code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
"""simple docstring"""
import itertools
import math
def __lowerCAmelCase ( lowercase : int ) -> bool:
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(lowercase ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def __lowerCAmelCase ( ) -> Optional[int]:
"""simple docstring"""
snake_case : Union[str, Any] = 2
while True:
if is_prime(lowercase ):
yield num
num += 1
def __lowerCAmelCase ( lowercase : int = 1_0001 ) -> int:
"""simple docstring"""
return next(itertools.islice(prime_generator() , nth - 1 , lowercase ) )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 203 |
"""simple docstring"""
def __lowerCAmelCase ( ) -> Union[str, Any]:
"""simple docstring"""
snake_case : Dict = []
snake_case : List[Any] = 1
while len(lowercase ) < 1e6:
constant.append(str(lowercase ) )
i += 1
snake_case : Tuple = "".join(lowercase )
return (
int(constant[0] )
* int(constant[9] )
* int(constant[99] )
* int(constant[999] )
* int(constant[9999] )
* int(constant[9_9999] )
* int(constant[99_9999] )
)
if __name__ == "__main__":
print(solution())
| 203 | 1 |
from __future__ import annotations
from collections.abc import Iterator
from typing import Generic, TypeVar
_A = TypeVar('''T''')
class A ( Generic[T] ):
def __init__( self, UpperCamelCase__ ):
"""simple docstring"""
lowerCAmelCase_ = data
lowerCAmelCase_ = None
def __str__( self ):
"""simple docstring"""
return f"{self.data}"
class A ( Generic[T] ):
def __init__( self ):
"""simple docstring"""
lowerCAmelCase_ = None
def __iter__( self ):
"""simple docstring"""
lowerCAmelCase_ = self.top
while node:
yield node.data
lowerCAmelCase_ = node.next
def __str__( self ):
"""simple docstring"""
return "->".join([str(UpperCamelCase__ ) for item in self] )
def __len__( self ):
"""simple docstring"""
return len(tuple(iter(self ) ) )
def SCREAMING_SNAKE_CASE__ ( self ):
"""simple docstring"""
return self.top is None
def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ):
"""simple docstring"""
lowerCAmelCase_ = Node(UpperCamelCase__ )
if not self.is_empty():
lowerCAmelCase_ = self.top
lowerCAmelCase_ = node
def SCREAMING_SNAKE_CASE__ ( self ):
"""simple docstring"""
if self.is_empty():
raise IndexError('''pop from empty stack''' )
assert isinstance(self.top, UpperCamelCase__ )
lowerCAmelCase_ = self.top
lowerCAmelCase_ = self.top.next
return pop_node.data
def SCREAMING_SNAKE_CASE__ ( self ):
"""simple docstring"""
if self.is_empty():
raise IndexError('''peek from empty stack''' )
assert self.top is not None
return self.top.data
def SCREAMING_SNAKE_CASE__ ( self ):
"""simple docstring"""
lowerCAmelCase_ = None
if __name__ == "__main__":
from doctest import testmod
testmod()
| 370 |
import pprint
import requests
_A = '''https://zenquotes.io/api'''
def __UpperCamelCase ( ):
return requests.get(API_ENDPOINT_URL + '''/today''' ).json()
def __UpperCamelCase ( ):
return requests.get(API_ENDPOINT_URL + '''/random''' ).json()
if __name__ == "__main__":
_A = random_quotes()
pprint.pprint(response)
| 167 | 0 |
def A_ ( a ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : int = current_set.copy()
for row_index, row in enumerate(a ):
SCREAMING_SNAKE_CASE_ : List[str] = row[0]
for column_index, column in enumerate(a ):
if magnitude == 0:
SCREAMING_SNAKE_CASE_ : Tuple = column
continue
SCREAMING_SNAKE_CASE_ : List[Any] = column / magnitude
# Subtract to cancel term
SCREAMING_SNAKE_CASE_ : Tuple = current_set[0]
SCREAMING_SNAKE_CASE_ : Any = [first_row]
SCREAMING_SNAKE_CASE_ : str = current_set[1::]
for row in current_set:
SCREAMING_SNAKE_CASE_ : int = []
# If first term is 0, it is already in form we want, so we preserve it
if row[0] == 0:
final_set.append(a )
continue
for column_index in range(len(a ) ):
temp_row.append(first_row[column_index] - row[column_index] )
final_set.append(a )
# Create next recursion iteration set
if len(final_set[0] ) != 3:
SCREAMING_SNAKE_CASE_ : List[str] = final_set[0]
SCREAMING_SNAKE_CASE_ : List[Any] = []
SCREAMING_SNAKE_CASE_ : Optional[Any] = []
for row in final_set[1::]:
current_first_column.append(row[0] )
next_iteration.append(row[1::] )
SCREAMING_SNAKE_CASE_ : int = simplify(a )
for i in range(len(a ) ):
resultant[i].insert(0 , current_first_column[i] )
resultant.insert(0 , a )
SCREAMING_SNAKE_CASE_ : List[str] = resultant
return final_set
def A_ ( a ):
"""simple docstring"""
if len(a ) == 0:
raise IndexError('solve_simultaneous() requires n lists of length n+1' )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = len(a ) + 1
if any(len(a ) != _length for item in equations ):
raise IndexError('solve_simultaneous() requires n lists of length n+1' )
for row in equations:
if any(not isinstance(a , (int, float) ) for column in row ):
raise ValueError('solve_simultaneous() requires lists of integers' )
if len(a ) == 1:
return [equations[0][-1] / equations[0][0]]
SCREAMING_SNAKE_CASE_ : List[str] = equations.copy()
if any(0 in row for row in data_set ):
SCREAMING_SNAKE_CASE_ : Optional[int] = data_set.copy()
SCREAMING_SNAKE_CASE_ : List[Any] = []
for row_index, row in enumerate(a ):
if 0 not in row:
SCREAMING_SNAKE_CASE_ : Optional[Any] = data_set.pop(a )
break
if not full_row:
raise ValueError('solve_simultaneous() requires at least 1 full equation' )
data_set.insert(0 , a )
SCREAMING_SNAKE_CASE_ : Optional[int] = data_set.copy()
SCREAMING_SNAKE_CASE_ : Dict = simplify(a )
SCREAMING_SNAKE_CASE_ : Any = simplified[::-1]
SCREAMING_SNAKE_CASE_ : list = []
for row in simplified:
SCREAMING_SNAKE_CASE_ : int = row[-1]
if not solutions:
if row[-2] == 0:
solutions.append(0 )
continue
solutions.append(current_solution / row[-2] )
continue
SCREAMING_SNAKE_CASE_ : Tuple = row.copy()[: len(a ) - 1 :]
while temp_row[0] == 0:
temp_row.pop(0 )
if len(a ) == 0:
solutions.append(0 )
continue
SCREAMING_SNAKE_CASE_ : Any = temp_row[1::]
SCREAMING_SNAKE_CASE_ : List[str] = temp_row[::-1]
for column_index, column in enumerate(a ):
current_solution -= column * solutions[column_index]
solutions.append(a )
SCREAMING_SNAKE_CASE_ : Dict = []
for item in solutions:
final.append(float(round(a , 5 ) ) )
return final[::-1]
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCAmelCase : Tuple = [
[2, 1, 1, 1, 1, 4],
[1, 2, 1, 1, 1, 5],
[1, 1, 2, 1, 1, 6],
[1, 1, 1, 2, 1, 7],
[1, 1, 1, 1, 2, 8],
]
print(solve_simultaneous(eq))
print(solve_simultaneous([[4, 2]]))
| 253 |
def A_ ( a ):
"""simple docstring"""
return "".join(chr(ord(a ) - 3_2 ) if 'a' <= char <= 'z' else char for char in word )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 253 | 1 |
'''simple docstring'''
import math
from enum import Enum
from typing import Optional, Union
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LambdaLR
from .utils import logging
__a: Any = logging.get_logger(__name__)
class UpperCAmelCase ( a__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE = "linear"
SCREAMING_SNAKE_CASE = "cosine"
SCREAMING_SNAKE_CASE = "cosine_with_restarts"
SCREAMING_SNAKE_CASE = "polynomial"
SCREAMING_SNAKE_CASE = "constant"
SCREAMING_SNAKE_CASE = "constant_with_warmup"
SCREAMING_SNAKE_CASE = "piecewise_constant"
def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase = -1 ):
return LambdaLR(_lowerCamelCase , lambda UpperCAmelCase : 1 , last_epoch=_lowerCamelCase )
def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = -1 ):
def lr_lambda(UpperCAmelCase ):
if current_step < num_warmup_steps:
return float(_lowerCamelCase ) / float(max(1.0 , _lowerCamelCase ) )
return 1.0
return LambdaLR(_lowerCamelCase , _lowerCamelCase , last_epoch=_lowerCamelCase )
def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = -1 ):
lowercase__ : List[Any] = {}
lowercase__ : str = step_rules.split(''',''' )
for rule_str in rule_list[:-1]:
lowercase__ : int = rule_str.split(''':''' )
lowercase__ : Union[str, Any] = int(_lowerCamelCase )
lowercase__ : List[str] = float(_lowerCamelCase )
lowercase__ : Union[str, Any] = value
lowercase__ : Any = float(rule_list[-1] )
def create_rules_function(UpperCAmelCase , UpperCAmelCase ):
def rule_func(UpperCAmelCase ) -> float:
lowercase__ : Optional[int] = sorted(rules_dict.keys() )
for i, sorted_step in enumerate(_lowerCamelCase ):
if steps < sorted_step:
return rules_dict[sorted_steps[i]]
return last_lr_multiple
return rule_func
lowercase__ : List[str] = create_rules_function(_lowerCamelCase , _lowerCamelCase )
return LambdaLR(_lowerCamelCase , _lowerCamelCase , last_epoch=_lowerCamelCase )
def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=-1 ):
def lr_lambda(UpperCAmelCase ):
if current_step < num_warmup_steps:
return float(_lowerCamelCase ) / float(max(1 , _lowerCamelCase ) )
return max(
0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) )
return LambdaLR(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 0.5 , UpperCAmelCase = -1 ):
def lr_lambda(UpperCAmelCase ):
if current_step < num_warmup_steps:
return float(_lowerCamelCase ) / float(max(1 , _lowerCamelCase ) )
lowercase__ : List[Any] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) )
return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(_lowerCamelCase ) * 2.0 * progress )) )
return LambdaLR(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 1 , UpperCAmelCase = -1 ):
def lr_lambda(UpperCAmelCase ):
if current_step < num_warmup_steps:
return float(_lowerCamelCase ) / float(max(1 , _lowerCamelCase ) )
lowercase__ : Tuple = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) )
if progress >= 1.0:
return 0.0
return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(_lowerCamelCase ) * progress) % 1.0) )) )
return LambdaLR(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=1E-7 , UpperCAmelCase=1.0 , UpperCAmelCase=-1 ):
lowercase__ : int = optimizer.defaults["lr"]
if not (lr_init > lr_end):
raise ValueError(F"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" )
def lr_lambda(UpperCAmelCase ):
if current_step < num_warmup_steps:
return float(_lowerCamelCase ) / float(max(1 , _lowerCamelCase ) )
elif current_step > num_training_steps:
return lr_end / lr_init # as LambdaLR multiplies by lr_init
else:
lowercase__ : Dict = lr_init - lr_end
lowercase__ : Optional[Any] = num_training_steps - num_warmup_steps
lowercase__ : Tuple = 1 - (current_step - num_warmup_steps) / decay_steps
lowercase__ : Tuple = lr_range * pct_remaining**power + lr_end
return decay / lr_init # as LambdaLR multiplies by lr_init
return LambdaLR(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
__a: List[str] = {
SchedulerType.LINEAR: get_linear_schedule_with_warmup,
SchedulerType.COSINE: get_cosine_schedule_with_warmup,
SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup,
SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup,
SchedulerType.CONSTANT: get_constant_schedule,
SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup,
SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule,
}
def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 1.0 , UpperCAmelCase = -1 , ):
lowercase__ : Optional[int] = SchedulerType(_lowerCamelCase )
lowercase__ : Any = TYPE_TO_SCHEDULER_FUNCTION[name]
if name == SchedulerType.CONSTANT:
return schedule_func(_lowerCamelCase , last_epoch=_lowerCamelCase )
if name == SchedulerType.PIECEWISE_CONSTANT:
return schedule_func(_lowerCamelCase , step_rules=_lowerCamelCase , last_epoch=_lowerCamelCase )
# All other schedulers require `num_warmup_steps`
if num_warmup_steps is None:
raise ValueError(F"""{name} requires `num_warmup_steps`, please provide that argument.""" )
if name == SchedulerType.CONSTANT_WITH_WARMUP:
return schedule_func(_lowerCamelCase , num_warmup_steps=_lowerCamelCase , last_epoch=_lowerCamelCase )
# All other schedulers require `num_training_steps`
if num_training_steps is None:
raise ValueError(F"""{name} requires `num_training_steps`, please provide that argument.""" )
if name == SchedulerType.COSINE_WITH_RESTARTS:
return schedule_func(
_lowerCamelCase , num_warmup_steps=_lowerCamelCase , num_training_steps=_lowerCamelCase , num_cycles=_lowerCamelCase , last_epoch=_lowerCamelCase , )
if name == SchedulerType.POLYNOMIAL:
return schedule_func(
_lowerCamelCase , num_warmup_steps=_lowerCamelCase , num_training_steps=_lowerCamelCase , power=_lowerCamelCase , last_epoch=_lowerCamelCase , )
return schedule_func(
_lowerCamelCase , num_warmup_steps=_lowerCamelCase , num_training_steps=_lowerCamelCase , last_epoch=_lowerCamelCase )
| 370 | '''simple docstring'''
def __UpperCamelCase ( ):
lowercase__ : Any = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
lowercase__ : Any = 6
lowercase__ : Optional[Any] = 1
lowercase__ : int = 1901
lowercase__ : List[str] = 0
while year < 2001:
day += 7
if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0):
if day > days_per_month[month - 1] and month != 2:
month += 1
lowercase__ : List[Any] = day - days_per_month[month - 2]
elif day > 29 and month == 2:
month += 1
lowercase__ : Any = day - 29
else:
if day > days_per_month[month - 1]:
month += 1
lowercase__ : List[Any] = day - days_per_month[month - 2]
if month > 12:
year += 1
lowercase__ : Dict = 1
if year < 2001 and day == 1:
sundays += 1
return sundays
if __name__ == "__main__":
print(solution())
| 214 | 0 |
def __lowercase ( __lowerCAmelCase : int = 1_0_0_0 ):
a__ = 3
a__ = 0
while a < n:
if a % 3 == 0 or a % 5 == 0:
result += a
elif a % 1_5 == 0:
result -= a
a += 1
return result
if __name__ == "__main__":
print(f"""{solution() = }""")
| 240 |
def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : str ):
def get_matched_characters(__lowerCAmelCase : str , __lowerCAmelCase : str ) -> str:
a__ = []
a__ = min(len(_stra ) , len(_stra ) ) // 2
for i, l in enumerate(_stra ):
a__ = int(max(0 , i - limit ) )
a__ = int(min(i + limit + 1 , len(_stra ) ) )
if l in _stra[left:right]:
matched.append(__lowerCAmelCase )
a__ = F'{_stra[0:_stra.index(__lowerCAmelCase )]} {_stra[_stra.index(__lowerCAmelCase ) + 1:]}'
return "".join(__lowerCAmelCase )
# matching characters
a__ = get_matched_characters(__lowerCAmelCase , __lowerCAmelCase )
a__ = get_matched_characters(__lowerCAmelCase , __lowerCAmelCase )
a__ = len(__lowerCAmelCase )
# transposition
a__ = (
len([(ca, ca) for ca, ca in zip(__lowerCAmelCase , __lowerCAmelCase ) if ca != ca] ) // 2
)
if not match_count:
a__ = 0.0
else:
a__ = (
1
/ 3
* (
match_count / len(__lowerCAmelCase )
+ match_count / len(__lowerCAmelCase )
+ (match_count - transpositions) / match_count
)
)
# common prefix up to 4 characters
a__ = 0
for ca, ca in zip(stra[:4] , stra[:4] ):
if ca == ca:
prefix_len += 1
else:
break
return jaro + 0.1 * prefix_len * (1 - jaro)
if __name__ == "__main__":
import doctest
doctest.testmod()
print(jaro_winkler('''hello''', '''world'''))
| 240 | 1 |
"""simple docstring"""
import unittest
from transformers import (
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
Pipeline,
ZeroShotClassificationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow
from .test_pipelines_common import ANY
# These 2 model types require different inputs than those of the usual text models.
lowercase__ = {"""LayoutLMv2Config""", """LayoutLMv3Config"""}
@is_pipeline_test
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
lowerCamelCase__ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if model_mapping is not None:
lowerCamelCase__ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP}
if tf_model_mapping is not None:
lowerCamelCase__ = {
config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP
}
def A_ ( self , lowercase , lowercase , lowercase ):
_lowerCamelCase : Tuple = ZeroShotClassificationPipeline(
model=lowercase , tokenizer=lowercase , candidate_labels=['polics', 'health'] )
return classifier, ["Who are you voting for in 2020?", "My stomach hurts."]
def A_ ( self , lowercase , lowercase ):
_lowerCamelCase : Union[str, Any] = classifier('Who are you voting for in 2020?' , candidate_labels='politics' )
self.assertEqual(lowercase , {'sequence': ANY(lowercase ), 'labels': [ANY(lowercase )], 'scores': [ANY(lowercase )]} )
# No kwarg
_lowerCamelCase : Dict = classifier('Who are you voting for in 2020?' , ['politics'] )
self.assertEqual(lowercase , {'sequence': ANY(lowercase ), 'labels': [ANY(lowercase )], 'scores': [ANY(lowercase )]} )
_lowerCamelCase : List[str] = classifier('Who are you voting for in 2020?' , candidate_labels=['politics'] )
self.assertEqual(lowercase , {'sequence': ANY(lowercase ), 'labels': [ANY(lowercase )], 'scores': [ANY(lowercase )]} )
_lowerCamelCase : str = classifier('Who are you voting for in 2020?' , candidate_labels='politics, public health' )
self.assertEqual(
lowercase , {'sequence': ANY(lowercase ), 'labels': [ANY(lowercase ), ANY(lowercase )], 'scores': [ANY(lowercase ), ANY(lowercase )]} )
self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 )
_lowerCamelCase : List[str] = classifier('Who are you voting for in 2020?' , candidate_labels=['politics', 'public health'] )
self.assertEqual(
lowercase , {'sequence': ANY(lowercase ), 'labels': [ANY(lowercase ), ANY(lowercase )], 'scores': [ANY(lowercase ), ANY(lowercase )]} )
self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 )
_lowerCamelCase : int = classifier(
'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='This text is about {}' )
self.assertEqual(lowercase , {'sequence': ANY(lowercase ), 'labels': [ANY(lowercase )], 'scores': [ANY(lowercase )]} )
# https://github.com/huggingface/transformers/issues/13846
_lowerCamelCase : int = classifier(['I am happy'] , ['positive', 'negative'] )
self.assertEqual(
lowercase , [
{'sequence': ANY(lowercase ), 'labels': [ANY(lowercase ), ANY(lowercase )], 'scores': [ANY(lowercase ), ANY(lowercase )]}
for i in range(1 )
] , )
_lowerCamelCase : Tuple = classifier(['I am happy', 'I am sad'] , ['positive', 'negative'] )
self.assertEqual(
lowercase , [
{'sequence': ANY(lowercase ), 'labels': [ANY(lowercase ), ANY(lowercase )], 'scores': [ANY(lowercase ), ANY(lowercase )]}
for i in range(2 )
] , )
with self.assertRaises(lowercase ):
classifier('' , candidate_labels='politics' )
with self.assertRaises(lowercase ):
classifier(lowercase , candidate_labels='politics' )
with self.assertRaises(lowercase ):
classifier('Who are you voting for in 2020?' , candidate_labels='' )
with self.assertRaises(lowercase ):
classifier('Who are you voting for in 2020?' , candidate_labels=lowercase )
with self.assertRaises(lowercase ):
classifier(
'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='Not formatting template' , )
with self.assertRaises(lowercase ):
classifier(
'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template=lowercase , )
self.run_entailment_id(lowercase )
def A_ ( self , lowercase ):
_lowerCamelCase : Any = zero_shot_classifier.model.config
_lowerCamelCase : Any = config.labelaid
_lowerCamelCase : Union[str, Any] = zero_shot_classifier.entailment_id
_lowerCamelCase : List[Any] = {'LABEL_0': 0, 'LABEL_1': 1, 'LABEL_2': 2}
self.assertEqual(zero_shot_classifier.entailment_id , -1 )
_lowerCamelCase : List[Any] = {'entailment': 0, 'neutral': 1, 'contradiction': 2}
self.assertEqual(zero_shot_classifier.entailment_id , 0 )
_lowerCamelCase : Any = {'ENTAIL': 0, 'NON-ENTAIL': 1}
self.assertEqual(zero_shot_classifier.entailment_id , 0 )
_lowerCamelCase : Tuple = {'ENTAIL': 2, 'NEUTRAL': 1, 'CONTR': 0}
self.assertEqual(zero_shot_classifier.entailment_id , 2 )
_lowerCamelCase : int = original_labelaid
self.assertEqual(lowercase , zero_shot_classifier.entailment_id )
@require_torch
def A_ ( self ):
_lowerCamelCase : List[Any] = pipeline(
'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , )
# There was a regression in 4.10 for this
# Adding a test so we don't make the mistake again.
# https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499
zero_shot_classifier(
'Who are you voting for in 2020?' * 100 , candidate_labels=['politics', 'public health', 'science'] )
@require_torch
def A_ ( self ):
_lowerCamelCase : Tuple = pipeline(
'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , )
_lowerCamelCase : List[str] = zero_shot_classifier(
'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] )
self.assertEqual(
nested_simplify(lowercase ) , {
'sequence': 'Who are you voting for in 2020?',
'labels': ['science', 'public health', 'politics'],
'scores': [0.3_33, 0.3_33, 0.3_33],
} , )
@require_tf
def A_ ( self ):
_lowerCamelCase : Optional[int] = pipeline(
'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='tf' , )
_lowerCamelCase : Any = zero_shot_classifier(
'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] )
self.assertEqual(
nested_simplify(lowercase ) , {
'sequence': 'Who are you voting for in 2020?',
'labels': ['science', 'public health', 'politics'],
'scores': [0.3_33, 0.3_33, 0.3_33],
} , )
@slow
@require_torch
def A_ ( self ):
_lowerCamelCase : Any = pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='pt' )
_lowerCamelCase : Dict = zero_shot_classifier(
'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] )
self.assertEqual(
nested_simplify(lowercase ) , {
'sequence': 'Who are you voting for in 2020?',
'labels': ['politics', 'public health', 'science'],
'scores': [0.9_76, 0.0_15, 0.0_09],
} , )
_lowerCamelCase : Optional[int] = zero_shot_classifier(
'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks'
' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder'
' through an attention mechanism. We propose a new simple network architecture, the Transformer, based'
' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two'
' machine translation tasks show these models to be superior in quality while being more parallelizable'
' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014'
' English-to-German translation task, improving over the existing best results, including ensembles by'
' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new'
' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small'
' fraction of the training costs of the best models from the literature. We show that the Transformer'
' generalizes well to other tasks by applying it successfully to English constituency parsing both with'
' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=lowercase , )
self.assertEqual(
nested_simplify(lowercase ) , {
'sequence': (
'The dominant sequence transduction models are based on complex recurrent or convolutional neural'
' networks in an encoder-decoder configuration. The best performing models also connect the'
' encoder and decoder through an attention mechanism. We propose a new simple network'
' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence'
' and convolutions entirely. Experiments on two machine translation tasks show these models to be'
' superior in quality while being more parallelizable and requiring significantly less time to'
' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,'
' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014'
' English-to-French translation task, our model establishes a new single-model state-of-the-art'
' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training'
' costs of the best models from the literature. We show that the Transformer generalizes well to'
' other tasks by applying it successfully to English constituency parsing both with large and'
' limited training data.'
