_ ( _UpperCAmelCase : Dict ,_UpperCAmelCase : Dict ) -> None: # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( '--output_dir' ,default=str(Path(_UpperCAmelCase ).parent / 'test_run' / 'model_checkpoints' ) ,type=_UpperCAmelCase ,help='The output directory where the model predictions and checkpoints will be written.' ,) parser.add_argument( '--fp16' ,action='store_true' ,help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' ,) parser.add_argument( '--fp16_opt_level' ,type=_UpperCAmelCase ,default='O2' ,help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) ,) parser.add_argument('--n_tpu_cores' ,dest='tpu_cores' ,type=_UpperCAmelCase ) parser.add_argument('--max_grad_norm' ,dest='gradient_clip_val' ,default=1.0 ,type=_UpperCAmelCase ,help='Max gradient norm' ) parser.add_argument('--do_train' ,action='store_true' ,help='Whether to run training.' ) parser.add_argument('--do_predict' ,action='store_true' ,help='Whether to run predictions on the test set.' ) parser.add_argument( '--gradient_accumulation_steps' ,dest='accumulate_grad_batches' ,type=_UpperCAmelCase ,default=1 ,help='Number of updates steps to accumulate before performing a backward/update pass.' ,) parser.add_argument('--seed' ,type=_UpperCAmelCase ,default=42 ,help='random seed for initialization' ) parser.add_argument( '--data_dir' ,default=str(Path(_UpperCAmelCase ).parent / 'test_run' / 'dummy-train-data' ) ,type=_UpperCAmelCase ,help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' ,) def a_ ( _UpperCAmelCase : BaseTransformer ,_UpperCAmelCase : argparse.Namespace ,_UpperCAmelCase : List[Any]=None ,_UpperCAmelCase : str=True ,_UpperCAmelCase : Tuple=[] ,_UpperCAmelCase : List[str]=None ,_UpperCAmelCase : Union[str, Any]=None ,**_UpperCAmelCase : List[str] ,) -> Optional[Any]: pl.seed_everything(args.seed ) # init model __snake_case : Optional[Any] = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=_UpperCAmelCase ) # add custom checkpoints if checkpoint_callback is None: __snake_case : Optional[int] = pl.callbacks.ModelCheckpoint( filepath=args.output_dir ,prefix='checkpoint' ,monitor='val_loss' ,mode='min' ,save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(_UpperCAmelCase ) if logging_callback is None: __snake_case : List[Any] = LoggingCallback() __snake_case : List[str] = {} if args.fpaa: __snake_case : str = 16 if args.gpus > 1: __snake_case : List[str] = 'auto' __snake_case : Tuple = 'ddp' __snake_case : Union[str, Any] = args.accumulate_grad_batches __snake_case : List[Any] = None __snake_case : Optional[int] = 'auto' __snake_case : Union[str, Any] = pl.Trainer.from_argparse_args( _UpperCAmelCase ,weights_summary=_UpperCAmelCase ,callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] ,logger=_UpperCAmelCase ,val_check_interval=1 ,num_sanity_val_steps=2 ,**_UpperCAmelCase ,) if args.do_train: trainer.fit(_UpperCAmelCase ) else: print('RAG modeling tests with new set functions successfuly executed!' ) return trainer
0
'''simple docstring''' from __future__ import annotations import time import numpy as np A__ : str = [8, 5, 9, 7] A__ : List[str] = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] A__ : Dict = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class snake_case__ : def __init__( self : Union[str, Any] , __a : list[int] , __a : list[list[int]] , __a : list[list[int]] , ) -> None: '''simple docstring''' __snake_case : int = claim_vector __snake_case : Optional[int] = allocated_resources_table __snake_case : List[str] = maximum_claim_table def A_ ( self : str ) -> list[int]: '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def A_ ( self : int ) -> list[int]: '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def A_ ( self : int ) -> list[list[int]]: '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__a ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def A_ ( self : str ) -> dict[int, list[int]]: '''simple docstring''' return {self.__need().index(__a ): i for i in self.__need()} def A_ ( self : Union[str, Any] , **__a : int ) -> None: '''simple docstring''' __snake_case : str = self.__need() __snake_case : List[Any] = self.__allocated_resources_table __snake_case : Optional[int] = self.__available_resources() __snake_case : Union[str, Any] = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('_' * 50 + '\n' ) while need_list: __snake_case : Tuple = False for each_need in need_list: __snake_case : Any = True for index, need in enumerate(__a ): if need > available_resources[index]: __snake_case : List[str] = False break if execution: __snake_case : Union[str, Any] = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: __snake_case : str = original_need_index print(f'''Process {process_number + 1} is executing.''' ) # remove the process run from stack need_list.remove(__a ) # update available/freed resources stack __snake_case : Union[str, Any] = np.array(__a ) + np.array( alloc_resources_table[process_number] ) print( 'Updated available resource stack for processes: ' + ' '.join([str(__a ) for x in available_resources] ) ) break if safe: print('The process is in a safe state.\n' ) else: print('System in unsafe state. Aborting...\n' ) break def A_ ( self : List[str] ) -> Optional[int]: '''simple docstring''' print(' ' * 9 + 'Allocated Resource Table' ) for item in self.__allocated_resources_table: print( f'''P{self.__allocated_resources_table.index(__a ) + 1}''' + ' '.join(f'''{it:>8}''' for it in item ) + '\n' ) print(' ' * 9 + 'System Resource Table' ) for item in self.__maximum_claim_table: print( f'''P{self.__maximum_claim_table.index(__a ) + 1}''' + ' '.join(f'''{it:>8}''' for it in item ) + '\n' ) print( 'Current Usage by Active Processes: ' + ' '.join(str(__a ) for x in self.__claim_vector ) ) print( 'Initial Available Resources: ' + ' '.join(str(__a ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
0
1
from math import pi, sqrt, tan def lowerCamelCase_ ( lowerCamelCase__ ): if side_length < 0: raise ValueError("surface_area_cube() only accepts non-negative values" ) return 6 * side_length**2 def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if length < 0 or breadth < 0 or height < 0: raise ValueError("surface_area_cuboid() only accepts non-negative values" ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def lowerCamelCase_ ( lowerCamelCase__ ): if radius < 0: raise ValueError("surface_area_sphere() only accepts non-negative values" ) return 4 * pi * radius**2 def lowerCamelCase_ ( lowerCamelCase__ ): if radius < 0: raise ValueError("surface_area_hemisphere() only accepts non-negative values" ) return 3 * pi * radius**2 def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): if radius < 0 or height < 0: raise ValueError("surface_area_cone() only accepts non-negative values" ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( "surface_area_conical_frustum() only accepts non-negative values" ) lowerCamelCase_ = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): if radius < 0 or height < 0: raise ValueError("surface_area_cylinder() only accepts non-negative values" ) return 2 * pi * radius * (height + radius) def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): if torus_radius < 0 or tube_radius < 0: raise ValueError("surface_area_torus() only accepts non-negative values" ) if torus_radius < tube_radius: raise ValueError( "surface_area_torus() does not support spindle or self intersecting tori" ) return 4 * pow(lowerCamelCase__ , 2 ) * torus_radius * tube_radius def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): if length < 0 or width < 0: raise ValueError("area_rectangle() only accepts non-negative values" ) return length * width def lowerCamelCase_ ( lowerCamelCase__ ): if side_length < 0: raise ValueError("area_square() only accepts non-negative values" ) return side_length**2 def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): if base < 0 or height < 0: raise ValueError("area_triangle() only accepts non-negative values" ) return (base * height) / 2 def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError("area_triangle_three_sides() only accepts non-negative values" ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError("Given three sides do not form a triangle" ) lowerCamelCase_ = (sidea + sidea + sidea) / 2 lowerCamelCase_ = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): if base < 0 or height < 0: raise ValueError("area_parallelogram() only accepts non-negative values" ) return base * height def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if basea < 0 or basea < 0 or height < 0: raise ValueError("area_trapezium() only accepts non-negative values" ) return 1 / 2 * (basea + basea) * height def lowerCamelCase_ ( lowerCamelCase__ ): if radius < 0: raise ValueError("area_circle() only accepts non-negative values" ) return pi * radius**2 def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): if radius_x < 0 or radius_y < 0: raise ValueError("area_ellipse() only accepts non-negative values" ) return pi * radius_x * radius_y def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError("area_rhombus() only accepts non-negative values" ) return 1 / 2 * diagonal_a * diagonal_a def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): if not isinstance(lowerCamelCase__ , lowerCamelCase__ ) or sides < 3: raise ValueError( "area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides" ) elif length < 0: raise ValueError( "area_reg_polygon() only accepts non-negative values as \ length of a side" ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('''[DEMO] Areas of various geometric shapes: \n''') print(F"""Rectangle: {area_rectangle(1_0, 2_0) = }""") print(F"""Square: {area_square(1_0) = }""") print(F"""Triangle: {area_triangle(1_0, 1_0) = }""") print(F"""Triangle: {area_triangle_three_sides(5, 1_2, 1_3) = }""") print(F"""Parallelogram: {area_parallelogram(1_0, 2_0) = }""") print(F"""Rhombus: {area_rhombus(1_0, 2_0) = }""") print(F"""Trapezium: {area_trapezium(1_0, 2_0, 3_0) = }""") print(F"""Circle: {area_circle(2_0) = }""") print(F"""Ellipse: {area_ellipse(1_0, 2_0) = }""") print('''\nSurface Areas of various geometric shapes: \n''') print(F"""Cube: {surface_area_cube(2_0) = }""") print(F"""Cuboid: {surface_area_cuboid(1_0, 2_0, 3_0) = }""") print(F"""Sphere: {surface_area_sphere(2_0) = }""") print(F"""Hemisphere: {surface_area_hemisphere(2_0) = }""") print(F"""Cone: {surface_area_cone(1_0, 2_0) = }""") print(F"""Conical Frustum: {surface_area_conical_frustum(1_0, 2_0, 3_0) = }""") print(F"""Cylinder: {surface_area_cylinder(1_0, 2_0) = }""") print(F"""Torus: {surface_area_torus(2_0, 1_0) = }""") print(F"""Equilateral Triangle: {area_reg_polygon(3, 1_0) = }""") print(F"""Square: {area_reg_polygon(4, 1_0) = }""") print(F"""Reqular Pentagon: {area_reg_polygon(5, 1_0) = }""")
19
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: __A =None __A =logging.get_logger(__name__) __A ={'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} __A ={ '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } __A ={ '''facebook/mbart-large-en-ro''': 1_0_2_4, '''facebook/mbart-large-cc25''': 1_0_2_4, } # fmt: off __A =['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = ['input_ids', 'attention_mask'] lowerCAmelCase__ = MBartTokenizer lowerCAmelCase__ = [] lowerCAmelCase__ = [] def __init__( self , lowercase=None , lowercase=None , lowercase="<s>" , lowercase="</s>" , lowercase="</s>" , lowercase="<s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase="<mask>" , lowercase=None , lowercase=None , lowercase=None , **lowercase , ) -> Dict: # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else mask_token super().__init__( vocab_file=lowercase , tokenizer_file=lowercase , bos_token=lowercase , eos_token=lowercase , sep_token=lowercase , cls_token=lowercase , unk_token=lowercase , pad_token=lowercase , mask_token=lowercase , src_lang=lowercase , tgt_lang=lowercase , additional_special_tokens=lowercase , **lowercase , ) lowerCamelCase_ = vocab_file lowerCamelCase_ = False if not self.vocab_file else True lowerCamelCase_ = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens} ) lowerCamelCase_ = { lang_code: self.convert_tokens_to_ids(lowercase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowerCamelCase_ = src_lang if src_lang is not None else "en_XX" lowerCamelCase_ = self.convert_tokens_to_ids(self._src_lang ) lowerCamelCase_ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def SCREAMING_SNAKE_CASE_( self ) -> str: return self._src_lang @src_lang.setter def SCREAMING_SNAKE_CASE_( self , lowercase ) -> None: lowerCamelCase_ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> List[int]: lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , **lowercase ) -> List[Any]: if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) lowerCamelCase_ = src_lang lowerCamelCase_ = self(lowercase , add_special_tokens=lowercase , return_tensors=lowercase , **lowercase ) lowerCamelCase_ = self.convert_tokens_to_ids(lowercase ) lowerCamelCase_ = tgt_lang_id return inputs def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = "en_XX" , lowercase = None , lowercase = "ro_RO" , **lowercase , ) -> BatchEncoding: lowerCamelCase_ = src_lang lowerCamelCase_ = tgt_lang return super().prepare_seqaseq_batch(lowercase , lowercase , **lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Dict: return self.set_src_lang_special_tokens(self.src_lang ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> None: lowerCamelCase_ = self.convert_tokens_to_ids(lowercase ) lowerCamelCase_ = [] lowerCamelCase_ = [self.eos_token_id, self.cur_lang_code] lowerCamelCase_ = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase_ = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase_ = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> None: lowerCamelCase_ = self.convert_tokens_to_ids(lowercase ) lowerCamelCase_ = [] lowerCamelCase_ = [self.eos_token_id, self.cur_lang_code] lowerCamelCase_ = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase_ = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase_ = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(lowercase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory.' ) return lowerCamelCase_ = os.path.join( lowercase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase ): copyfile(self.vocab_file , lowercase ) return (out_vocab_file,)
19
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A : Any = {'configuration_plbart': ['PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PLBartConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = ['PLBartTokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = [ 'PLBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'PLBartForCausalLM', 'PLBartForConditionalGeneration', 'PLBartForSequenceClassification', 'PLBartModel', 'PLBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys A : str = _LazyModule(__name__, globals()['__file__'], _import_structure)
352
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A : Dict = {'configuration_glpn': ['GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GLPNConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = ['GLPNFeatureExtractor'] A : List[str] = ['GLPNImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[int] = [ 'GLPN_PRETRAINED_MODEL_ARCHIVE_LIST', 'GLPNForDepthEstimation', 'GLPNLayer', 'GLPNModel', 'GLPNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys A : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
146
0
"""simple docstring""" import torch from diffusers import StableDiffusionPipeline __lowerCAmelCase : Optional[int] ="""path-to-your-trained-model""" __lowerCAmelCase : List[str] =StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to("""cuda""") __lowerCAmelCase : Optional[int] ="""A photo of sks dog in a bucket""" __lowerCAmelCase : str =pipe(prompt, num_inference_steps=5_0, guidance_scale=7.5).images[0] image.save("""dog-bucket.png""")
197
"""simple docstring""" import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def UpperCAmelCase__ ( lowerCAmelCase__ :Any , lowerCAmelCase__ :str , lowerCAmelCase__ :str , lowerCAmelCase__ :Path , lowerCAmelCase__ :str = None , lowerCAmelCase__ :str = None , lowerCAmelCase__ :str = None , ) -> Optional[int]: '''simple docstring''' if config_name_or_path is None: lowercase = """facebook/rag-token-base""" if model_type == """rag_token""" else """facebook/rag-sequence-base""" if generator_tokenizer_name_or_path is None: lowercase = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: lowercase = question_encoder_name_or_path lowercase = RagTokenForGeneration if model_type == """rag_token""" else RagSequenceForGeneration # Save model. lowercase = RagConfig.from_pretrained(lowerCAmelCase__ ) lowercase = AutoConfig.from_pretrained(lowerCAmelCase__ ) lowercase = AutoConfig.from_pretrained(lowerCAmelCase__ ) lowercase = gen_config lowercase = question_encoder_config lowercase = model_class.from_pretrained_question_encoder_generator( lowerCAmelCase__ , lowerCAmelCase__ , config=lowerCAmelCase__ ) rag_model.save_pretrained(lowerCAmelCase__ ) # Sanity check. model_class.from_pretrained(lowerCAmelCase__ ) # Save tokenizers. lowercase = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) gen_tokenizer.save_pretrained(dest_dir / """generator_tokenizer/""" ) lowercase = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) question_encoder_tokenizer.save_pretrained(dest_dir / """question_encoder_tokenizer/""" ) if __name__ == "__main__": __lowerCAmelCase : int =argparse.ArgumentParser() parser.add_argument( """--model_type""", choices=["""rag_sequence""", """rag_token"""], required=True, type=str, help="""RAG model type: rag_sequence, rag_token""", ) parser.add_argument("""--dest""", type=str, required=True, help="""Path to the output checkpoint directory.""") parser.add_argument("""--generator_name_or_path""", type=str, required=True, help="""Generator model identifier""") parser.add_argument( """--question_encoder_name_or_path""", type=str, required=True, help="""Question encoder model identifier""" ) parser.add_argument( """--generator_tokenizer_name_or_path""", type=str, help="""Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``""", ) parser.add_argument( """--question_encoder_tokenizer_name_or_path""", type=str, help="""Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``""", ) parser.add_argument( """--config_name_or_path""", type=str, help=( """Identifier of the model config to use, if not provided, resolves to a base config for a given""" """ ``model_type``""" ), ) __lowerCAmelCase : List[str] =parser.parse_args() __lowerCAmelCase : Dict =Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
197
1
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class _UpperCAmelCase : '''simple docstring''' def __init__( self : int , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any]=13 , lowercase_ : Union[str, Any]=7 , lowercase_ : Optional[Any]=6 , lowercase_ : int=17 , lowercase_ : List[Any]=23 , lowercase_ : List[Any]=11 , lowercase_ : Dict=True , ) -> List[str]: """simple docstring""" _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = act_dim _UpperCamelCase = state_dim _UpperCamelCase = hidden_size _UpperCamelCase = max_length _UpperCamelCase = is_training def __UpperCAmelCase ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" _UpperCamelCase = floats_tensor((self.batch_size, self.seq_length, self.state_dim)) _UpperCamelCase = floats_tensor((self.batch_size, self.seq_length, self.act_dim)) _UpperCamelCase = floats_tensor((self.batch_size, self.seq_length, 1)) _UpperCamelCase = floats_tensor((self.batch_size, self.seq_length, 1)) _UpperCamelCase = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1000) _UpperCamelCase = random_attention_mask((self.batch_size, self.seq_length)) _UpperCamelCase = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def __UpperCAmelCase ( self : str) -> Any: """simple docstring""" return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def __UpperCAmelCase ( self : str , lowercase_ : Optional[Any] , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : Optional[int] , lowercase_ : str , lowercase_ : Dict , ) -> int: """simple docstring""" _UpperCamelCase = DecisionTransformerModel(config=lowercase_) model.to(lowercase_) model.eval() _UpperCamelCase = model(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) self.parent.assertEqual(result.state_preds.shape , states.shape) self.parent.assertEqual(result.action_preds.shape , actions.shape) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size)) # seq length *3 as there are 3 modelities: states, returns and actions def __UpperCAmelCase ( self : Dict) -> Tuple: """simple docstring""" _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = { "states": states, "actions": actions, "rewards": rewards, "returns_to_go": returns_to_go, "timesteps": timesteps, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class _UpperCAmelCase ( lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, unittest.TestCase ): '''simple docstring''' __A = (DecisionTransformerModel,) if is_torch_available() else () __A = () __A = {'''feature-extraction''': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids __A = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features __A = False __A = False __A = False __A = False __A = False __A = False __A = False __A = False __A = False def __UpperCAmelCase ( self : List[str]) -> Any: """simple docstring""" _UpperCamelCase = DecisionTransformerModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=lowercase_ , hidden_size=37) def __UpperCAmelCase ( self : Tuple) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def __UpperCAmelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_) @slow def __UpperCAmelCase ( self : List[Any]) -> int: """simple docstring""" for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = DecisionTransformerModel.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) def __UpperCAmelCase ( self : Tuple) -> Optional[int]: """simple docstring""" _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(lowercase_) _UpperCamelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = [ "states", "actions", "rewards", "returns_to_go", "timesteps", "attention_mask", ] self.assertListEqual(arg_names[: len(lowercase_)] , lowercase_) @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self : int) -> Optional[Any]: """simple docstring""" _UpperCamelCase = 2 # number of steps of autoregressive prediction we will perform _UpperCamelCase = 10 # defined by the RL environment, may be normalized _UpperCamelCase = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert") _UpperCamelCase = model.to(lowercase_) _UpperCamelCase = model.config torch.manual_seed(0) _UpperCamelCase = torch.randn(1 , 1 , config.state_dim).to(device=lowercase_ , dtype=torch.floataa) # env.reset() _UpperCamelCase = torch.tensor( [[0.24_27_93, -0.28_69_30_74, 0.8_74_26_13], [0.67_81_52_74, -0.08_10_10_85, -0.12_95_21_47]] , device=lowercase_) _UpperCamelCase = torch.tensor(lowercase_ , device=lowercase_ , dtype=torch.floataa).reshape(1 , 1 , 1) _UpperCamelCase = state _UpperCamelCase = torch.zeros(1 , 0 , config.act_dim , device=lowercase_ , dtype=torch.floataa) _UpperCamelCase = torch.zeros(1 , 0 , device=lowercase_ , dtype=torch.floataa) _UpperCamelCase = torch.tensor(0 , device=lowercase_ , dtype=torch.long).reshape(1 , 1) for step in range(lowercase_): _UpperCamelCase = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=lowercase_)] , dim=1) _UpperCamelCase = torch.cat([rewards, torch.zeros(1 , 1 , device=lowercase_)] , dim=1) _UpperCamelCase = torch.ones(1 , states.shape[1]).to(dtype=torch.long , device=states.device) with torch.no_grad(): _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = model( states=lowercase_ , actions=lowercase_ , rewards=lowercase_ , returns_to_go=lowercase_ , timesteps=lowercase_ , attention_mask=lowercase_ , return_dict=lowercase_ , ) self.assertEqual(action_pred.shape , actions.shape) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4)) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = ( # env.step(action) torch.randn(1 , 1 , config.state_dim).to(device=lowercase_ , dtype=torch.floataa), 1.0, False, {}, ) _UpperCamelCase = action_pred[0, -1] _UpperCamelCase = torch.cat([states, state] , dim=1) _UpperCamelCase = returns_to_go[0, -1] - reward _UpperCamelCase = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1)] , dim=1) _UpperCamelCase = torch.cat( [timesteps, torch.ones((1, 1) , device=lowercase_ , dtype=torch.long) * (step + 1)] , dim=1)
360
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class _UpperCAmelCase : '''simple docstring''' def __init__( self : int , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any]=13 , lowercase_ : Union[str, Any]=7 , lowercase_ : Optional[Any]=6 , lowercase_ : int=17 , lowercase_ : List[Any]=23 , lowercase_ : List[Any]=11 , lowercase_ : Dict=True , ) -> List[str]: """simple docstring""" _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = act_dim _UpperCamelCase = state_dim _UpperCamelCase = hidden_size _UpperCamelCase = max_length _UpperCamelCase = is_training def __UpperCAmelCase ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" _UpperCamelCase = floats_tensor((self.batch_size, self.seq_length, self.state_dim)) _UpperCamelCase = floats_tensor((self.batch_size, self.seq_length, self.act_dim)) _UpperCamelCase = floats_tensor((self.batch_size, self.seq_length, 1)) _UpperCamelCase = floats_tensor((self.batch_size, self.seq_length, 1)) _UpperCamelCase = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1000) _UpperCamelCase = random_attention_mask((self.batch_size, self.seq_length)) _UpperCamelCase = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def __UpperCAmelCase ( self : str) -> Any: """simple docstring""" return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def __UpperCAmelCase ( self : str , lowercase_ : Optional[Any] , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : Optional[int] , lowercase_ : str , lowercase_ : Dict , ) -> int: """simple docstring""" _UpperCamelCase = DecisionTransformerModel(config=lowercase_) model.to(lowercase_) model.eval() _UpperCamelCase = model(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) self.parent.assertEqual(result.state_preds.shape , states.shape) self.parent.assertEqual(result.action_preds.shape , actions.shape) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size)) # seq length *3 as there are 3 modelities: states, returns and actions def __UpperCAmelCase ( self : Dict) -> Tuple: """simple docstring""" _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = { "states": states, "actions": actions, "rewards": rewards, "returns_to_go": returns_to_go, "timesteps": timesteps, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class _UpperCAmelCase ( lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, unittest.TestCase ): '''simple docstring''' __A = (DecisionTransformerModel,) if is_torch_available() else () __A = () __A = {'''feature-extraction''': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids __A = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features __A = False __A = False __A = False __A = False __A = False __A = False __A = False __A = False __A = False def __UpperCAmelCase ( self : List[str]) -> Any: """simple docstring""" _UpperCamelCase = DecisionTransformerModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=lowercase_ , hidden_size=37) def __UpperCAmelCase ( self : Tuple) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def __UpperCAmelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_) @slow def __UpperCAmelCase ( self : List[Any]) -> int: """simple docstring""" for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = DecisionTransformerModel.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) def __UpperCAmelCase ( self : Tuple) -> Optional[int]: """simple docstring""" _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(lowercase_) _UpperCamelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = [ "states", "actions", "rewards", "returns_to_go", "timesteps", "attention_mask", ] self.assertListEqual(arg_names[: len(lowercase_)] , lowercase_) @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self : int) -> Optional[Any]: """simple docstring""" _UpperCamelCase = 2 # number of steps of autoregressive prediction we will perform _UpperCamelCase = 10 # defined by the RL environment, may be normalized _UpperCamelCase = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert") _UpperCamelCase = model.to(lowercase_) _UpperCamelCase = model.config torch.manual_seed(0) _UpperCamelCase = torch.randn(1 , 1 , config.state_dim).to(device=lowercase_ , dtype=torch.floataa) # env.reset() _UpperCamelCase = torch.tensor( [[0.24_27_93, -0.28_69_30_74, 0.8_74_26_13], [0.67_81_52_74, -0.08_10_10_85, -0.12_95_21_47]] , device=lowercase_) _UpperCamelCase = torch.tensor(lowercase_ , device=lowercase_ , dtype=torch.floataa).reshape(1 , 1 , 1) _UpperCamelCase = state _UpperCamelCase = torch.zeros(1 , 0 , config.act_dim , device=lowercase_ , dtype=torch.floataa) _UpperCamelCase = torch.zeros(1 , 0 , device=lowercase_ , dtype=torch.floataa) _UpperCamelCase = torch.tensor(0 , device=lowercase_ , dtype=torch.long).reshape(1 , 1) for step in range(lowercase_): _UpperCamelCase = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=lowercase_)] , dim=1) _UpperCamelCase = torch.cat([rewards, torch.zeros(1 , 1 , device=lowercase_)] , dim=1) _UpperCamelCase = torch.ones(1 , states.shape[1]).to(dtype=torch.long , device=states.device) with torch.no_grad(): _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = model( states=lowercase_ , actions=lowercase_ , rewards=lowercase_ , returns_to_go=lowercase_ , timesteps=lowercase_ , attention_mask=lowercase_ , return_dict=lowercase_ , ) self.assertEqual(action_pred.shape , actions.shape) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4)) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = ( # env.step(action) torch.randn(1 , 1 , config.state_dim).to(device=lowercase_ , dtype=torch.floataa), 1.0, False, {}, ) _UpperCamelCase = action_pred[0, -1] _UpperCamelCase = torch.cat([states, state] , dim=1) _UpperCamelCase = returns_to_go[0, -1] - reward _UpperCamelCase = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1)] , dim=1) _UpperCamelCase = torch.cat( [timesteps, torch.ones((1, 1) , device=lowercase_ , dtype=torch.long) * (step + 1)] , dim=1)
63
0
def _a ( lowerCamelCase: int , lowerCamelCase: Optional[int] , lowerCamelCase: Tuple , lowerCamelCase: Tuple ) -> str: '''simple docstring''' if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def _a ( lowerCamelCase: Optional[Any] , lowerCamelCase: Dict , lowerCamelCase: Any ) -> List[Any]: '''simple docstring''' if curr_ind == len(snake_case_ ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(snake_case_ ) ): if valid_connection(snake_case_ , snake_case_ , snake_case_ , snake_case_ ): # Insert current vertex into path as next transition __A = next_ver # Validate created path if util_hamilton_cycle(snake_case_ , snake_case_ , curr_ind + 1 ): return True # Backtrack __A = -1 return False def _a ( lowerCamelCase: int , lowerCamelCase: Optional[int] = 0 ) -> Dict: '''simple docstring''' __A = [-1] * (len(snake_case_ ) + 1) # initialize start and end of path with starting index __A = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(snake_case_ , snake_case_ , 1 ) else []
117
def lowerCAmelCase_ ( snake_case_ ): if number < 0: raise ValueError("""number must not be negative""" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
26
0
"""simple docstring""" import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging __UpperCamelCase : Dict = ( '''https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py''' ) __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name def __SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ : List[str] = '''https://pypi.org/pypi/diffusers/json''' lowerCAmelCase__ : Any = json.loads(request.urlopen(A_ ).read() )['''releases'''].keys() return sorted(A_ , key=lambda A_ : version.Version(A_ ) ) def __SCREAMING_SNAKE_CASE ( ): # This function has already been executed if HF_MODULES_CACHE already is in the Python path. if HF_MODULES_CACHE in sys.path: return sys.path.append(A_ ) os.makedirs(A_ , exist_ok=A_ ) lowerCAmelCase__ : List[Any] = Path(A_ ) / '''__init__.py''' if not init_path.exists(): init_path.touch() def __SCREAMING_SNAKE_CASE ( A_ ): init_hf_modules() lowerCAmelCase__ : List[str] = Path(A_ ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(A_ , exist_ok=A_ ) lowerCAmelCase__ : Union[str, Any] = dynamic_module_path / '''__init__.py''' if not init_path.exists(): init_path.touch() def __SCREAMING_SNAKE_CASE ( A_ ): with open(A_ , '''r''' , encoding='''utf-8''' ) as f: lowerCAmelCase__ : List[str] = f.read() # Imports of the form `import .xxx` lowerCAmelCase__ : Any = re.findall('''^\s*import\s+\.(\S+)\s*$''' , A_ , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall('''^\s*from\s+\.(\S+)\s+import''' , A_ , flags=re.MULTILINE ) # Unique-ify return list(set(A_ ) ) def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ : Optional[Any] = False lowerCAmelCase__ : Optional[Any] = [module_file] lowerCAmelCase__ : int = [] # Let's recurse through all relative imports while not no_change: lowerCAmelCase__ : Optional[Any] = [] for f in files_to_check: new_imports.extend(get_relative_imports(A_ ) ) lowerCAmelCase__ : Optional[int] = Path(A_ ).parent lowerCAmelCase__ : List[Any] = [str(module_path / m ) for m in new_imports] lowerCAmelCase__ : Tuple = [f for f in new_import_files if f not in all_relative_imports] lowerCAmelCase__ : Dict = [f'{f}.py' for f in new_import_files] lowerCAmelCase__ : Union[str, Any] = len(A_ ) == 0 all_relative_imports.extend(A_ ) return all_relative_imports def __SCREAMING_SNAKE_CASE ( A_ ): with open(A_ , '''r''' , encoding='''utf-8''' ) as f: lowerCAmelCase__ : Optional[Any] = f.read() # Imports of the form `import xxx` lowerCAmelCase__ : Tuple = re.findall('''^\s*import\s+(\S+)\s*$''' , A_ , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall('''^\s*from\s+(\S+)\s+import''' , A_ , flags=re.MULTILINE ) # Only keep the top-level module lowerCAmelCase__ : str = [imp.split('''.''' )[0] for imp in imports if not imp.startswith('''.''' )] # Unique-ify and test we got them all lowerCAmelCase__ : Union[str, Any] = list(set(A_ ) ) lowerCAmelCase__ : List[Any] = [] for imp in imports: try: importlib.import_module(A_ ) except ImportError: missing_packages.append(A_ ) if len(A_ ) > 0: raise ImportError( '''This modeling file requires the following packages that were not found in your environment: ''' f'{", ".join(A_ )}. Run `pip install {" ".join(A_ )}`' ) return get_relative_imports(A_ ) def __SCREAMING_SNAKE_CASE ( A_ , A_ ): lowerCAmelCase__ : List[str] = module_path.replace(os.path.sep , '''.''' ) lowerCAmelCase__ : Any = importlib.import_module(A_ ) if class_name is None: return find_pipeline_class(A_ ) return getattr(A_ , A_ ) def __SCREAMING_SNAKE_CASE ( A_ ): from ..pipelines import DiffusionPipeline lowerCAmelCase__ : List[Any] = dict(inspect.getmembers(A_ , inspect.isclass ) ) lowerCAmelCase__ : Union[str, Any] = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , A_ ) and cls.__module__.split('''.''' )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( f'Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:' f' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in' f' {loaded_module}.' ) lowerCAmelCase__ : Tuple = cls return pipeline_class def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ = None , A_ = False , A_ = False , A_ = None , A_ = None , A_ = None , A_ = False , ): lowerCAmelCase__ : Tuple = str(A_ ) lowerCAmelCase__ : str = os.path.join(A_ , A_ ) if os.path.isfile(A_ ): lowerCAmelCase__ : Optional[Any] = module_file_or_url lowerCAmelCase__ : Dict = '''local''' elif pretrained_model_name_or_path.count('''/''' ) == 0: lowerCAmelCase__ : Union[str, Any] = get_diffusers_versions() # cut ".dev0" lowerCAmelCase__ : Any = '''v''' + '''.'''.join(__version__.split('''.''' )[:3] ) # retrieve github version that matches if revision is None: lowerCAmelCase__ : str = latest_version if latest_version[1:] in available_versions else '''main''' logger.info(f'Defaulting to latest_version: {revision}.' ) elif revision in available_versions: lowerCAmelCase__ : Optional[Any] = f'v{revision}' elif revision == "main": lowerCAmelCase__ : Tuple = revision else: raise ValueError( f'`custom_revision`: {revision} does not exist. Please make sure to choose one of' f' {", ".join(available_versions + ["main"] )}.' ) # community pipeline on GitHub lowerCAmelCase__ : Tuple = COMMUNITY_PIPELINES_URL.format(revision=A_ , pipeline=A_ ) try: lowerCAmelCase__ : str = cached_download( A_ , cache_dir=A_ , force_download=A_ , proxies=A_ , resume_download=A_ , local_files_only=A_ , use_auth_token=A_ , ) lowerCAmelCase__ : Dict = '''git''' lowerCAmelCase__ : Union[str, Any] = pretrained_model_name_or_path + '''.py''' except EnvironmentError: logger.error(f'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise else: try: # Load from URL or cache if already cached lowerCAmelCase__ : Dict = hf_hub_download( A_ , A_ , cache_dir=A_ , force_download=A_ , proxies=A_ , resume_download=A_ , local_files_only=A_ , use_auth_token=A_ , ) lowerCAmelCase__ : str = os.path.join('''local''' , '''--'''.join(pretrained_model_name_or_path.split('''/''' ) ) ) except EnvironmentError: logger.error(f'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise # Check we have all the requirements in our environment lowerCAmelCase__ : Optional[int] = check_imports(A_ ) # Now we move the module inside our cached dynamic modules. lowerCAmelCase__ : int = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(A_ ) lowerCAmelCase__ : Tuple = Path(A_ ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(A_ , submodule_path / module_file ) for module_needed in modules_needed: lowerCAmelCase__ : str = f'{module_needed}.py' shutil.copy(os.path.join(A_ , A_ ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(A_ , A_ ): lowerCAmelCase__ : List[str] = use_auth_token elif use_auth_token is True: lowerCAmelCase__ : Optional[int] = HfFolder.get_token() else: lowerCAmelCase__ : List[Any] = None lowerCAmelCase__ : List[Any] = model_info(A_ , revision=A_ , token=A_ ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. lowerCAmelCase__ : List[str] = submodule_path / commit_hash lowerCAmelCase__ : Optional[Any] = full_submodule + os.path.sep + commit_hash create_dynamic_module(A_ ) if not (submodule_path / module_file).exists(): shutil.copy(A_ , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( A_ , f'{module_needed}.py' , cache_dir=A_ , force_download=A_ , resume_download=A_ , proxies=A_ , use_auth_token=A_ , revision=A_ , local_files_only=A_ , ) return os.path.join(A_ , A_ ) def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ = None , A_ = None , A_ = False , A_ = False , A_ = None , A_ = None , A_ = None , A_ = False , **A_ , ): lowerCAmelCase__ : Tuple = get_cached_module_file( A_ , A_ , cache_dir=A_ , force_download=A_ , resume_download=A_ , proxies=A_ , use_auth_token=A_ , revision=A_ , local_files_only=A_ , ) return get_class_in_module(A_ , final_module.replace('''.py''' , '''''' ) )
367
"""simple docstring""" import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ : Any = [] for line in lines: lowerCAmelCase__ : int = re.sub(r'''#.*''' , '''''' , A_ ) # remove comments if line: filtered_lines.append(A_ ) lowerCAmelCase__ : Optional[int] = '''\n'''.join(A_ ) # Make a hash from all this code lowerCAmelCase__ : int = full_str.encode('''utf-8''' ) return shaaaa(A_ ).hexdigest() # get importable module names and hash for caching __UpperCamelCase : Any = { '''csv''': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), '''json''': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), '''pandas''': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), '''parquet''': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), '''arrow''': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), '''text''': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), '''imagefolder''': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), '''audiofolder''': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions __UpperCamelCase : Optional[Any] = { '''.csv''': ('''csv''', {}), '''.tsv''': ('''csv''', {'''sep''': '''\t'''}), '''.json''': ('''json''', {}), '''.jsonl''': ('''json''', {}), '''.parquet''': ('''parquet''', {}), '''.arrow''': ('''arrow''', {}), '''.txt''': ('''text''', {}), } _EXTENSION_TO_MODULE.update({ext: ('''imagefolder''', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('''imagefolder''', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('''audiofolder''', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('''audiofolder''', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) __UpperCamelCase : Union[str, Any] = {'''imagefolder''', '''audiofolder'''} # Used to filter data files based on extensions given a module name __UpperCamelCase : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('''.zip''') _MODULE_TO_EXTENSIONS["audiofolder"].append('''.zip''')
74
0
"""simple docstring""" from itertools import product def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> list[int]: lowerCAmelCase__ : Union[str, Any] = sides_number lowerCAmelCase__ : Optional[int] = max_face_number * dice_number lowerCAmelCase__ : List[str] = [0] * (max_total + 1) lowerCAmelCase__ : Union[str, Any] = 1 lowerCAmelCase__ : Optional[int] = range(__UpperCAmelCase , max_face_number + 1 ) for dice_numbers in product(__UpperCAmelCase , repeat=__UpperCAmelCase ): lowerCAmelCase__ : str = sum(__UpperCAmelCase ) totals_frequencies[total] += 1 return totals_frequencies def lowercase_ ( ) -> float: lowerCAmelCase__ : Union[str, Any] = total_frequency_distribution( sides_number=4 , dice_number=9 ) lowerCAmelCase__ : Tuple = total_frequency_distribution( sides_number=6 , dice_number=6 ) lowerCAmelCase__ : str = 0 lowerCAmelCase__ : int = 9 lowerCAmelCase__ : Tuple = 4 * 9 lowerCAmelCase__ : Optional[int] = 6 for peter_total in range(__UpperCAmelCase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) lowerCAmelCase__ : Tuple = (4**9) * (6**6) lowerCAmelCase__ : Union[str, Any] = peter_wins_count / total_games_number lowerCAmelCase__ : Optional[int] = round(__UpperCAmelCase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f"""{solution() = }""")
242
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _A = logging.get_logger(__name__) _A = { """SenseTime/deformable-detr""": """https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json""", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class _lowerCamelCase ( a_ ): _lowerCamelCase :Any = "deformable_detr" _lowerCamelCase :Union[str, Any] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self : int , UpperCamelCase : Optional[Any]=True , UpperCamelCase : str=None , UpperCamelCase : int=3 , UpperCamelCase : Dict=3_00 , UpperCamelCase : int=10_24 , UpperCamelCase : List[str]=6 , UpperCamelCase : Optional[Any]=10_24 , UpperCamelCase : Any=8 , UpperCamelCase : List[str]=6 , UpperCamelCase : Dict=10_24 , UpperCamelCase : Optional[Any]=8 , UpperCamelCase : Tuple=0.0 , UpperCamelCase : Optional[Any]=True , UpperCamelCase : int="relu" , UpperCamelCase : List[Any]=2_56 , UpperCamelCase : Union[str, Any]=0.1 , UpperCamelCase : Dict=0.0 , UpperCamelCase : Optional[Any]=0.0 , UpperCamelCase : Any=0.02 , UpperCamelCase : int=1.0 , UpperCamelCase : Dict=True , UpperCamelCase : Dict=False , UpperCamelCase : Any="sine" , UpperCamelCase : int="resnet50" , UpperCamelCase : str=True , UpperCamelCase : str=False , UpperCamelCase : Any=4 , UpperCamelCase : List[str]=4 , UpperCamelCase : Dict=4 , UpperCamelCase : List[str]=False , UpperCamelCase : Tuple=3_00 , UpperCamelCase : int=False , UpperCamelCase : List[str]=1 , UpperCamelCase : List[str]=5 , UpperCamelCase : str=2 , UpperCamelCase : List[Any]=1 , UpperCamelCase : Tuple=1 , UpperCamelCase : str=5 , UpperCamelCase : List[str]=2 , UpperCamelCase : Any=0.1 , UpperCamelCase : Union[str, Any]=0.25 , UpperCamelCase : Any=False , **UpperCamelCase : int , ) -> Dict: """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) lowerCAmelCase__ : List[str] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(UpperCamelCase , UpperCamelCase ): lowerCAmelCase__ : Dict = backbone_config.get("""model_type""" ) lowerCAmelCase__ : Dict = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase__ : Any = config_class.from_dict(UpperCamelCase ) lowerCAmelCase__ : List[str] = use_timm_backbone lowerCAmelCase__ : List[str] = backbone_config lowerCAmelCase__ : Dict = num_channels lowerCAmelCase__ : int = num_queries lowerCAmelCase__ : Any = max_position_embeddings lowerCAmelCase__ : List[Any] = d_model lowerCAmelCase__ : Tuple = encoder_ffn_dim lowerCAmelCase__ : Tuple = encoder_layers lowerCAmelCase__ : List[Any] = encoder_attention_heads lowerCAmelCase__ : Optional[int] = decoder_ffn_dim lowerCAmelCase__ : Dict = decoder_layers lowerCAmelCase__ : Any = decoder_attention_heads lowerCAmelCase__ : int = dropout lowerCAmelCase__ : List[str] = attention_dropout lowerCAmelCase__ : str = activation_dropout lowerCAmelCase__ : Optional[int] = activation_function lowerCAmelCase__ : Optional[Any] = init_std lowerCAmelCase__ : Optional[int] = init_xavier_std lowerCAmelCase__ : Optional[int] = encoder_layerdrop lowerCAmelCase__ : Any = auxiliary_loss lowerCAmelCase__ : List[str] = position_embedding_type lowerCAmelCase__ : Optional[Any] = backbone lowerCAmelCase__ : Tuple = use_pretrained_backbone lowerCAmelCase__ : Union[str, Any] = dilation # deformable attributes lowerCAmelCase__ : Optional[int] = num_feature_levels lowerCAmelCase__ : int = encoder_n_points lowerCAmelCase__ : Optional[int] = decoder_n_points lowerCAmelCase__ : Tuple = two_stage lowerCAmelCase__ : Any = two_stage_num_proposals lowerCAmelCase__ : Optional[int] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""" ) # Hungarian matcher lowerCAmelCase__ : Union[str, Any] = class_cost lowerCAmelCase__ : Optional[int] = bbox_cost lowerCAmelCase__ : str = giou_cost # Loss coefficients lowerCAmelCase__ : Optional[Any] = mask_loss_coefficient lowerCAmelCase__ : Tuple = dice_loss_coefficient lowerCAmelCase__ : Optional[Any] = bbox_loss_coefficient lowerCAmelCase__ : Optional[int] = giou_loss_coefficient lowerCAmelCase__ : Optional[Any] = eos_coefficient lowerCAmelCase__ : Tuple = focal_alpha lowerCAmelCase__ : Tuple = disable_custom_kernels super().__init__(is_encoder_decoder=UpperCamelCase , **UpperCamelCase ) @property def _lowerCAmelCase ( self : str ) -> int: """simple docstring""" return self.encoder_attention_heads @property def _lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" return self.d_model def _lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" lowerCAmelCase__ : Dict = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: lowerCAmelCase__ : Union[str, Any] = self.backbone_config.to_dict() lowerCAmelCase__ : Union[str, Any] = self.__class__.model_type return output
242
1
"""simple docstring""" def SCREAMING_SNAKE_CASE_ ( snake_case : int )-> bool: return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("""Program to check whether a number is a Perfect number or not...""") A_ : str =int(input("""Enter number: """).strip()) print(f'{number} is {"" if perfect(number) else "not "}a Perfect Number.')
80
"""simple docstring""" from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def SCREAMING_SNAKE_CASE_ ( )-> Any: import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join _lowerCamelCase = '__test_patch_submodule_mock__' with patch_submodule(_test_patching , 'os.path.join' , snake_case ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def SCREAMING_SNAKE_CASE_ ( )-> Optional[int]: assert _test_patching.open is open _lowerCamelCase = '__test_patch_submodule_builtin_mock__' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , 'open' , snake_case ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def SCREAMING_SNAKE_CASE_ ( )-> Tuple: # pandas.read_csv is not present in _test_patching _lowerCamelCase = '__test_patch_submodule_missing_mock__' with patch_submodule(_test_patching , 'pandas.read_csv' , snake_case ): pass def SCREAMING_SNAKE_CASE_ ( )-> Any: # builtin should always be mocked even if they're not in the globals # in case they're loaded at one point _lowerCamelCase = '__test_patch_submodule_missing_builtin_mock__' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , 'len' , snake_case ) is None with patch_submodule(_test_patching , 'len' , snake_case ): assert _test_patching.len is mock assert _test_patching.len is len def SCREAMING_SNAKE_CASE_ ( )-> Any: _lowerCamelCase = '__test_patch_submodule_start_and_stop_mock__' _lowerCamelCase = patch_submodule(_test_patching , 'open' , snake_case ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def SCREAMING_SNAKE_CASE_ ( )-> Tuple: from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join _lowerCamelCase = '__test_patch_submodule_successive_join__' _lowerCamelCase = '__test_patch_submodule_successive_dirname__' _lowerCamelCase = '__test_patch_submodule_successive_rename__' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , 'os.path.join' , snake_case ): with patch_submodule(_test_patching , 'os.rename' , snake_case ): with patch_submodule(_test_patching , 'os.path.dirname' , snake_case ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , 'os.rename' , snake_case ): with patch_submodule(_test_patching , 'os.path.join' , snake_case ): with patch_submodule(_test_patching , 'os.path.dirname' , snake_case ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def SCREAMING_SNAKE_CASE_ ( )-> Optional[int]: _lowerCamelCase = '__test_patch_submodule_doesnt_exist_mock__' with patch_submodule(_test_patching , '__module_that_doesn_exist__.__attribute_that_doesn_exist__' , snake_case ): pass with patch_submodule(_test_patching , 'os.__attribute_that_doesn_exist__' , snake_case ): pass
80
1
'''simple docstring''' from __future__ import annotations def _a( UpperCamelCase__ : int = 4 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] =abs(UpperCamelCase__ ) or 4 return [[1 + x + y * row_size for x in range(UpperCamelCase__ )] for y in range(UpperCamelCase__ )] def _a( UpperCamelCase__ : list[list[int]] ): '''simple docstring''' return reverse_row(transpose(UpperCamelCase__ ) ) # OR.. transpose(reverse_column(matrix)) def _a( UpperCamelCase__ : list[list[int]] ): '''simple docstring''' return reverse_row(reverse_column(UpperCamelCase__ ) ) # OR.. reverse_column(reverse_row(matrix)) def _a( UpperCamelCase__ : list[list[int]] ): '''simple docstring''' return reverse_column(transpose(UpperCamelCase__ ) ) # OR.. transpose(reverse_row(matrix)) def _a( UpperCamelCase__ : list[list[int]] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int =[list(UpperCamelCase__ ) for x in zip(*UpperCamelCase__ )] return matrix def _a( UpperCamelCase__ : list[list[int]] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] =matrix[::-1] return matrix def _a( UpperCamelCase__ : list[list[int]] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple =[x[::-1] for x in matrix] return matrix def _a( UpperCamelCase__ : list[list[int]] ): '''simple docstring''' for i in matrix: print(*UpperCamelCase__ ) if __name__ == "__main__": a_ = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 90 counterclockwise:\n') print_matrix(rotate_aa(matrix)) a_ = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 180:\n') print_matrix(rotate_aaa(matrix)) a_ = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 270 counterclockwise:\n') print_matrix(rotate_aaa(matrix))
152
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser a_ = re.compile(R'\s+') def _a( UpperCamelCase__ : str ): '''simple docstring''' return {"hash": hashlib.mda(re.sub(UpperCamelCase__, '''''', example['''content'''] ).encode('''utf-8''' ) ).hexdigest()} def _a( UpperCamelCase__ : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] =[len(UpperCamelCase__ ) for line in example['''content'''].splitlines()] return {"line_mean": np.mean(UpperCamelCase__ ), "line_max": max(UpperCamelCase__ )} def _a( UpperCamelCase__ : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple =np.mean([c.isalnum() for c in example['''content''']] ) return {"alpha_frac": alpha_frac} def _a( UpperCamelCase__ : Any, UpperCamelCase__ : Any ): '''simple docstring''' if example["hash"] in uniques: uniques.remove(example['''hash'''] ) return True else: return False def _a( UpperCamelCase__ : Any, UpperCamelCase__ : Optional[Any]=5 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] =['''auto-generated''', '''autogenerated''', '''automatically generated'''] SCREAMING_SNAKE_CASE__ : Dict =example['''content'''].splitlines() for _, line in zip(range(UpperCamelCase__ ), UpperCamelCase__ ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def _a( UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : Tuple=5, UpperCamelCase__ : Optional[Any]=0.0_5 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple =['''unit tests''', '''test file''', '''configuration file'''] SCREAMING_SNAKE_CASE__ : List[Any] =example['''content'''].splitlines() SCREAMING_SNAKE_CASE__ : List[str] =0 SCREAMING_SNAKE_CASE__ : Optional[Any] =0 # first test for _, line in zip(range(UpperCamelCase__ ), UpperCamelCase__ ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test SCREAMING_SNAKE_CASE__ : List[str] =example['''content'''].count('''\n''' ) SCREAMING_SNAKE_CASE__ : Optional[int] =int(coeff * nlines ) for line in lines: count_config += line.lower().count('''config''' ) count_test += line.lower().count('''test''' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def _a( UpperCamelCase__ : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] =['''def ''', '''class ''', '''for ''', '''while '''] SCREAMING_SNAKE_CASE__ : List[Any] =example['''content'''].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def _a( UpperCamelCase__ : Any, UpperCamelCase__ : Dict=4 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] =example['''content'''].splitlines() SCREAMING_SNAKE_CASE__ : Optional[Any] =0 for line in lines: counter += line.lower().count('''=''' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def _a( UpperCamelCase__ : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str =tokenizer(example['''content'''], truncation=UpperCamelCase__ )['''input_ids'''] SCREAMING_SNAKE_CASE__ : Optional[Any] =len(example['''content'''] ) / len(UpperCamelCase__ ) return {"ratio": ratio} def _a( UpperCamelCase__ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict ={} results.update(get_hash(UpperCamelCase__ ) ) results.update(line_stats(UpperCamelCase__ ) ) results.update(alpha_stats(UpperCamelCase__ ) ) results.update(char_token_ratio(UpperCamelCase__ ) ) results.update(is_autogenerated(UpperCamelCase__ ) ) results.update(is_config_or_test(UpperCamelCase__ ) ) results.update(has_no_keywords(UpperCamelCase__ ) ) results.update(has_few_assignments(UpperCamelCase__ ) ) return results def _a( UpperCamelCase__ : Tuple, UpperCamelCase__ : List[Any], UpperCamelCase__ : str ): '''simple docstring''' if not check_uniques(UpperCamelCase__, UpperCamelCase__ ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def _a( UpperCamelCase__ : str ): '''simple docstring''' with open(UpperCamelCase__, '''rb''' ) as f_in: with gzip.open(str(UpperCamelCase__ ) + '''.gz''', '''wb''', compresslevel=6 ) as f_out: shutil.copyfileobj(UpperCamelCase__, UpperCamelCase__ ) os.unlink(UpperCamelCase__ ) # Settings a_ = HfArgumentParser(PreprocessingArguments) a_ = parser.parse_args() if args.num_workers is None: a_ = multiprocessing.cpu_count() a_ = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset a_ = time.time() a_ = load_dataset(args.dataset_name, split='train') print(F'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing a_ = time.time() a_ = ds.map(preprocess, num_proc=args.num_workers) print(F'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes a_ = set(ds.unique('hash')) a_ = len(uniques) / len(ds) print(F'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics a_ = time.time() a_ = ds.filter(filter, fn_kwargs={'uniques': uniques, 'args': args}) print(F'''Time to filter dataset: {time.time()-t_start:.2f}''') print(F'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: a_ = time.time() a_ , a_ = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(F'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file a_ = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / 'duplicate_clusters.json', 'w') as f: json.dump(duplicate_clusters, f) a_ = output_dir / 'data' data_dir.mkdir(exist_ok=True) a_ = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): a_ = str(data_dir / F'''file-{file_number+1:012}.json''') a_ = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F'''Time to save dataset: {time.time()-t_start:.2f}''')
152
1
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors __lowerCamelCase : Union[str, Any] = logging.getLogger(__name__) class __snake_case ( lowerCamelCase_ ): lowerCAmelCase_ = "sequence-classification" def __init__( self : Optional[Any] , _lowercase : int ): """simple docstring""" if type(_lowercase ) == dict: SCREAMING_SNAKE_CASE__ = Namespace(**_lowercase ) SCREAMING_SNAKE_CASE__ = glue_output_modes[hparams.task] SCREAMING_SNAKE_CASE__ = glue_tasks_num_labels[hparams.task] super().__init__(_lowercase , _lowercase , self.mode ) def __a ( self : Any , **_lowercase : Optional[int] ): """simple docstring""" return self.model(**_lowercase ) def __a ( self : List[str] , _lowercase : Optional[int] , _lowercase : int ): """simple docstring""" SCREAMING_SNAKE_CASE__ = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: SCREAMING_SNAKE_CASE__ = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None SCREAMING_SNAKE_CASE__ = self(**_lowercase ) SCREAMING_SNAKE_CASE__ = outputs[0] SCREAMING_SNAKE_CASE__ = self.trainer.lr_schedulers[0]["""scheduler"""] SCREAMING_SNAKE_CASE__ = {"""loss""": loss, """rate""": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def __a ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.hparams SCREAMING_SNAKE_CASE__ = processors[args.task]() SCREAMING_SNAKE_CASE__ = processor.get_labels() for mode in ["train", "dev"]: SCREAMING_SNAKE_CASE__ = self._feature_file(_lowercase ) if os.path.exists(_lowercase ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" , _lowercase ) else: logger.info("""Creating features from dataset file at %s""" , args.data_dir ) SCREAMING_SNAKE_CASE__ = ( processor.get_dev_examples(args.data_dir ) if mode == """dev""" else processor.get_train_examples(args.data_dir ) ) SCREAMING_SNAKE_CASE__ = convert_examples_to_features( _lowercase , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info("""Saving features into cached file %s""" , _lowercase ) torch.save(_lowercase , _lowercase ) def __a ( self : List[Any] , _lowercase : str , _lowercase : int , _lowercase : bool = False ): """simple docstring""" SCREAMING_SNAKE_CASE__ = """dev""" if mode == """test""" else mode SCREAMING_SNAKE_CASE__ = self._feature_file(_lowercase ) logger.info("""Loading features from cached file %s""" , _lowercase ) SCREAMING_SNAKE_CASE__ = torch.load(_lowercase ) SCREAMING_SNAKE_CASE__ = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) SCREAMING_SNAKE_CASE__ = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) SCREAMING_SNAKE_CASE__ = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": SCREAMING_SNAKE_CASE__ = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": SCREAMING_SNAKE_CASE__ = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(_lowercase , _lowercase , _lowercase , _lowercase ) , batch_size=_lowercase , shuffle=_lowercase , ) def __a ( self : Any , _lowercase : Union[str, Any] , _lowercase : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE__ = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: SCREAMING_SNAKE_CASE__ = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None SCREAMING_SNAKE_CASE__ = self(**_lowercase ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = outputs[:2] SCREAMING_SNAKE_CASE__ = logits.detach().cpu().numpy() SCREAMING_SNAKE_CASE__ = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def __a ( self : List[str] , _lowercase : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = torch.stack([x["""val_loss"""] for x in outputs] ).mean().detach().cpu().item() SCREAMING_SNAKE_CASE__ = np.concatenate([x["""pred"""] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": SCREAMING_SNAKE_CASE__ = np.argmax(_lowercase , axis=1 ) elif self.hparams.glue_output_mode == "regression": SCREAMING_SNAKE_CASE__ = np.squeeze(_lowercase ) SCREAMING_SNAKE_CASE__ = np.concatenate([x["""target"""] for x in outputs] , axis=0 ) SCREAMING_SNAKE_CASE__ = [[] for _ in range(out_label_ids.shape[0] )] SCREAMING_SNAKE_CASE__ = [[] for _ in range(out_label_ids.shape[0] )] SCREAMING_SNAKE_CASE__ = {**{"""val_loss""": val_loss_mean}, **compute_metrics(self.hparams.task , _lowercase , _lowercase )} SCREAMING_SNAKE_CASE__ = dict(results.items() ) SCREAMING_SNAKE_CASE__ = results return ret, preds_list, out_label_list def __a ( self : Union[str, Any] , _lowercase : list ): """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self._eval_end(_lowercase ) SCREAMING_SNAKE_CASE__ = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def __a ( self : Tuple , _lowercase : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self._eval_end(_lowercase ) SCREAMING_SNAKE_CASE__ = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def __a ( _lowercase : str , _lowercase : Optional[Any] ): """simple docstring""" BaseTransformer.add_model_specific_args(_lowercase , _lowercase ) parser.add_argument( """--max_seq_length""" , default=1_28 , type=_lowercase , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--task""" , default="""""" , type=_lowercase , required=_lowercase , help="""The GLUE task to run""" , ) parser.add_argument( """--gpus""" , default=0 , type=_lowercase , help="""The number of GPUs allocated for this, it is by default 0 meaning none""" , ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) return parser def __SCREAMING_SNAKE_CASE ( ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() add_generic_args(__UpperCamelCase , os.getcwd() ) SCREAMING_SNAKE_CASE__ = GLUETransformer.add_model_specific_args(__UpperCamelCase , os.getcwd() ) SCREAMING_SNAKE_CASE__ = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: SCREAMING_SNAKE_CASE__ = os.path.join( """./results""" , f"""{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}""" , ) os.makedirs(args.output_dir ) SCREAMING_SNAKE_CASE__ = GLUETransformer(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = generic_train(__UpperCamelCase , __UpperCamelCase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: SCREAMING_SNAKE_CASE__ = sorted(glob.glob(os.path.join(args.output_dir , """checkpoint-epoch=*.ckpt""" ) , recursive=__UpperCamelCase ) ) SCREAMING_SNAKE_CASE__ = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__UpperCamelCase ) if __name__ == "__main__": main()
204