),
'labels': ['translation', 'machine learning', 'vision', 'statistics'],
'scores': [0.8_17, 0.7_13, 0.0_18, 0.0_18],
} , )
@slow
@require_tf
def A_ ( self ):
_lowerCamelCase : int = pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='tf' )
_lowerCamelCase : List[str] = zero_shot_classifier(
'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] )
self.assertEqual(
nested_simplify(lowercase ) , {
'sequence': 'Who are you voting for in 2020?',
'labels': ['politics', 'public health', 'science'],
'scores': [0.9_76, 0.0_15, 0.0_09],
} , )
_lowerCamelCase : Any = zero_shot_classifier(
'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks'
' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder'
' through an attention mechanism. We propose a new simple network architecture, the Transformer, based'
' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two'
' machine translation tasks show these models to be superior in quality while being more parallelizable'
' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014'
' English-to-German translation task, improving over the existing best results, including ensembles by'
' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new'
' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small'
' fraction of the training costs of the best models from the literature. We show that the Transformer'
' generalizes well to other tasks by applying it successfully to English constituency parsing both with'
' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=lowercase , )
self.assertEqual(
nested_simplify(lowercase ) , {
'sequence': (
'The dominant sequence transduction models are based on complex recurrent or convolutional neural'
' networks in an encoder-decoder configuration. The best performing models also connect the'
' encoder and decoder through an attention mechanism. We propose a new simple network'
' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence'
' and convolutions entirely. Experiments on two machine translation tasks show these models to be'
' superior in quality while being more parallelizable and requiring significantly less time to'
' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,'
' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014'
' English-to-French translation task, our model establishes a new single-model state-of-the-art'
' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training'
' costs of the best models from the literature. We show that the Transformer generalizes well to'
' other tasks by applying it successfully to English constituency parsing both with large and'
' limited training data.'
),
'labels': ['translation', 'machine learning', 'vision', 'statistics'],
'scores': [0.8_17, 0.7_13, 0.0_18, 0.0_18],
} , ) | 12 |
"""simple docstring"""
from typing import Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format
from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images
from ...utils import TensorType, logging
lowercase__ = logging.get_logger(__name__)
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = ["""pixel_values"""]
def __init__( self , lowercase = True , lowercase = 1 / 255 , lowercase = True , lowercase = 8 , **lowercase , ):
super().__init__(**lowercase )
_lowerCamelCase : Optional[Any] = do_rescale
_lowerCamelCase : Union[str, Any] = rescale_factor
_lowerCamelCase : Any = do_pad
_lowerCamelCase : Optional[int] = pad_size
def A_ ( self , lowercase , lowercase , lowercase = None , **lowercase ):
return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase )
def A_ ( self , lowercase , lowercase , lowercase = None ):
_lowerCamelCase, _lowerCamelCase : Tuple = get_image_size(lowercase )
_lowerCamelCase : Union[str, Any] = (old_height // size + 1) * size - old_height
_lowerCamelCase : Tuple = (old_width // size + 1) * size - old_width
return pad(lowercase , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=lowercase )
def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ):
_lowerCamelCase : List[str] = do_rescale if do_rescale is not None else self.do_rescale
_lowerCamelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor
_lowerCamelCase : Any = do_pad if do_pad is not None else self.do_pad
_lowerCamelCase : int = pad_size if pad_size is not None else self.pad_size
_lowerCamelCase : Dict = make_list_of_images(lowercase )
if not valid_images(lowercase ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
# All transformations expect numpy arrays.
_lowerCamelCase : Dict = [to_numpy_array(lowercase ) for image in images]
if do_rescale:
_lowerCamelCase : str = [self.rescale(image=lowercase , scale=lowercase ) for image in images]
if do_pad:
_lowerCamelCase : str = [self.pad(lowercase , size=lowercase ) for image in images]
_lowerCamelCase : Any = [to_channel_dimension_format(lowercase , lowercase ) for image in images]
_lowerCamelCase : Union[str, Any] = {'pixel_values': images}
return BatchFeature(data=lowercase , tensor_type=lowercase ) | 12 | 1 |
from typing import List
import datasets
from datasets.tasks import AudioClassification
from ..folder_based_builder import folder_based_builder
__UpperCAmelCase = datasets.utils.logging.get_logger(__name__)
class lowerCamelCase (folder_based_builder.FolderBasedBuilderConfig ):
'''simple docstring'''
_snake_case : bool = None
_snake_case : bool = None
class lowerCamelCase (folder_based_builder.FolderBasedBuilder ):
'''simple docstring'''
_snake_case : int = datasets.Audio()
_snake_case : Optional[int] = '''audio'''
_snake_case : int = AudioFolderConfig
_snake_case : List[str] # definition at the bottom of the script
_snake_case : Dict = AudioClassification(audio_column='''audio''' , label_column='''label''' )
__UpperCAmelCase = [
'.aiff',
'.au',
'.avr',
'.caf',
'.flac',
'.htk',
'.svx',
'.mat4',
'.mat5',
'.mpc2k',
'.ogg',
'.paf',
'.pvf',
'.raw',
'.rf64',
'.sd2',
'.sds',
'.ircam',
'.voc',
'.w64',
'.wav',
'.nist',
'.wavex',
'.wve',
'.xi',
'.mp3',
'.opus',
]
__UpperCAmelCase = AUDIO_EXTENSIONS
| 29 |
__UpperCAmelCase = {
'Pillow': 'Pillow<10.0.0',
'accelerate': 'accelerate>=0.20.3',
'av': 'av==9.2.0',
'beautifulsoup4': 'beautifulsoup4',
'black': 'black~=23.1',
'codecarbon': 'codecarbon==1.2.0',
'cookiecutter': 'cookiecutter==1.7.3',
'dataclasses': 'dataclasses',
'datasets': 'datasets!=2.5.0',
'decord': 'decord==0.6.0',
'deepspeed': 'deepspeed>=0.9.3',
'diffusers': 'diffusers',
'dill': 'dill<0.3.5',
'evaluate': 'evaluate>=0.2.0',
'fairscale': 'fairscale>0.3',
'faiss-cpu': 'faiss-cpu',
'fastapi': 'fastapi',
'filelock': 'filelock',
'flax': 'flax>=0.4.1,<=0.7.0',
'ftfy': 'ftfy',
'fugashi': 'fugashi>=1.0',
'GitPython': 'GitPython<3.1.19',
'hf-doc-builder': 'hf-doc-builder>=0.3.0',
'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0',
'importlib_metadata': 'importlib_metadata',
'ipadic': 'ipadic>=1.0.0,<2.0',
'isort': 'isort>=5.5.4',
'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13',
'jaxlib': 'jaxlib>=0.1.65,<=0.4.13',
'jieba': 'jieba',
'kenlm': 'kenlm',
'keras-nlp': 'keras-nlp>=0.3.1',
'librosa': 'librosa',
'nltk': 'nltk',
'natten': 'natten>=0.14.6',
'numpy': 'numpy>=1.17',
'onnxconverter-common': 'onnxconverter-common',
'onnxruntime-tools': 'onnxruntime-tools>=1.4.2',
'onnxruntime': 'onnxruntime>=1.4.0',
'opencv-python': 'opencv-python',
'optuna': 'optuna',
'optax': 'optax>=0.0.8,<=0.1.4',
'packaging': 'packaging>=20.0',
'parameterized': 'parameterized',
'phonemizer': 'phonemizer',
'protobuf': 'protobuf',
'psutil': 'psutil',
'pyyaml': 'pyyaml>=5.1',
'pydantic': 'pydantic<2',
'pytest': 'pytest>=7.2.0',
'pytest-timeout': 'pytest-timeout',
'pytest-xdist': 'pytest-xdist',
'python': 'python>=3.8.0',
'ray[tune]': 'ray[tune]',
'regex': 'regex!=2019.12.17',
'requests': 'requests',
'rhoknp': 'rhoknp>=1.1.0,<1.3.1',
'rjieba': 'rjieba',
'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1',
'ruff': 'ruff>=0.0.241,<=0.0.259',
'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0',
'sacremoses': 'sacremoses',
'safetensors': 'safetensors>=0.3.1',
'sagemaker': 'sagemaker>=2.31.0',
'scikit-learn': 'scikit-learn',
'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92',
'sigopt': 'sigopt',
'starlette': 'starlette',
'sudachipy': 'sudachipy>=0.6.6',
'sudachidict_core': 'sudachidict_core>=20220729',
'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14',
'tensorflow': 'tensorflow>=2.6,<2.14',
'tensorflow-text': 'tensorflow-text<2.14',
'tf2onnx': 'tf2onnx',
'timeout-decorator': 'timeout-decorator',
'timm': 'timm',
'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14',
'torch': 'torch>=1.9,!=1.12.0',
'torchaudio': 'torchaudio',
'torchvision': 'torchvision',
'pyctcdecode': 'pyctcdecode>=0.4.0',
'tqdm': 'tqdm>=4.27',
'unidic': 'unidic>=1.0.2',
'unidic_lite': 'unidic_lite>=1.0.7',
'urllib3': 'urllib3<2.0.0',
'uvicorn': 'uvicorn',
}
| 29 | 1 |
from __future__ import annotations
from dataclasses import dataclass
@dataclass
class _snake_case :
SCREAMING_SNAKE_CASE__ = 42
SCREAMING_SNAKE_CASE__ = None
SCREAMING_SNAKE_CASE__ = None
def __lowerCamelCase ( UpperCAmelCase_ : TreeNode | None ):
"""simple docstring"""
def is_valid_tree(UpperCAmelCase_ : TreeNode | None ) -> bool:
if node is None:
return True
if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
return False
try:
float(node.data )
except (TypeError, ValueError):
return False
return is_valid_tree(node.left ) and is_valid_tree(node.right )
if not is_valid_tree(UpperCAmelCase_ ):
raise ValueError(
'''Each node should be type of TreeNode and data should be float.''' )
def is_binary_search_tree_recursive_check(
UpperCAmelCase_ : TreeNode | None , UpperCAmelCase_ : float , UpperCAmelCase_ : float ) -> bool:
if node is None:
return True
return (
left_bound < node.data < right_bound
and is_binary_search_tree_recursive_check(node.left , UpperCAmelCase_ , node.data )
and is_binary_search_tree_recursive_check(
node.right , node.data , UpperCAmelCase_ )
)
return is_binary_search_tree_recursive_check(UpperCAmelCase_ , -float('''inf''' ) , float('''inf''' ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 367 |
def __lowerCamelCase ( UpperCAmelCase_ : int ):
"""simple docstring"""
if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
raise TypeError('''Input value must be an \'int\' type''' )
a :Optional[int] = 0
while number:
position += 1
number >>= 1
return position
if __name__ == "__main__":
import doctest
doctest.testmod()
| 281 | 0 |
from collections import defaultdict
from math import gcd
def _a ( UpperCamelCase_ : int = 1_500_000 ) -> int:
"""simple docstring"""
lowerCAmelCase__ = defaultdict(UpperCamelCase_ )
lowerCAmelCase__ = 2
while 2 * euclid_m * (euclid_m + 1) <= limit:
for euclid_n in range((euclid_m % 2) + 1 , UpperCamelCase_ , 2 ):
if gcd(UpperCamelCase_ , UpperCamelCase_ ) > 1:
continue
lowerCAmelCase__ = 2 * euclid_m * (euclid_m + euclid_n)
for perimeter in range(UpperCamelCase_ , limit + 1 , UpperCamelCase_ ):
frequencies[perimeter] += 1
euclid_m += 1
return sum(1 for frequency in frequencies.values() if frequency == 1 )
if __name__ == "__main__":
print(F"{solution() = }")
| 340 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_distilbert import DistilBertTokenizer
a_ = logging.get_logger(__name__)
a_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
a_ = {
'''vocab_file''': {
'''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''',
'''distilbert-base-uncased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt'''
),
'''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''',
'''distilbert-base-cased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt'''
),
'''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''',
'''distilbert-base-multilingual-cased''': (
'''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt'''
),
},
'''tokenizer_file''': {
'''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''',
'''distilbert-base-uncased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json'''
),
'''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''',
'''distilbert-base-cased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json'''
),
'''distilbert-base-german-cased''': (
'''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json'''
),
'''distilbert-base-multilingual-cased''': (
'''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json'''
),
},
}
a_ = {
'''distilbert-base-uncased''': 512,
'''distilbert-base-uncased-distilled-squad''': 512,
'''distilbert-base-cased''': 512,
'''distilbert-base-cased-distilled-squad''': 512,
'''distilbert-base-german-cased''': 512,
'''distilbert-base-multilingual-cased''': 512,
}
a_ = {
'''distilbert-base-uncased''': {'''do_lower_case''': True},
'''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True},
'''distilbert-base-cased''': {'''do_lower_case''': False},
'''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False},
'''distilbert-base-german-cased''': {'''do_lower_case''': False},
'''distilbert-base-multilingual-cased''': {'''do_lower_case''': False},
}
class lowercase__ ( _UpperCAmelCase ):
a_ =VOCAB_FILES_NAMES
a_ =PRETRAINED_VOCAB_FILES_MAP
a_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a_ =PRETRAINED_INIT_CONFIGURATION
a_ =["""input_ids""", """attention_mask"""]
a_ =DistilBertTokenizer
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , )-> List[str]:
'''simple docstring'''
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , )
lowerCAmelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("lowercase" , __UpperCAmelCase ) != do_lower_case
or normalizer_state.get("strip_accents" , __UpperCAmelCase ) != strip_accents
or normalizer_state.get("handle_chinese_chars" , __UpperCAmelCase ) != tokenize_chinese_chars
):
lowerCAmelCase__ = getattr(__UpperCAmelCase , normalizer_state.pop("type" ) )
lowerCAmelCase__ = do_lower_case
lowerCAmelCase__ = strip_accents
lowerCAmelCase__ = tokenize_chinese_chars
lowerCAmelCase__ = normalizer_class(**__UpperCAmelCase )
lowerCAmelCase__ = do_lower_case
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None )-> List[str]:
'''simple docstring'''
lowerCAmelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> List[int]:
'''simple docstring'''
lowerCAmelCase__ = [self.sep_token_id]
lowerCAmelCase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> Tuple[str]:
'''simple docstring'''
lowerCAmelCase__ = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase )
return tuple(__UpperCAmelCase )
| 340 | 1 |
'''simple docstring'''
import argparse
import logging
import os
from pathlib import Path
from typing import Any, Dict
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info
from transformers import (
AdamW,
AutoConfig,
AutoModel,
AutoModelForPreTraining,
AutoModelForQuestionAnswering,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoModelForTokenClassification,
AutoModelWithLMHead,
AutoTokenizer,
PretrainedConfig,
PreTrainedTokenizer,
)
from transformers.optimization import (
Adafactor,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
from transformers.utils.versions import require_version
A__ : int = logging.getLogger(__name__)
require_version('''pytorch_lightning>=1.0.4''')
A__ : List[str] = {
'''base''': AutoModel,
'''sequence-classification''': AutoModelForSequenceClassification,
'''question-answering''': AutoModelForQuestionAnswering,
'''pretraining''': AutoModelForPreTraining,
'''token-classification''': AutoModelForTokenClassification,
'''language-modeling''': AutoModelWithLMHead,
'''summarization''': AutoModelForSeqaSeqLM,
'''translation''': AutoModelForSeqaSeqLM,
}
# update this and the import above to support new schedulers from transformers.optimization
A__ : Any = {
'''linear''': get_linear_schedule_with_warmup,
'''cosine''': get_cosine_schedule_with_warmup,
'''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup,
'''polynomial''': get_polynomial_decay_schedule_with_warmup,
# '': get_constant_schedule, # not supported for now
# '': get_constant_schedule_with_warmup, # not supported for now
}
A__ : List[Any] = sorted(arg_to_scheduler.keys())
A__ : Optional[Any] = '''{''' + ''', '''.join(arg_to_scheduler_choices) + '''}'''
class snake_case__ ( pl.LightningModule ):
def __init__( self : Tuple , __a : argparse.Namespace , __a : Dict=None , __a : List[str]="base" , __a : int=None , __a : Optional[Any]=None , __a : Dict=None , **__a : Union[str, Any] , ) -> List[str]:
'''simple docstring'''
super().__init__()
# TODO: move to self.save_hyperparameters()
# self.save_hyperparameters()
# can also expand arguments into trainer signature for easier reading
self.save_hyperparameters(__a )
__snake_case : Tuple = 0
__snake_case : Optional[Any] = Path(self.hparams.output_dir )
__snake_case : List[Any] = self.hparams.cache_dir if self.hparams.cache_dir else None
if config is None:
__snake_case : Optional[Any] = AutoConfig.from_pretrained(
self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=__a , **__a , )
else:
__snake_case : PretrainedConfig = config
__snake_case : Optional[Any] = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout')
for p in extra_model_params:
if getattr(self.hparams , __a , __a ):
assert hasattr(self.config , __a ), f'''model config doesn\'t have a `{p}` attribute'''
setattr(self.config , __a , getattr(self.hparams , __a ) )
if tokenizer is None:
__snake_case : Dict = AutoTokenizer.from_pretrained(
self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=__a , )
else:
__snake_case : PreTrainedTokenizer = tokenizer
__snake_case : Dict = MODEL_MODES[mode]
if model is None:
__snake_case : Union[str, Any] = self.model_type.from_pretrained(
self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=__a , )
else:
__snake_case : Optional[Any] = model
def A_ ( self : int , *__a : int , **__a : Any ) -> int:
'''simple docstring'''
__snake_case : List[Any] = self.model_type.from_pretrained(*__a , **__a )
def A_ ( self : Tuple ) -> Dict:
'''simple docstring'''
__snake_case : List[str] = arg_to_scheduler[self.hparams.lr_scheduler]
__snake_case : Optional[Any] = get_schedule_func(
self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() )
__snake_case : Tuple = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1}
return scheduler
def A_ ( self : Optional[int] ) -> Optional[int]:
'''simple docstring'''
__snake_case : str = self.model
__snake_case : str = ['bias', 'LayerNorm.weight']
__snake_case : Optional[Any] = [
{
'params': [
p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay )
], # check this named paramters
'weight_decay': self.hparams.weight_decay,
},
{
'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )],
'weight_decay': 0.0,
},
]
if self.hparams.adafactor:
__snake_case : str = Adafactor(
__a , lr=self.hparams.learning_rate , scale_parameter=__a , relative_step=__a )
else:
__snake_case : Any = AdamW(
__a , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon )
__snake_case : Dict = optimizer
__snake_case : List[Any] = self.get_lr_scheduler()
return [optimizer], [scheduler]
def A_ ( self : Union[str, Any] , __a : str , __a : Tuple ) -> str:
'''simple docstring'''
return self.validation_step(__a , __a )
def A_ ( self : List[Any] , __a : Tuple ) -> List[Any]:
'''simple docstring'''
return self.validation_end(__a )
def A_ ( self : int ) -> int:
'''simple docstring'''
__snake_case : int = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores
__snake_case : List[Any] = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices
return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs
def A_ ( self : Optional[int] , __a : Tuple ) -> int:
'''simple docstring'''
if stage == "test":
__snake_case : Union[str, Any] = len(self.test_dataloader().dataset )
else:
__snake_case : Dict = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=__a )
__snake_case : int = len(self.train_dataloader().dataset )
def A_ ( self : Union[str, Any] , __a : str , __a : int , __a : bool = False ) -> Union[str, Any]:
'''simple docstring'''
raise NotImplementedError('You must implement this for your task' )
def A_ ( self : int ) -> Optional[Any]:
'''simple docstring'''
return self.train_loader
def A_ ( self : Union[str, Any] ) -> int:
'''simple docstring'''
return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=__a )
def A_ ( self : Dict ) -> Dict:
'''simple docstring'''
return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=__a )
def A_ ( self : str , __a : Dict ) -> str:
'''simple docstring'''
return os.path.join(
self.hparams.data_dir , 'cached_{}_{}_{}'.format(
__a , list(filter(__a , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , )
@pl.utilities.rank_zero_only
def A_ ( self : List[str] , __a : Dict[str, Any] ) -> None:
'''simple docstring'''
__snake_case : List[Any] = self.output_dir.joinpath('best_tfmr' )
__snake_case : Optional[int] = self.step_count
self.model.save_pretrained(__a )
self.tokenizer.save_pretrained(__a )
@staticmethod
def A_ ( __a : str , __a : Any ) -> Optional[Any]:
'''simple docstring'''
parser.add_argument(
'--model_name_or_path' , default=__a , type=__a , required=__a , help='Path to pretrained model or model identifier from huggingface.co/models' , )
parser.add_argument(
'--config_name' , default='' , type=__a , help='Pretrained config name or path if not the same as model_name' )
parser.add_argument(
'--tokenizer_name' , default=__a , type=__a , help='Pretrained tokenizer name or path if not the same as model_name' , )
parser.add_argument(
'--cache_dir' , default=str(Path(__a ).parent / 'test_run' / 'cache' ) , type=__a , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , )
parser.add_argument(
'--encoder_layerdrop' , type=__a , help='Encoder layer dropout probability (Optional). Goes into model.config' , )
parser.add_argument(
'--decoder_layerdrop' , type=__a , help='Decoder layer dropout probability (Optional). Goes into model.config' , )
parser.add_argument(
'--dropout' , type=__a , help='Dropout probability (Optional). Goes into model.config' , )
parser.add_argument(
'--attention_dropout' , type=__a , help='Attention dropout probability (Optional). Goes into model.config' , )
parser.add_argument('--learning_rate' , default=5e-5 , type=__a , help='The initial learning rate for Adam.' )
parser.add_argument(
'--lr_scheduler' , default='linear' , choices=__a , metavar=__a , type=__a , help='Learning rate scheduler' , )
parser.add_argument('--weight_decay' , default=0.0 , type=__a , help='Weight decay if we apply some.' )
parser.add_argument('--adam_epsilon' , default=1e-8 , type=__a , help='Epsilon for Adam optimizer.' )
parser.add_argument('--warmup_steps' , default=0 , type=__a , help='Linear warmup over warmup_steps.' )
parser.add_argument('--num_workers' , default=4 , type=__a , help='kwarg passed to DataLoader' )
parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=__a )
parser.add_argument('--train_batch_size' , default=32 , type=__a )
parser.add_argument('--eval_batch_size' , default=32 , type=__a )
parser.add_argument('--adafactor' , action='store_true' )
class snake_case__ ( pl.Callback ):
def A_ ( self : int , __a : Optional[int] , __a : Optional[Any] ) -> Dict:
'''simple docstring'''
if (
trainer.is_global_zero and trainer.global_rank == 0
): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed.
pl_module.model.rag.retriever.init_retrieval() # better to use hook functions.
class snake_case__ ( pl.Callback ):
def A_ ( self : Tuple , __a : List[str] , __a : Dict ) -> Any:
'''simple docstring'''
# print(pl_module.model.rag)
for name, param in pl_module.model.rag.named_parameters():
if param.grad is None:
print(__a )
class snake_case__ ( pl.Callback ):
def A_ ( self : int , __a : int , __a : int ) -> str:
'''simple docstring'''
__snake_case : Optional[int] = trainer.lr_schedulers[0]['scheduler']
__snake_case : Optional[int] = {f'''lr_group_{i}''': lr for i, lr in enumerate(lr_scheduler.get_lr() )}
pl_module.logger.log_metrics(__a )
def A_ ( self : Optional[int] , __a : pl.Trainer , __a : pl.LightningModule ) -> Union[str, Any]:
'''simple docstring'''
rank_zero_info('***** Validation results *****' )
__snake_case : Union[str, Any] = trainer.callback_metrics
# Log results
for key in sorted(__a ):
if key not in ["log", "progress_bar"]:
rank_zero_info('{} = {}\n'.format(__a , str(metrics[key] ) ) )
def A_ ( self : str , __a : pl.Trainer , __a : pl.LightningModule ) -> Union[str, Any]:
'''simple docstring'''
rank_zero_info('***** Test results *****' )
__snake_case : Optional[int] = trainer.callback_metrics
# Log and save results to file
__snake_case : Optional[Any] = os.path.join(pl_module.hparams.output_dir , 'test_results.txt' )
with open(__a , 'w' ) as writer:
for key in sorted(__a ):
if key not in ["log", "progress_bar"]:
rank_zero_info('{} = {}\n'.format(__a , str(metrics[key] ) ) )
writer.write('{} = {}\n'.format(__a , str(metrics[key] ) ) )
def a_ ( _UpperCAmelCase : Dict ,_UpperCAmelCase : Dict ) -> None:
# To allow all pl args uncomment the following line
# parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument(
'--output_dir' ,default=str(Path(_UpperCAmelCase ).parent / 'test_run' / 'model_checkpoints' ) ,type=_UpperCAmelCase ,help='The output directory where the model predictions and checkpoints will be written.' ,)
parser.add_argument(
'--fp16' ,action='store_true' ,help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' ,)
parser.add_argument(
'--fp16_opt_level' ,type=_UpperCAmelCase ,default='O2' ,help=(
'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].'
'See details at https://nvidia.github.io/apex/amp.html'
) ,)
parser.add_argument('--n_tpu_cores' ,dest='tpu_cores' ,type=_UpperCAmelCase )
parser.add_argument('--max_grad_norm' ,dest='gradient_clip_val' ,default=1.0 ,type=_UpperCAmelCase ,help='Max gradient norm' )
parser.add_argument('--do_train' ,action='store_true' ,help='Whether to run training.' )
parser.add_argument('--do_predict' ,action='store_true' ,help='Whether to run predictions on the test set.' )
parser.add_argument(
'--gradient_accumulation_steps' ,dest='accumulate_grad_batches' ,type=_UpperCAmelCase ,default=1 ,help='Number of updates steps to accumulate before performing a backward/update pass.' ,)
parser.add_argument('--seed' ,type=_UpperCAmelCase ,default=42 ,help='random seed for initialization' )
parser.add_argument(
'--data_dir' ,default=str(Path(_UpperCAmelCase ).parent / 'test_run' / 'dummy-train-data' ) ,type=_UpperCAmelCase ,help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' ,)
def a_ ( _UpperCAmelCase : BaseTransformer ,_UpperCAmelCase : argparse.Namespace ,_UpperCAmelCase : List[Any]=None ,_UpperCAmelCase : str=True ,_UpperCAmelCase : Tuple=[] ,_UpperCAmelCase : List[str]=None ,_UpperCAmelCase : Union[str, Any]=None ,**_UpperCAmelCase : List[str] ,) -> Optional[Any]:
pl.seed_everything(args.seed )
# init model
__snake_case : Optional[Any] = Path(model.hparams.output_dir )
odir.mkdir(exist_ok=_UpperCAmelCase )
# add custom checkpoints
if checkpoint_callback is None:
__snake_case : Optional[int] = pl.callbacks.ModelCheckpoint(
filepath=args.output_dir ,prefix='checkpoint' ,monitor='val_loss' ,mode='min' ,save_top_k=1 )
if early_stopping_callback:
extra_callbacks.append(_UpperCAmelCase )
if logging_callback is None:
__snake_case : List[Any] = LoggingCallback()
__snake_case : List[str] = {}
if args.fpaa:
__snake_case : str = 16
if args.gpus > 1:
__snake_case : List[str] = 'auto'
__snake_case : Tuple = 'ddp'
__snake_case : Union[str, Any] = args.accumulate_grad_batches
__snake_case : List[Any] = None
__snake_case : Optional[int] = 'auto'
__snake_case : Union[str, Any] = pl.Trainer.from_argparse_args(
_UpperCAmelCase ,weights_summary=_UpperCAmelCase ,callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] ,logger=_UpperCAmelCase ,val_check_interval=1 ,num_sanity_val_steps=2 ,**_UpperCAmelCase ,)
if args.do_train:
trainer.fit(_UpperCAmelCase )
else:
print('RAG modeling tests with new set functions successfuly executed!' )
return trainer
| 0 |
'''simple docstring'''
from __future__ import annotations
import time
import numpy as np
A__ : str = [8, 5, 9, 7]
A__ : List[str] = [
[2, 0, 1, 1],
[0, 1, 2, 1],
[4, 0, 0, 3],
[0, 2, 1, 0],
[1, 0, 3, 0],
]
A__ : Dict = [
[3, 2, 1, 4],
[0, 2, 5, 2],
[5, 1, 0, 5],
[1, 5, 3, 0],
[3, 0, 3, 3],
]
class snake_case__ :
def __init__( self : Union[str, Any] , __a : list[int] , __a : list[list[int]] , __a : list[list[int]] , ) -> None:
'''simple docstring'''
__snake_case : int = claim_vector
__snake_case : Optional[int] = allocated_resources_table
__snake_case : List[str] = maximum_claim_table
def A_ ( self : str ) -> list[int]:
'''simple docstring'''
return [
sum(p_item[i] for p_item in self.__allocated_resources_table )
for i in range(len(self.__allocated_resources_table[0] ) )
]
def A_ ( self : int ) -> list[int]:
'''simple docstring'''
return np.array(self.__claim_vector ) - np.array(
self.__processes_resource_summation() )
def A_ ( self : int ) -> list[list[int]]:
'''simple docstring'''
return [
list(np.array(self.__maximum_claim_table[i] ) - np.array(__a ) )
for i, allocated_resource in enumerate(self.__allocated_resources_table )
]
def A_ ( self : str ) -> dict[int, list[int]]:
'''simple docstring'''
return {self.__need().index(__a ): i for i in self.__need()}
def A_ ( self : Union[str, Any] , **__a : int ) -> None:
'''simple docstring'''
__snake_case : str = self.__need()
__snake_case : List[Any] = self.__allocated_resources_table
__snake_case : Optional[int] = self.__available_resources()
__snake_case : Union[str, Any] = self.__need_index_manager()
for kw, val in kwargs.items():
if kw and val is True:
self.__pretty_data()
print('_' * 50 + '\n' )
while need_list:
__snake_case : Tuple = False
for each_need in need_list:
__snake_case : Any = True
for index, need in enumerate(__a ):
if need > available_resources[index]:
__snake_case : List[str] = False
break
if execution:
__snake_case : Union[str, Any] = True
# get the original index of the process from ind_ctrl db
for original_need_index, need_clone in need_index_manager.items():
if each_need == need_clone:
__snake_case : str = original_need_index
print(f'''Process {process_number + 1} is executing.''' )
# remove the process run from stack
need_list.remove(__a )
# update available/freed resources stack
__snake_case : Union[str, Any] = np.array(__a ) + np.array(
alloc_resources_table[process_number] )
print(
'Updated available resource stack for processes: '
+ ' '.join([str(__a ) for x in available_resources] ) )
break
if safe:
print('The process is in a safe state.\n' )
else:
print('System in unsafe state. Aborting...\n' )
break
def A_ ( self : List[str] ) -> Optional[int]:
'''simple docstring'''
print(' ' * 9 + 'Allocated Resource Table' )
for item in self.__allocated_resources_table:
print(
f'''P{self.__allocated_resources_table.index(__a ) + 1}'''
+ ' '.join(f'''{it:>8}''' for it in item )
+ '\n' )
print(' ' * 9 + 'System Resource Table' )
for item in self.__maximum_claim_table:
print(
f'''P{self.__maximum_claim_table.index(__a ) + 1}'''
+ ' '.join(f'''{it:>8}''' for it in item )
+ '\n' )
print(
'Current Usage by Active Processes: '
+ ' '.join(str(__a ) for x in self.__claim_vector ) )
print(
'Initial Available Resources: '
+ ' '.join(str(__a ) for x in self.__available_resources() ) )
time.sleep(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 0 | 1 |
from math import pi, sqrt, tan
def lowerCamelCase_ ( lowerCamelCase__ ):
if side_length < 0:
raise ValueError("surface_area_cube() only accepts non-negative values" )
return 6 * side_length**2
def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
if length < 0 or breadth < 0 or height < 0:
raise ValueError("surface_area_cuboid() only accepts non-negative values" )
return 2 * ((length * breadth) + (breadth * height) + (length * height))
def lowerCamelCase_ ( lowerCamelCase__ ):
if radius < 0:
raise ValueError("surface_area_sphere() only accepts non-negative values" )
return 4 * pi * radius**2
def lowerCamelCase_ ( lowerCamelCase__ ):
if radius < 0:
raise ValueError("surface_area_hemisphere() only accepts non-negative values" )
return 3 * pi * radius**2
def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ):
if radius < 0 or height < 0:
raise ValueError("surface_area_cone() only accepts non-negative values" )
return pi * radius * (radius + (height**2 + radius**2) ** 0.5)
def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
if radius_a < 0 or radius_a < 0 or height < 0:
raise ValueError(
"surface_area_conical_frustum() only accepts non-negative values" )
lowerCamelCase_ = (height**2 + (radius_a - radius_a) ** 2) ** 0.5
return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2)
def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ):
if radius < 0 or height < 0:
raise ValueError("surface_area_cylinder() only accepts non-negative values" )
return 2 * pi * radius * (height + radius)
def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ):
if torus_radius < 0 or tube_radius < 0:
raise ValueError("surface_area_torus() only accepts non-negative values" )
if torus_radius < tube_radius:
raise ValueError(
"surface_area_torus() does not support spindle or self intersecting tori" )
return 4 * pow(lowerCamelCase__ , 2 ) * torus_radius * tube_radius
def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ):
if length < 0 or width < 0:
raise ValueError("area_rectangle() only accepts non-negative values" )
return length * width
def lowerCamelCase_ ( lowerCamelCase__ ):
if side_length < 0:
raise ValueError("area_square() only accepts non-negative values" )
return side_length**2
def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ):
if base < 0 or height < 0:
raise ValueError("area_triangle() only accepts non-negative values" )
return (base * height) / 2
def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
if sidea < 0 or sidea < 0 or sidea < 0:
raise ValueError("area_triangle_three_sides() only accepts non-negative values" )
elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea:
raise ValueError("Given three sides do not form a triangle" )
lowerCamelCase_ = (sidea + sidea + sidea) / 2
lowerCamelCase_ = sqrt(
semi_perimeter
* (semi_perimeter - sidea)
* (semi_perimeter - sidea)
* (semi_perimeter - sidea) )
return area
def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ):
if base < 0 or height < 0:
raise ValueError("area_parallelogram() only accepts non-negative values" )
return base * height
def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
if basea < 0 or basea < 0 or height < 0:
raise ValueError("area_trapezium() only accepts non-negative values" )
return 1 / 2 * (basea + basea) * height
def lowerCamelCase_ ( lowerCamelCase__ ):
if radius < 0:
raise ValueError("area_circle() only accepts non-negative values" )
return pi * radius**2
def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ):
if radius_x < 0 or radius_y < 0:
raise ValueError("area_ellipse() only accepts non-negative values" )
return pi * radius_x * radius_y
def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ):
if diagonal_a < 0 or diagonal_a < 0:
raise ValueError("area_rhombus() only accepts non-negative values" )
return 1 / 2 * diagonal_a * diagonal_a
def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ):
if not isinstance(lowerCamelCase__ , lowerCamelCase__ ) or sides < 3:
raise ValueError(
"area_reg_polygon() only accepts integers greater than or \
equal to three as number of sides" )
elif length < 0:
raise ValueError(
"area_reg_polygon() only accepts non-negative values as \
length of a side" )
return (sides * length**2) / (4 * tan(pi / sides ))
return (sides * length**2) / (4 * tan(pi / sides ))
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True) # verbose so we can see methods missing tests
print('''[DEMO] Areas of various geometric shapes: \n''')
print(F"""Rectangle: {area_rectangle(1_0, 2_0) = }""")
print(F"""Square: {area_square(1_0) = }""")
print(F"""Triangle: {area_triangle(1_0, 1_0) = }""")
print(F"""Triangle: {area_triangle_three_sides(5, 1_2, 1_3) = }""")
print(F"""Parallelogram: {area_parallelogram(1_0, 2_0) = }""")
print(F"""Rhombus: {area_rhombus(1_0, 2_0) = }""")
print(F"""Trapezium: {area_trapezium(1_0, 2_0, 3_0) = }""")
print(F"""Circle: {area_circle(2_0) = }""")
print(F"""Ellipse: {area_ellipse(1_0, 2_0) = }""")
print('''\nSurface Areas of various geometric shapes: \n''')
print(F"""Cube: {surface_area_cube(2_0) = }""")
print(F"""Cuboid: {surface_area_cuboid(1_0, 2_0, 3_0) = }""")
print(F"""Sphere: {surface_area_sphere(2_0) = }""")
print(F"""Hemisphere: {surface_area_hemisphere(2_0) = }""")
print(F"""Cone: {surface_area_cone(1_0, 2_0) = }""")
print(F"""Conical Frustum: {surface_area_conical_frustum(1_0, 2_0, 3_0) = }""")
print(F"""Cylinder: {surface_area_cylinder(1_0, 2_0) = }""")
print(F"""Torus: {surface_area_torus(2_0, 1_0) = }""")
print(F"""Equilateral Triangle: {area_reg_polygon(3, 1_0) = }""")
print(F"""Square: {area_reg_polygon(4, 1_0) = }""")
print(F"""Reqular Pentagon: {area_reg_polygon(5, 1_0) = }""")
| 19 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_mbart import MBartTokenizer
else:
__A =None
__A =logging.get_logger(__name__)
__A ={'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''}
__A ={
'''vocab_file''': {
'''facebook/mbart-large-en-ro''': (
'''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model'''
),
'''facebook/mbart-large-cc25''': (
'''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model'''
),
},
'''tokenizer_file''': {
'''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''',
'''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''',
},
}
__A ={
'''facebook/mbart-large-en-ro''': 1_0_2_4,
'''facebook/mbart-large-cc25''': 1_0_2_4,
}
# fmt: off
__A =['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN''']
class _SCREAMING_SNAKE_CASE ( snake_case_ ):
lowerCAmelCase__ = VOCAB_FILES_NAMES
lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase__ = ['input_ids', 'attention_mask']
lowerCAmelCase__ = MBartTokenizer
lowerCAmelCase__ = []
lowerCAmelCase__ = []
def __init__( self , lowercase=None , lowercase=None , lowercase="<s>" , lowercase="</s>" , lowercase="</s>" , lowercase="<s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase="<mask>" , lowercase=None , lowercase=None , lowercase=None , **lowercase , ) -> Dict:
# Mask token behave like a normal word, i.e. include the space before it
lowerCamelCase_ = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else mask_token
super().__init__(
vocab_file=lowercase , tokenizer_file=lowercase , bos_token=lowercase , eos_token=lowercase , sep_token=lowercase , cls_token=lowercase , unk_token=lowercase , pad_token=lowercase , mask_token=lowercase , src_lang=lowercase , tgt_lang=lowercase , additional_special_tokens=lowercase , **lowercase , )
lowerCamelCase_ = vocab_file
lowerCamelCase_ = False if not self.vocab_file else True
lowerCamelCase_ = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens] )
self.add_special_tokens({"additional_special_tokens": _additional_special_tokens} )
lowerCamelCase_ = {
lang_code: self.convert_tokens_to_ids(lowercase ) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
lowerCamelCase_ = src_lang if src_lang is not None else "en_XX"
lowerCamelCase_ = self.convert_tokens_to_ids(self._src_lang )
lowerCamelCase_ = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def SCREAMING_SNAKE_CASE_( self ) -> str:
return self._src_lang
@src_lang.setter
def SCREAMING_SNAKE_CASE_( self , lowercase ) -> None:
lowerCamelCase_ = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> List[int]:
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> List[int]:
lowerCamelCase_ = [self.sep_token_id]
lowerCamelCase_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , **lowercase ) -> List[Any]:
if src_lang is None or tgt_lang is None:
raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" )
lowerCamelCase_ = src_lang
lowerCamelCase_ = self(lowercase , add_special_tokens=lowercase , return_tensors=lowercase , **lowercase )
lowerCamelCase_ = self.convert_tokens_to_ids(lowercase )
lowerCamelCase_ = tgt_lang_id
return inputs
def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = "en_XX" , lowercase = None , lowercase = "ro_RO" , **lowercase , ) -> BatchEncoding:
lowerCamelCase_ = src_lang
lowerCamelCase_ = tgt_lang
return super().prepare_seqaseq_batch(lowercase , lowercase , **lowercase )
def SCREAMING_SNAKE_CASE_( self ) -> Dict:
return self.set_src_lang_special_tokens(self.src_lang )
def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]:
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def SCREAMING_SNAKE_CASE_( self , lowercase ) -> None:
lowerCamelCase_ = self.convert_tokens_to_ids(lowercase )
lowerCamelCase_ = []
lowerCamelCase_ = [self.eos_token_id, self.cur_lang_code]
lowerCamelCase_ = self.convert_ids_to_tokens(self.prefix_tokens )
lowerCamelCase_ = self.convert_ids_to_tokens(self.suffix_tokens )
lowerCamelCase_ = processors.TemplateProcessing(
single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def SCREAMING_SNAKE_CASE_( self , lowercase ) -> None:
lowerCamelCase_ = self.convert_tokens_to_ids(lowercase )
lowerCamelCase_ = []
lowerCamelCase_ = [self.eos_token_id, self.cur_lang_code]
lowerCamelCase_ = self.convert_ids_to_tokens(self.prefix_tokens )
lowerCamelCase_ = self.convert_ids_to_tokens(self.suffix_tokens )
lowerCamelCase_ = processors.TemplateProcessing(
single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer." )
if not os.path.isdir(lowercase ):
logger.error(f'Vocabulary path ({save_directory}) should be a directory.' )
return
lowerCamelCase_ = os.path.join(
lowercase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase ):
copyfile(self.vocab_file , lowercase )
return (out_vocab_file,)
| 19 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
A : Any = {'configuration_plbart': ['PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PLBartConfig']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : str = ['PLBartTokenizer']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : str = [
'PLBART_PRETRAINED_MODEL_ARCHIVE_LIST',
'PLBartForCausalLM',
'PLBartForConditionalGeneration',
'PLBartForSequenceClassification',
'PLBartModel',
'PLBartPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_plbart import PLBartTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_plbart import (
PLBART_PRETRAINED_MODEL_ARCHIVE_LIST,
PLBartForCausalLM,
PLBartForConditionalGeneration,
PLBartForSequenceClassification,
PLBartModel,
PLBartPreTrainedModel,
)
else:
import sys
A : str = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 352 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
A : Dict = {'configuration_glpn': ['GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GLPNConfig']}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : Tuple = ['GLPNFeatureExtractor']
A : List[str] = ['GLPNImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : Optional[int] = [
'GLPN_PRETRAINED_MODEL_ARCHIVE_LIST',
'GLPNForDepthEstimation',
'GLPNLayer',
'GLPNModel',
'GLPNPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_glpn import GLPNFeatureExtractor
from .image_processing_glpn import GLPNImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_glpn import (
GLPN_PRETRAINED_MODEL_ARCHIVE_LIST,
GLPNForDepthEstimation,
GLPNLayer,
GLPNModel,
GLPNPreTrainedModel,
)
else:
import sys
A : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 146 | 0 |
"""simple docstring"""
import torch
from diffusers import StableDiffusionPipeline
__lowerCAmelCase : Optional[int] ="""path-to-your-trained-model"""
__lowerCAmelCase : List[str] =StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to("""cuda""")
__lowerCAmelCase : Optional[int] ="""A photo of sks dog in a bucket"""
__lowerCAmelCase : str =pipe(prompt, num_inference_steps=5_0, guidance_scale=7.5).images[0]
image.save("""dog-bucket.png""")
| 197 | """simple docstring"""
import argparse
from pathlib import Path
from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration
def UpperCAmelCase__ ( lowerCAmelCase__ :Any , lowerCAmelCase__ :str , lowerCAmelCase__ :str , lowerCAmelCase__ :Path , lowerCAmelCase__ :str = None , lowerCAmelCase__ :str = None , lowerCAmelCase__ :str = None , ) -> Optional[int]:
'''simple docstring'''
if config_name_or_path is None:
lowercase = """facebook/rag-token-base""" if model_type == """rag_token""" else """facebook/rag-sequence-base"""
if generator_tokenizer_name_or_path is None:
lowercase = generator_name_or_path
if question_encoder_tokenizer_name_or_path is None:
lowercase = question_encoder_name_or_path
lowercase = RagTokenForGeneration if model_type == """rag_token""" else RagSequenceForGeneration