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __snake_case : def __init__( self : Any , _lowercase : Tuple , _lowercase : str=2 , _lowercase : List[Any]=3 , _lowercase : Optional[Any]=4 , _lowercase : Optional[Any]=2 , _lowercase : str=7 , _lowercase : Dict=True , _lowercase : List[str]=True , _lowercase : Union[str, Any]=True , _lowercase : Optional[int]=True , _lowercase : Dict=99 , _lowercase : Dict=36 , _lowercase : Tuple=2 , _lowercase : Optional[int]=4 , _lowercase : int=37 , _lowercase : Tuple="gelu" , _lowercase : Optional[Any]=0.1 , _lowercase : Tuple=0.1 , _lowercase : str=5_12 , _lowercase : Dict=16 , _lowercase : int=2 , _lowercase : int=0.02 , _lowercase : Any=6 , _lowercase : List[Any]=6 , _lowercase : List[Any]=3 , _lowercase : List[Any]=4 , _lowercase : int=None , _lowercase : Optional[int]=10_00 , ): """simple docstring""" SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = patch_size SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_input_mask SCREAMING_SNAKE_CASE__ = use_token_type_ids SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = type_sequence_label_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = coordinate_size SCREAMING_SNAKE_CASE__ = shape_size SCREAMING_SNAKE_CASE__ = num_labels SCREAMING_SNAKE_CASE__ = num_choices SCREAMING_SNAKE_CASE__ = scope SCREAMING_SNAKE_CASE__ = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) SCREAMING_SNAKE_CASE__ = text_seq_length SCREAMING_SNAKE_CASE__ = (image_size // patch_size) ** 2 + 1 SCREAMING_SNAKE_CASE__ = self.text_seq_length + self.image_seq_length def __a ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) SCREAMING_SNAKE_CASE__ = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: SCREAMING_SNAKE_CASE__ = bbox[i, j, 3] SCREAMING_SNAKE_CASE__ = bbox[i, j, 1] SCREAMING_SNAKE_CASE__ = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: SCREAMING_SNAKE_CASE__ = bbox[i, j, 2] SCREAMING_SNAKE_CASE__ = bbox[i, j, 0] SCREAMING_SNAKE_CASE__ = tmp_coordinate SCREAMING_SNAKE_CASE__ = tf.constant(_lowercase ) SCREAMING_SNAKE_CASE__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ = None if self.use_input_mask: SCREAMING_SNAKE_CASE__ = random_attention_mask([self.batch_size, self.text_seq_length] ) SCREAMING_SNAKE_CASE__ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __a ( self : List[str] , _lowercase : Dict , _lowercase : List[Any] , _lowercase : str , _lowercase : Optional[int] , _lowercase : Union[str, Any] , _lowercase : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE__ = TFLayoutLMvaModel(config=_lowercase ) # text + image SCREAMING_SNAKE_CASE__ = model(_lowercase , pixel_values=_lowercase , training=_lowercase ) SCREAMING_SNAKE_CASE__ = model( _lowercase , bbox=_lowercase , pixel_values=_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , training=_lowercase , ) SCREAMING_SNAKE_CASE__ = model(_lowercase , bbox=_lowercase , pixel_values=_lowercase , training=_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only SCREAMING_SNAKE_CASE__ = model(_lowercase , training=_lowercase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only SCREAMING_SNAKE_CASE__ = model({"""pixel_values""": pixel_values} , training=_lowercase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def __a ( self : int , _lowercase : int , _lowercase : Optional[int] , _lowercase : Optional[Any] , _lowercase : Optional[int] , _lowercase : Tuple , _lowercase : List[Any] , _lowercase : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = TFLayoutLMvaForSequenceClassification(config=_lowercase ) SCREAMING_SNAKE_CASE__ = model( _lowercase , bbox=_lowercase , pixel_values=_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , training=_lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self : Any , _lowercase : Dict , _lowercase : Tuple , _lowercase : int , _lowercase : Optional[int] , _lowercase : Optional[int] , _lowercase : Union[str, Any] , _lowercase : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = TFLayoutLMvaForTokenClassification(config=_lowercase ) SCREAMING_SNAKE_CASE__ = model( _lowercase , bbox=_lowercase , pixel_values=_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , training=_lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def __a ( self : str , _lowercase : int , _lowercase : List[str] , _lowercase : str , _lowercase : str , _lowercase : List[str] , _lowercase : List[str] , _lowercase : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = TFLayoutLMvaForQuestionAnswering(config=_lowercase ) SCREAMING_SNAKE_CASE__ = model( _lowercase , bbox=_lowercase , pixel_values=_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , start_positions=_lowercase , end_positions=_lowercase , training=_lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) = config_and_inputs SCREAMING_SNAKE_CASE__ = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_tf class __snake_case ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): lowerCAmelCase_ = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) lowerCAmelCase_ = ( {"document-question-answering": TFLayoutLMvaForQuestionAnswering, "feature-extraction": TFLayoutLMvaModel} if is_tf_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def __a ( self : Union[str, Any] , _lowercase : Optional[int] , _lowercase : List[str] , _lowercase : Optional[Any] , _lowercase : Optional[int] , _lowercase : List[Any] ): """simple docstring""" return True def __a ( self : List[str] , _lowercase : List[Any] , _lowercase : str , _lowercase : str=False ): """simple docstring""" SCREAMING_SNAKE_CASE__ = copy.deepcopy(_lowercase ) if model_class in get_values(_lowercase ): SCREAMING_SNAKE_CASE__ = { k: tf.tile(tf.expand_dims(_lowercase , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(_lowercase , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(_lowercase ): SCREAMING_SNAKE_CASE__ = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(_lowercase ): SCREAMING_SNAKE_CASE__ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) SCREAMING_SNAKE_CASE__ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(_lowercase ): SCREAMING_SNAKE_CASE__ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(_lowercase ): SCREAMING_SNAKE_CASE__ = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def __a ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE__ = TFLayoutLMvaModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=_lowercase , hidden_size=37 ) def __a ( self : Any ): """simple docstring""" self.config_tester.run_common_tests() def __a ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ = model_class(_lowercase ) if getattr(_lowercase , """hf_compute_loss""" , _lowercase ): # The number of elements in the loss should be the same as the number of elements in the label SCREAMING_SNAKE_CASE__ = self._prepare_for_class(inputs_dict.copy() , _lowercase , return_labels=_lowercase ) SCREAMING_SNAKE_CASE__ = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=_lowercase )[0] ] SCREAMING_SNAKE_CASE__ = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs SCREAMING_SNAKE_CASE__ = self._prepare_for_class(inputs_dict.copy() , _lowercase , return_labels=_lowercase ) SCREAMING_SNAKE_CASE__ = prepared_for_class.pop("""input_ids""" ) SCREAMING_SNAKE_CASE__ = model(_lowercase , **_lowercase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions SCREAMING_SNAKE_CASE__ = self._prepare_for_class(inputs_dict.copy() , _lowercase , return_labels=_lowercase ) SCREAMING_SNAKE_CASE__ = prepared_for_class.pop("""input_ids""" ) if "labels" in prepared_for_class: SCREAMING_SNAKE_CASE__ = prepared_for_class["""labels"""].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: SCREAMING_SNAKE_CASE__ = -1_00 SCREAMING_SNAKE_CASE__ = tf.convert_to_tensor(_lowercase ) SCREAMING_SNAKE_CASE__ = model(_lowercase , **_lowercase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict SCREAMING_SNAKE_CASE__ = self._prepare_for_class(inputs_dict.copy() , _lowercase , return_labels=_lowercase ) SCREAMING_SNAKE_CASE__ = model(_lowercase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple SCREAMING_SNAKE_CASE__ = self._prepare_for_class(inputs_dict.copy() , _lowercase , return_labels=_lowercase ) # Get keys that were added with the _prepare_for_class function SCREAMING_SNAKE_CASE__ = prepared_for_class.keys() - inputs_dict.keys() SCREAMING_SNAKE_CASE__ = inspect.signature(model.call ).parameters SCREAMING_SNAKE_CASE__ = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple SCREAMING_SNAKE_CASE__ = {0: """input_ids"""} for label_key in label_keys: SCREAMING_SNAKE_CASE__ = signature_names.index(_lowercase ) SCREAMING_SNAKE_CASE__ = label_key SCREAMING_SNAKE_CASE__ = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple SCREAMING_SNAKE_CASE__ = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: SCREAMING_SNAKE_CASE__ = prepared_for_class[value] SCREAMING_SNAKE_CASE__ = tuple(_lowercase ) # Send to model SCREAMING_SNAKE_CASE__ = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def __a ( self : Optional[int] ): """simple docstring""" ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) def __a ( self : int ): """simple docstring""" ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE__ = type self.model_tester.create_and_check_model(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) def __a ( self : int ): """simple docstring""" ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) def __a ( self : str ): """simple docstring""" ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) def __a ( self : List[str] ): """simple docstring""" ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) @slow def __a ( self : Tuple ): """simple docstring""" for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ = TFLayoutLMvaModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) def __SCREAMING_SNAKE_CASE ( ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf class __snake_case ( unittest.TestCase ): @cached_property def __a ( self : Optional[int] ): """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=_lowercase ) if is_vision_available() else None @slow def __a ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE__ = TFLayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ) SCREAMING_SNAKE_CASE__ = self.default_image_processor SCREAMING_SNAKE_CASE__ = prepare_img() SCREAMING_SNAKE_CASE__ = image_processor(images=_lowercase , return_tensors="""tf""" ).pixel_values SCREAMING_SNAKE_CASE__ = tf.constant([[1, 2]] ) SCREAMING_SNAKE_CASE__ = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass SCREAMING_SNAKE_CASE__ = model(input_ids=_lowercase , bbox=_lowercase , pixel_values=_lowercase , training=_lowercase ) # verify the logits SCREAMING_SNAKE_CASE__ = (1, 1_99, 7_68) self.assertEqual(outputs.last_hidden_state.shape , _lowercase ) SCREAMING_SNAKE_CASE__ = tf.constant( [[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _lowercase , atol=1E-4 ) )
204
1
import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version UpperCAmelCase__ = logging.getLogger(__name__) require_version("pytorch_lightning>=1.0.4") UpperCAmelCase__ = { "base": AutoModel, "sequence-classification": AutoModelForSequenceClassification, "question-answering": AutoModelForQuestionAnswering, "pretraining": AutoModelForPreTraining, "token-classification": AutoModelForTokenClassification, "language-modeling": AutoModelWithLMHead, "summarization": AutoModelForSeqaSeqLM, "translation": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization UpperCAmelCase__ = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } UpperCAmelCase__ = sorted(arg_to_scheduler.keys()) UpperCAmelCase__ = "{" + ", ".join(arg_to_scheduler_choices) + "}" class lowercase_ ( pl.LightningModule ): '''simple docstring''' def __init__( self : str , __UpperCAmelCase : argparse.Namespace , __UpperCAmelCase : str=None , __UpperCAmelCase : List[str]="base" , __UpperCAmelCase : str=None , __UpperCAmelCase : int=None , __UpperCAmelCase : Optional[Any]=None , **__UpperCAmelCase : Optional[int] , ) ->Tuple: """simple docstring""" super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(__UpperCAmelCase ) a = 0 a = Path(self.hparams.output_dir ) a = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: a = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'''num_labels''': num_labels} if num_labels is not None else {}) , cache_dir=__UpperCAmelCase , **__UpperCAmelCase , ) else: a = config a = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(self.hparams , __UpperCAmelCase , __UpperCAmelCase ): assert hasattr(self.config , __UpperCAmelCase ), F"""model config doesn't have a `{p}` attribute""" setattr(self.config , __UpperCAmelCase , getattr(self.hparams , __UpperCAmelCase ) ) if tokenizer is None: a = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=__UpperCAmelCase , ) else: a = tokenizer a = MODEL_MODES[mode] if model is None: a = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('''.ckpt''' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=__UpperCAmelCase , ) else: a = model def __lowerCAmelCase ( self : Any , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : str ) ->str: """simple docstring""" a = self.model_type.from_pretrained(*__UpperCAmelCase , **__UpperCAmelCase ) def __lowerCAmelCase ( self : List[str] ) ->Optional[Any]: """simple docstring""" a = arg_to_scheduler[self.hparams.lr_scheduler] a = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) a = {'''scheduler''': scheduler, '''interval''': '''step''', '''frequency''': 1} return scheduler def __lowerCAmelCase ( self : List[Any] ) ->List[str]: """simple docstring""" a = self.model a = ['''bias''', '''LayerNorm.weight'''] a = [ { '''params''': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters '''weight_decay''': self.hparams.weight_decay, }, { '''params''': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] if self.hparams.adafactor: a = Adafactor( __UpperCAmelCase , lr=self.hparams.learning_rate , scale_parameter=__UpperCAmelCase , relative_step=__UpperCAmelCase ) else: a = AdamW( __UpperCAmelCase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) a = optimizer a = self.get_lr_scheduler() return [optimizer], [scheduler] def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any] ) ->Dict: """simple docstring""" return self.validation_step(__UpperCAmelCase , __UpperCAmelCase ) def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Optional[Any] ) ->Any: """simple docstring""" return self.validation_end(__UpperCAmelCase ) def __lowerCAmelCase ( self : Union[str, Any] ) ->int: """simple docstring""" a = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores a = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : Dict ) ->Optional[int]: """simple docstring""" if stage == "test": a = len(self.test_dataloader().dataset ) else: a = self.get_dataloader('''train''' , self.hparams.train_batch_size , shuffle=__UpperCAmelCase ) a = len(self.train_dataloader().dataset ) def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : bool = False ) ->str: """simple docstring""" raise NotImplementedError('''You must implement this for your task''' ) def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[Any]: """simple docstring""" return self.train_loader def __lowerCAmelCase ( self : List[Any] ) ->List[Any]: """simple docstring""" return self.get_dataloader('''dev''' , self.hparams.eval_batch_size , shuffle=__UpperCAmelCase ) def __lowerCAmelCase ( self : Union[str, Any] ) ->Tuple: """simple docstring""" return self.get_dataloader('''test''' , self.hparams.eval_batch_size , shuffle=__UpperCAmelCase ) def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : Optional[int] ) ->Optional[Any]: """simple docstring""" return os.path.join( self.hparams.data_dir , '''cached_{}_{}_{}'''.format( __UpperCAmelCase , list(filter(__UpperCAmelCase , self.hparams.model_name_or_path.split('''/''' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : Dict[str, Any] ) ->None: """simple docstring""" a = self.output_dir.joinpath('''best_tfmr''' ) a = self.step_count self.model.save_pretrained(__UpperCAmelCase ) self.tokenizer.save_pretrained(__UpperCAmelCase ) @staticmethod def __lowerCAmelCase ( __UpperCAmelCase : Dict , __UpperCAmelCase : int ) ->int: """simple docstring""" parser.add_argument( '''--model_name_or_path''' , default=__UpperCAmelCase , type=__UpperCAmelCase , required=__UpperCAmelCase , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--config_name''' , default='''''' , type=__UpperCAmelCase , help='''Pretrained config name or path if not the same as model_name''' ) parser.add_argument( '''--tokenizer_name''' , default=__UpperCAmelCase , type=__UpperCAmelCase , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument( '''--cache_dir''' , default=str(Path(__UpperCAmelCase ).parent / '''test_run''' / '''cache''' ) , type=__UpperCAmelCase , help='''Where do you want to store the pre-trained models downloaded from huggingface.co''' , ) parser.add_argument( '''--encoder_layerdrop''' , type=__UpperCAmelCase , help='''Encoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--decoder_layerdrop''' , type=__UpperCAmelCase , help='''Decoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--dropout''' , type=__UpperCAmelCase , help='''Dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--attention_dropout''' , type=__UpperCAmelCase , help='''Attention dropout probability (Optional). Goes into model.config''' , ) parser.add_argument('''--learning_rate''' , default=5e-5 , type=__UpperCAmelCase , help='''The initial learning rate for Adam.''' ) parser.add_argument( '''--lr_scheduler''' , default='''linear''' , choices=__UpperCAmelCase , metavar=__UpperCAmelCase , type=__UpperCAmelCase , help='''Learning rate scheduler''' , ) parser.add_argument('''--weight_decay''' , default=0.0 , type=__UpperCAmelCase , help='''Weight decay if we apply some.''' ) parser.add_argument('''--adam_epsilon''' , default=1e-8 , type=__UpperCAmelCase , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--warmup_steps''' , default=0 , type=__UpperCAmelCase , help='''Linear warmup over warmup_steps.''' ) parser.add_argument('''--num_workers''' , default=4 , type=__UpperCAmelCase , help='''kwarg passed to DataLoader''' ) parser.add_argument('''--num_train_epochs''' , dest='''max_epochs''' , default=3 , type=__UpperCAmelCase ) parser.add_argument('''--train_batch_size''' , default=32 , type=__UpperCAmelCase ) parser.add_argument('''--eval_batch_size''' , default=32 , type=__UpperCAmelCase ) parser.add_argument('''--adafactor''' , action='''store_true''' ) class lowercase_ ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : int , __UpperCAmelCase : Optional[int] ) ->int: """simple docstring""" if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class lowercase_ ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any] ) ->Union[str, Any]: """simple docstring""" for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(__UpperCAmelCase ) class lowercase_ ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : int , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Dict ) ->int: """simple docstring""" a = trainer.lr_schedulers[0]['''scheduler'''] a = {F"""lr_group_{i}""": lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(__UpperCAmelCase ) def __lowerCAmelCase ( self : Any , __UpperCAmelCase : pl.Trainer , __UpperCAmelCase : pl.LightningModule ) ->Union[str, Any]: """simple docstring""" rank_zero_info('''***** Validation results *****''' ) a = trainer.callback_metrics # Log results for key in sorted(__UpperCAmelCase ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(__UpperCAmelCase , str(metrics[key] ) ) ) def __lowerCAmelCase ( self : int , __UpperCAmelCase : pl.Trainer , __UpperCAmelCase : pl.LightningModule ) ->Optional[int]: """simple docstring""" rank_zero_info('''***** Test results *****''' ) a = trainer.callback_metrics # Log and save results to file a = os.path.join(pl_module.hparams.output_dir , '''test_results.txt''' ) with open(__UpperCAmelCase , '''w''' ) as writer: for key in sorted(__UpperCAmelCase ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(__UpperCAmelCase , str(metrics[key] ) ) ) writer.write('''{} = {}\n'''.format(__UpperCAmelCase , str(metrics[key] ) ) ) def _a ( a :Union[str, Any] , a :int ) -> None: # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( '''--output_dir''' , default=str(Path(a ).parent / '''test_run''' / '''model_checkpoints''' ) , type=a , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=a , default='''O2''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_tpu_cores''' , dest='''tpu_cores''' , type=a ) parser.add_argument('''--max_grad_norm''' , dest='''gradient_clip_val''' , default=1.0 , type=a , help='''Max gradient norm''' ) parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' ) parser.add_argument('''--do_predict''' , action='''store_true''' , help='''Whether to run predictions on the test set.''' ) parser.add_argument( '''--gradient_accumulation_steps''' , dest='''accumulate_grad_batches''' , type=a , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--seed''' , type=a , default=42 , help='''random seed for initialization''' ) parser.add_argument( '''--data_dir''' , default=str(Path(a ).parent / '''test_run''' / '''dummy-train-data''' ) , type=a , help='''The input data dir. Should contain the training files for the CoNLL-2003 NER task.''' , ) def _a ( a :BaseTransformer , a :argparse.Namespace , a :Tuple=None , a :Any=True , a :List[str]=[] , a :List[Any]=None , a :Union[str, Any]=None , **a :Optional[Any] , ) -> List[str]: pl.seed_everything(args.seed ) # init model a = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=a ) # add custom checkpoints if checkpoint_callback is None: a = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='''checkpoint''' , monitor='''val_loss''' , mode='''min''' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(a ) if logging_callback is None: a = LoggingCallback() a = {} if args.fpaa: a = 16 if args.gpus > 1: a = '''auto''' a = '''ddp''' a = args.accumulate_grad_batches a = None a = '''auto''' a = pl.Trainer.from_argparse_args( a , weights_summary=a , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=a , val_check_interval=1 , num_sanity_val_steps=2 , **a , ) if args.do_train: trainer.fit(a ) else: print('''RAG modeling tests with new set functions successfuly executed!''' ) return trainer
0
from __future__ import annotations import time import numpy as np UpperCAmelCase__ = [8, 5, 9, 7] UpperCAmelCase__ = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] UpperCAmelCase__ = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class lowercase_ : '''simple docstring''' def __init__( self : Optional[int] , __UpperCAmelCase : list[int] , __UpperCAmelCase : list[list[int]] , __UpperCAmelCase : list[list[int]] , ) ->None: """simple docstring""" a = claim_vector a = allocated_resources_table a = maximum_claim_table def __lowerCAmelCase ( self : Any ) ->list[int]: """simple docstring""" return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def __lowerCAmelCase ( self : Optional[int] ) ->list[int]: """simple docstring""" return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def __lowerCAmelCase ( self : Union[str, Any] ) ->list[list[int]]: """simple docstring""" return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__UpperCAmelCase ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def __lowerCAmelCase ( self : Tuple ) ->dict[int, list[int]]: """simple docstring""" return {self.__need().index(__UpperCAmelCase ): i for i in self.__need()} def __lowerCAmelCase ( self : Optional[Any] , **__UpperCAmelCase : Any ) ->None: """simple docstring""" a = self.__need() a = self.__allocated_resources_table a = self.__available_resources() a = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('''_''' * 50 + '''\n''' ) while need_list: a = False for each_need in need_list: a = True for index, need in enumerate(__UpperCAmelCase ): if need > available_resources[index]: a = False break if execution: a = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: a = original_need_index print(F"""Process {process_number + 1} is executing.""" ) # remove the process run from stack need_list.remove(__UpperCAmelCase ) # update available/freed resources stack a = np.array(__UpperCAmelCase ) + np.array( alloc_resources_table[process_number] ) print( '''Updated available resource stack for processes: ''' + ''' '''.join([str(__UpperCAmelCase ) for x in available_resources] ) ) break if safe: print('''The process is in a safe state.\n''' ) else: print('''System in unsafe state. Aborting...\n''' ) break def __lowerCAmelCase ( self : List[Any] ) ->Dict: """simple docstring""" print(''' ''' * 9 + '''Allocated Resource Table''' ) for item in self.__allocated_resources_table: print( F"""P{self.__allocated_resources_table.index(__UpperCAmelCase ) + 1}""" + ''' '''.join(F"""{it:>8}""" for it in item ) + '''\n''' ) print(''' ''' * 9 + '''System Resource Table''' ) for item in self.__maximum_claim_table: print( F"""P{self.__maximum_claim_table.index(__UpperCAmelCase ) + 1}""" + ''' '''.join(F"""{it:>8}""" for it in item ) + '''\n''' ) print( '''Current Usage by Active Processes: ''' + ''' '''.join(str(__UpperCAmelCase ) for x in self.__claim_vector ) ) print( '''Initial Available Resources: ''' + ''' '''.join(str(__UpperCAmelCase ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
0
1
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : Optional[Any]=False ) -> Dict: try: _a = os.environ[key] except KeyError: # KEY isn't set, default to `default`. _a = default else: # KEY is set, convert it to True or False. try: _a = strtobool(lowercase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F'If set, {key} must be yes or no.' ) return _value lowerCAmelCase_ : Dict = parse_flag_from_env('RUN_SLOW', default=False) lowerCAmelCase_ : Optional[Any] = parse_flag_from_env('RUN_REMOTE', default=False) lowerCAmelCase_ : int = parse_flag_from_env('RUN_LOCAL', default=True) lowerCAmelCase_ : Any = parse_flag_from_env('RUN_PACKAGED', default=True) # Compression lowerCAmelCase_ : List[str] = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4') lowerCAmelCase_ : Optional[Any] = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr') lowerCAmelCase_ : Union[str, Any] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard') # Audio lowerCAmelCase_ : Union[str, Any] = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'), reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ', ) # Beam lowerCAmelCase_ : List[Any] = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'), reason='test requires apache-beam and a compatible dill version', ) # Dill-cloudpickle compatibility lowerCAmelCase_ : Dict = pytest.mark.skipif( config.DILL_VERSION <= version.parse('0.3.2'), reason='test requires dill>0.3.2 for cloudpickle compatibility', ) # Windows lowerCAmelCase_ : Any = pytest.mark.skipif( sys.platform == 'win32', reason='test should not be run on Windows', ) def _lowerCamelCase ( lowercase : List[str] ) -> int: try: import faiss # noqa except ImportError: _a = unittest.skip("test requires faiss" )(lowercase ) return test_case def _lowerCamelCase ( lowercase : Dict ) -> Any: try: import regex # noqa except ImportError: _a = unittest.skip("test requires regex" )(lowercase ) return test_case def _lowerCamelCase ( lowercase : List[Any] ) -> Optional[Any]: try: import elasticsearch # noqa except ImportError: _a = unittest.skip("test requires elasticsearch" )(lowercase ) return test_case def _lowerCamelCase ( lowercase : Optional[Any] ) -> str: try: import sqlalchemy # noqa except ImportError: _a = unittest.skip("test requires sqlalchemy" )(lowercase ) return test_case def _lowerCamelCase ( lowercase : Optional[int] ) -> Optional[int]: if not config.TORCH_AVAILABLE: _a = unittest.skip("test requires PyTorch" )(lowercase ) return test_case def _lowerCamelCase ( lowercase : Dict ) -> Tuple: if not config.TF_AVAILABLE: _a = unittest.skip("test requires TensorFlow" )(lowercase ) return test_case def _lowerCamelCase ( lowercase : Optional[int] ) -> Any: if not config.JAX_AVAILABLE: _a = unittest.skip("test requires JAX" )(lowercase ) return test_case def _lowerCamelCase ( lowercase : Any ) -> int: if not config.PIL_AVAILABLE: _a = unittest.skip("test requires Pillow" )(lowercase ) return test_case def _lowerCamelCase ( lowercase : int ) -> Tuple: try: import transformers # noqa F401 except ImportError: return unittest.skip("test requires transformers" )(lowercase ) else: return test_case def _lowerCamelCase ( lowercase : int ) -> str: try: import tiktoken # noqa F401 except ImportError: return unittest.skip("test requires tiktoken" )(lowercase ) else: return test_case def _lowerCamelCase ( lowercase : Union[str, Any] ) -> Any: try: import spacy # noqa F401 except ImportError: return unittest.skip("test requires spacy" )(lowercase ) else: return test_case def _lowerCamelCase ( lowercase : List[Any] ) -> Optional[Any]: def _require_spacy_model(lowercase : int ): try: import spacy # noqa F401 spacy.load(lowercase ) except ImportError: return unittest.skip("test requires spacy" )(lowercase ) except OSError: return unittest.skip("test requires spacy model '{}'".format(lowercase ) )(lowercase ) else: return test_case return _require_spacy_model def _lowerCamelCase ( lowercase : Dict ) -> Tuple: try: import pyspark # noqa F401 except ImportError: return unittest.skip("test requires pyspark" )(lowercase ) else: return test_case def _lowerCamelCase ( lowercase : Union[str, Any] ) -> Tuple: try: import joblibspark # noqa F401 except ImportError: return unittest.skip("test requires joblibspark" )(lowercase ) else: return test_case def _lowerCamelCase ( lowercase : Tuple ) -> Tuple: if not _run_slow_tests or _run_slow_tests == 0: _a = unittest.skip("test is slow" )(lowercase ) return test_case def _lowerCamelCase ( lowercase : List[str] ) -> List[str]: if not _run_local_tests or _run_local_tests == 0: _a = unittest.skip("test is local" )(lowercase ) return test_case def _lowerCamelCase ( lowercase : Tuple ) -> Dict: if not _run_packaged_tests or _run_packaged_tests == 0: _a = unittest.skip("test is packaged" )(lowercase ) return test_case def _lowerCamelCase ( lowercase : str ) -> Dict: if not _run_remote_tests or _run_remote_tests == 0: _a = unittest.skip("test requires remote" )(lowercase ) return test_case def _lowerCamelCase ( *lowercase : str ) -> int: def decorate(cls : str ): for name, fn in cls.__dict__.items(): if callable(lowercase ) and name.startswith("test" ): for decorator in decorators: _a = decorator(lowercase ) setattr(cls , lowercase , lowercase ) return cls return decorate class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" pass class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =0 __a =1 __a =2 @contextmanager def _lowerCamelCase ( lowercase : Optional[int]=OfflineSimulationMode.CONNECTION_FAILS , lowercase : Dict=1E-1_6 ) -> str: _a = requests.Session().request def timeout_request(lowercase : Tuple , lowercase : List[Any] , lowercase : List[Any] , **lowercase : Optional[int] ): # Change the url to an invalid url so that the connection hangs _a = "https://10.255.255.1" if kwargs.get("timeout" ) is None: raise RequestWouldHangIndefinitelyError( F'Tried a call to {url} in offline mode with no timeout set. Please set a timeout.' ) _a = timeout try: return online_request(lowercase , lowercase , **lowercase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier _a = url _a = e.args[0] _a = (max_retry_error.args[0].replace("10.255.255.1" , F'OfflineMock[{url}]' ),) _a = (max_retry_error,) raise def raise_connection_error(lowercase : Any , lowercase : Any , **lowercase : Union[str, Any] ): raise requests.ConnectionError("Offline mode is enabled." , request=lowercase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("requests.Session.send" , lowercase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("requests.Session.request" , lowercase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("datasets.config.HF_DATASETS_OFFLINE" , lowercase ): yield else: raise ValueError("Please use a value from the OfflineSimulationMode enum." ) @contextmanager def _lowerCamelCase ( *lowercase : Tuple , **lowercase : List[str] ) -> Dict: _a = str(Path().resolve() ) with tempfile.TemporaryDirectory(*lowercase , **lowercase ) as tmp_dir: try: os.chdir(lowercase ) yield finally: os.chdir(lowercase ) @contextmanager def _lowerCamelCase ( ) -> int: import gc gc.collect() _a = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def _lowerCamelCase ( ) -> Optional[int]: import gc gc.collect() _a = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def _lowerCamelCase ( lowercase : Tuple , lowercase : Optional[Any] ) -> Optional[int]: return deepcopy(lowercase ).integers(0 , 100 , 10 ).tolist() == deepcopy(lowercase ).integers(0 , 100 , 10 ).tolist() def _lowerCamelCase ( lowercase : List[Any] ) -> Optional[int]: import decorator from requests.exceptions import HTTPError def _wrapper(lowercase : Tuple , *lowercase : List[Any] , **lowercase : Union[str, Any] ): try: return func(*lowercase , **lowercase ) except HTTPError as err: if str(lowercase ).startswith("500" ) or str(lowercase ).startswith("502" ): pytest.xfail(str(lowercase ) ) raise err return decorator.decorator(_wrapper , lowercase ) class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Optional[int] , __a : List[str] , __a : int , __a : List[str] ): _a = returncode _a = stdout _a = stderr async def _lowerCamelCase ( lowercase : List[Any] , lowercase : Tuple ) -> Optional[Any]: while True: _a = await stream.readline() if line: callback(lowercase ) else: break async def _lowerCamelCase ( lowercase : Any , lowercase : Dict=None , lowercase : Dict=None , lowercase : Optional[Any]=None , lowercase : Optional[int]=False , lowercase : Tuple=False ) -> _RunOutput: if echo: print("\nRunning: " , " ".join(lowercase ) ) _a = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=lowercase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=lowercase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) _a = [] _a = [] def tee(lowercase : Union[str, Any] , lowercase : Tuple , lowercase : str , lowercase : Dict="" ): _a = line.decode("utf-8" ).rstrip() sink.append(lowercase ) if not quiet: print(lowercase , lowercase , file=lowercase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda lowercase : tee(lowercase , lowercase , sys.stdout , label="stdout:" ) ), _read_stream(p.stderr , lambda lowercase : tee(lowercase , lowercase , sys.stderr , label="stderr:" ) ), ] , timeout=lowercase , ) return _RunOutput(await p.wait() , lowercase , lowercase ) def _lowerCamelCase ( lowercase : Any , lowercase : Optional[Any]=None , lowercase : str=None , lowercase : List[str]=180 , lowercase : Dict=False , lowercase : Optional[int]=True ) -> _RunOutput: _a = asyncio.get_event_loop() _a = loop.run_until_complete( _stream_subprocess(lowercase , env=lowercase , stdin=lowercase , timeout=lowercase , quiet=lowercase , echo=lowercase ) ) _a = " ".join(lowercase ) if result.returncode > 0: _a = "\n".join(result.stderr ) raise RuntimeError( F'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' F'The combined stderr from workers follows:\n{stderr}' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F'\'{cmd_str}\' produced no output.' ) return result def _lowerCamelCase ( ) -> Dict: _a = os.environ.get("PYTEST_XDIST_WORKER" , "gw0" ) _a = re.sub(r"^gw" , "" , lowercase , 0 , re.M ) return int(lowercase ) def _lowerCamelCase ( ) -> List[Any]: _a = 2_9500 _a = pytest_xdist_worker_id() return port + uniq_delta
368
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCAmelCase_ : Dict = abspath(join(dirname(dirname(dirname(__file__))), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def _lowerCamelCase ( lowercase : str ) -> Optional[int]: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(lowercase ) def _lowerCamelCase ( lowercase : Dict ) -> str: from transformers.testing_utils import pytest_terminal_summary_main _a = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(lowercase , id=lowercase )
346
0
"""simple docstring""" import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging A: str = logging.get_logger(__name__) # pylint: disable=invalid-name class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> int: '''simple docstring''' super().__init__() if safety_checker is None: logger.warning( F"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( speech_model=_SCREAMING_SNAKE_CASE , speech_processor=_SCREAMING_SNAKE_CASE , vae=_SCREAMING_SNAKE_CASE , text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE = "auto" ) -> Optional[Any]: '''simple docstring''' if slice_size == "auto": UpperCAmelCase : Optional[int] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' self.enable_attention_slicing(_SCREAMING_SNAKE_CASE ) @torch.no_grad() def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=16000 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> Any: '''simple docstring''' UpperCAmelCase : Any = self.speech_processor.feature_extractor( _SCREAMING_SNAKE_CASE , return_tensors="""pt""" , sampling_rate=_SCREAMING_SNAKE_CASE ).input_features.to(self.device ) UpperCAmelCase : Union[str, Any] = self.speech_model.generate(_SCREAMING_SNAKE_CASE , max_length=480000 ) UpperCAmelCase : Union[str, Any] = self.speech_processor.tokenizer.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE , normalize=_SCREAMING_SNAKE_CASE )[ 0 ] if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCAmelCase : Tuple = 1 elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCAmelCase : int = len(_SCREAMING_SNAKE_CASE ) else: raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(_SCREAMING_SNAKE_CASE )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or callback_steps <= 0) ): raise ValueError( F"`callback_steps` has to be a positive integer but is {callback_steps} of type" F" {type(_SCREAMING_SNAKE_CASE )}." ) # get prompt text embeddings UpperCAmelCase : Union[str, Any] = self.tokenizer( _SCREAMING_SNAKE_CASE , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) UpperCAmelCase : Optional[Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCAmelCase : Optional[Any] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" F" {self.tokenizer.model_max_length} tokens: {removed_text}" ) UpperCAmelCase : Optional[int] = text_input_ids[:, : self.tokenizer.model_max_length] UpperCAmelCase : List[Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = text_embeddings.shape UpperCAmelCase : Optional[Any] = text_embeddings.repeat(1 , _SCREAMING_SNAKE_CASE , 1 ) UpperCAmelCase : Optional[Any] = text_embeddings.view(bs_embed * num_images_per_prompt , _SCREAMING_SNAKE_CASE , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCAmelCase : List[Any] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCAmelCase : List[str] if negative_prompt is None: UpperCAmelCase : str = [""""""] * batch_size elif type(_SCREAMING_SNAKE_CASE ) is not type(_SCREAMING_SNAKE_CASE ): raise TypeError( F"`negative_prompt` should be the same type to `prompt`, but got {type(_SCREAMING_SNAKE_CASE )} !=" F" {type(_SCREAMING_SNAKE_CASE )}." ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCAmelCase : Union[str, Any] = [negative_prompt] elif batch_size != len(_SCREAMING_SNAKE_CASE ): raise ValueError( F"`negative_prompt`: {negative_prompt} has batch size {len(_SCREAMING_SNAKE_CASE )}, but `prompt`:" F" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" """ the batch size of `prompt`.""" ) else: UpperCAmelCase : Any = negative_prompt UpperCAmelCase : Dict = text_input_ids.shape[-1] UpperCAmelCase : str = self.tokenizer( _SCREAMING_SNAKE_CASE , padding="""max_length""" , max_length=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" , ) UpperCAmelCase : Optional[Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCAmelCase : int = uncond_embeddings.shape[1] UpperCAmelCase : Dict = uncond_embeddings.repeat(1 , _SCREAMING_SNAKE_CASE , 1 ) UpperCAmelCase : int = uncond_embeddings.view(batch_size * num_images_per_prompt , _SCREAMING_SNAKE_CASE , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase : Optional[Any] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCAmelCase : str = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) UpperCAmelCase : Tuple = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps UpperCAmelCase : List[str] = torch.randn(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device="""cpu""" , dtype=_SCREAMING_SNAKE_CASE ).to( self.device ) else: UpperCAmelCase : Optional[int] = torch.randn(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device=self.device , dtype=_SCREAMING_SNAKE_CASE ) else: if latents.shape != latents_shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) UpperCAmelCase : List[str] = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand UpperCAmelCase : Union[str, Any] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCAmelCase : List[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCAmelCase : Optional[Any] = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCAmelCase : Optional[int] = {} if accepts_eta: UpperCAmelCase : Dict = eta for i, t in enumerate(self.progress_bar(_SCREAMING_SNAKE_CASE ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase : Dict = self.scheduler.scale_model_input(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # predict the noise residual UpperCAmelCase : Tuple = self.unet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE ).sample # perform guidance if do_classifier_free_guidance: UpperCAmelCase , UpperCAmelCase : Optional[int] = noise_pred.chunk(2 ) UpperCAmelCase : str = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase : Tuple = self.scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[int] = 1 / 0.1_8215 * latents UpperCAmelCase : Optional[Any] = self.vae.decode(_SCREAMING_SNAKE_CASE ).sample UpperCAmelCase : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCAmelCase : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase : List[Any] = self.numpy_to_pil(_SCREAMING_SNAKE_CASE ) if not return_dict: return image return StableDiffusionPipelineOutput(images=_SCREAMING_SNAKE_CASE , nsfw_content_detected=_SCREAMING_SNAKE_CASE )
109
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __a : str = logging.get_logger(__name__) __a : int = { """microsoft/wavlm-base""": """https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json""", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class _UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" __a : Any = '''wavlm''' def __init__( self , lowerCAmelCase__=32 , lowerCAmelCase__=7_68 , lowerCAmelCase__=12 , lowerCAmelCase__=12 , lowerCAmelCase__=30_72 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-5 , lowerCAmelCase__="group" , lowerCAmelCase__="gelu" , lowerCAmelCase__=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , lowerCAmelCase__=(5, 2, 2, 2, 2, 2, 2) , lowerCAmelCase__=(10, 3, 3, 3, 3, 2, 2) , lowerCAmelCase__=False , lowerCAmelCase__=1_28 , lowerCAmelCase__=16 , lowerCAmelCase__=3_20 , lowerCAmelCase__=8_00 , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=0.05 , lowerCAmelCase__=10 , lowerCAmelCase__=2 , lowerCAmelCase__=0.0 , lowerCAmelCase__=10 , lowerCAmelCase__=3_20 , lowerCAmelCase__=2 , lowerCAmelCase__=0.1 , lowerCAmelCase__=1_00 , lowerCAmelCase__=2_56 , lowerCAmelCase__=2_56 , lowerCAmelCase__=0.1 , lowerCAmelCase__="mean" , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=2_56 , lowerCAmelCase__=(5_12, 5_12, 5_12, 5_12, 15_00) , lowerCAmelCase__=(5, 3, 3, 1, 1) , lowerCAmelCase__=(1, 2, 3, 1, 1) , lowerCAmelCase__=5_12 , lowerCAmelCase__=80 , lowerCAmelCase__=0 , lowerCAmelCase__=1 , lowerCAmelCase__=2 , lowerCAmelCase__=False , lowerCAmelCase__=3 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=None , **lowerCAmelCase__ , ) -> Tuple: '''simple docstring''' super().__init__(**lowerCAmelCase__ , pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ ) __lowercase = hidden_size __lowercase = feat_extract_norm __lowercase = feat_extract_activation __lowercase = list(lowerCAmelCase__ ) __lowercase = list(lowerCAmelCase__ ) __lowercase = list(lowerCAmelCase__ ) __lowercase = conv_bias __lowercase = num_buckets __lowercase = max_bucket_distance __lowercase = num_conv_pos_embeddings __lowercase = num_conv_pos_embedding_groups __lowercase = len(self.conv_dim ) __lowercase = num_hidden_layers __lowercase = intermediate_size __lowercase = hidden_act __lowercase = num_attention_heads __lowercase = hidden_dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = feat_proj_dropout __lowercase = final_dropout __lowercase = layerdrop __lowercase = layer_norm_eps __lowercase = initializer_range __lowercase = num_ctc_classes __lowercase = vocab_size __lowercase = do_stable_layer_norm __lowercase = use_weighted_layer_sum __lowercase = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," F" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowercase = apply_spec_augment __lowercase = mask_time_prob __lowercase = mask_time_length __lowercase = mask_time_min_masks __lowercase = mask_feature_prob __lowercase = mask_feature_length # parameters for pretraining with codevector quantized representations __lowercase = num_codevectors_per_group __lowercase = num_codevector_groups __lowercase = contrastive_logits_temperature __lowercase = num_negatives __lowercase = codevector_dim __lowercase = proj_codevector_dim __lowercase = diversity_loss_weight # ctc loss __lowercase = ctc_loss_reduction __lowercase = ctc_zero_infinity # adapter __lowercase = add_adapter __lowercase = adapter_kernel_size __lowercase = adapter_stride __lowercase = num_adapter_layers __lowercase = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. __lowercase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __lowercase = list(lowerCAmelCase__ ) __lowercase = list(lowerCAmelCase__ ) __lowercase = list(lowerCAmelCase__ ) __lowercase = xvector_output_dim @property def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
210
0
'''simple docstring''' from math import pow def a__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : int , ) -> tuple[int, int]: """simple docstring""" if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count UpperCAmelCase_ : Any = int(pow(__snake_case , __snake_case ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n UpperCAmelCase_ , UpperCAmelCase_ : int = backtrack( __snake_case , __snake_case , current_number + 1 , __snake_case , __snake_case ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = backtrack( __snake_case , __snake_case , current_number + 1 , __snake_case , __snake_case ) return current_sum, solutions_count def a__ ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Any ) -> int: """simple docstring""" if not (1 <= needed_sum <= 10_00 and 2 <= power <= 10): raise ValueError( "Invalid input\n" "needed_sum must be between 1 and 1000, power between 2 and 10." ) return backtrack(__snake_case , __snake_case , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
361
'''simple docstring''' def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ) -> int: """simple docstring""" return 1 if input_a == input_a else 0 def a__ ( ) -> None: """simple docstring""" assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
67
0
"""simple docstring""" def snake_case ( A__ ): UpperCAmelCase_ : str = len(A__ ) for i in range(1 ,A__ ): UpperCAmelCase_ : Tuple = collection[i] UpperCAmelCase_ : Any = 0 UpperCAmelCase_ : Any = i - 1 while low <= high: UpperCAmelCase_ : Union[str, Any] = (low + high) // 2 if val < collection[mid]: UpperCAmelCase_ : List[str] = mid - 1 else: UpperCAmelCase_ : Dict = mid + 1 for j in range(A__ ,A__ ,-1 ): UpperCAmelCase_ : Optional[Any] = collection[j - 1] UpperCAmelCase_ : Optional[int] = val return collection if __name__ == "__main__": lowerCamelCase_ = input('''Enter numbers separated by a comma:\n''').strip() lowerCamelCase_ = [int(item) for item in user_input.split(''',''')] print(binary_insertion_sort(unsorted))
268
"""simple docstring""" from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase_ : def __init__( self : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : Optional[int]=32 , lowerCAmelCase_ : List[Any]=3 , lowerCAmelCase_ : List[Any]=10 , lowerCAmelCase_ : Any=[10, 20, 30, 40] , lowerCAmelCase_ : Any=[1, 1, 2, 1] , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : int="relu" , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : Optional[int]=None , ) -> str: UpperCAmelCase_ : Tuple = parent UpperCAmelCase_ : int = batch_size UpperCAmelCase_ : str = image_size UpperCAmelCase_ : List[Any] = num_channels UpperCAmelCase_ : Tuple = embeddings_size UpperCAmelCase_ : Union[str, Any] = hidden_sizes UpperCAmelCase_ : int = depths UpperCAmelCase_ : Optional[Any] = is_training UpperCAmelCase_ : Dict = use_labels UpperCAmelCase_ : str = hidden_act UpperCAmelCase_ : str = num_labels UpperCAmelCase_ : str = scope UpperCAmelCase_ : str = len(lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: UpperCAmelCase_ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : Union[str, Any] = None if self.use_labels: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ : Optional[Any] = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict ) -> str: UpperCAmelCase_ : List[Any] = TFRegNetModel(config=lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = model(lowerCAmelCase_ , training=lowerCAmelCase_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] ) -> Optional[Any]: UpperCAmelCase_ : Union[str, Any] = self.num_labels UpperCAmelCase_ : List[Any] = TFRegNetForImageClassification(lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = model(lowerCAmelCase_ , labels=lowerCAmelCase_ , training=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: UpperCAmelCase_ : Any = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Dict = config_and_inputs UpperCAmelCase_ : List[str] = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class UpperCamelCase_ (__A , __A , unittest.TestCase ): __magic_name__ = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () __magic_name__ = ( {'''feature-extraction''': TFRegNetModel, '''image-classification''': TFRegNetForImageClassification} if is_tf_available() else {} ) __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: UpperCAmelCase_ : Optional[int] = TFRegNetModelTester(self ) UpperCAmelCase_ : Optional[Any] = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: return @unittest.skip(reason="RegNet does not use inputs_embeds" ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU" ) ) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) @slow def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: super().test_keras_fit() @unittest.skip(reason="RegNet does not support input and output embeddings" ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: pass def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Dict = model_class(lowerCAmelCase_ ) UpperCAmelCase_ : Tuple = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : List[Any] = [*signature.parameters.keys()] UpperCAmelCase_ : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: def check_hidden_states_output(lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int ): UpperCAmelCase_ : str = model_class(lowerCAmelCase_ ) UpperCAmelCase_ : Any = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) , training=lowerCAmelCase_ ) UpperCAmelCase_ : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase_ : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Tuple = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCAmelCase_ : List[Any] = layer_type UpperCAmelCase_ : int = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Optional[int] = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: UpperCAmelCase_ , UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str]={} ): UpperCAmelCase_ : Tuple = model(lowerCAmelCase_ , return_dict=lowerCAmelCase_ , **lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = model(lowerCAmelCase_ , return_dict=lowerCAmelCase_ , **lowerCAmelCase_ ).to_tuple() def recursive_check(lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any ): if isinstance(lowerCAmelCase_ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(lowerCAmelCase_ , lowerCAmelCase_ ): recursive_check(lowerCAmelCase_ , lowerCAmelCase_ ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(lowerCAmelCase_ , lowerCAmelCase_ ) ) , msg=( "Tuple and dict output are not equal. Difference:" f""" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}""" ) , ) recursive_check(lowerCAmelCase_ , lowerCAmelCase_ ) for model_class in self.all_model_classes: UpperCAmelCase_ : Union[str, Any] = model_class(lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : str = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) check_equivalence(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Any = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) check_equivalence(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : str = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) check_equivalence(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , {"output_hidden_states": True} ) UpperCAmelCase_ : List[str] = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) UpperCAmelCase_ : Tuple = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) check_equivalence(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , {"output_hidden_states": True} ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @slow def _SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Any = TFRegNetModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def snake_case ( ): UpperCAmelCase_ : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class UpperCamelCase_ (unittest.TestCase ): @cached_property def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: UpperCAmelCase_ : Any = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) UpperCAmelCase_ : Union[str, Any] = self.default_image_processor UpperCAmelCase_ : int = prepare_img() UpperCAmelCase_ : List[Any] = image_processor(images=lowerCAmelCase_ , return_tensors="tf" ) # forward pass UpperCAmelCase_ : Tuple = model(**lowerCAmelCase_ , training=lowerCAmelCase_ ) # verify the logits UpperCAmelCase_ : List[str] = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = tf.constant([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] ) tf.debugging.assert_near(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 )
268
1
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() a__ : Dict = logging.get_logger(__name__) def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = OrderedDict() for key, value in state_dict.items(): if key.startswith("""module.encoder""" ): __UpperCamelCase = key.replace("""module.encoder""" ,"""glpn.encoder""" ) if key.startswith("""module.decoder""" ): __UpperCamelCase = key.replace("""module.decoder""" ,"""decoder.stages""" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 __UpperCamelCase = key[key.find("""patch_embed""" ) + len("""patch_embed""" )] __UpperCamelCase = key.replace(f"patch_embed{idx}" ,f"patch_embeddings.{int(__A )-1}" ) if "norm" in key: __UpperCamelCase = key.replace("""norm""" ,"""layer_norm""" ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 __UpperCamelCase = key[key.find("""glpn.encoder.layer_norm""" ) + len("""glpn.encoder.layer_norm""" )] __UpperCamelCase = key.replace(f"layer_norm{idx}" ,f"layer_norm.{int(__A )-1}" ) if "layer_norm1" in key: __UpperCamelCase = key.replace("""layer_norm1""" ,"""layer_norm_1""" ) if "layer_norm2" in key: __UpperCamelCase = key.replace("""layer_norm2""" ,"""layer_norm_2""" ) if "block" in key: # replace for example block1 by block.0 __UpperCamelCase = key[key.find("""block""" ) + len("""block""" )] __UpperCamelCase = key.replace(f"block{idx}" ,f"block.{int(__A )-1}" ) if "attn.q" in key: __UpperCamelCase = key.replace("""attn.q""" ,"""attention.self.query""" ) if "attn.proj" in key: __UpperCamelCase = key.replace("""attn.proj""" ,"""attention.output.dense""" ) if "attn" in key: __UpperCamelCase = key.replace("""attn""" ,"""attention.self""" ) if "fc1" in key: __UpperCamelCase = key.replace("""fc1""" ,"""dense1""" ) if "fc2" in key: __UpperCamelCase = key.replace("""fc2""" ,"""dense2""" ) if "linear_pred" in key: __UpperCamelCase = key.replace("""linear_pred""" ,"""classifier""" ) if "linear_fuse" in key: __UpperCamelCase = key.replace("""linear_fuse.conv""" ,"""linear_fuse""" ) __UpperCamelCase = key.replace("""linear_fuse.bn""" ,"""batch_norm""" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 __UpperCamelCase = key[key.find("""linear_c""" ) + len("""linear_c""" )] __UpperCamelCase = key.replace(f"linear_c{idx}" ,f"linear_c.{int(__A )-1}" ) if "bot_conv" in key: __UpperCamelCase = key.replace("""bot_conv""" ,"""0.convolution""" ) if "skip_conv1" in key: __UpperCamelCase = key.replace("""skip_conv1""" ,"""1.convolution""" ) if "skip_conv2" in key: __UpperCamelCase = key.replace("""skip_conv2""" ,"""2.convolution""" ) if "fusion1" in key: __UpperCamelCase = key.replace("""fusion1""" ,"""1.fusion""" ) if "fusion2" in key: __UpperCamelCase = key.replace("""fusion2""" ,"""2.fusion""" ) if "fusion3" in key: __UpperCamelCase = key.replace("""fusion3""" ,"""3.fusion""" ) if "fusion" in key and "conv" in key: __UpperCamelCase = key.replace("""conv""" ,"""convolutional_layer""" ) if key.startswith("""module.last_layer_depth""" ): __UpperCamelCase = key.replace("""module.last_layer_depth""" ,"""head.head""" ) __UpperCamelCase = value return new_state_dict def _lowercase ( __A ,__A ): '''simple docstring''' for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) __UpperCamelCase = state_dict.pop(f"glpn.encoder.block.{i}.{j}.attention.self.kv.weight" ) __UpperCamelCase = state_dict.pop(f"glpn.encoder.block.{i}.{j}.attention.self.kv.bias" ) # next, add keys and values (in that order) to the state dict __UpperCamelCase = kv_weight[ : config.hidden_sizes[i], : ] __UpperCamelCase = kv_bias[: config.hidden_sizes[i]] __UpperCamelCase = kv_weight[ config.hidden_sizes[i] :, : ] __UpperCamelCase = kv_bias[config.hidden_sizes[i] :] def _lowercase ( ): '''simple docstring''' __UpperCamelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __UpperCamelCase = Image.open(requests.get(__A ,stream=__A ).raw ) return image @torch.no_grad() def _lowercase ( __A ,__A ,__A=False ,__A=None ): '''simple docstring''' __UpperCamelCase = GLPNConfig(hidden_sizes=[64, 128, 320, 512] ,decoder_hidden_size=64 ,depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) __UpperCamelCase = GLPNImageProcessor() # prepare image __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__A ,return_tensors="""pt""" ).pixel_values logger.info("""Converting model...""" ) # load original state dict __UpperCamelCase = torch.load(__A ,map_location=torch.device("""cpu""" ) ) # rename keys __UpperCamelCase = rename_keys(__A ) # key and value matrices need special treatment read_in_k_v(__A ,__A ) # create HuggingFace model and load state dict __UpperCamelCase = GLPNForDepthEstimation(__A ) model.load_state_dict(__A ) model.eval() # forward pass __UpperCamelCase = model(__A ) __UpperCamelCase = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: __UpperCamelCase = torch.tensor( [[4.4147, 4.0873, 4.0673], [3.7890, 3.2881, 3.1525], [3.7674, 3.5423, 3.4913]] ) elif "kitti" in model_name: __UpperCamelCase = torch.tensor( [[3.4291, 2.7865, 2.5151], [3.2841, 2.7021, 2.3502], [3.1147, 2.4625, 2.2481]] ) else: raise ValueError(f"Unknown model name: {model_name}" ) __UpperCamelCase = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] ,__A ,atol=1E-4 ) print("""Looks ok!""" ) # finally, push to hub if required if push_to_hub: logger.info("""Pushing model and image processor to the hub...""" ) model.push_to_hub( repo_path_or_name=Path(__A ,__A ) ,organization="""nielsr""" ,commit_message="""Add model""" ,use_temp_dir=__A ,) image_processor.push_to_hub( repo_path_or_name=Path(__A ,__A ) ,organization="""nielsr""" ,commit_message="""Add image processor""" ,use_temp_dir=__A ,) if __name__ == "__main__": a__ : str = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) parser.add_argument( '--model_name', default='glpn-kitti', type=str, help='Name of the model in case you\'re pushing to the hub.', ) a__ : Optional[int] = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
364
'''simple docstring''' def _lowercase ( __A = 10 ,__A = 22 ): '''simple docstring''' __UpperCamelCase = range(1 ,__A ) __UpperCamelCase = range(1 ,__A ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f'''{solution(1_0, 2_2) = }''')
243
0
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : int = logging.get_logger(__name__) __UpperCamelCase : Any = { """kakaobrain/align-base""": """https://huggingface.co/kakaobrain/align-base/resolve/main/config.json""", } class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = "align_text_model" def __init__( self: Union[str, Any] , UpperCamelCase: Optional[Any]=3_05_22 , UpperCamelCase: str=7_68 , UpperCamelCase: int=12 , UpperCamelCase: str=12 , UpperCamelCase: Union[str, Any]=30_72 , UpperCamelCase: List[str]="gelu" , UpperCamelCase: int=0.1 , UpperCamelCase: Optional[Any]=0.1 , UpperCamelCase: List[Any]=5_12 , UpperCamelCase: int=2 , UpperCamelCase: List[Any]=0.02 , UpperCamelCase: Dict=1e-12 , UpperCamelCase: List[str]=0 , UpperCamelCase: Optional[int]="absolute" , UpperCamelCase: List[str]=True , **UpperCamelCase: Dict , ) -> List[str]: super().__init__(**UpperCamelCase ) snake_case__ = vocab_size snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = hidden_act snake_case__ = intermediate_size snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = max_position_embeddings snake_case__ = type_vocab_size snake_case__ = initializer_range snake_case__ = layer_norm_eps snake_case__ = position_embedding_type snake_case__ = use_cache snake_case__ = pad_token_id @classmethod def lowerCAmelCase_ ( cls: Tuple , UpperCamelCase: Union[str, os.PathLike] , **UpperCamelCase: Any ) -> "PretrainedConfig": cls._set_token_in_kwargs(UpperCamelCase ) snake_case__ , snake_case__ = cls.get_config_dict(UpperCamelCase , **UpperCamelCase ) # get the text config dict if we are loading from AlignConfig if config_dict.get('model_type' ) == "align": snake_case__ = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCamelCase , **UpperCamelCase ) class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = "align_vision_model" def __init__( self: Optional[Any] , UpperCamelCase: int = 3 , UpperCamelCase: int = 6_00 , UpperCamelCase: float = 2.0 , UpperCamelCase: float = 3.1 , UpperCamelCase: int = 8 , UpperCamelCase: List[int] = [3, 3, 5, 3, 5, 5, 3] , UpperCamelCase: List[int] = [32, 16, 24, 40, 80, 1_12, 1_92] , UpperCamelCase: List[int] = [16, 24, 40, 80, 1_12, 1_92, 3_20] , UpperCamelCase: List[int] = [] , UpperCamelCase: List[int] = [1, 2, 2, 2, 1, 2, 1] , UpperCamelCase: List[int] = [1, 2, 2, 3, 3, 4, 1] , UpperCamelCase: List[int] = [1, 6, 6, 6, 6, 6, 6] , UpperCamelCase: float = 0.25 , UpperCamelCase: str = "swish" , UpperCamelCase: int = 25_60 , UpperCamelCase: str = "mean" , UpperCamelCase: float = 0.02 , UpperCamelCase: float = 0.001 , UpperCamelCase: float = 0.99 , UpperCamelCase: float = 0.2 , **UpperCamelCase: Any , ) -> Optional[Any]: super().__init__(**UpperCamelCase ) snake_case__ = num_channels snake_case__ = image_size snake_case__ = width_coefficient snake_case__ = depth_coefficient snake_case__ = depth_divisor snake_case__ = kernel_sizes snake_case__ = in_channels snake_case__ = out_channels snake_case__ = depthwise_padding snake_case__ = strides snake_case__ = num_block_repeats snake_case__ = expand_ratios snake_case__ = squeeze_expansion_ratio snake_case__ = hidden_act snake_case__ = hidden_dim snake_case__ = pooling_type snake_case__ = initializer_range snake_case__ = batch_norm_eps snake_case__ = batch_norm_momentum snake_case__ = drop_connect_rate snake_case__ = sum(UpperCamelCase ) * 4 @classmethod def lowerCAmelCase_ ( cls: str , UpperCamelCase: Union[str, os.PathLike] , **UpperCamelCase: List[Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(UpperCamelCase ) snake_case__ , snake_case__ = cls.get_config_dict(UpperCamelCase , **UpperCamelCase ) # get the vision config dict if we are loading from AlignConfig if config_dict.get('model_type' ) == "align": snake_case__ = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCamelCase , **UpperCamelCase ) class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = "align" _UpperCAmelCase = True def __init__( self: Optional[Any] , UpperCamelCase: Optional[int]=None , UpperCamelCase: Dict=None , UpperCamelCase: Optional[Any]=6_40 , UpperCamelCase: List[str]=1.0 , UpperCamelCase: int=0.02 , **UpperCamelCase: Tuple , ) -> Any: super().__init__(**UpperCamelCase ) if text_config is None: snake_case__ = {} logger.info('text_config is None. Initializing the AlignTextConfig with default values.' ) if vision_config is None: snake_case__ = {} logger.info('vision_config is None. Initializing the AlignVisionConfig with default values.' ) snake_case__ = AlignTextConfig(**UpperCamelCase ) snake_case__ = AlignVisionConfig(**UpperCamelCase ) snake_case__ = projection_dim snake_case__ = temperature_init_value snake_case__ = initializer_range @classmethod def lowerCAmelCase_ ( cls: Optional[int] , UpperCamelCase: AlignTextConfig , UpperCamelCase: AlignVisionConfig , **UpperCamelCase: Union[str, Any] ) -> Union[str, Any]: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **UpperCamelCase ) def lowerCAmelCase_ ( self: Optional[Any] ) -> Optional[int]: snake_case__ = copy.deepcopy(self.__dict__ ) snake_case__ = self.text_config.to_dict() snake_case__ = self.vision_config.to_dict() snake_case__ = self.__class__.model_type return output
307
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class __SCREAMING_SNAKE_CASE( TensorFormatter[Mapping, "torch.Tensor", Mapping] ): def __init__( self: Any , UpperCamelCase: Optional[int]=None , **UpperCamelCase: Union[str, Any] ) -> int: super().__init__(features=UpperCamelCase ) snake_case__ = torch_tensor_kwargs import torch # noqa import torch at initialization def lowerCAmelCase_ ( self: Any , UpperCamelCase: Any ) -> List[str]: import torch if isinstance(UpperCamelCase , UpperCamelCase ) and column: if all( isinstance(UpperCamelCase , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(UpperCamelCase ) return column def lowerCAmelCase_ ( self: str , UpperCamelCase: Dict ) -> Union[str, Any]: import torch if isinstance(UpperCamelCase , (str, bytes, type(UpperCamelCase )) ): return value elif isinstance(UpperCamelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() snake_case__ = {} if isinstance(UpperCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): snake_case__ = {'dtype': torch.intaa} elif isinstance(UpperCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): snake_case__ = {'dtype': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCamelCase , PIL.Image.Image ): snake_case__ = np.asarray(UpperCamelCase ) return torch.tensor(UpperCamelCase , **{**default_dtype, **self.torch_tensor_kwargs} ) def lowerCAmelCase_ ( self: Any , UpperCamelCase: str ) -> Any: import torch # support for torch, tf, jax etc. if hasattr(UpperCamelCase , '__array__' ) and not isinstance(UpperCamelCase , torch.Tensor ): snake_case__ = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCamelCase , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCamelCase ) for substruct in data_struct] ) elif isinstance(UpperCamelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCamelCase ) for substruct in data_struct] ) return self._tensorize(UpperCamelCase ) def lowerCAmelCase_ ( self: List[Any] , UpperCamelCase: dict ) -> List[str]: return map_nested(self._recursive_tensorize , UpperCamelCase , map_list=UpperCamelCase ) def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: pa.Table ) -> Mapping: snake_case__ = self.numpy_arrow_extractor().extract_row(UpperCamelCase ) snake_case__ = self.python_features_decoder.decode_row(UpperCamelCase ) return self.recursive_tensorize(UpperCamelCase ) def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: pa.Table ) -> "torch.Tensor": snake_case__ = self.numpy_arrow_extractor().extract_column(UpperCamelCase ) snake_case__ = self.python_features_decoder.decode_column(UpperCamelCase , pa_table.column_names[0] ) snake_case__ = self.recursive_tensorize(UpperCamelCase ) snake_case__ = self._consolidate(UpperCamelCase ) return column def lowerCAmelCase_ ( self: Union[str, Any] , UpperCamelCase: pa.Table ) -> Mapping: snake_case__ = self.numpy_arrow_extractor().extract_batch(UpperCamelCase ) snake_case__ = self.python_features_decoder.decode_batch(UpperCamelCase ) snake_case__ = self.recursive_tensorize(UpperCamelCase ) for column_name in batch: snake_case__ = self._consolidate(batch[column_name] ) return batch
307
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase :Any = logging.get_logger(__name__) lowerCamelCase :str = { '''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''', '''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''', } class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : int = 'markuplm' def __init__(self , lowercase=30522 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=2 , lowercase=0.02 , lowercase=1E-12 , lowercase=0 , lowercase=0 , lowercase=2 , lowercase=256 , lowercase=1024 , lowercase=216 , lowercase=1001 , lowercase=32 , lowercase=50 , lowercase="absolute" , lowercase=True , lowercase=None , **lowercase , ): super().__init__( pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase , ) A_ : int = vocab_size A_ : int = hidden_size A_ : Union[str, Any] = num_hidden_layers A_ : Optional[int] = num_attention_heads A_ : List[Any] = hidden_act A_ : Dict = intermediate_size A_ : Optional[int] = hidden_dropout_prob A_ : List[str] = attention_probs_dropout_prob A_ : Tuple = max_position_embeddings A_ : Optional[int] = type_vocab_size A_ : str = initializer_range A_ : Optional[int] = layer_norm_eps A_ : List[str] = position_embedding_type A_ : Dict = use_cache A_ : Optional[int] = classifier_dropout # additional properties A_ : Optional[int] = max_depth A_ : Union[str, Any] = max_xpath_tag_unit_embeddings A_ : str = max_xpath_subs_unit_embeddings A_ : Optional[Any] = tag_pad_id A_ : Union[str, Any] = subs_pad_id A_ : List[str] = xpath_unit_hidden_size
135
'''simple docstring''' from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def a ( lowerCamelCase__ ): '''simple docstring''' A_ : List[Any] = prime_factors(lowerCamelCase__ ) if is_square_free(lowerCamelCase__ ): return -1 if len(lowerCamelCase__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
135
1