# Save model.
lowercase = RagConfig.from_pretrained(lowerCAmelCase__ )
lowercase = AutoConfig.from_pretrained(lowerCAmelCase__ )
lowercase = AutoConfig.from_pretrained(lowerCAmelCase__ )
lowercase = gen_config
lowercase = question_encoder_config
lowercase = model_class.from_pretrained_question_encoder_generator(
lowerCAmelCase__ , lowerCAmelCase__ , config=lowerCAmelCase__ )
rag_model.save_pretrained(lowerCAmelCase__ )
# Sanity check.
model_class.from_pretrained(lowerCAmelCase__ )
# Save tokenizers.
lowercase = AutoTokenizer.from_pretrained(lowerCAmelCase__ )
gen_tokenizer.save_pretrained(dest_dir / """generator_tokenizer/""" )
lowercase = AutoTokenizer.from_pretrained(lowerCAmelCase__ )
question_encoder_tokenizer.save_pretrained(dest_dir / """question_encoder_tokenizer/""" )
if __name__ == "__main__":
__lowerCAmelCase : int =argparse.ArgumentParser()
parser.add_argument(
"""--model_type""",
choices=["""rag_sequence""", """rag_token"""],
required=True,
type=str,
help="""RAG model type: rag_sequence, rag_token""",
)
parser.add_argument("""--dest""", type=str, required=True, help="""Path to the output checkpoint directory.""")
parser.add_argument("""--generator_name_or_path""", type=str, required=True, help="""Generator model identifier""")
parser.add_argument(
"""--question_encoder_name_or_path""", type=str, required=True, help="""Question encoder model identifier"""
)
parser.add_argument(
"""--generator_tokenizer_name_or_path""",
type=str,
help="""Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``""",
)
parser.add_argument(
"""--question_encoder_tokenizer_name_or_path""",
type=str,
help="""Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``""",
)
parser.add_argument(
"""--config_name_or_path""",
type=str,
help=(
"""Identifier of the model config to use, if not provided, resolves to a base config for a given"""
""" ``model_type``"""
),
)
__lowerCAmelCase : List[str] =parser.parse_args()
__lowerCAmelCase : Dict =Path(args.dest)
dest_dir.mkdir(exist_ok=True)
consolidate(
args.model_type,
args.generator_name_or_path,
args.question_encoder_name_or_path,
dest_dir,
args.config_name_or_path,
args.generator_tokenizer_name_or_path,
args.question_encoder_tokenizer_name_or_path,
)
| 197 | 1 |
import inspect
import unittest
from transformers import DecisionTransformerConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import DecisionTransformerModel
from transformers.models.decision_transformer.modeling_decision_transformer import (
DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
class _UpperCAmelCase :
'''simple docstring'''
def __init__( self : int , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any]=13 , lowercase_ : Union[str, Any]=7 , lowercase_ : Optional[Any]=6 , lowercase_ : int=17 , lowercase_ : List[Any]=23 , lowercase_ : List[Any]=11 , lowercase_ : Dict=True , ) -> List[str]:
"""simple docstring"""
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = seq_length
_UpperCamelCase = act_dim
_UpperCamelCase = state_dim
_UpperCamelCase = hidden_size
_UpperCamelCase = max_length
_UpperCamelCase = is_training
def __UpperCAmelCase ( self : Union[str, Any]) -> Optional[int]:
"""simple docstring"""
_UpperCamelCase = floats_tensor((self.batch_size, self.seq_length, self.state_dim))
_UpperCamelCase = floats_tensor((self.batch_size, self.seq_length, self.act_dim))
_UpperCamelCase = floats_tensor((self.batch_size, self.seq_length, 1))
_UpperCamelCase = floats_tensor((self.batch_size, self.seq_length, 1))
_UpperCamelCase = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1000)
_UpperCamelCase = random_attention_mask((self.batch_size, self.seq_length))
_UpperCamelCase = self.get_config()
return (
config,
states,
actions,
rewards,
returns_to_go,
timesteps,
attention_mask,
)
def __UpperCAmelCase ( self : str) -> Any:
"""simple docstring"""
return DecisionTransformerConfig(
batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , )
def __UpperCAmelCase ( self : str , lowercase_ : Optional[Any] , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : Optional[int] , lowercase_ : str , lowercase_ : Dict , ) -> int:
"""simple docstring"""
_UpperCamelCase = DecisionTransformerModel(config=lowercase_)
model.to(lowercase_)
model.eval()
_UpperCamelCase = model(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_)
self.parent.assertEqual(result.state_preds.shape , states.shape)
self.parent.assertEqual(result.action_preds.shape , actions.shape)
self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape)
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size)) # seq length *3 as there are 3 modelities: states, returns and actions
def __UpperCAmelCase ( self : Dict) -> Tuple:
"""simple docstring"""
_UpperCamelCase = self.prepare_config_and_inputs()
(
(
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) ,
) = config_and_inputs
_UpperCamelCase = {
"states": states,
"actions": actions,
"rewards": rewards,
"returns_to_go": returns_to_go,
"timesteps": timesteps,
"attention_mask": attention_mask,
}
return config, inputs_dict
@require_torch
class _UpperCAmelCase ( lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, unittest.TestCase ):
'''simple docstring'''
__A = (DecisionTransformerModel,) if is_torch_available() else ()
__A = ()
__A = {'''feature-extraction''': DecisionTransformerModel} if is_torch_available() else {}
# Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids
__A = False
# Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features
__A = False
__A = False
__A = False
__A = False
__A = False
__A = False
__A = False
__A = False
__A = False
def __UpperCAmelCase ( self : List[str]) -> Any:
"""simple docstring"""
_UpperCamelCase = DecisionTransformerModelTester(self)
_UpperCamelCase = ConfigTester(self , config_class=lowercase_ , hidden_size=37)
def __UpperCAmelCase ( self : Tuple) -> Tuple:
"""simple docstring"""
self.config_tester.run_common_tests()
def __UpperCAmelCase ( self : List[str]) -> Union[str, Any]:
"""simple docstring"""
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase_)
@slow
def __UpperCAmelCase ( self : List[Any]) -> int:
"""simple docstring"""
for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCamelCase = DecisionTransformerModel.from_pretrained(lowercase_)
self.assertIsNotNone(lowercase_)
def __UpperCAmelCase ( self : Tuple) -> Optional[int]:
"""simple docstring"""
_UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCamelCase = model_class(lowercase_)
_UpperCamelCase = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_UpperCamelCase = [*signature.parameters.keys()]
_UpperCamelCase = [
"states",
"actions",
"rewards",
"returns_to_go",
"timesteps",
"attention_mask",
]
self.assertListEqual(arg_names[: len(lowercase_)] , lowercase_)
@require_torch
class _UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@slow
def __UpperCAmelCase ( self : int) -> Optional[Any]:
"""simple docstring"""
_UpperCamelCase = 2 # number of steps of autoregressive prediction we will perform
_UpperCamelCase = 10 # defined by the RL environment, may be normalized
_UpperCamelCase = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert")
_UpperCamelCase = model.to(lowercase_)
_UpperCamelCase = model.config
torch.manual_seed(0)
_UpperCamelCase = torch.randn(1 , 1 , config.state_dim).to(device=lowercase_ , dtype=torch.floataa) # env.reset()
_UpperCamelCase = torch.tensor(
[[0.24_27_93, -0.28_69_30_74, 0.8_74_26_13], [0.67_81_52_74, -0.08_10_10_85, -0.12_95_21_47]] , device=lowercase_)
_UpperCamelCase = torch.tensor(lowercase_ , device=lowercase_ , dtype=torch.floataa).reshape(1 , 1 , 1)
_UpperCamelCase = state
_UpperCamelCase = torch.zeros(1 , 0 , config.act_dim , device=lowercase_ , dtype=torch.floataa)
_UpperCamelCase = torch.zeros(1 , 0 , device=lowercase_ , dtype=torch.floataa)
_UpperCamelCase = torch.tensor(0 , device=lowercase_ , dtype=torch.long).reshape(1 , 1)
for step in range(lowercase_):
_UpperCamelCase = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=lowercase_)] , dim=1)
_UpperCamelCase = torch.cat([rewards, torch.zeros(1 , 1 , device=lowercase_)] , dim=1)
_UpperCamelCase = torch.ones(1 , states.shape[1]).to(dtype=torch.long , device=states.device)
with torch.no_grad():
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = model(
states=lowercase_ , actions=lowercase_ , rewards=lowercase_ , returns_to_go=lowercase_ , timesteps=lowercase_ , attention_mask=lowercase_ , return_dict=lowercase_ , )
self.assertEqual(action_pred.shape , actions.shape)
self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4))
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = ( # env.step(action)
torch.randn(1 , 1 , config.state_dim).to(device=lowercase_ , dtype=torch.floataa),
1.0,
False,
{},
)
_UpperCamelCase = action_pred[0, -1]
_UpperCamelCase = torch.cat([states, state] , dim=1)
_UpperCamelCase = returns_to_go[0, -1] - reward
_UpperCamelCase = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1)] , dim=1)
_UpperCamelCase = torch.cat(
[timesteps, torch.ones((1, 1) , device=lowercase_ , dtype=torch.long) * (step + 1)] , dim=1)
| 360 | import inspect
import unittest
from transformers import DecisionTransformerConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import DecisionTransformerModel
from transformers.models.decision_transformer.modeling_decision_transformer import (
DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
class _UpperCAmelCase :
'''simple docstring'''
def __init__( self : int , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any]=13 , lowercase_ : Union[str, Any]=7 , lowercase_ : Optional[Any]=6 , lowercase_ : int=17 , lowercase_ : List[Any]=23 , lowercase_ : List[Any]=11 , lowercase_ : Dict=True , ) -> List[str]:
"""simple docstring"""
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = seq_length
_UpperCamelCase = act_dim
_UpperCamelCase = state_dim
_UpperCamelCase = hidden_size
_UpperCamelCase = max_length
_UpperCamelCase = is_training
def __UpperCAmelCase ( self : Union[str, Any]) -> Optional[int]:
"""simple docstring"""
_UpperCamelCase = floats_tensor((self.batch_size, self.seq_length, self.state_dim))
_UpperCamelCase = floats_tensor((self.batch_size, self.seq_length, self.act_dim))
_UpperCamelCase = floats_tensor((self.batch_size, self.seq_length, 1))
_UpperCamelCase = floats_tensor((self.batch_size, self.seq_length, 1))
_UpperCamelCase = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1000)
_UpperCamelCase = random_attention_mask((self.batch_size, self.seq_length))
_UpperCamelCase = self.get_config()
return (
config,
states,
actions,
rewards,
returns_to_go,
timesteps,
attention_mask,
)
def __UpperCAmelCase ( self : str) -> Any:
"""simple docstring"""
return DecisionTransformerConfig(
batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , )
def __UpperCAmelCase ( self : str , lowercase_ : Optional[Any] , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : Optional[int] , lowercase_ : str , lowercase_ : Dict , ) -> int:
"""simple docstring"""
_UpperCamelCase = DecisionTransformerModel(config=lowercase_)
model.to(lowercase_)
model.eval()
_UpperCamelCase = model(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_)
self.parent.assertEqual(result.state_preds.shape , states.shape)
self.parent.assertEqual(result.action_preds.shape , actions.shape)
self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape)
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size)) # seq length *3 as there are 3 modelities: states, returns and actions
def __UpperCAmelCase ( self : Dict) -> Tuple:
"""simple docstring"""
_UpperCamelCase = self.prepare_config_and_inputs()
(
(
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) ,
) = config_and_inputs
_UpperCamelCase = {
"states": states,
"actions": actions,
"rewards": rewards,
"returns_to_go": returns_to_go,
"timesteps": timesteps,
"attention_mask": attention_mask,
}
return config, inputs_dict
@require_torch
class _UpperCAmelCase ( lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, unittest.TestCase ):
'''simple docstring'''
__A = (DecisionTransformerModel,) if is_torch_available() else ()
__A = ()
__A = {'''feature-extraction''': DecisionTransformerModel} if is_torch_available() else {}
# Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids
__A = False
# Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features
__A = False
__A = False
__A = False
__A = False
__A = False
__A = False
__A = False
__A = False
__A = False
def __UpperCAmelCase ( self : List[str]) -> Any:
"""simple docstring"""
_UpperCamelCase = DecisionTransformerModelTester(self)
_UpperCamelCase = ConfigTester(self , config_class=lowercase_ , hidden_size=37)
def __UpperCAmelCase ( self : Tuple) -> Tuple:
"""simple docstring"""
self.config_tester.run_common_tests()
def __UpperCAmelCase ( self : List[str]) -> Union[str, Any]:
"""simple docstring"""
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase_)
@slow
def __UpperCAmelCase ( self : List[Any]) -> int:
"""simple docstring"""
for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCamelCase = DecisionTransformerModel.from_pretrained(lowercase_)
self.assertIsNotNone(lowercase_)
def __UpperCAmelCase ( self : Tuple) -> Optional[int]:
"""simple docstring"""
_UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCamelCase = model_class(lowercase_)
_UpperCamelCase = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_UpperCamelCase = [*signature.parameters.keys()]
_UpperCamelCase = [
"states",
"actions",
"rewards",
"returns_to_go",
"timesteps",
"attention_mask",
]
self.assertListEqual(arg_names[: len(lowercase_)] , lowercase_)
@require_torch
class _UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@slow
def __UpperCAmelCase ( self : int) -> Optional[Any]:
"""simple docstring"""
_UpperCamelCase = 2 # number of steps of autoregressive prediction we will perform
_UpperCamelCase = 10 # defined by the RL environment, may be normalized
_UpperCamelCase = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert")
_UpperCamelCase = model.to(lowercase_)
_UpperCamelCase = model.config
torch.manual_seed(0)
_UpperCamelCase = torch.randn(1 , 1 , config.state_dim).to(device=lowercase_ , dtype=torch.floataa) # env.reset()
_UpperCamelCase = torch.tensor(
[[0.24_27_93, -0.28_69_30_74, 0.8_74_26_13], [0.67_81_52_74, -0.08_10_10_85, -0.12_95_21_47]] , device=lowercase_)
_UpperCamelCase = torch.tensor(lowercase_ , device=lowercase_ , dtype=torch.floataa).reshape(1 , 1 , 1)
_UpperCamelCase = state
_UpperCamelCase = torch.zeros(1 , 0 , config.act_dim , device=lowercase_ , dtype=torch.floataa)
_UpperCamelCase = torch.zeros(1 , 0 , device=lowercase_ , dtype=torch.floataa)
_UpperCamelCase = torch.tensor(0 , device=lowercase_ , dtype=torch.long).reshape(1 , 1)
for step in range(lowercase_):
_UpperCamelCase = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=lowercase_)] , dim=1)
_UpperCamelCase = torch.cat([rewards, torch.zeros(1 , 1 , device=lowercase_)] , dim=1)
_UpperCamelCase = torch.ones(1 , states.shape[1]).to(dtype=torch.long , device=states.device)
with torch.no_grad():
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = model(
states=lowercase_ , actions=lowercase_ , rewards=lowercase_ , returns_to_go=lowercase_ , timesteps=lowercase_ , attention_mask=lowercase_ , return_dict=lowercase_ , )
self.assertEqual(action_pred.shape , actions.shape)
self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4))
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = ( # env.step(action)
torch.randn(1 , 1 , config.state_dim).to(device=lowercase_ , dtype=torch.floataa),
1.0,
False,
{},
)
_UpperCamelCase = action_pred[0, -1]
_UpperCamelCase = torch.cat([states, state] , dim=1)
_UpperCamelCase = returns_to_go[0, -1] - reward
_UpperCamelCase = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1)] , dim=1)
_UpperCamelCase = torch.cat(
[timesteps, torch.ones((1, 1) , device=lowercase_ , dtype=torch.long) * (step + 1)] , dim=1)
| 63 | 0 |
def _a ( lowerCamelCase: int , lowerCamelCase: Optional[int] , lowerCamelCase: Tuple , lowerCamelCase: Tuple ) -> str:
'''simple docstring'''
if graph[path[curr_ind - 1]][next_ver] == 0:
return False
# 2. Validate that next vertex is not already in path
return not any(vertex == next_ver for vertex in path )
def _a ( lowerCamelCase: Optional[Any] , lowerCamelCase: Dict , lowerCamelCase: Any ) -> List[Any]:
'''simple docstring'''
if curr_ind == len(snake_case_ ):
# return whether path exists between current and starting vertices
return graph[path[curr_ind - 1]][path[0]] == 1
# Recursive Step
for next_ver in range(0 , len(snake_case_ ) ):
if valid_connection(snake_case_ , snake_case_ , snake_case_ , snake_case_ ):
# Insert current vertex into path as next transition
__A = next_ver
# Validate created path
if util_hamilton_cycle(snake_case_ , snake_case_ , curr_ind + 1 ):
return True
# Backtrack
__A = -1
return False
def _a ( lowerCamelCase: int , lowerCamelCase: Optional[int] = 0 ) -> Dict:
'''simple docstring'''
__A = [-1] * (len(snake_case_ ) + 1)
# initialize start and end of path with starting index
__A = start_index
# evaluate and if we find answer return path either return empty array
return path if util_hamilton_cycle(snake_case_ , snake_case_ , 1 ) else []
| 117 |
def lowerCAmelCase_ ( snake_case_ ):
if number < 0:
raise ValueError("""number must not be negative""" )
return number & (number - 1) == 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 26 | 0 |
"""simple docstring"""
import importlib
import inspect
import json
import os
import re
import shutil
import sys
from pathlib import Path
from typing import Dict, Optional, Union
from urllib import request
from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info
from packaging import version
from .. import __version__
from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging
__UpperCamelCase : Dict = (
'''https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py'''
)
__UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name
def __SCREAMING_SNAKE_CASE ( ):
lowerCAmelCase__ : List[str] = '''https://pypi.org/pypi/diffusers/json'''
lowerCAmelCase__ : Any = json.loads(request.urlopen(A_ ).read() )['''releases'''].keys()
return sorted(A_ , key=lambda A_ : version.Version(A_ ) )
def __SCREAMING_SNAKE_CASE ( ):
# This function has already been executed if HF_MODULES_CACHE already is in the Python path.
if HF_MODULES_CACHE in sys.path:
return
sys.path.append(A_ )
os.makedirs(A_ , exist_ok=A_ )
lowerCAmelCase__ : List[Any] = Path(A_ ) / '''__init__.py'''
if not init_path.exists():
init_path.touch()
def __SCREAMING_SNAKE_CASE ( A_ ):
init_hf_modules()
lowerCAmelCase__ : List[str] = Path(A_ ) / name
# If the parent module does not exist yet, recursively create it.
if not dynamic_module_path.parent.exists():
create_dynamic_module(dynamic_module_path.parent )
os.makedirs(A_ , exist_ok=A_ )
lowerCAmelCase__ : Union[str, Any] = dynamic_module_path / '''__init__.py'''
if not init_path.exists():
init_path.touch()
def __SCREAMING_SNAKE_CASE ( A_ ):
with open(A_ , '''r''' , encoding='''utf-8''' ) as f:
lowerCAmelCase__ : List[str] = f.read()
# Imports of the form `import .xxx`
lowerCAmelCase__ : Any = re.findall('''^\s*import\s+\.(\S+)\s*$''' , A_ , flags=re.MULTILINE )
# Imports of the form `from .xxx import yyy`
relative_imports += re.findall('''^\s*from\s+\.(\S+)\s+import''' , A_ , flags=re.MULTILINE )
# Unique-ify
return list(set(A_ ) )
def __SCREAMING_SNAKE_CASE ( A_ ):
lowerCAmelCase__ : Optional[Any] = False
lowerCAmelCase__ : Optional[Any] = [module_file]
lowerCAmelCase__ : int = []
# Let's recurse through all relative imports
while not no_change:
lowerCAmelCase__ : Optional[Any] = []
for f in files_to_check:
new_imports.extend(get_relative_imports(A_ ) )
lowerCAmelCase__ : Optional[int] = Path(A_ ).parent
lowerCAmelCase__ : List[Any] = [str(module_path / m ) for m in new_imports]
lowerCAmelCase__ : Tuple = [f for f in new_import_files if f not in all_relative_imports]
lowerCAmelCase__ : Dict = [f'{f}.py' for f in new_import_files]
lowerCAmelCase__ : Union[str, Any] = len(A_ ) == 0
all_relative_imports.extend(A_ )
return all_relative_imports
def __SCREAMING_SNAKE_CASE ( A_ ):
with open(A_ , '''r''' , encoding='''utf-8''' ) as f:
lowerCAmelCase__ : Optional[Any] = f.read()
# Imports of the form `import xxx`
lowerCAmelCase__ : Tuple = re.findall('''^\s*import\s+(\S+)\s*$''' , A_ , flags=re.MULTILINE )
# Imports of the form `from xxx import yyy`
imports += re.findall('''^\s*from\s+(\S+)\s+import''' , A_ , flags=re.MULTILINE )
# Only keep the top-level module
lowerCAmelCase__ : str = [imp.split('''.''' )[0] for imp in imports if not imp.startswith('''.''' )]
# Unique-ify and test we got them all
lowerCAmelCase__ : Union[str, Any] = list(set(A_ ) )
lowerCAmelCase__ : List[Any] = []
for imp in imports:
try:
importlib.import_module(A_ )
except ImportError:
missing_packages.append(A_ )
if len(A_ ) > 0:
raise ImportError(
'''This modeling file requires the following packages that were not found in your environment: '''
f'{", ".join(A_ )}. Run `pip install {" ".join(A_ )}`' )
return get_relative_imports(A_ )
def __SCREAMING_SNAKE_CASE ( A_ , A_ ):
lowerCAmelCase__ : List[str] = module_path.replace(os.path.sep , '''.''' )
lowerCAmelCase__ : Any = importlib.import_module(A_ )
if class_name is None:
return find_pipeline_class(A_ )
return getattr(A_ , A_ )
def __SCREAMING_SNAKE_CASE ( A_ ):
from ..pipelines import DiffusionPipeline
lowerCAmelCase__ : List[Any] = dict(inspect.getmembers(A_ , inspect.isclass ) )
lowerCAmelCase__ : Union[str, Any] = None
for cls_name, cls in cls_members.items():
if (
cls_name != DiffusionPipeline.__name__
and issubclass(cls , A_ )
and cls.__module__.split('''.''' )[0] != "diffusers"
):
if pipeline_class is not None:
raise ValueError(
f'Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:'
f' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in'
f' {loaded_module}.' )
lowerCAmelCase__ : Tuple = cls
return pipeline_class
def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ = None , A_ = False , A_ = False , A_ = None , A_ = None , A_ = None , A_ = False , ):
lowerCAmelCase__ : Tuple = str(A_ )
lowerCAmelCase__ : str = os.path.join(A_ , A_ )
if os.path.isfile(A_ ):
lowerCAmelCase__ : Optional[Any] = module_file_or_url
lowerCAmelCase__ : Dict = '''local'''
elif pretrained_model_name_or_path.count('''/''' ) == 0:
lowerCAmelCase__ : Union[str, Any] = get_diffusers_versions()
# cut ".dev0"
lowerCAmelCase__ : Any = '''v''' + '''.'''.join(__version__.split('''.''' )[:3] )
# retrieve github version that matches
if revision is None:
lowerCAmelCase__ : str = latest_version if latest_version[1:] in available_versions else '''main'''
logger.info(f'Defaulting to latest_version: {revision}.' )
elif revision in available_versions:
lowerCAmelCase__ : Optional[Any] = f'v{revision}'
elif revision == "main":
lowerCAmelCase__ : Tuple = revision
else:
raise ValueError(
f'`custom_revision`: {revision} does not exist. Please make sure to choose one of'
f' {", ".join(available_versions + ["main"] )}.' )
# community pipeline on GitHub
lowerCAmelCase__ : Tuple = COMMUNITY_PIPELINES_URL.format(revision=A_ , pipeline=A_ )
try:
lowerCAmelCase__ : str = cached_download(
A_ , cache_dir=A_ , force_download=A_ , proxies=A_ , resume_download=A_ , local_files_only=A_ , use_auth_token=A_ , )
lowerCAmelCase__ : Dict = '''git'''
lowerCAmelCase__ : Union[str, Any] = pretrained_model_name_or_path + '''.py'''
except EnvironmentError:
logger.error(f'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' )
raise
else:
try:
# Load from URL or cache if already cached
lowerCAmelCase__ : Dict = hf_hub_download(
A_ , A_ , cache_dir=A_ , force_download=A_ , proxies=A_ , resume_download=A_ , local_files_only=A_ , use_auth_token=A_ , )
lowerCAmelCase__ : str = os.path.join('''local''' , '''--'''.join(pretrained_model_name_or_path.split('''/''' ) ) )
except EnvironmentError:
logger.error(f'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' )
raise
# Check we have all the requirements in our environment
lowerCAmelCase__ : Optional[int] = check_imports(A_ )
# Now we move the module inside our cached dynamic modules.
lowerCAmelCase__ : int = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule
create_dynamic_module(A_ )
lowerCAmelCase__ : Tuple = Path(A_ ) / full_submodule
if submodule == "local" or submodule == "git":
# We always copy local files (we could hash the file to see if there was a change, and give them the name of
# that hash, to only copy when there is a modification but it seems overkill for now).
# The only reason we do the copy is to avoid putting too many folders in sys.path.
shutil.copy(A_ , submodule_path / module_file )
for module_needed in modules_needed:
lowerCAmelCase__ : str = f'{module_needed}.py'
shutil.copy(os.path.join(A_ , A_ ) , submodule_path / module_needed )
else:
# Get the commit hash
# TODO: we will get this info in the etag soon, so retrieve it from there and not here.
if isinstance(A_ , A_ ):
lowerCAmelCase__ : List[str] = use_auth_token
elif use_auth_token is True:
lowerCAmelCase__ : Optional[int] = HfFolder.get_token()
else:
lowerCAmelCase__ : List[Any] = None
lowerCAmelCase__ : List[Any] = model_info(A_ , revision=A_ , token=A_ ).sha
# The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the
# benefit of versioning.
lowerCAmelCase__ : List[str] = submodule_path / commit_hash
lowerCAmelCase__ : Optional[Any] = full_submodule + os.path.sep + commit_hash
create_dynamic_module(A_ )
if not (submodule_path / module_file).exists():
shutil.copy(A_ , submodule_path / module_file )
# Make sure we also have every file with relative
for module_needed in modules_needed:
if not (submodule_path / module_needed).exists():
get_cached_module_file(
A_ , f'{module_needed}.py' , cache_dir=A_ , force_download=A_ , resume_download=A_ , proxies=A_ , use_auth_token=A_ , revision=A_ , local_files_only=A_ , )
return os.path.join(A_ , A_ )
def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ = None , A_ = None , A_ = False , A_ = False , A_ = None , A_ = None , A_ = None , A_ = False , **A_ , ):
lowerCAmelCase__ : Tuple = get_cached_module_file(
A_ , A_ , cache_dir=A_ , force_download=A_ , resume_download=A_ , proxies=A_ , use_auth_token=A_ , revision=A_ , local_files_only=A_ , )
return get_class_in_module(A_ , final_module.replace('''.py''' , '''''' ) )
| 367 |
"""simple docstring"""
import inspect
import re
from hashlib import shaaaa
from typing import Dict, List
from .arrow import arrow
from .audiofolder import audiofolder
from .csv import csv
from .imagefolder import imagefolder
from .json import json
from .pandas import pandas
from .parquet import parquet
from .sql import sql # noqa F401
from .text import text
def __SCREAMING_SNAKE_CASE ( A_ ):
lowerCAmelCase__ : Any = []
for line in lines:
lowerCAmelCase__ : int = re.sub(r'''#.*''' , '''''' , A_ ) # remove comments
if line:
filtered_lines.append(A_ )
lowerCAmelCase__ : Optional[int] = '''\n'''.join(A_ )
# Make a hash from all this code
lowerCAmelCase__ : int = full_str.encode('''utf-8''' )
return shaaaa(A_ ).hexdigest()
# get importable module names and hash for caching
__UpperCamelCase : Any = {
'''csv''': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())),
'''json''': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())),
'''pandas''': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())),
'''parquet''': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())),
'''arrow''': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())),
'''text''': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())),
'''imagefolder''': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())),
'''audiofolder''': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())),
}
# Used to infer the module to use based on the data files extensions
__UpperCamelCase : Optional[Any] = {
'''.csv''': ('''csv''', {}),
'''.tsv''': ('''csv''', {'''sep''': '''\t'''}),
'''.json''': ('''json''', {}),
'''.jsonl''': ('''json''', {}),
'''.parquet''': ('''parquet''', {}),
'''.arrow''': ('''arrow''', {}),
'''.txt''': ('''text''', {}),
}
_EXTENSION_TO_MODULE.update({ext: ('''imagefolder''', {}) for ext in imagefolder.ImageFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext.upper(): ('''imagefolder''', {}) for ext in imagefolder.ImageFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext: ('''audiofolder''', {}) for ext in audiofolder.AudioFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext.upper(): ('''audiofolder''', {}) for ext in audiofolder.AudioFolder.EXTENSIONS})
__UpperCamelCase : Union[str, Any] = {'''imagefolder''', '''audiofolder'''}
# Used to filter data files based on extensions given a module name
__UpperCamelCase : Dict[str, List[str]] = {}
for _ext, (_module, _) in _EXTENSION_TO_MODULE.items():
_MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext)
_MODULE_TO_EXTENSIONS["imagefolder"].append('''.zip''')
_MODULE_TO_EXTENSIONS["audiofolder"].append('''.zip''')
| 74 | 0 |
"""simple docstring"""
from itertools import product
def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> list[int]:
lowerCAmelCase__ : Union[str, Any] = sides_number
lowerCAmelCase__ : Optional[int] = max_face_number * dice_number
lowerCAmelCase__ : List[str] = [0] * (max_total + 1)
lowerCAmelCase__ : Union[str, Any] = 1
lowerCAmelCase__ : Optional[int] = range(__UpperCAmelCase , max_face_number + 1 )
for dice_numbers in product(__UpperCAmelCase , repeat=__UpperCAmelCase ):
lowerCAmelCase__ : str = sum(__UpperCAmelCase )
totals_frequencies[total] += 1
return totals_frequencies
def lowercase_ ( ) -> float:
lowerCAmelCase__ : Union[str, Any] = total_frequency_distribution(
sides_number=4 , dice_number=9 )
lowerCAmelCase__ : Tuple = total_frequency_distribution(
sides_number=6 , dice_number=6 )
lowerCAmelCase__ : str = 0
lowerCAmelCase__ : int = 9
lowerCAmelCase__ : Tuple = 4 * 9
lowerCAmelCase__ : Optional[int] = 6
for peter_total in range(__UpperCAmelCase , max_peter_total + 1 ):
peter_wins_count += peter_totals_frequencies[peter_total] * sum(
colin_totals_frequencies[min_colin_total:peter_total] )
lowerCAmelCase__ : Tuple = (4**9) * (6**6)
lowerCAmelCase__ : Union[str, Any] = peter_wins_count / total_games_number
lowerCAmelCase__ : Optional[int] = round(__UpperCAmelCase , ndigits=7 )
return rounded_peter_win_probability
if __name__ == "__main__":
print(f"""{solution() = }""")
| 242 |
"""simple docstring"""
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
_A = logging.get_logger(__name__)
_A = {
"""SenseTime/deformable-detr""": """https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json""",
# See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr
}
class _lowerCamelCase ( a_ ):
_lowerCamelCase :Any = "deformable_detr"
_lowerCamelCase :Union[str, Any] = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
}
def __init__( self : int , UpperCamelCase : Optional[Any]=True , UpperCamelCase : str=None , UpperCamelCase : int=3 , UpperCamelCase : Dict=3_00 , UpperCamelCase : int=10_24 , UpperCamelCase : List[str]=6 , UpperCamelCase : Optional[Any]=10_24 , UpperCamelCase : Any=8 , UpperCamelCase : List[str]=6 , UpperCamelCase : Dict=10_24 , UpperCamelCase : Optional[Any]=8 , UpperCamelCase : Tuple=0.0 , UpperCamelCase : Optional[Any]=True , UpperCamelCase : int="relu" , UpperCamelCase : List[Any]=2_56 , UpperCamelCase : Union[str, Any]=0.1 , UpperCamelCase : Dict=0.0 , UpperCamelCase : Optional[Any]=0.0 , UpperCamelCase : Any=0.02 , UpperCamelCase : int=1.0 , UpperCamelCase : Dict=True , UpperCamelCase : Dict=False , UpperCamelCase : Any="sine" , UpperCamelCase : int="resnet50" , UpperCamelCase : str=True , UpperCamelCase : str=False , UpperCamelCase : Any=4 , UpperCamelCase : List[str]=4 , UpperCamelCase : Dict=4 , UpperCamelCase : List[str]=False , UpperCamelCase : Tuple=3_00 , UpperCamelCase : int=False , UpperCamelCase : List[str]=1 , UpperCamelCase : List[str]=5 , UpperCamelCase : str=2 , UpperCamelCase : List[Any]=1 , UpperCamelCase : Tuple=1 , UpperCamelCase : str=5 , UpperCamelCase : List[str]=2 , UpperCamelCase : Any=0.1 , UpperCamelCase : Union[str, Any]=0.25 , UpperCamelCase : Any=False , **UpperCamelCase : int , ) -> Dict:
"""simple docstring"""
if backbone_config is not None and use_timm_backbone:
raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" )
if not use_timm_backbone:
if backbone_config is None:
logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" )
lowerCAmelCase__ : List[str] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] )
elif isinstance(UpperCamelCase , UpperCamelCase ):
lowerCAmelCase__ : Dict = backbone_config.get("""model_type""" )
lowerCAmelCase__ : Dict = CONFIG_MAPPING[backbone_model_type]
lowerCAmelCase__ : Any = config_class.from_dict(UpperCamelCase )
lowerCAmelCase__ : List[str] = use_timm_backbone
lowerCAmelCase__ : List[str] = backbone_config
lowerCAmelCase__ : Dict = num_channels
lowerCAmelCase__ : int = num_queries
lowerCAmelCase__ : Any = max_position_embeddings
lowerCAmelCase__ : List[Any] = d_model
lowerCAmelCase__ : Tuple = encoder_ffn_dim
lowerCAmelCase__ : Tuple = encoder_layers
lowerCAmelCase__ : List[Any] = encoder_attention_heads
lowerCAmelCase__ : Optional[int] = decoder_ffn_dim
lowerCAmelCase__ : Dict = decoder_layers
lowerCAmelCase__ : Any = decoder_attention_heads
lowerCAmelCase__ : int = dropout
lowerCAmelCase__ : List[str] = attention_dropout
lowerCAmelCase__ : str = activation_dropout
lowerCAmelCase__ : Optional[int] = activation_function
lowerCAmelCase__ : Optional[Any] = init_std
lowerCAmelCase__ : Optional[int] = init_xavier_std
lowerCAmelCase__ : Optional[int] = encoder_layerdrop
lowerCAmelCase__ : Any = auxiliary_loss
lowerCAmelCase__ : List[str] = position_embedding_type
lowerCAmelCase__ : Optional[Any] = backbone
lowerCAmelCase__ : Tuple = use_pretrained_backbone
lowerCAmelCase__ : Union[str, Any] = dilation
# deformable attributes
lowerCAmelCase__ : Optional[int] = num_feature_levels
lowerCAmelCase__ : int = encoder_n_points
lowerCAmelCase__ : Optional[int] = decoder_n_points
lowerCAmelCase__ : Tuple = two_stage
lowerCAmelCase__ : Any = two_stage_num_proposals
lowerCAmelCase__ : Optional[int] = with_box_refine
if two_stage is True and with_box_refine is False:
raise ValueError("""If two_stage is True, with_box_refine must be True.""" )
# Hungarian matcher
lowerCAmelCase__ : Union[str, Any] = class_cost
lowerCAmelCase__ : Optional[int] = bbox_cost
lowerCAmelCase__ : str = giou_cost
# Loss coefficients
lowerCAmelCase__ : Optional[Any] = mask_loss_coefficient
lowerCAmelCase__ : Tuple = dice_loss_coefficient
lowerCAmelCase__ : Optional[Any] = bbox_loss_coefficient
lowerCAmelCase__ : Optional[int] = giou_loss_coefficient
lowerCAmelCase__ : Optional[Any] = eos_coefficient
lowerCAmelCase__ : Tuple = focal_alpha
lowerCAmelCase__ : Tuple = disable_custom_kernels
super().__init__(is_encoder_decoder=UpperCamelCase , **UpperCamelCase )
@property
def _lowerCAmelCase ( self : str ) -> int:
"""simple docstring"""
return self.encoder_attention_heads
@property
def _lowerCAmelCase ( self : Optional[int] ) -> int:
"""simple docstring"""
return self.d_model
def _lowerCAmelCase ( self : str ) -> List[str]:
"""simple docstring"""
lowerCAmelCase__ : Dict = copy.deepcopy(self.__dict__ )
if self.backbone_config is not None:
lowerCAmelCase__ : Union[str, Any] = self.backbone_config.to_dict()
lowerCAmelCase__ : Union[str, Any] = self.__class__.model_type
return output
| 242 | 1 |
"""simple docstring"""
def SCREAMING_SNAKE_CASE_ ( snake_case : int )-> bool:
return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number
if __name__ == "__main__":
print("""Program to check whether a number is a Perfect number or not...""")