'''simple docstring''' import torch from torch import nn class lowerCamelCase_ (nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , A : Dict , A : Tuple , A : Optional[Any] , A : Tuple , A : Union[str, Any]=1 , A : str=False ): super().__init__() _UpperCAmelCase : Union[str, Any] = n_token _UpperCAmelCase : List[Any] = d_embed _UpperCAmelCase : List[str] = d_proj _UpperCAmelCase : Union[str, Any] = cutoffs + [n_token] _UpperCAmelCase : str = [0] + self.cutoffs _UpperCAmelCase : Dict = div_val _UpperCAmelCase : Tuple = self.cutoffs[0] _UpperCAmelCase : Tuple = len(self.cutoffs ) - 1 _UpperCAmelCase : Tuple = self.shortlist_size + self.n_clusters if self.n_clusters > 0: _UpperCAmelCase : Any = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) _UpperCAmelCase : Optional[int] = nn.Parameter(torch.zeros(self.n_clusters ) ) _UpperCAmelCase : str = nn.ModuleList() _UpperCAmelCase : Dict = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(A , A ) ) ) else: self.out_projs.append(A ) self.out_layers.append(nn.Linear(A , A ) ) else: for i in range(len(self.cutoffs ) ): _UpperCAmelCase , _UpperCAmelCase : Dict = self.cutoff_ends[i], self.cutoff_ends[i + 1] _UpperCAmelCase : Tuple = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(A , A ) ) ) self.out_layers.append(nn.Linear(A , r_idx - l_idx ) ) _UpperCAmelCase : Dict = keep_order def _A ( self : Optional[int] , A : Optional[int] , A : List[str] , A : Optional[Any] , A : List[str] ): if proj is None: _UpperCAmelCase : Optional[int] = nn.functional.linear(A , A , bias=A ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: _UpperCAmelCase : Optional[int] = nn.functional.linear(A , proj.t().contiguous() ) _UpperCAmelCase : str = nn.functional.linear(A , A , bias=A ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def _A ( self : Optional[int] , A : Tuple , A : Union[str, Any]=None , A : Any=False ): if labels is not None: # Shift so that tokens < n predict n _UpperCAmelCase : Union[str, Any] = hidden[..., :-1, :].contiguous() _UpperCAmelCase : str = labels[..., 1:].contiguous() _UpperCAmelCase : Any = hidden.view(-1 , hidden.size(-1 ) ) _UpperCAmelCase : str = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError("Input and labels should have the same size in the batch dimension." ) else: _UpperCAmelCase : Union[str, Any] = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: _UpperCAmelCase : Any = self._compute_logit(A , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: _UpperCAmelCase : Optional[int] = labels != -100 _UpperCAmelCase : List[str] = torch.zeros_like(A , dtype=hidden.dtype , device=hidden.device ) _UpperCAmelCase : List[str] = ( -nn.functional.log_softmax(A , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: _UpperCAmelCase : str = nn.functional.log_softmax(A , dim=-1 ) else: # construct weights and biases _UpperCAmelCase , _UpperCAmelCase : Dict = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: _UpperCAmelCase , _UpperCAmelCase : List[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] _UpperCAmelCase : Any = self.out_layers[0].weight[l_idx:r_idx] _UpperCAmelCase : Union[str, Any] = self.out_layers[0].bias[l_idx:r_idx] else: _UpperCAmelCase : Optional[int] = self.out_layers[i].weight _UpperCAmelCase : Dict = self.out_layers[i].bias if i == 0: _UpperCAmelCase : int = torch.cat([weight_i, self.cluster_weight] , dim=0 ) _UpperCAmelCase : Union[str, Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(A ) biases.append(A ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[str] = weights[0], biases[0], self.out_projs[0] _UpperCAmelCase : Dict = self._compute_logit(A , A , A , A ) _UpperCAmelCase : List[str] = nn.functional.log_softmax(A , dim=1 ) if labels is None: _UpperCAmelCase : int = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: _UpperCAmelCase : int = torch.zeros_like(A , dtype=hidden.dtype , device=hidden.device ) _UpperCAmelCase : Dict = 0 _UpperCAmelCase : Any = [0] + self.cutoffs for i in range(len(A ) - 1 ): _UpperCAmelCase , _UpperCAmelCase : str = cutoff_values[i], cutoff_values[i + 1] if labels is not None: _UpperCAmelCase : List[Any] = (labels >= l_idx) & (labels < r_idx) _UpperCAmelCase : Any = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue _UpperCAmelCase : Union[str, Any] = labels.index_select(0 , A ) - l_idx _UpperCAmelCase : Any = head_logprob.index_select(0 , A ) _UpperCAmelCase : Dict = hidden.index_select(0 , A ) else: _UpperCAmelCase : List[Any] = hidden if i == 0: if labels is not None: _UpperCAmelCase : str = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: _UpperCAmelCase : Optional[Any] = head_logprob[:, : self.cutoffs[0]] else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = weights[i], biases[i], self.out_projs[i] _UpperCAmelCase : Optional[Any] = self._compute_logit(A , A , A , A ) _UpperCAmelCase : Optional[int] = nn.functional.log_softmax(A , dim=1 ) _UpperCAmelCase : Tuple = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: _UpperCAmelCase : Union[str, Any] = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: _UpperCAmelCase : str = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i _UpperCAmelCase : Optional[Any] = logprob_i if labels is not None: if (hasattr(self , "keep_order" ) and self.keep_order) or keep_order: out.index_copy_(0 , A , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def _A ( self : Optional[int] , A : str ): if self.n_clusters == 0: _UpperCAmelCase : List[str] = self._compute_logit(A , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(A , dim=-1 ) else: # construct weights and biases _UpperCAmelCase , _UpperCAmelCase : List[Any] = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] _UpperCAmelCase : Union[str, Any] = self.out_layers[0].weight[l_idx:r_idx] _UpperCAmelCase : List[Any] = self.out_layers[0].bias[l_idx:r_idx] else: _UpperCAmelCase : int = self.out_layers[i].weight _UpperCAmelCase : List[str] = self.out_layers[i].bias if i == 0: _UpperCAmelCase : Tuple = torch.cat([weight_i, self.cluster_weight] , dim=0 ) _UpperCAmelCase : Any = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(A ) biases.append(A ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[int] = weights[0], biases[0], self.out_projs[0] _UpperCAmelCase : Optional[Any] = self._compute_logit(A , A , A , A ) _UpperCAmelCase : Union[str, Any] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) _UpperCAmelCase : Any = nn.functional.log_softmax(A , dim=1 ) _UpperCAmelCase : Optional[Any] = [0] + self.cutoffs for i in range(len(A ) - 1 ): _UpperCAmelCase , _UpperCAmelCase : List[str] = cutoff_values[i], cutoff_values[i + 1] if i == 0: _UpperCAmelCase : str = head_logprob[:, : self.cutoffs[0]] else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Tuple = weights[i], biases[i], self.out_projs[i] _UpperCAmelCase : int = self._compute_logit(A , A , A , A ) _UpperCAmelCase : List[str] = nn.functional.log_softmax(A , dim=1 ) _UpperCAmelCase : Optional[Any] = head_logprob[:, -i] + tail_logprob_i _UpperCAmelCase : Any = logprob_i return out
31
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer __SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : str = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __SCREAMING_SNAKE_CASE : Dict = { """vocab_file""": { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt""" ), """distilbert-base-german-cased""": """https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt""", """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json""" ), """distilbert-base-german-cased""": ( """https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json""" ), """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json""" ), }, } __SCREAMING_SNAKE_CASE : Optional[Any] = { """distilbert-base-uncased""": 512, """distilbert-base-uncased-distilled-squad""": 512, """distilbert-base-cased""": 512, """distilbert-base-cased-distilled-squad""": 512, """distilbert-base-german-cased""": 512, """distilbert-base-multilingual-cased""": 512, } __SCREAMING_SNAKE_CASE : List[Any] = { """distilbert-base-uncased""": {"""do_lower_case""": True}, """distilbert-base-uncased-distilled-squad""": {"""do_lower_case""": True}, """distilbert-base-cased""": {"""do_lower_case""": False}, """distilbert-base-cased-distilled-squad""": {"""do_lower_case""": False}, """distilbert-base-german-cased""": {"""do_lower_case""": False}, """distilbert-base-multilingual-cased""": {"""do_lower_case""": False}, } class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: Union[str, Any] = VOCAB_FILES_NAMES __UpperCamelCase: str = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase: Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase: Any = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase: str = ["input_ids", "attention_mask"] __UpperCamelCase: List[str] = DistilBertTokenizer def __init__( self : str , A : int=None , A : Tuple=None , A : Tuple=True , A : Dict="[UNK]" , A : List[Any]="[SEP]" , A : Optional[Any]="[PAD]" , A : Dict="[CLS]" , A : Tuple="[MASK]" , A : str=True , A : Dict=None , **A : List[Any] , ): super().__init__( A , tokenizer_file=A , do_lower_case=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , tokenize_chinese_chars=A , strip_accents=A , **A , ) _UpperCAmelCase : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , A ) != do_lower_case or normalizer_state.get("strip_accents" , A ) != strip_accents or normalizer_state.get("handle_chinese_chars" , A ) != tokenize_chinese_chars ): _UpperCAmelCase : Dict = getattr(A , normalizer_state.pop("type" ) ) _UpperCAmelCase : int = do_lower_case _UpperCAmelCase : Optional[int] = strip_accents _UpperCAmelCase : str = tokenize_chinese_chars _UpperCAmelCase : List[Any] = normalizer_class(**A ) _UpperCAmelCase : Dict = do_lower_case def _A ( self : List[Any] , A : Tuple , A : Any=None ): _UpperCAmelCase : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _A ( self : int , A : List[int] , A : Optional[List[int]] = None ): _UpperCAmelCase : Any = [self.sep_token_id] _UpperCAmelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _A ( self : Dict , A : str , A : Optional[str] = None ): _UpperCAmelCase : Any = self._tokenizer.model.save(A , name=A ) return tuple(A )
31
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase_ = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST', 'UniSpeechForCTC', 'UniSpeechForPreTraining', 'UniSpeechForSequenceClassification', 'UniSpeechModel', 'UniSpeechPreTrainedModel', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
361
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset lowerCAmelCase_ = 'bert-base-cased' lowerCAmelCase_ = 'google/pegasus-xsum' lowerCAmelCase_ = [' Sam ate lunch today.', 'Sams lunch ingredients.'] lowerCAmelCase_ = ['A very interesting story about what I ate for lunch.', 'Avocado, celery, turkey, coffee'] lowerCAmelCase_ = 'patrickvonplaten/t5-tiny-random' lowerCAmelCase_ = 'sshleifer/bart-tiny-random' lowerCAmelCase_ = 'sshleifer/tiny-mbart' lowerCAmelCase_ = 'sshleifer/tiny-marian-en-de' def snake_case( __magic_name__ , __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : List[str] = '''\n'''.join(__magic_name__ ) Path(__magic_name__ ).open('''w''' ).writelines(__magic_name__ ) def snake_case( __magic_name__ ) -> Optional[int]: '''simple docstring''' for split in ["train", "val", "test"]: _dump_articles(os.path.join(__magic_name__ , F"""{split}.source""" ) , __magic_name__ ) _dump_articles(os.path.join(__magic_name__ , F"""{split}.target""" ) , __magic_name__ ) return tmp_dir class _A ( _lowerCamelCase ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def __a ( self : List[str] , _A : Optional[Any] ) -> Dict: """simple docstring""" lowercase : int = AutoTokenizer.from_pretrained(_A ) lowercase : Optional[int] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) lowercase : List[str] = max(len(tokenizer.encode(_A ) ) for a in ARTICLES ) lowercase : Optional[int] = max(len(tokenizer.encode(_A ) ) for a in SUMMARIES ) lowercase : str = 4 lowercase : List[Any] = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated lowercase , lowercase : Optional[int] = '''ro_RO''', '''de_DE''' # ignored for all but mbart, but never causes error. lowercase : int = SeqaSeqDataset( _A , data_dir=_A , type_path='''train''' , max_source_length=_A , max_target_length=_A , src_lang=_A , tgt_lang=_A , ) lowercase : Optional[int] = DataLoader(_A , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(_A , _A ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place lowercase : int = shift_tokens_right(batch['''labels'''] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def __a ( self : int , _A : Tuple ) -> List[str]: """simple docstring""" lowercase : int = AutoTokenizer.from_pretrained(_A ) lowercase : int = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) lowercase : Optional[int] = max(len(tokenizer.encode(_A ) ) for a in ARTICLES ) lowercase : List[Any] = max(len(tokenizer.encode(_A ) ) for a in SUMMARIES ) lowercase : List[Any] = 4 lowercase : Any = LegacySeqaSeqDataset( _A , data_dir=_A , type_path='''train''' , max_source_length=20 , max_target_length=_A , ) lowercase : Optional[Any] = DataLoader(_A , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def __a ( self : List[str] ) -> int: """simple docstring""" lowercase : Tuple = AutoTokenizer.from_pretrained('''facebook/mbart-large-cc25''' ) lowercase : List[str] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) lowercase : Optional[int] = tmp_dir.joinpath('''train.source''' ).open().readlines() lowercase : List[Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(_A , _A , 128 , _A ) lowercase : Dict = {x.name for x in tmp_dir.iterdir()} lowercase : Optional[Any] = {x.name for x in save_dir.iterdir()} lowercase : int = save_dir.joinpath('''train.source''' ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(_A ) < len(_A ) assert len(_A ) == 1 assert len(packed_examples[0] ) == sum(len(_A ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='''This test requires fairseq''' ) def __a ( self : Any ) -> Dict: """simple docstring""" if not FAIRSEQ_AVAILABLE: return lowercase , lowercase , lowercase : Any = self._get_dataset(max_len=64 ) lowercase : List[Any] = 64 lowercase : Any = ds.make_dynamic_sampler(_A , required_batch_size_multiple=_A ) lowercase : Tuple = [len(_A ) for x in batch_sampler] assert len(set(_A ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(_A ) == len(_A ) # no dropped or added examples lowercase : str = DataLoader(_A , batch_sampler=_A , collate_fn=ds.collate_fn , num_workers=2 ) lowercase : Optional[int] = [] lowercase : str = [] for batch in data_loader: lowercase : Tuple = batch['''input_ids'''].shape lowercase : List[Any] = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple lowercase : Dict = np.product(batch['''input_ids'''].shape ) num_src_per_batch.append(_A ) if num_src_tokens > (max_tokens * 1.1): failures.append(_A ) assert num_src_per_batch[0] == max(_A ) if failures: raise AssertionError(f"""too many tokens in {len(_A )} batches""" ) def __a ( self : int ) -> Any: """simple docstring""" lowercase , lowercase , lowercase : Tuple = self._get_dataset(max_len=512 ) lowercase : Tuple = 2 lowercase : Union[str, Any] = ds.make_sortish_sampler(_A , shuffle=_A ) lowercase : List[Any] = DataLoader(_A , batch_size=_A , collate_fn=ds.collate_fn , num_workers=2 ) lowercase : List[Any] = DataLoader(_A , batch_size=_A , collate_fn=ds.collate_fn , num_workers=2 , sampler=_A ) lowercase : int = tokenizer.pad_token_id def count_pad_tokens(_A : List[Any] , _A : Union[str, Any]="input_ids" ): return [batch[k].eq(_A ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(_A , k='''labels''' ) ) < sum(count_pad_tokens(_A , k='''labels''' ) ) assert sum(count_pad_tokens(_A ) ) < sum(count_pad_tokens(_A ) ) assert len(_A ) == len(_A ) def __a ( self : Any , _A : Union[str, Any]=1_000 , _A : str=128 ) -> List[Any]: """simple docstring""" if os.getenv('''USE_REAL_DATA''' , _A ): lowercase : Optional[Any] = '''examples/seq2seq/wmt_en_ro''' lowercase : Optional[int] = max_len * 2 * 64 if not Path(_A ).joinpath('''train.len''' ).exists(): save_len_file(_A , _A ) else: lowercase : Tuple = '''examples/seq2seq/test_data/wmt_en_ro''' lowercase : Optional[Any] = max_len * 4 save_len_file(_A , _A ) lowercase : Optional[Any] = AutoTokenizer.from_pretrained(_A ) lowercase : Union[str, Any] = SeqaSeqDataset( _A , data_dir=_A , type_path='''train''' , max_source_length=_A , max_target_length=_A , n_obs=_A , ) return ds, max_tokens, tokenizer def __a ( self : List[str] ) -> List[str]: """simple docstring""" lowercase , lowercase , lowercase : Union[str, Any] = self._get_dataset() lowercase : int = set(DistributedSortishSampler(_A , 256 , num_replicas=2 , rank=0 , add_extra_examples=_A ) ) lowercase : Dict = set(DistributedSortishSampler(_A , 256 , num_replicas=2 , rank=1 , add_extra_examples=_A ) ) assert idsa.intersection(_A ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def __a ( self : Union[str, Any] , _A : Tuple ) -> Optional[int]: """simple docstring""" lowercase : Union[str, Any] = AutoTokenizer.from_pretrained(_A , use_fast=_A ) if tok_name == MBART_TINY: lowercase : Tuple = SeqaSeqDataset( _A , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='''train''' , max_source_length=4 , max_target_length=8 , src_lang='''EN''' , tgt_lang='''FR''' , ) lowercase : Union[str, Any] = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: lowercase : List[Any] = SeqaSeqDataset( _A , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='''train''' , max_source_length=4 , max_target_length=8 , ) lowercase : Dict = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(_A ) == 1 if tok_name == BART_TINY else len(_A ) == 0
116
0
'''simple docstring''' from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class UpperCAmelCase ( UpperCamelCase__ ): __lowercase = DistilBertTokenizer __lowercase = DistilBertTokenizerFast __lowercase = True @slow def UpperCAmelCase_ ( self :List[str] )-> Optional[Any]: A__ = DistilBertTokenizer.from_pretrained("distilbert-base-uncased" ) A__ = tokenizer.encode("sequence builders" , add_special_tokens=lowercase_ ) A__ = tokenizer.encode("multi-sequence build" , add_special_tokens=lowercase_ ) A__ = tokenizer.build_inputs_with_special_tokens(lowercase_ ) A__ = tokenizer.build_inputs_with_special_tokens(lowercase_ , lowercase_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
237
'''simple docstring''' import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class UpperCAmelCase ( UpperCamelCase__ ): __lowercase = (DPMSolverSDEScheduler,) __lowercase = 10 def UpperCAmelCase_ ( self :List[Any] , **lowercase_ :Optional[int] )-> str: A__ = { "num_train_timesteps": 11_00, "beta_start": 0.0_0_0_1, "beta_end": 0.0_2, "beta_schedule": "linear", "noise_sampler_seed": 0, } config.update(**lowercase_ ) return config def UpperCAmelCase_ ( self :int )-> Dict: for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowercase_ ) def UpperCAmelCase_ ( self :List[Any] )-> Tuple: for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ ) def UpperCAmelCase_ ( self :Any )-> Optional[Any]: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowercase_ ) def UpperCAmelCase_ ( self :List[Any] )-> Dict: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def UpperCAmelCase_ ( self :List[str] )-> Union[str, Any]: A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**lowercase_ ) scheduler.set_timesteps(self.num_inference_steps ) A__ = self.dummy_model() A__ = self.dummy_sample_deter * scheduler.init_noise_sigma A__ = sample.to(lowercase_ ) for i, t in enumerate(scheduler.timesteps ): A__ = scheduler.scale_model_input(lowercase_ , lowercase_ ) A__ = model(lowercase_ , lowercase_ ) A__ = scheduler.step(lowercase_ , lowercase_ , lowercase_ ) A__ = output.prev_sample A__ = torch.sum(torch.abs(lowercase_ ) ) A__ = torch.mean(torch.abs(lowercase_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_6_7.4_7_8_2_1_0_4_4_9_2_1_8_7_5 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_7_8_7_0_5_9_6_4_5_6_5_2_7_7 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_1.5_9_3_5_2_1_1_1_8_1_6_4_0_6 ) < 1E-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_6_8_9_2_2_9_9_6_5_2 ) < 1E-3 else: assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1E-3 def UpperCAmelCase_ ( self :Optional[int] )-> Dict: A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(prediction_type="v_prediction" ) A__ = scheduler_class(**lowercase_ ) scheduler.set_timesteps(self.num_inference_steps ) A__ = self.dummy_model() A__ = self.dummy_sample_deter * scheduler.init_noise_sigma A__ = sample.to(lowercase_ ) for i, t in enumerate(scheduler.timesteps ): A__ = scheduler.scale_model_input(lowercase_ , lowercase_ ) A__ = model(lowercase_ , lowercase_ ) A__ = scheduler.step(lowercase_ , lowercase_ , lowercase_ ) A__ = output.prev_sample A__ = torch.sum(torch.abs(lowercase_ ) ) A__ = torch.mean(torch.abs(lowercase_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_2_4.7_7_1_4_9_2_0_0_4_3_9_4_5_3 ) < 1E-2 assert abs(result_mean.item() - 0.1_6_2_2_6_2_8_9_0_1_4_8_1_6_2_8_4 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_2_8.1_6_6_3_3_6_0_5_9_5_7_0_3 ) < 1E-2 assert abs(result_mean.item() - 0.1_6_6_8_8_3_2_6_0_0_1_1_6_7_2_9_7 ) < 1E-3 else: assert abs(result_sum.item() - 1_1_9.8_4_8_7_5_4_8_8_2_8_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.1_5_6_0_5_3_0_6_6_2_5_3_6_6_2_1 ) < 1E-3 def UpperCAmelCase_ ( self :Optional[int] )-> List[str]: A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**lowercase_ ) scheduler.set_timesteps(self.num_inference_steps , device=lowercase_ ) A__ = self.dummy_model() A__ = self.dummy_sample_deter.to(lowercase_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: A__ = scheduler.scale_model_input(lowercase_ , lowercase_ ) A__ = model(lowercase_ , lowercase_ ) A__ = scheduler.step(lowercase_ , lowercase_ , lowercase_ ) A__ = output.prev_sample A__ = torch.sum(torch.abs(lowercase_ ) ) A__ = torch.mean(torch.abs(lowercase_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_6_7.4_6_9_5_7_3_9_7_4_6_0_9_3_8 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_8_0_5_9_3_4_6_0_7_9_8_2_6_3_5 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_1.5_9_3_5_3_6_3_7_6_9_5_3_1_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_8_3_8_2_4_1_5_7_7_1 ) < 1E-3 else: assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1E-3 def UpperCAmelCase_ ( self :Tuple )-> Dict: A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**lowercase_ , use_karras_sigmas=lowercase_ ) scheduler.set_timesteps(self.num_inference_steps , device=lowercase_ ) A__ = self.dummy_model() A__ = self.dummy_sample_deter.to(lowercase_ ) * scheduler.init_noise_sigma A__ = sample.to(lowercase_ ) for t in scheduler.timesteps: A__ = scheduler.scale_model_input(lowercase_ , lowercase_ ) A__ = model(lowercase_ , lowercase_ ) A__ = scheduler.step(lowercase_ , lowercase_ , lowercase_ ) A__ = output.prev_sample A__ = torch.sum(torch.abs(lowercase_ ) ) A__ = torch.mean(torch.abs(lowercase_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_7_6.6_6_9_7_4_1_3_5_7_4_2_1_8_8 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_7.6_3_6_5_3_5_6_4_4_5_3_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2 else: assert abs(result_sum.item() - 1_7_0.3_1_3_5_2_2_3_3_8_8_6_7_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2
237
1
"""simple docstring""" import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) SCREAMING_SNAKE_CASE = logging.getLogger(__name__) SCREAMING_SNAKE_CASE = tf.data.AUTOTUNE def _SCREAMING_SNAKE_CASE ( ) -> str: A__ = argparse.ArgumentParser(description="Train a masked language model on TPU." ) parser.add_argument( "--pretrained_model_config" , type=lowercase_ , default="roberta-base" , help="The model config to use. Note that we don't copy the model's weights, only the config!" , ) parser.add_argument( "--tokenizer" , type=lowercase_ , default="unigram-tokenizer-wikitext" , help="The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size." , ) parser.add_argument( "--per_replica_batch_size" , type=lowercase_ , default=8 , help="Batch size per TPU core." , ) parser.add_argument( "--no_tpu" , action="store_true" , help="If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances." , ) parser.add_argument( "--tpu_name" , type=lowercase_ , help="Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs." , default="local" , ) parser.add_argument( "--tpu_zone" , type=lowercase_ , help="Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes." , ) parser.add_argument( "--gcp_project" , type=lowercase_ , help="Google cloud project name. Only used for non-Colab TPU nodes." ) parser.add_argument( "--bfloat16" , action="store_true" , help="Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU." , ) parser.add_argument( "--train_dataset" , type=lowercase_ , help="Path to training dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--shuffle_buffer_size" , type=lowercase_ , default=2**18 , help="Size of the shuffle buffer (in samples)" , ) parser.add_argument( "--eval_dataset" , type=lowercase_ , help="Path to evaluation dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--num_epochs" , type=lowercase_ , default=1 , help="Number of epochs to train for." , ) parser.add_argument( "--learning_rate" , type=lowercase_ , default=1E-4 , help="Learning rate to use for training." , ) parser.add_argument( "--weight_decay_rate" , type=lowercase_ , default=1E-3 , help="Weight decay rate to use for training." , ) parser.add_argument( "--max_length" , type=lowercase_ , default=5_12 , help="Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py" , ) parser.add_argument( "--mlm_probability" , type=lowercase_ , default=0.1_5 , help="Fraction of tokens to mask during training." , ) parser.add_argument("--output_dir" , type=lowercase_ , required=lowercase_ , help="Path to save model checkpoints to." ) parser.add_argument("--hub_model_id" , type=lowercase_ , help="Model ID to upload to on the Hugging Face Hub." ) A__ = parser.parse_args() return args def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict: try: if args.tpu_name: A__ = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: A__ = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( "Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or " "--gcp_project. When running on a TPU VM, use --tpu_name local." ) tf.config.experimental_connect_to_cluster(lowercase_ ) tf.tpu.experimental.initialize_tpu_system(lowercase_ ) return tpu def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict: A__ = 0 for file in file_list: A__ = file.split("/" )[-1] A__ = re.search(R"-\d+-(\d+)\.tfrecord" , lowercase_ ).group(1 ) A__ = int(lowercase_ ) num_samples += sample_count return num_samples def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_=None ) -> List[str]: A__ = count_samples(lowercase_ ) A__ = tf.data.Dataset.from_tensor_slices(lowercase_ ) if shuffle: A__ = dataset.shuffle(len(lowercase_ ) ) A__ = tf.data.TFRecordDataset(lowercase_ , num_parallel_reads=lowercase_ ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here A__ = dataset.apply(tf.data.experimental.assert_cardinality(lowercase_ ) ) A__ = dataset.map(lowercase_ , num_parallel_calls=lowercase_ ) if shuffle: assert shuffle_buffer_size is not None A__ = dataset.shuffle(args.shuffle_buffer_size ) A__ = dataset.batch(lowercase_ , drop_remainder=lowercase_ ) A__ = dataset.map(lowercase_ , num_parallel_calls=lowercase_ ) A__ = dataset.prefetch(lowercase_ ) return dataset def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any: if not args.no_tpu: A__ = initialize_tpu(lowercase_ ) A__ = tf.distribute.TPUStrategy(lowercase_ ) else: A__ = tf.distribute.OneDeviceStrategy(device="/gpu:0" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("mixed_bfloat16" ) A__ = AutoTokenizer.from_pretrained(args.tokenizer ) A__ = AutoConfig.from_pretrained(args.pretrained_model_config ) A__ = tokenizer.vocab_size A__ = tf.io.gfile.glob(os.path.join(args.train_dataset , "*.tfrecord" ) ) if not training_records: raise ValueError(f"""No .tfrecord files found in {args.train_dataset}.""" ) A__ = tf.io.gfile.glob(os.path.join(args.eval_dataset , "*.tfrecord" ) ) if not eval_records: raise ValueError(f"""No .tfrecord files found in {args.eval_dataset}.""" ) A__ = count_samples(lowercase_ ) A__ = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) A__ = steps_per_epoch * args.num_epochs with strategy.scope(): A__ = TFAutoModelForMaskedLM.from_config(lowercase_ ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built A__, A__ = create_optimizer( num_train_steps=lowercase_ , num_warmup_steps=total_train_steps // 20 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=lowercase_ , metrics=["accuracy"] ) def decode_fn(lowercase_ ): A__ = { "input_ids": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), "attention_mask": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(lowercase_ , lowercase_ ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. A__ = DataCollatorForLanguageModeling( tokenizer=lowercase_ , mlm_probability=args.mlm_probability , mlm=lowercase_ , return_tensors="tf" ) def mask_with_collator(lowercase_ ): # TF really needs an isin() function A__ = ( ~tf.cast(batch["attention_mask"] , tf.bool ) | (batch["input_ids"] == tokenizer.cls_token_id) | (batch["input_ids"] == tokenizer.sep_token_id) ) A__, A__ = data_collator.tf_mask_tokens( batch["input_ids"] , vocab_size=len(lowercase_ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=lowercase_ , ) return batch A__ = args.per_replica_batch_size * strategy.num_replicas_in_sync A__ = prepare_dataset( lowercase_ , decode_fn=lowercase_ , mask_fn=lowercase_ , batch_size=lowercase_ , shuffle=lowercase_ , shuffle_buffer_size=args.shuffle_buffer_size , ) A__ = prepare_dataset( lowercase_ , decode_fn=lowercase_ , mask_fn=lowercase_ , batch_size=lowercase_ , shuffle=lowercase_ , ) A__ = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=lowercase_ ) ) model.fit( lowercase_ , validation_data=lowercase_ , epochs=args.num_epochs , callbacks=lowercase_ , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = parse_args() main(args)
230
"""simple docstring""" from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class UpperCAmelCase_ ( nn.Module ): def __init__( self : Optional[int] , snake_case_ : int = 16 , snake_case_ : int = 88 , snake_case_ : Optional[int] = None , snake_case_ : int = 1 , snake_case_ : float = 0.0 , snake_case_ : int = 32 , snake_case_ : Optional[int] = None , snake_case_ : bool = False , snake_case_ : Optional[int] = None , snake_case_ : Optional[int] = None , snake_case_ : str = "geglu" , snake_case_ : Optional[int] = None , ) -> str: '''simple docstring''' super().__init__() A__ = nn.ModuleList( [ TransformeraDModel( num_attention_heads=snake_case_ , attention_head_dim=snake_case_ , in_channels=snake_case_ , num_layers=snake_case_ , dropout=snake_case_ , norm_num_groups=snake_case_ , cross_attention_dim=snake_case_ , attention_bias=snake_case_ , sample_size=snake_case_ , num_vector_embeds=snake_case_ , activation_fn=snake_case_ , num_embeds_ada_norm=snake_case_ , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference A__ = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` A__ = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` A__ = [1, 0] def __magic_name__ ( self : Dict , snake_case_ : List[Any] , snake_case_ : Tuple , snake_case_ : Any=None , snake_case_ : int=None , snake_case_ : Union[str, Any]=None , snake_case_ : bool = True , ) -> Union[str, Any]: '''simple docstring''' A__ = hidden_states A__ = [] A__ = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens A__ = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] A__ = self.transformer_index_for_condition[i] A__ = self.transformers[transformer_index]( snake_case_ , encoder_hidden_states=snake_case_ , timestep=snake_case_ , cross_attention_kwargs=snake_case_ , return_dict=snake_case_ , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] A__ = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) A__ = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=snake_case_ )
230
1
from ..utils import DummyObject, requires_backends class __snake_case ( metaclass=UpperCamelCase_ ): _a = ['''onnx'''] def __init__( self : str , *A_ : Dict , **A_ : Union[str, Any]): requires_backends(self , ['''onnx''']) @classmethod def UpperCAmelCase__ ( cls : Optional[int] , *A_ : List[str] , **A_ : Optional[Any]): requires_backends(cls , ['''onnx''']) @classmethod def UpperCAmelCase__ ( cls : List[Any] , *A_ : Dict , **A_ : List[str]): requires_backends(cls , ['''onnx'''])
103
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class __snake_case ( UpperCamelCase_ ,UpperCamelCase_ ,unittest.TestCase ): _a = IFPipeline _a = TEXT_TO_IMAGE_PARAMS - {'''width''', '''height''', '''latents'''} _a = TEXT_TO_IMAGE_BATCH_PARAMS _a = PipelineTesterMixin.required_optional_params - {'''latents'''} def UpperCAmelCase__ ( self : List[str]): return self._get_dummy_components() def UpperCAmelCase__ ( self : List[str] , A_ : List[Any] , A_ : Any=0): if str(A_).startswith('''mps'''): lowerCAmelCase_ : List[Any] = torch.manual_seed(A_) else: lowerCAmelCase_ : List[str] = torch.Generator(device=A_).manual_seed(A_) lowerCAmelCase_ : Optional[Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def UpperCAmelCase__ ( self : int): self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''') def UpperCAmelCase__ ( self : str): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1) def UpperCAmelCase__ ( self : str): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2) def UpperCAmelCase__ ( self : int): self._test_save_load_local() def UpperCAmelCase__ ( self : str): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def UpperCAmelCase__ ( self : Optional[int]): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3) @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self : Optional[Any]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : List[str]): # if lowerCAmelCase_ : Dict = IFPipeline.from_pretrained('''DeepFloyd/IF-I-XL-v1.0''' , variant='''fp16''' , torch_dtype=torch.floataa) lowerCAmelCase_ : Dict = IFSuperResolutionPipeline.from_pretrained( '''DeepFloyd/IF-II-L-v1.0''' , variant='''fp16''' , torch_dtype=torch.floataa , text_encoder=A_ , tokenizer=A_) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('''cuda''') lowerCAmelCase_ , lowerCAmelCase_ : List[str] = pipe_a.encode_prompt('''anime turtle''' , device='''cuda''') del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() lowerCAmelCase_ : Tuple = None lowerCAmelCase_ : str = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if(A_ , A_ , A_ , A_) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img lowerCAmelCase_ : List[str] = IFImgaImgPipeline(**pipe_a.components) lowerCAmelCase_ : Any = IFImgaImgSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_imgaimg(A_ , A_ , A_ , A_) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting lowerCAmelCase_ : int = IFInpaintingPipeline(**pipe_a.components) lowerCAmelCase_ : Union[str, Any] = IFInpaintingSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_inpainting(A_ , A_ , A_ , A_) def UpperCAmelCase__ ( self : int , A_ : Optional[int] , A_ : Any , A_ : str , A_ : Union[str, Any]): # pipeline 1 _start_torch_memory_measurement() lowerCAmelCase_ : Optional[Any] = torch.Generator(device='''cpu''').manual_seed(0) lowerCAmelCase_ : Optional[Any] = pipe_a( prompt_embeds=A_ , negative_prompt_embeds=A_ , num_inference_steps=2 , generator=A_ , output_type='''np''' , ) lowerCAmelCase_ : Dict = output.images[0] assert image.shape == (6_4, 6_4, 3) lowerCAmelCase_ : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 1_3 * 1_0**9 lowerCAmelCase_ : List[str] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy''') assert_mean_pixel_difference(A_ , A_) # pipeline 2 _start_torch_memory_measurement() lowerCAmelCase_ : List[str] = torch.Generator(device='''cpu''').manual_seed(0) lowerCAmelCase_ : str = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0)).to(A_) lowerCAmelCase_ : Optional[int] = pipe_a( prompt_embeds=A_ , negative_prompt_embeds=A_ , image=A_ , generator=A_ , num_inference_steps=2 , output_type='''np''' , ) lowerCAmelCase_ : Union[str, Any] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) lowerCAmelCase_ : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 lowerCAmelCase_ : int = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy''') assert_mean_pixel_difference(A_ , A_) def UpperCAmelCase__ ( self : int , A_ : Optional[int] , A_ : Any , A_ : List[str] , A_ : List[str]): # pipeline 1 _start_torch_memory_measurement() lowerCAmelCase_ : Any = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0)).to(A_) lowerCAmelCase_ : Tuple = torch.Generator(device='''cpu''').manual_seed(0) lowerCAmelCase_ : Any = pipe_a( prompt_embeds=A_ , negative_prompt_embeds=A_ , image=A_ , num_inference_steps=2 , generator=A_ , output_type='''np''' , ) lowerCAmelCase_ : Union[str, Any] = output.images[0] assert image.shape == (6_4, 6_4, 3) lowerCAmelCase_ : str = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 lowerCAmelCase_ : Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy''') assert_mean_pixel_difference(A_ , A_) # pipeline 2 _start_torch_memory_measurement() lowerCAmelCase_ : int = torch.Generator(device='''cpu''').manual_seed(0) lowerCAmelCase_ : List[Any] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0)).to(A_) lowerCAmelCase_ : Any = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0)).to(A_) lowerCAmelCase_ : List[str] = pipe_a( prompt_embeds=A_ , negative_prompt_embeds=A_ , image=A_ , original_image=A_ , generator=A_ , num_inference_steps=2 , output_type='''np''' , ) lowerCAmelCase_ : Union[str, Any] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) lowerCAmelCase_ : str = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 lowerCAmelCase_ : Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy''') assert_mean_pixel_difference(A_ , A_) def UpperCAmelCase__ ( self : str , A_ : Optional[Any] , A_ : Optional[Any] , A_ : Dict , A_ : List[str]): # pipeline 1 _start_torch_memory_measurement() lowerCAmelCase_ : Union[str, Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0)).to(A_) lowerCAmelCase_ : int = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(1)).to(A_) lowerCAmelCase_ : Optional[Any] = torch.Generator(device='''cpu''').manual_seed(0) lowerCAmelCase_ : Any = pipe_a( prompt_embeds=A_ , negative_prompt_embeds=A_ , image=A_ , mask_image=A_ , num_inference_steps=2 , generator=A_ , output_type='''np''' , ) lowerCAmelCase_ : List[Any] = output.images[0] assert image.shape == (6_4, 6_4, 3) lowerCAmelCase_ : str = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 lowerCAmelCase_ : int = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy''') assert_mean_pixel_difference(A_ , A_) # pipeline 2 _start_torch_memory_measurement() lowerCAmelCase_ : Optional[Any] = torch.Generator(device='''cpu''').manual_seed(0) lowerCAmelCase_ : Optional[Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0)).to(A_) lowerCAmelCase_ : Union[str, Any] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0)).to(A_) lowerCAmelCase_ : Optional[Any] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(1)).to(A_) lowerCAmelCase_ : int = pipe_a( prompt_embeds=A_ , negative_prompt_embeds=A_ , image=A_ , mask_image=A_ , original_image=A_ , generator=A_ , num_inference_steps=2 , output_type='''np''' , ) lowerCAmelCase_ : Tuple = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) lowerCAmelCase_ : int = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 lowerCAmelCase_ : Any = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy''') assert_mean_pixel_difference(A_ , A_) def UpperCamelCase( ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
103
1
import argparse import os import re UpperCAmelCase_ : Dict = '''src/diffusers''' # Pattern that looks at the indentation in a line. UpperCAmelCase_ : Union[str, Any] = re.compile(R'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. UpperCAmelCase_ : Dict = re.compile(R'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. UpperCAmelCase_ : List[str] = re.compile(R'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. UpperCAmelCase_ : Tuple = re.compile(R'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. UpperCAmelCase_ : Tuple = re.compile(R'\[([^\]]+)\]') def SCREAMING_SNAKE_CASE_ ( __A : Dict ) -> Any: """simple docstring""" a_ : Union[str, Any] = _re_indent.search(snake_case_ ) return "" if search is None else search.groups()[0] def SCREAMING_SNAKE_CASE_ ( __A : Union[str, Any] , __A : Dict="" , __A : Dict=None , __A : Any=None ) -> Optional[Any]: """simple docstring""" a_ : Optional[int] = 0 a_ : List[Any] = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(snake_case_ ): index += 1 a_ : Optional[Any] = ["""\n""".join(lines[:index] )] else: a_ : int = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). a_ : Any = [lines[index]] index += 1 while index < len(snake_case_ ) and (end_prompt is None or not lines[index].startswith(snake_case_ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(snake_case_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(snake_case_ ) ) if index < len(snake_case_ ) - 1: a_ : Any = [lines[index + 1]] index += 1 else: a_ : List[str] = [] else: blocks.append('\n'.join(snake_case_ ) ) a_ : int = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(snake_case_ ) > 0: blocks.append('\n'.join(snake_case_ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(snake_case_ ): blocks.append('\n'.join(lines[index:] ) ) return blocks def SCREAMING_SNAKE_CASE_ ( __A : Optional[Any] ) -> str: """simple docstring""" def _inner(__A : Tuple ): return key(snake_case_ ).lower().replace('_' , '' ) return _inner def SCREAMING_SNAKE_CASE_ ( __A : List[Any] , __A : Optional[int]=None ) -> int: """simple docstring""" def noop(__A : Dict ): return x if key is None: a_ : int = noop # Constants are all uppercase, they go first. a_ : List[Any] = [obj for obj in objects if key(snake_case_ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. a_ : str = [obj for obj in objects if key(snake_case_ )[0].isupper() and not key(snake_case_ ).isupper()] # Functions begin with a lowercase, they go last. a_ : List[str] = [obj for obj in objects if not key(snake_case_ )[0].isupper()] a_ : Tuple = ignore_underscore(snake_case_ ) return sorted(snake_case_ , key=snake_case_ ) + sorted(snake_case_ , key=snake_case_ ) + sorted(snake_case_ , key=snake_case_ ) def SCREAMING_SNAKE_CASE_ ( __A : int ) -> List[Any]: """simple docstring""" def _replace(__A : List[Any] ): a_ : Any = match.groups()[0] if "," not in imports: return F"""[{imports}]""" a_ : Union[str, Any] = [part.strip().replace('\"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: a_ : List[str] = keys[:-1] return "[" + ", ".join([F"""\"{k}\"""" for k in sort_objects(snake_case_ )] ) + "]" a_ : str = import_statement.split('\n' ) if len(snake_case_ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. a_ : str = 2 if lines[1].strip() == """[""" else 1 a_ : Dict = [(i, _re_strip_line.search(snake_case_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] a_ : int = sort_objects(snake_case_ , key=lambda __A : x[1] ) a_ : Any = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(snake_case_ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: a_ : List[Any] = _re_bracket_content.sub(_replace , lines[1] ) else: a_ : Optional[Any] = [part.strip().replace('\"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: a_ : List[Any] = keys[:-1] a_ : int = get_indent(lines[1] ) + """, """.join([F"""\"{k}\"""" for k in sort_objects(snake_case_ )] ) return "\n".join(snake_case_ ) else: # Finally we have to deal with imports fitting on one line a_ : List[str] = _re_bracket_content.sub(_replace , snake_case_ ) return import_statement def SCREAMING_SNAKE_CASE_ ( __A : Tuple , __A : str=True ) -> Dict: """simple docstring""" with open(snake_case_ , 'r' ) as f: a_ : int = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 a_ : Dict = split_code_in_indented_blocks( snake_case_ , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(snake_case_ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. a_ : Optional[Any] = main_blocks[block_idx] a_ : Optional[int] = block.split('\n' ) # Get to the start of the imports. a_ : Union[str, Any] = 0 while line_idx < len(snake_case_ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: a_ : List[str] = len(snake_case_ ) else: line_idx += 1 if line_idx >= len(snake_case_ ): continue # Ignore beginning and last line: they don't contain anything. a_ : Dict = """\n""".join(block_lines[line_idx:-1] ) a_ : Union[str, Any] = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. a_ : Optional[int] = split_code_in_indented_blocks(snake_case_ , indent_level=snake_case_ ) # We have two categories of import key: list or _import_structure[key].append/extend a_ : Union[str, Any] = _re_direct_key if """_import_structure""" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. a_ : Union[str, Any] = [(pattern.search(snake_case_ ).groups()[0] if pattern.search(snake_case_ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. a_ : Optional[Any] = [(i, key) for i, key in enumerate(snake_case_ ) if key is not None] a_ : List[Any] = [x[0] for x in sorted(snake_case_ , key=lambda __A : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. a_ : str = 0 a_ : List[Any] = [] for i in range(len(snake_case_ ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: a_ : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(snake_case_ ) count += 1 # And we put our main block back together with its first and last line. a_ : Tuple = """\n""".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(snake_case_ ): if check_only: return True else: print(F"""Overwriting {file}.""" ) with open(snake_case_ , 'w' ) as f: f.write('\n'.join(snake_case_ ) ) def SCREAMING_SNAKE_CASE_ ( __A : int=True ) -> str: """simple docstring""" a_ : Any = [] for root, _, files in os.walk(snake_case_ ): if "__init__.py" in files: a_ : Union[str, Any] = sort_imports(os.path.join(snake_case_ , '__init__.py' ) , check_only=snake_case_ ) if result: a_ : Any = [os.path.join(snake_case_ , '__init__.py' )] if len(snake_case_ ) > 0: raise ValueError(F"""Would overwrite {len(snake_case_ )} files, run `make style`.""" ) if __name__ == "__main__": UpperCAmelCase_ : Any = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') UpperCAmelCase_ : str = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
355
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def SCREAMING_SNAKE_CASE_ ( __A : Any ) -> Optional[int]: """simple docstring""" a_ : str = filter(lambda __A : p.requires_grad , model.parameters() ) a_ : List[Any] = sum([np.prod(p.size() ) for p in model_parameters] ) return params UpperCAmelCase_ : Dict = logging.getLogger(__name__) def SCREAMING_SNAKE_CASE_ ( __A : int , __A : int ) -> List[str]: """simple docstring""" if metric == "rouge2": a_ : Dict = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": a_ : Dict = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": a_ : Union[str, Any] = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": a_ : str = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( F"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" ' function.' ) a_ : Dict = ModelCheckpoint( dirpath=__A , filename=__A , monitor=F"""val_{metric}""" , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def SCREAMING_SNAKE_CASE_ ( __A : int , __A : List[Any] ) -> int: """simple docstring""" return EarlyStopping( monitor=F"""val_{metric}""" , mode='min' if 'loss' in metric else 'max' , patience=__A , verbose=__A , ) class SCREAMING_SNAKE_CASE__ ( pl.Callback ): def SCREAMING_SNAKE_CASE ( self : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Any: a_ : int = {F"""lr_group_{i}""": param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(SCREAMING_SNAKE_CASE__ ) @rank_zero_only def SCREAMING_SNAKE_CASE ( self : List[str] , SCREAMING_SNAKE_CASE__ : pl.Trainer , SCREAMING_SNAKE_CASE__ : pl.LightningModule , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str]=True ) -> None: logger.info(F"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) a_ : List[str] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results a_ : Optional[int] = Path(pl_module.hparams.output_dir ) if type_path == "test": a_ : Tuple = od / 'test_results.txt' a_ : Optional[int] = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. a_ : str = od / F"""{type_path}_results/{trainer.global_step:05d}.txt""" a_ : Optional[Any] = od / F"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) generations_file.parent.mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , 'a+' ) as writer: for key in sorted(SCREAMING_SNAKE_CASE__ ): if key in ["log", "progress_bar", "preds"]: continue a_ : int = metrics[key] if isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ): a_ : List[str] = val.item() a_ : int = F"""{key}: {val:.6f}\n""" writer.write(SCREAMING_SNAKE_CASE__ ) if not save_generations: return if "preds" in metrics: a_ : Optional[Any] = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(SCREAMING_SNAKE_CASE__ ) @rank_zero_only def SCREAMING_SNAKE_CASE ( self : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Dict: try: a_ : Any = pl_module.model.model.num_parameters() except AttributeError: a_ : List[str] = pl_module.model.num_parameters() a_ : Any = count_trainable_parameters(SCREAMING_SNAKE_CASE__ ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : pl.Trainer , SCREAMING_SNAKE_CASE__ : pl.LightningModule ) -> Optional[int]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'test' ) @rank_zero_only def SCREAMING_SNAKE_CASE ( self : Any , SCREAMING_SNAKE_CASE__ : pl.Trainer , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
120
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule a__ : Dict = {'tokenization_bertweet': ['BertweetTokenizer']} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys a__ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
80
'''simple docstring''' from __future__ import annotations def _UpperCamelCase ( __A ) -> float: '''simple docstring''' UpperCamelCase__ = 0.00 UpperCamelCase__ = 0 for resistor in resistors: if resistor <= 0: UpperCamelCase__ = F'''Resistor at index {index} has a negative or zero value!''' raise ValueError(__A ) first_sum += 1 / float(__A ) index += 1 return 1 / first_sum def _UpperCamelCase ( __A ) -> float: '''simple docstring''' UpperCamelCase__ = 0.00 UpperCamelCase__ = 0 for resistor in resistors: sum_r += resistor if resistor < 0: UpperCamelCase__ = F'''Resistor at index {index} has a negative value!''' raise ValueError(__A ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
80
1
from ... import PretrainedConfig a_ = { 'sijunhe/nezha-cn-base': 'https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json', } class _lowercase ( snake_case_ ): lowercase = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP lowercase = 'nezha' def __init__( self : int , snake_case : Tuple=2_1_1_2_8 , snake_case : Optional[int]=7_6_8 , snake_case : Any=1_2 , snake_case : Tuple=1_2 , snake_case : Dict=3_0_7_2 , snake_case : str="gelu" , snake_case : Any=0.1 , snake_case : str=0.1 , snake_case : Optional[int]=5_1_2 , snake_case : Dict=6_4 , snake_case : List[str]=2 , snake_case : List[Any]=0.02 , snake_case : Optional[int]=1e-12 , snake_case : Optional[int]=0.1 , snake_case : List[str]=0 , snake_case : Dict=2 , snake_case : str=3 , snake_case : Dict=True , **snake_case : Dict , ) -> Tuple: """simple docstring""" super().__init__(pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case , **snake_case ) UpperCamelCase_ : int = vocab_size UpperCamelCase_ : List[Any] = hidden_size UpperCamelCase_ : str = num_hidden_layers UpperCamelCase_ : List[Any] = num_attention_heads UpperCamelCase_ : Union[str, Any] = hidden_act UpperCamelCase_ : Union[str, Any] = intermediate_size UpperCamelCase_ : Optional[Any] = hidden_dropout_prob UpperCamelCase_ : List[Any] = attention_probs_dropout_prob UpperCamelCase_ : List[Any] = max_position_embeddings UpperCamelCase_ : Union[str, Any] = max_relative_position UpperCamelCase_ : Any = type_vocab_size UpperCamelCase_ : List[Any] = initializer_range UpperCamelCase_ : int = layer_norm_eps UpperCamelCase_ : List[str] = classifier_dropout UpperCamelCase_ : Optional[Any] = use_cache
351
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class _lowercase : def __init__( self : List[Any] , snake_case : int , snake_case : Any=9_9 , snake_case : Tuple=1_3 , snake_case : str=7 , snake_case : List[str]=9 , snake_case : Optional[Any]=True , snake_case : Any=True , snake_case : Optional[Any]=False , snake_case : List[str]=3_2 , snake_case : str=5 , snake_case : Any=4 , snake_case : List[str]=3_7 , snake_case : Optional[Any]=8 , snake_case : Optional[Any]=0.1 , snake_case : Dict=0.002 , snake_case : Any=1 , snake_case : Optional[int]=0 , snake_case : List[str]=0 , snake_case : List[str]=None , snake_case : List[str]=None , ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : int = parent UpperCamelCase_ : List[Any] = batch_size UpperCamelCase_ : int = encoder_seq_length UpperCamelCase_ : int = decoder_seq_length # For common tests UpperCamelCase_ : List[Any] = self.decoder_seq_length UpperCamelCase_ : Optional[Any] = is_training UpperCamelCase_ : Tuple = use_attention_mask UpperCamelCase_ : int = use_labels UpperCamelCase_ : List[str] = vocab_size UpperCamelCase_ : Dict = hidden_size UpperCamelCase_ : Any = num_hidden_layers UpperCamelCase_ : Any = num_attention_heads UpperCamelCase_ : Dict = d_ff UpperCamelCase_ : List[Any] = relative_attention_num_buckets UpperCamelCase_ : List[Any] = dropout_rate UpperCamelCase_ : Dict = initializer_factor UpperCamelCase_ : Union[str, Any] = eos_token_id UpperCamelCase_ : Optional[int] = pad_token_id UpperCamelCase_ : List[str] = decoder_start_token_id UpperCamelCase_ : str = None UpperCamelCase_ : int = decoder_layers def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> List[str]: """simple docstring""" return TaConfig.from_pretrained('google/umt5-base' ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , snake_case : Optional[int] , snake_case : Any , snake_case : Optional[int] , snake_case : Optional[int]=None , snake_case : List[Any]=None , snake_case : int=None , snake_case : Optional[int]=None , snake_case : Tuple=None , ) -> List[str]: """simple docstring""" if attention_mask is None: UpperCamelCase_ : Optional[Any] = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: UpperCamelCase_ : Optional[int] = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: UpperCamelCase_ : Optional[int] = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=snake_case ) if decoder_head_mask is None: UpperCamelCase_ : Dict = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=snake_case ) if cross_attn_head_mask is None: UpperCamelCase_ : Optional[Any] = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=snake_case ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) UpperCamelCase_ : Any = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input UpperCamelCase_ : Union[str, Any] = input_ids.clamp(self.pad_token_id + 1 ) UpperCamelCase_ : Any = decoder_input_ids.clamp(self.pad_token_id + 1 ) UpperCamelCase_ : Dict = self.get_config() UpperCamelCase_ : Dict = config.num_attention_heads UpperCamelCase_ : Optional[int] = self.prepare_inputs_dict(snake_case , snake_case , snake_case ) return config, input_dict def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" UpperCamelCase_, UpperCamelCase_ : Any = self.prepare_config_and_inputs() return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Dict: """simple docstring""" return TaConfig( vocab_size=1_6_6 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> Optional[int]: """simple docstring""" return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def SCREAMING_SNAKE_CASE__ ( self : str , snake_case : Dict , snake_case : List[str] , snake_case : Tuple , snake_case : int , snake_case : List[str] , snake_case : Optional[Any] , ) -> Tuple: """simple docstring""" UpperCamelCase_ : int = UMTaModel(config=snake_case ) model.to(snake_case ) model.eval() UpperCamelCase_ : Any = model( input_ids=snake_case , decoder_input_ids=snake_case , attention_mask=snake_case , decoder_attention_mask=snake_case , ) UpperCamelCase_ : List[str] = model(input_ids=snake_case , decoder_input_ids=snake_case ) UpperCamelCase_ : Optional[Any] = result.last_hidden_state UpperCamelCase_ : Optional[Any] = result.past_key_values UpperCamelCase_ : Optional[int] = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(snake_case ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def SCREAMING_SNAKE_CASE__ ( self : Any , snake_case : Tuple , snake_case : List[Any] , snake_case : Optional[int] , snake_case : Any , snake_case : Tuple , snake_case : str , ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : int = UMTaModel(config=snake_case ).get_decoder().to(snake_case ).eval() # first forward pass UpperCamelCase_ : str = model(snake_case , use_cache=snake_case ) UpperCamelCase_ : List[Any] = model(snake_case ) UpperCamelCase_ : Dict = model(snake_case , use_cache=snake_case ) self.parent.assertTrue(len(snake_case ) == len(snake_case ) ) self.parent.assertTrue(len(snake_case ) == len(snake_case ) + 1 ) UpperCamelCase_, UpperCamelCase_ : Optional[Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCamelCase_ : Any = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and UpperCamelCase_ : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase_ : List[Any] = model(snake_case )['last_hidden_state'] UpperCamelCase_ : List[str] = model(snake_case , past_key_values=snake_case )['last_hidden_state'] # select random slice UpperCamelCase_ : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase_ : Union[str, Any] = output_from_no_past[:, -1, random_slice_idx].detach() UpperCamelCase_ : Any = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-3 ) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , snake_case : Tuple , snake_case : int , ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : Optional[int] = UMTaModel(config=snake_case ).to(snake_case ).half().eval() UpperCamelCase_ : Union[str, Any] = model(**snake_case )['last_hidden_state'] self.parent.assertFalse(torch.isnan(snake_case ).any().item() ) @require_torch class _lowercase ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): lowercase = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) lowercase = (UMTaForConditionalGeneration,) if is_torch_available() else () lowercase = ( { 'conversational': UMTaForConditionalGeneration, 'feature-extraction': UMTaModel, 'summarization': UMTaForConditionalGeneration, 'text2text-generation': UMTaForConditionalGeneration, 'translation': UMTaForConditionalGeneration, 'question-answering': UMTaForQuestionAnswering, } if is_torch_available() else {} ) lowercase = True lowercase = False lowercase = False lowercase = True lowercase = True # The small UMT5 model needs higher percentages for CPU/MP tests lowercase = [0.8, 0.9] def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> List[Any]: """simple docstring""" UpperCamelCase_ : Optional[Any] = UMTaModelTester(self ) @unittest.skip('Test has a segmentation fault on torch 1.8.0' ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> List[str]: """simple docstring""" UpperCamelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() UpperCamelCase_ : List[str] = UMTaModel(config_and_inputs[0] ).to(snake_case ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( snake_case , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f"{tmpdirname}/t5_test.onnx" , export_params=snake_case , opset_version=9 , input_names=['input_ids', 'decoder_input_ids'] , ) @unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision' ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : Tuple = ['encoder_attentions', 'decoder_attentions', 'cross_attentions'] UpperCamelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() UpperCamelCase_ : Union[str, Any] = config_and_inputs[0] UpperCamelCase_ : Tuple = UMTaForConditionalGeneration(snake_case ).eval() model.to(snake_case ) UpperCamelCase_ : str = { 'head_mask': torch.zeros(config.num_layers , config.num_heads , device=snake_case ), 'decoder_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=snake_case ), 'cross_attn_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=snake_case ), } for attn_name, (name, mask) in zip(snake_case , head_masking.items() ): UpperCamelCase_ : Optional[int] = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": UpperCamelCase_ : Union[str, Any] = torch.ones( config.num_decoder_layers , config.num_heads , device=snake_case ) UpperCamelCase_ : Any = model.generate( config_and_inputs[1]['input_ids'] , num_beams=1 , max_length=3 , output_attentions=snake_case , return_dict_in_generate=snake_case , **snake_case , ) # We check the state of decoder_attentions and cross_attentions just from the last step UpperCamelCase_ : int = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('Does not work on the tiny model as we keep hitting edge cases.' ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" pass @require_torch @require_sentencepiece @require_tokenizers class _lowercase ( unittest.TestCase ): @slow @unittest.skip( 'Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged' ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> List[Any]: """simple docstring""" UpperCamelCase_ : str = UMTaForConditionalGeneration.from_pretrained('google/umt5-small' , return_dict=snake_case ).to(snake_case ) UpperCamelCase_ : int = AutoTokenizer.from_pretrained('google/umt5-small' , use_fast=snake_case , legacy=snake_case ) UpperCamelCase_ : Dict = [ 'Bonjour monsieur <extra_id_0> bien <extra_id_1>.', 'No se como puedo <extra_id_0>.', 'This is the reason why we <extra_id_0> them.', 'The <extra_id_0> walks in <extra_id_1>, seats', 'A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.', ] UpperCamelCase_ : Dict = tokenizer(snake_case , return_tensors='pt' , padding=snake_case ).input_ids # fmt: off UpperCamelCase_ : List[str] = torch.tensor( [ [ 3_8_5_3_0, 2_1_0_7_0_3, 2_5_6_2_9_9, 1_4_1_0, 2_5_6_2_9_8, 2_7_4, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 8_2_6, 3_2_1, 6_7_1, 2_5_9_2_2, 2_5_6_2_9_9, 2_7_4, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1_4_6_0, 3_3_9, 3_1_2, 1_9_0_1_4, 1_0_6_2_0, 7_5_8, 2_5_6_2_9_9, 2_3_5_5,2_7_4, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 5_1_7, 2_5_6_2_9_9, 1_4_8_6_9, 2_8_1, 3_0_1, 2_5_6_2_9_8, 2_7_5, 1_1_9_9_8_3,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 3_2_0, 2_5_6_2_9_9, 1_4_8_6_9, 2_8_1, 2_2_3_4, 2_8_9, 2_2_7_5, 3_3_3,6_1_3_9_1, 2_8_9, 2_5_6_2_9_8, 5_4_3, 2_5_6_2_9_7, 1_6_8_7_1_4, 3_2_9, 2_5_6_2_9_6,2_7_4, 1], ] ) # fmt: on torch.testing.assert_allclose(snake_case , snake_case ) UpperCamelCase_ : int = model.generate(input_ids.to(snake_case ) ) UpperCamelCase_ : List[Any] = [ '<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>', '<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', ] UpperCamelCase_ : Dict = tokenizer.batch_decode(snake_case ) self.assertEqual(snake_case , snake_case )
50
0
def __lowercase ( a__ ) -> list: for i in range(len(a__ ) - 1 , 0 , -1 ): __SCREAMING_SNAKE_CASE = False for j in range(a__ , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = unsorted[j - 1], unsorted[j] __SCREAMING_SNAKE_CASE = True for j in range(a__ ): if unsorted[j] > unsorted[j + 1]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = unsorted[j + 1], unsorted[j] __SCREAMING_SNAKE_CASE = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ : Dict =input('''Enter numbers separated by a comma:\n''').strip() lowerCAmelCase__ : Dict =[int(item) for item in user_input.split(''',''')] print(F'''{cocktail_shaker_sort(unsorted) = }''')
257
from heapq import heappop, heappush import numpy as np def __lowercase ( a__ , a__ , a__ , a__ , ) -> tuple[float | int, list[tuple[int, int]]]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = grid.shape __SCREAMING_SNAKE_CASE = [-1, 1, 0, 0] __SCREAMING_SNAKE_CASE = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = [(0, source)], set() __SCREAMING_SNAKE_CASE = np.full((rows, cols) , np.inf ) __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = np.empty((rows, cols) , dtype=a__ ) __SCREAMING_SNAKE_CASE = None while queue: ((__SCREAMING_SNAKE_CASE) , (__SCREAMING_SNAKE_CASE)) = heappop(a__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: __SCREAMING_SNAKE_CASE = [] while (x, y) != source: path.append((x, y) ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = predecessors[x, y] path.append(a__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(a__ ) ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: __SCREAMING_SNAKE_CASE = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(a__ , (dist + 1, (nx, ny)) ) __SCREAMING_SNAKE_CASE = dist + 1 __SCREAMING_SNAKE_CASE = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
257
1
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class a__ ( unittest.TestCase ): def _lowerCamelCase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Tuple = StableDiffusionKDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) _lowercase : Union[str, Any] = sd_pipe.to(_UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCamelCase ) sd_pipe.set_scheduler("sample_euler" ) _lowercase : List[Any] = "A painting of a squirrel eating a burger" _lowercase : Union[str, Any] = torch.manual_seed(0 ) _lowercase : Optional[int] = sd_pipe([prompt] , generator=_UpperCamelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) _lowercase : Any = output.images _lowercase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowercase : int = np.array([0.0_4_4_7, 0.0_4_9_2, 0.0_4_6_8, 0.0_4_0_8, 0.0_3_8_3, 0.0_4_0_8, 0.0_3_5_4, 0.0_3_8_0, 0.0_3_3_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[int] = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) _lowercase : List[str] = sd_pipe.to(_UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCamelCase ) sd_pipe.set_scheduler("sample_euler" ) _lowercase : List[str] = "A painting of a squirrel eating a burger" _lowercase : Union[str, Any] = torch.manual_seed(0 ) _lowercase : Any = sd_pipe([prompt] , generator=_UpperCamelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) _lowercase : Tuple = output.images _lowercase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowercase : Union[str, Any] = np.array([0.1_2_3_7, 0.1_3_2_0, 0.1_4_3_8, 0.1_3_5_9, 0.1_3_9_0, 0.1_1_3_2, 0.1_2_7_7, 0.1_1_7_5, 0.1_1_1_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def _lowerCamelCase ( self ): """simple docstring""" _lowercase : List[str] = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) _lowercase : Any = sd_pipe.to(_UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCamelCase ) sd_pipe.set_scheduler("sample_dpmpp_2m" ) _lowercase : Union[str, Any] = "A painting of a squirrel eating a burger" _lowercase : Dict = torch.manual_seed(0 ) _lowercase : List[str] = sd_pipe( [prompt] , generator=_UpperCamelCase , guidance_scale=7.5 , num_inference_steps=15 , output_type="np" , use_karras_sigmas=_UpperCamelCase , ) _lowercase : int = output.images _lowercase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowercase : int = np.array( [0.1_1_3_8_1_6_8_9, 0.1_2_1_1_2_9_2_1, 0.1_3_8_9_4_5_7, 0.1_2_5_4_9_6_0_6, 0.1_2_4_4_9_6_4, 0.1_0_8_3_1_5_1_7, 0.1_1_5_6_2_8_6_6, 0.1_0_8_6_7_8_1_6, 0.1_0_4_9_9_0_4_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
369
'''simple docstring''' def _A ( snake_case , snake_case ) -> int: return int((input_a, input_a).count(0 ) != 0 ) def _A ( ) -> None: assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
199
0
import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 _A : Optional[int] = 0B101100111110110010010000011110111011000110011110 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 _A : Union[str, Any] = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class __SCREAMING_SNAKE_CASE : def __init__( self : Optional[Any] ) ->str: lowerCamelCase__ : List[str] = WATERMARK_BITS lowerCamelCase__ : List[str] = WatermarkEncoder() self.encoder.set_watermark('''bits''' , self.watermark ) def __lowerCamelCase ( self : Dict , A : torch.FloatTensor ) ->Optional[int]: # can't encode images that are smaller than 256 if images.shape[-1] < 2_5_6: return images lowerCamelCase__ : Optional[Any] = (2_5_5 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowerCamelCase__ : Union[str, Any] = [self.encoder.encode(A , '''dwtDct''' ) for image in images] lowerCamelCase__ : int = torch.from_numpy(np.array(A ) ).permute(0 , 3 , 1 , 2 ) lowerCamelCase__ : int = torch.clamp(2 * (images / 2_5_5 - 0.5) , min=-1.0 , max=1.0 ) return images
142
def _a ( UpperCAmelCase ) -> bool: """simple docstring""" return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') _A : str = int(input('Enter number: ').strip()) print(F'''{number} is {'' if perfect(number) else 'not '}a Perfect Number.''')