A_ : str =int(input("""Enter number: """).strip())
print(f'{number} is {"" if perfect(number) else "not "}a Perfect Number.')
| 80 |
"""simple docstring"""
from datasets.utils.patching import _PatchedModuleObj, patch_submodule
from . import _test_patching
def SCREAMING_SNAKE_CASE_ ( )-> Any:
import os as original_os
from os import path as original_path
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
_lowerCamelCase = '__test_patch_submodule_mock__'
with patch_submodule(_test_patching , 'os.path.join' , snake_case ):
# Every way to access os.path.join must be patched, and the rest must stay untouched
# check os.path.join
assert isinstance(_test_patching.os , _PatchedModuleObj )
assert isinstance(_test_patching.os.path , _PatchedModuleObj )
assert _test_patching.os.path.join is mock
# check path.join
assert isinstance(_test_patching.path , _PatchedModuleObj )
assert _test_patching.path.join is mock
# check join
assert _test_patching.join is mock
# check that the other attributes are untouched
assert _test_patching.os.rename is original_rename
assert _test_patching.path.dirname is original_dirname
assert _test_patching.os.path.dirname is original_dirname
# Even renamed modules or objects must be patched
# check renamed_os.path.join
assert isinstance(_test_patching.renamed_os , _PatchedModuleObj )
assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj )
assert _test_patching.renamed_os.path.join is mock
# check renamed_path.join
assert isinstance(_test_patching.renamed_path , _PatchedModuleObj )
assert _test_patching.renamed_path.join is mock
# check renamed_join
assert _test_patching.renamed_join is mock
# check that the other attributes are untouched
assert _test_patching.renamed_os.rename is original_rename
assert _test_patching.renamed_path.dirname is original_dirname
assert _test_patching.renamed_os.path.dirname is original_dirname
# check that everthing is back to normal when the patch is over
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
def SCREAMING_SNAKE_CASE_ ( )-> Optional[int]:
assert _test_patching.open is open
_lowerCamelCase = '__test_patch_submodule_builtin_mock__'
# _test_patching has "open" in its globals
assert _test_patching.open is open
with patch_submodule(_test_patching , 'open' , snake_case ):
assert _test_patching.open is mock
# check that everthing is back to normal when the patch is over
assert _test_patching.open is open
def SCREAMING_SNAKE_CASE_ ( )-> Tuple:
# pandas.read_csv is not present in _test_patching
_lowerCamelCase = '__test_patch_submodule_missing_mock__'
with patch_submodule(_test_patching , 'pandas.read_csv' , snake_case ):
pass
def SCREAMING_SNAKE_CASE_ ( )-> Any:
# builtin should always be mocked even if they're not in the globals
# in case they're loaded at one point
_lowerCamelCase = '__test_patch_submodule_missing_builtin_mock__'
# _test_patching doesn't have "len" in its globals
assert getattr(_test_patching , 'len' , snake_case ) is None
with patch_submodule(_test_patching , 'len' , snake_case ):
assert _test_patching.len is mock
assert _test_patching.len is len
def SCREAMING_SNAKE_CASE_ ( )-> Any:
_lowerCamelCase = '__test_patch_submodule_start_and_stop_mock__'
_lowerCamelCase = patch_submodule(_test_patching , 'open' , snake_case )
assert _test_patching.open is open
patch.start()
assert _test_patching.open is mock
patch.stop()
assert _test_patching.open is open
def SCREAMING_SNAKE_CASE_ ( )-> Tuple:
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
_lowerCamelCase = '__test_patch_submodule_successive_join__'
_lowerCamelCase = '__test_patch_submodule_successive_dirname__'
_lowerCamelCase = '__test_patch_submodule_successive_rename__'
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
with patch_submodule(_test_patching , 'os.path.join' , snake_case ):
with patch_submodule(_test_patching , 'os.rename' , snake_case ):
with patch_submodule(_test_patching , 'os.path.dirname' , snake_case ):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
# try another order
with patch_submodule(_test_patching , 'os.rename' , snake_case ):
with patch_submodule(_test_patching , 'os.path.join' , snake_case ):
with patch_submodule(_test_patching , 'os.path.dirname' , snake_case ):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
def SCREAMING_SNAKE_CASE_ ( )-> Optional[int]:
_lowerCamelCase = '__test_patch_submodule_doesnt_exist_mock__'
with patch_submodule(_test_patching , '__module_that_doesn_exist__.__attribute_that_doesn_exist__' , snake_case ):
pass
with patch_submodule(_test_patching , 'os.__attribute_that_doesn_exist__' , snake_case ):
pass
| 80 | 1 |
'''simple docstring'''
from __future__ import annotations
def _a( UpperCamelCase__ : int = 4 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Union[str, Any] =abs(UpperCamelCase__ ) or 4
return [[1 + x + y * row_size for x in range(UpperCamelCase__ )] for y in range(UpperCamelCase__ )]
def _a( UpperCamelCase__ : list[list[int]] ):
'''simple docstring'''
return reverse_row(transpose(UpperCamelCase__ ) )
# OR.. transpose(reverse_column(matrix))
def _a( UpperCamelCase__ : list[list[int]] ):
'''simple docstring'''
return reverse_row(reverse_column(UpperCamelCase__ ) )
# OR.. reverse_column(reverse_row(matrix))
def _a( UpperCamelCase__ : list[list[int]] ):
'''simple docstring'''
return reverse_column(transpose(UpperCamelCase__ ) )
# OR.. transpose(reverse_row(matrix))
def _a( UpperCamelCase__ : list[list[int]] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : int =[list(UpperCamelCase__ ) for x in zip(*UpperCamelCase__ )]
return matrix
def _a( UpperCamelCase__ : list[list[int]] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Optional[Any] =matrix[::-1]
return matrix
def _a( UpperCamelCase__ : list[list[int]] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Tuple =[x[::-1] for x in matrix]
return matrix
def _a( UpperCamelCase__ : list[list[int]] ):
'''simple docstring'''
for i in matrix:
print(*UpperCamelCase__ )
if __name__ == "__main__":
a_ = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 90 counterclockwise:\n')
print_matrix(rotate_aa(matrix))
a_ = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 180:\n')
print_matrix(rotate_aaa(matrix))
a_ = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 270 counterclockwise:\n')
print_matrix(rotate_aaa(matrix)) | 152 |
'''simple docstring'''
import gzip
import hashlib
import json
import multiprocessing
import os
import re
import shutil
import time
from pathlib import Path
import numpy as np
from arguments import PreprocessingArguments
from datasets import load_dataset
from minhash_deduplication import deduplicate_dataset
from transformers import AutoTokenizer, HfArgumentParser
a_ = re.compile(R'\s+')
def _a( UpperCamelCase__ : str ):
'''simple docstring'''
return {"hash": hashlib.mda(re.sub(UpperCamelCase__, '''''', example['''content'''] ).encode('''utf-8''' ) ).hexdigest()}
def _a( UpperCamelCase__ : List[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Union[str, Any] =[len(UpperCamelCase__ ) for line in example['''content'''].splitlines()]
return {"line_mean": np.mean(UpperCamelCase__ ), "line_max": max(UpperCamelCase__ )}
def _a( UpperCamelCase__ : Optional[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Tuple =np.mean([c.isalnum() for c in example['''content''']] )
return {"alpha_frac": alpha_frac}
def _a( UpperCamelCase__ : Any, UpperCamelCase__ : Any ):
'''simple docstring'''
if example["hash"] in uniques:
uniques.remove(example['''hash'''] )
return True
else:
return False
def _a( UpperCamelCase__ : Any, UpperCamelCase__ : Optional[Any]=5 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Union[str, Any] =['''auto-generated''', '''autogenerated''', '''automatically generated''']
SCREAMING_SNAKE_CASE__ : Dict =example['''content'''].splitlines()
for _, line in zip(range(UpperCamelCase__ ), UpperCamelCase__ ):
for keyword in keywords:
if keyword in line.lower():
return {"autogenerated": True}
else:
return {"autogenerated": False}
def _a( UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : Tuple=5, UpperCamelCase__ : Optional[Any]=0.0_5 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Tuple =['''unit tests''', '''test file''', '''configuration file''']
SCREAMING_SNAKE_CASE__ : List[Any] =example['''content'''].splitlines()
SCREAMING_SNAKE_CASE__ : List[str] =0
SCREAMING_SNAKE_CASE__ : Optional[Any] =0
# first test
for _, line in zip(range(UpperCamelCase__ ), UpperCamelCase__ ):
for keyword in keywords:
if keyword in line.lower():
return {"config_or_test": True}
# second test
SCREAMING_SNAKE_CASE__ : List[str] =example['''content'''].count('''\n''' )
SCREAMING_SNAKE_CASE__ : Optional[int] =int(coeff * nlines )
for line in lines:
count_config += line.lower().count('''config''' )
count_test += line.lower().count('''test''' )
if count_config > threshold or count_test > threshold:
return {"config_or_test": True}
return {"config_or_test": False}
def _a( UpperCamelCase__ : Optional[int] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : List[Any] =['''def ''', '''class ''', '''for ''', '''while ''']
SCREAMING_SNAKE_CASE__ : List[Any] =example['''content'''].splitlines()
for line in lines:
for keyword in keywords:
if keyword in line.lower():
return {"has_no_keywords": False}
return {"has_no_keywords": True}
def _a( UpperCamelCase__ : Any, UpperCamelCase__ : Dict=4 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : List[Any] =example['''content'''].splitlines()
SCREAMING_SNAKE_CASE__ : Optional[Any] =0
for line in lines:
counter += line.lower().count('''=''' )
if counter > minimum:
return {"has_few_assignments": False}
return {"has_few_assignments": True}
def _a( UpperCamelCase__ : List[str] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : str =tokenizer(example['''content'''], truncation=UpperCamelCase__ )['''input_ids''']
SCREAMING_SNAKE_CASE__ : Optional[Any] =len(example['''content'''] ) / len(UpperCamelCase__ )
return {"ratio": ratio}
def _a( UpperCamelCase__ : str ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Dict ={}
results.update(get_hash(UpperCamelCase__ ) )
results.update(line_stats(UpperCamelCase__ ) )
results.update(alpha_stats(UpperCamelCase__ ) )
results.update(char_token_ratio(UpperCamelCase__ ) )
results.update(is_autogenerated(UpperCamelCase__ ) )
results.update(is_config_or_test(UpperCamelCase__ ) )
results.update(has_no_keywords(UpperCamelCase__ ) )
results.update(has_few_assignments(UpperCamelCase__ ) )
return results
def _a( UpperCamelCase__ : Tuple, UpperCamelCase__ : List[Any], UpperCamelCase__ : str ):
'''simple docstring'''
if not check_uniques(UpperCamelCase__, UpperCamelCase__ ):
return False
elif example["autogenerated"]:
return False
elif example["line_max"] > args.line_max:
return False
elif example["line_mean"] > args.line_mean:
return False
elif example["alpha_frac"] < args.alpha_frac:
return False
elif example["ratio"] < args.min_token_ratio:
return False
elif example["config_or_test"] and np.random.rand() <= args.filter_proba:
return False
elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba:
return False
elif example["has_few_assignments"]:
return False
else:
return True
def _a( UpperCamelCase__ : str ):
'''simple docstring'''
with open(UpperCamelCase__, '''rb''' ) as f_in:
with gzip.open(str(UpperCamelCase__ ) + '''.gz''', '''wb''', compresslevel=6 ) as f_out:
shutil.copyfileobj(UpperCamelCase__, UpperCamelCase__ )
os.unlink(UpperCamelCase__ )
# Settings
a_ = HfArgumentParser(PreprocessingArguments)
a_ = parser.parse_args()
if args.num_workers is None:
a_ = multiprocessing.cpu_count()
a_ = AutoTokenizer.from_pretrained(args.tokenizer_dir)
# Load dataset
a_ = time.time()
a_ = load_dataset(args.dataset_name, split='train')
print(F'''Time to load dataset: {time.time()-t_start:.2f}''')
# Run preprocessing
a_ = time.time()
a_ = ds.map(preprocess, num_proc=args.num_workers)
print(F'''Time to preprocess dataset: {time.time()-t_start:.2f}''')
# Deduplicate hashes
a_ = set(ds.unique('hash'))
a_ = len(uniques) / len(ds)
print(F'''Fraction of duplicates: {1-frac:.2%}''')
# Deduplicate data and apply heuristics
a_ = time.time()
a_ = ds.filter(filter, fn_kwargs={'uniques': uniques, 'args': args})
print(F'''Time to filter dataset: {time.time()-t_start:.2f}''')
print(F'''Size of filtered dataset: {len(ds_filter)}''')
# Deduplicate with minhash and jaccard similarity
if args.near_deduplication:
a_ = time.time()
a_ , a_ = deduplicate_dataset(ds_filter, args.jaccard_threshold)
print(F'''Time to deduplicate dataset: {time.time()-t_start:.2f}''')
print(F'''Size of deduplicate dataset: {len(ds_filter)}''')
# Save data in batches of samples_per_file
a_ = Path(args.output_dir)
output_dir.mkdir(exist_ok=True)
# save duplicate_clusters in the output_dir as artifacts
# not sure it is the right place the save it
if args.near_deduplication:
with open(output_dir / 'duplicate_clusters.json', 'w') as f:
json.dump(duplicate_clusters, f)
a_ = output_dir / 'data'
data_dir.mkdir(exist_ok=True)
a_ = time.time()
for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)):
a_ = str(data_dir / F'''file-{file_number+1:012}.json''')
a_ = min(len(ds_filter), index + args.samples_per_file)
ds_filter.select(list(range(index, end_index))).to_json(file_path)
compress_file(file_path)
print(F'''Time to save dataset: {time.time()-t_start:.2f}''') | 152 | 1 |
import argparse
import glob
import logging
import os
import time
from argparse import Namespace
import numpy as np
import torch
from lightning_base import BaseTransformer, add_generic_args, generic_train
from torch.utils.data import DataLoader, TensorDataset
from transformers import glue_compute_metrics as compute_metrics
from transformers import glue_convert_examples_to_features as convert_examples_to_features
from transformers import glue_output_modes, glue_tasks_num_labels
from transformers import glue_processors as processors
__lowerCamelCase : Union[str, Any] = logging.getLogger(__name__)
class __snake_case ( lowerCamelCase_ ):
lowerCAmelCase_ = "sequence-classification"
def __init__( self : Optional[Any] , _lowercase : int ):
"""simple docstring"""
if type(_lowercase ) == dict:
SCREAMING_SNAKE_CASE__ = Namespace(**_lowercase )
SCREAMING_SNAKE_CASE__ = glue_output_modes[hparams.task]
SCREAMING_SNAKE_CASE__ = glue_tasks_num_labels[hparams.task]
super().__init__(_lowercase , _lowercase , self.mode )
def __a ( self : Any , **_lowercase : Optional[int] ):
"""simple docstring"""
return self.model(**_lowercase )
def __a ( self : List[str] , _lowercase : Optional[int] , _lowercase : int ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]}
if self.config.model_type not in ["distilbert", "bart"]:
SCREAMING_SNAKE_CASE__ = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None
SCREAMING_SNAKE_CASE__ = self(**_lowercase )
SCREAMING_SNAKE_CASE__ = outputs[0]
SCREAMING_SNAKE_CASE__ = self.trainer.lr_schedulers[0]["""scheduler"""]
SCREAMING_SNAKE_CASE__ = {"""loss""": loss, """rate""": lr_scheduler.get_last_lr()[-1]}
return {"loss": loss, "log": tensorboard_logs}
def __a ( self : int ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.hparams
SCREAMING_SNAKE_CASE__ = processors[args.task]()
SCREAMING_SNAKE_CASE__ = processor.get_labels()
for mode in ["train", "dev"]:
SCREAMING_SNAKE_CASE__ = self._feature_file(_lowercase )
if os.path.exists(_lowercase ) and not args.overwrite_cache:
logger.info("""Loading features from cached file %s""" , _lowercase )
else:
logger.info("""Creating features from dataset file at %s""" , args.data_dir )
SCREAMING_SNAKE_CASE__ = (
processor.get_dev_examples(args.data_dir )
if mode == """dev"""
else processor.get_train_examples(args.data_dir )
)
SCREAMING_SNAKE_CASE__ = convert_examples_to_features(
_lowercase , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , )
logger.info("""Saving features into cached file %s""" , _lowercase )
torch.save(_lowercase , _lowercase )
def __a ( self : List[Any] , _lowercase : str , _lowercase : int , _lowercase : bool = False ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = """dev""" if mode == """test""" else mode
SCREAMING_SNAKE_CASE__ = self._feature_file(_lowercase )
logger.info("""Loading features from cached file %s""" , _lowercase )
SCREAMING_SNAKE_CASE__ = torch.load(_lowercase )
SCREAMING_SNAKE_CASE__ = torch.tensor([f.input_ids for f in features] , dtype=torch.long )
SCREAMING_SNAKE_CASE__ = torch.tensor([f.attention_mask for f in features] , dtype=torch.long )
SCREAMING_SNAKE_CASE__ = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long )
if self.hparams.glue_output_mode == "classification":
SCREAMING_SNAKE_CASE__ = torch.tensor([f.label for f in features] , dtype=torch.long )
elif self.hparams.glue_output_mode == "regression":
SCREAMING_SNAKE_CASE__ = torch.tensor([f.label for f in features] , dtype=torch.float )
return DataLoader(
TensorDataset(_lowercase , _lowercase , _lowercase , _lowercase ) , batch_size=_lowercase , shuffle=_lowercase , )
def __a ( self : Any , _lowercase : Union[str, Any] , _lowercase : Dict ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]}
if self.config.model_type not in ["distilbert", "bart"]:
SCREAMING_SNAKE_CASE__ = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None
SCREAMING_SNAKE_CASE__ = self(**_lowercase )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = outputs[:2]
SCREAMING_SNAKE_CASE__ = logits.detach().cpu().numpy()
SCREAMING_SNAKE_CASE__ = inputs["""labels"""].detach().cpu().numpy()
return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids}
def __a ( self : List[str] , _lowercase : List[Any] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = torch.stack([x["""val_loss"""] for x in outputs] ).mean().detach().cpu().item()
SCREAMING_SNAKE_CASE__ = np.concatenate([x["""pred"""] for x in outputs] , axis=0 )
if self.hparams.glue_output_mode == "classification":
SCREAMING_SNAKE_CASE__ = np.argmax(_lowercase , axis=1 )
elif self.hparams.glue_output_mode == "regression":
SCREAMING_SNAKE_CASE__ = np.squeeze(_lowercase )
SCREAMING_SNAKE_CASE__ = np.concatenate([x["""target"""] for x in outputs] , axis=0 )
SCREAMING_SNAKE_CASE__ = [[] for _ in range(out_label_ids.shape[0] )]
SCREAMING_SNAKE_CASE__ = [[] for _ in range(out_label_ids.shape[0] )]
SCREAMING_SNAKE_CASE__ = {**{"""val_loss""": val_loss_mean}, **compute_metrics(self.hparams.task , _lowercase , _lowercase )}
SCREAMING_SNAKE_CASE__ = dict(results.items() )
SCREAMING_SNAKE_CASE__ = results
return ret, preds_list, out_label_list
def __a ( self : Union[str, Any] , _lowercase : list ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self._eval_end(_lowercase )
SCREAMING_SNAKE_CASE__ = ret["""log"""]
return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
def __a ( self : Tuple , _lowercase : List[Any] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self._eval_end(_lowercase )
SCREAMING_SNAKE_CASE__ = ret["""log"""]
# `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss`
return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
@staticmethod
def __a ( _lowercase : str , _lowercase : Optional[Any] ):
"""simple docstring"""
BaseTransformer.add_model_specific_args(_lowercase , _lowercase )
parser.add_argument(
"""--max_seq_length""" , default=1_28 , type=_lowercase , help=(
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
) , )
parser.add_argument(
"""--task""" , default="""""" , type=_lowercase , required=_lowercase , help="""The GLUE task to run""" , )
parser.add_argument(
"""--gpus""" , default=0 , type=_lowercase , help="""The number of GPUs allocated for this, it is by default 0 meaning none""" , )
parser.add_argument(
"""--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" )
return parser
def __SCREAMING_SNAKE_CASE ( ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
add_generic_args(__UpperCamelCase , os.getcwd() )
SCREAMING_SNAKE_CASE__ = GLUETransformer.add_model_specific_args(__UpperCamelCase , os.getcwd() )
SCREAMING_SNAKE_CASE__ = parser.parse_args()
# If output_dir not provided, a folder will be generated in pwd
if args.output_dir is None:
SCREAMING_SNAKE_CASE__ = os.path.join(
"""./results""" , f"""{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}""" , )
os.makedirs(args.output_dir )
SCREAMING_SNAKE_CASE__ = GLUETransformer(__UpperCamelCase )
SCREAMING_SNAKE_CASE__ = generic_train(__UpperCamelCase , __UpperCamelCase )
# Optionally, predict on dev set and write to output_dir
if args.do_predict:
SCREAMING_SNAKE_CASE__ = sorted(glob.glob(os.path.join(args.output_dir , """checkpoint-epoch=*.ckpt""" ) , recursive=__UpperCamelCase ) )
SCREAMING_SNAKE_CASE__ = model.load_from_checkpoint(checkpoints[-1] )
return trainer.test(__UpperCamelCase )
if __name__ == "__main__":
main()
| 204 | from __future__ import annotations
import copy
import inspect
import unittest
import numpy as np
from transformers import is_tf_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_tf, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
TFLayoutLMvaModel,
)
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class __snake_case :
def __init__( self : Any , _lowercase : Tuple , _lowercase : str=2 , _lowercase : List[Any]=3 , _lowercase : Optional[Any]=4 , _lowercase : Optional[Any]=2 , _lowercase : str=7 , _lowercase : Dict=True , _lowercase : List[str]=True , _lowercase : Union[str, Any]=True , _lowercase : Optional[int]=True , _lowercase : Dict=99 , _lowercase : Dict=36 , _lowercase : Tuple=2 , _lowercase : Optional[int]=4 , _lowercase : int=37 , _lowercase : Tuple="gelu" , _lowercase : Optional[Any]=0.1 , _lowercase : Tuple=0.1 , _lowercase : str=5_12 , _lowercase : Dict=16 , _lowercase : int=2 , _lowercase : int=0.02 , _lowercase : Any=6 , _lowercase : List[Any]=6 , _lowercase : List[Any]=3 , _lowercase : List[Any]=4 , _lowercase : int=None , _lowercase : Optional[int]=10_00 , ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = parent
SCREAMING_SNAKE_CASE__ = batch_size
SCREAMING_SNAKE_CASE__ = num_channels
SCREAMING_SNAKE_CASE__ = image_size
SCREAMING_SNAKE_CASE__ = patch_size
SCREAMING_SNAKE_CASE__ = is_training
SCREAMING_SNAKE_CASE__ = use_input_mask
SCREAMING_SNAKE_CASE__ = use_token_type_ids
SCREAMING_SNAKE_CASE__ = use_labels
SCREAMING_SNAKE_CASE__ = vocab_size
SCREAMING_SNAKE_CASE__ = hidden_size
SCREAMING_SNAKE_CASE__ = num_hidden_layers
SCREAMING_SNAKE_CASE__ = num_attention_heads
SCREAMING_SNAKE_CASE__ = intermediate_size
SCREAMING_SNAKE_CASE__ = hidden_act
SCREAMING_SNAKE_CASE__ = hidden_dropout_prob
SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE__ = max_position_embeddings
SCREAMING_SNAKE_CASE__ = type_vocab_size
SCREAMING_SNAKE_CASE__ = type_sequence_label_size
SCREAMING_SNAKE_CASE__ = initializer_range
SCREAMING_SNAKE_CASE__ = coordinate_size
SCREAMING_SNAKE_CASE__ = shape_size
SCREAMING_SNAKE_CASE__ = num_labels
SCREAMING_SNAKE_CASE__ = num_choices
SCREAMING_SNAKE_CASE__ = scope
SCREAMING_SNAKE_CASE__ = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
SCREAMING_SNAKE_CASE__ = text_seq_length
SCREAMING_SNAKE_CASE__ = (image_size // patch_size) ** 2 + 1
SCREAMING_SNAKE_CASE__ = self.text_seq_length + self.image_seq_length
def __a ( self : List[str] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size )
SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox )
SCREAMING_SNAKE_CASE__ = bbox.numpy()
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
SCREAMING_SNAKE_CASE__ = bbox[i, j, 3]
SCREAMING_SNAKE_CASE__ = bbox[i, j, 1]
SCREAMING_SNAKE_CASE__ = tmp_coordinate
if bbox[i, j, 2] < bbox[i, j, 0]:
SCREAMING_SNAKE_CASE__ = bbox[i, j, 2]
SCREAMING_SNAKE_CASE__ = bbox[i, j, 0]
SCREAMING_SNAKE_CASE__ = tmp_coordinate
SCREAMING_SNAKE_CASE__ = tf.constant(_lowercase )
SCREAMING_SNAKE_CASE__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE__ = None
if self.use_input_mask:
SCREAMING_SNAKE_CASE__ = random_attention_mask([self.batch_size, self.text_seq_length] )
SCREAMING_SNAKE_CASE__ = None
if self.use_token_type_ids:
SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size )
SCREAMING_SNAKE_CASE__ = None
SCREAMING_SNAKE_CASE__ = None
if self.use_labels:
SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels )
SCREAMING_SNAKE_CASE__ = LayoutLMvaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , )
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def __a ( self : List[str] , _lowercase : Dict , _lowercase : List[Any] , _lowercase : str , _lowercase : Optional[int] , _lowercase : Union[str, Any] , _lowercase : Tuple ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = TFLayoutLMvaModel(config=_lowercase )
# text + image
SCREAMING_SNAKE_CASE__ = model(_lowercase , pixel_values=_lowercase , training=_lowercase )
SCREAMING_SNAKE_CASE__ = model(
_lowercase , bbox=_lowercase , pixel_values=_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , training=_lowercase , )
SCREAMING_SNAKE_CASE__ = model(_lowercase , bbox=_lowercase , pixel_values=_lowercase , training=_lowercase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# text only
SCREAMING_SNAKE_CASE__ = model(_lowercase , training=_lowercase )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
SCREAMING_SNAKE_CASE__ = model({"""pixel_values""": pixel_values} , training=_lowercase )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) )
def __a ( self : int , _lowercase : int , _lowercase : Optional[int] , _lowercase : Optional[Any] , _lowercase : Optional[int] , _lowercase : Tuple , _lowercase : List[Any] , _lowercase : Tuple ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.num_labels
SCREAMING_SNAKE_CASE__ = TFLayoutLMvaForSequenceClassification(config=_lowercase )
SCREAMING_SNAKE_CASE__ = model(
_lowercase , bbox=_lowercase , pixel_values=_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , training=_lowercase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __a ( self : Any , _lowercase : Dict , _lowercase : Tuple , _lowercase : int , _lowercase : Optional[int] , _lowercase : Optional[int] , _lowercase : Union[str, Any] , _lowercase : Tuple ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.num_labels
SCREAMING_SNAKE_CASE__ = TFLayoutLMvaForTokenClassification(config=_lowercase )
SCREAMING_SNAKE_CASE__ = model(
_lowercase , bbox=_lowercase , pixel_values=_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , training=_lowercase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) )
def __a ( self : str , _lowercase : int , _lowercase : List[str] , _lowercase : str , _lowercase : str , _lowercase : List[str] , _lowercase : List[str] , _lowercase : Union[str, Any] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = 2
SCREAMING_SNAKE_CASE__ = TFLayoutLMvaForQuestionAnswering(config=_lowercase )
SCREAMING_SNAKE_CASE__ = model(
_lowercase , bbox=_lowercase , pixel_values=_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , start_positions=_lowercase , end_positions=_lowercase , training=_lowercase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __a ( self : List[Any] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs()
((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) = config_and_inputs
SCREAMING_SNAKE_CASE__ = {
"""input_ids""": input_ids,
"""bbox""": bbox,
"""pixel_values""": pixel_values,
"""token_type_ids""": token_type_ids,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_tf
class __snake_case ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ):
lowerCAmelCase_ = (
(
TFLayoutLMvaModel,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
)
if is_tf_available()
else ()
)
lowerCAmelCase_ = (
{"document-question-answering": TFLayoutLMvaForQuestionAnswering, "feature-extraction": TFLayoutLMvaModel}
if is_tf_available()
else {}
)
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
def __a ( self : Union[str, Any] , _lowercase : Optional[int] , _lowercase : List[str] , _lowercase : Optional[Any] , _lowercase : Optional[int] , _lowercase : List[Any] ):
"""simple docstring"""
return True
def __a ( self : List[str] , _lowercase : List[Any] , _lowercase : str , _lowercase : str=False ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = copy.deepcopy(_lowercase )
if model_class in get_values(_lowercase ):
SCREAMING_SNAKE_CASE__ = {
k: tf.tile(tf.expand_dims(_lowercase , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) )
if isinstance(_lowercase , tf.Tensor ) and v.ndim > 0
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(_lowercase ):
SCREAMING_SNAKE_CASE__ = tf.ones(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(_lowercase ):
SCREAMING_SNAKE_CASE__ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
SCREAMING_SNAKE_CASE__ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(_lowercase ):
SCREAMING_SNAKE_CASE__ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(_lowercase ):
SCREAMING_SNAKE_CASE__ = tf.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa )
return inputs_dict
def __a ( self : Tuple ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = TFLayoutLMvaModelTester(self )
SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=_lowercase , hidden_size=37 )
def __a ( self : Any ):
"""simple docstring"""
self.config_tester.run_common_tests()
def __a ( self : Dict ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE__ = model_class(_lowercase )
if getattr(_lowercase , """hf_compute_loss""" , _lowercase ):
# The number of elements in the loss should be the same as the number of elements in the label
SCREAMING_SNAKE_CASE__ = self._prepare_for_class(inputs_dict.copy() , _lowercase , return_labels=_lowercase )
SCREAMING_SNAKE_CASE__ = prepared_for_class[
sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=_lowercase )[0]
]
SCREAMING_SNAKE_CASE__ = added_label.shape.as_list()[:1]
# Test that model correctly compute the loss with kwargs
SCREAMING_SNAKE_CASE__ = self._prepare_for_class(inputs_dict.copy() , _lowercase , return_labels=_lowercase )
SCREAMING_SNAKE_CASE__ = prepared_for_class.pop("""input_ids""" )
SCREAMING_SNAKE_CASE__ = model(_lowercase , **_lowercase )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss when we mask some positions
SCREAMING_SNAKE_CASE__ = self._prepare_for_class(inputs_dict.copy() , _lowercase , return_labels=_lowercase )
SCREAMING_SNAKE_CASE__ = prepared_for_class.pop("""input_ids""" )
if "labels" in prepared_for_class:
SCREAMING_SNAKE_CASE__ = prepared_for_class["""labels"""].numpy()
if len(labels.shape ) > 1 and labels.shape[1] != 1:
SCREAMING_SNAKE_CASE__ = -1_00
SCREAMING_SNAKE_CASE__ = tf.convert_to_tensor(_lowercase )
SCREAMING_SNAKE_CASE__ = model(_lowercase , **_lowercase )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) )
# Test that model correctly compute the loss with a dict
SCREAMING_SNAKE_CASE__ = self._prepare_for_class(inputs_dict.copy() , _lowercase , return_labels=_lowercase )
SCREAMING_SNAKE_CASE__ = model(_lowercase )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss with a tuple
SCREAMING_SNAKE_CASE__ = self._prepare_for_class(inputs_dict.copy() , _lowercase , return_labels=_lowercase )
# Get keys that were added with the _prepare_for_class function
SCREAMING_SNAKE_CASE__ = prepared_for_class.keys() - inputs_dict.keys()
SCREAMING_SNAKE_CASE__ = inspect.signature(model.call ).parameters
SCREAMING_SNAKE_CASE__ = list(signature.keys() )
# Create a dictionary holding the location of the tensors in the tuple
SCREAMING_SNAKE_CASE__ = {0: """input_ids"""}
for label_key in label_keys:
SCREAMING_SNAKE_CASE__ = signature_names.index(_lowercase )
SCREAMING_SNAKE_CASE__ = label_key
SCREAMING_SNAKE_CASE__ = sorted(tuple_index_mapping.items() )
# Initialize a list with their default values, update the values and convert to a tuple
SCREAMING_SNAKE_CASE__ = []
for name in signature_names:
if name != "kwargs":
list_input.append(signature[name].default )
for index, value in sorted_tuple_index_mapping:
SCREAMING_SNAKE_CASE__ = prepared_for_class[value]
SCREAMING_SNAKE_CASE__ = tuple(_lowercase )
# Send to model
SCREAMING_SNAKE_CASE__ = model(tuple_input[:-1] )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
def __a ( self : Optional[int] ):
"""simple docstring"""
(
(
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) ,
) = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase )
def __a ( self : int ):
"""simple docstring"""
(
(
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) ,
) = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
SCREAMING_SNAKE_CASE__ = type
self.model_tester.create_and_check_model(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase )
def __a ( self : int ):
"""simple docstring"""
(
(
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) ,
) = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(
_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase )
def __a ( self : str ):
"""simple docstring"""
(
(
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) ,
) = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(
_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase )
def __a ( self : List[str] ):
"""simple docstring"""
(
(
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) ,
) = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(
_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase )
@slow
def __a ( self : Tuple ):
"""simple docstring"""
for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE__ = TFLayoutLMvaModel.from_pretrained(_lowercase )
self.assertIsNotNone(_lowercase )
def __SCREAMING_SNAKE_CASE ( ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
class __snake_case ( unittest.TestCase ):
@cached_property
def __a ( self : Optional[int] ):
"""simple docstring"""
return LayoutLMvaImageProcessor(apply_ocr=_lowercase ) if is_vision_available() else None
@slow
def __a ( self : Tuple ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = TFLayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" )
SCREAMING_SNAKE_CASE__ = self.default_image_processor
SCREAMING_SNAKE_CASE__ = prepare_img()
SCREAMING_SNAKE_CASE__ = image_processor(images=_lowercase , return_tensors="""tf""" ).pixel_values
SCREAMING_SNAKE_CASE__ = tf.constant([[1, 2]] )
SCREAMING_SNAKE_CASE__ = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 )
# forward pass
SCREAMING_SNAKE_CASE__ = model(input_ids=_lowercase , bbox=_lowercase , pixel_values=_lowercase , training=_lowercase )
# verify the logits
SCREAMING_SNAKE_CASE__ = (1, 1_99, 7_68)
self.assertEqual(outputs.last_hidden_state.shape , _lowercase )
SCREAMING_SNAKE_CASE__ = tf.constant(
[[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]] )
self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _lowercase , atol=1E-4 ) )
| 204 | 1 |
import argparse
import logging
import os
from pathlib import Path
from typing import Any, Dict
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info
from transformers import (
AdamW,
AutoConfig,
AutoModel,
AutoModelForPreTraining,
AutoModelForQuestionAnswering,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoModelForTokenClassification,
AutoModelWithLMHead,
AutoTokenizer,
PretrainedConfig,
PreTrainedTokenizer,
)
from transformers.optimization import (
Adafactor,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
from transformers.utils.versions import require_version
UpperCAmelCase__ = logging.getLogger(__name__)
require_version("pytorch_lightning>=1.0.4")
UpperCAmelCase__ = {
"base": AutoModel,
"sequence-classification": AutoModelForSequenceClassification,
"question-answering": AutoModelForQuestionAnswering,
"pretraining": AutoModelForPreTraining,
"token-classification": AutoModelForTokenClassification,
"language-modeling": AutoModelWithLMHead,
"summarization": AutoModelForSeqaSeqLM,
"translation": AutoModelForSeqaSeqLM,
}
# update this and the import above to support new schedulers from transformers.optimization
UpperCAmelCase__ = {
"linear": get_linear_schedule_with_warmup,
"cosine": get_cosine_schedule_with_warmup,
"cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup,
"polynomial": get_polynomial_decay_schedule_with_warmup,
# '': get_constant_schedule, # not supported for now
# '': get_constant_schedule_with_warmup, # not supported for now
}
UpperCAmelCase__ = sorted(arg_to_scheduler.keys())
UpperCAmelCase__ = "{" + ", ".join(arg_to_scheduler_choices) + "}"
class lowercase_ ( pl.LightningModule ):
'''simple docstring'''
def __init__( self : str , __UpperCAmelCase : argparse.Namespace , __UpperCAmelCase : str=None , __UpperCAmelCase : List[str]="base" , __UpperCAmelCase : str=None , __UpperCAmelCase : int=None , __UpperCAmelCase : Optional[Any]=None , **__UpperCAmelCase : Optional[int] , ) ->Tuple:
"""simple docstring"""
super().__init__()
# TODO: move to self.save_hyperparameters()
# self.save_hyperparameters()
# can also expand arguments into trainer signature for easier reading
self.save_hyperparameters(__UpperCAmelCase )
a = 0
a = Path(self.hparams.output_dir )
a = self.hparams.cache_dir if self.hparams.cache_dir else None
if config is None:
a = AutoConfig.from_pretrained(
self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'''num_labels''': num_labels} if num_labels is not None else {}) , cache_dir=__UpperCAmelCase , **__UpperCAmelCase , )
else:
a = config
a = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''')
for p in extra_model_params:
if getattr(self.hparams , __UpperCAmelCase , __UpperCAmelCase ):
assert hasattr(self.config , __UpperCAmelCase ), F"""model config doesn't have a `{p}` attribute"""
setattr(self.config , __UpperCAmelCase , getattr(self.hparams , __UpperCAmelCase ) )
if tokenizer is None:
a = AutoTokenizer.from_pretrained(
self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=__UpperCAmelCase , )
else:
a = tokenizer
a = MODEL_MODES[mode]
if model is None:
a = self.model_type.from_pretrained(
self.hparams.model_name_or_path , from_tf=bool('''.ckpt''' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=__UpperCAmelCase , )
else:
a = model
def __lowerCAmelCase ( self : Any , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : str ) ->str:
"""simple docstring"""
a = self.model_type.from_pretrained(*__UpperCAmelCase , **__UpperCAmelCase )
def __lowerCAmelCase ( self : List[str] ) ->Optional[Any]:
"""simple docstring"""
a = arg_to_scheduler[self.hparams.lr_scheduler]
a = get_schedule_func(
self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() )
a = {'''scheduler''': scheduler, '''interval''': '''step''', '''frequency''': 1}
return scheduler
def __lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
a = self.model
a = ['''bias''', '''LayerNorm.weight''']
a = [
{
'''params''': [
p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay )
], # check this named paramters
'''weight_decay''': self.hparams.weight_decay,
},
{
'''params''': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )],
'''weight_decay''': 0.0,
},
]
if self.hparams.adafactor:
a = Adafactor(
__UpperCAmelCase , lr=self.hparams.learning_rate , scale_parameter=__UpperCAmelCase , relative_step=__UpperCAmelCase )
else:
a = AdamW(
__UpperCAmelCase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon )
a = optimizer
a = self.get_lr_scheduler()
return [optimizer], [scheduler]
def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any] ) ->Dict:
"""simple docstring"""
return self.validation_step(__UpperCAmelCase , __UpperCAmelCase )
def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Optional[Any] ) ->Any:
"""simple docstring"""
return self.validation_end(__UpperCAmelCase )
def __lowerCAmelCase ( self : Union[str, Any] ) ->int:
"""simple docstring"""
a = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores
a = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices
return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs
def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : Dict ) ->Optional[int]:
"""simple docstring"""
if stage == "test":
a = len(self.test_dataloader().dataset )
else:
a = self.get_dataloader('''train''' , self.hparams.train_batch_size , shuffle=__UpperCAmelCase )
a = len(self.train_dataloader().dataset )
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : bool = False ) ->str:
"""simple docstring"""
raise NotImplementedError('''You must implement this for your task''' )
def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[Any]:
"""simple docstring"""
return self.train_loader
def __lowerCAmelCase ( self : List[Any] ) ->List[Any]:
"""simple docstring"""
return self.get_dataloader('''dev''' , self.hparams.eval_batch_size , shuffle=__UpperCAmelCase )
def __lowerCAmelCase ( self : Union[str, Any] ) ->Tuple:
"""simple docstring"""
return self.get_dataloader('''test''' , self.hparams.eval_batch_size , shuffle=__UpperCAmelCase )
def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : Optional[int] ) ->Optional[Any]:
"""simple docstring"""
return os.path.join(
self.hparams.data_dir , '''cached_{}_{}_{}'''.format(
__UpperCAmelCase , list(filter(__UpperCAmelCase , self.hparams.model_name_or_path.split('''/''' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , )
@pl.utilities.rank_zero_only
def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : Dict[str, Any] ) ->None:
"""simple docstring"""
a = self.output_dir.joinpath('''best_tfmr''' )
a = self.step_count
self.model.save_pretrained(__UpperCAmelCase )
self.tokenizer.save_pretrained(__UpperCAmelCase )
@staticmethod
def __lowerCAmelCase ( __UpperCAmelCase : Dict , __UpperCAmelCase : int ) ->int:
"""simple docstring"""
parser.add_argument(
'''--model_name_or_path''' , default=__UpperCAmelCase , type=__UpperCAmelCase , required=__UpperCAmelCase , help='''Path to pretrained model or model identifier from huggingface.co/models''' , )
parser.add_argument(
'''--config_name''' , default='''''' , type=__UpperCAmelCase , help='''Pretrained config name or path if not the same as model_name''' )
parser.add_argument(
'''--tokenizer_name''' , default=__UpperCAmelCase , type=__UpperCAmelCase , help='''Pretrained tokenizer name or path if not the same as model_name''' , )
parser.add_argument(
'''--cache_dir''' , default=str(Path(__UpperCAmelCase ).parent / '''test_run''' / '''cache''' ) , type=__UpperCAmelCase , help='''Where do you want to store the pre-trained models downloaded from huggingface.co''' , )
parser.add_argument(
'''--encoder_layerdrop''' , type=__UpperCAmelCase , help='''Encoder layer dropout probability (Optional). Goes into model.config''' , )
parser.add_argument(
'''--decoder_layerdrop''' , type=__UpperCAmelCase , help='''Decoder layer dropout probability (Optional). Goes into model.config''' , )
parser.add_argument(
'''--dropout''' , type=__UpperCAmelCase , help='''Dropout probability (Optional). Goes into model.config''' , )
parser.add_argument(
'''--attention_dropout''' , type=__UpperCAmelCase , help='''Attention dropout probability (Optional). Goes into model.config''' , )
parser.add_argument('''--learning_rate''' , default=5e-5 , type=__UpperCAmelCase , help='''The initial learning rate for Adam.''' )
parser.add_argument(
'''--lr_scheduler''' , default='''linear''' , choices=__UpperCAmelCase , metavar=__UpperCAmelCase , type=__UpperCAmelCase , help='''Learning rate scheduler''' , )
parser.add_argument('''--weight_decay''' , default=0.0 , type=__UpperCAmelCase , help='''Weight decay if we apply some.''' )
parser.add_argument('''--adam_epsilon''' , default=1e-8 , type=__UpperCAmelCase , help='''Epsilon for Adam optimizer.''' )
parser.add_argument('''--warmup_steps''' , default=0 , type=__UpperCAmelCase , help='''Linear warmup over warmup_steps.''' )
parser.add_argument('''--num_workers''' , default=4 , type=__UpperCAmelCase , help='''kwarg passed to DataLoader''' )
parser.add_argument('''--num_train_epochs''' , dest='''max_epochs''' , default=3 , type=__UpperCAmelCase )
parser.add_argument('''--train_batch_size''' , default=32 , type=__UpperCAmelCase )
parser.add_argument('''--eval_batch_size''' , default=32 , type=__UpperCAmelCase )
parser.add_argument('''--adafactor''' , action='''store_true''' )
class lowercase_ ( pl.Callback ):
'''simple docstring'''
def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : int , __UpperCAmelCase : Optional[int] ) ->int:
"""simple docstring"""
if (
trainer.is_global_zero and trainer.global_rank == 0
): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed.
pl_module.model.rag.retriever.init_retrieval() # better to use hook functions.
class lowercase_ ( pl.Callback ):
'''simple docstring'''
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
for name, param in pl_module.model.rag.named_parameters():
if param.grad is None:
print(__UpperCAmelCase )
class lowercase_ ( pl.Callback ):
'''simple docstring'''
def __lowerCAmelCase ( self : int , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Dict ) ->int:
"""simple docstring"""
a = trainer.lr_schedulers[0]['''scheduler''']
a = {F"""lr_group_{i}""": lr for i, lr in enumerate(lr_scheduler.get_lr() )}
pl_module.logger.log_metrics(__UpperCAmelCase )
def __lowerCAmelCase ( self : Any , __UpperCAmelCase : pl.Trainer , __UpperCAmelCase : pl.LightningModule ) ->Union[str, Any]:
"""simple docstring"""
rank_zero_info('''***** Validation results *****''' )
a = trainer.callback_metrics
# Log results
for key in sorted(__UpperCAmelCase ):
if key not in ["log", "progress_bar"]:
rank_zero_info('''{} = {}\n'''.format(__UpperCAmelCase , str(metrics[key] ) ) )
def __lowerCAmelCase ( self : int , __UpperCAmelCase : pl.Trainer , __UpperCAmelCase : pl.LightningModule ) ->Optional[int]:
"""simple docstring"""
rank_zero_info('''***** Test results *****''' )
a = trainer.callback_metrics
# Log and save results to file
a = os.path.join(pl_module.hparams.output_dir , '''test_results.txt''' )
with open(__UpperCAmelCase , '''w''' ) as writer:
for key in sorted(__UpperCAmelCase ):
if key not in ["log", "progress_bar"]:
rank_zero_info('''{} = {}\n'''.format(__UpperCAmelCase , str(metrics[key] ) ) )
writer.write('''{} = {}\n'''.format(__UpperCAmelCase , str(metrics[key] ) ) )
def _a ( a :Union[str, Any] , a :int ) -> None:
# To allow all pl args uncomment the following line
# parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument(
'''--output_dir''' , default=str(Path(a ).parent / '''test_run''' / '''model_checkpoints''' ) , type=a , help='''The output directory where the model predictions and checkpoints will be written.''' , )
parser.add_argument(
'''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , )
parser.add_argument(
'''--fp16_opt_level''' , type=a , default='''O2''' , help=(
'''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].'''