142
1
"""simple docstring""" import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' torch.manual_seed(0 ) __snake_case : Optional[int] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' torch.manual_seed(0 ) __snake_case : Tuple = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=3 , ) return model @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' torch.manual_seed(0 ) __snake_case : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.dummy_uncond_unet __snake_case : int = DDIMScheduler() __snake_case : str = self.dummy_vq_model __snake_case : Union[str, Any] = LDMPipeline(unet=a_ , vqvae=a_ , scheduler=a_ ) ldm.to(a_ ) ldm.set_progress_bar_config(disable=a_ ) __snake_case : Union[str, Any] = torch.manual_seed(0 ) __snake_case : Optional[Any] = ldm(generator=a_ , num_inference_steps=2 , output_type='''numpy''' ).images __snake_case : Any = torch.manual_seed(0 ) __snake_case : List[Any] = ldm(generator=a_ , num_inference_steps=2 , output_type='''numpy''' , return_dict=a_ )[0] __snake_case : Dict = image[0, -3:, -3:, -1] __snake_case : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __snake_case : List[Any] = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) __snake_case : str = 1E-2 if torch_device != '''mps''' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = LDMPipeline.from_pretrained('''CompVis/ldm-celebahq-256''' ) ldm.to(a_ ) ldm.set_progress_bar_config(disable=a_ ) __snake_case : Tuple = torch.manual_seed(0 ) __snake_case : Dict = ldm(generator=a_ , num_inference_steps=5 , output_type='''numpy''' ).images __snake_case : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) __snake_case : Dict = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) __snake_case : str = 1E-2 if torch_device != '''mps''' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
24
"""simple docstring""" import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_ , a_ = None , a_ = None , a_ = False , **a_ , ): '''simple docstring''' super().__init__(features=a_ , cache_dir=a_ , keep_in_memory=a_ , **a_ ) __snake_case : Union[str, Any] = Sql( cache_dir=a_ , features=a_ , sql=a_ , con=a_ , **a_ , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = None __snake_case : Dict = None __snake_case : Dict = None __snake_case : List[str] = None self.builder.download_and_prepare( download_config=a_ , download_mode=a_ , verification_mode=a_ , base_path=a_ , ) # Build dataset for splits __snake_case : Any = self.builder.as_dataset( split='''train''' , verification_mode=a_ , in_memory=self.keep_in_memory ) return dataset class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_ , a_ , a_ = None , a_ = None , **a_ , ): '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(f"""num_proc {num_proc} must be an integer > 0.""" ) __snake_case : List[str] = dataset __snake_case : Tuple = name __snake_case : Optional[int] = con __snake_case : int = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __snake_case : Dict = num_proc __snake_case : Dict = to_sql_kwargs def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.to_sql_kwargs.pop('''sql''' , a_ ) __snake_case : Union[str, Any] = self.to_sql_kwargs.pop('''con''' , a_ ) __snake_case : Any = self.to_sql_kwargs.pop('''index''' , a_ ) __snake_case : Optional[Any] = self._write(index=a_ , **self.to_sql_kwargs ) return written def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case , __snake_case , __snake_case : Optional[Any] = args __snake_case : List[Any] = {**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs __snake_case : Dict = query_table( table=self.dataset.data , key=slice(a_ , offset + self.batch_size ) , indices=self.dataset._indices , ) __snake_case : Tuple = batch.to_pandas() __snake_case : str = df.to_sql(self.name , self.con , index=a_ , **a_ ) return num_rows or len(a_ ) def SCREAMING_SNAKE_CASE (self , a_ , **a_ ): '''simple docstring''' __snake_case : int = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: __snake_case , __snake_case : Union[str, Any] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , a_ , a_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += num_rows return written
24
1
'''simple docstring''' import math class lowerCAmelCase : def snake_case ( self : Optional[int] , __lowercase : list[list[float]] , __lowercase : list[int] ): """simple docstring""" __lowercase =0.0 __lowercase =0.0 for i in range(len(__lowercase ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def snake_case ( self : Union[str, Any] , __lowercase : list[list[int | float]] , __lowercase : list[int] , __lowercase : int , __lowercase : float ): """simple docstring""" for i in range(len(__lowercase ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def __UpperCamelCase ( ): '''simple docstring''' __lowercase =[[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) __lowercase =[[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training __lowercase =SelfOrganizingMap() __lowercase =3 __lowercase =0.5 for _ in range(lowercase__ ): for j in range(len(lowercase__ ) ): # training sample __lowercase =training_samples[j] # Compute the winning vector __lowercase =self_organizing_map.get_winner(lowercase__, lowercase__ ) # Update the winning vector __lowercase =self_organizing_map.update(lowercase__, lowercase__, lowercase__, lowercase__ ) # classify test sample __lowercase =[0, 0, 0, 1] __lowercase =self_organizing_map.get_winner(lowercase__, lowercase__ ) # results print(F'''Clusters that the test sample belongs to : {winner}''' ) print(F'''Weights that have been trained : {weights}''' ) # running the main() function if __name__ == "__main__": main()
141
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''google/bit-50''': '''https://huggingface.co/google/bit-50/resolve/main/config.json''', } class lowerCAmelCase ( A , A ): lowerCAmelCase_ = "bit" lowerCAmelCase_ = ["preactivation", "bottleneck"] lowerCAmelCase_ = ["SAME", "VALID"] def __init__( self : Union[str, Any] , __lowercase : Tuple=3 , __lowercase : Tuple=64 , __lowercase : List[str]=[256, 512, 1024, 2048] , __lowercase : int=[3, 4, 6, 3] , __lowercase : Optional[Any]="preactivation" , __lowercase : str="relu" , __lowercase : Tuple=None , __lowercase : int=32 , __lowercase : int=0.0 , __lowercase : Dict=False , __lowercase : List[Any]=32 , __lowercase : List[str]=1 , __lowercase : str=None , __lowercase : Any=None , **__lowercase : List[str] , ): """simple docstring""" super().__init__(**__lowercase ) if layer_type not in self.layer_types: raise ValueError(f'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' ) if global_padding is not None: if global_padding.upper() in self.supported_padding: __lowercase =global_padding.upper() else: raise ValueError(f'''Padding strategy {global_padding} not supported''' ) __lowercase =num_channels __lowercase =embedding_size __lowercase =hidden_sizes __lowercase =depths __lowercase =layer_type __lowercase =hidden_act __lowercase =global_padding __lowercase =num_groups __lowercase =drop_path_rate __lowercase =embedding_dynamic_padding __lowercase =output_stride __lowercase =width_factor __lowercase =['stem'] + [f'''stage{idx}''' for idx in range(1 , len(__lowercase ) + 1 )] __lowercase , __lowercase =get_aligned_output_features_output_indices( out_features=__lowercase , out_indices=__lowercase , stage_names=self.stage_names )
141
1
import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def UpperCamelCase__( UpperCamelCase__ : Optional[int] )->List[Any]: A__ = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(UpperCamelCase__ , UpperCamelCase__ ) def UpperCamelCase__( UpperCamelCase__ : Any )->Optional[int]: A__ = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: A__ = s_dict.pop(UpperCamelCase__ ) elif "subsample" in key: A__ = s_dict.pop(UpperCamelCase__ ) def UpperCamelCase__( UpperCamelCase__ : int )->Union[str, Any]: A__ = emb.weight.shape A__ = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) A__ = emb.weight.data return lin_layer def UpperCamelCase__( UpperCamelCase__ : List[str] , UpperCamelCase__ : int )->Dict: A__ = torch.load(UpperCamelCase__ , map_location='''cpu''' ) A__ = mam_aaa["args"] A__ = mam_aaa["model"] A__ = state_dict["decoder.output_projection.weight"] remove_ignore_keys_(UpperCamelCase__ ) rename_keys(UpperCamelCase__ ) A__ = state_dict["decoder.embed_tokens.weight"].shape[0] A__ = args.share_decoder_input_output_embed A__ = [int(UpperCamelCase__ ) for i in args.conv_kernel_sizes.split(''',''' )] A__ = SpeechaTextConfig( vocab_size=UpperCamelCase__ , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''relu''' , num_conv_layers=len(UpperCamelCase__ ) , conv_channels=args.conv_channels , conv_kernel_sizes=UpperCamelCase__ , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=UpperCamelCase__ , num_beams=5 , max_length=2_00 , use_cache=UpperCamelCase__ , decoder_start_token_id=2 , early_stopping=UpperCamelCase__ , ) A__ = SpeechaTextForConditionalGeneration(UpperCamelCase__ ) A__ = model.model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0 and not set(UpperCamelCase__ ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' f" but all the following weights are missing {missing}" ) if tie_embeds: A__ = make_linear_from_emb(model.model.decoder.embed_tokens ) else: A__ = lm_head_weights model.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": a__: Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('--fairseq_path', type=str, help='Path to the fairseq model (.pt) file.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') a__: Optional[int] = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
369
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = 42 class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ , UpperCamelCase__ ): @register_to_config def __init__( self,__lowerCamelCase = 3,__lowerCamelCase = 3,__lowerCamelCase = ("DownEncoderBlock2D",),__lowerCamelCase = ("UpDecoderBlock2D",),__lowerCamelCase = (64,),__lowerCamelCase = 1,__lowerCamelCase = "silu",__lowerCamelCase = 3,__lowerCamelCase = 32,__lowerCamelCase = 256,__lowerCamelCase = 32,__lowerCamelCase = None,__lowerCamelCase = 0.18215,__lowerCamelCase = "group",): super().__init__() # pass init params to Encoder A__ = Encoder( in_channels=__lowerCamelCase,out_channels=__lowerCamelCase,down_block_types=__lowerCamelCase,block_out_channels=__lowerCamelCase,layers_per_block=__lowerCamelCase,act_fn=__lowerCamelCase,norm_num_groups=__lowerCamelCase,double_z=__lowerCamelCase,) A__ = vq_embed_dim if vq_embed_dim is not None else latent_channels A__ = nn.Convad(__lowerCamelCase,__lowerCamelCase,1 ) A__ = VectorQuantizer(__lowerCamelCase,__lowerCamelCase,beta=0.25,remap=__lowerCamelCase,sane_index_shape=__lowerCamelCase ) A__ = nn.Convad(__lowerCamelCase,__lowerCamelCase,1 ) # pass init params to Decoder A__ = Decoder( in_channels=__lowerCamelCase,out_channels=__lowerCamelCase,up_block_types=__lowerCamelCase,block_out_channels=__lowerCamelCase,layers_per_block=__lowerCamelCase,act_fn=__lowerCamelCase,norm_num_groups=__lowerCamelCase,norm_type=__lowerCamelCase,) @apply_forward_hook def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = True ): A__ = self.encoder(__lowerCamelCase ) A__ = self.quant_conv(__lowerCamelCase ) if not return_dict: return (h,) return VQEncoderOutput(latents=__lowerCamelCase ) @apply_forward_hook def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = False,__lowerCamelCase = True ): # also go through quantization layer if not force_not_quantize: A__ , A__ , A__ = self.quantize(__lowerCamelCase ) else: A__ = h A__ = self.post_quant_conv(__lowerCamelCase ) A__ = self.decoder(__lowerCamelCase,quant if self.config.norm_type == '''spatial''' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = True ): A__ = sample A__ = self.encode(__lowerCamelCase ).latents A__ = self.decode(__lowerCamelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=__lowerCamelCase )
39
0
"""simple docstring""" import logging from transformers.configuration_utils import PretrainedConfig __UpperCamelCase = logging.getLogger(__name__) class UpperCamelCase ( _lowerCamelCase ): SCREAMING_SNAKE_CASE_ = "masked_bert" def __init__( self, lowerCAmelCase__=3_0522, lowerCAmelCase__=768, lowerCAmelCase__=12, lowerCAmelCase__=12, lowerCAmelCase__=3072, lowerCAmelCase__="gelu", lowerCAmelCase__=0.1, lowerCAmelCase__=0.1, lowerCAmelCase__=512, lowerCAmelCase__=2, lowerCAmelCase__=0.02, lowerCAmelCase__=1e-12, lowerCAmelCase__=0, lowerCAmelCase__="topK", lowerCAmelCase__="constant", lowerCAmelCase__=0.0, **lowerCAmelCase__, ) -> Optional[int]: super().__init__(pad_token_id=a_, **a_) snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = hidden_act snake_case_ = intermediate_size snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = pruning_method snake_case_ = mask_init snake_case_ = mask_scale
69
'''simple docstring''' from __future__ import annotations import queue class lowercase : """simple docstring""" def __init__( self ,a_ ) -> str: _UpperCAmelCase : Optional[Any] = data _UpperCAmelCase : Optional[int] = None _UpperCAmelCase : Union[str, Any] = None def snake_case_ ( )-> TreeNode: '''simple docstring''' print("""\n********Press N to stop entering at any point of time********\n""" ) _UpperCAmelCase : Any = input("""Enter the value of the root node: """ ).strip().lower() _UpperCAmelCase : queue.Queue = queue.Queue() _UpperCAmelCase : List[str] = TreeNode(int(lowerCAmelCase_ ) ) q.put(lowerCAmelCase_ ) while not q.empty(): _UpperCAmelCase : str = q.get() _UpperCAmelCase : Any = F'''Enter the left node of {node_found.data}: ''' _UpperCAmelCase : Union[str, Any] = input(lowerCAmelCase_ ).strip().lower() or """n""" if check == "n": return tree_node _UpperCAmelCase : List[str] = TreeNode(int(lowerCAmelCase_ ) ) _UpperCAmelCase : Optional[int] = left_node q.put(lowerCAmelCase_ ) _UpperCAmelCase : Dict = F'''Enter the right node of {node_found.data}: ''' _UpperCAmelCase : Tuple = input(lowerCAmelCase_ ).strip().lower() or """n""" if check == "n": return tree_node _UpperCAmelCase : Any = TreeNode(int(lowerCAmelCase_ ) ) _UpperCAmelCase : Optional[Any] = right_node q.put(lowerCAmelCase_ ) raise def snake_case_ ( lowerCAmelCase_ )-> None: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or not node: return print(node.data , end=""",""" ) pre_order(node.left ) pre_order(node.right ) def snake_case_ ( lowerCAmelCase_ )-> None: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or not node: return in_order(node.left ) print(node.data , end=""",""" ) in_order(node.right ) def snake_case_ ( lowerCAmelCase_ )-> None: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=""",""" ) def snake_case_ ( lowerCAmelCase_ )-> None: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or not node: return _UpperCAmelCase : queue.Queue = queue.Queue() q.put(lowerCAmelCase_ ) while not q.empty(): _UpperCAmelCase : Dict = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def snake_case_ ( lowerCAmelCase_ )-> None: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or not node: return _UpperCAmelCase : queue.Queue = queue.Queue() q.put(lowerCAmelCase_ ) while not q.empty(): _UpperCAmelCase : Optional[int] = [] while not q.empty(): _UpperCAmelCase : Optional[int] = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ )-> None: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or not node: return _UpperCAmelCase : list[TreeNode] = [] _UpperCAmelCase : Optional[Any] = node while n or stack: while n: # start from root node, find its left child print(n.data , end=""",""" ) stack.append(lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = n.left # end of while means current node doesn't have left child _UpperCAmelCase : int = stack.pop() # start to traverse its right child _UpperCAmelCase : Any = n.right def snake_case_ ( lowerCAmelCase_ )-> None: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or not node: return _UpperCAmelCase : list[TreeNode] = [] _UpperCAmelCase : Optional[Any] = node while n or stack: while n: stack.append(lowerCAmelCase_ ) _UpperCAmelCase : Tuple = n.left _UpperCAmelCase : Union[str, Any] = stack.pop() print(n.data , end=""",""" ) _UpperCAmelCase : Any = n.right def snake_case_ ( lowerCAmelCase_ )-> None: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or not node: return _UpperCAmelCase ,_UpperCAmelCase : str = [], [] _UpperCAmelCase : Dict = node stacka.append(lowerCAmelCase_ ) while stacka: # to find the reversed order of post order, store it in stack2 _UpperCAmelCase : Optional[int] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(lowerCAmelCase_ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=""",""" ) def snake_case_ ( lowerCAmelCase_ = "" , lowerCAmelCase_=50 , lowerCAmelCase_="*" )-> str: '''simple docstring''' if not s: return "\n" + width * char _UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = divmod(width - len(lowerCAmelCase_ ) - 2 , 2 ) return F'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("""Binary Tree Traversals""")) A_ : TreeNode = build_tree() print(prompt("""Pre Order Traversal""")) pre_order(node) print(prompt() + """\n""") print(prompt("""In Order Traversal""")) in_order(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal""")) post_order(node) print(prompt() + """\n""") print(prompt("""Level Order Traversal""")) level_order(node) print(prompt() + """\n""") print(prompt("""Actual Level Order Traversal""")) level_order_actual(node) print("""*""" * 5_0 + """\n""") print(prompt("""Pre Order Traversal - Iteration Version""")) pre_order_iter(node) print(prompt() + """\n""") print(prompt("""In Order Traversal - Iteration Version""")) in_order_iter(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal - Iteration Version""")) post_order_iter(node) print(prompt())
215
0
def _lowercase ( UpperCamelCase_ , UpperCamelCase_ ) -> int: '''simple docstring''' return int((input_a, input_a).count(0 ) != 0 ) def _lowercase ( ) -> None: '''simple docstring''' assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
361
import doctest from collections import deque import numpy as np class lowercase__ : def __init__( self : Optional[int] ): SCREAMING_SNAKE_CASE__ = [2, 1, 2, -1] SCREAMING_SNAKE_CASE__ = [1, 2, 3, 4] def A_ ( self : List[str] ): SCREAMING_SNAKE_CASE__ = len(self.first_signal ) SCREAMING_SNAKE_CASE__ = len(self.second_signal ) SCREAMING_SNAKE_CASE__ = max(UpperCAmelCase_ , UpperCAmelCase_ ) # create a zero matrix of max_length x max_length SCREAMING_SNAKE_CASE__ = [[0] * max_length for i in range(UpperCAmelCase_ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = deque(self.second_signal ) rotated_signal.rotate(UpperCAmelCase_ ) for j, item in enumerate(UpperCAmelCase_ ): matrix[i][j] += item # multiply the matrix with the first signal SCREAMING_SNAKE_CASE__ = np.matmul(np.transpose(UpperCAmelCase_ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(UpperCAmelCase_ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
169
0
import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging __A = logging.get_logger(__name__) def lowerCAmelCase_ ( ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__: Optional[int] =os.getenv("SM_HP_MP_PARAMETERS" , "{}" ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. lowerCamelCase__: Union[str, Any] =json.loads(__UpperCAmelCase ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. lowerCamelCase__: List[Any] =os.getenv("SM_FRAMEWORK_PARAMS" , "{}" ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". lowerCamelCase__: Tuple =json.loads(__UpperCAmelCase ) if not mpi_options.get("sagemaker_mpi_enabled" , __UpperCAmelCase ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("smdistributed" ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class _SCREAMING_SNAKE_CASE ( a_ ): '''simple docstring''' lowercase_ = field( default="" , metadata={"help": "Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"} , ) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->List[Any]: '''simple docstring''' super().__post_init__() warnings.warn( "`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use " "`TrainingArguments` instead." , UpperCAmelCase_ , ) @cached_property def SCREAMING_SNAKE_CASE_ (self : Tuple) ->"torch.device": '''simple docstring''' logger.info("PyTorch: setting up devices") if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( "torch.distributed process group is initialized, but local_rank == -1. " "In order to use Torch DDP, launch your script with `python -m torch.distributed.launch") if self.no_cuda: lowerCamelCase__: Dict =torch.device("cpu") lowerCamelCase__: List[str] =0 elif is_sagemaker_model_parallel_available(): lowerCamelCase__: Union[str, Any] =smp.local_rank() lowerCamelCase__: Dict =torch.device("cuda" , UpperCAmelCase_) lowerCamelCase__: Tuple =1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="smddp" , timeout=self.ddp_timeout_delta) lowerCamelCase__: Dict =int(os.getenv("SMDATAPARALLEL_LOCAL_RANK")) lowerCamelCase__: List[Any] =torch.device("cuda" , self.local_rank) lowerCamelCase__: Any =1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 lowerCamelCase__: Any =torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. lowerCamelCase__: Optional[int] =torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="nccl" , timeout=self.ddp_timeout_delta) lowerCamelCase__: Union[str, Any] =torch.device("cuda" , self.local_rank) lowerCamelCase__: Any =1 if device.type == "cuda": torch.cuda.set_device(UpperCAmelCase_) return device @property def SCREAMING_SNAKE_CASE_ (self : int) ->Union[str, Any]: '''simple docstring''' if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def SCREAMING_SNAKE_CASE_ (self : List[str]) ->str: '''simple docstring''' return not is_sagemaker_model_parallel_available() @property def SCREAMING_SNAKE_CASE_ (self : str) ->List[str]: '''simple docstring''' return False
10
"""simple docstring""" from __future__ import annotations import bisect def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = -1 ) -> int: if hi < 0: lowerCAmelCase__ : Union[str, Any] = len(__UpperCAmelCase ) while lo < hi: lowerCAmelCase__ : Tuple = lo + (hi - lo) // 2 if sorted_collection[mid] < item: lowerCAmelCase__ : Optional[int] = mid + 1 else: lowerCAmelCase__ : List[Any] = mid return lo def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = -1 ) -> int: if hi < 0: lowerCAmelCase__ : Union[str, Any] = len(__UpperCAmelCase ) while lo < hi: lowerCAmelCase__ : List[str] = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: lowerCAmelCase__ : Dict = mid + 1 else: lowerCAmelCase__ : Any = mid return lo def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = -1 ) -> None: sorted_collection.insert(bisect_left(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase ) def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = -1 ) -> None: sorted_collection.insert(bisect_right(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase ) def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> int | None: lowerCAmelCase__ : Any = 0 lowerCAmelCase__ : Union[str, Any] = len(__UpperCAmelCase ) - 1 while left <= right: lowerCAmelCase__ : str = left + (right - left) // 2 lowerCAmelCase__ : List[Any] = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: lowerCAmelCase__ : Optional[int] = midpoint - 1 else: lowerCAmelCase__ : Optional[int] = midpoint + 1 return None def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> int | None: lowerCAmelCase__ : Any = bisect.bisect_left(__UpperCAmelCase , __UpperCAmelCase ) if index != len(__UpperCAmelCase ) and sorted_collection[index] == item: return index return None def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int | None: if right < left: return None lowerCAmelCase__ : List[str] = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , midpoint - 1 ) else: return binary_search_by_recursion(__UpperCAmelCase , __UpperCAmelCase , midpoint + 1 , __UpperCAmelCase ) if __name__ == "__main__": _A = input("""Enter numbers separated by comma:\n""").strip() _A = sorted(int(item) for item in user_input.split(""",""")) _A = int(input("""Enter a single number to be found in the list:\n""")) _A = binary_search(collection, target) if result is None: print(f"""{target} was not found in {collection}.""") else: print(f"""{target} was found at position {result} in {collection}.""")
242
0
"""simple docstring""" import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __A ( _UpperCAmelCase , unittest.TestCase ): __A = GPTSanJapaneseTokenizer __A = False __A = {"do_clean_text": False, "add_prefix_space": False} def _snake_case ( self ): super().setUp() # fmt: off lowerCamelCase =['''こん''', '''こんに''', '''にちは''', '''ばんは''', '''世界,㔺界''', '''、''', '''。''', '''<BR>''', '''<SP>''', '''<TAB>''', '''<URL>''', '''<EMAIL>''', '''<TEL>''', '''<DATE>''', '''<PRICE>''', '''<BLOCK>''', '''<KIGOU>''', '''<U2000U2BFF>''', '''<|emoji1|>''', '''<unk>''', '''<|bagoftoken|>''', '''<|endoftext|>'''] # fmt: on lowerCamelCase ={'''emoji''': {'''\ud83d\ude00''': '''<|emoji1|>'''}, '''emoji_inv''': {'''<|emoji1|>''': '''\ud83d\ude00'''}} # 😀 lowerCamelCase ={'''unk_token''': '''<unk>'''} lowerCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""emoji_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.emoji_file , """w""" ) as emoji_writer: emoji_writer.write(json.dumps(_UpperCAmelCase ) ) def _snake_case ( self , **UpperCAmelCase_ ): kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def _snake_case ( self , UpperCAmelCase_ ): lowerCamelCase ='''こんにちは、世界。 \nこんばんは、㔺界。😀''' lowerCamelCase ='''こんにちは、世界。 \nこんばんは、世界。😀''' return input_text, output_text def _snake_case ( self , UpperCAmelCase_ ): lowerCamelCase =self.get_input_output_texts(_UpperCAmelCase ) lowerCamelCase =tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) lowerCamelCase =tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) return text, ids def _snake_case ( self ): pass # TODO add if relevant def _snake_case ( self ): pass # TODO add if relevant def _snake_case ( self ): pass # TODO add if relevant def _snake_case ( self ): lowerCamelCase =self.get_tokenizer() # Testing tokenization lowerCamelCase ='''こんにちは、世界。 こんばんは、㔺界。''' lowerCamelCase =['''こん''', '''にちは''', '''、''', '''世界''', '''。''', '''<SP>''', '''こん''', '''ばんは''', '''、''', '''㔺界''', '''。'''] lowerCamelCase =tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) # Testing conversion to ids without special tokens lowerCamelCase =[0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] lowerCamelCase =tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) # Testing conversion to ids with special tokens lowerCamelCase =tokens + [tokenizer.unk_token] lowerCamelCase =[0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] lowerCamelCase =tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): lowerCamelCase =self.get_tokenizer() # Testing tokenization lowerCamelCase ='''こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。''' lowerCamelCase ='''こんにちは、、、、世界。こんばんは、、、、世界。''' lowerCamelCase =tokenizer.encode(_UpperCAmelCase ) lowerCamelCase =tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) @slow def _snake_case ( self ): lowerCamelCase =self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization lowerCamelCase ='''こんにちは、世界。''' lowerCamelCase ='''こんばんは、㔺界。😀''' lowerCamelCase ='''こんにちは、世界。こんばんは、世界。😀''' lowerCamelCase =tokenizer.encode(prefix_text + input_text ) lowerCamelCase =tokenizer.encode("""""" , prefix_text=prefix_text + input_text ) lowerCamelCase =tokenizer.encode(_UpperCAmelCase , prefix_text=_UpperCAmelCase ) lowerCamelCase =tokenizer.decode(_UpperCAmelCase ) lowerCamelCase =tokenizer.decode(_UpperCAmelCase ) lowerCamelCase =tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) @slow def _snake_case ( self ): lowerCamelCase =self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization lowerCamelCase ='''こんにちは、世界。''' lowerCamelCase ='''こんばんは、㔺界。😀''' lowerCamelCase =len(tokenizer.encode(_UpperCAmelCase ) ) - 2 lowerCamelCase =len(tokenizer.encode(_UpperCAmelCase ) ) - 2 lowerCamelCase =[1] + [0] * (len_prefix + len_text + 1) lowerCamelCase =[1] * (len_prefix + len_text + 1) + [0] lowerCamelCase =[1] + [1] * (len_prefix) + [0] * (len_text + 1) lowerCamelCase =tokenizer(prefix_text + input_text ).token_type_ids lowerCamelCase =tokenizer("""""" , prefix_text=prefix_text + input_text ).token_type_ids lowerCamelCase =tokenizer(_UpperCAmelCase , prefix_text=_UpperCAmelCase ).token_type_ids self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) @slow def _snake_case ( self ): lowerCamelCase =self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) lowerCamelCase =tokenizer.encode("""あンいワ""" ) lowerCamelCase =tokenizer.encode("""""" , prefix_text="""あンいワ""" ) lowerCamelCase =tokenizer.encode("""いワ""" , prefix_text="""あン""" ) self.assertEqual(tokenizer.decode(_UpperCAmelCase ) , tokenizer.decode(_UpperCAmelCase ) ) self.assertEqual(tokenizer.decode(_UpperCAmelCase ) , tokenizer.decode(_UpperCAmelCase ) ) self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def _snake_case ( self ): lowerCamelCase =self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) lowerCamelCase =[['''武田信玄''', '''は、'''], ['''織田信長''', '''の配下の、''']] lowerCamelCase =tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase ) lowerCamelCase =tokenizer.batch_encode_plus(_UpperCAmelCase , padding=_UpperCAmelCase ) # fmt: off lowerCamelCase =[[35993, 8640, 25948, 35998, 30647, 35675, 35999, 35999], [35993, 10382, 9868, 35998, 30646, 9459, 30646, 35675]] lowerCamelCase =[[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] lowerCamelCase =[[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , _UpperCAmelCase ) self.assertListEqual(x_token.token_type_ids , _UpperCAmelCase ) self.assertListEqual(x_token.attention_mask , _UpperCAmelCase ) self.assertListEqual(x_token_a.input_ids , _UpperCAmelCase ) self.assertListEqual(x_token_a.token_type_ids , _UpperCAmelCase ) self.assertListEqual(x_token_a.attention_mask , _UpperCAmelCase ) def _snake_case ( self ): # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def _snake_case ( self ): # tokenizer has no padding token pass
352
from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig UpperCAmelCase__ : Optional[Any] ={ '''susnato/ernie-m-base_pytorch''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json''', '''susnato/ernie-m-large_pytorch''': '''https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json''', } class __A ( a ): __A = """ernie_m""" __A = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self , UpperCAmelCase_ = 250002 , UpperCAmelCase_ = 768 , UpperCAmelCase_ = 12 , UpperCAmelCase_ = 12 , UpperCAmelCase_ = 3072 , UpperCAmelCase_ = "gelu" , UpperCAmelCase_ = 0.1 , UpperCAmelCase_ = 0.1 , UpperCAmelCase_ = 514 , UpperCAmelCase_ = 0.0_2 , UpperCAmelCase_ = 1 , UpperCAmelCase_ = 1E-05 , UpperCAmelCase_=None , UpperCAmelCase_=False , UpperCAmelCase_=0.0 , **UpperCAmelCase_ , ): super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCamelCase =vocab_size lowerCamelCase =hidden_size lowerCamelCase =num_hidden_layers lowerCamelCase =num_attention_heads lowerCamelCase =intermediate_size lowerCamelCase =hidden_act lowerCamelCase =hidden_dropout_prob lowerCamelCase =attention_probs_dropout_prob lowerCamelCase =max_position_embeddings lowerCamelCase =initializer_range lowerCamelCase =layer_norm_eps lowerCamelCase =classifier_dropout lowerCamelCase =is_decoder lowerCamelCase =act_dropout
262
0
class lowerCamelCase : """simple docstring""" def __init__( self : int , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ) -> Tuple: SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = graph self._normalize_graph(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = len(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = None def __A ( self : int , __magic_name__ : Tuple , __magic_name__ : Any ) -> Any: if sources is int: SCREAMING_SNAKE_CASE_ = [sources] if sinks is int: SCREAMING_SNAKE_CASE_ = [sinks] if len(_lowerCAmelCase ) == 0 or len(_lowerCAmelCase ) == 0: return SCREAMING_SNAKE_CASE_ = sources[0] SCREAMING_SNAKE_CASE_ = sinks[0] # make fake vertex if there are more # than one source or sink if len(_lowerCAmelCase ) > 1 or len(_lowerCAmelCase ) > 1: SCREAMING_SNAKE_CASE_ = 0 for i in sources: max_input_flow += sum(self.graph[i] ) SCREAMING_SNAKE_CASE_ = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: SCREAMING_SNAKE_CASE_ = max_input_flow SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: SCREAMING_SNAKE_CASE_ = max_input_flow SCREAMING_SNAKE_CASE_ = size - 1 def __A ( self : Tuple ) -> int: if self.maximum_flow_algorithm is None: raise Exception("You need to set maximum flow algorithm before." ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def __A ( self : Optional[int] , __magic_name__ : int ) -> str: SCREAMING_SNAKE_CASE_ = algorithm(self ) class lowerCamelCase : """simple docstring""" def __init__( self : Optional[Any] , __magic_name__ : Optional[Any] ) -> int: SCREAMING_SNAKE_CASE_ = flow_network SCREAMING_SNAKE_CASE_ = flow_network.verticesCount SCREAMING_SNAKE_CASE_ = flow_network.sourceIndex SCREAMING_SNAKE_CASE_ = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that SCREAMING_SNAKE_CASE_ = flow_network.graph SCREAMING_SNAKE_CASE_ = False def __A ( self : str ) -> Dict: if not self.executed: self._algorithm() SCREAMING_SNAKE_CASE_ = True def __A ( self : Any ) -> Any: pass class lowerCamelCase (A__ ): """simple docstring""" def __init__( self : Optional[int] , __magic_name__ : Tuple ) -> List[str]: super().__init__(_lowerCAmelCase ) # use this to save your result SCREAMING_SNAKE_CASE_ = -1 def __A ( self : Optional[int] ) -> Optional[Any]: if not self.executed: raise Exception("You should execute algorithm before using its result!" ) return self.maximum_flow class lowerCamelCase (A__ ): """simple docstring""" def __init__( self : Tuple , __magic_name__ : str ) -> Union[str, Any]: super().__init__(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = [[0] * self.verticies_count for i in range(self.verticies_count )] SCREAMING_SNAKE_CASE_ = [0] * self.verticies_count SCREAMING_SNAKE_CASE_ = [0] * self.verticies_count def __A ( self : Dict ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule SCREAMING_SNAKE_CASE_ = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list SCREAMING_SNAKE_CASE_ = 0 while i < len(_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = vertices_list[i] SCREAMING_SNAKE_CASE_ = self.heights[vertex_index] self.process_vertex(_lowerCAmelCase ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(_lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ = 0 else: i += 1 SCREAMING_SNAKE_CASE_ = sum(self.preflow[self.source_index] ) def __A ( self : Tuple , __magic_name__ : str ) -> Tuple: while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(_lowerCAmelCase , _lowerCAmelCase ) self.relabel(_lowerCAmelCase ) def __A ( self : Dict , __magic_name__ : Optional[int] , __magic_name__ : List[Any] ) -> Any: SCREAMING_SNAKE_CASE_ = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def __A ( self : Dict , __magic_name__ : List[str] ) -> Dict: SCREAMING_SNAKE_CASE_ = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): SCREAMING_SNAKE_CASE_ = self.heights[to_index] if min_height is not None: SCREAMING_SNAKE_CASE_ = min_height + 1 if __name__ == "__main__": A : Optional[int] = [0] A : int = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] A : str = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network A : Optional[Any] = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate A : Optional[int] = flow_network.find_maximum_flow() print(f"maximum flow is {maximum_flow}")
118
'''simple docstring''' def __a ( UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def __a ( ) ->None: """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
258
0
'''simple docstring''' def UpperCamelCase_ ( A__ : list[int] ): '''simple docstring''' lowerCAmelCase_ : List[Any] = len(A__ ) for i in range(A__ ): for j in range(i + 1 , A__ ): if numbers[j] < numbers[i]: lowerCAmelCase_, lowerCAmelCase_ : List[Any] = numbers[j], numbers[i] return numbers if __name__ == "__main__": __A : str = input("Enter numbers separated by a comma:\n").strip() __A : Optional[Any] = [int(item) for item in user_input.split(",")] print(exchange_sort(unsorted))
89
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __snake_case : """simple docstring""" def __init__( self : Optional[Any] , lowerCamelCase : Tuple , lowerCamelCase : Tuple=13 , lowerCamelCase : Dict=30 , lowerCamelCase : Dict=2 , lowerCamelCase : Optional[int]=3 , lowerCamelCase : List[Any]=True , lowerCamelCase : Any=True , lowerCamelCase : str=32 , lowerCamelCase : Any=5 , lowerCamelCase : int=4 , lowerCamelCase : List[str]=37 , lowerCamelCase : Any="gelu" , lowerCamelCase : Optional[Any]=0.1 , lowerCamelCase : List[str]=0.1 , lowerCamelCase : str=10 , lowerCamelCase : Optional[Any]=0.02 , lowerCamelCase : List[str]=3 , lowerCamelCase : Union[str, Any]=0.6 , lowerCamelCase : List[Any]=None , ) -> Optional[int]: lowerCAmelCase_ : Optional[Any] = parent lowerCAmelCase_ : Optional[int] = batch_size lowerCAmelCase_ : int = image_size lowerCAmelCase_ : List[Any] = patch_size lowerCAmelCase_ : int = num_channels lowerCAmelCase_ : Any = is_training lowerCAmelCase_ : Tuple = use_labels lowerCAmelCase_ : Optional[Any] = hidden_size lowerCAmelCase_ : List[Any] = num_hidden_layers lowerCAmelCase_ : Optional[Any] = num_attention_heads lowerCAmelCase_ : Dict = intermediate_size lowerCAmelCase_ : Union[str, Any] = hidden_act lowerCAmelCase_ : Union[str, Any] = hidden_dropout_prob lowerCAmelCase_ : Any = attention_probs_dropout_prob lowerCAmelCase_ : List[Any] = type_sequence_label_size lowerCAmelCase_ : Dict = initializer_range lowerCAmelCase_ : List[str] = mask_ratio lowerCAmelCase_ : Tuple = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) lowerCAmelCase_ : Union[str, Any] = (image_size // patch_size) ** 2 lowerCAmelCase_ : Any = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def __lowercase ( self : Optional[int] ) -> str: lowerCAmelCase_ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ : Optional[int] = None if self.use_labels: lowerCAmelCase_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ : str = self.get_config() return config, pixel_values, labels def __lowercase ( self : Optional[int] ) -> Optional[int]: return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __lowercase ( self : Any , lowerCamelCase : Any , lowerCamelCase : Union[str, Any] , lowerCamelCase : Dict ) -> Tuple: lowerCAmelCase_ : Tuple = ViTMAEModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowerCAmelCase_ : Dict = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self : List[str] , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[str] , lowerCamelCase : Union[str, Any] ) -> Dict: lowerCAmelCase_ : Tuple = ViTMAEForPreTraining(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowerCAmelCase_ : List[str] = model(lowerCamelCase ) lowerCAmelCase_ : int = (self.image_size // self.patch_size) ** 2 lowerCAmelCase_ : int = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images lowerCAmelCase_ : List[Any] = 1 lowerCAmelCase_ : List[str] = ViTMAEForPreTraining(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowerCAmelCase_ : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase_ : Tuple = model(lowerCamelCase ) lowerCAmelCase_ : List[Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def __lowercase ( self : Optional[int] ) -> str: lowerCAmelCase_ : Any = self.prepare_config_and_inputs() lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ : List[Any] = config_and_inputs lowerCAmelCase_ : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __snake_case ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,unittest.TestCase): """simple docstring""" lowercase = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () lowercase = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} lowercase = False lowercase = False lowercase = False lowercase = False def __lowercase ( self : Optional[Any] ) -> List[Any]: lowerCAmelCase_ : Optional[int] = ViTMAEModelTester(self ) lowerCAmelCase_ : Optional[int] = ConfigTester(self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase , hidden_size=37 ) def __lowercase ( self : Dict ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""" ) def __lowercase ( self : Optional[int] ) -> Optional[int]: pass def __lowercase ( self : List[str] ) -> Tuple: lowerCAmelCase_, lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : List[str] = model_class(lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase_ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase , nn.Linear ) ) def __lowercase ( self : Optional[Any] ) -> Any: lowerCAmelCase_, lowerCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Optional[int] = model_class(lowerCamelCase ) lowerCAmelCase_ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : Any = [*signature.parameters.keys()] lowerCAmelCase_ : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase ) def __lowercase ( self : Tuple ) -> str: lowerCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def __lowercase ( self : Optional[int] ) -> str: lowerCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCamelCase ) def __lowercase ( self : Optional[int] , lowerCamelCase : Dict , lowerCamelCase : List[Any] , lowerCamelCase : Optional[Any] ) -> str: # make masks reproducible np.random.seed(2 ) lowerCAmelCase_ : Tuple = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) lowerCAmelCase_ : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowerCAmelCase_ : Optional[Any] = torch.from_numpy(lowerCamelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument lowerCAmelCase_ : int = pt_noise super().check_pt_tf_models(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def __lowercase ( self : int ) -> Dict: lowerCAmelCase_, lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Optional[int] = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): lowerCAmelCase_ : Any = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) lowerCAmelCase_ : Any = outputs[0].cpu().numpy() lowerCAmelCase_ : List[str] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase ) lowerCAmelCase_ : int = model_class.from_pretrained(lowerCamelCase ) model.to(lowerCamelCase ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): lowerCAmelCase_ : str = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) # Make sure we don't have nans lowerCAmelCase_ : Optional[Any] = after_outputs[0].cpu().numpy() lowerCAmelCase_ : str = 0 lowerCAmelCase_ : List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCamelCase , 1E-5 ) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def __lowercase ( self : Optional[int] ) -> List[Any]: pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def __lowercase ( self : Union[str, Any] ) -> str: pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def __lowercase ( self : Optional[Any] ) -> Union[str, Any]: pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" ) def __lowercase ( self : Tuple ) -> Optional[Any]: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __lowercase ( self : List[Any] ) -> str: pass @slow def __lowercase ( self : List[str] ) -> List[Any]: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : List[Any] = ViTMAEModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def UpperCamelCase_ ( ): '''simple docstring''' lowerCAmelCase_ : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __snake_case ( unittest.TestCase): """simple docstring""" @cached_property def __lowercase ( self : Union[str, Any] ) -> Union[str, Any]: return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None @slow def __lowercase ( self : int ) -> List[Any]: # make random mask reproducible across the PT and TF model np.random.seed(2 ) lowerCAmelCase_ : Dict = ViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ).to(lowerCamelCase ) lowerCAmelCase_ : Union[str, Any] = self.default_image_processor lowerCAmelCase_ : Union[str, Any] = prepare_img() lowerCAmelCase_ : Dict = image_processor(images=lowerCamelCase , return_tensors="""pt""" ).to(lowerCamelCase ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) lowerCAmelCase_ : Optional[int] = ViTMAEConfig() lowerCAmelCase_ : Optional[Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) lowerCAmelCase_ : Optional[int] = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): lowerCAmelCase_ : str = model(**lowerCamelCase , noise=torch.from_numpy(lowerCamelCase ).to(device=lowerCamelCase ) ) # verify the logits lowerCAmelCase_ : str = torch.Size((1, 1_96, 7_68) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) lowerCAmelCase_ : str = torch.tensor( [[-0.0_548, -1.7_023, -0.9_325], [0.3_721, -0.5_670, -0.2_233], [0.8_235, -1.3_878, -0.3_524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(lowerCamelCase ) , atol=1E-4 ) )
89
1
"""simple docstring""" import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL _snake_case = version.parse(version.parse(torch.__version__).base_version) < version.parse('1.11') def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False , ): '''simple docstring''' output_path.parent.mkdir(parents=_UpperCamelCase , exist_ok=_UpperCamelCase ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( _UpperCamelCase , _UpperCamelCase , f=output_path.as_posix() , input_names=_UpperCamelCase , output_names=_UpperCamelCase , dynamic_axes=_UpperCamelCase , do_constant_folding=_UpperCamelCase , use_external_data_format=_UpperCamelCase , enable_onnx_checker=_UpperCamelCase , opset_version=_UpperCamelCase , ) else: export( _UpperCamelCase , _UpperCamelCase , f=output_path.as_posix() , input_names=_UpperCamelCase , output_names=_UpperCamelCase , dynamic_axes=_UpperCamelCase , do_constant_folding=_UpperCamelCase , opset_version=_UpperCamelCase , ) @torch.no_grad() def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False ): '''simple docstring''' _a : int = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): _a : Optional[int] = """cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" ) else: _a : List[Any] = """cpu""" _a : str = Path(_UpperCamelCase ) # VAE DECODER _a : Optional[Any] = AutoencoderKL.from_pretrained(model_path + """/vae""" ) _a : Tuple = vae_decoder.config.latent_channels # forward only through the decoder part _a : Dict = vae_decoder.decode onnx_export( _UpperCamelCase , model_args=( torch.randn(1 , _UpperCamelCase , 2_5 , 2_5 ).to(device=_UpperCamelCase , dtype=_UpperCamelCase ), False, ) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={ """latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=_UpperCamelCase , ) del vae_decoder if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument( '--model_path', type=str, required=True, help='Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).', ) parser.add_argument('--output_path', type=str, required=True, help='Path to the output model.') parser.add_argument( '--opset', default=14, type=int, help='The version of the ONNX operator set to use.', ) parser.add_argument('--fp16', action='store_true', default=False, help='Export the models in `float16` mode') _snake_case = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print('SD: Done: ONNX')
294
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() A : Tuple = logging.get_logger(__name__) A : Tuple = [ ("bert.bert", "visual_bert"), ("bert.cls", "cls"), ("bert.classifier", "cls"), ("token_type_embeddings_visual", "visual_token_type_embeddings"), ("position_embeddings_visual", "visual_position_embeddings"), ("projection", "visual_projection"), ] A : Optional[Any] = [ "nlvr2_coco_pre_trained.th", "nlvr2_fine_tuned.th", "nlvr2_pre_trained.th", "vcr_coco_pre_train.th", "vcr_fine_tune.th", "vcr_pre_train.th", "vqa_coco_pre_trained.th", "vqa_fine_tuned.th", "vqa_pre_trained.th", ] def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = torch.load(_UpperCamelCase , map_location="cpu" ) return sd def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=rename_keys_prefix ): '''simple docstring''' __lowerCAmelCase = OrderedDict() __lowerCAmelCase = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue __lowerCAmelCase = key for name_pair in rename_keys_prefix: __lowerCAmelCase = new_key.replace(name_pair[0] , name_pair[1] ) __lowerCAmelCase = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately __lowerCAmelCase = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), f"The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}." # Get Config if "pre" in checkpoint_path: __lowerCAmelCase = "pretraining" if "vcr" in checkpoint_path: __lowerCAmelCase = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: __lowerCAmelCase = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: __lowerCAmelCase = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: __lowerCAmelCase = {"visual_embedding_dim": 1024} else: raise NotImplementedError(f"No implementation found for `{checkpoint_path}`." ) else: if "vcr" in checkpoint_path: __lowerCAmelCase = {"visual_embedding_dim": 512} __lowerCAmelCase = "multichoice" elif "vqa_advanced" in checkpoint_path: __lowerCAmelCase = {"visual_embedding_dim": 2048} __lowerCAmelCase = "vqa_advanced" elif "vqa" in checkpoint_path: __lowerCAmelCase = {"visual_embedding_dim": 2048, "num_labels": 3129} __lowerCAmelCase = "vqa" elif "nlvr" in checkpoint_path: __lowerCAmelCase = { "visual_embedding_dim": 1024, "num_labels": 2, } __lowerCAmelCase = "nlvr" __lowerCAmelCase = VisualBertConfig(**_UpperCamelCase ) # Load State Dict __lowerCAmelCase = load_state_dict(_UpperCamelCase ) __lowerCAmelCase = get_new_dict(_UpperCamelCase , _UpperCamelCase ) if model_type == "pretraining": __lowerCAmelCase = VisualBertForPreTraining(_UpperCamelCase ) elif model_type == "vqa": __lowerCAmelCase = VisualBertForQuestionAnswering(_UpperCamelCase ) elif model_type == "nlvr": __lowerCAmelCase = VisualBertForVisualReasoning(_UpperCamelCase ) elif model_type == "multichoice": __lowerCAmelCase = VisualBertForMultipleChoice(_UpperCamelCase ) model.load_state_dict(_UpperCamelCase ) # Save Checkpoints Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": A : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("orig_checkpoint_path", type=str, help="A path to .th on local filesystem.") parser.add_argument("pytorch_dump_folder_path", type=str, help="Path to the output PyTorch model.") A : Optional[int] = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
57
0
'''simple docstring''' import requests A_ : str = """https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=""" def snake_case_ ( lowerCAmelCase_ )-> None: '''simple docstring''' _UpperCAmelCase : Any = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page["""articles"""] , 1 ): print(F'''{i}.) {article['title']}''' ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key="""<Your BBC News API key goes here>""")
349
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 0 , lowerCAmelCase_ = 0 )-> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = right or len(lowerCAmelCase_ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(lowerCAmelCase_ , lowerCAmelCase_ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
349
1
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow _lowerCAmelCase = logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class lowerCAmelCase_( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = True ,) -> Tuple: lowerCAmelCase__ : Optional[Any] = [file for file in os.listdir(__UpperCamelCase ) if os.path.isfile(os.path.join(__UpperCamelCase ,__UpperCamelCase ) )] if identifier is not None: lowerCAmelCase__ : List[str] = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(__UpperCamelCase ,__UpperCamelCase ): for n_ in n_identifier: lowerCAmelCase__ : Dict = [file for file in files if n_ not in file] else: lowerCAmelCase__ : Dict = [file for file in files if n_identifier not in file] lowerCAmelCase__ : List[str] = ignore_files or [] ignore_files.append("""__init__.py""" ) lowerCAmelCase__ : Optional[int] = [file for file in files if file not in ignore_files] for file in files: # Open all files print("""Testing""" ,__UpperCamelCase ) if only_modules: lowerCAmelCase__ : Union[str, Any] = file.split(""".""" )[0] try: lowerCAmelCase__ : List[str] = getattr(__UpperCamelCase ,__UpperCamelCase ) lowerCAmelCase__ : List[Any] = doctest.DocTestSuite(__UpperCamelCase ) lowerCAmelCase__ : List[str] = unittest.TextTestRunner().run(__UpperCamelCase ) self.assertIs(len(result.failures ) ,0 ) except AttributeError: logger.info(F"""{module_identifier} is not a module.""" ) else: lowerCAmelCase__ : Optional[int] = doctest.testfile(str("""..""" / directory / file ) ,optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed ,0 ) def UpperCAmelCase_ ( self ) -> Optional[Any]: lowerCAmelCase__ : Optional[Any] = Path("""src/transformers""" ) lowerCAmelCase__ : int = """modeling""" lowerCAmelCase__ : Optional[Any] = [ """modeling_ctrl.py""", """modeling_tf_ctrl.py""", ] self.analyze_directory(__UpperCamelCase ,identifier=__UpperCamelCase ,ignore_files=__UpperCamelCase ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: lowerCAmelCase__ : str = Path("""src/transformers""" ) lowerCAmelCase__ : Tuple = """tokenization""" self.analyze_directory(__UpperCamelCase ,identifier=__UpperCamelCase ) def UpperCAmelCase_ ( self ) -> Any: lowerCAmelCase__ : Tuple = Path("""src/transformers""" ) lowerCAmelCase__ : Optional[Any] = """configuration""" self.analyze_directory(__UpperCamelCase ,identifier=__UpperCamelCase ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: lowerCAmelCase__ : Dict = Path("""src/transformers""" ) lowerCAmelCase__ : List[str] = ["""configuration""", """modeling""", """tokenization"""] self.analyze_directory(__UpperCamelCase ,n_identifier=__UpperCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: lowerCAmelCase__ : int = Path("""docs/source""" ) lowerCAmelCase__ : str = ["""favicon.ico"""] self.analyze_directory(__UpperCamelCase ,ignore_files=__UpperCamelCase ,only_modules=__UpperCamelCase )
37
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _A = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class lowercase_ ( unittest.TestCase ): A__ : List[str] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING A__ : Union[str, Any] = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: A__ : Union[str, Any] = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: A__ : List[Any] = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = ZeroShotClassificationPipeline( model=__UpperCamelCase , tokenizer=__UpperCamelCase , candidate_labels=["""polics""", """health"""] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = classifier("""Who are you voting for in 2020?""" , candidate_labels="""politics""" ) self.assertEqual(__UpperCamelCase , {"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase )]} ) # No kwarg UpperCamelCase_ = classifier("""Who are you voting for in 2020?""" , ["""politics"""] ) self.assertEqual(__UpperCamelCase , {"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase )]} ) UpperCamelCase_ = classifier("""Who are you voting for in 2020?""" , candidate_labels=["""politics"""] ) self.assertEqual(__UpperCamelCase , {"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase )]} ) UpperCamelCase_ = classifier("""Who are you voting for in 2020?""" , candidate_labels="""politics, public health""" ) self.assertEqual( __UpperCamelCase , {"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["""scores"""] ) ) , 1.0 ) UpperCamelCase_ = classifier("""Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health"""] ) self.assertEqual( __UpperCamelCase , {"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["""scores"""] ) ) , 1.0 ) UpperCamelCase_ = classifier( """Who are you voting for in 2020?""" , candidate_labels="""politics""" , hypothesis_template="""This text is about {}""" ) self.assertEqual(__UpperCamelCase , {"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase )]} ) # https://github.com/huggingface/transformers/issues/13846 UpperCamelCase_ = classifier(["""I am happy"""] , ["""positive""", """negative"""] ) self.assertEqual( __UpperCamelCase , [ {"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )]} for i in range(1 ) ] , ) UpperCamelCase_ = classifier(["""I am happy""", """I am sad"""] , ["""positive""", """negative"""] ) self.assertEqual( __UpperCamelCase , [ {"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )]} for i in range(2 ) ] , ) with self.assertRaises(__UpperCamelCase ): classifier("""""" , candidate_labels="""politics""" ) with self.assertRaises(__UpperCamelCase ): classifier(__UpperCamelCase , candidate_labels="""politics""" ) with self.assertRaises(__UpperCamelCase ): classifier("""Who are you voting for in 2020?""" , candidate_labels="""""" ) with self.assertRaises(__UpperCamelCase ): classifier("""Who are you voting for in 2020?""" , candidate_labels=__UpperCamelCase ) with self.assertRaises(__UpperCamelCase ): classifier( """Who are you voting for in 2020?""" , candidate_labels="""politics""" , hypothesis_template="""Not formatting template""" , ) with self.assertRaises(__UpperCamelCase ): classifier( """Who are you voting for in 2020?""" , candidate_labels="""politics""" , hypothesis_template=__UpperCamelCase , ) self.run_entailment_id(__UpperCamelCase ) def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = zero_shot_classifier.model.config UpperCamelCase_ = config.labelaid UpperCamelCase_ = zero_shot_classifier.entailment_id UpperCamelCase_ = {"""LABEL_0""": 0, """LABEL_1""": 1, """LABEL_2""": 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) UpperCamelCase_ = {"""entailment""": 0, """neutral""": 1, """contradiction""": 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) UpperCamelCase_ = {"""ENTAIL""": 0, """NON-ENTAIL""": 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) UpperCamelCase_ = {"""ENTAIL""": 2, """NEUTRAL""": 1, """CONTR""": 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) UpperCamelCase_ = original_labelaid self.assertEqual(__UpperCamelCase , zero_shot_classifier.entailment_id ) @require_torch def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = pipeline( """zero-shot-classification""" , model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" , framework="""pt""" , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( """Who are you voting for in 2020?""" * 1_0_0 , candidate_labels=["""politics""", """public health""", """science"""] ) @require_torch def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = pipeline( """zero-shot-classification""" , model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" , framework="""pt""" , ) UpperCamelCase_ = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(__UpperCamelCase ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""science""", """public health""", """politics"""], """scores""": [0.333, 0.333, 0.333], } , ) @require_tf def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = pipeline( """zero-shot-classification""" , model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" , framework="""tf""" , ) UpperCamelCase_ = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(__UpperCamelCase ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""science""", """public health""", """politics"""], """scores""": [0.333, 0.333, 0.333], } , ) @slow @require_torch def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = pipeline("""zero-shot-classification""" , model="""roberta-large-mnli""" , framework="""pt""" ) UpperCamelCase_ = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(__UpperCamelCase ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""politics""", """public health""", """science"""], """scores""": [0.976, 0.015, 0.009], } , ) UpperCamelCase_ = zero_shot_classifier( """The dominant sequence transduction models are based on complex recurrent or convolutional neural networks""" """ in an encoder-decoder configuration. The best performing models also connect the encoder and decoder""" """ through an attention mechanism. We propose a new simple network architecture, the Transformer, based""" """ solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two""" """ machine translation tasks show these models to be superior in quality while being more parallelizable""" """ and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014""" """ English-to-German translation task, improving over the existing best results, including ensembles by""" """ over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new""" """ single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small""" """ fraction of the training costs of the best models from the literature. We show that the Transformer""" """ generalizes well to other tasks by applying it successfully to English constituency parsing both with""" """ large and limited training data.""" , candidate_labels=["""machine learning""", """statistics""", """translation""", """vision"""] , multi_label=__UpperCamelCase , ) self.assertEqual( nested_simplify(__UpperCamelCase ) , { """sequence""": ( """The dominant sequence transduction models are based on complex recurrent or convolutional neural""" """ networks in an encoder-decoder configuration. The best performing models also connect the""" """ encoder and decoder through an attention mechanism. We propose a new simple network""" """ architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence""" """ and convolutions entirely. Experiments on two machine translation tasks show these models to be""" """ superior in quality while being more parallelizable and requiring significantly less time to""" """ train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,""" """ improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014""" """ English-to-French translation task, our model establishes a new single-model state-of-the-art""" """ BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training""" """ costs of the best models from the literature. We show that the Transformer generalizes well to""" """ other tasks by applying it successfully to English constituency parsing both with large and""" """ limited training data.""" ), """labels""": ["""translation""", """machine learning""", """vision""", """statistics"""], """scores""": [0.817, 0.713, 0.018, 0.018], } , ) @slow @require_tf def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = pipeline("""zero-shot-classification""" , model="""roberta-large-mnli""" , framework="""tf""" ) UpperCamelCase_ = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(__UpperCamelCase ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""politics""", """public health""", """science"""], """scores""": [0.976, 0.015, 0.009], } , ) UpperCamelCase_ = zero_shot_classifier( """The dominant sequence transduction models are based on complex recurrent or convolutional neural networks""" """ in an encoder-decoder configuration. The best performing models also connect the encoder and decoder""" """ through an attention mechanism. We propose a new simple network architecture, the Transformer, based""" """ solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two""" """ machine translation tasks show these models to be superior in quality while being more parallelizable""" """ and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014""" """ English-to-German translation task, improving over the existing best results, including ensembles by""" """ over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new""" """ single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small""" """ fraction of the training costs of the best models from the literature. We show that the Transformer""" """ generalizes well to other tasks by applying it successfully to English constituency parsing both with""" """ large and limited training data.""" , candidate_labels=["""machine learning""", """statistics""", """translation""", """vision"""] , multi_label=__UpperCamelCase , ) self.assertEqual( nested_simplify(__UpperCamelCase ) , { """sequence""": ( """The dominant sequence transduction models are based on complex recurrent or convolutional neural""" """ networks in an encoder-decoder configuration. The best performing models also connect the""" """ encoder and decoder through an attention mechanism. We propose a new simple network""" """ architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence""" """ and convolutions entirely. Experiments on two machine translation tasks show these models to be""" """ superior in quality while being more parallelizable and requiring significantly less time to""" """ train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,""" """ improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014""" """ English-to-French translation task, our model establishes a new single-model state-of-the-art""" """ BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training""" """ costs of the best models from the literature. We show that the Transformer generalizes well to""" """ other tasks by applying it successfully to English constituency parsing both with large and""" """ limited training data.""" ), """labels""": ["""translation""", """machine learning""", """vision""", """statistics"""], """scores""": [0.817, 0.713, 0.018, 0.018], } , )
122
0
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position UpperCAmelCase__ = "2.13.1" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( "To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip UpperCAmelCase__ = concatenate_datasets UpperCAmelCase__ = DownloadConfig UpperCAmelCase__ = DownloadManager UpperCAmelCase__ = DownloadMode UpperCAmelCase__ = DownloadConfig UpperCAmelCase__ = DownloadMode UpperCAmelCase__ = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
364
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm UpperCAmelCase__ = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex UpperCAmelCase__ = 10 UpperCAmelCase__ = 256 def _a ( a :List[str] ) -> Optional[MinHash]: if len(a ) < MIN_NUM_TOKENS: return None a = MinHash(num_perm=a ) for token in set(a ): min_hash.update(token.encode() ) return min_hash def _a ( a :str ) -> Set[str]: return {t for t in NON_ALPHA.split(a ) if len(t.strip() ) > 0} class lowercase_ : '''simple docstring''' def __init__( self : Any , *, __UpperCAmelCase : float = 0.85 , ) ->Dict: """simple docstring""" a = duplication_jaccard_threshold a = NUM_PERM a = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) a = defaultdict(__UpperCAmelCase ) def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Tuple , __UpperCAmelCase : MinHash ) ->None: """simple docstring""" a = self._index.query(__UpperCAmelCase ) if code_key in self._index.keys: print(F"""Duplicate key {code_key}""" ) return self._index.insert(__UpperCAmelCase , __UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__UpperCAmelCase ) break else: self._duplicate_clusters[close_duplicates[0]].add(__UpperCAmelCase ) def __lowerCAmelCase ( self : Dict ) ->List[List[Dict]]: """simple docstring""" a = [] for base, duplicates in self._duplicate_clusters.items(): a = [base] + list(__UpperCAmelCase ) # reformat the cluster to be a list of dict a = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(__UpperCAmelCase ) return duplicate_clusters def __lowerCAmelCase ( self : Any , __UpperCAmelCase : Dict ) ->None: """simple docstring""" a = self.get_duplicate_clusters() with open(__UpperCAmelCase , '''w''' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase ) def _a ( a :List[Any] ) -> List[Any]: a , a = element a = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def _a ( a :Type[Dataset] ) -> List[Any]: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(a , max_queue_size=10_000 ) , chunksize=100 , ): if data is not None: yield data def _a ( a :Type[Dataset] , a :float ) -> str: a = DuplicationIndex(duplication_jaccard_threshold=a ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(a ) ) , max_queue_size=100 ) ): di.add(a , a ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def _a ( a :str , a :str ) -> float: a = get_tokens(a ) a = get_tokens(a ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) UpperCAmelCase__ = None def _a ( a :Tuple , a :Tuple ) -> Any: a = [] for elementa in cluster: a = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: a = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(a , a ) >= jaccard_threshold: elementa["copies"] += 1 break else: a = 1 extremes.append(a ) return extremes def _a ( a :List[Any] , a :Optional[Any] , a :Union[str, Any] ) -> Optional[int]: global _shared_dataset a = dataset a = [] a = partial(_find_cluster_extremes_shared , jaccard_threshold=a ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( a , a , ) , total=len(a ) , ): extremes_list.append(a ) return extremes_list def _a ( a :Type[Dataset] , a :float = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: a = make_duplicate_clusters(a , a ) a = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} a = {} a = find_extremes(a , a , a ) for extremes in extremes_clusters: for element in extremes: a = element a = duplicate_indices - set(extreme_dict.keys() ) a = dataset.filter(lambda a , a : idx not in remove_indices , with_indices=a ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: a = element['''base_index'''] in extreme_dict if element["is_extreme"]: a = extreme_dict[element['''base_index''']]['''copies'''] print(F"""Original dataset size: {len(a )}""" ) print(F"""Number of duplicate clusters: {len(a )}""" ) print(F"""Files in duplicate cluster: {len(a )}""" ) print(F"""Unique files in duplicate cluster: {len(a )}""" ) print(F"""Filtered dataset size: {len(a )}""" ) return ds_filter, duplicate_clusters
26
0
"""simple docstring""" import string def lowercase (SCREAMING_SNAKE_CASE_ : str ) -> None: for key in range(len(string.ascii_uppercase ) ): SCREAMING_SNAKE_CASE = '' for symbol in message: if symbol in string.ascii_uppercase: SCREAMING_SNAKE_CASE = string.ascii_uppercase.find(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = num - key if num < 0: SCREAMING_SNAKE_CASE = num + len(string.ascii_uppercase ) SCREAMING_SNAKE_CASE = translated + string.ascii_uppercase[num] else: SCREAMING_SNAKE_CASE = translated + symbol print(F'Decryption using Key #{key}: {translated}' ) def lowercase () -> None: SCREAMING_SNAKE_CASE = input('Encrypted message: ' ) SCREAMING_SNAKE_CASE = message.upper() decrypt(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
113
"""simple docstring""" # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def lowercase (SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : int ) -> List[str]: SCREAMING_SNAKE_CASE = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, oder?', } # BLUE scores as follows: # "pair": [fairseq, transformers] SCREAMING_SNAKE_CASE = { 'ru-en': ['[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)', '39.20'], 'en-ru': ['[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)', '33.47'], 'en-de': ['[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)', '42.83'], 'de-en': ['[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)', '41.35'], } SCREAMING_SNAKE_CASE = F'{src_lang}-{tgt_lang}' SCREAMING_SNAKE_CASE = F'\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = "facebook/wmt19-{src_lang}-{tgt_lang}"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = "{texts[src_lang]}"\ninput_ids = tokenizer.encode(input, return_tensors="pt")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR\'s WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n' os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = os.path.join(SCREAMING_SNAKE_CASE_ , 'README.md' ) print(F'Generating {path}' ) with open(SCREAMING_SNAKE_CASE_ , 'w' , encoding='utf-8' ) as f: f.write(SCREAMING_SNAKE_CASE_ ) # make sure we are under the root of the project __UpperCamelCase = Path(__file__).resolve().parent.parent.parent __UpperCamelCase = repo_dir / '''model_cards''' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __UpperCamelCase,__UpperCamelCase,__UpperCamelCase = model_name.split('''-''') __UpperCamelCase = model_cards_dir / '''facebook''' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
113
1
def lowerCamelCase__ ( a__ : Optional[int] ) -> List[str]: if not head: return True # split the list to two parts UpperCamelCase_ , UpperCamelCase_ = head.next, head while fast and fast.next: UpperCamelCase_ = fast.next.next UpperCamelCase_ = slow.next UpperCamelCase_ = slow.next UpperCamelCase_ = None # Don't forget here! But forget still works! # reverse the second part UpperCamelCase_ = None while second: UpperCamelCase_ = second.next UpperCamelCase_ = node UpperCamelCase_ = second UpperCamelCase_ = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False UpperCamelCase_ = node.next UpperCamelCase_ = head.next return True def lowerCamelCase__ ( a__ : List[str] ) -> int: if not head or not head.next: return True # 1. Get the midpoint (slow) UpperCamelCase_ = UpperCamelCase_ = UpperCamelCase_ = head while fast and fast.next: UpperCamelCase_ , UpperCamelCase_ = fast.next.next, slow.next # 2. Push the second half into the stack UpperCamelCase_ = [slow.val] while slow.next: UpperCamelCase_ = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False UpperCamelCase_ = cur.next return True def lowerCamelCase__ ( a__ : Tuple ) -> Dict: if not head or not head.next: return True UpperCamelCase_ = {} UpperCamelCase_ = 0 while head: if head.val in d: d[head.val].append(a__ ) else: UpperCamelCase_ = [pos] UpperCamelCase_ = head.next pos += 1 UpperCamelCase_ = pos - 1 UpperCamelCase_ = 0 for v in d.values(): if len(a__ ) % 2 != 0: middle += 1 else: UpperCamelCase_ = 0 for i in range(0 , len(a__ ) ): if v[i] + v[len(a__ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
360
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class lowercase_ ( __SCREAMING_SNAKE_CASE ): A__ : List[Any] = """EncodecFeatureExtractor""" A__ : Tuple = ("""T5Tokenizer""", """T5TokenizerFast""") def __init__( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" super().__init__(__UpperCamelCase , __UpperCamelCase ) UpperCamelCase_ = self.feature_extractor UpperCamelCase_ = False def lowerCamelCase_ ( self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=True ): """simple docstring""" return self.tokenizer.get_decoder_prompt_ids(task=__UpperCamelCase , language=__UpperCamelCase , no_timestamps=__UpperCamelCase ) def __call__( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*__UpperCamelCase , **__UpperCamelCase ) UpperCamelCase_ = kwargs.pop("""audio""" , __UpperCamelCase ) UpperCamelCase_ = kwargs.pop("""sampling_rate""" , __UpperCamelCase ) UpperCamelCase_ = kwargs.pop("""text""" , __UpperCamelCase ) if len(__UpperCamelCase ) > 0: UpperCamelCase_ = args[0] UpperCamelCase_ = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if text is not None: UpperCamelCase_ = self.tokenizer(__UpperCamelCase , **__UpperCamelCase ) if audio is not None: UpperCamelCase_ = self.feature_extractor(__UpperCamelCase , *__UpperCamelCase , sampling_rate=__UpperCamelCase , **__UpperCamelCase ) if audio is None: return inputs elif text is None: return audio_inputs else: UpperCamelCase_ = audio_inputs["""input_values"""] if "padding_mask" in audio_inputs: UpperCamelCase_ = audio_inputs["""padding_mask"""] return inputs def lowerCamelCase_ ( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" UpperCamelCase_ = kwargs.pop("""audio""" , __UpperCamelCase ) UpperCamelCase_ = kwargs.pop("""padding_mask""" , __UpperCamelCase ) if len(__UpperCamelCase ) > 0: UpperCamelCase_ = args[0] UpperCamelCase_ = args[1:] if audio_values is not None: return self._decode_audio(__UpperCamelCase , padding_mask=__UpperCamelCase ) else: return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase ) def lowerCamelCase_ ( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase = None ): """simple docstring""" UpperCamelCase_ = to_numpy(__UpperCamelCase ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = audio_values.shape if padding_mask is None: return list(__UpperCamelCase ) UpperCamelCase_ = to_numpy(__UpperCamelCase ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) UpperCamelCase_ = seq_len - padding_mask.shape[-1] UpperCamelCase_ = 1 - self.feature_extractor.padding_value UpperCamelCase_ = np.pad(__UpperCamelCase , ((0, 0), (0, difference)) , """constant""" , constant_values=__UpperCamelCase ) UpperCamelCase_ = audio_values.tolist() for i in range(__UpperCamelCase ): UpperCamelCase_ = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] UpperCamelCase_ = sliced_audio.reshape(__UpperCamelCase , -1 ) return audio_values
261
0
'''simple docstring''' import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __magic_name__ ( a__): UpperCamelCase__ = (KDPMaDiscreteScheduler,) UpperCamelCase__ = 10 def SCREAMING_SNAKE_CASE_ ( self : int , **lowercase_ : Optional[Any] ): lowercase_ : Dict = { """num_train_timesteps""": 1100, """beta_start""": 0.00_01, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**lowercase_ ) return config def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): for beta_start, beta_end in zip([0.0_00_01, 0.00_01, 0.0_01] , [0.00_02, 0.0_02, 0.02] ): self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Dict = self.scheduler_classes[0] lowercase_ : Optional[int] = self.get_scheduler_config(prediction_type="""v_prediction""" ) lowercase_ : Tuple = scheduler_class(**lowercase_ ) scheduler.set_timesteps(self.num_inference_steps ) lowercase_ : int = self.dummy_model() lowercase_ : int = self.dummy_sample_deter * scheduler.init_noise_sigma lowercase_ : Optional[int] = sample.to(lowercase_ ) for i, t in enumerate(scheduler.timesteps ): lowercase_ : Dict = scheduler.scale_model_input(lowercase_ , lowercase_ ) lowercase_ : Optional[int] = model(lowercase_ , lowercase_ ) lowercase_ : List[str] = scheduler.step(lowercase_ , lowercase_ , lowercase_ ) lowercase_ : Tuple = output.prev_sample lowercase_ : Union[str, Any] = torch.sum(torch.abs(lowercase_ ) ) lowercase_ : Dict = torch.mean(torch.abs(lowercase_ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6934E-07 ) < 1E-2 assert abs(result_mean.item() - 6.1112E-10 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.693_4286_5017_0972E-07 ) < 1E-2 assert abs(result_mean.item() - 0.00_02 ) < 1E-3 def SCREAMING_SNAKE_CASE_ ( self : Tuple ): if torch_device == "mps": return lowercase_ : Dict = self.scheduler_classes[0] lowercase_ : Optional[int] = self.get_scheduler_config() lowercase_ : Optional[int] = scheduler_class(**lowercase_ ) scheduler.set_timesteps(self.num_inference_steps ) lowercase_ : int = self.dummy_model() lowercase_ : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma lowercase_ : Tuple = sample.to(lowercase_ ) for i, t in enumerate(scheduler.timesteps ): lowercase_ : Any = scheduler.scale_model_input(lowercase_ , lowercase_ ) lowercase_ : str = model(lowercase_ , lowercase_ ) lowercase_ : Optional[int] = scheduler.step(lowercase_ , lowercase_ , lowercase_ ) lowercase_ : Optional[Any] = output.prev_sample lowercase_ : List[str] = torch.sum(torch.abs(lowercase_ ) ) lowercase_ : str = torch.mean(torch.abs(lowercase_ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3 def SCREAMING_SNAKE_CASE_ ( self : Any ): if torch_device == "mps": return lowercase_ : Any = self.scheduler_classes[0] lowercase_ : Any = self.get_scheduler_config() lowercase_ : List[Any] = scheduler_class(**lowercase_ ) scheduler.set_timesteps(self.num_inference_steps , device=lowercase_ ) lowercase_ : Any = self.dummy_model() lowercase_ : Optional[Any] = self.dummy_sample_deter.to(lowercase_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: lowercase_ : Optional[Any] = scheduler.scale_model_input(lowercase_ , lowercase_ ) lowercase_ : List[Any] = model(lowercase_ , lowercase_ ) lowercase_ : List[Any] = scheduler.step(lowercase_ , lowercase_ , lowercase_ ) lowercase_ : Dict = output.prev_sample lowercase_ : Tuple = torch.sum(torch.abs(lowercase_ ) ) lowercase_ : Optional[Any] = torch.mean(torch.abs(lowercase_ ) ) if str(lowercase_ ).startswith("""cpu""" ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3
239
'''simple docstring''' from __future__ import annotations import math def _UpperCamelCase ( __A , __A , __A , __A , __A ) -> int: '''simple docstring''' if depth < 0: raise ValueError("Depth cannot be less than 0" ) if not scores: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , __A , __A , __A ) , minimax(depth + 1 , node_index * 2 + 1 , __A , __A , __A ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , __A , __A , __A ) , minimax(depth + 1 , node_index * 2 + 1 , __A , __A , __A ) , ) ) def _UpperCamelCase ( ) -> None: '''simple docstring''' UpperCamelCase__ = [90, 23, 6, 33, 21, 65, 123, 34423] UpperCamelCase__ = math.log(len(__A ) , 2 ) print(F'''Optimal value : {minimax(0 , 0 , __A , __A , __A )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
80
0
"""simple docstring""" import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging lowercase : str = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): """simple docstring""" lowercase : Any = 'linear' lowercase : str = 'cosine' lowercase : Union[str, Any] = 'cosine_with_restarts' lowercase : Optional[int] = 'polynomial' lowercase : List[Any] = 'constant' lowercase : Union[str, Any] = 'constant_with_warmup' lowercase : Union[str, Any] = 'piecewise_constant' def UpperCAmelCase_ (_lowerCAmelCase : Optimizer , _lowerCAmelCase : int = -1 ): return LambdaLR(_lowerCAmelCase , lambda _lowerCAmelCase : 1 , last_epoch=_lowerCAmelCase ) def UpperCAmelCase_ (_lowerCAmelCase : Optimizer , _lowerCAmelCase : int , _lowerCAmelCase : int = -1 ): def lr_lambda(_lowerCAmelCase : int ): if current_step < num_warmup_steps: return float(_lowerCAmelCase ) / float(max(1.0 , _lowerCAmelCase ) ) return 1.0 return LambdaLR(_lowerCAmelCase , _lowerCAmelCase , last_epoch=_lowerCAmelCase ) def UpperCAmelCase_ (_lowerCAmelCase : Optimizer , _lowerCAmelCase : str , _lowerCAmelCase : int = -1 ): __UpperCamelCase : int = {} __UpperCamelCase : List[Any] = step_rules.split("," ) for rule_str in rule_list[:-1]: __UpperCamelCase : Tuple = rule_str.split(":" ) __UpperCamelCase : Tuple = int(_lowerCAmelCase ) __UpperCamelCase : int = float(_lowerCAmelCase ) __UpperCamelCase : List[Any] = value __UpperCamelCase : Any = float(rule_list[-1] ) def create_rules_function(_lowerCAmelCase : Dict , _lowerCAmelCase : List[str] ): def rule_func(_lowerCAmelCase : int ) -> float: __UpperCamelCase : Tuple = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(_lowerCAmelCase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func __UpperCamelCase : Optional[int] = create_rules_function(_lowerCAmelCase , _lowerCAmelCase ) return LambdaLR(_lowerCAmelCase , _lowerCAmelCase , last_epoch=_lowerCAmelCase ) def UpperCAmelCase_ (_lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : int=-1 ): def lr_lambda(_lowerCAmelCase : int ): if current_step < num_warmup_steps: return float(_lowerCAmelCase ) / float(max(1 , _lowerCAmelCase ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def UpperCAmelCase_ (_lowerCAmelCase : Optimizer , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 0.5 , _lowerCAmelCase : int = -1 ): def lr_lambda(_lowerCAmelCase : Tuple ): if current_step < num_warmup_steps: return float(_lowerCAmelCase ) / float(max(1 , _lowerCAmelCase ) ) __UpperCamelCase : Optional[Any] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(_lowerCAmelCase ) * 2.0 * progress )) ) return LambdaLR(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def UpperCAmelCase_ (_lowerCAmelCase : Optimizer , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = -1 ): def lr_lambda(_lowerCAmelCase : int ): if current_step < num_warmup_steps: return float(_lowerCAmelCase ) / float(max(1 , _lowerCAmelCase ) ) __UpperCamelCase : List[Any] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(_lowerCAmelCase ) * progress) % 1.0) )) ) return LambdaLR(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def UpperCAmelCase_ (_lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : str=1E-7 , _lowerCAmelCase : Any=1.0 , _lowerCAmelCase : Union[str, Any]=-1 ): __UpperCamelCase : List[Any] = optimizer.defaults["lr"] if not (lr_init > lr_end): raise ValueError(F'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''' ) def lr_lambda(_lowerCAmelCase : int ): if current_step < num_warmup_steps: return float(_lowerCAmelCase ) / float(max(1 , _lowerCAmelCase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: __UpperCamelCase : Dict = lr_init - lr_end __UpperCamelCase : Optional[Any] = num_training_steps - num_warmup_steps __UpperCamelCase : Dict = 1 - (current_step - num_warmup_steps) / decay_steps __UpperCamelCase : Optional[Any] = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) lowercase : int = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def UpperCAmelCase_ (_lowerCAmelCase : Union[str, SchedulerType] , _lowerCAmelCase : Optimizer , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : int = 1 , _lowerCAmelCase : float = 1.0 , _lowerCAmelCase : int = -1 , ): __UpperCamelCase : Any = SchedulerType(_lowerCAmelCase ) __UpperCamelCase : List[str] = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(_lowerCAmelCase , last_epoch=_lowerCAmelCase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(_lowerCAmelCase , step_rules=_lowerCAmelCase , last_epoch=_lowerCAmelCase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F'''{name} requires `num_warmup_steps`, please provide that argument.''' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(_lowerCAmelCase , num_warmup_steps=_lowerCAmelCase , last_epoch=_lowerCAmelCase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F'''{name} requires `num_training_steps`, please provide that argument.''' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( _lowerCAmelCase , num_warmup_steps=_lowerCAmelCase , num_training_steps=_lowerCAmelCase , num_cycles=_lowerCAmelCase , last_epoch=_lowerCAmelCase , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( _lowerCAmelCase , num_warmup_steps=_lowerCAmelCase , num_training_steps=_lowerCAmelCase , power=_lowerCAmelCase , last_epoch=_lowerCAmelCase , ) return schedule_func( _lowerCAmelCase , num_warmup_steps=_lowerCAmelCase , num_training_steps=_lowerCAmelCase , last_epoch=_lowerCAmelCase )
371
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging lowercase : Optional[int] = { "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def UpperCAmelCase_ (_lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int=None ): # Initialise PyTorch model __UpperCamelCase : str = XLNetConfig.from_json_file(_lowerCAmelCase ) __UpperCamelCase : int = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F'''Building PyTorch XLNetForSequenceClassification model from configuration: {config}''' ) __UpperCamelCase : List[str] = finetuning_task __UpperCamelCase : List[str] = GLUE_TASKS_NUM_LABELS[finetuning_task] __UpperCamelCase : Dict = XLNetForSequenceClassification(_lowerCAmelCase ) elif "squad" in finetuning_task: __UpperCamelCase : List[str] = finetuning_task __UpperCamelCase : Optional[int] = XLNetForQuestionAnswering(_lowerCAmelCase ) else: __UpperCamelCase : Optional[int] = XLNetLMHeadModel(_lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Save pytorch-model __UpperCamelCase : Optional[Any] = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) __UpperCamelCase : Union[str, Any] = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) print(F'''Save PyTorch model to {os.path.abspath(_lowerCAmelCase )}''' ) torch.save(model.state_dict() , _lowerCAmelCase ) print(F'''Save configuration file to {os.path.abspath(_lowerCAmelCase )}''' ) with open(_lowerCAmelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowercase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--xlnet_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained XLNet model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--finetuning_task", default=None, type=str, help="Name of a task on which the XLNet TensorFlow model was fine-tuned", ) lowercase : Dict = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
171
0
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __lowerCamelCase : Optional[int] = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right __lowerCamelCase : Optional[Any] = 25_0004 __lowerCamelCase : Optional[Any] = 25_0020 @require_sentencepiece @require_tokenizers class A__ ( __snake_case , unittest.TestCase ): _UpperCAmelCase :Optional[int] = MBartTokenizer _UpperCAmelCase :int = MBartTokenizerFast _UpperCAmelCase :Dict = True _UpperCAmelCase :Any = True def __UpperCamelCase( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase : List[Any] = MBartTokenizer(A_ , keep_accents=A_ ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Any = MBartTokenizer(A_ , keep_accents=A_ ) UpperCamelCase : str = tokenizer.tokenize("This is a test" ) self.assertListEqual(A_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCamelCase : Optional[Any] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( A_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCamelCase : Any = tokenizer.convert_tokens_to_ids(A_ ) self.assertListEqual( A_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) UpperCamelCase : str = tokenizer.convert_ids_to_tokens(A_ ) self.assertListEqual( A_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def __UpperCamelCase( self ): '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return UpperCamelCase : Union[str, Any] = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-mbart", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCamelCase : Any = self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) UpperCamelCase : Any = self.tokenizer_class.from_pretrained(A_ , **A_ ) UpperCamelCase : Union[str, Any] = tempfile.mkdtemp() UpperCamelCase : Any = tokenizer_r.save_pretrained(A_ ) UpperCamelCase : str = tokenizer_p.save_pretrained(A_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) UpperCamelCase : Dict = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(A_ , A_ ) # Checks everything loads correctly in the same way UpperCamelCase : Dict = tokenizer_r.from_pretrained(A_ ) UpperCamelCase : List[str] = tokenizer_p.from_pretrained(A_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A_ , A_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(A_ ) # Save tokenizer rust, legacy_format=True UpperCamelCase : Any = tempfile.mkdtemp() UpperCamelCase : List[str] = tokenizer_r.save_pretrained(A_ , legacy_format=A_ ) UpperCamelCase : Dict = tokenizer_p.save_pretrained(A_ ) # Checks it save with the same files self.assertSequenceEqual(A_ , A_ ) # Checks everything loads correctly in the same way UpperCamelCase : Any = tokenizer_r.from_pretrained(A_ ) UpperCamelCase : Optional[Any] = tokenizer_p.from_pretrained(A_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A_ , A_ ) ) shutil.rmtree(A_ ) # Save tokenizer rust, legacy_format=False UpperCamelCase : str = tempfile.mkdtemp() UpperCamelCase : int = tokenizer_r.save_pretrained(A_ , legacy_format=A_ ) UpperCamelCase : List[Any] = tokenizer_p.save_pretrained(A_ ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCamelCase : Union[str, Any] = tokenizer_r.from_pretrained(A_ ) UpperCamelCase : Dict = tokenizer_p.from_pretrained(A_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A_ , A_ ) ) shutil.rmtree(A_ ) @require_torch @require_sentencepiece @require_tokenizers class A__ ( unittest.TestCase ): _UpperCAmelCase :Optional[Any] = 'facebook/mbart-large-en-ro' _UpperCAmelCase :Optional[Any] = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] _UpperCAmelCase :int = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] _UpperCAmelCase :Dict = [8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2, EN_CODE] @classmethod def __UpperCamelCase( cls ): '''simple docstring''' UpperCamelCase : MBartTokenizer = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en_XX" , tgt_lang="ro_RO" ) UpperCamelCase : Tuple = 1 return cls def __UpperCamelCase( self ): '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"] , 25_0001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"] , 25_0004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"] , 25_0020 ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , A_ ) def __UpperCamelCase( self ): '''simple docstring''' self.assertIn(A_ , self.tokenizer.all_special_ids ) UpperCamelCase : int = [RO_CODE, 884, 9019, 96, 9, 916, 8_6792, 36, 1_8743, 1_5596, 5, 2] UpperCamelCase : Optional[Any] = self.tokenizer.decode(A_ , skip_special_tokens=A_ ) UpperCamelCase : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=A_ ) self.assertEqual(A_ , A_ ) self.assertNotIn(self.tokenizer.eos_token , A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[int] = ["this is gunna be a long sentence " * 20] assert isinstance(src_text[0] , A_ ) UpperCamelCase : Union[str, Any] = 10 UpperCamelCase : List[Any] = self.tokenizer(A_ , max_length=A_ , truncation=A_ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , A_ ) self.assertEqual(len(A_ ) , A_ ) def __UpperCamelCase( self ): '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) , [25_0026, 25_0001] ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Tuple = tempfile.mkdtemp() UpperCamelCase : List[str] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(A_ ) UpperCamelCase : List[Any] = MBartTokenizer.from_pretrained(A_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , A_ ) @require_torch def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Any = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=A_ , return_tensors="pt" ) UpperCamelCase : int = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Union[str, Any] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=A_ , truncation=A_ , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) UpperCamelCase : List[str] = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(A_ , A_ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) UpperCamelCase : Union[str, Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , A_ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Tuple = self.tokenizer(self.src_text , padding=A_ , truncation=A_ , max_length=3 , return_tensors="pt" ) UpperCamelCase : str = self.tokenizer( text_target=self.tgt_text , padding=A_ , truncation=A_ , max_length=10 , return_tensors="pt" ) UpperCamelCase : Optional[int] = targets["input_ids"] UpperCamelCase : Any = shift_tokens_right(A_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="ar_AR" ) self.assertEqual( nested_simplify(A_ ) , { # A, test, EOS, en_XX "input_ids": [[62, 3034, 2, 25_0004]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 25_0001, } , )
52
'''simple docstring''' import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 _UpperCamelCase = data_utils.TransfoXLTokenizer _UpperCamelCase = data_utils.TransfoXLCorpus _UpperCamelCase = data_utils _UpperCamelCase = data_utils def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) -> Optional[Any]: if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(_lowerCAmelCase ,'rb' ) as fp: __lowerCamelCase : Optional[Any] = pickle.load(_lowerCAmelCase ,encoding='latin1' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) __lowerCamelCase : Tuple = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file'] print(F'Save vocabulary to {pytorch_vocab_dump_path}' ) __lowerCamelCase : str = corpus.vocab.__dict__ torch.save(_lowerCAmelCase ,_lowerCAmelCase ) __lowerCamelCase : Optional[Any] = corpus.__dict__ corpus_dict_no_vocab.pop('vocab' ,_lowerCAmelCase ) __lowerCamelCase : Optional[Any] = pytorch_dump_folder_path + '/' + CORPUS_NAME print(F'Save dataset to {pytorch_dataset_dump_path}' ) torch.save(_lowerCAmelCase ,_lowerCAmelCase ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model __lowerCamelCase : int = os.path.abspath(_lowerCAmelCase ) __lowerCamelCase : Any = os.path.abspath(_lowerCAmelCase ) print(F'Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.' ) # Initialise PyTorch model if transfo_xl_config_file == "": __lowerCamelCase : Optional[int] = TransfoXLConfig() else: __lowerCamelCase : Optional[int] = TransfoXLConfig.from_json_file(_lowerCAmelCase ) print(F'Building PyTorch model from configuration: {config}' ) __lowerCamelCase : List[str] = TransfoXLLMHeadModel(_lowerCAmelCase ) __lowerCamelCase : Dict = load_tf_weights_in_transfo_xl(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) # Save pytorch-model __lowerCamelCase : List[str] = os.path.join(_lowerCAmelCase ,_lowerCAmelCase ) __lowerCamelCase : int = os.path.join(_lowerCAmelCase ,_lowerCAmelCase ) print(F'Save PyTorch model to {os.path.abspath(_lowerCAmelCase )}' ) torch.save(model.state_dict() ,_lowerCAmelCase ) print(F'Save configuration file to {os.path.abspath(_lowerCAmelCase )}' ) with open(_lowerCAmelCase ,'w' ,encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--tf_checkpoint_path', default='', type=str, help='An optional path to a TensorFlow checkpoint path to be converted.', ) parser.add_argument( '--transfo_xl_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--transfo_xl_dataset_file', default='', type=str, help='An optional dataset file to be converted in a vocabulary.', ) _UpperCamelCase = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
208
0
"""simple docstring""" from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCamelCase_( A__ ): '''simple docstring''' lowercase__ : Optional[Any] = ['image_processor', 'tokenizer'] lowercase__ : Any = 'BlipImageProcessor' lowercase__ : Optional[int] = 'AutoTokenizer' def __init__( self , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = False super().__init__(lowerCamelCase__ , lowerCamelCase__ ) _lowerCamelCase = self.image_processor def __call__( self , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = True , lowerCamelCase__ = False , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = 0 , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = True , lowerCamelCase__ = None , **lowerCamelCase__ , ): if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: _lowerCamelCase = self.tokenizer _lowerCamelCase = self.tokenizer( text=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , stride=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , return_overflowing_tokens=lowerCamelCase__ , return_special_tokens_mask=lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , return_token_type_ids=lowerCamelCase__ , return_length=lowerCamelCase__ , verbose=lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ , ) return text_encoding # add pixel_values _lowerCamelCase = self.image_processor(lowerCamelCase__ , return_tensors=lowerCamelCase__ ) if text is not None: _lowerCamelCase = self.tokenizer( text=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , stride=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , return_overflowing_tokens=lowerCamelCase__ , return_special_tokens_mask=lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , return_token_type_ids=lowerCamelCase__ , return_length=lowerCamelCase__ , verbose=lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ , ) else: _lowerCamelCase = None if text_encoding is not None: encoding_image_processor.update(lowerCamelCase__ ) return encoding_image_processor def snake_case__ ( self , *lowerCamelCase__ , **lowerCamelCase__ ): return self.tokenizer.batch_decode(*lowerCamelCase__ , **lowerCamelCase__ ) def snake_case__ ( self , *lowerCamelCase__ , **lowerCamelCase__ ): return self.tokenizer.decode(*lowerCamelCase__ , **lowerCamelCase__ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def snake_case__ ( self ): _lowerCamelCase = self.tokenizer.model_input_names _lowerCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
73
"""simple docstring""" import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def lowerCAmelCase_( lowercase_ : List[str]="" ) -> str: _lowerCamelCase = tempfile.mkdtemp() return os.path.join(lowercase_ , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self ): _lowerCamelCase = torch.rand(1_2 , dtype=torch.floataa ) - 0.5 _lowerCamelCase = AgentAudio(lowerCamelCase__ ) _lowerCamelCase = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowerCamelCase__ , agent_type.to_raw() , atol=1e-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(lowerCamelCase__ ) ) # Ensure that the file contains the same value as the original tensor _lowerCamelCase , _lowerCamelCase = sf.read(lowerCamelCase__ ) self.assertTrue(torch.allclose(lowerCamelCase__ , torch.tensor(lowerCamelCase__ ) , atol=1e-4 ) ) def snake_case__ ( self ): _lowerCamelCase = torch.rand(1_2 , dtype=torch.floataa ) - 0.5 _lowerCamelCase = get_new_path(suffix='''.wav''' ) sf.write(lowerCamelCase__ , lowerCamelCase__ , 1_6_0_0_0 ) _lowerCamelCase = AgentAudio(lowerCamelCase__ ) self.assertTrue(torch.allclose(lowerCamelCase__ , agent_type.to_raw() , atol=1e-4 ) ) self.assertEqual(agent_type.to_string() , lowerCamelCase__ ) @require_vision @require_torch class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self ): _lowerCamelCase = torch.randint(0 , 2_5_6 , (6_4, 6_4, 3) ) _lowerCamelCase = AgentImage(lowerCamelCase__ ) _lowerCamelCase = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowerCamelCase__ , agent_type._tensor , atol=1e-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCamelCase__ ) ) def snake_case__ ( self ): _lowerCamelCase = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' _lowerCamelCase = Image.open(lowerCamelCase__ ) _lowerCamelCase = AgentImage(lowerCamelCase__ ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCamelCase__ ) ) def snake_case__ ( self ): _lowerCamelCase = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' _lowerCamelCase = Image.open(lowerCamelCase__ ) _lowerCamelCase = AgentImage(lowerCamelCase__ ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCamelCase__ ) ) class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self ): _lowerCamelCase = '''Hey!''' _lowerCamelCase = AgentText(lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , agent_type.to_string() ) self.assertEqual(lowerCamelCase__ , agent_type.to_raw() ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ )
73
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL A__ : Dict = logging.get_logger(__name__) class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : str = ['pixel_values'] def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = PIL.Image.BICUBIC , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 / 2_55 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> None: super().__init__(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = size if size is not None else {'height': 2_56, 'width': 2_56} __lowerCamelCase : Any = get_size_dict(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} __lowerCamelCase : Optional[int] = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='crop_size' ) __lowerCamelCase : str = do_resize __lowerCamelCase : int = size __lowerCamelCase : List[str] = resample __lowerCamelCase : Optional[int] = do_center_crop __lowerCamelCase : Optional[int] = crop_size __lowerCamelCase : Union[str, Any] = do_rescale __lowerCamelCase : List[Any] = rescale_factor __lowerCamelCase : Optional[Any] = do_normalize __lowerCamelCase : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __lowerCamelCase : Dict = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = PIL.Image.BICUBIC , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> np.ndarray: __lowerCamelCase : Union[str, Any] = get_size_dict(SCREAMING_SNAKE_CASE_ ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}' ) return resize( SCREAMING_SNAKE_CASE_ , size=(size['height'], size['width']) , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> np.ndarray: __lowerCamelCase : List[str] = get_size_dict(SCREAMING_SNAKE_CASE_ ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}' ) return center_crop(SCREAMING_SNAKE_CASE_ , size=(size['height'], size['width']) , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> str: return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> np.ndarray: return normalize(SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , ) -> PIL.Image.Image: __lowerCamelCase : Tuple = do_resize if do_resize is not None else self.do_resize __lowerCamelCase : int = resample if resample is not None else self.resample __lowerCamelCase : Any = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCamelCase : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale __lowerCamelCase : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCamelCase : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize __lowerCamelCase : List[str] = image_mean if image_mean is not None else self.image_mean __lowerCamelCase : Dict = image_std if image_std is not None else self.image_std __lowerCamelCase : Optional[Any] = size if size is not None else self.size __lowerCamelCase : Optional[Any] = get_size_dict(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = crop_size if crop_size is not None else self.crop_size __lowerCamelCase : Tuple = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='crop_size' ) __lowerCamelCase : Union[str, Any] = make_list_of_images(SCREAMING_SNAKE_CASE_ ) if not valid_images(SCREAMING_SNAKE_CASE_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __lowerCamelCase : List[Any] = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images] if do_resize: __lowerCamelCase : List[Any] = [self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images] if do_center_crop: __lowerCamelCase : List[str] = [self.center_crop(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ ) for image in images] if do_rescale: __lowerCamelCase : List[str] = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ ) for image in images] if do_normalize: __lowerCamelCase : Optional[int] = [self.normalize(image=SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ ) for image in images] __lowerCamelCase : int = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images] __lowerCamelCase : Dict = {'pixel_values': images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ )
185
'''simple docstring''' import unittest from knapsack import knapsack as k class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase : int = 0 __lowerCamelCase : Union[str, Any] = [0] __lowerCamelCase : Any = [0] __lowerCamelCase : Union[str, Any] = len(SCREAMING_SNAKE_CASE_ ) self.assertEqual(k.knapsack(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , 0 ) __lowerCamelCase : List[str] = [60] __lowerCamelCase : Union[str, Any] = [10] __lowerCamelCase : List[Any] = len(SCREAMING_SNAKE_CASE_ ) self.assertEqual(k.knapsack(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , 0 ) def lowercase_ ( self ) -> List[str]: __lowerCamelCase : Optional[int] = 3 __lowerCamelCase : int = [1, 2, 3] __lowerCamelCase : str = [3, 2, 1] __lowerCamelCase : Union[str, Any] = len(SCREAMING_SNAKE_CASE_ ) self.assertEqual(k.knapsack(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , 5 ) def lowercase_ ( self ) -> int: __lowerCamelCase : Optional[int] = 50 __lowerCamelCase : List[str] = [60, 1_00, 1_20] __lowerCamelCase : List[str] = [10, 20, 30] __lowerCamelCase : List[str] = len(SCREAMING_SNAKE_CASE_ ) self.assertEqual(k.knapsack(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , 2_20 ) if __name__ == "__main__": unittest.main()
185
1
"""simple docstring""" def __A ( a_ :dict) -> bool: __a : set[int] = set() # To detect a back edge, keep track of vertices currently in the recursion stack __a : set[int] = set() return any( node not in visited and depth_first_search(a_ , a_ , a_ , a_) for node in graph) def __A ( a_ :dict , a_ :int , a_ :set , a_ :set) -> bool: visited.add(a_) rec_stk.add(a_) for node in graph[vertex]: if node not in visited: if depth_first_search(a_ , a_ , a_ , a_): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(a_) return False if __name__ == "__main__": from doctest import testmod testmod()
188
"""simple docstring""" import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class __lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=64 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , _UpperCAmelCase=2 , _UpperCAmelCase=2 , _UpperCAmelCase=2 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=1 , ): __a : Dict = parent __a : str = batch_size __a : Union[str, Any] = seq_length __a : Any = is_training __a : int = use_input_mask __a : Optional[int] = use_token_type_ids __a : int = use_labels __a : int = vocab_size __a : int = hidden_size __a : str = num_hidden_layers __a : str = num_attention_heads __a : Any = intermediate_size __a : Union[str, Any] = hidden_act __a : Optional[int] = hidden_dropout_prob __a : str = attention_probs_dropout_prob __a : int = max_position_embeddings __a : Union[str, Any] = type_vocab_size __a : List[str] = type_sequence_label_size __a : List[str] = initializer_range __a : Optional[int] = num_labels __a : List[str] = num_choices __a : int = scope __a : Union[str, Any] = q_groups __a : Dict = k_groups __a : List[str] = v_groups __a : Any = post_attention_groups __a : Optional[int] = intermediate_groups __a : List[str] = output_groups def _lowerCamelCase ( self ): __a : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a : Optional[Any] = None if self.use_input_mask: __a : int = random_attention_mask([self.batch_size, self.seq_length] ) __a : List[str] = None __a : Union[str, Any] = None __a : int = None if self.use_labels: __a : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a : Dict = ids_tensor([self.batch_size] , self.num_choices ) __a : int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self ): return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : Dict = SqueezeBertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __a : Optional[Any] = model(_UpperCAmelCase , _UpperCAmelCase ) __a : Dict = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : Optional[Any] = SqueezeBertForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __a : int = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : int = SqueezeBertForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __a : Optional[int] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : Any = self.num_labels __a : List[Any] = SqueezeBertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __a : int = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : List[Any] = self.num_labels __a : List[str] = SqueezeBertForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __a : Any = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : List[str] = self.num_choices __a : Union[str, Any] = SqueezeBertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __a : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a : Union[str, Any] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self ): __a : Any = self.prepare_config_and_inputs() ((__a) , (__a) , (__a) , (__a) , (__a) , (__a)) : Optional[Any] = config_and_inputs __a : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) __lowerCAmelCase = ( { '''feature-extraction''': SqueezeBertModel, '''fill-mask''': SqueezeBertForMaskedLM, '''question-answering''': SqueezeBertForQuestionAnswering, '''text-classification''': SqueezeBertForSequenceClassification, '''token-classification''': SqueezeBertForTokenClassification, '''zero-shot''': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = True __lowerCAmelCase = False def _lowerCamelCase ( self ): __a : Union[str, Any] = SqueezeBertModelTester(self ) __a : Dict = ConfigTester(self , config_class=_UpperCAmelCase , dim=37 ) def _lowerCamelCase ( self ): self.config_tester.run_common_tests() def _lowerCamelCase ( self ): __a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*_UpperCAmelCase ) @slow def _lowerCamelCase ( self ): for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a : Any = SqueezeBertModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @require_sentencepiece @require_tokenizers @require_torch class __lowercase ( unittest.TestCase ): '''simple docstring''' @slow def _lowerCamelCase ( self ): __a : int = SqueezeBertForSequenceClassification.from_pretrained('''squeezebert/squeezebert-mnli''' ) __a : Tuple = torch.tensor([[1, 29414, 232, 328, 740, 1140, 12695, 69, 13, 1588, 2]] ) __a : List[str] = model(_UpperCAmelCase )[0] __a : int = torch.Size((1, 3) ) self.assertEqual(output.shape , _UpperCAmelCase ) __a : int = torch.tensor([[0.6_4_0_1, -0.0_3_4_9, -0.6_0_4_1]] ) self.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-4 ) )
188
1
"""simple docstring""" from argparse import ArgumentParser from .env import EnvironmentCommand def __a ( ): UpperCAmelCase_ : str = ArgumentParser("Diffusers CLI tool", usage="diffusers-cli <command> [<args>]" ) UpperCAmelCase_ : Optional[int] = parser.add_subparsers(help="diffusers-cli command helpers" ) # Register commands EnvironmentCommand.register_subcommand(__lowerCamelCase ) # Let's go UpperCAmelCase_ : Optional[Any] = parser.parse_args() if not hasattr(__lowerCamelCase, "func" ): parser.print_help() exit(1 ) # Run UpperCAmelCase_ : List[str] = args.func(__lowerCamelCase ) service.run() if __name__ == "__main__": main()
61
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="""%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s""", datefmt="""%Y-%m-%d %H:%M:%S""", level=os.environ.get("""LOGLEVEL""", """INFO""").upper(), stream=sys.stdout, ) __snake_case : Any = logging.getLogger(__name__) __snake_case : Any = {"""facebook/bart-base""": BartForConditionalGeneration} __snake_case : Tuple = {"""facebook/bart-base""": BartTokenizer} def _UpperCAmelCase ( ): '''simple docstring''' a_ : List[str] = argparse.ArgumentParser(description="""Export Bart model + Beam Search to ONNX graph.""") parser.add_argument( """--validation_file""" , type=a__ , default=a__ , help="""A csv or a json file containing the validation data.""") parser.add_argument( """--max_length""" , type=a__ , default=5 , help="""The maximum total input sequence length after tokenization.""" , ) parser.add_argument( """--num_beams""" , type=a__ , default=a__ , help=( """Number of beams to use for evaluation. This argument will be """ """passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.""" ) , ) parser.add_argument( """--model_name_or_path""" , type=a__ , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=a__ , ) parser.add_argument( """--config_name""" , type=a__ , default=a__ , help="""Pretrained config name or path if not the same as model_name""" , ) parser.add_argument( """--device""" , type=a__ , default="""cpu""" , help="""Device where the model will be run""" , ) parser.add_argument("""--output_file_path""" , type=a__ , default=a__ , help="""Where to store the final ONNX file.""") a_ : Any = parser.parse_args() return args def _UpperCAmelCase ( a__ , a__="cpu"): '''simple docstring''' a_ : Optional[int] = model_dict[model_name].from_pretrained(a__).to(a__) a_ : List[str] = tokenizer_dict[model_name].from_pretrained(a__) if model_name in ["facebook/bart-base"]: a_ : Tuple = 0 a_ : Optional[int] = None a_ : Union[str, Any] = 0 return huggingface_model, tokenizer def _UpperCAmelCase ( a__ , a__ , a__ , a__ , a__): '''simple docstring''' model.eval() a_ : Optional[Any] = None a_ : Optional[Any] = torch.jit.script(BARTBeamSearchGenerator(a__)) with torch.no_grad(): a_ : Any = """My friends are cool but they eat too many carbs.""" a_ : Dict = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_0_2_4 , return_tensors="""pt""").to(model.device) a_ : Optional[int] = model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , num_beams=a__ , max_length=a__ , early_stopping=a__ , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( a__ , ( inputs["""input_ids"""], inputs["""attention_mask"""], num_beams, max_length, model.config.decoder_start_token_id, ) , a__ , opset_version=1_4 , input_names=["""input_ids""", """attention_mask""", """num_beams""", """max_length""", """decoder_start_token_id"""] , output_names=["""output_ids"""] , dynamic_axes={ """input_ids""": {0: """batch""", 1: """seq"""}, """output_ids""": {0: """batch""", 1: """seq_out"""}, } , example_outputs=a__ , ) logger.info("""Model exported to {}""".format(a__)) a_ : List[str] = remove_dup_initializers(os.path.abspath(a__)) logger.info("""Deduplicated and optimized model written to {}""".format(a__)) a_ : Union[str, Any] = onnxruntime.InferenceSession(a__) a_ : Any = ort_sess.run( a__ , { """input_ids""": inputs["""input_ids"""].cpu().numpy(), """attention_mask""": inputs["""attention_mask"""].cpu().numpy(), """num_beams""": np.array(a__), """max_length""": np.array(a__), """decoder_start_token_id""": np.array(model.config.decoder_start_token_id), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3) logger.info("""Model outputs from torch and ONNX Runtime are similar.""") logger.info("""Success.""") def _UpperCAmelCase ( ): '''simple docstring''' a_ : List[str] = parse_args() a_ : str = 5 a_ : Union[str, Any] = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.setLevel(logging.INFO) transformers.utils.logging.set_verbosity_error() a_ : int = torch.device(args.device) a_ , a_ : Optional[Any] = load_model_tokenizer(args.model_name_or_path , a__) if model.config.decoder_start_token_id is None: raise ValueError("""Make sure that `config.decoder_start_token_id` is correctly defined""") model.to(a__) if args.max_length: a_ : List[str] = args.max_length if args.num_beams: a_ : Optional[Any] = args.num_beams if args.output_file_path: a_ : Optional[int] = args.output_file_path else: a_ : Tuple = """BART.onnx""" logger.info("""Exporting model to ONNX""") export_and_validate_model(a__ , a__ , a__ , a__ , a__) if __name__ == "__main__": main()
248
0
'''simple docstring''' import re def UpperCamelCase_ ( A__ : str ): '''simple docstring''' lowerCAmelCase_ : int = re.compile(R"""^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$""" ) if match := re.search(A__ , A__ ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator("+918827897895"))
89
'''simple docstring''' import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __snake_case ( unittest.TestCase): """simple docstring""" def __lowercase ( self : Tuple ) -> Dict: lowerCAmelCase_ : str = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertTrue(is_safetensors_compatible(lowerCamelCase ) ) def __lowercase ( self : List[Any] ) -> int: lowerCAmelCase_ : Tuple = [ """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertTrue(is_safetensors_compatible(lowerCamelCase ) ) def __lowercase ( self : Optional[int] ) -> Optional[Any]: lowerCAmelCase_ : int = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", """unet/diffusion_pytorch_model.bin""", # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCamelCase ) ) def __lowercase ( self : int ) -> List[Any]: lowerCAmelCase_ : Dict = [ """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", ] self.assertTrue(is_safetensors_compatible(lowerCamelCase ) ) def __lowercase ( self : str ) -> List[str]: lowerCAmelCase_ : Union[str, Any] = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", # Removed: 'text_encoder/model.safetensors', """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertFalse(is_safetensors_compatible(lowerCamelCase ) ) def __lowercase ( self : List[Any] ) -> Tuple: lowerCAmelCase_ : Union[str, Any] = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] lowerCAmelCase_ : Union[str, Any] = """fp16""" self.assertTrue(is_safetensors_compatible(lowerCamelCase , variant=lowerCamelCase ) ) def __lowercase ( self : Optional[Any] ) -> List[str]: lowerCAmelCase_ : str = [ """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] lowerCAmelCase_ : Optional[int] = """fp16""" self.assertTrue(is_safetensors_compatible(lowerCamelCase , variant=lowerCamelCase ) ) def __lowercase ( self : Tuple ) -> Optional[Any]: # pass variant but use the non-variant filenames lowerCAmelCase_ : Dict = [ """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] lowerCAmelCase_ : str = """fp16""" self.assertTrue(is_safetensors_compatible(lowerCamelCase , variant=lowerCamelCase ) ) def __lowercase ( self : Optional[int] ) -> List[str]: lowerCAmelCase_ : str = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", """unet/diffusion_pytorch_model.fp16.bin""", # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowerCAmelCase_ : List[str] = """fp16""" self.assertFalse(is_safetensors_compatible(lowerCamelCase , variant=lowerCamelCase ) ) def __lowercase ( self : Union[str, Any] ) -> Optional[int]: lowerCAmelCase_ : str = [ """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", ] lowerCAmelCase_ : Optional[Any] = """fp16""" self.assertTrue(is_safetensors_compatible(lowerCamelCase , variant=lowerCamelCase ) ) def __lowercase ( self : List[Any] ) -> List[Any]: # pass variant but use the non-variant filenames lowerCAmelCase_ : Dict = [ """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", ] lowerCAmelCase_ : Any = """fp16""" self.assertTrue(is_safetensors_compatible(lowerCamelCase , variant=lowerCamelCase ) ) def __lowercase ( self : Dict ) -> Any: lowerCAmelCase_ : Optional[int] = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", # 'text_encoder/model.fp16.safetensors', """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] lowerCAmelCase_ : int = """fp16""" self.assertFalse(is_safetensors_compatible(lowerCamelCase , variant=lowerCamelCase ) )
89
1
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ : Union[str, Any] = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = [ """FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FocalNetForImageClassification""", """FocalNetForMaskedImageModeling""", """FocalNetBackbone""", """FocalNetModel""", """FocalNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys UpperCAmelCase_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
91
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) UpperCAmelCase_ : Any = {"""openai-gpt""": """https://huggingface.co/openai-gpt/resolve/main/config.json"""} class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "openai-gpt" __UpperCamelCase = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : List[str] , lowercase_ : List[str]=40478 , lowercase_ : List[str]=512 , lowercase_ : Optional[Any]=768 , lowercase_ : Tuple=12 , lowercase_ : Tuple=12 , lowercase_ : Union[str, Any]="gelu" , lowercase_ : List[Any]=0.1 , lowercase_ : Tuple=0.1 , lowercase_ : List[Any]=0.1 , lowercase_ : List[Any]=1e-5 , lowercase_ : int=0.02 , lowercase_ : Optional[int]="cls_index" , lowercase_ : Any=True , lowercase_ : List[Any]=None , lowercase_ : List[str]=True , lowercase_ : Optional[Any]=0.1 , **lowercase_ : List[str] , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = vocab_size SCREAMING_SNAKE_CASE_ : Tuple = n_positions SCREAMING_SNAKE_CASE_ : Optional[int] = n_embd SCREAMING_SNAKE_CASE_ : Dict = n_layer SCREAMING_SNAKE_CASE_ : Any = n_head SCREAMING_SNAKE_CASE_ : Union[str, Any] = afn SCREAMING_SNAKE_CASE_ : int = resid_pdrop SCREAMING_SNAKE_CASE_ : List[str] = embd_pdrop SCREAMING_SNAKE_CASE_ : Union[str, Any] = attn_pdrop SCREAMING_SNAKE_CASE_ : Union[str, Any] = layer_norm_epsilon SCREAMING_SNAKE_CASE_ : List[Any] = initializer_range SCREAMING_SNAKE_CASE_ : List[str] = summary_type SCREAMING_SNAKE_CASE_ : Tuple = summary_use_proj SCREAMING_SNAKE_CASE_ : Union[str, Any] = summary_activation SCREAMING_SNAKE_CASE_ : Any = summary_first_dropout SCREAMING_SNAKE_CASE_ : List[str] = summary_proj_to_labels super().__init__(**lowercase_)
91
1
def a__ ( snake_case__ , snake_case__ ) -> str: if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) lowerCamelCase = str(bin(snake_case__ ) )[2:] # remove the leading "0b" lowerCamelCase = str(bin(snake_case__ ) )[2:] # remove the leading "0b" lowerCamelCase = max(len(snake_case__ ) , len(snake_case__ ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(snake_case__ ) , b_binary.zfill(snake_case__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
370
"""simple docstring""" import argparse import math import traceback import dateutil.parser as date_parser import requests def a__ ( snake_case__ ) -> Optional[Any]: lowerCamelCase = {} lowerCamelCase = job["""started_at"""] lowerCamelCase = job["""completed_at"""] lowerCamelCase = date_parser.parse(snake_case__ ) lowerCamelCase = date_parser.parse(snake_case__ ) lowerCamelCase = round((end_datetime - start_datetime).total_seconds() / 60.0 ) lowerCamelCase = start lowerCamelCase = end lowerCamelCase = duration_in_min return job_info def a__ ( snake_case__ , snake_case__=None ) -> Optional[Any]: lowerCamelCase = None if token is not None: lowerCamelCase = {"""Accept""": """application/vnd.github+json""", """Authorization""": F'Bearer {token}'} lowerCamelCase = F'https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100' lowerCamelCase = requests.get(snake_case__ , headers=snake_case__ ).json() lowerCamelCase = {} try: job_time.update({job["""name"""]: extract_time_from_single_job(snake_case__ ) for job in result["""jobs"""]} ) lowerCamelCase = math.ceil((result["""total_count"""] - 1_00) / 1_00 ) for i in range(snake_case__ ): lowerCamelCase = requests.get(url + F'&page={i + 2}' , headers=snake_case__ ).json() job_time.update({job["""name"""]: extract_time_from_single_job(snake_case__ ) for job in result["""jobs"""]} ) return job_time except Exception: print(F'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} if __name__ == "__main__": lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") lowerCAmelCase : Any = parser.parse_args() lowerCAmelCase : Optional[int] = get_job_time(args.workflow_run_id) lowerCAmelCase : Dict = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(F"""{k}: {v['duration']}""")
168
0
def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' return int(input_a == input_a == 0 ) def UpperCamelCase ( ): '''simple docstring''' print('''Truth Table of NOR Gate:''' ) print('''| Input 1 | Input 2 | Output |''' ) print(f'| 0 | 0 | {nor_gate(0 , 0 )} |' ) print(f'| 0 | 1 | {nor_gate(0 , 1 )} |' ) print(f'| 1 | 0 | {nor_gate(1 , 0 )} |' ) print(f'| 1 | 1 | {nor_gate(1 , 1 )} |' ) if __name__ == "__main__": import doctest doctest.testmod() main()
101
'''simple docstring''' from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging UpperCAmelCase_ : List[Any] = logging.get_logger(__name__) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" try: with open(SCREAMING_SNAKE_CASE__ , """rb""" ) as flax_state_f: _SCREAMING_SNAKE_CASE : Dict = from_bytes(SCREAMING_SNAKE_CASE__ , flax_state_f.read() ) except UnpicklingError as e: try: with open(SCREAMING_SNAKE_CASE__ ) as f: if f.read().startswith("""version""" ): raise OSError( """You seem to have cloned a repository without having git-lfs installed. Please""" """ install git-lfs and run `git lfs install` followed by `git lfs pull` in the""" """ folder you cloned.""" ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(f"""Unable to convert {model_file} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( """Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights _SCREAMING_SNAKE_CASE : List[Any] = flatten_dict(jax.tree_util.tree_map(lambda SCREAMING_SNAKE_CASE__ : x.dtype == jnp.bfloataa , SCREAMING_SNAKE_CASE__ ) ).values() if any(SCREAMING_SNAKE_CASE__ ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) _SCREAMING_SNAKE_CASE : Dict = jax.tree_util.tree_map( lambda SCREAMING_SNAKE_CASE__ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , SCREAMING_SNAKE_CASE__ ) _SCREAMING_SNAKE_CASE : Optional[Any] = """""" _SCREAMING_SNAKE_CASE : str = flatten_dict(SCREAMING_SNAKE_CASE__ , sep=""".""" ) _SCREAMING_SNAKE_CASE : str = pt_model.state_dict() # keep track of unexpected & missing keys _SCREAMING_SNAKE_CASE : Tuple = [] _SCREAMING_SNAKE_CASE : int = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): _SCREAMING_SNAKE_CASE : Any = flax_key_tuple.split(""".""" ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: _SCREAMING_SNAKE_CASE : Optional[Any] = flax_key_tuple_array[:-1] + ["""weight"""] _SCREAMING_SNAKE_CASE : List[str] = jnp.transpose(SCREAMING_SNAKE_CASE__ , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": _SCREAMING_SNAKE_CASE : Union[str, Any] = flax_key_tuple_array[:-1] + ["""weight"""] _SCREAMING_SNAKE_CASE : Any = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": _SCREAMING_SNAKE_CASE : Optional[int] = flax_key_tuple_array[:-1] + ["""weight"""] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(SCREAMING_SNAKE_CASE__ ): _SCREAMING_SNAKE_CASE : Optional[int] = ( flax_key_tuple_string.replace("""_0""" , """.0""" ) .replace("""_1""" , """.1""" ) .replace("""_2""" , """.2""" ) .replace("""_3""" , """.3""" ) .replace("""_4""" , """.4""" ) .replace("""_5""" , """.5""" ) .replace("""_6""" , """.6""" ) .replace("""_7""" , """.7""" ) .replace("""_8""" , """.8""" ) .replace("""_9""" , """.9""" ) ) _SCREAMING_SNAKE_CASE : Tuple = """.""".join(SCREAMING_SNAKE_CASE__ ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ f"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict _SCREAMING_SNAKE_CASE : Union[str, Any] = np.asarray(SCREAMING_SNAKE_CASE__ ) if not isinstance(SCREAMING_SNAKE_CASE__ , np.ndarray ) else flax_tensor _SCREAMING_SNAKE_CASE : int = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) # remove from missing keys missing_keys.remove(SCREAMING_SNAKE_CASE__ ) else: # weight is not expected by PyTorch model unexpected_keys.append(SCREAMING_SNAKE_CASE__ ) pt_model.load_state_dict(SCREAMING_SNAKE_CASE__ ) # re-transform missing_keys to list _SCREAMING_SNAKE_CASE : Optional[Any] = list(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" f""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" f""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" f""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) if len(SCREAMING_SNAKE_CASE__ ) > 0: logger.warning( f"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" f""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" """ use it for predictions and inference.""" ) return pt_model
200
0
'''simple docstring''' def UpperCAmelCase ( a_ ) -> list: """simple docstring""" A_ : Optional[int] = False while is_sorted is False: # Until all the indices are traversed keep looping A_ : Union[str, Any] = True for i in range(0 , len(a_ ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: A_ , A_ : str = input_list[i + 1], input_list[i] # swapping if elements not in order A_ : List[str] = False for i in range(1 , len(a_ ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: A_ , A_ : Optional[int] = input_list[i + 1], input_list[i] # swapping if elements not in order A_ : Union[str, Any] = False return input_list if __name__ == "__main__": print('Enter list to be sorted') UpperCamelCase__ : Union[str, Any] = [int(x) for x in input().split()] # inputing elements of the list in one line UpperCamelCase__ : int = odd_even_sort(input_list) print('The sorted list is') print(sorted_list)
164
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Any class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase ) -> Optional[Any]: A_ : Any = data A_ : Node | None = None class _lowerCAmelCase : """simple docstring""" def __init__( self ) -> List[str]: A_ : Tuple = None A_ : str = None def __iter__( self ) -> Iterator[Any]: A_ : Dict = self.head while self.head: yield node.data A_ : Optional[Any] = node.next if node == self.head: break def __len__( self ) -> int: return sum(1 for _ in self ) def __repr__( self ) -> str: return "->".join(str(_lowerCamelCase ) for item in iter(self ) ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> None: self.insert_nth(len(self ) , _lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> None: self.insert_nth(0 , _lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> None: if index < 0 or index > len(self ): raise IndexError("""list index out of range.""" ) A_ : Optional[int] = Node(_lowerCamelCase ) if self.head is None: A_ : str = new_node # first node points itself A_ : Union[str, Any] = new_node elif index == 0: # insert at head A_ : List[Any] = self.head A_ : List[Any] = new_node else: A_ : List[str] = self.head for _ in range(index - 1 ): A_ : Optional[int] = temp.next A_ : Tuple = temp.next A_ : str = new_node if index == len(self ) - 1: # insert at tail A_ : Optional[int] = new_node def UpperCAmelCase_ ( self ) -> List[Any]: return self.delete_nth(0 ) def UpperCAmelCase_ ( self ) -> Any: return self.delete_nth(len(self ) - 1 ) def UpperCAmelCase_ ( self , _lowerCamelCase = 0 ) -> Any: if not 0 <= index < len(self ): raise IndexError("""list index out of range.""" ) A_ : int = self.head if self.head == self.tail: # just one node A_ : int = None elif index == 0: # delete head node A_ : Union[str, Any] = self.tail.next.next A_ : Tuple = self.head.next else: A_ : Optional[int] = self.head for _ in range(index - 1 ): A_ : Tuple = temp.next A_ : Any = temp.next A_ : Tuple = temp.next.next if index == len(self ) - 1: # delete at tail A_ : List[str] = temp return delete_node.data def UpperCAmelCase_ ( self ) -> bool: return len(self ) == 0 def UpperCAmelCase ( ) -> None: """simple docstring""" A_ : Any = CircularLinkedList() assert len(a_ ) == 0 assert circular_linked_list.is_empty() is True assert str(a_ ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(a_ ) == i circular_linked_list.insert_nth(a_ , i + 1 ) assert str(a_ ) == "->".join(str(a_ ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(a_ ) == "->".join(str(a_ ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(a_ ) == "->".join(str(a_ ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(a_ ) == "->".join(str(a_ ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(a_ ) == "->".join(str(a_ ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
164
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCamelCase : List[Any] = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { """shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""", # See all Nat models at https://huggingface.co/models?filter=nat } class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''nat''' UpperCAmelCase__ = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Dict , UpperCAmelCase__ : Optional[Any]=4 , UpperCAmelCase__ : Union[str, Any]=3 , UpperCAmelCase__ : Optional[int]=64 , UpperCAmelCase__ : Dict=[3, 4, 6, 5] , UpperCAmelCase__ : Dict=[2, 4, 8, 16] , UpperCAmelCase__ : int=7 , UpperCAmelCase__ : List[Any]=3.0 , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : List[Any]=0.0 , UpperCAmelCase__ : str=0.0 , UpperCAmelCase__ : Dict=0.1 , UpperCAmelCase__ : Union[str, Any]="gelu" , UpperCAmelCase__ : Any=0.02 , UpperCAmelCase__ : Optional[Any]=1e-5 , UpperCAmelCase__ : List[Any]=0.0 , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Dict=None , **UpperCAmelCase__ : Any , ) ->str: '''simple docstring''' super().__init__(**UpperCAmelCase__) A__ = patch_size A__ = num_channels A__ = embed_dim A__ = depths A__ = len(UpperCAmelCase__) A__ = num_heads A__ = kernel_size A__ = mlp_ratio A__ = qkv_bias A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = drop_path_rate A__ = hidden_act A__ = layer_norm_eps A__ = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model A__ = int(embed_dim * 2 ** (len(UpperCAmelCase__) - 1)) A__ = layer_scale_init_value A__ = ['''stem'''] + [f"""stage{idx}""" for idx in range(1 , len(UpperCAmelCase__) + 1)] A__ , A__ = get_aligned_output_features_output_indices( out_features=UpperCAmelCase__ , out_indices=UpperCAmelCase__ , stage_names=self.stage_names)
14
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]: """simple docstring""" A__ = StableDiffusionPipeline.from_pretrained(lowercase_ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors A__ = load_file(lowercase_ ) A__ = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: A__ = key.split('''.''' )[0].split(LORA_PREFIX_TEXT_ENCODER + '''_''' )[-1].split('''_''' ) A__ = pipeline.text_encoder else: A__ = key.split('''.''' )[0].split(LORA_PREFIX_UNET + '''_''' )[-1].split('''_''' ) A__ = pipeline.unet # find the target layer A__ = layer_infos.pop(0 ) while len(lowercase_ ) > -1: try: A__ = curr_layer.__getattr__(lowercase_ ) if len(lowercase_ ) > 0: A__ = layer_infos.pop(0 ) elif len(lowercase_ ) == 0: break except Exception: if len(lowercase_ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: A__ = layer_infos.pop(0 ) A__ = [] if "lora_down" in key: pair_keys.append(key.replace('''lora_down''' , '''lora_up''' ) ) pair_keys.append(lowercase_ ) else: pair_keys.append(lowercase_ ) pair_keys.append(key.replace('''lora_up''' , '''lora_down''' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: A__ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) A__ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ ).unsqueeze(2 ).unsqueeze(3 ) else: A__ = state_dict[pair_keys[0]].to(torch.floataa ) A__ = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ ) # update visited list for item in pair_keys: visited.append(lowercase_ ) return pipeline if __name__ == "__main__": _lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") _lowerCamelCase : Tuple = parser.parse_args() _lowerCamelCase : List[Any] = args.base_model_path _lowerCamelCase : Optional[int] = args.checkpoint_path _lowerCamelCase : Dict = args.dump_path _lowerCamelCase : Optional[Any] = args.lora_prefix_unet _lowerCamelCase : Optional[int] = args.lora_prefix_text_encoder _lowerCamelCase : List[Any] = args.alpha _lowerCamelCase : int = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) _lowerCamelCase : Tuple = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
14
1
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowercase__ : def __init__( self : Optional[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : int=3 , UpperCAmelCase_ : List[str]=4 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : List[str]=7 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Union[str, Any]=99 , UpperCAmelCase_ : List[str]=36 , UpperCAmelCase_ : Optional[Any]=2 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : Optional[Any]=37 , UpperCAmelCase_ : Dict="gelu" , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Optional[Any]=512 , UpperCAmelCase_ : List[Any]=16 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : Dict=6 , UpperCAmelCase_ : Optional[int]=6 , UpperCAmelCase_ : int=3 , UpperCAmelCase_ : List[str]=4 , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : str=1000 , ): SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = patch_size SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_input_mask SCREAMING_SNAKE_CASE__ = use_token_type_ids SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = type_sequence_label_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = coordinate_size SCREAMING_SNAKE_CASE__ = shape_size SCREAMING_SNAKE_CASE__ = num_labels SCREAMING_SNAKE_CASE__ = num_choices SCREAMING_SNAKE_CASE__ = scope SCREAMING_SNAKE_CASE__ = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) SCREAMING_SNAKE_CASE__ = text_seq_length SCREAMING_SNAKE_CASE__ = (image_size // patch_size) ** 2 + 1 SCREAMING_SNAKE_CASE__ = self.text_seq_length + self.image_seq_length def A_ ( self : str ): SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) SCREAMING_SNAKE_CASE__ = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: SCREAMING_SNAKE_CASE__ = bbox[i, j, 3] SCREAMING_SNAKE_CASE__ = bbox[i, j, 1] SCREAMING_SNAKE_CASE__ = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: SCREAMING_SNAKE_CASE__ = bbox[i, j, 2] SCREAMING_SNAKE_CASE__ = bbox[i, j, 0] SCREAMING_SNAKE_CASE__ = tmp_coordinate SCREAMING_SNAKE_CASE__ = tf.constant(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ = None if self.use_input_mask: SCREAMING_SNAKE_CASE__ = random_attention_mask([self.batch_size, self.text_seq_length] ) SCREAMING_SNAKE_CASE__ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def A_ ( self : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any ): SCREAMING_SNAKE_CASE__ = TFLayoutLMvaModel(config=UpperCAmelCase_ ) # text + image SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , training=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = model( UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , training=UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , training=UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ , training=UpperCAmelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only SCREAMING_SNAKE_CASE__ = model({'pixel_values': pixel_values} , training=UpperCAmelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def A_ ( self : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] ): SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = TFLayoutLMvaForSequenceClassification(config=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = model( UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , training=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A_ ( self : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] ): SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = TFLayoutLMvaForTokenClassification(config=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = model( UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , training=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def A_ ( self : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str ): SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = TFLayoutLMvaForQuestionAnswering(config=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = model( UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , training=UpperCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A_ ( self : List[str] ): SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) = config_and_inputs SCREAMING_SNAKE_CASE__ = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class lowercase__ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): A__ : str =( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) A__ : Union[str, Any] =( {"""document-question-answering""": TFLayoutLMvaForQuestionAnswering, """feature-extraction""": TFLayoutLMvaModel} if is_tf_available() else {} ) A__ : Union[str, Any] =False A__ : Optional[int] =False A__ : Optional[Any] =False def A_ ( self : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Any ): return True def A_ ( self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any]=False ): SCREAMING_SNAKE_CASE__ = copy.deepcopy(UpperCAmelCase_ ) if model_class in get_values(UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = { k: tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(UpperCAmelCase_ , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) SCREAMING_SNAKE_CASE__ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def A_ ( self : int ): SCREAMING_SNAKE_CASE__ = TFLayoutLMvaModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def A_ ( self : Optional[Any] ): self.config_tester.run_common_tests() def A_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ = model_class(UpperCAmelCase_ ) if getattr(UpperCAmelCase_ , 'hf_compute_loss' , UpperCAmelCase_ ): # The number of elements in the loss should be the same as the number of elements in the label SCREAMING_SNAKE_CASE__ = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase_ , return_labels=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=UpperCAmelCase_ )[0] ] SCREAMING_SNAKE_CASE__ = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs SCREAMING_SNAKE_CASE__ = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase_ , return_labels=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = prepared_for_class.pop('input_ids' ) SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ , **UpperCAmelCase_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions SCREAMING_SNAKE_CASE__ = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase_ , return_labels=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = prepared_for_class.pop('input_ids' ) if "labels" in prepared_for_class: SCREAMING_SNAKE_CASE__ = prepared_for_class['labels'].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: SCREAMING_SNAKE_CASE__ = -100 SCREAMING_SNAKE_CASE__ = tf.convert_to_tensor(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ , **UpperCAmelCase_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict SCREAMING_SNAKE_CASE__ = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase_ , return_labels=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple SCREAMING_SNAKE_CASE__ = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase_ , return_labels=UpperCAmelCase_ ) # Get keys that were added with the _prepare_for_class function SCREAMING_SNAKE_CASE__ = prepared_for_class.keys() - inputs_dict.keys() SCREAMING_SNAKE_CASE__ = inspect.signature(model.call ).parameters SCREAMING_SNAKE_CASE__ = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple SCREAMING_SNAKE_CASE__ = {0: 'input_ids'} for label_key in label_keys: SCREAMING_SNAKE_CASE__ = signature_names.index(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = label_key SCREAMING_SNAKE_CASE__ = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple SCREAMING_SNAKE_CASE__ = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: SCREAMING_SNAKE_CASE__ = prepared_for_class[value] SCREAMING_SNAKE_CASE__ = tuple(UpperCAmelCase_ ) # Send to model SCREAMING_SNAKE_CASE__ = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def A_ ( self : List[str] ): ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def A_ ( self : List[str] ): ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE__ = type self.model_tester.create_and_check_model(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def A_ ( self : str ): ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def A_ ( self : Any ): ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def A_ ( self : List[Any] ): ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) @slow def A_ ( self : Tuple ): for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ = TFLayoutLMvaModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def _lowercase ( ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf class lowercase__ ( unittest.TestCase ): @cached_property def A_ ( self : List[Any] ): return LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase_ ) if is_vision_available() else None @slow def A_ ( self : Dict ): SCREAMING_SNAKE_CASE__ = TFLayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ) SCREAMING_SNAKE_CASE__ = self.default_image_processor SCREAMING_SNAKE_CASE__ = prepare_img() SCREAMING_SNAKE_CASE__ = image_processor(images=UpperCAmelCase_ , return_tensors='tf' ).pixel_values SCREAMING_SNAKE_CASE__ = tf.constant([[1, 2]] ) SCREAMING_SNAKE_CASE__ = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass SCREAMING_SNAKE_CASE__ = model(input_ids=UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , training=UpperCAmelCase_ ) # verify the logits SCREAMING_SNAKE_CASE__ = (1, 199, 768) self.assertEqual(outputs.last_hidden_state.shape , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tf.constant( [[-0.0_529, 0.3_618, 0.1_632], [-0.1_587, -0.1_667, -0.0_400], [-0.1_557, -0.1_671, -0.0_505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase_ , atol=1e-4 ) )
169
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None ) -> Optional[Any]: '''simple docstring''' assert torch_layer.weight.shape == weight.shape, F'{torch_layer} layer.weight does not match' SCREAMING_SNAKE_CASE__ = nn.Parameter(UpperCamelCase_ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F'{torch_layer} layer.bias does not match' SCREAMING_SNAKE_CASE__ = nn.Parameter(UpperCamelCase_ ) def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = np.asarray(weights[0] ) SCREAMING_SNAKE_CASE__ = np.asarray(weights[1] ) SCREAMING_SNAKE_CASE__ = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(UpperCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(UpperCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase_ ) , ) set_param( torch_layer.output.dense , torch.tensor(UpperCamelCase_ ).view(-1 , UpperCamelCase_ ).contiguous().transpose(0 , 1 ) , ) def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ = np.asarray(weights[0] ) SCREAMING_SNAKE_CASE__ = np.asarray(weights[1] ) SCREAMING_SNAKE_CASE__ = np.asarray(weights[2] ) SCREAMING_SNAKE_CASE__ = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(UpperCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase_ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(UpperCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(UpperCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase_ ) , ) set_param( torch_layer.output.dense , torch.tensor(UpperCamelCase_ ).view(-1 , UpperCamelCase_ ).contiguous().transpose(0 , 1 ) , ) def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ = weights[0][0][0] SCREAMING_SNAKE_CASE__ = np.asarray(layer_norm_a[0] ) SCREAMING_SNAKE_CASE__ = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(UpperCamelCase_ ) , torch.tensor(UpperCamelCase_ ) , ) # lsh weights + output SCREAMING_SNAKE_CASE__ = weights[0][1] if len(UpperCamelCase_ ) < 4: set_layer_weights_in_torch_lsh(UpperCamelCase_ , torch_block.attention , UpperCamelCase_ ) else: set_layer_weights_in_torch_local(UpperCamelCase_ , torch_block.attention , UpperCamelCase_ ) # intermediate weighs SCREAMING_SNAKE_CASE__ = weights[2][0][1][2] # Chunked Feed Forward if len(UpperCamelCase_ ) == 4: SCREAMING_SNAKE_CASE__ = intermediate_weights[2] # layernorm 2 SCREAMING_SNAKE_CASE__ = np.asarray(intermediate_weights[0][0] ) SCREAMING_SNAKE_CASE__ = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(UpperCamelCase_ ) , torch.tensor(UpperCamelCase_ ) , ) # intermediate dense SCREAMING_SNAKE_CASE__ = np.asarray(intermediate_weights[1][0] ) SCREAMING_SNAKE_CASE__ = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(UpperCamelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(UpperCamelCase_ ) , ) # intermediate out SCREAMING_SNAKE_CASE__ = np.asarray(intermediate_weights[4][0] ) SCREAMING_SNAKE_CASE__ = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(UpperCamelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(UpperCamelCase_ ) , ) def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = torch_model.reformer # word embeds SCREAMING_SNAKE_CASE__ = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(UpperCamelCase_ ) , ) if isinstance(weights[3] , UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): SCREAMING_SNAKE_CASE__ = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F'{position_embeddings[emb_idx]} emb does not match' SCREAMING_SNAKE_CASE__ = nn.Parameter(torch.tensor(UpperCamelCase_ ) ) SCREAMING_SNAKE_CASE__ = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( UpperCamelCase_ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): SCREAMING_SNAKE_CASE__ = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # output layer norm SCREAMING_SNAKE_CASE__ = np.asarray(weights[7][0] ) SCREAMING_SNAKE_CASE__ = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(UpperCamelCase_ ) , torch.tensor(UpperCamelCase_ ) , ) # output embeddings SCREAMING_SNAKE_CASE__ = np.asarray(weights[9][0] ) SCREAMING_SNAKE_CASE__ = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(UpperCamelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(UpperCamelCase_ ) , ) def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = ReformerConfig.from_json_file(UpperCamelCase_ ) print(F'Building PyTorch model from configuration: {config}' ) SCREAMING_SNAKE_CASE__ = ReformerModelWithLMHead(UpperCamelCase_ ) with open(UpperCamelCase_ , 'rb' ) as f: SCREAMING_SNAKE_CASE__ = pickle.load(UpperCamelCase_ )['weights'] set_model_weights_in_torch(UpperCamelCase_ , UpperCamelCase_ , config.hidden_size ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , UpperCamelCase_ ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--trax_model_pkl_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained Reformer model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __snake_case = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
169
1
"""simple docstring""" import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() __lowercase = logging.get_logger(__name__) set_seed(770) __lowercase = { """c_attn""": """att_proj""", """c_proj""": """out_proj""", """c_fc""": """in_proj""", """transformer.""": """""", """h.""": """layers.""", """ln_1""": """layernorm_1""", """ln_2""": """layernorm_2""", """ln_f""": """layernorm_final""", """wpe""": """position_embeds_layer""", """wte""": """input_embeds_layer""", } __lowercase = { """text_small""": { """repo_id""": """suno/bark""", """file_name""": """text.pt""", }, """coarse_small""": { """repo_id""": """suno/bark""", """file_name""": """coarse.pt""", }, """fine_small""": { """repo_id""": """suno/bark""", """file_name""": """fine.pt""", }, """text""": { """repo_id""": """suno/bark""", """file_name""": """text_2.pt""", }, """coarse""": { """repo_id""": """suno/bark""", """file_name""": """coarse_2.pt""", }, """fine""": { """repo_id""": """suno/bark""", """file_name""": """fine_2.pt""", }, } __lowercase = os.path.dirname(os.path.abspath(__file__)) __lowercase = os.path.join(os.path.expanduser("""~"""), """.cache""") __lowercase = os.path.join(os.getenv("""XDG_CACHE_HOME""", default_cache_dir), """suno""", """bark_v0""") def lowercase ( A_ , A_=False )-> Dict: '''simple docstring''' a : str = model_type if use_small: key += "_small" return os.path.join(A_ , REMOTE_MODEL_PATHS[key]["file_name"] ) def lowercase ( A_ , A_ )-> Any: '''simple docstring''' os.makedirs(A_ , exist_ok=A_ ) hf_hub_download(repo_id=A_ , filename=A_ , local_dir=A_ ) def lowercase ( A_ , A_ , A_=False , A_="text" )-> int: '''simple docstring''' if model_type == "text": a : Any = BarkSemanticModel a : List[Any] = BarkSemanticConfig a : List[Any] = BarkSemanticGenerationConfig elif model_type == "coarse": a : Optional[Any] = BarkCoarseModel a : Tuple = BarkCoarseConfig a : List[str] = BarkCoarseGenerationConfig elif model_type == "fine": a : Optional[Any] = BarkFineModel a : Dict = BarkFineConfig a : List[str] = BarkFineGenerationConfig else: raise NotImplementedError() a : Dict = F'''{model_type}_small''' if use_small else model_type a : Any = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(A_ ): logger.info(F'''{model_type} model not found, downloading into `{CACHE_DIR}`.''' ) _download(model_info["repo_id"] , model_info["file_name"] ) a : Optional[int] = torch.load(A_ , map_location=A_ ) # this is a hack a : List[str] = checkpoint["model_args"] if "input_vocab_size" not in model_args: a : str = model_args["vocab_size"] a : Union[str, Any] = model_args["vocab_size"] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments a : Tuple = model_args.pop("n_head" ) a : Tuple = model_args.pop("n_embd" ) a : int = model_args.pop("n_layer" ) a : List[Any] = ConfigClass(**checkpoint["model_args"] ) a : Tuple = ModelClass(config=A_ ) a : int = GenerationConfigClass() a : Optional[int] = model_generation_config a : Any = checkpoint["model"] # fixup checkpoint a : Optional[Any] = "_orig_mod." for k, v in list(state_dict.items() ): if k.startswith(A_ ): # replace part of the key with corresponding layer name in HF implementation a : Tuple = k[len(A_ ) :] for old_layer_name in new_layer_name_dict: a : Tuple = new_k.replace(A_ , new_layer_name_dict[old_layer_name] ) a : Tuple = state_dict.pop(A_ ) a : Dict = set(state_dict.keys() ) - set(model.state_dict().keys() ) a : Any = {k for k in extra_keys if not k.endswith(".attn.bias" )} a : Any = set(model.state_dict().keys() ) - set(state_dict.keys() ) a : Optional[Any] = {k for k in missing_keys if not k.endswith(".attn.bias" )} if len(A_ ) != 0: raise ValueError(F'''extra keys found: {extra_keys}''' ) if len(A_ ) != 0: raise ValueError(F'''missing keys: {missing_keys}''' ) model.load_state_dict(A_ , strict=A_ ) a : List[Any] = model.num_parameters(exclude_embeddings=A_ ) a : int = checkpoint["best_val_loss"].item() logger.info(F'''model loaded: {round(n_params/1e6 , 1 )}M params, {round(A_ , 3 )} loss''' ) model.eval() model.to(A_ ) del checkpoint, state_dict return model def lowercase ( A_ , A_=False , A_="text" )-> Dict: '''simple docstring''' if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() a : Dict = "cpu" # do conversion on cpu a : Optional[Any] = _get_ckpt_path(A_ , use_small=A_ ) a : Optional[int] = _load_model(A_ , A_ , model_type=A_ , use_small=A_ ) # load bark initial model a : Optional[Any] = _bark_load_model(A_ , "cpu" , model_type=A_ , use_small=A_ ) if model_type == "text": a : Dict = bark_model["model"] if model.num_parameters(exclude_embeddings=A_ ) != bark_model.get_num_params(): raise ValueError("initial and new models don't have the same number of parameters" ) # check if same output as the bark model a : Dict = 5 a : List[Any] = 10 if model_type in ["text", "coarse"]: a : List[Any] = torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int ) a : Optional[Any] = bark_model(A_ )[0] a : str = model(A_ ) # take last logits a : Tuple = output_new_model_total.logits[:, [-1], :] else: a : int = 3 a : Any = 8 a : Tuple = torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) a : Union[str, Any] = model(A_ , A_ ) a : str = bark_model(A_ , A_ ) a : Optional[int] = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError("initial and new outputs don't have the same shape" ) if (output_new_model - output_old_model).abs().max().item() > 1e-3: raise ValueError("initial and new outputs are not equal" ) Path(A_ ).mkdir(exist_ok=A_ ) model.save_pretrained(A_ ) def lowercase ( A_ , A_ , A_ , A_ , A_ , A_ , )-> Any: '''simple docstring''' a : Tuple = os.path.join(A_ , A_ ) a : int = BarkSemanticConfig.from_pretrained(os.path.join(A_ , "config.json" ) ) a : Tuple = BarkCoarseConfig.from_pretrained(os.path.join(A_ , "config.json" ) ) a : Tuple = BarkFineConfig.from_pretrained(os.path.join(A_ , "config.json" ) ) a : List[str] = EncodecConfig.from_pretrained("facebook/encodec_24khz" ) a : Tuple = BarkSemanticModel.from_pretrained(A_ ) a : Tuple = BarkCoarseModel.from_pretrained(A_ ) a : Any = BarkFineModel.from_pretrained(A_ ) a : Tuple = EncodecModel.from_pretrained("facebook/encodec_24khz" ) a : List[str] = BarkConfig.from_sub_model_configs( A_ , A_ , A_ , A_ ) a : str = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) a : Optional[int] = BarkModel(A_ ) a : Tuple = semantic a : int = coarseAcoustic a : List[str] = fineAcoustic a : Dict = codec a : str = bark_generation_config Path(A_ ).mkdir(exist_ok=A_ ) bark.save_pretrained(A_ , repo_id=A_ , push_to_hub=A_ ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument("""model_type""", type=str, help="""text, coarse or fine.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--is_small""", action="""store_true""", help="""convert the small version instead of the large.""") __lowercase = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
40
"""simple docstring""" def lowercase ( A_ , A_ )-> float: '''simple docstring''' if mass < 0: raise ValueError("The mass of a body cannot be negative" ) return 0.5 * mass * abs(A_ ) * abs(A_ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
40
1
"""simple docstring""" from math import isqrt def snake_case ( A__ ): return all(number % divisor != 0 for divisor in range(2 ,isqrt(A__ ) + 1 ) ) def snake_case ( A__ = 10**6 ): UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : Optional[Any] = 1 UpperCAmelCase_ : List[Any] = 7 while prime_candidate < max_prime: primes_count += is_prime(A__ ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(f'{solution() = }')
360
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class UpperCamelCase_ (unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: UpperCAmelCase_ : str = torch.nn.Linear(10 , 10 ) UpperCAmelCase_ : Optional[Any] = torch.optim.SGD(model.parameters() , 0.1 ) UpperCAmelCase_ : Optional[Any] = Accelerator() UpperCAmelCase_ : Optional[Any] = accelerator.prepare(lowerCAmelCase_ ) try: pickle.loads(pickle.dumps(lowerCAmelCase_ ) ) except Exception as e: self.fail(f"""Accelerated optimizer pickling failed with {e}""" ) AcceleratorState._reset_state()
253
0
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str: '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) UpperCAmelCase : Dict =str(bin(__lowerCAmelCase ) ) binary_number += "0" * shift_amount return binary_number def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str: '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) UpperCAmelCase : Any =str(bin(__lowerCAmelCase ) )[2:] if shift_amount >= len(__lowerCAmelCase ): return "0b0" UpperCAmelCase : Optional[Any] =binary_number[: len(__lowerCAmelCase ) - shift_amount] return "0b" + shifted_binary_number def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str: '''simple docstring''' if number >= 0: # Get binary representation of positive number UpperCAmelCase : Optional[Any] ='''0''' + str(bin(__lowerCAmelCase ) ).strip('''-''' )[2:] else: # Get binary (2's complement) representation of negative number UpperCAmelCase : int =len(bin(__lowerCAmelCase )[3:] ) # Find 2's complement of number UpperCAmelCase : Any =bin(abs(__lowerCAmelCase ) - (1 << binary_number_length) )[3:] UpperCAmelCase : Optional[Any] =( '''1''' + '''0''' * (binary_number_length - len(__lowerCAmelCase )) + binary_number ) if shift_amount >= len(__lowerCAmelCase ): return "0b" + binary_number[0] * len(__lowerCAmelCase ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__lowerCAmelCase ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
348
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Optional[int] = (KDPMaDiscreteScheduler,) __lowerCamelCase : List[str] = 10 def UpperCAmelCase__ ( self , **snake_case__ ) -> str: '''simple docstring''' UpperCAmelCase : int ={ '''num_train_timesteps''': 1100, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**snake_case__ ) return config def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=snake_case__ ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=snake_case__ , beta_end=snake_case__ ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=snake_case__ ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case__ ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' UpperCAmelCase : Optional[Any] =self.scheduler_classes[0] UpperCAmelCase : Optional[int] =self.get_scheduler_config(prediction_type='''v_prediction''' ) UpperCAmelCase : Optional[Any] =scheduler_class(**snake_case__ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase : str =self.dummy_model() UpperCAmelCase : Optional[Any] =self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase : Union[str, Any] =sample.to(snake_case__ ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase : str =scheduler.scale_model_input(snake_case__ , snake_case__ ) UpperCAmelCase : Any =model(snake_case__ , snake_case__ ) UpperCAmelCase : Union[str, Any] =scheduler.step(snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase : int =output.prev_sample UpperCAmelCase : Dict =torch.sum(torch.abs(snake_case__ ) ) UpperCAmelCase : Optional[Any] =torch.mean(torch.abs(snake_case__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.69_34e-07 ) < 1e-2 assert abs(result_mean.item() - 6.11_12e-10 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.6_93_42_86_50_17_09_72e-07 ) < 1e-2 assert abs(result_mean.item() - 0.0002 ) < 1e-3 def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' if torch_device == "mps": return UpperCAmelCase : Any =self.scheduler_classes[0] UpperCAmelCase : Optional[int] =self.get_scheduler_config() UpperCAmelCase : Optional[Any] =scheduler_class(**snake_case__ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase : Optional[int] =self.dummy_model() UpperCAmelCase : Union[str, Any] =self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase : str =sample.to(snake_case__ ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase : Dict =scheduler.scale_model_input(snake_case__ , snake_case__ ) UpperCAmelCase : Union[str, Any] =model(snake_case__ , snake_case__ ) UpperCAmelCase : List[str] =scheduler.step(snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase : Optional[int] =output.prev_sample UpperCAmelCase : Any =torch.sum(torch.abs(snake_case__ ) ) UpperCAmelCase : Union[str, Any] =torch.mean(torch.abs(snake_case__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' if torch_device == "mps": return UpperCAmelCase : List[Any] =self.scheduler_classes[0] UpperCAmelCase : Dict =self.get_scheduler_config() UpperCAmelCase : List[str] =scheduler_class(**snake_case__ ) scheduler.set_timesteps(self.num_inference_steps , device=snake_case__ ) UpperCAmelCase : int =self.dummy_model() UpperCAmelCase : Tuple =self.dummy_sample_deter.to(snake_case__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: UpperCAmelCase : Optional[Any] =scheduler.scale_model_input(snake_case__ , snake_case__ ) UpperCAmelCase : int =model(snake_case__ , snake_case__ ) UpperCAmelCase : str =scheduler.step(snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase : List[str] =output.prev_sample UpperCAmelCase : List[str] =torch.sum(torch.abs(snake_case__ ) ) UpperCAmelCase : Dict =torch.mean(torch.abs(snake_case__ ) ) if str(snake_case__ ).startswith('''cpu''' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3
348
1
"""simple docstring""" from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch _UpperCamelCase: List[Any] = logging.get_logger(__name__) @add_end_docstrings( A__, R'\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n ', ) class a__ ( A__ ): def lowercase ( self : List[Any], lowerCAmelCase : Dict ) -> np.ndarray: if self.framework == "tf": lowercase : Any = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": lowercase : List[str] = torch.nonzero(input_ids == self.tokenizer.mask_token_id, as_tuple=__A ) else: raise ValueError('Unsupported framework' ) return masked_index def lowercase ( self : List[str], lowerCAmelCase : Tuple ) -> np.ndarray: lowercase : List[Any] = self.get_masked_index(__A ) lowercase : List[str] = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( 'fill-mask', self.model.base_model_prefix, f'''No mask_token ({self.tokenizer.mask_token}) found on the input''', ) def lowercase ( self : Dict, lowerCAmelCase : List[Any] ) -> str: if isinstance(__A, __A ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['input_ids'][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(__A ) def lowercase ( self : Tuple, lowerCAmelCase : str, lowerCAmelCase : int=None, **lowerCAmelCase : Optional[Any] ) -> Dict[str, GenericTensor]: if return_tensors is None: lowercase : Dict = self.framework lowercase : Optional[Any] = self.tokenizer(__A, return_tensors=__A ) self.ensure_exactly_one_mask_token(__A ) return model_inputs def lowercase ( self : List[str], lowerCAmelCase : Optional[int] ) -> Union[str, Any]: lowercase : str = self.model(**__A ) lowercase : Dict = model_inputs["""input_ids"""] return model_outputs def lowercase ( self : Optional[int], lowerCAmelCase : Optional[int], lowerCAmelCase : Tuple=5, lowerCAmelCase : List[str]=None ) -> Optional[int]: # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: lowercase : Union[str, Any] = target_ids.shape[0] lowercase : Any = model_outputs["""input_ids"""][0] lowercase : Any = model_outputs["""logits"""] if self.framework == "tf": lowercase : Any = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] lowercase : Dict = outputs.numpy() lowercase : Tuple = outputs[0, masked_index, :] lowercase : Tuple = stable_softmax(__A, axis=-1 ) if target_ids is not None: lowercase : Any = tf.gather_nd(tf.squeeze(__A, 0 ), target_ids.reshape(-1, 1 ) ) lowercase : str = tf.expand_dims(__A, 0 ) lowercase : Tuple = tf.math.top_k(__A, k=__A ) lowercase : str = topk.values.numpy(), topk.indices.numpy() else: lowercase : Optional[int] = torch.nonzero(input_ids == self.tokenizer.mask_token_id, as_tuple=__A ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample lowercase : List[Any] = outputs[0, masked_index, :] lowercase : Tuple = logits.softmax(dim=-1 ) if target_ids is not None: lowercase : List[str] = probs[..., target_ids] lowercase : List[str] = probs.topk(__A ) lowercase : int = [] lowercase : Any = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist(), predictions.tolist() ) ): lowercase : Any = [] for v, p in zip(_values, _predictions ): # Copy is important since we're going to modify this array in place lowercase : int = input_ids.numpy().copy() if target_ids is not None: lowercase : str = target_ids[p].tolist() lowercase : Union[str, Any] = p # Filter padding out: lowercase : Optional[int] = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back lowercase : Dict = self.tokenizer.decode(__A, skip_special_tokens=__A ) lowercase : Dict = {"""score""": v, """token""": p, """token_str""": self.tokenizer.decode([p] ), """sequence""": sequence} row.append(__A ) result.append(__A ) if single_mask: return result[0] return result def lowercase ( self : Optional[Any], lowerCAmelCase : Union[str, Any], lowerCAmelCase : Tuple=None ) -> Optional[Any]: if isinstance(__A, __A ): lowercase : Dict = [targets] try: lowercase : Optional[Any] = self.tokenizer.get_vocab() except Exception: lowercase : int = {} lowercase : str = [] for target in targets: lowercase : List[Any] = vocab.get(__A, __A ) if id_ is None: lowercase : Optional[int] = self.tokenizer( __A, add_special_tokens=__A, return_attention_mask=__A, return_token_type_ids=__A, max_length=1, truncation=__A, )["""input_ids"""] if len(__A ) == 0: logger.warning( f'''The specified target token `{target}` does not exist in the model vocabulary. ''' 'We cannot replace it with anything meaningful, ignoring it' ) continue lowercase : Any = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f'''The specified target token `{target}` does not exist in the model vocabulary. ''' f'''Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.''' ) target_ids.append(id_ ) lowercase : Optional[int] = list(set(__A ) ) if len(__A ) == 0: raise ValueError('At least one target must be provided when passed.' ) lowercase : Union[str, Any] = np.array(__A ) return target_ids def lowercase ( self : Optional[int], lowerCAmelCase : Union[str, Any]=None, lowerCAmelCase : List[Any]=None ) -> Dict: lowercase : Union[str, Any] = {} if targets is not None: lowercase : List[Any] = self.get_target_ids(__A, __A ) lowercase : Optional[Any] = target_ids if top_k is not None: lowercase : List[str] = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( 'fill-mask', self.model.base_model_prefix, 'The tokenizer does not define a `mask_token`.' ) return {}, {}, postprocess_params def __call__( self : str, lowerCAmelCase : str, *lowerCAmelCase : Tuple, **lowerCAmelCase : int ) -> Optional[int]: lowercase : int = super().__call__(__A, **__A ) if isinstance(__A, __A ) and len(__A ) == 1: return outputs[0] return outputs
351
"""simple docstring""" import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def lowercase__ ( ) -> Dict: '''simple docstring''' lowercase : List[Any] = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png' lowercase : int = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ).convert('RGB' ) return image def lowercase__ ( _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase : str = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.weight''', f'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.bias''', f'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.weight''', f'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.bias''', f'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.qkv.weight''', f'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.weight''', f'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.bias''', f'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') ) # fmt: on return rename_keys def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase : Tuple = dct.pop(_UpperCAmelCase ) lowercase : Tuple = val def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> str: '''simple docstring''' for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases lowercase : Optional[int] = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.q_bias''' ) lowercase : int = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict lowercase : List[Any] = torch.cat((q_bias, torch.zeros_like(_UpperCAmelCase , requires_grad=_UpperCAmelCase ), v_bias) ) lowercase : Optional[Any] = qkv_bias def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: '''simple docstring''' lowercase : List[str] = 3_64 if 'coco' in model_name else 2_24 lowercase : int = BlipaVisionConfig(image_size=_UpperCAmelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: lowercase : Optional[int] = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=_UpperCAmelCase ).to_dict() elif "opt-6.7b" in model_name: lowercase : List[str] = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=_UpperCAmelCase ).to_dict() elif "t5-xl" in model_name: lowercase : int = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: lowercase : Optional[Any] = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() lowercase : int = BlipaConfig(vision_config=_UpperCAmelCase , text_config=_UpperCAmelCase ) return config, image_size @torch.no_grad() def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=False ) -> Optional[int]: '''simple docstring''' lowercase : Any = ( AutoTokenizer.from_pretrained('facebook/opt-2.7b' ) if 'opt' in model_name else AutoTokenizer.from_pretrained('google/flan-t5-xl' ) ) lowercase : Any = tokenizer('\n' , add_special_tokens=_UpperCAmelCase ).input_ids[0] lowercase , lowercase : Union[str, Any] = get_blipa_config(_UpperCAmelCase , eos_token_id=_UpperCAmelCase ) lowercase : Any = BlipaForConditionalGeneration(_UpperCAmelCase ).eval() lowercase : Any = { 'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'), 'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'), 'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'), 'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'), 'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'), 'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'), 'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'), } lowercase , lowercase : Optional[int] = model_name_to_original[model_name] # load original model print('Loading original model...' ) lowercase : Dict = 'cuda' if torch.cuda.is_available() else 'cpu' lowercase , lowercase , lowercase : List[str] = load_model_and_preprocess( name=_UpperCAmelCase , model_type=_UpperCAmelCase , is_eval=_UpperCAmelCase , device=_UpperCAmelCase ) original_model.eval() print('Done!' ) # update state dict keys lowercase : int = original_model.state_dict() lowercase : str = create_rename_keys(_UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): lowercase : Dict = state_dict.pop(_UpperCAmelCase ) if key.startswith('Qformer.bert' ): lowercase : List[Any] = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: lowercase : List[Any] = key.replace('self' , 'attention' ) if "opt_proj" in key: lowercase : Any = key.replace('opt_proj' , 'language_projection' ) if "t5_proj" in key: lowercase : List[Any] = key.replace('t5_proj' , 'language_projection' ) if key.startswith('opt' ): lowercase : Optional[Any] = key.replace('opt' , 'language' ) if key.startswith('t5' ): lowercase : Optional[Any] = key.replace('t5' , 'language' ) lowercase : Tuple = val # read in qv biases read_in_q_v_bias(_UpperCAmelCase , _UpperCAmelCase ) lowercase , lowercase : str = hf_model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) assert len(_UpperCAmelCase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] lowercase : List[Any] = load_demo_image() lowercase : Optional[Any] = vis_processors['eval'](_UpperCAmelCase ).unsqueeze(0 ).to(_UpperCAmelCase ) lowercase : str = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(_UpperCAmelCase ) # create processor lowercase : List[Any] = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=_UpperCAmelCase , image_std=_UpperCAmelCase ) lowercase : Union[str, Any] = BlipaProcessor(image_processor=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) lowercase : Tuple = processor(images=_UpperCAmelCase , return_tensors='pt' ).pixel_values.to(_UpperCAmelCase ) # make sure processor creates exact same pixel values assert torch.allclose(_UpperCAmelCase , _UpperCAmelCase ) original_model.to(_UpperCAmelCase ) hf_model.to(_UpperCAmelCase ) with torch.no_grad(): if "opt" in model_name: lowercase : Any = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits lowercase : str = hf_model(_UpperCAmelCase , _UpperCAmelCase ).logits else: lowercase : Tuple = original_model( {'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits lowercase : Dict = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 ) lowercase : Tuple = hf_model(_UpperCAmelCase , _UpperCAmelCase , labels=_UpperCAmelCase ).logits assert original_logits.shape == logits.shape print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": lowercase : str = torch.tensor( [[-4_1.5_8_5_0, -4.4_4_4_0, -8.9_9_2_2], [-4_7.4_3_2_2, -5.9_1_4_3, -1.7_3_4_0]] , device=_UpperCAmelCase ) assert torch.allclose(logits[0, :3, :3] , _UpperCAmelCase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": lowercase : Any = torch.tensor( [[-5_7.0_1_0_9, -9.8_9_6_7, -1_2.6_2_8_0], [-6_8.6_5_7_8, -1_2.7_1_9_1, -1_0.5_0_6_5]] , device=_UpperCAmelCase ) else: # cast to same type lowercase : Dict = logits.dtype assert torch.allclose(original_logits.to(_UpperCAmelCase ) , _UpperCAmelCase , atol=1e-2 ) print('Looks ok!' ) print('Generating a caption...' ) lowercase : str = '' lowercase : List[str] = tokenizer(_UpperCAmelCase , return_tensors='pt' ).input_ids.to(_UpperCAmelCase ) lowercase : Any = original_model.generate({'image': original_pixel_values} ) lowercase : Union[str, Any] = hf_model.generate( _UpperCAmelCase , _UpperCAmelCase , do_sample=_UpperCAmelCase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('Original generation:' , _UpperCAmelCase ) lowercase : str = input_ids.shape[1] lowercase : Dict = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=_UpperCAmelCase ) lowercase : Optional[int] = [text.strip() for text in output_text] print('HF generation:' , _UpperCAmelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(_UpperCAmelCase ) hf_model.save_pretrained(_UpperCAmelCase ) if push_to_hub: processor.push_to_hub(f'''nielsr/{model_name}''' ) hf_model.push_to_hub(f'''nielsr/{model_name}''' ) if __name__ == "__main__": _UpperCamelCase: Optional[Any] = argparse.ArgumentParser() _UpperCamelCase: Dict = [ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( '--model_name', default='blip2-opt-2.7b', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) _UpperCamelCase: int = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
53
0
import math from collections.abc import Iterator from itertools import takewhile def UpperCamelCase_( lowerCamelCase_ ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCamelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCamelCase_( ) -> Iterator[int]: _lowercase : Optional[Any] = 2 while True: if is_prime(lowerCamelCase_ ): yield num num += 1 def UpperCamelCase_( lowerCamelCase_ = 200_0000 ) -> int: return sum(takewhile(lambda lowerCamelCase_ : x < n , prime_generator() ) ) if __name__ == "__main__": print(F"{solution() = }")
21
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Union[str, Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE : Union[str, Any] = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE : Dict = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE : str = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE : Dict = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } SCREAMING_SNAKE_CASE : Optional[Any] = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } SCREAMING_SNAKE_CASE : Dict = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } SCREAMING_SNAKE_CASE : List[Any] = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } SCREAMING_SNAKE_CASE : Dict = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } SCREAMING_SNAKE_CASE : Dict = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class _lowerCamelCase( _a ): lowercase_ : Any = VOCAB_FILES_NAMES lowercase_ : Optional[int] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase_ : str = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : str = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class _lowerCamelCase( _a ): lowercase_ : Optional[int] = VOCAB_FILES_NAMES lowercase_ : Any = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase_ : str = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : Union[str, Any] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE : Optional[int] = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) SCREAMING_SNAKE_CASE : Any = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) SCREAMING_SNAKE_CASE : str = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(_a ) class _lowerCamelCase: def __call__( self, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = False, lowerCamelCase = False, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = None, **lowerCamelCase, ) -> BatchEncoding: """simple docstring""" if titles is None and texts is None: return super().__call__( lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase, max_length=lowerCamelCase, return_tensors=lowerCamelCase, return_attention_mask=lowerCamelCase, **lowerCamelCase, ) elif titles is None or texts is None: _lowercase : Dict = titles if texts is None else texts return super().__call__( lowerCamelCase, lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase, max_length=lowerCamelCase, return_tensors=lowerCamelCase, return_attention_mask=lowerCamelCase, **lowerCamelCase, ) _lowercase : Union[str, Any] = titles if not isinstance(lowerCamelCase, lowerCamelCase) else [titles] _lowercase : Tuple = texts if not isinstance(lowerCamelCase, lowerCamelCase) else [texts] _lowercase : Optional[Any] = len(lowerCamelCase) _lowercase : Any = questions if not isinstance(lowerCamelCase, lowerCamelCase) else [questions] * n_passages if len(lowerCamelCase) != len(lowerCamelCase): raise ValueError( F'''There should be as many titles than texts but got {len(lowerCamelCase)} titles and {len(lowerCamelCase)} texts.''') _lowercase : Any = super().__call__(lowerCamelCase, lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase)['input_ids'] _lowercase : Tuple = super().__call__(lowerCamelCase, add_special_tokens=lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase)['input_ids'] _lowercase : int = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCamelCase, lowerCamelCase) ] } if return_attention_mask is not False: _lowercase : Optional[Any] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids]) _lowercase : Union[str, Any] = attention_mask return self.pad(lowerCamelCase, padding=lowerCamelCase, max_length=lowerCamelCase, return_tensors=lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase = 16, lowerCamelCase = 64, lowerCamelCase = 4, ) -> List[DPRSpanPrediction]: """simple docstring""" _lowercase : Union[str, Any] = reader_input['input_ids'] _lowercase , _lowercase , _lowercase : Tuple = reader_output[:3] _lowercase : Tuple = len(lowerCamelCase) _lowercase : str = sorted(range(lowerCamelCase), reverse=lowerCamelCase, key=relevance_logits.__getitem__) _lowercase : List[DPRReaderOutput] = [] for doc_id in sorted_docs: _lowercase : str = list(input_ids[doc_id]) # assuming question & title information is at the beginning of the sequence _lowercase : Any = sequence_ids.index(self.sep_token_id, 2) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _lowercase : List[Any] = sequence_ids.index(self.pad_token_id) else: _lowercase : List[str] = len(lowerCamelCase) _lowercase : Tuple = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len], end_logits=end_logits[doc_id][passage_offset:sequence_len], max_answer_length=lowerCamelCase, top_spans=lowerCamelCase, ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index], relevance_score=relevance_logits[doc_id], doc_id=lowerCamelCase, start_index=lowerCamelCase, end_index=lowerCamelCase, text=self.decode(sequence_ids[start_index : end_index + 1]), )) if len(lowerCamelCase) >= num_spans: break return nbest_spans_predictions[:num_spans] def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) -> List[DPRSpanPrediction]: """simple docstring""" _lowercase : str = [] for start_index, start_score in enumerate(lowerCamelCase): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]): scores.append(((start_index, start_index + answer_length), start_score + end_score)) _lowercase : Dict = sorted(lowerCamelCase, key=lambda lowerCamelCase: x[1], reverse=lowerCamelCase) _lowercase : List[str] = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F'''Wrong span indices: [{start_index}:{end_index}]''') _lowercase : Dict = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F'''Span is too long: {length} > {max_answer_length}''') if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals): continue chosen_span_intervals.append((start_index, end_index)) if len(lowerCamelCase) == top_spans: break return chosen_span_intervals @add_end_docstrings(_a ) class _lowerCamelCase( _a, _a ): lowercase_ : Union[str, Any] = VOCAB_FILES_NAMES lowercase_ : Any = READER_PRETRAINED_VOCAB_FILES_MAP lowercase_ : Dict = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : Optional[int] = READER_PRETRAINED_INIT_CONFIGURATION lowercase_ : str = ["""input_ids""", """attention_mask"""]
21
1
'''simple docstring''' import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def UpperCamelCase ( a , a , a ) -> int: '''simple docstring''' if isinstance(lowerCAmelCase__ , torch.Tensor ): return image elif isinstance(lowerCAmelCase__ , PIL.Image.Image ): __magic_name__ = [image] if isinstance(image[0] , PIL.Image.Image ): __magic_name__ = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image] __magic_name__ = np.concatenate(lowerCAmelCase__ , axis=0 ) __magic_name__ = np.array(lowerCAmelCase__ ).astype(np.floataa ) / 255.0 __magic_name__ = image.transpose(0 , 3 , 1 , 2 ) __magic_name__ = 2.0 * image - 1.0 __magic_name__ = torch.from_numpy(lowerCAmelCase__ ) elif isinstance(image[0] , torch.Tensor ): __magic_name__ = torch.cat(lowerCAmelCase__ , dim=0 ) return image def UpperCamelCase ( a , a , a , a=0.99_95 ) -> Any: '''simple docstring''' if not isinstance(lowerCAmelCase__ , np.ndarray ): __magic_name__ = True __magic_name__ = va.device __magic_name__ = va.cpu().numpy() __magic_name__ = va.cpu().numpy() __magic_name__ = np.sum(va * va / (np.linalg.norm(lowerCAmelCase__ ) * np.linalg.norm(lowerCAmelCase__ )) ) if np.abs(lowerCAmelCase__ ) > DOT_THRESHOLD: __magic_name__ = (1 - t) * va + t * va else: __magic_name__ = np.arccos(lowerCAmelCase__ ) __magic_name__ = np.sin(lowerCAmelCase__ ) __magic_name__ = theta_a * t __magic_name__ = np.sin(lowerCAmelCase__ ) __magic_name__ = np.sin(theta_a - theta_t ) / sin_theta_a __magic_name__ = sin_theta_t / sin_theta_a __magic_name__ = sa * va + sa * va if inputs_are_torch: __magic_name__ = torch.from_numpy(lowerCAmelCase__ ).to(lowerCAmelCase__ ) return va def UpperCamelCase ( a , a ) -> List[str]: '''simple docstring''' __magic_name__ = F.normalize(lowerCAmelCase__ , dim=-1 ) __magic_name__ = F.normalize(lowerCAmelCase__ , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def UpperCamelCase ( a , a ) -> Optional[Any]: '''simple docstring''' for param in model.parameters(): __magic_name__ = value class _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ ): def __init__( self : Dict , a__ : Dict , a__ : Any , a__ : str , a__ : Any , a__ : Dict , a__ : Optional[int] , a__ : int , a__ : int=None , a__ : Union[str, Any]=None , a__ : Any=None , ): super().__init__() self.register_modules( vae=A__ , text_encoder=A__ , clip_model=A__ , tokenizer=A__ , unet=A__ , scheduler=A__ , feature_extractor=A__ , coca_model=A__ , coca_tokenizer=A__ , coca_transform=A__ , ) __magic_name__ = ( feature_extractor.size if isinstance(feature_extractor.size , A__ ) else feature_extractor.size['''shortest_edge'''] ) __magic_name__ = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , A__ ) set_requires_grad(self.clip_model , A__ ) def snake_case__ ( self : Optional[int] , a__ : Optional[int] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __magic_name__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(A__ ) def snake_case__ ( self : Dict ): self.enable_attention_slicing(A__ ) def snake_case__ ( self : Dict ): set_requires_grad(self.vae , A__ ) def snake_case__ ( self : Optional[int] ): set_requires_grad(self.vae , A__ ) def snake_case__ ( self : str ): set_requires_grad(self.unet , A__ ) def snake_case__ ( self : Optional[int] ): set_requires_grad(self.unet , A__ ) def snake_case__ ( self : Dict , a__ : List[Any] , a__ : List[Any] , a__ : Optional[int] ): # get the original timestep using init_timestep __magic_name__ = min(int(num_inference_steps * strength ) , A__ ) __magic_name__ = max(num_inference_steps - init_timestep , 0 ) __magic_name__ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def snake_case__ ( self : List[Any] , a__ : Union[str, Any] , a__ : str , a__ : Any , a__ : Optional[Any] , a__ : Optional[Any] , a__ : str=None ): if not isinstance(A__ , torch.Tensor ): raise ValueError(F'''`image` has to be of type `torch.Tensor` but is {type(A__ )}''' ) __magic_name__ = image.to(device=A__ , dtype=A__ ) if isinstance(A__ , A__ ): __magic_name__ = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(A__ ) ] __magic_name__ = torch.cat(A__ , dim=0 ) else: __magic_name__ = self.vae.encode(A__ ).latent_dist.sample(A__ ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __magic_name__ = 0.18_215 * init_latents __magic_name__ = init_latents.repeat_interleave(A__ , dim=0 ) __magic_name__ = randn_tensor(init_latents.shape , generator=A__ , device=A__ , dtype=A__ ) # get latents __magic_name__ = self.scheduler.add_noise(A__ , A__ , A__ ) __magic_name__ = init_latents return latents def snake_case__ ( self : Dict , a__ : str ): __magic_name__ = self.coca_transform(A__ ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): __magic_name__ = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) __magic_name__ = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('''<end_of_text>''' )[0].replace('''<start_of_text>''' , '''''' ).rstrip(''' .,''' ) def snake_case__ ( self : List[Any] , a__ : List[Any] , a__ : Optional[Any] ): __magic_name__ = self.feature_extractor.preprocess(A__ ) __magic_name__ = torch.from_numpy(clip_image_input['''pixel_values'''][0] ).unsqueeze(0 ).to(self.device ).half() __magic_name__ = self.clip_model.get_image_features(A__ ) __magic_name__ = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=A__ ) __magic_name__ = image_embeddings_clip.repeat_interleave(A__ , dim=0 ) return image_embeddings_clip @torch.enable_grad() def snake_case__ ( self : Union[str, Any] , a__ : Tuple , a__ : List[Any] , a__ : int , a__ : str , a__ : List[str] , a__ : Any , a__ : Union[str, Any] , ): __magic_name__ = latents.detach().requires_grad_() __magic_name__ = self.scheduler.scale_model_input(A__ , A__ ) # predict the noise residual __magic_name__ = self.unet(A__ , A__ , encoder_hidden_states=A__ ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): __magic_name__ = self.scheduler.alphas_cumprod[timestep] __magic_name__ = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __magic_name__ = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 __magic_name__ = torch.sqrt(A__ ) __magic_name__ = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , A__ ): __magic_name__ = self.scheduler.sigmas[index] __magic_name__ = latents - sigma * noise_pred else: raise ValueError(F'''scheduler type {type(self.scheduler )} not supported''' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __magic_name__ = 1 / 0.18_215 * sample __magic_name__ = self.vae.decode(A__ ).sample __magic_name__ = (image / 2 + 0.5).clamp(0 , 1 ) __magic_name__ = transforms.Resize(self.feature_extractor_size )(A__ ) __magic_name__ = self.normalize(A__ ).to(latents.dtype ) __magic_name__ = self.clip_model.get_image_features(A__ ) __magic_name__ = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=A__ ) __magic_name__ = spherical_dist_loss(A__ , A__ ).mean() * clip_guidance_scale __magic_name__ = -torch.autograd.grad(A__ , A__ )[0] if isinstance(self.scheduler , A__ ): __magic_name__ = latents.detach() + grads * (sigma**2) __magic_name__ = noise_pred_original else: __magic_name__ = noise_pred_original - torch.sqrt(A__ ) * grads return noise_pred, latents @torch.no_grad() def __call__( self : List[Any] , a__ : Optional[Any] , a__ : Optional[int] , a__ : Tuple = None , a__ : Tuple = None , a__ : int = 512 , a__ : Optional[int] = 512 , a__ : Optional[Any] = 0.6 , a__ : Optional[Any] = 50 , a__ : Union[str, Any] = 7.5 , a__ : Optional[Any] = 1 , a__ : int = 0.0 , a__ : List[str] = 100 , a__ : List[Any] = None , a__ : Dict = "pil" , a__ : Dict = True , a__ : Union[str, Any] = 0.8 , a__ : Optional[Any] = 0.1 , a__ : List[str] = 0.1 , ): if isinstance(A__ , A__ ) and len(A__ ) != batch_size: raise ValueError(F'''You have passed {batch_size} batch_size, but only {len(A__ )} generators.''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if isinstance(A__ , torch.Generator ) and batch_size > 1: __magic_name__ = [generator] + [None] * (batch_size - 1) __magic_name__ = [ ('''model''', self.coca_model is None), ('''tokenizer''', self.coca_tokenizer is None), ('''transform''', self.coca_transform is None), ] __magic_name__ = [x[0] for x in coca_is_none if x[1]] __magic_name__ = ''', '''.join(A__ ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(A__ ): raise ValueError( F'''Content prompt is None and CoCa [{coca_is_none_str}] is None.''' F'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) __magic_name__ = self.get_image_description(A__ ) if style_prompt is None: if len(A__ ): raise ValueError( F'''Style prompt is None and CoCa [{coca_is_none_str}] is None.''' F''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) __magic_name__ = self.get_image_description(A__ ) # get prompt text embeddings for content and style __magic_name__ = self.tokenizer( A__ , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=A__ , return_tensors='''pt''' , ) __magic_name__ = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] __magic_name__ = self.tokenizer( A__ , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=A__ , return_tensors='''pt''' , ) __magic_name__ = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] __magic_name__ = slerp(A__ , A__ , A__ ) # duplicate text embeddings for each generation per prompt __magic_name__ = text_embeddings.repeat_interleave(A__ , dim=0 ) # set timesteps __magic_name__ = '''offset''' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) __magic_name__ = {} if accepts_offset: __magic_name__ = 1 self.scheduler.set_timesteps(A__ , **A__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) __magic_name__ , __magic_name__ = self.get_timesteps(A__ , A__ , self.device ) __magic_name__ = timesteps[:1].repeat(A__ ) # Preprocess image __magic_name__ = preprocess(A__ , A__ , A__ ) __magic_name__ = self.prepare_latents( A__ , A__ , A__ , text_embeddings.dtype , self.device , A__ ) __magic_name__ = preprocess(A__ , A__ , A__ ) __magic_name__ = self.prepare_latents( A__ , A__ , A__ , text_embeddings.dtype , self.device , A__ ) __magic_name__ = slerp(A__ , A__ , A__ ) if clip_guidance_scale > 0: __magic_name__ = self.get_clip_image_embeddings(A__ , A__ ) __magic_name__ = self.get_clip_image_embeddings(A__ , A__ ) __magic_name__ = slerp( A__ , A__ , A__ ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __magic_name__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __magic_name__ = content_text_input.input_ids.shape[-1] __magic_name__ = self.tokenizer([''''''] , padding='''max_length''' , max_length=A__ , return_tensors='''pt''' ) __magic_name__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt __magic_name__ = uncond_embeddings.repeat_interleave(A__ , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __magic_name__ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __magic_name__ = (batch_size, self.unet.config.in_channels, height // 8, width // 8) __magic_name__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps __magic_name__ = torch.randn(A__ , generator=A__ , device='''cpu''' , dtype=A__ ).to( self.device ) else: __magic_name__ = torch.randn(A__ , generator=A__ , device=self.device , dtype=A__ ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) __magic_name__ = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __magic_name__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __magic_name__ = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __magic_name__ = {} if accepts_eta: __magic_name__ = eta # check if the scheduler accepts generator __magic_name__ = '''generator''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: __magic_name__ = generator with self.progress_bar(total=A__ ): for i, t in enumerate(A__ ): # expand the latents if we are doing classifier free guidance __magic_name__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __magic_name__ = self.scheduler.scale_model_input(A__ , A__ ) # predict the noise residual __magic_name__ = self.unet(A__ , A__ , encoder_hidden_states=A__ ).sample # perform classifier free guidance if do_classifier_free_guidance: __magic_name__ , __magic_name__ = noise_pred.chunk(2 ) __magic_name__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: __magic_name__ = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) __magic_name__ , __magic_name__ = self.cond_fn( A__ , A__ , A__ , A__ , A__ , A__ , A__ , ) # compute the previous noisy sample x_t -> x_t-1 __magic_name__ = self.scheduler.step(A__ , A__ , A__ , **A__ ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __magic_name__ = 1 / 0.18_215 * latents __magic_name__ = self.vae.decode(A__ ).sample __magic_name__ = (image / 2 + 0.5).clamp(0 , 1 ) __magic_name__ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __magic_name__ = self.numpy_to_pil(A__ ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=A__ , nsfw_content_detected=A__ )
359
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): __SCREAMING_SNAKE_CASE :List[Any] = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __SCREAMING_SNAKE_CASE :Any = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def snake_case__ ( self : Tuple , a__ : Tuple , a__ : int , a__ : int ): __magic_name__ = TextaTextGenerationPipeline(model=a__ , tokenizer=a__ ) return generator, ["Something to write", "Something else"] def snake_case__ ( self : List[str] , a__ : List[Any] , a__ : List[str] ): __magic_name__ = generator('''Something there''' ) self.assertEqual(a__ , [{'''generated_text''': ANY(a__ )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['''generated_text'''].startswith('''Something there''' ) ) __magic_name__ = generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=a__ ) self.assertEqual( a__ , [ [{'''generated_text''': ANY(a__ )}, {'''generated_text''': ANY(a__ )}], [{'''generated_text''': ANY(a__ )}, {'''generated_text''': ANY(a__ )}], ] , ) __magic_name__ = generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=a__ ) self.assertEqual( a__ , [ [{'''generated_text''': ANY(a__ )}, {'''generated_text''': ANY(a__ )}], [{'''generated_text''': ANY(a__ )}, {'''generated_text''': ANY(a__ )}], ] , ) with self.assertRaises(a__ ): generator(4 ) @require_torch def snake_case__ ( self : Any ): __magic_name__ = pipeline('''text2text-generation''' , model='''patrickvonplaten/t5-tiny-random''' , framework='''pt''' ) # do_sample=False necessary for reproducibility __magic_name__ = generator('''Something there''' , do_sample=a__ ) self.assertEqual(a__ , [{'''generated_text''': ''''''}] ) __magic_name__ = 3 __magic_name__ = generator( '''Something there''' , num_return_sequences=a__ , num_beams=a__ , ) __magic_name__ = [ {'''generated_text''': '''Beide Beide Beide Beide Beide Beide Beide Beide Beide'''}, {'''generated_text''': '''Beide Beide Beide Beide Beide Beide Beide Beide'''}, {'''generated_text''': ''''''}, ] self.assertEqual(a__ , a__ ) __magic_name__ = generator('''This is a test''' , do_sample=a__ , num_return_sequences=2 , return_tensors=a__ ) self.assertEqual( a__ , [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ] , ) __magic_name__ = generator.model.config.eos_token_id __magic_name__ = '''<pad>''' __magic_name__ = generator( ['''This is a test''', '''This is a second test'''] , do_sample=a__ , num_return_sequences=2 , batch_size=2 , return_tensors=a__ , ) self.assertEqual( a__ , [ [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ], [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ], ] , ) @require_tf def snake_case__ ( self : int ): __magic_name__ = pipeline('''text2text-generation''' , model='''patrickvonplaten/t5-tiny-random''' , framework='''tf''' ) # do_sample=False necessary for reproducibility __magic_name__ = generator('''Something there''' , do_sample=a__ ) self.assertEqual(a__ , [{'''generated_text''': ''''''}] )
98
0
def _snake_case( SCREAMING_SNAKE_CASE__ : str ) -> str: '''simple docstring''' A__ = 0 # if input_string is "aba" than new_input_string become "a|b|a" A__ = '' A__ = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(SCREAMING_SNAKE_CASE__ ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring A__ , A__ = 0, 0 # length[i] shows the length of palindromic substring with center i A__ = [1 for i in range(len(SCREAMING_SNAKE_CASE__ ) )] # for each character in new_string find corresponding palindromic string A__ = 0 for j in range(len(SCREAMING_SNAKE_CASE__ ) ): A__ = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(SCREAMING_SNAKE_CASE__ ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 A__ = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: A__ = j - k + 1 # noqa: E741 A__ = j + k - 1 # update max_length and start position if max_length < length[j]: A__ = length[j] A__ = j # create that string A__ = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
7
"""simple docstring""" import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets __lowerCamelCase = "\\n@inproceedings{popovic-2015-chrf,\n title = \"chr{F}: character n-gram {F}-score for automatic {MT} evaluation\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Tenth Workshop on Statistical Machine Translation\",\n month = sep,\n year = \"2015\",\n address = \"Lisbon, Portugal\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W15-3049\",\n doi = \"10.18653/v1/W15-3049\",\n pages = \"392--395\",\n}\n@inproceedings{popovic-2017-chrf,\n title = \"chr{F}++: words helping character n-grams\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Second Conference on Machine Translation\",\n month = sep,\n year = \"2017\",\n address = \"Copenhagen, Denmark\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W17-4770\",\n doi = \"10.18653/v1/W17-4770\",\n pages = \"612--618\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" __lowerCamelCase = "\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n" __lowerCamelCase = "\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n 'score' (float): The chrF (chrF++) score,\n 'char_order' (int): The character n-gram order,\n 'word_order' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n 'beta' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {'score': 84.64214891738334, 'char_order': 6, 'word_order': 0, 'beta': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {'score': 82.87263732906315, 'char_order': 6, 'word_order': 2, 'beta': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {'score': 92.12853119829202, 'char_order': 6, 'word_order': 2, 'beta': 2}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__( datasets.Metric ): def snake_case__ ( self ) -> Tuple: if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage='https://github.com/mjpost/sacreBLEU#chrf--chrf' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Value('string' ,id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' ,id='sequence' ) ,id='references' ), } ) ,codebase_urls=['https://github.com/mjpost/sacreBLEU#chrf--chrf'] ,reference_urls=[ 'https://github.com/m-popovic/chrF', ] ,) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = CHRF.CHAR_ORDER ,__UpperCAmelCase = CHRF.WORD_ORDER ,__UpperCAmelCase = CHRF.BETA ,__UpperCAmelCase = False ,__UpperCAmelCase = False ,__UpperCAmelCase = False ,) -> Union[str, Any]: A__ = len(references[0] ) if any(len(__UpperCAmelCase ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) A__ = [[refs[i] for refs in references] for i in range(__UpperCAmelCase )] A__ = CHRF(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) A__ = sb_chrf.corpus_score(__UpperCAmelCase ,__UpperCAmelCase ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
221
0
"""simple docstring""" import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available a = logging.getLogger(__name__) @dataclass class lowercase_ : '''simple docstring''' UpperCAmelCase : str UpperCAmelCase : List[str] UpperCAmelCase : Optional[List[str]] @dataclass class lowercase_ : '''simple docstring''' UpperCAmelCase : List[int] UpperCAmelCase : List[int] UpperCAmelCase : Optional[List[int]] = None UpperCAmelCase : Optional[List[int]] = None class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Any = '''train''' UpperCAmelCase : Tuple = '''dev''' UpperCAmelCase : int = '''test''' class lowercase_ : '''simple docstring''' @staticmethod def lowerCAmelCase_ ( _UpperCAmelCase : int , _UpperCAmelCase : Union[Split, str] ): raise NotImplementedError @staticmethod def lowerCAmelCase_ ( _UpperCAmelCase : str ): raise NotImplementedError @staticmethod def lowerCAmelCase_ ( _UpperCAmelCase : List[InputExample] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : PreTrainedTokenizer , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : List[str]="[CLS]" , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Tuple="[SEP]" , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : str=0 , _UpperCAmelCase : Optional[int]=0 , _UpperCAmelCase : Any=-100 , _UpperCAmelCase : Union[str, Any]=0 , _UpperCAmelCase : List[Any]=True , ): _A = {label: i for i, label in enumerate(_UpperCAmelCase )} _A = [] for ex_index, example in enumerate(_UpperCAmelCase ): if ex_index % 10_000 == 0: logger.info('Writing example %d of %d' , _UpperCAmelCase , len(_UpperCAmelCase ) ) _A = [] _A = [] for word, label in zip(example.words , example.labels ): _A = tokenizer.tokenize(_UpperCAmelCase ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(_UpperCAmelCase ) > 0: tokens.extend(_UpperCAmelCase ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(_UpperCAmelCase ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. _A = tokenizer.num_special_tokens_to_add() if len(_UpperCAmelCase ) > max_seq_length - special_tokens_count: _A = tokens[: (max_seq_length - special_tokens_count)] _A = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] _A = [sequence_a_segment_id] * len(_UpperCAmelCase ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: _A = [cls_token] + tokens _A = [pad_token_label_id] + label_ids _A = [cls_token_segment_id] + segment_ids _A = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. _A = [1 if mask_padding_with_zero else 0] * len(_UpperCAmelCase ) # Zero-pad up to the sequence length. _A = max_seq_length - len(_UpperCAmelCase ) if pad_on_left: _A = ([pad_token] * padding_length) + input_ids _A = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask _A = ([pad_token_segment_id] * padding_length) + segment_ids _A = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(_UpperCAmelCase ) == max_seq_length assert len(_UpperCAmelCase ) == max_seq_length assert len(_UpperCAmelCase ) == max_seq_length assert len(_UpperCAmelCase ) == max_seq_length if ex_index < 5: logger.info('*** Example ***' ) logger.info('guid: %s' , example.guid ) logger.info('tokens: %s' , ' '.join([str(_UpperCAmelCase ) for x in tokens] ) ) logger.info('input_ids: %s' , ' '.join([str(_UpperCAmelCase ) for x in input_ids] ) ) logger.info('input_mask: %s' , ' '.join([str(_UpperCAmelCase ) for x in input_mask] ) ) logger.info('segment_ids: %s' , ' '.join([str(_UpperCAmelCase ) for x in segment_ids] ) ) logger.info('label_ids: %s' , ' '.join([str(_UpperCAmelCase ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: _A = None features.append( InputFeatures( input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , label_ids=_UpperCAmelCase ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : List[InputFeatures] UpperCAmelCase : int = nn.CrossEntropyLoss().ignore_index def __init__( self : int , _UpperCAmelCase : TokenClassificationTask , _UpperCAmelCase : str , _UpperCAmelCase : PreTrainedTokenizer , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : Split = Split.train , ): # Load data features from cache or dataset file _A = os.path.join( _UpperCAmelCase , 'cached_{}_{}_{}'.format(mode.value , tokenizer.__class__.__name__ , str(_UpperCAmelCase ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _A = cached_features_file + '.lock' with FileLock(_UpperCAmelCase ): if os.path.exists(_UpperCAmelCase ) and not overwrite_cache: logger.info(F'''Loading features from cached file {cached_features_file}''' ) _A = torch.load(_UpperCAmelCase ) else: logger.info(F'''Creating features from dataset file at {data_dir}''' ) _A = token_classification_task.read_examples_from_file(_UpperCAmelCase , _UpperCAmelCase ) # TODO clean up all this to leverage built-in features of tokenizers _A = token_classification_task.convert_examples_to_features( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , cls_token_at_end=bool(model_type in ['xlnet'] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['xlnet'] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=_UpperCAmelCase , pad_on_left=bool(tokenizer.padding_side == 'left' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(F'''Saving features into cached file {cached_features_file}''' ) torch.save(self.features , _UpperCAmelCase ) def __len__( self : Dict ): return len(self.features ) def __getitem__( self : int , _UpperCAmelCase : Union[str, Any] ): return self.features[i] if is_tf_available(): import tensorflow as tf class lowercase_ : '''simple docstring''' UpperCAmelCase : List[InputFeatures] UpperCAmelCase : int = -100 def __init__( self : int , _UpperCAmelCase : TokenClassificationTask , _UpperCAmelCase : str , _UpperCAmelCase : PreTrainedTokenizer , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : Split = Split.train , ): _A = token_classification_task.read_examples_from_file(_UpperCAmelCase , _UpperCAmelCase ) # TODO clean up all this to leverage built-in features of tokenizers _A = token_classification_task.convert_examples_to_features( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , cls_token_at_end=bool(model_type in ['xlnet'] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['xlnet'] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=_UpperCAmelCase , pad_on_left=bool(tokenizer.padding_side == 'left' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: _A = tf.data.Dataset.from_generator( _UpperCAmelCase , ({'input_ids': tf.intaa, 'attention_mask': tf.intaa}, tf.intaa) , ( {'input_ids': tf.TensorShape([None] ), 'attention_mask': tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: _A = tf.data.Dataset.from_generator( _UpperCAmelCase , ({'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa}, tf.intaa) , ( { 'input_ids': tf.TensorShape([None] ), 'attention_mask': tf.TensorShape([None] ), 'token_type_ids': tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def lowerCAmelCase_ ( self : Dict ): _A = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self : Tuple ): return len(self.features ) def __getitem__( self : Dict , _UpperCAmelCase : Optional[int] ): return self.features[i]
364
"""simple docstring""" import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def _snake_case ( _snake_case : int ) -> Any: '''simple docstring''' random.seed(_snake_case ) np.random.seed(_snake_case ) torch.manual_seed(_snake_case ) torch.cuda.manual_seed_all(_snake_case ) # ^^ safe to call this function even if cuda is not available class lowercase_ : '''simple docstring''' def __init__( self : Tuple , _UpperCAmelCase : Iterable[torch.nn.Parameter] , _UpperCAmelCase : float = 0.9999 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : int = 0 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Union[float, int] = 1.0 , _UpperCAmelCase : Union[float, int] = 2 / 3 , _UpperCAmelCase : Optional[Any] = None , _UpperCAmelCase : Dict[str, Any] = None , **_UpperCAmelCase : Optional[int] , ): if isinstance(_UpperCAmelCase , torch.nn.Module ): _A = ( 'Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. ' 'Please pass the parameters of the module instead.' ) deprecate( 'passing a `torch.nn.Module` to `ExponentialMovingAverage`' , '1.0.0' , _UpperCAmelCase , standard_warn=_UpperCAmelCase , ) _A = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility _A = True if kwargs.get('max_value' , _UpperCAmelCase ) is not None: _A = 'The `max_value` argument is deprecated. Please use `decay` instead.' deprecate('max_value' , '1.0.0' , _UpperCAmelCase , standard_warn=_UpperCAmelCase ) _A = kwargs['max_value'] if kwargs.get('min_value' , _UpperCAmelCase ) is not None: _A = 'The `min_value` argument is deprecated. Please use `min_decay` instead.' deprecate('min_value' , '1.0.0' , _UpperCAmelCase , standard_warn=_UpperCAmelCase ) _A = kwargs['min_value'] _A = list(_UpperCAmelCase ) _A = [p.clone().detach() for p in parameters] if kwargs.get('device' , _UpperCAmelCase ) is not None: _A = 'The `device` argument is deprecated. Please use `to` instead.' deprecate('device' , '1.0.0' , _UpperCAmelCase , standard_warn=_UpperCAmelCase ) self.to(device=kwargs['device'] ) _A = None _A = decay _A = min_decay _A = update_after_step _A = use_ema_warmup _A = inv_gamma _A = power _A = 0 _A = None # set in `step()` _A = model_cls _A = model_config @classmethod def lowerCAmelCase_ ( cls : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] ): _A , _A = model_cls.load_config(_UpperCAmelCase , return_unused_kwargs=_UpperCAmelCase ) _A = model_cls.from_pretrained(_UpperCAmelCase ) _A = cls(model.parameters() , model_cls=_UpperCAmelCase , model_config=model.config ) ema_model.load_state_dict(_UpperCAmelCase ) return ema_model def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Tuple ): if self.model_cls is None: raise ValueError('`save_pretrained` can only be used if `model_cls` was defined at __init__.' ) if self.model_config is None: raise ValueError('`save_pretrained` can only be used if `model_config` was defined at __init__.' ) _A = self.model_cls.from_config(self.model_config ) _A = self.state_dict() state_dict.pop('shadow_params' , _UpperCAmelCase ) model.register_to_config(**_UpperCAmelCase ) self.copy_to(model.parameters() ) model.save_pretrained(_UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : int ): _A = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: _A = 1 - (1 + step / self.inv_gamma) ** -self.power else: _A = (1 + step) / (10 + step) _A = min(_UpperCAmelCase , self.decay ) # make sure decay is not smaller than min_decay _A = max(_UpperCAmelCase , self.min_decay ) return cur_decay_value @torch.no_grad() def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Iterable[torch.nn.Parameter] ): if isinstance(_UpperCAmelCase , torch.nn.Module ): _A = ( 'Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. ' 'Please pass the parameters of the module instead.' ) deprecate( 'passing a `torch.nn.Module` to `ExponentialMovingAverage.step`' , '1.0.0' , _UpperCAmelCase , standard_warn=_UpperCAmelCase , ) _A = parameters.parameters() _A = list(_UpperCAmelCase ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. _A = self.get_decay(self.optimization_step ) _A = decay _A = 1 - decay _A = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , _UpperCAmelCase ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): _A = deepspeed.zero.GatheredParameters(_UpperCAmelCase , modifier_rank=_UpperCAmelCase ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(_UpperCAmelCase ) def lowerCAmelCase_ ( self : str , _UpperCAmelCase : Iterable[torch.nn.Parameter] ): _A = list(_UpperCAmelCase ) for s_param, param in zip(self.shadow_params , _UpperCAmelCase ): param.data.copy_(s_param.to(param.device ).data ) def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Dict=None ): _A = [ p.to(device=_UpperCAmelCase , dtype=_UpperCAmelCase ) if p.is_floating_point() else p.to(device=_UpperCAmelCase ) for p in self.shadow_params ] def lowerCAmelCase_ ( self : Dict ): return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : Iterable[torch.nn.Parameter] ): _A = [param.detach().cpu().clone() for param in parameters] def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Iterable[torch.nn.Parameter] ): if self.temp_stored_params is None: raise RuntimeError('This ExponentialMovingAverage has no `store()`ed weights ' 'to `restore()`' ) for c_param, param in zip(self.temp_stored_params , _UpperCAmelCase ): param.data.copy_(c_param.data ) # Better memory-wise. _A = None def lowerCAmelCase_ ( self : int , _UpperCAmelCase : dict ): _A = copy.deepcopy(_UpperCAmelCase ) _A = state_dict.get('decay' , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError('Decay must be between 0 and 1' ) _A = state_dict.get('min_decay' , self.min_decay ) if not isinstance(self.min_decay , _UpperCAmelCase ): raise ValueError('Invalid min_decay' ) _A = state_dict.get('optimization_step' , self.optimization_step ) if not isinstance(self.optimization_step , _UpperCAmelCase ): raise ValueError('Invalid optimization_step' ) _A = state_dict.get('update_after_step' , self.update_after_step ) if not isinstance(self.update_after_step , _UpperCAmelCase ): raise ValueError('Invalid update_after_step' ) _A = state_dict.get('use_ema_warmup' , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , _UpperCAmelCase ): raise ValueError('Invalid use_ema_warmup' ) _A = state_dict.get('inv_gamma' , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError('Invalid inv_gamma' ) _A = state_dict.get('power' , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError('Invalid power' ) _A = state_dict.get('shadow_params' , _UpperCAmelCase ) if shadow_params is not None: _A = shadow_params if not isinstance(self.shadow_params , _UpperCAmelCase ): raise ValueError('shadow_params must be a list' ) if not all(isinstance(_UpperCAmelCase , torch.Tensor ) for p in self.shadow_params ): raise ValueError('shadow_params must all be Tensors' )
271
0
"""simple docstring""" import qiskit def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> qiskit.result.counts.Counts: snake_case_ = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register snake_case_ = qiskit.QuantumCircuit(UpperCAmelCase , UpperCAmelCase ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator snake_case_ = qiskit.execute(UpperCAmelCase , UpperCAmelCase , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(UpperCAmelCase ) if __name__ == "__main__": __UpperCamelCase = single_qubit_measure(2, 2) print(F"""Total count for various states are: {counts}""")
69
"""simple docstring""" def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> int: while a != 0: snake_case_ , snake_case_ = b % a, a return b def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> int: if gcd(UpperCAmelCase , UpperCAmelCase ) != 1: snake_case_ = f'mod inverse of {a!r} and {m!r} does not exist' raise ValueError(UpperCAmelCase ) snake_case_ , snake_case_ , snake_case_ = 1, 0, a snake_case_ , snake_case_ , snake_case_ = 0, 1, m while va != 0: snake_case_ = ua // va snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
69
1
import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def __snake_case ( _UpperCAmelCase ): return (data["data"], data["target"]) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(_UpperCAmelCase , _UpperCAmelCase ) # Predict target for test data __a = xgb.predict(_UpperCAmelCase ) __a = predictions.reshape(len(_UpperCAmelCase ) , 1 ) return predictions def __snake_case ( ): __a = fetch_california_housing() __a , __a = data_handling(_UpperCAmelCase ) __a , __a , __a , __a = train_test_split( _UpperCAmelCase , _UpperCAmelCase , test_size=0.25 , random_state=1 ) __a = xgboost(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Error printing print(f'Mean Absolute Error : {mean_absolute_error(_UpperCAmelCase , _UpperCAmelCase )}' ) print(f'Mean Square Error : {mean_squared_error(_UpperCAmelCase , _UpperCAmelCase )}' ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
131
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _A ( __UpperCAmelCase ): def __init__( self : Dict , __SCREAMING_SNAKE_CASE : NestedDataStructureLike[PathLike] , __SCREAMING_SNAKE_CASE : Optional[NamedSplit] = None , __SCREAMING_SNAKE_CASE : Optional[Features] = None , __SCREAMING_SNAKE_CASE : str = None , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional[str] = None , __SCREAMING_SNAKE_CASE : Optional[int] = None , **__SCREAMING_SNAKE_CASE : Any , ): '''simple docstring''' super().__init__( __SCREAMING_SNAKE_CASE , split=__SCREAMING_SNAKE_CASE , features=__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE , keep_in_memory=__SCREAMING_SNAKE_CASE , streaming=__SCREAMING_SNAKE_CASE , num_proc=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) __a = field __a = path_or_paths if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) else {self.split: path_or_paths} __a = Json( cache_dir=__SCREAMING_SNAKE_CASE , data_files=__SCREAMING_SNAKE_CASE , features=__SCREAMING_SNAKE_CASE , field=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) def _lowerCamelCase ( self : List[Any]): '''simple docstring''' if self.streaming: __a = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: __a = None __a = None __a = None __a = None self.builder.download_and_prepare( download_config=__SCREAMING_SNAKE_CASE , download_mode=__SCREAMING_SNAKE_CASE , verification_mode=__SCREAMING_SNAKE_CASE , base_path=__SCREAMING_SNAKE_CASE , num_proc=self.num_proc , ) __a = self.builder.as_dataset( split=self.split , verification_mode=__SCREAMING_SNAKE_CASE , in_memory=self.keep_in_memory) return dataset class _A : def __init__( self : Any , __SCREAMING_SNAKE_CASE : Dataset , __SCREAMING_SNAKE_CASE : Union[PathLike, BinaryIO] , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : Optional[int] = None , **__SCREAMING_SNAKE_CASE : List[str] , ): '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(F'num_proc {num_proc} must be an integer > 0.') __a = dataset __a = path_or_buf __a = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __a = num_proc __a = '''utf-8''' __a = to_json_kwargs def _lowerCamelCase ( self : int): '''simple docstring''' __a = self.to_json_kwargs.pop('''path_or_buf''' , __SCREAMING_SNAKE_CASE) __a = self.to_json_kwargs.pop('''orient''' , '''records''') __a = self.to_json_kwargs.pop('''lines''' , True if orient == '''records''' else False) __a = self.to_json_kwargs.pop('''index''' , False if orient in ['''split''', '''table'''] else True) __a = self.to_json_kwargs.pop('''compression''' , __SCREAMING_SNAKE_CASE) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F'`datasets` currently does not support {compression} compression') if isinstance(self.path_or_buf , (str, bytes, os.PathLike)): with fsspec.open(self.path_or_buf , '''wb''' , compression=__SCREAMING_SNAKE_CASE) as buffer: __a = self._write(file_obj=__SCREAMING_SNAKE_CASE , orient=__SCREAMING_SNAKE_CASE , lines=__SCREAMING_SNAKE_CASE , index=__SCREAMING_SNAKE_CASE , **self.to_json_kwargs) else: if compression: raise NotImplementedError( F'The compression parameter is not supported when writing to a buffer, but compression={compression}' ''' was passed. Please provide a local path instead.''') __a = self._write( file_obj=self.path_or_buf , orient=__SCREAMING_SNAKE_CASE , lines=__SCREAMING_SNAKE_CASE , index=__SCREAMING_SNAKE_CASE , **self.to_json_kwargs) return written def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : str): '''simple docstring''' __a , __a , __a , __a , __a = args __a = query_table( table=self.dataset.data , key=slice(__SCREAMING_SNAKE_CASE , offset + self.batch_size) , indices=self.dataset._indices , ) __a = batch.to_pandas().to_json( path_or_buf=__SCREAMING_SNAKE_CASE , orient=__SCREAMING_SNAKE_CASE , lines=__SCREAMING_SNAKE_CASE , index=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) if not json_str.endswith('''\n'''): json_str += "\n" return json_str.encode(self.encoding) def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : BinaryIO , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any] , **__SCREAMING_SNAKE_CASE : Optional[Any] , ): '''simple docstring''' __a = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset) , self.batch_size) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): __a = self._batch_json((offset, orient, lines, index, to_json_kwargs)) written += file_obj.write(__SCREAMING_SNAKE_CASE) else: __a , __a = len(self.dataset), self.batch_size with multiprocessing.Pool(self.num_proc) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): written += file_obj.write(__SCREAMING_SNAKE_CASE) return written
131
1
"""simple docstring""" import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": __snake_case = """%20""".join(argv[1:]) if len(argv) > 1 else quote(str(input("""Search: """))) print("""Googling.....""") __snake_case = F'''https://www.google.com/search?q={query}&num=100''' __snake_case = requests.get( url, headers={"""User-Agent""": str(UserAgent().random)}, ) try: __snake_case = ( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """yuRUbf"""}) .find("""a""") .get("""href""") ) except AttributeError: __snake_case = parse_qs( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """kCrYT"""}) .find("""a""") .get("""href""") )["""url"""][0] webbrowser.open(link)
203
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class A ( UpperCAmelCase_ ): __UpperCAmelCase : torch.FloatTensor class A ( nn.Module ): def __init__(self : Union[str, Any] , __UpperCAmelCase : int=3 , __UpperCAmelCase : Dict=3 , __UpperCAmelCase : Optional[Any]=("DownEncoderBlock2D",) , __UpperCAmelCase : int=(6_4,) , __UpperCAmelCase : Union[str, Any]=2 , __UpperCAmelCase : Any=3_2 , __UpperCAmelCase : str="silu" , __UpperCAmelCase : Any=True , ) -> Dict: """simple docstring""" super().__init__() UpperCAmelCase__ = layers_per_block UpperCAmelCase__ = torch.nn.Convad( __UpperCAmelCase , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) UpperCAmelCase__ = None UpperCAmelCase__ = nn.ModuleList([] ) # down UpperCAmelCase__ = block_out_channels[0] for i, down_block_type in enumerate(__UpperCAmelCase ): UpperCAmelCase__ = output_channel UpperCAmelCase__ = block_out_channels[i] UpperCAmelCase__ = i == len(__UpperCAmelCase ) - 1 UpperCAmelCase__ = get_down_block( __UpperCAmelCase , num_layers=self.layers_per_block , in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , add_downsample=not is_final_block , resnet_eps=1E-6 , downsample_padding=0 , resnet_act_fn=__UpperCAmelCase , resnet_groups=__UpperCAmelCase , attention_head_dim=__UpperCAmelCase , temb_channels=__UpperCAmelCase , ) self.down_blocks.append(__UpperCAmelCase ) # mid UpperCAmelCase__ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=__UpperCAmelCase , output_scale_factor=1 , resnet_time_scale_shift="default" , attention_head_dim=block_out_channels[-1] , resnet_groups=__UpperCAmelCase , temb_channels=__UpperCAmelCase , ) # out UpperCAmelCase__ = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=__UpperCAmelCase , eps=1E-6 ) UpperCAmelCase__ = nn.SiLU() UpperCAmelCase__ = 2 * out_channels if double_z else out_channels UpperCAmelCase__ = nn.Convad(block_out_channels[-1] , __UpperCAmelCase , 3 , padding=1 ) UpperCAmelCase__ = False def lowercase_ (self : List[Any] , __UpperCAmelCase : int ) -> str: """simple docstring""" UpperCAmelCase__ = x UpperCAmelCase__ = self.conv_in(__UpperCAmelCase ) if self.training and self.gradient_checkpointing: def create_custom_forward(__UpperCAmelCase : int ): def custom_forward(*__UpperCAmelCase : Optional[Any] ): return module(*__UpperCAmelCase ) return custom_forward # down if is_torch_version(">=" , "1.11.0" ): for down_block in self.down_blocks: UpperCAmelCase__ = torch.utils.checkpoint.checkpoint( create_custom_forward(__UpperCAmelCase ) , __UpperCAmelCase , use_reentrant=__UpperCAmelCase ) # middle UpperCAmelCase__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __UpperCAmelCase , use_reentrant=__UpperCAmelCase ) else: for down_block in self.down_blocks: UpperCAmelCase__ = torch.utils.checkpoint.checkpoint(create_custom_forward(__UpperCAmelCase ) , __UpperCAmelCase ) # middle UpperCAmelCase__ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , __UpperCAmelCase ) else: # down for down_block in self.down_blocks: UpperCAmelCase__ = down_block(__UpperCAmelCase ) # middle UpperCAmelCase__ = self.mid_block(__UpperCAmelCase ) # post-process UpperCAmelCase__ = self.conv_norm_out(__UpperCAmelCase ) UpperCAmelCase__ = self.conv_act(__UpperCAmelCase ) UpperCAmelCase__ = self.conv_out(__UpperCAmelCase ) return sample class A ( nn.Module ): def __init__(self : List[Any] , __UpperCAmelCase : str=3 , __UpperCAmelCase : Union[str, Any]=3 , __UpperCAmelCase : Optional[int]=("UpDecoderBlock2D",) , __UpperCAmelCase : str=(6_4,) , __UpperCAmelCase : Optional[Any]=2 , __UpperCAmelCase : Tuple=3_2 , __UpperCAmelCase : Any="silu" , __UpperCAmelCase : Any="group" , ) -> Dict: """simple docstring""" super().__init__() UpperCAmelCase__ = layers_per_block UpperCAmelCase__ = nn.Convad( __UpperCAmelCase , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) UpperCAmelCase__ = None UpperCAmelCase__ = nn.ModuleList([] ) UpperCAmelCase__ = in_channels if norm_type == "spatial" else None # mid UpperCAmelCase__ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=__UpperCAmelCase , output_scale_factor=1 , resnet_time_scale_shift="default" if norm_type == "group" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=__UpperCAmelCase , temb_channels=__UpperCAmelCase , ) # up UpperCAmelCase__ = list(reversed(__UpperCAmelCase ) ) UpperCAmelCase__ = reversed_block_out_channels[0] for i, up_block_type in enumerate(__UpperCAmelCase ): UpperCAmelCase__ = output_channel UpperCAmelCase__ = reversed_block_out_channels[i] UpperCAmelCase__ = i == len(__UpperCAmelCase ) - 1 UpperCAmelCase__ = get_up_block( __UpperCAmelCase , num_layers=self.layers_per_block + 1 , in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , prev_output_channel=__UpperCAmelCase , add_upsample=not is_final_block , resnet_eps=1E-6 , resnet_act_fn=__UpperCAmelCase , resnet_groups=__UpperCAmelCase , attention_head_dim=__UpperCAmelCase , temb_channels=__UpperCAmelCase , resnet_time_scale_shift=__UpperCAmelCase , ) self.up_blocks.append(__UpperCAmelCase ) UpperCAmelCase__ = output_channel # out if norm_type == "spatial": UpperCAmelCase__ = SpatialNorm(block_out_channels[0] , __UpperCAmelCase ) else: UpperCAmelCase__ = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=__UpperCAmelCase , eps=1E-6 ) UpperCAmelCase__ = nn.SiLU() UpperCAmelCase__ = nn.Convad(block_out_channels[0] , __UpperCAmelCase , 3 , padding=1 ) UpperCAmelCase__ = False def lowercase_ (self : Optional[int] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict=None ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = z UpperCAmelCase__ = self.conv_in(__UpperCAmelCase ) UpperCAmelCase__ = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__UpperCAmelCase : str ): def custom_forward(*__UpperCAmelCase : List[str] ): return module(*__UpperCAmelCase ) return custom_forward if is_torch_version(">=" , "1.11.0" ): # middle UpperCAmelCase__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __UpperCAmelCase , __UpperCAmelCase , use_reentrant=__UpperCAmelCase ) UpperCAmelCase__ = sample.to(__UpperCAmelCase ) # up for up_block in self.up_blocks: UpperCAmelCase__ = torch.utils.checkpoint.checkpoint( create_custom_forward(__UpperCAmelCase ) , __UpperCAmelCase , __UpperCAmelCase , use_reentrant=__UpperCAmelCase ) else: # middle UpperCAmelCase__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase__ = sample.to(__UpperCAmelCase ) # up for up_block in self.up_blocks: UpperCAmelCase__ = torch.utils.checkpoint.checkpoint(create_custom_forward(__UpperCAmelCase ) , __UpperCAmelCase , __UpperCAmelCase ) else: # middle UpperCAmelCase__ = self.mid_block(__UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase__ = sample.to(__UpperCAmelCase ) # up for up_block in self.up_blocks: UpperCAmelCase__ = up_block(__UpperCAmelCase , __UpperCAmelCase ) # post-process if latent_embeds is None: UpperCAmelCase__ = self.conv_norm_out(__UpperCAmelCase ) else: UpperCAmelCase__ = self.conv_norm_out(__UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase__ = self.conv_act(__UpperCAmelCase ) UpperCAmelCase__ = self.conv_out(__UpperCAmelCase ) return sample class A ( nn.Module ): def __init__(self : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Union[str, Any]="random" , __UpperCAmelCase : Dict=False , __UpperCAmelCase : Union[str, Any]=True ) -> Dict: """simple docstring""" super().__init__() UpperCAmelCase__ = n_e UpperCAmelCase__ = vq_embed_dim UpperCAmelCase__ = beta UpperCAmelCase__ = legacy UpperCAmelCase__ = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) UpperCAmelCase__ = remap if self.remap is not None: self.register_buffer("used" , torch.tensor(np.load(self.remap ) ) ) UpperCAmelCase__ = self.used.shape[0] UpperCAmelCase__ = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": UpperCAmelCase__ = self.re_embed UpperCAmelCase__ = self.re_embed + 1 print( f"""Remapping {self.n_e} indices to {self.re_embed} indices. """ f"""Using {self.unknown_index} for unknown indices.""" ) else: UpperCAmelCase__ = n_e UpperCAmelCase__ = sane_index_shape def lowercase_ (self : str , __UpperCAmelCase : str ) -> List[str]: """simple docstring""" UpperCAmelCase__ = inds.shape assert len(__UpperCAmelCase ) > 1 UpperCAmelCase__ = inds.reshape(ishape[0] , -1 ) UpperCAmelCase__ = self.used.to(__UpperCAmelCase ) UpperCAmelCase__ = (inds[:, :, None] == used[None, None, ...]).long() UpperCAmelCase__ = match.argmax(-1 ) UpperCAmelCase__ = match.sum(2 ) < 1 if self.unknown_index == "random": UpperCAmelCase__ = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: UpperCAmelCase__ = self.unknown_index return new.reshape(__UpperCAmelCase ) def lowercase_ (self : Tuple , __UpperCAmelCase : Optional[int] ) -> Dict: """simple docstring""" UpperCAmelCase__ = inds.shape assert len(__UpperCAmelCase ) > 1 UpperCAmelCase__ = inds.reshape(ishape[0] , -1 ) UpperCAmelCase__ = self.used.to(__UpperCAmelCase ) if self.re_embed > self.used.shape[0]: # extra token UpperCAmelCase__ = 0 # simply set to zero UpperCAmelCase__ = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , __UpperCAmelCase ) return back.reshape(__UpperCAmelCase ) def lowercase_ (self : Optional[Any] , __UpperCAmelCase : Dict ) -> List[str]: """simple docstring""" UpperCAmelCase__ = z.permute(0 , 2 , 3 , 1 ).contiguous() UpperCAmelCase__ = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z UpperCAmelCase__ = torch.argmin(torch.cdist(__UpperCAmelCase , self.embedding.weight ) , dim=1 ) UpperCAmelCase__ = self.embedding(__UpperCAmelCase ).view(z.shape ) UpperCAmelCase__ = None UpperCAmelCase__ = None # compute loss for embedding if not self.legacy: UpperCAmelCase__ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: UpperCAmelCase__ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients UpperCAmelCase__ = z + (z_q - z).detach() # reshape back to match original input shape UpperCAmelCase__ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: UpperCAmelCase__ = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis UpperCAmelCase__ = self.remap_to_used(__UpperCAmelCase ) UpperCAmelCase__ = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: UpperCAmelCase__ = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def lowercase_ (self : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any] ) -> Any: """simple docstring""" if self.remap is not None: UpperCAmelCase__ = indices.reshape(shape[0] , -1 ) # add batch axis UpperCAmelCase__ = self.unmap_to_all(__UpperCAmelCase ) UpperCAmelCase__ = indices.reshape(-1 ) # flatten again # get quantized latent vectors UpperCAmelCase__ = self.embedding(__UpperCAmelCase ) if shape is not None: UpperCAmelCase__ = z_q.view(__UpperCAmelCase ) # reshape back to match original input shape UpperCAmelCase__ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class A ( UpperCAmelCase_ ): def __init__(self : Any , __UpperCAmelCase : Dict , __UpperCAmelCase : str=False ) -> Tuple: """simple docstring""" UpperCAmelCase__ = parameters UpperCAmelCase__ , UpperCAmelCase__ = torch.chunk(__UpperCAmelCase , 2 , dim=1 ) UpperCAmelCase__ = torch.clamp(self.logvar , -30.0 , 20.0 ) UpperCAmelCase__ = deterministic UpperCAmelCase__ = torch.exp(0.5 * self.logvar ) UpperCAmelCase__ = torch.exp(self.logvar ) if self.deterministic: UpperCAmelCase__ = UpperCAmelCase__ = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : Optional[torch.Generator] = None ) -> torch.FloatTensor: """simple docstring""" UpperCAmelCase__ = randn_tensor( self.mean.shape , generator=__UpperCAmelCase , device=self.parameters.device , dtype=self.parameters.dtype ) UpperCAmelCase__ = self.mean + self.std * sample return x def lowercase_ (self : str , __UpperCAmelCase : int=None ) -> Any: """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def lowercase_ (self : Dict , __UpperCAmelCase : Tuple , __UpperCAmelCase : Any=[1, 2, 3] ) -> Dict: """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) UpperCAmelCase__ = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=__UpperCAmelCase ) def lowercase_ (self : Tuple ) -> Optional[Any]: """simple docstring""" return self.mean
65
0
"""simple docstring""" import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__=1_3 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=9_9 , lowerCamelCase__=3_2 , lowerCamelCase__=5 , lowerCamelCase__=4 , lowerCamelCase__=3_7 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=5_1_2 , lowerCamelCase__=1_6 , lowerCamelCase__=2 , lowerCamelCase__=0.0_2 , lowerCamelCase__=4 , ): _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = seq_length _lowerCamelCase = is_training _lowerCamelCase = use_attention_mask _lowerCamelCase = use_token_type_ids _lowerCamelCase = use_labels _lowerCamelCase = vocab_size _lowerCamelCase = hidden_size _lowerCamelCase = num_hidden_layers _lowerCamelCase = num_attention_heads _lowerCamelCase = intermediate_size _lowerCamelCase = hidden_act _lowerCamelCase = hidden_dropout_prob _lowerCamelCase = attention_probs_dropout_prob _lowerCamelCase = max_position_embeddings _lowerCamelCase = type_vocab_size _lowerCamelCase = type_sequence_label_size _lowerCamelCase = initializer_range _lowerCamelCase = num_choices def snake_case__ ( self ): _lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCamelCase = None if self.use_attention_mask: _lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase = None if self.use_token_type_ids: _lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCamelCase = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def snake_case__ ( self ): _lowerCamelCase = self.prepare_config_and_inputs() _lowerCamelCase = config_and_inputs _lowerCamelCase = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class lowerCamelCase_( A__, unittest.TestCase ): '''simple docstring''' lowercase__ : Optional[Any] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def snake_case__ ( self ): _lowerCamelCase = FlaxAlbertModelTester(self ) @slow def snake_case__ ( self ): for model_class_name in self.all_model_classes: _lowerCamelCase = model_class_name.from_pretrained('''albert-base-v2''' ) _lowerCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(_a ) @require_flax class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' @slow def snake_case__ ( self ): _lowerCamelCase = FlaxAlbertModel.from_pretrained('''albert-base-v2''' ) _lowerCamelCase = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) _lowerCamelCase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _lowerCamelCase = model(_a , attention_mask=_a )[0] _lowerCamelCase = (1, 1_1, 7_6_8) self.assertEqual(output.shape , _a ) _lowerCamelCase = np.array( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , _a , atol=1e-4 ) )
369
"""simple docstring""" import os from collections.abc import Iterator def lowerCAmelCase_( lowercase_ : str = "." ) -> Iterator[str]: for dir_path, dir_names, filenames in os.walk(lowercase_ ): _lowerCamelCase = [d for d in dir_names if d != '''scripts''' and d[0] not in '''._'''] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(lowercase_ )[1] in (".py", ".ipynb"): yield os.path.join(lowercase_ , lowercase_ ).lstrip('''./''' ) def lowerCAmelCase_( lowercase_ : Dict ) -> List[Any]: return F"""{i * " "}*""" if i else "\n##" def lowerCAmelCase_( lowercase_ : str , lowercase_ : str ) -> str: _lowerCamelCase = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(lowercase_ ) or old_parts[i] != new_part) and new_part: print(F"""{md_prefix(lowercase_ )} {new_part.replace("_" , " " ).title()}""" ) return new_path def lowerCAmelCase_( lowercase_ : str = "." ) -> None: _lowerCamelCase = '''''' for filepath in sorted(good_file_paths(lowercase_ ) ): _lowerCamelCase , _lowerCamelCase = os.path.split(lowercase_ ) if filepath != old_path: _lowerCamelCase = print_path(lowercase_ , lowercase_ ) _lowerCamelCase = (filepath.count(os.sep ) + 1) if filepath else 0 _lowerCamelCase = F"""{filepath}/{filename}""".replace(''' ''' , '''%20''' ) _lowerCamelCase = os.path.splitext(filename.replace('''_''' , ''' ''' ).title() )[0] print(F"""{md_prefix(lowercase_ )} [{filename}]({url})""" ) if __name__ == "__main__": print_directory_md('''.''')
73
0
'''simple docstring''' from decimal import Decimal, getcontext from math import ceil, factorial def _UpperCamelCase ( __A ) -> str: '''simple docstring''' if not isinstance(__A , __A ): raise TypeError("Undefined for non-integers" ) elif precision < 1: raise ValueError("Undefined for non-natural numbers" ) UpperCamelCase__ = precision UpperCamelCase__ = ceil(precision / 14 ) UpperCamelCase__ = 426880 * Decimal(10005 ).sqrt() UpperCamelCase__ = 1 UpperCamelCase__ = 13591409 UpperCamelCase__ = Decimal(__A ) for k in range(1 , __A ): UpperCamelCase__ = factorial(6 * k ) // (factorial(3 * k ) * factorial(__A ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": a__ : int = 5_0 print(F"""The first {n} digits of pi is: {pi(n)}""")
80
'''simple docstring''' def _UpperCamelCase ( __A ) -> int: '''simple docstring''' UpperCamelCase__ = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def _UpperCamelCase ( __A = 100 ) -> int: '''simple docstring''' UpperCamelCase__ = 1 UpperCamelCase__ = 2 for i in range(2 , max_n + 1 ): UpperCamelCase__ = pre_numerator UpperCamelCase__ = 2 * i // 3 if i % 3 == 0 else 1 UpperCamelCase__ = cur_numerator UpperCamelCase__ = e_cont * pre_numerator + temp return sum_digits(__A ) if __name__ == "__main__": print(F"""{solution() = }""")
80
1
'''simple docstring''' import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter lowerCamelCase :List[str] = True except ImportError: lowerCamelCase :Optional[int] = False lowerCamelCase :Any = logging.get_logger(__name__) # pylint: disable=invalid-name def a ( lowerCamelCase__ ): '''simple docstring''' return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class _lowerCAmelCase ( __UpperCAmelCase ): @staticmethod def _a (lowercase ): A_ : Any = parser.add_parser("""add-new-model""" ) add_new_model_parser.add_argument("""--testing""" , action="""store_true""" , help="""If in testing mode.""" ) add_new_model_parser.add_argument("""--testing_file""" , type=lowercase , help="""Configuration file on which to run.""" ) add_new_model_parser.add_argument( """--path""" , type=lowercase , help="""Path to cookiecutter. Should only be used for testing purposes.""" ) add_new_model_parser.set_defaults(func=lowercase ) def __init__(self , lowercase , lowercase , lowercase=None , *lowercase ): A_ : List[str] = testing A_ : List[Any] = testing_file A_ : Union[str, Any] = path def _a (self ): warnings.warn( """The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. """ """It is not actively maintained anymore, so might give a result that won't pass all tests and quality """ """checks, you should use `transformers-cli add-new-model-like` instead.""" ) if not _has_cookiecutter: raise ImportError( """Model creation dependencies are required to use the `add_new_model` command. Install them by running """ """the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n""" ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory A_ : Optional[int] = [directory for directory in os.listdir() if """cookiecutter-template-""" == directory[:22]] if len(lowercase ) > 0: raise ValueError( """Several directories starting with `cookiecutter-template-` in current working directory. """ """Please clean your directory by removing all folders starting with `cookiecutter-template-` or """ """change your working directory.""" ) A_ : Tuple = ( Path(lowercase ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) A_ : Optional[int] = path_to_transformer_root / """templates""" / """adding_a_new_model""" # Execute cookiecutter if not self._testing: cookiecutter(str(lowercase ) ) else: with open(self._testing_file , """r""" ) as configuration_file: A_ : Dict = json.load(lowercase ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=lowercase , extra_context=lowercase , ) A_ : Union[str, Any] = [directory for directory in os.listdir() if """cookiecutter-template-""" in directory[:22]][0] # Retrieve configuration with open(directory + """/configuration.json""" , """r""" ) as configuration_file: A_ : Optional[Any] = json.load(lowercase ) A_ : str = configuration["""lowercase_modelname"""] A_ : Optional[int] = configuration["""generate_tensorflow_pytorch_and_flax"""] os.remove(F'{directory}/configuration.json' ) A_ : Union[str, Any] = """PyTorch""" in generate_tensorflow_pytorch_and_flax A_ : int = """TensorFlow""" in generate_tensorflow_pytorch_and_flax A_ : List[str] = """Flax""" in generate_tensorflow_pytorch_and_flax A_ : List[str] = F'{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}' os.makedirs(lowercase , exist_ok=lowercase ) os.makedirs(F'{path_to_transformer_root}/tests/models/{lowercase_model_name}' , exist_ok=lowercase ) # Tests require submodules as they have parent imports with open(F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py' , """w""" ): pass shutil.move( F'{directory}/__init__.py' , F'{model_dir}/__init__.py' , ) shutil.move( F'{directory}/configuration_{lowercase_model_name}.py' , F'{model_dir}/configuration_{lowercase_model_name}.py' , ) def remove_copy_lines(lowercase ): with open(lowercase , """r""" ) as f: A_ : Any = f.readlines() with open(lowercase , """w""" ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(lowercase ) if output_pytorch: if not self._testing: remove_copy_lines(F'{directory}/modeling_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_{lowercase_model_name}.py' , F'{model_dir}/modeling_{lowercase_model_name}.py' , ) shutil.move( F'{directory}/test_modeling_{lowercase_model_name}.py' , F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py' , ) else: os.remove(F'{directory}/modeling_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_{lowercase_model_name}.py' ) if output_tensorflow: if not self._testing: remove_copy_lines(F'{directory}/modeling_tf_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_tf_{lowercase_model_name}.py' , F'{model_dir}/modeling_tf_{lowercase_model_name}.py' , ) shutil.move( F'{directory}/test_modeling_tf_{lowercase_model_name}.py' , F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py' , ) else: os.remove(F'{directory}/modeling_tf_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_tf_{lowercase_model_name}.py' ) if output_flax: if not self._testing: remove_copy_lines(F'{directory}/modeling_flax_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_flax_{lowercase_model_name}.py' , F'{model_dir}/modeling_flax_{lowercase_model_name}.py' , ) shutil.move( F'{directory}/test_modeling_flax_{lowercase_model_name}.py' , F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py' , ) else: os.remove(F'{directory}/modeling_flax_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_flax_{lowercase_model_name}.py' ) shutil.move( F'{directory}/{lowercase_model_name}.md' , F'{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md' , ) shutil.move( F'{directory}/tokenization_{lowercase_model_name}.py' , F'{model_dir}/tokenization_{lowercase_model_name}.py' , ) shutil.move( F'{directory}/tokenization_fast_{lowercase_model_name}.py' , F'{model_dir}/tokenization_{lowercase_model_name}_fast.py' , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(lowercase , lowercase , lowercase ): # Create temp file A_, A_ : Dict = mkstemp() A_ : Tuple = False with fdopen(lowercase , """w""" ) as new_file: with open(lowercase ) as old_file: for line in old_file: new_file.write(lowercase ) if line_to_copy_below in line: A_ : Optional[int] = True for line_to_copy in lines_to_copy: new_file.write(lowercase ) if not line_found: raise ValueError(F'Line {line_to_copy_below} was not found in file.' ) # Copy the file permissions from the old file to the new file copymode(lowercase , lowercase ) # Remove original file remove(lowercase ) # Move new file move(lowercase , lowercase ) def skip_units(lowercase ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(lowercase ): with open(lowercase ) as datafile: A_ : Union[str, Any] = [] A_ : List[Any] = False A_ : List[Any] = False for line in datafile: if "# To replace in: " in line and "##" not in line: A_ : Optional[int] = line.split("""\"""" )[1] A_ : str = skip_units(lowercase ) elif "# Below: " in line and "##" not in line: A_ : Any = line.split("""\"""" )[1] A_ : Any = skip_units(lowercase ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(lowercase , lowercase , lowercase ) A_ : Tuple = [] elif "# Replace with" in line and "##" not in line: A_ : Optional[int] = [] elif "##" not in line: lines_to_copy.append(lowercase ) remove(lowercase ) replace_in_files(F'{directory}/to_replace_{lowercase_model_name}.py' ) os.rmdir(lowercase )
135
'''simple docstring''' from typing import Dict from .base import GenericTensor, Pipeline class _lowerCAmelCase ( __UpperCAmelCase ): def _a (self , lowercase=None , lowercase=None , lowercase=None , **lowercase ): if tokenize_kwargs is None: A_ : Optional[Any] = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( """truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)""" ) A_ : str = truncation A_ : List[str] = tokenize_kwargs A_ : Dict = {} if return_tensors is not None: A_ : List[Any] = return_tensors return preprocess_params, {}, postprocess_params def _a (self , lowercase , **lowercase ): A_ : Optional[int] = self.framework A_ : str = self.tokenizer(lowercase , return_tensors=lowercase , **lowercase ) return model_inputs def _a (self , lowercase ): A_ : str = self.model(**lowercase ) return model_outputs def _a (self , lowercase , lowercase=False ): # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__(self , *lowercase , **lowercase ): return super().__call__(*lowercase , **lowercase )
135
1
import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor UpperCamelCase = logging.get_logger(__name__) class __UpperCAmelCase (lowerCamelCase_ ): def __init__( self: Tuple , *UpperCAmelCase_: List[str] , **UpperCAmelCase_: Any ): '''simple docstring''' warnings.warn( """The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DeiTImageProcessor instead.""" , __snake_case , ) super().__init__(*__snake_case , **__snake_case )
306
import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def __lowercase ( ): print('Making key files...' ) make_key_files('rsa' , 1_0_2_4 ) print('Key files generation successful.' ) def __lowercase ( __lowerCAmelCase : int ): print('Generating prime p...' ) a__ = rabinMiller.generate_large_prime(__lowerCAmelCase ) print('Generating prime q...' ) a__ = rabinMiller.generate_large_prime(__lowerCAmelCase ) a__ = p * q print('Generating e that is relatively prime to (p - 1) * (q - 1)...' ) while True: a__ = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(__lowerCAmelCase , (p - 1) * (q - 1) ) == 1: break print('Calculating d that is mod inverse of e...' ) a__ = cryptoMath.find_mod_inverse(__lowerCAmelCase , (p - 1) * (q - 1) ) a__ = (n, e) a__ = (n, d) return (public_key, private_key) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : int ): if os.path.exists(F'{name}_pubkey.txt' ) or os.path.exists(F'{name}_privkey.txt' ): print('\nWARNING:' ) print( F'"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n' 'Use a different name or delete these files and re-run this program.' ) sys.exit() a__ , a__ = generate_key(__lowerCAmelCase ) print(F'\nWriting public key to file {name}_pubkey.txt...' ) with open(F'{name}_pubkey.txt' , 'w' ) as out_file: out_file.write(F'{key_size},{public_key[0]},{public_key[1]}' ) print(F'Writing private key to file {name}_privkey.txt...' ) with open(F'{name}_privkey.txt' , 'w' ) as out_file: out_file.write(F'{key_size},{private_key[0]},{private_key[1]}' ) if __name__ == "__main__": main()
240
0
'''simple docstring''' import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed UpperCamelCase = { '''distilbert''': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), '''roberta''': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), '''bert''': (BertConfig, BertForMaskedLM, BertTokenizer), '''gpt2''': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def SCREAMING_SNAKE_CASE( __lowercase ) -> Any: assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> List[str]: if args.student_type == "roberta": A: Optional[int] = False elif args.student_type == "gpt2": A: List[Any] = False def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> List[Any]: if args.student_type == "roberta": A: Union[str, Any] = False def SCREAMING_SNAKE_CASE( ) -> Union[str, Any]: A: str = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=__lowercase , required=__lowercase , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=__lowercase , required=__lowercase , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=__lowercase , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=__lowercase , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=__lowercase , required=__lowercase , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=__lowercase , type=__lowercase , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=__lowercase , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=__lowercase , required=__lowercase , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=__lowercase , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=__lowercase , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=__lowercase , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=__lowercase , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=__lowercase , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=__lowercase , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.1_5 , type=__lowercase , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=__lowercase , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=__lowercase , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=__lowercase , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=__lowercase , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=__lowercase , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=__lowercase , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=__lowercase , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=__lowercase , default=5_0 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.0_5 , type=__lowercase , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=__lowercase , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5E-4 , type=__lowercase , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=__lowercase , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=__lowercase , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.0_2 , type=__lowercase , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=__lowercase , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=__lowercase , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=__lowercase , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=__lowercase , default=5_6 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=__lowercase , default=5_0_0 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=__lowercase , default=4_0_0_0 , help='''Checkpoint interval.''' ) A: List[str] = parser.parse_args() sanity_checks(__lowercase ) # ARGS # init_gpu_params(__lowercase ) set_seed(__lowercase ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite""" ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F"""Experiment will be dumped and logged in {args.dump_path}""" ) # SAVE PARAMS # logger.info(F"""Param: {args}""" ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(__lowercase ) , __lowercase , indent=4 ) git_log(args.dump_path ) A , A , A: Union[str, Any] = MODEL_CLASSES[args.student_type] A , A , A: int = MODEL_CLASSES[args.teacher_type] # TOKENIZER # A: Tuple = teacher_tokenizer_class.from_pretrained(args.teacher_name ) A: int = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): A: int = tokenizer.all_special_tokens.index(__lowercase ) A: Any = tokenizer.all_special_ids[idx] logger.info(F"""Special tokens {special_tok_ids}""" ) A: Tuple = special_tok_ids A: Optional[int] = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F"""Loading data from {args.data_file}""" ) with open(args.data_file , '''rb''' ) as fp: A: Any = pickle.load(__lowercase ) if args.mlm: logger.info(F"""Loading token counts from {args.token_counts} (already pre-computed)""" ) with open(args.token_counts , '''rb''' ) as fp: A: Optional[int] = pickle.load(__lowercase ) A: str = np.maximum(__lowercase , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): A: Any = 0.0 # do not predict special tokens A: Optional[Any] = torch.from_numpy(__lowercase ) else: A: Tuple = None A: Optional[int] = LmSeqsDataset(params=__lowercase , data=__lowercase ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(F"""Loading student config from {args.student_config}""" ) A: Tuple = student_config_class.from_pretrained(args.student_config ) A: Any = True if args.student_pretrained_weights is not None: logger.info(F"""Loading pretrained weights from {args.student_pretrained_weights}""" ) A: str = student_model_class.from_pretrained(args.student_pretrained_weights , config=__lowercase ) else: A: int = student_model_class(__lowercase ) if args.n_gpu > 0: student.to(F"""cuda:{args.local_rank}""" ) logger.info('''Student loaded.''' ) # TEACHER # A: List[Any] = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=__lowercase ) if args.n_gpu > 0: teacher.to(F"""cuda:{args.local_rank}""" ) logger.info(F"""Teacher loaded from {args.teacher_name}.""" ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(__lowercase , __lowercase ) if args.freeze_token_type_embds: freeze_token_type_embeddings(__lowercase , __lowercase ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() A: str = Distiller( params=__lowercase , dataset=__lowercase , token_probs=__lowercase , student=__lowercase , teacher=__lowercase ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
334
'''simple docstring''' def SCREAMING_SNAKE_CASE( __lowercase ) -> Tuple: A: Tuple = len(__lowercase ) for i in range(length - 1 ): A: Dict = i for k in range(i + 1 , __lowercase ): if collection[k] < collection[least]: A: List[str] = k if least != i: A , A: Tuple = (collection[i], collection[least]) return collection if __name__ == "__main__": UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(selection_sort(unsorted))
334
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase_ : Optional[Any] = { """configuration_tapas""": ["""TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TapasConfig"""], """tokenization_tapas""": ["""TapasTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : int = [ """TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST""", """TapasForMaskedLM""", """TapasForQuestionAnswering""", """TapasForSequenceClassification""", """TapasModel""", """TapasPreTrainedModel""", """load_tf_weights_in_tapas""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : int = [ """TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFTapasForMaskedLM""", """TFTapasForQuestionAnswering""", """TFTapasForSequenceClassification""", """TFTapasModel""", """TFTapasPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys UpperCAmelCase_ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
91
"""simple docstring""" import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if dst_width < 0 or dst_height < 0: raise ValueError('''Destination width/height should be > 0''' ) __a : Optional[int] = img __a : Any = img.shape[1] __a : Optional[int] = img.shape[0] __a : Tuple = dst_width __a : List[Any] = dst_height __a : Optional[int] = self.src_w / self.dst_w __a : Tuple = self.src_h / self.dst_h __a : Union[str, Any] = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 255 ) def _lowerCamelCase ( self ): for i in range(self.dst_h ): for j in range(self.dst_w ): __a : Optional[int] = self.img[self.get_y(_UpperCAmelCase )][self.get_x(_UpperCAmelCase )] def _lowerCamelCase ( self , _UpperCAmelCase ): return int(self.ratio_x * x ) def _lowerCamelCase ( self , _UpperCAmelCase ): return int(self.ratio_y * y ) if __name__ == "__main__": A , A = 800, 600 A = imread('''image_data/lena.jpg''', 1) A = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( F'Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}', n.output ) waitKey(0) destroyAllWindows()
160
0
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class lowerCamelCase (_snake_case ): '''simple docstring''' def __init__( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ) -> List[str]: super().__init__( _UpperCamelCase , split=_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase , keep_in_memory=_UpperCamelCase , streaming=_UpperCamelCase , num_proc=_UpperCamelCase , **_UpperCamelCase , ) UpperCAmelCase_ : List[Any] = field UpperCAmelCase_ : List[Any] = path_or_paths if isinstance(_UpperCamelCase , _UpperCamelCase ) else {self.split: path_or_paths} UpperCAmelCase_ : str = Json( cache_dir=_UpperCamelCase , data_files=_UpperCamelCase , features=_UpperCamelCase , field=_UpperCamelCase , **_UpperCamelCase , ) def __UpperCAmelCase ( self ) -> Optional[Any]: # Build iterable dataset if self.streaming: UpperCAmelCase_ : List[Any] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : int = None UpperCAmelCase_ : int = None self.builder.download_and_prepare( download_config=_UpperCamelCase , download_mode=_UpperCamelCase , verification_mode=_UpperCamelCase , base_path=_UpperCamelCase , num_proc=self.num_proc , ) UpperCAmelCase_ : Dict = self.builder.as_dataset( split=self.split , verification_mode=_UpperCamelCase , in_memory=self.keep_in_memory ) return dataset class lowerCamelCase : '''simple docstring''' def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ) -> Dict: if num_proc is not None and num_proc <= 0: raise ValueError(f"num_proc {num_proc} must be an integer > 0." ) UpperCAmelCase_ : Dict = dataset UpperCAmelCase_ : Optional[Any] = path_or_buf UpperCAmelCase_ : int = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE UpperCAmelCase_ : Optional[int] = num_proc UpperCAmelCase_ : List[Any] = 'utf-8' UpperCAmelCase_ : Any = to_json_kwargs def __UpperCAmelCase ( self ) -> int: UpperCAmelCase_ : int = self.to_json_kwargs.pop('path_or_buf' , _UpperCamelCase ) UpperCAmelCase_ : Tuple = self.to_json_kwargs.pop('orient' , 'records' ) UpperCAmelCase_ : List[str] = self.to_json_kwargs.pop('lines' , True if orient == 'records' else False ) UpperCAmelCase_ : Any = self.to_json_kwargs.pop('index' , False if orient in ['split', 'table'] else True ) UpperCAmelCase_ : Dict = self.to_json_kwargs.pop('compression' , _UpperCamelCase ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(f"`datasets` currently does not support {compression} compression" ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , 'wb' , compression=_UpperCamelCase ) as buffer: UpperCAmelCase_ : List[str] = self._write(file_obj=_UpperCamelCase , orient=_UpperCamelCase , lines=_UpperCamelCase , index=_UpperCamelCase , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( f"The compression parameter is not supported when writing to a buffer, but compression={compression}" ' was passed. Please provide a local path instead.' ) UpperCAmelCase_ : Optional[int] = self._write( file_obj=self.path_or_buf , orient=_UpperCamelCase , lines=_UpperCamelCase , index=_UpperCamelCase , **self.to_json_kwargs ) return written def __UpperCAmelCase ( self , _UpperCamelCase ) -> Optional[Any]: UpperCAmelCase_ : List[str] = args UpperCAmelCase_ : Tuple = query_table( table=self.dataset.data , key=slice(_UpperCamelCase , offset + self.batch_size ) , indices=self.dataset._indices , ) UpperCAmelCase_ : Tuple = batch.to_pandas().to_json( path_or_buf=_UpperCamelCase , orient=_UpperCamelCase , lines=_UpperCamelCase , index=_UpperCamelCase , **_UpperCamelCase ) if not json_str.endswith('\n' ): json_str += "\n" return json_str.encode(self.encoding ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase , ) -> int: UpperCAmelCase_ : Optional[Any] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating json from Arrow format' , ): UpperCAmelCase_ : Tuple = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(_UpperCamelCase ) else: UpperCAmelCase_ : str = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , _UpperCamelCase , _UpperCamelCase )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating json from Arrow format' , ): written += file_obj.write(_UpperCamelCase ) return written
370
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets __UpperCAmelCase = '\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' __UpperCAmelCase = '\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n' __UpperCAmelCase = '\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=["About 95 species are currently accepted ."]\n >>> predictions=["About 95 you now get in ."]\n >>> references=[["About 95 species are currently known ."]]\n >>> wiki_split = datasets.load_metric("wiki_split")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0}\n' def lowercase__ ( __snake_case : Optional[int] ): '''simple docstring''' def remove_articles(__snake_case : Tuple ): UpperCAmelCase_ : Optional[int] = re.compile(R'\b(a|an|the)\b' , re.UNICODE ) return re.sub(__snake_case , ' ' , __snake_case ) def white_space_fix(__snake_case : int ): return " ".join(text.split() ) def remove_punc(__snake_case : int ): UpperCAmelCase_ : Optional[Any] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__snake_case : List[str] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__snake_case ) ) ) ) def lowercase__ ( __snake_case : List[str] , __snake_case : List[Any] ): '''simple docstring''' return int(normalize_answer(__snake_case ) == normalize_answer(__snake_case ) ) def lowercase__ ( __snake_case : Optional[Any] , __snake_case : Tuple ): '''simple docstring''' UpperCAmelCase_ : Tuple = [any(compute_exact(__snake_case , __snake_case ) for ref in refs ) for pred, refs in zip(__snake_case , __snake_case )] return (sum(__snake_case ) / len(__snake_case )) * 100 def lowercase__ ( __snake_case : Optional[Any] , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : str = [rgram for rgrams in rgramslist for rgram in rgrams] UpperCAmelCase_ : str = Counter(__snake_case ) UpperCAmelCase_ : List[Any] = Counter(__snake_case ) UpperCAmelCase_ : int = Counter() for sgram, scount in sgramcounter.items(): UpperCAmelCase_ : Any = scount * numref UpperCAmelCase_ : List[Any] = Counter(__snake_case ) UpperCAmelCase_ : Dict = Counter() for cgram, ccount in cgramcounter.items(): UpperCAmelCase_ : int = ccount * numref # KEEP UpperCAmelCase_ : Optional[Any] = sgramcounter_rep & cgramcounter_rep UpperCAmelCase_ : Any = keepgramcounter_rep & rgramcounter UpperCAmelCase_ : Union[str, Any] = sgramcounter_rep & rgramcounter UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : List[Any] = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCAmelCase_ : Optional[Any] = 1 UpperCAmelCase_ : Optional[Any] = 1 if len(__snake_case ) > 0: UpperCAmelCase_ : List[str] = keeptmpscorea / len(__snake_case ) if len(__snake_case ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) UpperCAmelCase_ : List[Any] = keeptmpscorea / sum(keepgramcounterall_rep.values() ) UpperCAmelCase_ : List[Any] = 0 if keepscore_precision > 0 or keepscore_recall > 0: UpperCAmelCase_ : List[Any] = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION UpperCAmelCase_ : Optional[int] = sgramcounter_rep - cgramcounter_rep UpperCAmelCase_ : Dict = delgramcounter_rep - rgramcounter UpperCAmelCase_ : Optional[Any] = sgramcounter_rep - rgramcounter UpperCAmelCase_ : str = 0 UpperCAmelCase_ : str = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCAmelCase_ : List[Any] = 1 if len(__snake_case ) > 0: UpperCAmelCase_ : Dict = deltmpscorea / len(__snake_case ) # ADDITION UpperCAmelCase_ : Tuple = set(__snake_case ) - set(__snake_case ) UpperCAmelCase_ : Union[str, Any] = set(__snake_case ) & set(__snake_case ) UpperCAmelCase_ : Dict = set(__snake_case ) - set(__snake_case ) UpperCAmelCase_ : List[str] = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCAmelCase_ : List[str] = 1 UpperCAmelCase_ : Any = 1 if len(__snake_case ) > 0: UpperCAmelCase_ : Dict = addtmpscore / len(__snake_case ) if len(__snake_case ) > 0: UpperCAmelCase_ : Optional[int] = addtmpscore / len(__snake_case ) UpperCAmelCase_ : Optional[Any] = 0 if addscore_precision > 0 or addscore_recall > 0: UpperCAmelCase_ : List[str] = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def lowercase__ ( __snake_case : str , __snake_case : Any , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : int = len(__snake_case ) UpperCAmelCase_ : List[str] = ssent.split(' ' ) UpperCAmelCase_ : Union[str, Any] = csent.split(' ' ) UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : int = [] UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : Tuple = [] for rsent in rsents: UpperCAmelCase_ : List[Any] = rsent.split(' ' ) UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : str = [] ragramslist.append(__snake_case ) for i in range(0 , len(__snake_case ) - 1 ): if i < len(__snake_case ) - 1: UpperCAmelCase_ : Tuple = ragrams[i] + ' ' + ragrams[i + 1] ragrams.append(__snake_case ) if i < len(__snake_case ) - 2: UpperCAmelCase_ : List[str] = ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] ragrams.append(__snake_case ) if i < len(__snake_case ) - 3: UpperCAmelCase_ : Union[str, Any] = ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] + ' ' + ragrams[i + 3] ragrams.append(__snake_case ) ragramslist.append(__snake_case ) ragramslist.append(__snake_case ) ragramslist.append(__snake_case ) for i in range(0 , len(__snake_case ) - 1 ): if i < len(__snake_case ) - 1: UpperCAmelCase_ : str = sagrams[i] + ' ' + sagrams[i + 1] sagrams.append(__snake_case ) if i < len(__snake_case ) - 2: UpperCAmelCase_ : List[str] = sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] sagrams.append(__snake_case ) if i < len(__snake_case ) - 3: UpperCAmelCase_ : Any = sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] + ' ' + sagrams[i + 3] sagrams.append(__snake_case ) for i in range(0 , len(__snake_case ) - 1 ): if i < len(__snake_case ) - 1: UpperCAmelCase_ : Optional[int] = cagrams[i] + ' ' + cagrams[i + 1] cagrams.append(__snake_case ) if i < len(__snake_case ) - 2: UpperCAmelCase_ : Tuple = cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] cagrams.append(__snake_case ) if i < len(__snake_case ) - 3: UpperCAmelCase_ : Union[str, Any] = cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] + ' ' + cagrams[i + 3] cagrams.append(__snake_case ) ((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) : int = SARIngram(__snake_case , __snake_case , __snake_case , __snake_case ) ((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) : str = SARIngram(__snake_case , __snake_case , __snake_case , __snake_case ) ((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) : Tuple = SARIngram(__snake_case , __snake_case , __snake_case , __snake_case ) ((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) : int = SARIngram(__snake_case , __snake_case , __snake_case , __snake_case ) UpperCAmelCase_ : List[str] = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 UpperCAmelCase_ : Optional[Any] = sum([delascore, delascore, delascore, delascore] ) / 4 UpperCAmelCase_ : List[str] = sum([addascore, addascore, addascore, addascore] ) / 4 UpperCAmelCase_ : Dict = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def lowercase__ ( __snake_case : List[Any] , __snake_case : bool = True , __snake_case : str = "13a" , __snake_case : bool = True ): '''simple docstring''' if lowercase: UpperCAmelCase_ : Optional[Any] = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: UpperCAmelCase_ : Union[str, Any] = sacrebleu.metrics.bleu._get_tokenizer(__snake_case )()(__snake_case ) else: UpperCAmelCase_ : Union[str, Any] = sacrebleu.TOKENIZERS[tokenizer]()(__snake_case ) elif tokenizer == "moses": UpperCAmelCase_ : Optional[Any] = sacremoses.MosesTokenizer().tokenize(__snake_case , return_str=__snake_case , escape=__snake_case ) elif tokenizer == "penn": UpperCAmelCase_ : Dict = sacremoses.MosesTokenizer().penn_tokenize(__snake_case , return_str=__snake_case ) else: UpperCAmelCase_ : int = sentence if not return_str: UpperCAmelCase_ : Any = normalized_sent.split() return normalized_sent def lowercase__ ( __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : Dict ): '''simple docstring''' if not (len(__snake_case ) == len(__snake_case ) == len(__snake_case )): raise ValueError('Sources length must match predictions and references lengths.' ) UpperCAmelCase_ : Tuple = 0 for src, pred, refs in zip(__snake_case , __snake_case , __snake_case ): sari_score += SARIsent(normalize(__snake_case ) , normalize(__snake_case ) , [normalize(__snake_case ) for sent in refs] ) UpperCAmelCase_ : Any = sari_score / len(__snake_case ) return 100 * sari_score def lowercase__ ( __snake_case : int , __snake_case : Union[str, Any] , __snake_case : str="exp" , __snake_case : Any=None , __snake_case : Union[str, Any]=False , __snake_case : Union[str, Any]=False , __snake_case : List[str]=False , ): '''simple docstring''' UpperCAmelCase_ : int = len(references[0] ) if any(len(__snake_case ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) UpperCAmelCase_ : Dict = [[refs[i] for refs in references] for i in range(__snake_case )] UpperCAmelCase_ : str = sacrebleu.corpus_bleu( __snake_case , __snake_case , smooth_method=__snake_case , smooth_value=__snake_case , force=__snake_case , lowercase=__snake_case , use_effective_order=__snake_case , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase (datasets.Metric ): '''simple docstring''' def __UpperCAmelCase ( self ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=[ 'https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py', 'https://github.com/cocoxu/simplification/blob/master/SARI.py', 'https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py', 'https://github.com/mjpost/sacreBLEU', ] , reference_urls=[ 'https://www.aclweb.org/anthology/Q16-1029.pdf', 'https://github.com/mjpost/sacreBLEU', 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> str: UpperCAmelCase_ : List[Any] = {} result.update({'sari': compute_sari(sources=_UpperCamelCase , predictions=_UpperCamelCase , references=_UpperCamelCase )} ) result.update({'sacrebleu': compute_sacrebleu(predictions=_UpperCamelCase , references=_UpperCamelCase )} ) result.update({'exact': compute_em(predictions=_UpperCamelCase , references=_UpperCamelCase )} ) return result
145
0
'''simple docstring''' import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset A ={1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class _a ( nn.Module ): def __init__( self : int , lowercase : List[Any] ): '''simple docstring''' super().__init__() UpperCAmelCase = torchvision.models.resnetaaa(pretrained=snake_case__ ) UpperCAmelCase = list(model.children() )[:-2] UpperCAmelCase = nn.Sequential(*snake_case__ ) UpperCAmelCase = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def A ( self : Tuple , lowercase : str ): '''simple docstring''' UpperCAmelCase = self.pool(self.model(snake_case__ ) ) UpperCAmelCase = torch.flatten(snake_case__ , start_dim=2 ) UpperCAmelCase = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class _a ( UpperCAmelCase__ ): def __init__( self : Optional[Any] , lowercase : List[str] , lowercase : Dict , lowercase : Any , lowercase : Optional[int] , lowercase : List[str] ): '''simple docstring''' UpperCAmelCase = [json.loads(snake_case__ ) for l in open(snake_case__ )] UpperCAmelCase = os.path.dirname(snake_case__ ) UpperCAmelCase = tokenizer UpperCAmelCase = labels UpperCAmelCase = len(snake_case__ ) UpperCAmelCase = max_seq_length UpperCAmelCase = transforms def __len__( self : Tuple ): '''simple docstring''' return len(self.data ) def __getitem__( self : Union[str, Any] , lowercase : int ): '''simple docstring''' UpperCAmelCase = torch.LongTensor(self.tokenizer.encode(self.data[index]['''text'''] , add_special_tokens=snake_case__ ) ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = sentence[0], sentence[1:-1], sentence[-1] UpperCAmelCase = sentence[: self.max_seq_length] UpperCAmelCase = torch.zeros(self.n_classes ) UpperCAmelCase = 1 UpperCAmelCase = Image.open(os.path.join(self.data_dir , self.data[index]['''img'''] ) ).convert('''RGB''' ) UpperCAmelCase = self.transforms(snake_case__ ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = Counter() for row in self.data: label_freqs.update(row['''label'''] ) return label_freqs def snake_case_ (_a : str ): UpperCAmelCase = [len(row['''sentence'''] ) for row in batch] UpperCAmelCase , UpperCAmelCase = len(snake_case_ ), max(snake_case_ ) UpperCAmelCase = torch.zeros(snake_case_ , snake_case_ , dtype=torch.long ) UpperCAmelCase = torch.zeros(snake_case_ , snake_case_ , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(snake_case_ , snake_case_ ) ): UpperCAmelCase = input_row['''sentence'''] UpperCAmelCase = 1 UpperCAmelCase = torch.stack([row['''image'''] for row in batch] ) UpperCAmelCase = torch.stack([row['''label'''] for row in batch] ) UpperCAmelCase = torch.stack([row['''image_start_token'''] for row in batch] ) UpperCAmelCase = torch.stack([row['''image_end_token'''] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def snake_case_ (): return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def snake_case_ (): return transforms.Compose( [ transforms.Resize(2_5_6 ), transforms.CenterCrop(2_2_4 ), transforms.ToTensor(), transforms.Normalize( mean=[0.4677_7044, 0.4453_1429, 0.4066_1017] , std=[0.1222_1994, 0.1214_5835, 0.1438_0469] , ), ] )
34
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase ( UpperCAmelCase__ , unittest.TestCase ): snake_case_ : Any = CLIPTokenizer snake_case_ : Optional[Any] = CLIPTokenizerFast snake_case_ : Any = True snake_case_ : Union[str, Any] = {} snake_case_ : Optional[int] = False def UpperCamelCase ( self : List[str] ): """simple docstring""" super().setUp() # fmt: off _UpperCAmelCase = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on _UpperCAmelCase = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) _UpperCAmelCase = ["#version: 0.2", "l o", "lo w</w>", "e r</w>"] _UpperCAmelCase = {"unk_token": "<unk>"} _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(snake_case__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(snake_case__ ) ) def UpperCamelCase ( self : Any , **snake_case__ : int ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def UpperCamelCase ( self : int , **snake_case__ : Any ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **snake_case__ ) def UpperCamelCase ( self : int , snake_case__ : int ): """simple docstring""" _UpperCAmelCase = "lower newer" _UpperCAmelCase = "lower newer" return input_text, output_text def UpperCamelCase ( self : int ): """simple docstring""" _UpperCAmelCase = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _UpperCAmelCase = "lower newer" _UpperCAmelCase = ["lo", "w", "er</w>", "n", "e", "w", "er</w>"] _UpperCAmelCase = tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) _UpperCAmelCase = tokens + [tokenizer.unk_token] _UpperCAmelCase = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , snake_case__ ) @require_ftfy def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _UpperCAmelCase = self.tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) _UpperCAmelCase = "A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d." _UpperCAmelCase = tokenizer_s.tokenize(snake_case__ ) _UpperCAmelCase = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways _UpperCAmelCase = "xa\u0303y" + " " + "x\xe3y" _UpperCAmelCase = tokenizer_s.tokenize(snake_case__ ) _UpperCAmelCase = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) # Test that the tokenization is identical on unicode of space type _UpperCAmelCase = [ "\u0009", # (horizontal tab, '\t') "\u000B", # (vertical tab) "\u000C", # (form feed) "\u0020", # (space, ' ') "\u200E", # (left-to-right mark):w "\u200F", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: _UpperCAmelCase = tokenizer_s.tokenize(snake_case__ ) _UpperCAmelCase = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) # Test that the tokenization is identical on unicode of line break type _UpperCAmelCase = [ "\u000A", # (line feed, '\n') "\r\n", # (carriage return and line feed, '\r\n') "\u000D", # (carriage return, '\r') "\r", # (carriage return, '\r') "\u000D", # (carriage return, '\r') "\u2028", # (line separator) "\u2029", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: _UpperCAmelCase = tokenizer_s.tokenize(snake_case__ ) _UpperCAmelCase = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _UpperCAmelCase = "hello" # `hello` is a token in the vocabulary of `pretrained_name` _UpperCAmelCase = F"""{text_of_1_token} {text_of_1_token}""" _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( snake_case__ , use_fast=snake_case__ , ) _UpperCAmelCase = tokenizer_r(snake_case__ , return_offsets_mapping=snake_case__ , add_special_tokens=snake_case__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(snake_case__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(snake_case__ ) + 1, len(snake_case__ ) + 1 + len(snake_case__ )) , ) _UpperCAmelCase = F""" {text}""" _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( snake_case__ , use_fast=snake_case__ , ) _UpperCAmelCase = tokenizer_r(snake_case__ , return_offsets_mapping=snake_case__ , add_special_tokens=snake_case__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(snake_case__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(snake_case__ ) + 1, 1 + len(snake_case__ ) + 1 + len(snake_case__ )) , ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" with self.assertRaises(snake_case__ ) as context: self.rust_tokenizer_class.from_pretrained("robot-test/old-clip-tokenizer" ) self.assertTrue( context.exception.args[0].startswith( "The `backend_tokenizer` provided does not match the expected format." ) ) @require_ftfy def UpperCamelCase ( self : Dict ): """simple docstring""" super().test_tokenization_python_rust_equals() def UpperCamelCase ( self : str ): """simple docstring""" pass
133
0
"""simple docstring""" import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class lowerCAmelCase__ : def __init__( self : Any , snake_case__ : Union[str, Any] , snake_case__ : str=1_0_0 , snake_case__ : str=1_3 , snake_case__ : Optional[int]=3_0 , snake_case__ : List[Any]=2 , snake_case__ : Any=3 , snake_case__ : Union[str, Any]=True , snake_case__ : List[Any]=True , snake_case__ : Any=3_2 , snake_case__ : List[str]=4 , snake_case__ : Any=4 , snake_case__ : Dict=3_7 , snake_case__ : str="gelu" , snake_case__ : Union[str, Any]=0.1 , snake_case__ : int=0.1 , snake_case__ : List[Any]=1_0 , snake_case__ : Any=0.02 , snake_case__ : List[str]=3 , snake_case__ : Tuple=None , snake_case__ : Tuple=[0, 1, 2, 3] , ): '''simple docstring''' UpperCAmelCase__ : int = parent UpperCAmelCase__ : List[str] = 1_0_0 UpperCAmelCase__ : List[Any] = batch_size UpperCAmelCase__ : int = image_size UpperCAmelCase__ : List[Any] = patch_size UpperCAmelCase__ : List[Any] = num_channels UpperCAmelCase__ : Any = is_training UpperCAmelCase__ : str = use_labels UpperCAmelCase__ : Any = hidden_size UpperCAmelCase__ : Dict = num_hidden_layers UpperCAmelCase__ : int = num_attention_heads UpperCAmelCase__ : Tuple = intermediate_size UpperCAmelCase__ : Any = hidden_act UpperCAmelCase__ : Optional[int] = hidden_dropout_prob UpperCAmelCase__ : str = attention_probs_dropout_prob UpperCAmelCase__ : Optional[int] = type_sequence_label_size UpperCAmelCase__ : Any = initializer_range UpperCAmelCase__ : Any = scope UpperCAmelCase__ : Optional[Any] = out_indices UpperCAmelCase__ : int = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase__ : List[Any] = (image_size // patch_size) ** 2 UpperCAmelCase__ : Optional[int] = num_patches + 1 def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : str = None UpperCAmelCase__ : Optional[int] = None if self.use_labels: UpperCAmelCase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : Any = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase__ : Tuple = self.get_config() return config, pixel_values, labels, pixel_labels def __a ( self : int ): '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def __a ( self : int , snake_case__ : str , snake_case__ : str , snake_case__ : Dict , snake_case__ : List[str] ): '''simple docstring''' UpperCAmelCase__ : Dict = BeitModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Dict = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self : Any , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : Any ): '''simple docstring''' UpperCAmelCase__ : int = BeitForMaskedImageModeling(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : List[Any] = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def __a ( self : Optional[Any] , snake_case__ : Tuple , snake_case__ : Tuple , snake_case__ : str , snake_case__ : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.type_sequence_label_size UpperCAmelCase__ : Union[str, Any] = BeitForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Union[str, Any] = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase__ : Any = 1 UpperCAmelCase__ : List[Any] = BeitForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase__ : Optional[Any] = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __a ( self : Union[str, Any] , snake_case__ : int , snake_case__ : str , snake_case__ : Any , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.num_labels UpperCAmelCase__ : int = BeitForSemanticSegmentation(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : int = model(snake_case__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) UpperCAmelCase__ : Dict = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[str] = config_and_inputs UpperCAmelCase__ : Any = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ =( { '''feature-extraction''': BeitModel, '''image-classification''': BeitForImageClassification, '''image-segmentation''': BeitForSemanticSegmentation, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Dict = BeitModelTester(self ) UpperCAmelCase__ : List[str] = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=3_7 ) def __a ( self : List[str] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="BEiT does not use inputs_embeds" ) def __a ( self : List[Any] ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def __a ( self : List[str] ): '''simple docstring''' pass def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Dict = model_class(snake_case__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase__ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case__ , nn.Linear ) ) def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : int = model_class(snake_case__ ) UpperCAmelCase__ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : str = [*signature.parameters.keys()] UpperCAmelCase__ : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case__ ) def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*snake_case__ ) def __a ( self : List[Any] ): '''simple docstring''' if not self.model_tester.is_training: return UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : Optional[int] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(snake_case__ ), BeitForMaskedImageModeling]: continue UpperCAmelCase__ : Optional[Any] = model_class(snake_case__ ) model.to(snake_case__ ) model.train() UpperCAmelCase__ : Optional[int] = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) UpperCAmelCase__ : Tuple = model(**snake_case__ ).loss loss.backward() def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : List[str] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(snake_case__ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue UpperCAmelCase__ : List[Any] = model_class(snake_case__ ) model.gradient_checkpointing_enable() model.to(snake_case__ ) model.train() UpperCAmelCase__ : Dict = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) UpperCAmelCase__ : Optional[Any] = model(**snake_case__ ).loss loss.backward() def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : Union[str, Any] = _config_zero_init(snake_case__ ) for model_class in self.all_model_classes: UpperCAmelCase__ : int = model_class(config=snake_case__ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def __a ( self : Any ): '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Optional[Any] = BeitModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def SCREAMING_SNAKE_CASE__ ( )-> Optional[Any]: '''simple docstring''' UpperCAmelCase__ : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def __a ( self : Union[str, Any] ): '''simple docstring''' return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ).to(snake_case__ ) UpperCAmelCase__ : int = self.default_image_processor UpperCAmelCase__ : List[Any] = prepare_img() UpperCAmelCase__ : Dict = image_processor(images=snake_case__ , return_tensors="pt" ).pixel_values.to(snake_case__ ) # prepare bool_masked_pos UpperCAmelCase__ : Union[str, Any] = torch.ones((1, 1_9_6) , dtype=torch.bool ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(pixel_values=snake_case__ , bool_masked_pos=snake_case__ ) UpperCAmelCase__ : str = outputs.logits # verify the logits UpperCAmelCase__ : int = torch.Size((1, 1_9_6, 8_1_9_2) ) self.assertEqual(logits.shape , snake_case__ ) UpperCAmelCase__ : Any = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(snake_case__ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , snake_case__ , atol=1e-2 ) ) @slow def __a ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ).to(snake_case__ ) UpperCAmelCase__ : Tuple = self.default_image_processor UpperCAmelCase__ : Dict = prepare_img() UpperCAmelCase__ : Tuple = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ : Union[str, Any] = model(**snake_case__ ) UpperCAmelCase__ : Any = outputs.logits # verify the logits UpperCAmelCase__ : Optional[Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(logits.shape , snake_case__ ) UpperCAmelCase__ : Optional[Any] = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(snake_case__ ) self.assertTrue(torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 ) ) UpperCAmelCase__ : List[str] = 2_8_1 self.assertEqual(logits.argmax(-1 ).item() , snake_case__ ) @slow def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : int = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ).to( snake_case__ ) UpperCAmelCase__ : Tuple = self.default_image_processor UpperCAmelCase__ : Any = prepare_img() UpperCAmelCase__ : Union[str, Any] = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ : List[Any] = model(**snake_case__ ) UpperCAmelCase__ : int = outputs.logits # verify the logits UpperCAmelCase__ : int = torch.Size((1, 2_1_8_4_1) ) self.assertEqual(logits.shape , snake_case__ ) UpperCAmelCase__ : int = torch.tensor([1.6881, -0.2787, 0.5901] ).to(snake_case__ ) self.assertTrue(torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 ) ) UpperCAmelCase__ : Any = 2_3_9_6 self.assertEqual(logits.argmax(-1 ).item() , snake_case__ ) @slow def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) UpperCAmelCase__ : List[Any] = model.to(snake_case__ ) UpperCAmelCase__ : int = BeitImageProcessor(do_resize=snake_case__ , size=6_4_0 , do_center_crop=snake_case__ ) UpperCAmelCase__ : Any = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) UpperCAmelCase__ : List[Any] = Image.open(ds[0]["file"] ) UpperCAmelCase__ : str = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ : List[str] = model(**snake_case__ ) UpperCAmelCase__ : Dict = outputs.logits # verify the logits UpperCAmelCase__ : Any = torch.Size((1, 1_5_0, 1_6_0, 1_6_0) ) self.assertEqual(logits.shape , snake_case__ ) UpperCAmelCase__ : List[str] = version.parse(PIL.__version__ ) < version.parse("9.0.0" ) if is_pillow_less_than_a: UpperCAmelCase__ : Optional[Any] = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=snake_case__ , ) else: UpperCAmelCase__ : int = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=snake_case__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , snake_case__ , atol=1e-4 ) ) @slow def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : str = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) UpperCAmelCase__ : Any = model.to(snake_case__ ) UpperCAmelCase__ : Dict = BeitImageProcessor(do_resize=snake_case__ , size=6_4_0 , do_center_crop=snake_case__ ) UpperCAmelCase__ : Tuple = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) UpperCAmelCase__ : Optional[int] = Image.open(ds[0]["file"] ) UpperCAmelCase__ : Optional[int] = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(**snake_case__ ) UpperCAmelCase__ : int = outputs.logits.detach().cpu() UpperCAmelCase__ : str = image_processor.post_process_semantic_segmentation(outputs=snake_case__ , target_sizes=[(5_0_0, 3_0_0)] ) UpperCAmelCase__ : List[Any] = torch.Size((5_0_0, 3_0_0) ) self.assertEqual(segmentation[0].shape , snake_case__ ) UpperCAmelCase__ : Any = image_processor.post_process_semantic_segmentation(outputs=snake_case__ ) UpperCAmelCase__ : int = torch.Size((1_6_0, 1_6_0) ) self.assertEqual(segmentation[0].shape , snake_case__ )
298
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCAmelCase : Tuple = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = ["""MLukeTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys _lowerCAmelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
298
1
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass SCREAMING_SNAKE_CASE : Tuple = (3, 9, -11, 0, 7, 5, 1, -1) SCREAMING_SNAKE_CASE : Union[str, Any] = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class _lowerCamelCase: lowercase_ : int lowercase_ : Node | None class _lowerCamelCase: def __init__( self, lowerCamelCase) -> None: """simple docstring""" _lowercase : Node | None = None for i in sorted(lowerCamelCase, reverse=lowerCamelCase): _lowercase : Tuple = Node(lowerCamelCase, self.head) def __iter__( self) -> Iterator[int]: """simple docstring""" _lowercase : Union[str, Any] = self.head while node: yield node.data _lowercase : int = node.next_node def __len__( self) -> int: """simple docstring""" return sum(1 for _ in self) def __str__( self) -> str: """simple docstring""" return " -> ".join([str(lowerCamelCase) for node in self]) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> SortedLinkedList: return SortedLinkedList(list(lowerCamelCase_ ) + list(lowerCamelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : int = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
21
import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets lowerCAmelCase_ = datasets.logging.get_logger(__name__) lowerCAmelCase_ = '''\ @inproceedings{bleurt, title={BLEURT: Learning Robust Metrics for Text Generation}, author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh}, booktitle={ACL}, year={2020}, url={https://arxiv.org/abs/2004.04696} } ''' lowerCAmelCase_ = '''\ BLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018) and then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune it for your specific application (the latter is expected to perform better). See the project\'s README at https://github.com/google-research/bleurt#readme for more information. ''' lowerCAmelCase_ = ''' BLEURT score. Args: `predictions` (list of str): prediction/candidate sentences `references` (list of str): reference sentences `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None. Returns: \'scores\': List of scores. Examples: >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> bleurt = datasets.load_metric("bleurt") >>> results = bleurt.compute(predictions=predictions, references=references) >>> print([round(v, 2) for v in results["scores"]]) [1.03, 1.04] ''' lowerCAmelCase_ = { '''bleurt-tiny-128''': '''https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip''', '''bleurt-tiny-512''': '''https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip''', '''bleurt-base-128''': '''https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip''', '''bleurt-base-512''': '''https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip''', '''bleurt-large-128''': '''https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip''', '''bleurt-large-512''': '''https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip''', '''BLEURT-20-D3''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip''', '''BLEURT-20-D6''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip''', '''BLEURT-20-D12''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip''', '''BLEURT-20''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip''', } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/google-research/bleurt''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/google-research/bleurt'''] , reference_urls=['''https://github.com/google-research/bleurt''', '''https://arxiv.org/abs/2004.04696'''] , ) def lowerCamelCase (self , __magic_name__ ) -> List[Any]: '''simple docstring''' if self.config_name == "default": logger.warning( '''Using default BLEURT-Base checkpoint for sequence maximum length 128. ''' '''You can use a bigger model for better results with e.g.: datasets.load_metric(\'bleurt\', \'bleurt-large-512\').''' ) snake_case_ : Dict = '''bleurt-base-128''' if self.config_name.lower() in CHECKPOINT_URLS: snake_case_ : Optional[int] = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: snake_case_ : Union[str, Any] = self.config_name.upper() else: raise KeyError( F'''{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}''' ) # download the model checkpoint specified by self.config_name and set up the scorer snake_case_ : Any = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] ) snake_case_ : Dict = score.BleurtScorer(os.path.join(__magic_name__ , __magic_name__ ) ) def lowerCamelCase (self , __magic_name__ , __magic_name__ ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Dict = self.scorer.score(references=__magic_name__ , candidates=__magic_name__ ) return {"scores": scores}
279
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class UpperCamelCase ( A__ ): '''simple docstring''' lowercase : Any =42 lowercase : List[str] =42 lowercase : List[Any] =None class UpperCamelCase ( A__ , A__ ): '''simple docstring''' lowercase : List[Any] =2 @register_to_config def __init__( self , UpperCamelCase_ = 0.02 , UpperCamelCase_ = 100 , UpperCamelCase_ = 1.007 , UpperCamelCase_ = 80 , UpperCamelCase_ = 0.05 , UpperCamelCase_ = 50 , ): # standard deviation of the initial noise distribution lowercase_ :List[str] = sigma_max # setable values lowercase_ :Any = None lowercase_ :List[str] = None lowercase_ :Optional[int] = None # sigma(t_i) def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = None ): return sample def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = None ): lowercase_ :List[Any] = num_inference_steps lowercase_ :str = np.arange(0 , self.num_inference_steps )[::-1].copy() lowercase_ :Union[str, Any] = torch.from_numpy(__snake_case ).to(__snake_case ) lowercase_ :Union[str, Any] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] lowercase_ :Optional[Any] = torch.tensor(__snake_case , dtype=torch.floataa , device=__snake_case ) def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None ): if self.config.s_min <= sigma <= self.config.s_max: lowercase_ :List[str] = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: lowercase_ :List[str] = 0 # sample eps ~ N(0, S_noise^2 * I) lowercase_ :List[str] = self.config.s_noise * randn_tensor(sample.shape , generator=__snake_case ).to(sample.device ) lowercase_ :int = sigma + gamma * sigma lowercase_ :List[str] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = True , ): lowercase_ :Dict = sample_hat + sigma_hat * model_output lowercase_ :Dict = (sample_hat - pred_original_sample) / sigma_hat lowercase_ :Tuple = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=__snake_case , derivative=__snake_case , pred_original_sample=__snake_case ) def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = True , ): lowercase_ :Tuple = sample_prev + sigma_prev * model_output lowercase_ :Any = (sample_prev - pred_original_sample) / sigma_prev lowercase_ :Optional[int] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=__snake_case , derivative=__snake_case , pred_original_sample=__snake_case ) def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): raise NotImplementedError()
353
import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def UpperCamelCase ( _a , _a , _a ) -> Tuple: '''simple docstring''' if gpta_config_file == "": lowercase_ :int = GPTaConfig() else: lowercase_ :Union[str, Any] = GPTaConfig.from_json_file(_a ) lowercase_ :List[str] = GPTaModel(_a ) # Load weights from numpy load_tf_weights_in_gpta(_a , _a , _a ) # Save pytorch-model lowercase_ :Dict = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME lowercase_ :int = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(f"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(model.state_dict() , _a ) print(f"Save configuration file to {pytorch_config_dump_path}" ) with open(_a , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--gpt2_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--gpt2_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) SCREAMING_SNAKE_CASE : Tuple = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
252
0
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging a_ : Dict = logging.get_logger(__name__) a_ : int = {"""vocab_file""": """spiece.model"""} a_ : Optional[int] = { """vocab_file""": { """TsinghuaAI/CPM-Generate""": """https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model""", } } class snake_case ( lowercase ): """simple docstring""" def __init__( self , UpperCamelCase , UpperCamelCase=False , UpperCamelCase=True , UpperCamelCase=False , UpperCamelCase="<s>" , UpperCamelCase="</s>" , UpperCamelCase="<unk>" , UpperCamelCase="<sep>" , UpperCamelCase="<pad>" , UpperCamelCase="<cls>" , UpperCamelCase="<mask>" , UpperCamelCase=["<eop>", "<eod>"] , UpperCamelCase = None , **UpperCamelCase , ): """simple docstring""" lowerCamelCase_ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token lowerCamelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__A , remove_space=__A , keep_accents=__A , bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , pad_token=__A , cls_token=__A , mask_token=__A , additional_special_tokens=__A , sp_model_kwargs=self.sp_model_kwargs , **__A , ) lowerCamelCase_ = 3 lowerCamelCase_ = do_lower_case lowerCamelCase_ = remove_space lowerCamelCase_ = keep_accents lowerCamelCase_ = vocab_file lowerCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__A ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( "You need to install jieba to use CpmTokenizer or CpmTokenizerFast. " "See https://pypi.org/project/jieba/ for installation." ) lowerCamelCase_ = jieba lowerCamelCase_ = str.maketrans(" \n" , "\u2582\u2583" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def snake_case ( self ): """simple docstring""" return len(self.sp_model ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = {self.convert_ids_to_tokens(__A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" lowerCamelCase_ = self.__dict__.copy() lowerCamelCase_ = None return state def __setstate__( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowerCamelCase_ = {} lowerCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case ( self , UpperCamelCase ): """simple docstring""" if self.remove_space: lowerCamelCase_ = " ".join(inputs.strip().split() ) else: lowerCamelCase_ = inputs lowerCamelCase_ = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: lowerCamelCase_ = unicodedata.normalize("NFKD" , __A ) lowerCamelCase_ = "".join([c for c in outputs if not unicodedata.combining(__A )] ) if self.do_lower_case: lowerCamelCase_ = outputs.lower() return outputs def snake_case ( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = self.preprocess_text(__A ) lowerCamelCase_ = self.sp_model.encode(__A , out_type=__A ) lowerCamelCase_ = [] for piece in pieces: if len(__A ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): lowerCamelCase_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(__A , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowerCamelCase_ = cur_pieces[1:] else: lowerCamelCase_ = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__A ) else: new_pieces.append(__A ) return new_pieces def snake_case ( self , UpperCamelCase ): """simple docstring""" return self.sp_model.PieceToId(__A ) def snake_case ( self , UpperCamelCase ): """simple docstring""" return self.sp_model.IdToPiece(__A ) def snake_case ( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = "".join(__A ).replace(__A , " " ).strip() return out_string def snake_case ( self , UpperCamelCase , UpperCamelCase = None ): """simple docstring""" lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def snake_case ( self , UpperCamelCase , UpperCamelCase = None , UpperCamelCase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) if token_ids_a is not None: return ([0] * len(__A )) + [1] + ([0] * len(__A )) + [1, 1] return ([0] * len(__A )) + [1, 1] def snake_case ( self , UpperCamelCase , UpperCamelCase = None ): """simple docstring""" lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def snake_case ( self , UpperCamelCase , UpperCamelCase = None ): """simple docstring""" if not os.path.isdir(__A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase_ = os.path.join( __A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __A ) elif not os.path.isfile(self.vocab_file ): with open(__A , "wb" ) as fi: lowerCamelCase_ = self.sp_model.serialized_model_proto() fi.write(__A ) return (out_vocab_file,) def snake_case ( self , *UpperCamelCase , **UpperCamelCase ): """simple docstring""" lowerCamelCase_ = super()._decode(*__A , **__A ) lowerCamelCase_ = text.replace(" " , "" ).replace("\u2582" , " " ).replace("\u2583" , "\n" ) return text
55
import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' if "model" in orig_key: lowerCamelCase : Dict = orig_key.replace("model." , "" ) if "norm1" in orig_key: lowerCamelCase : Union[str, Any] = orig_key.replace("norm1" , "attention.output.LayerNorm" ) if "norm2" in orig_key: lowerCamelCase : Union[str, Any] = orig_key.replace("norm2" , "output.LayerNorm" ) if "norm" in orig_key: lowerCamelCase : Optional[Any] = orig_key.replace("norm" , "LayerNorm" ) if "transformer" in orig_key: lowerCamelCase : int = orig_key.split("." )[0].split("_" )[-1] lowerCamelCase : Dict = orig_key.replace(f"""transformer_{layer_num}""" , f"""encoder.layer.{layer_num}""" ) if "mha.attn" in orig_key: lowerCamelCase : List[str] = orig_key.replace("mha.attn" , "attention.self" ) if "mha" in orig_key: lowerCamelCase : List[Any] = orig_key.replace("mha" , "attention" ) if "W_q" in orig_key: lowerCamelCase : Optional[int] = orig_key.replace("W_q" , "self.query" ) if "W_k" in orig_key: lowerCamelCase : List[Any] = orig_key.replace("W_k" , "self.key" ) if "W_v" in orig_key: lowerCamelCase : Union[str, Any] = orig_key.replace("W_v" , "self.value" ) if "ff1" in orig_key: lowerCamelCase : Union[str, Any] = orig_key.replace("ff1" , "intermediate.dense" ) if "ff2" in orig_key: lowerCamelCase : Optional[int] = orig_key.replace("ff2" , "output.dense" ) if "ff" in orig_key: lowerCamelCase : Optional[int] = orig_key.replace("ff" , "output.dense" ) if "mlm_class" in orig_key: lowerCamelCase : Dict = orig_key.replace("mlm.mlm_class" , "cls.predictions.decoder" ) if "mlm" in orig_key: lowerCamelCase : List[Any] = orig_key.replace("mlm" , "cls.predictions.transform" ) if "cls" not in orig_key: lowerCamelCase : int = "yoso." + orig_key return orig_key def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' for key in orig_state_dict.copy().keys(): lowerCamelCase : List[str] = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ ) if ("pooler" in key) or ("sen_class" in key): continue else: lowerCamelCase : Dict = val lowerCamelCase : Dict = orig_state_dict["cls.predictions.decoder.bias"] lowerCamelCase : Dict = torch.arange(SCREAMING_SNAKE_CASE_ ).expand((1, -1) ) + 2 return orig_state_dict def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : List[Any] = torch.load(SCREAMING_SNAKE_CASE_ , map_location="cpu" )["model_state_dict"] lowerCamelCase : List[str] = YosoConfig.from_json_file(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Any = YosoForMaskedLM(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : List[Any] = convert_checkpoint_helper(config.max_position_embeddings , SCREAMING_SNAKE_CASE_ ) print(model.load_state_dict(SCREAMING_SNAKE_CASE_ ) ) model.eval() model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--pytorch_model_path''', default=None, type=str, required=True, help='''Path to YOSO pytorch checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The json file for YOSO model config.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _snake_case = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
283
0
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets UpperCAmelCase__ = "\\n@inproceedings{lin-2004-rouge,\n title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\",\n author = \"Lin, Chin-Yew\",\n booktitle = \"Text Summarization Branches Out\",\n month = jul,\n year = \"2004\",\n address = \"Barcelona, Spain\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W04-1013\",\n pages = \"74--81\",\n}\n" UpperCAmelCase__ = "\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n" UpperCAmelCase__ = "\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring,\n `\"rougeL\"`: Longest common subsequence based scoring.\n `\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric('rouge')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n ['rouge1', 'rouge2', 'rougeL', 'rougeLsum']\n >>> print(results[\"rouge1\"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results[\"rouge1\"].mid.fmeasure)\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): def _lowerCamelCase ( self : Union[str, Any]) -> int: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence'), 'references': datasets.Value('string' , id='sequence'), }) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def _lowerCamelCase ( self : Dict , A : Tuple , A : Any , A : List[str]=None , A : Union[str, Any]=True , A : str=False) -> List[str]: """simple docstring""" if rouge_types is None: _UpperCAmelCase = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] _UpperCAmelCase = rouge_scorer.RougeScorer(rouge_types=A , use_stemmer=A) if use_aggregator: _UpperCAmelCase = scoring.BootstrapAggregator() else: _UpperCAmelCase = [] for ref, pred in zip(A , A): _UpperCAmelCase = scorer.score(A , A) if use_aggregator: aggregator.add_scores(A) else: scores.append(A) if use_aggregator: _UpperCAmelCase = aggregator.aggregate() else: _UpperCAmelCase = {} for key in scores[0]: _UpperCAmelCase = [score[key] for score in scores] return result
365
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 6_5_0, '''eval_accuracy''': 0.6, '''eval_loss''': 0.9}, }, { '''framework''': '''tensorflow''', '''script''': '''run_tf.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 6_0_0, '''eval_accuracy''': 0.3, '''eval_loss''': 0.9}, }, ] ) class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : List[Any]) -> Any: """simple docstring""" if self.framework == "pytorch": subprocess.run( F"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding='utf-8' , check=A , ) assert hasattr(self , 'env') def _lowerCamelCase ( self : Any , A : Tuple=1) -> List[str]: """simple docstring""" return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"{self.env.base_job_name}-single" , instance_count=A , instance_type=self.instance_type , debugger_hook_config=A , hyperparameters={**self.env.hyperparameters, 'model_name_or_path': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version='py36' , ) def _lowerCamelCase ( self : Dict , A : int) -> str: """simple docstring""" TrainingJobAnalytics(A).export_csv(F"{self.env.test_path}/{job_name}_metrics.csv") def _lowerCamelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" _UpperCAmelCase = self.create_estimator() # run training estimator.fit() # result dataframe _UpperCAmelCase = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe() # extract kpis _UpperCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value']) _UpperCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value']) # get train time from SageMaker job, this includes starting, preprocessing, stopping _UpperCAmelCase = ( Session().describe_training_job(estimator.latest_training_job.name).get('TrainingTimeInSeconds' , 99_99_99) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy) assert all(t <= self.results['eval_loss'] for t in eval_loss) # dump tests result into json file to share in PR with open(F"{estimator.latest_training_job.name}.json" , 'w') as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , A)
290
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCAmelCase__ = { '''configuration_groupvit''': [ '''GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GroupViTConfig''', '''GroupViTOnnxConfig''', '''GroupViTTextConfig''', '''GroupViTVisionConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GroupViTModel''', '''GroupViTPreTrainedModel''', '''GroupViTTextModel''', '''GroupViTVisionModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFGroupViTModel''', '''TFGroupViTPreTrainedModel''', '''TFGroupViTTextModel''', '''TFGroupViTVisionModel''', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
108
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _A = { '''configuration_megatron_bert''': ['''MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegatronBertConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ '''MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegatronBertForCausalLM''', '''MegatronBertForMaskedLM''', '''MegatronBertForMultipleChoice''', '''MegatronBertForNextSentencePrediction''', '''MegatronBertForPreTraining''', '''MegatronBertForQuestionAnswering''', '''MegatronBertForSequenceClassification''', '''MegatronBertForTokenClassification''', '''MegatronBertModel''', '''MegatronBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
122
0
"""simple docstring""" import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def __lowercase ( _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: '''simple docstring''' return field(default_factory=lambda: default , metadata=_SCREAMING_SNAKE_CASE ) @dataclass class UpperCamelCase__ : '''simple docstring''' __snake_case : List[str] = list_field( default=[] , metadata={ "help": ( "Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version" " of all available models" ) } , ) __snake_case : List[int] = list_field( default=[8] , metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} ) __snake_case : List[int] = list_field( default=[8, 32, 128, 512] , metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"} , ) __snake_case : bool = field( default=lowerCAmelCase_ , metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."} , ) __snake_case : bool = field( default=lowerCAmelCase_ , metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."} , ) __snake_case : bool = field( default=lowerCAmelCase_ , metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} ) __snake_case : bool = field(default=lowerCAmelCase_ , metadata={"help": "Use FP16 to accelerate inference."} ) __snake_case : bool = field(default=lowerCAmelCase_ , metadata={"help": "Benchmark training of model"} ) __snake_case : bool = field(default=lowerCAmelCase_ , metadata={"help": "Verbose memory tracing"} ) __snake_case : bool = field( default=lowerCAmelCase_ , metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."} , ) __snake_case : bool = field( default=lowerCAmelCase_ , metadata={ "help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory" } , ) __snake_case : bool = field(default=lowerCAmelCase_ , metadata={"help": "Trace memory line by line"} ) __snake_case : bool = field(default=lowerCAmelCase_ , metadata={"help": "Save result to a CSV file"} ) __snake_case : bool = field(default=lowerCAmelCase_ , metadata={"help": "Save all print statements in a log file"} ) __snake_case : bool = field(default=lowerCAmelCase_ , metadata={"help": "Whether to print environment information"} ) __snake_case : bool = field( default=lowerCAmelCase_ , metadata={ "help": ( "Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use" " multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled" " for debugging / testing and on TPU." ) } , ) __snake_case : str = field( default=F"inference_time_{round(time() )}.csv" , metadata={"help": "CSV filename used if saving time results to csv."} , ) __snake_case : str = field( default=F"inference_memory_{round(time() )}.csv" , metadata={"help": "CSV filename used if saving memory results to csv."} , ) __snake_case : str = field( default=F"train_time_{round(time() )}.csv" , metadata={"help": "CSV filename used if saving time results to csv for training."} , ) __snake_case : str = field( default=F"train_memory_{round(time() )}.csv" , metadata={"help": "CSV filename used if saving memory results to csv for training."} , ) __snake_case : str = field( default=F"env_info_{round(time() )}.csv" , metadata={"help": "CSV filename used if saving environment information."} , ) __snake_case : str = field( default=F"log_{round(time() )}.csv" , metadata={"help": "Log filename used if print statements are saved in log."} , ) __snake_case : int = field(default=3 , metadata={"help": "Times an experiment will be run."} ) __snake_case : bool = field( default=lowerCAmelCase_ , metadata={ "help": ( "Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain" " model weights." ) } , ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Dict: '''simple docstring''' warnings.warn( F"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils""" """ are deprecated in general and it is advised to use external Benchmarking libraries """ """ to benchmark Transformer models.""" ,lowerCamelCase__ ,) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' return json.dumps(dataclasses.asdict(self ) ,indent=2 ) @property def SCREAMING_SNAKE_CASE__ ( self : str ) -> List[str]: '''simple docstring''' if len(self.models ) <= 0: raise ValueError( """Please make sure you provide at least one model name / model identifier, *e.g.* `--models""" """ bert-base-cased` or `args.models = ['bert-base-cased'].""" ) return self.models @property def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Dict: '''simple docstring''' if not self.multi_process: return False elif self.is_tpu: logger.info("""Multiprocessing is currently not possible on TPU.""" ) return False else: return True
371
import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : int = ComputeEnvironment.AMAZON_SAGEMAKER __snake_case : List[Any] = True __snake_case : Optional[int] = "ml.p3.2xlarge" __snake_case : List[str] = "accelerate_sagemaker_execution_role" __snake_case : Tuple = "hf-sm" __snake_case : Any = "us-east-1" __snake_case : Union[str, Any] = 1 __snake_case : Dict = "accelerate-sagemaker-1" __snake_case : Tuple = "1.6" __snake_case : List[str] = "4.4" __snake_case : str = "train.py" __snake_case : List[str] = [ "--model_name_or_path", "bert", "--do_train", "False", "--epochs", "3", "--learning_rate", "5e-5", "--max_steps", "50.5", ] __snake_case : Optional[int] = [ "--model_name_or_path", "bert", "--do_train", "--do_test", "False", "--do_predict", "--epochs", "3", "--learning_rate", "5e-5", "--max_steps", "50.5", ] class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args["""model_name_or_path"""] ,lowerCamelCase__ ) assert isinstance(converted_args["""do_train"""] ,lowerCamelCase__ ) assert isinstance(converted_args["""epochs"""] ,lowerCamelCase__ ) assert isinstance(converted_args["""learning_rate"""] ,lowerCamelCase__ ) assert isinstance(converted_args["""max_steps"""] ,lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
193
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch _a : Union[str, Any]= logging.get_logger(__name__) @dataclass class UpperCamelCase : def __init__(self : Tuple , _A : List[str]=False , _A : Dict=False , _A : str=6.0 , _A : int=None , _A : Any=False , _A : Dict=False , _A : str=None , _A : Optional[Any]="fp4" , _A : int=False , **_A : Tuple , ) -> List[str]: __snake_case : Union[str, Any] = load_in_abit __snake_case : Tuple = load_in_abit __snake_case : int = llm_inta_threshold __snake_case : Any = llm_inta_skip_modules __snake_case : int = llm_inta_enable_fpaa_cpu_offload __snake_case : List[Any] = llm_inta_has_fpaa_weight __snake_case : Optional[Any] = bnb_abit_quant_type __snake_case : Union[str, Any] = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: __snake_case : Optional[int] = torch.floataa elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): __snake_case : List[str] = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) elif isinstance(SCREAMING_SNAKE_CASE_ , torch.dtype): __snake_case : Union[str, Any] = bnb_abit_compute_dtype else: raise ValueError('bnb_4bit_compute_dtype must be a string or a torch.dtype') self.post_init() def _lowercase (self : Any) -> Any: if not isinstance(self.llm_inta_threshold , SCREAMING_SNAKE_CASE_): raise ValueError('llm_int8_threshold must be a float') if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , SCREAMING_SNAKE_CASE_): raise ValueError('llm_int8_skip_modules must be a list of strings') if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , SCREAMING_SNAKE_CASE_): raise ValueError('llm_int8_enable_fp32_cpu_offload must be a boolean') if not isinstance(self.llm_inta_has_fpaa_weight , SCREAMING_SNAKE_CASE_): raise ValueError('llm_int8_has_fp16_weight must be a boolean') if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype): raise ValueError('bnb_4bit_compute_dtype must be torch.dtype') if not isinstance(self.bnb_abit_quant_type , SCREAMING_SNAKE_CASE_): raise ValueError('bnb_4bit_quant_type must be a string') if not isinstance(self.bnb_abit_use_double_quant , SCREAMING_SNAKE_CASE_): raise ValueError('bnb_4bit_use_double_quant must be a boolean') if self.load_in_abit and not version.parse(importlib.metadata.version('bitsandbytes')) >= version.parse( '0.39.0'): raise ValueError( '4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version') def _lowercase (self : int) -> Optional[int]: return self.load_in_abit or self.load_in_abit def _lowercase (self : Union[str, Any]) -> List[str]: if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def _lowercase (cls : Tuple , _A : List[str] , _A : str , **_A : List[Any]) -> Any: __snake_case : Any = cls(**SCREAMING_SNAKE_CASE_) __snake_case : Union[str, Any] = [] for key, value in kwargs.items(): if hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) to_remove.append(SCREAMING_SNAKE_CASE_) for key in to_remove: kwargs.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) if return_unused_kwargs: return config, kwargs else: return config def _lowercase (self : Optional[int] , _A : Union[str, Any]) -> Union[str, Any]: with open(SCREAMING_SNAKE_CASE_ , 'w' , encoding='utf-8') as writer: __snake_case : List[str] = self.to_dict() __snake_case : List[Any] = json.dumps(SCREAMING_SNAKE_CASE_ , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_) + '\n' writer.write(SCREAMING_SNAKE_CASE_) def _lowercase (self : Optional[Any]) -> Optional[Any]: __snake_case : Any = copy.deepcopy(self.__dict__) __snake_case : Optional[int] = str(output['bnb_4bit_compute_dtype']).split('.')[1] return output def __repr__(self : Optional[int]) -> Optional[Any]: return f"{self.__class__.__name__} {self.to_json_string()}" def _lowercase (self : str , _A : Dict = True) -> Tuple: if use_diff is True: __snake_case : Dict = self.to_diff_dict() else: __snake_case : Any = self.to_dict() return json.dumps(SCREAMING_SNAKE_CASE_ , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_) + "\n" def _lowercase (self : Union[str, Any]) -> Union[str, Any]: __snake_case : Optional[int] = self.to_dict() # get the default config dict __snake_case : Any = BitsAndBytesConfig().to_dict() __snake_case : Union[str, Any] = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: __snake_case : List[Any] = value return serializable_config_dict
172
lowerCamelCase_ = frozenset( [ '''prompt''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', '''cross_attention_kwargs''', ] ) lowerCamelCase_ = frozenset(['''prompt''', '''negative_prompt''']) lowerCamelCase_ = frozenset([]) lowerCamelCase_ = frozenset(['''image''']) lowerCamelCase_ = frozenset( [ '''image''', '''height''', '''width''', '''guidance_scale''', ] ) lowerCamelCase_ = frozenset(['''image''']) lowerCamelCase_ = frozenset( [ '''prompt''', '''image''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', ] ) lowerCamelCase_ = frozenset(['''prompt''', '''image''', '''negative_prompt''']) lowerCamelCase_ = frozenset( [ # Text guided image variation with an image mask '''prompt''', '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', ] ) lowerCamelCase_ = frozenset(['''prompt''', '''image''', '''mask_image''', '''negative_prompt''']) lowerCamelCase_ = frozenset( [ # image variation with an image mask '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', ] ) lowerCamelCase_ = frozenset(['''image''', '''mask_image''']) lowerCamelCase_ = frozenset( [ '''example_image''', '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', ] ) lowerCamelCase_ = frozenset(['''example_image''', '''image''', '''mask_image''']) lowerCamelCase_ = frozenset(['''class_labels''']) lowerCamelCase_ = frozenset(['''class_labels''']) lowerCamelCase_ = frozenset(['''batch_size''']) lowerCamelCase_ = frozenset([]) lowerCamelCase_ = frozenset(['''batch_size''']) lowerCamelCase_ = frozenset([]) lowerCamelCase_ = frozenset( [ '''prompt''', '''audio_length_in_s''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', '''cross_attention_kwargs''', ] ) lowerCamelCase_ = frozenset(['''prompt''', '''negative_prompt''']) lowerCamelCase_ = frozenset(['''input_tokens''']) lowerCamelCase_ = frozenset(['''input_tokens'''])
244
0
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin _a : Tuple= random.Random() if is_torch_available(): import torch def __UpperCAmelCase ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=1.0 , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Optional[int]=None ) -> List[Any]: '''simple docstring''' if rng is None: __snake_case : List[Any] = global_rng __snake_case : Optional[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCamelCase ( unittest.TestCase ): def __init__(self : int , _A : Any , _A : int=7 , _A : int=4_00 , _A : Any=20_00 , _A : Tuple=1 , _A : Tuple=0.0 , _A : List[str]=1_60_00 , _A : Tuple=True , _A : Optional[int]=True , ) -> Tuple: __snake_case : Optional[Any] = parent __snake_case : Tuple = batch_size __snake_case : Optional[Any] = min_seq_length __snake_case : List[str] = max_seq_length __snake_case : int = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __snake_case : Union[str, Any] = feature_size __snake_case : Optional[Any] = padding_value __snake_case : Optional[int] = sampling_rate __snake_case : Tuple = return_attention_mask __snake_case : Any = do_normalize def _lowercase (self : List[Any]) -> Any: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _lowercase (self : Optional[Any] , _A : Any=False , _A : int=False) -> Union[str, Any]: def _flatten(_A : int): return list(itertools.chain(*_A)) if equal_length: __snake_case : str = floats_list((self.batch_size, self.max_seq_length)) else: # make sure that inputs increase in size __snake_case : Union[str, Any] = [ _flatten(floats_list((x, self.feature_size))) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff) ] if numpify: __snake_case : Any = [np.asarray(_A) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCamelCase ( lowercase , unittest.TestCase ): UpperCAmelCase : List[Any] = ASTFeatureExtractor def _lowercase (self : Optional[int]) -> Optional[int]: __snake_case : int = ASTFeatureExtractionTester(self) def _lowercase (self : Dict) -> Tuple: # Tests that all call wrap to encode_plus and batch_encode_plus __snake_case : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) # create three inputs of length 800, 1000, and 1200 __snake_case : Union[str, Any] = [floats_list((1, x))[0] for x in range(8_00 , 14_00 , 2_00)] __snake_case : List[str] = [np.asarray(_A) for speech_input in speech_inputs] # Test not batched input __snake_case : Union[str, Any] = feat_extract(speech_inputs[0] , return_tensors='np').input_values __snake_case : int = feat_extract(np_speech_inputs[0] , return_tensors='np').input_values self.assertTrue(np.allclose(_A , _A , atol=1E-3)) # Test batched __snake_case : Tuple = feat_extract(_A , padding=_A , return_tensors='np').input_values __snake_case : Union[str, Any] = feat_extract(_A , padding=_A , return_tensors='np').input_values for enc_seq_a, enc_seq_a in zip(_A , _A): self.assertTrue(np.allclose(_A , _A , atol=1E-3)) # Test 2-D numpy arrays are batched. __snake_case : Union[str, Any] = [floats_list((1, x))[0] for x in (8_00, 8_00, 8_00)] __snake_case : Dict = np.asarray(_A) __snake_case : Optional[int] = feat_extract(_A , return_tensors='np').input_values __snake_case : List[str] = feat_extract(_A , return_tensors='np').input_values for enc_seq_a, enc_seq_a in zip(_A , _A): self.assertTrue(np.allclose(_A , _A , atol=1E-3)) @require_torch def _lowercase (self : List[Any]) -> str: import torch __snake_case : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) __snake_case : str = np.random.rand(1_00).astype(np.floataa) __snake_case : Dict = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __snake_case : Optional[int] = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np') self.assertTrue(np_processed.input_values.dtype == np.floataa) __snake_case : Dict = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt') self.assertTrue(pt_processed.input_values.dtype == torch.floataa) def _lowercase (self : List[str] , _A : Dict) -> List[str]: from datasets import load_dataset __snake_case : Union[str, Any] = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation') # automatic decoding with librispeech __snake_case : Optional[Any] = ds.sort('id').select(range(_A))[:num_samples]['audio'] return [x["array"] for x in speech_samples] @require_torch def _lowercase (self : int) -> Dict: # fmt: off __snake_case : Tuple = torch.tensor( [-0.9_894, -1.2_776, -0.9_066, -1.2_776, -0.9_349, -1.2_609, -1.0_386, -1.2_776, -1.1_561, -1.2_776, -1.2_052, -1.2_723, -1.2_190, -1.2_132, -1.2_776, -1.1_133, -1.1_953, -1.1_343, -1.1_584, -1.2_203, -1.1_770, -1.2_474, -1.2_381, -1.1_936, -0.9_270, -0.8_317, -0.8_049, -0.7_706, -0.7_565, -0.7_869]) # fmt: on __snake_case : int = self._load_datasamples(1) __snake_case : Dict = ASTFeatureExtractor() __snake_case : Union[str, Any] = feature_extractor(_A , return_tensors='pt').input_values self.assertEquals(input_values.shape , (1, 10_24, 1_28)) self.assertTrue(torch.allclose(input_values[0, 0, :30] , _A , atol=1E-4))
95
"""simple docstring""" from __future__ import annotations import math def __UpperCAmelCase ( UpperCAmelCase_ : int ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCAmelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True _a : Any= [num for num in range(3, 100_001, 2) if not is_prime(num)] def __UpperCAmelCase ( UpperCAmelCase_ : int ) -> list[int]: '''simple docstring''' if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise ValueError('n must be an integer' ) if n <= 0: raise ValueError('n must be >= 0' ) __snake_case : int = [] for num in range(len(UpperCAmelCase_ ) ): __snake_case : List[str] = 0 while 2 * i * i <= odd_composites[num]: __snake_case : List[Any] = odd_composites[num] - 2 * i * i if is_prime(UpperCAmelCase_ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(UpperCAmelCase_ ) == n: return list_nums return [] def __UpperCAmelCase ( ) -> int: '''simple docstring''' return compute_nums(1 )[0] if __name__ == "__main__": print(f'''{solution() = }''')
95
1
"""simple docstring""" import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow __SCREAMING_SNAKE_CASE =False class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ,__UpperCamelCase=32 ) -> Tuple: '''simple docstring''' set_seed(0 ) lowercase_ : str = UNetaDModel(sample_size=_lowercase ,in_channels=3 ,out_channels=3 ) lowercase_ : Dict = torch.optim.SGD(model.parameters() ,lr=0.0001 ) return model, optimizer @slow def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : int = """cpu""" # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable lowercase_ : Optional[int] = DDPMScheduler( num_train_timesteps=1000 ,beta_start=0.0001 ,beta_end=0.02 ,beta_schedule='linear' ,clip_sample=_lowercase ,) lowercase_ : Dict = DDIMScheduler( num_train_timesteps=1000 ,beta_start=0.0001 ,beta_end=0.02 ,beta_schedule='linear' ,clip_sample=_lowercase ,) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) lowercase_ : Optional[Any] = [torch.randn((4, 3, 32, 32) ).clip(-1 ,1 ).to(_lowercase ) for _ in range(4 )] lowercase_ : Dict = [torch.randn((4, 3, 32, 32) ).to(_lowercase ) for _ in range(4 )] lowercase_ : Dict = [torch.randint(0 ,1000 ,(4,) ).long().to(_lowercase ) for _ in range(4 )] # train with a DDPM scheduler lowercase_ : Union[str, Any] = self.get_model_optimizer(resolution=32 ) model.train().to(_lowercase ) for i in range(4 ): optimizer.zero_grad() lowercase_ : Any = ddpm_scheduler.add_noise(clean_images[i] ,noise[i] ,timesteps[i] ) lowercase_ : List[Any] = model(_lowercase ,timesteps[i] ).sample lowercase_ : Optional[int] = torch.nn.functional.mse_loss(_lowercase ,noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM lowercase_ : Any = self.get_model_optimizer(resolution=32 ) model.train().to(_lowercase ) for i in range(4 ): optimizer.zero_grad() lowercase_ : Optional[Any] = ddim_scheduler.add_noise(clean_images[i] ,noise[i] ,timesteps[i] ) lowercase_ : Tuple = model(_lowercase ,timesteps[i] ).sample lowercase_ : List[Any] = torch.nn.functional.mse_loss(_lowercase ,noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(_lowercase ,_lowercase ,atol=1e-5 ) ) self.assertTrue(torch.allclose(_lowercase ,_lowercase ,atol=1e-5 ) )
213
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class A__(unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def UpperCamelCase__ ( self ) -> List[Any]: a_ , a_ : Any = FlaxControlNetModel.from_pretrained( """lllyasviel/sd-controlnet-canny""" , from_pt=_lowercase , dtype=jnp.bfloataa ) a_ , a_ : Any = FlaxStableDiffusionControlNetPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , controlnet=_lowercase , from_pt=_lowercase , dtype=jnp.bfloataa ) a_ : Union[str, Any] = controlnet_params a_ : int = """bird""" a_ : Tuple = jax.device_count() a_ : List[Any] = pipe.prepare_text_inputs([prompts] * num_samples ) a_ : List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png""" ) a_ : Optional[Any] = pipe.prepare_image_inputs([canny_image] * num_samples ) a_ : int = jax.random.PRNGKey(0 ) a_ : Union[str, Any] = jax.random.split(_lowercase , jax.device_count() ) a_ : Any = replicate(_lowercase ) a_ : Optional[int] = shard(_lowercase ) a_ : List[Any] = shard(_lowercase ) a_ : int = pipe( prompt_ids=_lowercase , image=_lowercase , params=_lowercase , prng_seed=_lowercase , num_inference_steps=50 , jit=_lowercase , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) a_ : Optional[Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) a_ : str = images[0, 253:256, 253:256, -1] a_ : Optional[int] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) a_ : List[Any] = jnp.array( [0.1_6_7_9_6_9, 0.1_1_6_6_9_9, 0.0_8_1_5_4_3, 0.1_5_4_2_9_7, 0.1_3_2_8_1_2, 0.1_0_8_8_8_7, 0.1_6_9_9_2_2, 0.1_6_9_9_2_2, 0.2_0_5_0_7_8] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def UpperCamelCase__ ( self ) -> str: a_ , a_ : str = FlaxControlNetModel.from_pretrained( """lllyasviel/sd-controlnet-openpose""" , from_pt=_lowercase , dtype=jnp.bfloataa ) a_ , a_ : Any = FlaxStableDiffusionControlNetPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , controlnet=_lowercase , from_pt=_lowercase , dtype=jnp.bfloataa ) a_ : Tuple = controlnet_params a_ : str = """Chef in the kitchen""" a_ : Optional[Any] = jax.device_count() a_ : Any = pipe.prepare_text_inputs([prompts] * num_samples ) a_ : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png""" ) a_ : Any = pipe.prepare_image_inputs([pose_image] * num_samples ) a_ : str = jax.random.PRNGKey(0 ) a_ : int = jax.random.split(_lowercase , jax.device_count() ) a_ : Optional[int] = replicate(_lowercase ) a_ : Tuple = shard(_lowercase ) a_ : List[Any] = shard(_lowercase ) a_ : str = pipe( prompt_ids=_lowercase , image=_lowercase , params=_lowercase , prng_seed=_lowercase , num_inference_steps=50 , jit=_lowercase , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) a_ : List[str] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) a_ : List[str] = images[0, 253:256, 253:256, -1] a_ : str = jnp.asarray(jax.device_get(image_slice.flatten() ) ) a_ : Optional[int] = jnp.array( [[0.2_7_1_4_8_4, 0.2_6_1_7_1_9, 0.2_7_5_3_9_1, 0.2_7_7_3_4_4, 0.2_7_9_2_9_7, 0.2_9_1_0_1_6, 0.2_9_4_9_2_2, 0.3_0_2_7_3_4, 0.3_0_2_7_3_4]] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
248
0
"""simple docstring""" __SCREAMING_SNAKE_CASE : Dict = [ 'VerificationMode', 'Version', 'disable_progress_bar', 'enable_progress_bar', 'is_progress_bar_enabled', 'experimental', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
370
"""simple docstring""" import math class __A : '''simple docstring''' def __init__( self : List[str] , UpperCAmelCase_ : Tuple=0 ) ->Optional[int]: # a graph with Node 0,1,...,N-1 """simple docstring""" snake_case_ = n snake_case_ = [ [math.inf for j in range(0 , UpperCAmelCase_ )] for i in range(0 , UpperCAmelCase_ ) ] # adjacency matrix for weight snake_case_ = [ [math.inf for j in range(0 , UpperCAmelCase_ )] for i in range(0 , UpperCAmelCase_ ) ] # dp[i][j] stores minimum distance from i to j def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ) ->Optional[int]: """simple docstring""" snake_case_ = w def lowerCAmelCase ( self : Optional[int] ) ->Any: """simple docstring""" for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): snake_case_ = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] ) ->Union[str, Any]: """simple docstring""" return self.dp[u][v] if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Optional[int] = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
233
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor A : int = logging.get_logger(__name__) class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self , *__a , **__a ): warnings.warn( "The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use FlavaImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
57
"""simple docstring""" import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class a ( a_ ): UpperCAmelCase_ : BigBirdConfig UpperCAmelCase_ : jnp.dtype =jnp.floataa UpperCAmelCase_ : bool =True def UpperCamelCase_ ( self ): super().setup() lowercase = nn.Dense(5 , dtype=self.dtype ) def __call__( self , *_lowerCamelCase , **_lowerCamelCase ): lowercase = super().__call__(*_lowerCamelCase , **_lowerCamelCase ) lowercase = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class a ( a_ ): UpperCAmelCase_ : str =FlaxBigBirdForNaturalQuestionsModule def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[int] , __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : Tuple ): '''simple docstring''' def cross_entropy(__snake_case : Dict , __snake_case : str , __snake_case : Any=None ): lowercase = logits.shape[-1] lowercase = (labels[..., None] == jnp.arange(__snake_case )[None]).astype('f4' ) lowercase = jax.nn.log_softmax(__snake_case , axis=-1 ) lowercase = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: lowercase = reduction(__snake_case ) return loss lowercase = partial(__snake_case , reduction=jnp.mean ) lowercase = cross_entropy(__snake_case , __snake_case ) lowercase = cross_entropy(__snake_case , __snake_case ) lowercase = cross_entropy(__snake_case , __snake_case ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class a : UpperCAmelCase_ : str ="google/bigbird-roberta-base" UpperCAmelCase_ : int =3000 UpperCAmelCase_ : int =1_0500 UpperCAmelCase_ : int =128 UpperCAmelCase_ : int =3 UpperCAmelCase_ : int =1 UpperCAmelCase_ : int =5 # tx_args UpperCAmelCase_ : float =3e-5 UpperCAmelCase_ : float =0.0 UpperCAmelCase_ : int =2_0000 UpperCAmelCase_ : float =0.00_95 UpperCAmelCase_ : str ="bigbird-roberta-natural-questions" UpperCAmelCase_ : str ="training-expt" UpperCAmelCase_ : str ="data/nq-training.jsonl" UpperCAmelCase_ : str ="data/nq-validation.jsonl" def UpperCamelCase_ ( self ): os.makedirs(self.base_dir , exist_ok=_lowerCamelCase ) lowercase = os.path.join(self.base_dir , self.save_dir ) lowercase = self.batch_size_per_device * jax.device_count() @dataclass class a : UpperCAmelCase_ : int UpperCAmelCase_ : int =4096 # no dynamic padding on TPUs def __call__( self , _lowerCamelCase ): lowercase = self.collate_fn(_lowerCamelCase ) lowercase = jax.tree_util.tree_map(_lowerCamelCase , _lowerCamelCase ) return batch def UpperCamelCase_ ( self , _lowerCamelCase ): lowercase , lowercase = self.fetch_inputs(features['input_ids'] ) lowercase = { 'input_ids': jnp.array(_lowerCamelCase , dtype=jnp.intaa ), 'attention_mask': jnp.array(_lowerCamelCase , dtype=jnp.intaa ), 'start_labels': jnp.array(features['start_token'] , dtype=jnp.intaa ), 'end_labels': jnp.array(features['end_token'] , dtype=jnp.intaa ), 'pooled_labels': jnp.array(features['category'] , dtype=jnp.intaa ), } return batch def UpperCamelCase_ ( self , _lowerCamelCase ): lowercase = [self._fetch_inputs(_lowerCamelCase ) for ids in input_ids] return zip(*_lowerCamelCase ) def UpperCamelCase_ ( self , _lowerCamelCase ): lowercase = [1 for _ in range(len(_lowerCamelCase ) )] while len(_lowerCamelCase ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def _SCREAMING_SNAKE_CASE ( __snake_case : Any , __snake_case : Tuple , __snake_case : Optional[Any]=None ): '''simple docstring''' if seed is not None: lowercase = dataset.shuffle(seed=__snake_case ) for i in range(len(__snake_case ) // batch_size ): lowercase = dataset[i * batch_size : (i + 1) * batch_size] yield dict(__snake_case ) @partial(jax.pmap , axis_name='batch' ) def _SCREAMING_SNAKE_CASE ( __snake_case : Dict , __snake_case : List[Any] , **__snake_case : List[Any] ): '''simple docstring''' def loss_fn(__snake_case : str ): lowercase = model_inputs.pop('start_labels' ) lowercase = model_inputs.pop('end_labels' ) lowercase = model_inputs.pop('pooled_labels' ) lowercase = state.apply_fn(**__snake_case , params=__snake_case , dropout_rng=__snake_case , train=__snake_case ) lowercase , lowercase , lowercase = outputs return state.loss_fn( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) lowercase , lowercase = jax.random.split(__snake_case ) lowercase = jax.value_and_grad(__snake_case ) lowercase , lowercase = grad_fn(state.params ) lowercase = jax.lax.pmean({'loss': loss} , axis_name='batch' ) lowercase = jax.lax.pmean(__snake_case , 'batch' ) lowercase = state.apply_gradients(grads=__snake_case ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name='batch' ) def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[int] , **__snake_case : Dict ): '''simple docstring''' lowercase = model_inputs.pop('start_labels' ) lowercase = model_inputs.pop('end_labels' ) lowercase = model_inputs.pop('pooled_labels' ) lowercase = state.apply_fn(**__snake_case , params=state.params , train=__snake_case ) lowercase , lowercase , lowercase = outputs lowercase = state.loss_fn(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) lowercase = jax.lax.pmean({'loss': loss} , axis_name='batch' ) return metrics class a ( train_state.TrainState ): UpperCAmelCase_ : Callable =struct.field(pytree_node=a_ ) @dataclass class a : UpperCAmelCase_ : Args UpperCAmelCase_ : Callable UpperCAmelCase_ : Callable UpperCAmelCase_ : Callable UpperCAmelCase_ : Callable UpperCAmelCase_ : wandb UpperCAmelCase_ : Callable =None def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): lowercase = model.params lowercase = TrainState.create( apply_fn=model.__call__ , params=_lowerCamelCase , tx=_lowerCamelCase , loss_fn=_lowerCamelCase , ) if ckpt_dir is not None: lowercase , lowercase , lowercase , lowercase , lowercase = restore_checkpoint(_lowerCamelCase , _lowerCamelCase ) lowercase = { 'lr': args.lr, 'init_lr': args.init_lr, 'warmup_steps': args.warmup_steps, 'num_train_steps': num_train_steps, 'weight_decay': args.weight_decay, } lowercase , lowercase = build_tx(**_lowerCamelCase ) lowercase = train_state.TrainState( step=_lowerCamelCase , apply_fn=model.__call__ , params=_lowerCamelCase , tx=_lowerCamelCase , opt_state=_lowerCamelCase , ) lowercase = args lowercase = data_collator lowercase = lr lowercase = params lowercase = jax_utils.replicate(_lowerCamelCase ) return state def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowercase = self.args lowercase = len(_lowerCamelCase ) // args.batch_size lowercase = jax.random.PRNGKey(0 ) lowercase = jax.random.split(_lowerCamelCase , jax.device_count() ) for epoch in range(args.max_epochs ): lowercase = jnp.array(0 , dtype=jnp.floataa ) lowercase = get_batched_dataset(_lowerCamelCase , args.batch_size , seed=_lowerCamelCase ) lowercase = 0 for batch in tqdm(_lowerCamelCase , total=_lowerCamelCase , desc=F'Running EPOCH-{epoch}' ): lowercase = self.data_collator(_lowerCamelCase ) lowercase , lowercase , lowercase = self.train_step_fn(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) running_loss += jax_utils.unreplicate(metrics['loss'] ) i += 1 if i % args.logging_steps == 0: lowercase = jax_utils.unreplicate(state.step ) lowercase = running_loss.item() / i lowercase = self.scheduler_fn(state_step - 1 ) lowercase = self.evaluate(_lowerCamelCase , _lowerCamelCase ) lowercase = { 'step': state_step.item(), 'eval_loss': eval_loss.item(), 'tr_loss': tr_loss, 'lr': lr.item(), } tqdm.write(str(_lowerCamelCase ) ) self.logger.log(_lowerCamelCase , commit=_lowerCamelCase ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F'-e{epoch}-s{i}' , state=_lowerCamelCase ) def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase ): lowercase = get_batched_dataset(_lowerCamelCase , self.args.batch_size ) lowercase = len(_lowerCamelCase ) // self.args.batch_size lowercase = jnp.array(0 , dtype=jnp.floataa ) lowercase = 0 for batch in tqdm(_lowerCamelCase , total=_lowerCamelCase , desc='Evaluating ... ' ): lowercase = self.data_collator(_lowerCamelCase ) lowercase = self.val_step_fn(_lowerCamelCase , **_lowerCamelCase ) running_loss += jax_utils.unreplicate(metrics['loss'] ) i += 1 return running_loss / i def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase ): lowercase = jax_utils.unreplicate(_lowerCamelCase ) print(F'SAVING CHECKPOINT IN {save_dir}' , end=' ... ' ) self.model_save_fn(_lowerCamelCase , params=state.params ) with open(os.path.join(_lowerCamelCase , 'opt_state.msgpack' ) , 'wb' ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(_lowerCamelCase , 'args.joblib' ) ) joblib.dump(self.data_collator , os.path.join(_lowerCamelCase , 'data_collator.joblib' ) ) with open(os.path.join(_lowerCamelCase , 'training_state.json' ) , 'w' ) as f: json.dump({'step': state.step.item()} , _lowerCamelCase ) print('DONE' ) def _SCREAMING_SNAKE_CASE ( __snake_case : int , __snake_case : Tuple ): '''simple docstring''' print(f'RESTORING CHECKPOINT FROM {save_dir}' , end=' ... ' ) with open(os.path.join(__snake_case , 'flax_model.msgpack' ) , 'rb' ) as f: lowercase = from_bytes(state.params , f.read() ) with open(os.path.join(__snake_case , 'opt_state.msgpack' ) , 'rb' ) as f: lowercase = from_bytes(state.opt_state , f.read() ) lowercase = joblib.load(os.path.join(__snake_case , 'args.joblib' ) ) lowercase = joblib.load(os.path.join(__snake_case , 'data_collator.joblib' ) ) with open(os.path.join(__snake_case , 'training_state.json' ) , 'r' ) as f: lowercase = json.load(__snake_case ) lowercase = training_state['step'] print('DONE' ) return params, opt_state, step, args, data_collator def _SCREAMING_SNAKE_CASE ( __snake_case : int , __snake_case : str , __snake_case : Any , __snake_case : Any ): '''simple docstring''' lowercase = num_train_steps - warmup_steps lowercase = optax.linear_schedule(init_value=__snake_case , end_value=__snake_case , transition_steps=__snake_case ) lowercase = optax.linear_schedule(init_value=__snake_case , end_value=1e-7 , transition_steps=__snake_case ) lowercase = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def _SCREAMING_SNAKE_CASE ( __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : str , __snake_case : Optional[int] ): '''simple docstring''' def weight_decay_mask(__snake_case : Tuple ): lowercase = traverse_util.flatten_dict(__snake_case ) lowercase = {k: (v[-1] != 'bias' and v[-2:] != ('LayerNorm', 'scale')) for k, v in params.items()} return traverse_util.unflatten_dict(__snake_case ) lowercase = scheduler_fn(__snake_case , __snake_case , __snake_case , __snake_case ) lowercase = optax.adamw(learning_rate=__snake_case , weight_decay=__snake_case , mask=__snake_case ) return tx, lr
220
0
'''simple docstring''' from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __UpperCAmelCase ( a_: str ): _UpperCAmelCase , _UpperCAmelCase : Dict = analyze_text(lowercase_ ) _UpperCAmelCase : List[str] = list(" " + ascii_lowercase ) # what is our total sum of probabilities. _UpperCAmelCase : List[Any] = sum(single_char_strings.values() ) # one length string _UpperCAmelCase : List[str] = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: _UpperCAmelCase : Union[str, Any] = single_char_strings[ch] _UpperCAmelCase : List[Any] = my_str / all_sum my_fir_sum += prob * math.loga(lowercase_ ) # entropy formula. # print entropy print(f"""{round(-1 * my_fir_sum ):.1f}""" ) # two len string _UpperCAmelCase : Optional[Any] = sum(two_char_strings.values() ) _UpperCAmelCase : Dict = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: _UpperCAmelCase : Optional[int] = cha + cha if sequence in two_char_strings: _UpperCAmelCase : List[Any] = two_char_strings[sequence] _UpperCAmelCase : List[str] = int(lowercase_ ) / all_sum my_sec_sum += prob * math.loga(lowercase_ ) # print second entropy print(f"""{round(-1 * my_sec_sum ):.1f}""" ) # print the difference between them print(f"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" ) def __UpperCAmelCase ( a_: str ): _UpperCAmelCase : Dict = Counter() # type: ignore _UpperCAmelCase : Optional[Any] = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0, len(lowercase_ ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __UpperCAmelCase ( ): import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
356
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __a = { 'configuration_layoutlmv2': ['LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv2Config'], 'processing_layoutlmv2': ['LayoutLMv2Processor'], 'tokenization_layoutlmv2': ['LayoutLMv2Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['LayoutLMv2TokenizerFast'] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['LayoutLMv2FeatureExtractor'] __a = ['LayoutLMv2ImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv2ForQuestionAnswering', 'LayoutLMv2ForSequenceClassification', 'LayoutLMv2ForTokenClassification', 'LayoutLMv2Layer', 'LayoutLMv2Model', 'LayoutLMv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
17
0