'''See details at https://nvidia.github.io/apex/amp.html'''
) , )
parser.add_argument('''--n_tpu_cores''' , dest='''tpu_cores''' , type=a )
parser.add_argument('''--max_grad_norm''' , dest='''gradient_clip_val''' , default=1.0 , type=a , help='''Max gradient norm''' )
parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' )
parser.add_argument('''--do_predict''' , action='''store_true''' , help='''Whether to run predictions on the test set.''' )
parser.add_argument(
'''--gradient_accumulation_steps''' , dest='''accumulate_grad_batches''' , type=a , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , )
parser.add_argument('''--seed''' , type=a , default=42 , help='''random seed for initialization''' )
parser.add_argument(
'''--data_dir''' , default=str(Path(a ).parent / '''test_run''' / '''dummy-train-data''' ) , type=a , help='''The input data dir. Should contain the training files for the CoNLL-2003 NER task.''' , )
def _a ( a :BaseTransformer , a :argparse.Namespace , a :Tuple=None , a :Any=True , a :List[str]=[] , a :List[Any]=None , a :Union[str, Any]=None , **a :Optional[Any] , ) -> List[str]:
pl.seed_everything(args.seed )
# init model
a = Path(model.hparams.output_dir )
odir.mkdir(exist_ok=a )
# add custom checkpoints
if checkpoint_callback is None:
a = pl.callbacks.ModelCheckpoint(
filepath=args.output_dir , prefix='''checkpoint''' , monitor='''val_loss''' , mode='''min''' , save_top_k=1 )
if early_stopping_callback:
extra_callbacks.append(a )
if logging_callback is None:
a = LoggingCallback()
a = {}
if args.fpaa:
a = 16
if args.gpus > 1:
a = '''auto'''
a = '''ddp'''
a = args.accumulate_grad_batches
a = None
a = '''auto'''
a = pl.Trainer.from_argparse_args(
a , weights_summary=a , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=a , val_check_interval=1 , num_sanity_val_steps=2 , **a , )
if args.do_train:
trainer.fit(a )
else:
print('''RAG modeling tests with new set functions successfuly executed!''' )
return trainer
| 0 |
from __future__ import annotations
import time
import numpy as np
UpperCAmelCase__ = [8, 5, 9, 7]
UpperCAmelCase__ = [
[2, 0, 1, 1],
[0, 1, 2, 1],
[4, 0, 0, 3],
[0, 2, 1, 0],
[1, 0, 3, 0],
]
UpperCAmelCase__ = [
[3, 2, 1, 4],
[0, 2, 5, 2],
[5, 1, 0, 5],
[1, 5, 3, 0],
[3, 0, 3, 3],
]
class lowercase_ :
'''simple docstring'''
def __init__( self : Optional[int] , __UpperCAmelCase : list[int] , __UpperCAmelCase : list[list[int]] , __UpperCAmelCase : list[list[int]] , ) ->None:
"""simple docstring"""
a = claim_vector
a = allocated_resources_table
a = maximum_claim_table
def __lowerCAmelCase ( self : Any ) ->list[int]:
"""simple docstring"""
return [
sum(p_item[i] for p_item in self.__allocated_resources_table )
for i in range(len(self.__allocated_resources_table[0] ) )
]
def __lowerCAmelCase ( self : Optional[int] ) ->list[int]:
"""simple docstring"""
return np.array(self.__claim_vector ) - np.array(
self.__processes_resource_summation() )
def __lowerCAmelCase ( self : Union[str, Any] ) ->list[list[int]]:
"""simple docstring"""
return [
list(np.array(self.__maximum_claim_table[i] ) - np.array(__UpperCAmelCase ) )
for i, allocated_resource in enumerate(self.__allocated_resources_table )
]
def __lowerCAmelCase ( self : Tuple ) ->dict[int, list[int]]:
"""simple docstring"""
return {self.__need().index(__UpperCAmelCase ): i for i in self.__need()}
def __lowerCAmelCase ( self : Optional[Any] , **__UpperCAmelCase : Any ) ->None:
"""simple docstring"""
a = self.__need()
a = self.__allocated_resources_table
a = self.__available_resources()
a = self.__need_index_manager()
for kw, val in kwargs.items():
if kw and val is True:
self.__pretty_data()
print('''_''' * 50 + '''\n''' )
while need_list:
a = False
for each_need in need_list:
a = True
for index, need in enumerate(__UpperCAmelCase ):
if need > available_resources[index]:
a = False
break
if execution:
a = True
# get the original index of the process from ind_ctrl db
for original_need_index, need_clone in need_index_manager.items():
if each_need == need_clone:
a = original_need_index
print(F"""Process {process_number + 1} is executing.""" )
# remove the process run from stack
need_list.remove(__UpperCAmelCase )
# update available/freed resources stack
a = np.array(__UpperCAmelCase ) + np.array(
alloc_resources_table[process_number] )
print(
'''Updated available resource stack for processes: '''
+ ''' '''.join([str(__UpperCAmelCase ) for x in available_resources] ) )
break
if safe:
print('''The process is in a safe state.\n''' )
else:
print('''System in unsafe state. Aborting...\n''' )
break
def __lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
print(''' ''' * 9 + '''Allocated Resource Table''' )
for item in self.__allocated_resources_table:
print(
F"""P{self.__allocated_resources_table.index(__UpperCAmelCase ) + 1}"""
+ ''' '''.join(F"""{it:>8}""" for it in item )
+ '''\n''' )
print(''' ''' * 9 + '''System Resource Table''' )
for item in self.__maximum_claim_table:
print(
F"""P{self.__maximum_claim_table.index(__UpperCAmelCase ) + 1}"""
+ ''' '''.join(F"""{it:>8}""" for it in item )
+ '''\n''' )
print(
'''Current Usage by Active Processes: '''
+ ''' '''.join(str(__UpperCAmelCase ) for x in self.__claim_vector ) )
print(
'''Initial Available Resources: '''
+ ''' '''.join(str(__UpperCAmelCase ) for x in self.__available_resources() ) )
time.sleep(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 0 | 1 |
import asyncio
import os
import re
import sys
import tempfile
import unittest
from contextlib import contextmanager
from copy import deepcopy
from distutils.util import strtobool
from enum import Enum
from importlib.util import find_spec
from pathlib import Path
from unittest.mock import patch
import pyarrow as pa
import pytest
import requests
from packaging import version
from datasets import config
if config.PY_VERSION < version.parse('3.8'):
import importlib_metadata
else:
import importlib.metadata as importlib_metadata
def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : Optional[Any]=False ) -> Dict:
try:
_a = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
_a = default
else:
# KEY is set, convert it to True or False.
try:
_a = strtobool(lowercase )
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(F'If set, {key} must be yes or no.' )
return _value
lowerCAmelCase_ : Dict = parse_flag_from_env('RUN_SLOW', default=False)
lowerCAmelCase_ : Optional[Any] = parse_flag_from_env('RUN_REMOTE', default=False)
lowerCAmelCase_ : int = parse_flag_from_env('RUN_LOCAL', default=True)
lowerCAmelCase_ : Any = parse_flag_from_env('RUN_PACKAGED', default=True)
# Compression
lowerCAmelCase_ : List[str] = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4')
lowerCAmelCase_ : Optional[Any] = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr')
lowerCAmelCase_ : Union[str, Any] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard')
# Audio
lowerCAmelCase_ : Union[str, Any] = pytest.mark.skipif(
# On Windows and OS X, soundfile installs sndfile
find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'),
reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ',
)
# Beam
lowerCAmelCase_ : List[Any] = pytest.mark.skipif(
not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'),
reason='test requires apache-beam and a compatible dill version',
)
# Dill-cloudpickle compatibility
lowerCAmelCase_ : Dict = pytest.mark.skipif(
config.DILL_VERSION <= version.parse('0.3.2'),
reason='test requires dill>0.3.2 for cloudpickle compatibility',
)
# Windows
lowerCAmelCase_ : Any = pytest.mark.skipif(
sys.platform == 'win32',
reason='test should not be run on Windows',
)
def _lowerCamelCase ( lowercase : List[str] ) -> int:
try:
import faiss # noqa
except ImportError:
_a = unittest.skip("test requires faiss" )(lowercase )
return test_case
def _lowerCamelCase ( lowercase : Dict ) -> Any:
try:
import regex # noqa
except ImportError:
_a = unittest.skip("test requires regex" )(lowercase )
return test_case
def _lowerCamelCase ( lowercase : List[Any] ) -> Optional[Any]:
try:
import elasticsearch # noqa
except ImportError:
_a = unittest.skip("test requires elasticsearch" )(lowercase )
return test_case
def _lowerCamelCase ( lowercase : Optional[Any] ) -> str:
try:
import sqlalchemy # noqa
except ImportError:
_a = unittest.skip("test requires sqlalchemy" )(lowercase )
return test_case
def _lowerCamelCase ( lowercase : Optional[int] ) -> Optional[int]:
if not config.TORCH_AVAILABLE:
_a = unittest.skip("test requires PyTorch" )(lowercase )
return test_case
def _lowerCamelCase ( lowercase : Dict ) -> Tuple:
if not config.TF_AVAILABLE:
_a = unittest.skip("test requires TensorFlow" )(lowercase )
return test_case
def _lowerCamelCase ( lowercase : Optional[int] ) -> Any:
if not config.JAX_AVAILABLE:
_a = unittest.skip("test requires JAX" )(lowercase )
return test_case
def _lowerCamelCase ( lowercase : Any ) -> int:
if not config.PIL_AVAILABLE:
_a = unittest.skip("test requires Pillow" )(lowercase )
return test_case
def _lowerCamelCase ( lowercase : int ) -> Tuple:
try:
import transformers # noqa F401
except ImportError:
return unittest.skip("test requires transformers" )(lowercase )
else:
return test_case
def _lowerCamelCase ( lowercase : int ) -> str:
try:
import tiktoken # noqa F401
except ImportError:
return unittest.skip("test requires tiktoken" )(lowercase )
else:
return test_case
def _lowerCamelCase ( lowercase : Union[str, Any] ) -> Any:
try:
import spacy # noqa F401
except ImportError:
return unittest.skip("test requires spacy" )(lowercase )
else:
return test_case
def _lowerCamelCase ( lowercase : List[Any] ) -> Optional[Any]:
def _require_spacy_model(lowercase : int ):
try:
import spacy # noqa F401
spacy.load(lowercase )
except ImportError:
return unittest.skip("test requires spacy" )(lowercase )
except OSError:
return unittest.skip("test requires spacy model '{}'".format(lowercase ) )(lowercase )
else:
return test_case
return _require_spacy_model
def _lowerCamelCase ( lowercase : Dict ) -> Tuple:
try:
import pyspark # noqa F401
except ImportError:
return unittest.skip("test requires pyspark" )(lowercase )
else:
return test_case
def _lowerCamelCase ( lowercase : Union[str, Any] ) -> Tuple:
try:
import joblibspark # noqa F401
except ImportError:
return unittest.skip("test requires joblibspark" )(lowercase )
else:
return test_case
def _lowerCamelCase ( lowercase : Tuple ) -> Tuple:
if not _run_slow_tests or _run_slow_tests == 0:
_a = unittest.skip("test is slow" )(lowercase )
return test_case
def _lowerCamelCase ( lowercase : List[str] ) -> List[str]:
if not _run_local_tests or _run_local_tests == 0:
_a = unittest.skip("test is local" )(lowercase )
return test_case
def _lowerCamelCase ( lowercase : Tuple ) -> Dict:
if not _run_packaged_tests or _run_packaged_tests == 0:
_a = unittest.skip("test is packaged" )(lowercase )
return test_case
def _lowerCamelCase ( lowercase : str ) -> Dict:
if not _run_remote_tests or _run_remote_tests == 0:
_a = unittest.skip("test requires remote" )(lowercase )
return test_case
def _lowerCamelCase ( *lowercase : str ) -> int:
def decorate(cls : str ):
for name, fn in cls.__dict__.items():
if callable(lowercase ) and name.startswith("test" ):
for decorator in decorators:
_a = decorator(lowercase )
setattr(cls , lowercase , lowercase )
return cls
return decorate
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
pass
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
__a =0
__a =1
__a =2
@contextmanager
def _lowerCamelCase ( lowercase : Optional[int]=OfflineSimulationMode.CONNECTION_FAILS , lowercase : Dict=1E-1_6 ) -> str:
_a = requests.Session().request
def timeout_request(lowercase : Tuple , lowercase : List[Any] , lowercase : List[Any] , **lowercase : Optional[int] ):
# Change the url to an invalid url so that the connection hangs
_a = "https://10.255.255.1"
if kwargs.get("timeout" ) is None:
raise RequestWouldHangIndefinitelyError(
F'Tried a call to {url} in offline mode with no timeout set. Please set a timeout.' )
_a = timeout
try:
return online_request(lowercase , lowercase , **lowercase )
except Exception as e:
# The following changes in the error are just here to make the offline timeout error prettier
_a = url
_a = e.args[0]
_a = (max_retry_error.args[0].replace("10.255.255.1" , F'OfflineMock[{url}]' ),)
_a = (max_retry_error,)
raise
def raise_connection_error(lowercase : Any , lowercase : Any , **lowercase : Union[str, Any] ):
raise requests.ConnectionError("Offline mode is enabled." , request=lowercase )
if mode is OfflineSimulationMode.CONNECTION_FAILS:
with patch("requests.Session.send" , lowercase ):
yield
elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT:
# inspired from https://stackoverflow.com/a/904609
with patch("requests.Session.request" , lowercase ):
yield
elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1:
with patch("datasets.config.HF_DATASETS_OFFLINE" , lowercase ):
yield
else:
raise ValueError("Please use a value from the OfflineSimulationMode enum." )
@contextmanager
def _lowerCamelCase ( *lowercase : Tuple , **lowercase : List[str] ) -> Dict:
_a = str(Path().resolve() )
with tempfile.TemporaryDirectory(*lowercase , **lowercase ) as tmp_dir:
try:
os.chdir(lowercase )
yield
finally:
os.chdir(lowercase )
@contextmanager
def _lowerCamelCase ( ) -> int:
import gc
gc.collect()
_a = pa.total_allocated_bytes()
yield
assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase."
@contextmanager
def _lowerCamelCase ( ) -> Optional[int]:
import gc
gc.collect()
_a = pa.total_allocated_bytes()
yield
assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase."
def _lowerCamelCase ( lowercase : Tuple , lowercase : Optional[Any] ) -> Optional[int]:
return deepcopy(lowercase ).integers(0 , 100 , 10 ).tolist() == deepcopy(lowercase ).integers(0 , 100 , 10 ).tolist()
def _lowerCamelCase ( lowercase : List[Any] ) -> Optional[int]:
import decorator
from requests.exceptions import HTTPError
def _wrapper(lowercase : Tuple , *lowercase : List[Any] , **lowercase : Union[str, Any] ):
try:
return func(*lowercase , **lowercase )
except HTTPError as err:
if str(lowercase ).startswith("500" ) or str(lowercase ).startswith("502" ):
pytest.xfail(str(lowercase ) )
raise err
return decorator.decorator(_wrapper , lowercase )
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self : Optional[int] , __a : List[str] , __a : int , __a : List[str] ):
_a = returncode
_a = stdout
_a = stderr
async def _lowerCamelCase ( lowercase : List[Any] , lowercase : Tuple ) -> Optional[Any]:
while True:
_a = await stream.readline()
if line:
callback(lowercase )
else:
break
async def _lowerCamelCase ( lowercase : Any , lowercase : Dict=None , lowercase : Dict=None , lowercase : Optional[Any]=None , lowercase : Optional[int]=False , lowercase : Tuple=False ) -> _RunOutput:
if echo:
print("\nRunning: " , " ".join(lowercase ) )
_a = await asyncio.create_subprocess_exec(
cmd[0] , *cmd[1:] , stdin=lowercase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=lowercase , )
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
#
# If it starts hanging, will need to switch to the following code. The problem is that no data
# will be seen until it's done and if it hangs for example there will be no debug info.
# out, err = await p.communicate()
# return _RunOutput(p.returncode, out, err)
_a = []
_a = []
def tee(lowercase : Union[str, Any] , lowercase : Tuple , lowercase : str , lowercase : Dict="" ):
_a = line.decode("utf-8" ).rstrip()
sink.append(lowercase )
if not quiet:
print(lowercase , lowercase , file=lowercase )
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
_read_stream(p.stdout , lambda lowercase : tee(lowercase , lowercase , sys.stdout , label="stdout:" ) ),
_read_stream(p.stderr , lambda lowercase : tee(lowercase , lowercase , sys.stderr , label="stderr:" ) ),
] , timeout=lowercase , )
return _RunOutput(await p.wait() , lowercase , lowercase )
def _lowerCamelCase ( lowercase : Any , lowercase : Optional[Any]=None , lowercase : str=None , lowercase : List[str]=180 , lowercase : Dict=False , lowercase : Optional[int]=True ) -> _RunOutput:
_a = asyncio.get_event_loop()
_a = loop.run_until_complete(
_stream_subprocess(lowercase , env=lowercase , stdin=lowercase , timeout=lowercase , quiet=lowercase , echo=lowercase ) )
_a = " ".join(lowercase )
if result.returncode > 0:
_a = "\n".join(result.stderr )
raise RuntimeError(
F'\'{cmd_str}\' failed with returncode {result.returncode}\n\n'
F'The combined stderr from workers follows:\n{stderr}' )
# check that the subprocess actually did run and produced some output, should the test rely on
# the remote side to do the testing
if not result.stdout and not result.stderr:
raise RuntimeError(F'\'{cmd_str}\' produced no output.' )
return result
def _lowerCamelCase ( ) -> Dict:
_a = os.environ.get("PYTEST_XDIST_WORKER" , "gw0" )
_a = re.sub(r"^gw" , "" , lowercase , 0 , re.M )
return int(lowercase )
def _lowerCamelCase ( ) -> List[Any]:
_a = 2_9500
_a = pytest_xdist_worker_id()
return port + uniq_delta
| 368 |
'''simple docstring'''
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import sys
import warnings
from os.path import abspath, dirname, join
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
lowerCAmelCase_ : Dict = abspath(join(dirname(dirname(dirname(__file__))), 'src'))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action='ignore', category=FutureWarning)
def _lowerCamelCase ( lowercase : str ) -> Optional[int]:
from transformers.testing_utils import pytest_addoption_shared
pytest_addoption_shared(lowercase )
def _lowerCamelCase ( lowercase : Dict ) -> str:
from transformers.testing_utils import pytest_terminal_summary_main
_a = terminalreporter.config.getoption("--make-reports" )
if make_reports:
pytest_terminal_summary_main(lowercase , id=lowercase )
| 346 | 0 |
"""simple docstring"""
import inspect
from typing import Callable, List, Optional, Union
import torch
from transformers import (
CLIPImageProcessor,
CLIPTextModel,
CLIPTokenizer,
WhisperForConditionalGeneration,
WhisperProcessor,
)
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.utils import logging
A: str = logging.get_logger(__name__) # pylint: disable=invalid-name
class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> int:
'''simple docstring'''
super().__init__()
if safety_checker is None:
logger.warning(
F"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
""" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"""
""" results in services or applications open to the public. Both the diffusers team and Hugging Face"""
""" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"""
""" it only for use-cases that involve analyzing network behavior or auditing its results. For more"""
""" information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" )
self.register_modules(
speech_model=_SCREAMING_SNAKE_CASE , speech_processor=_SCREAMING_SNAKE_CASE , vae=_SCREAMING_SNAKE_CASE , text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , )
def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE = "auto" ) -> Optional[Any]:
'''simple docstring'''
if slice_size == "auto":
UpperCAmelCase : Optional[int] = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(_SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]:
'''simple docstring'''
self.enable_attention_slicing(_SCREAMING_SNAKE_CASE )
@torch.no_grad()
def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=16000 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> Any:
'''simple docstring'''
UpperCAmelCase : Any = self.speech_processor.feature_extractor(
_SCREAMING_SNAKE_CASE , return_tensors="""pt""" , sampling_rate=_SCREAMING_SNAKE_CASE ).input_features.to(self.device )
UpperCAmelCase : Union[str, Any] = self.speech_model.generate(_SCREAMING_SNAKE_CASE , max_length=480000 )
UpperCAmelCase : Union[str, Any] = self.speech_processor.tokenizer.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE , normalize=_SCREAMING_SNAKE_CASE )[
0
]
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
UpperCAmelCase : Tuple = 1
elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
UpperCAmelCase : int = len(_SCREAMING_SNAKE_CASE )
else:
raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(_SCREAMING_SNAKE_CASE )}" )
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F"`height` and `width` have to be divisible by 8 but are {height} and {width}." )
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or callback_steps <= 0)
):
raise ValueError(
F"`callback_steps` has to be a positive integer but is {callback_steps} of type"
F" {type(_SCREAMING_SNAKE_CASE )}." )
# get prompt text embeddings
UpperCAmelCase : Union[str, Any] = self.tokenizer(
_SCREAMING_SNAKE_CASE , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , )
UpperCAmelCase : Optional[Any] = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
UpperCAmelCase : Optional[Any] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] )
logger.warning(
"""The following part of your input was truncated because CLIP can only handle sequences up to"""
F" {self.tokenizer.model_max_length} tokens: {removed_text}" )
UpperCAmelCase : Optional[int] = text_input_ids[:, : self.tokenizer.model_max_length]
UpperCAmelCase : List[Any] = self.text_encoder(text_input_ids.to(self.device ) )[0]
# duplicate text embeddings for each generation per prompt, using mps friendly method
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = text_embeddings.shape
UpperCAmelCase : Optional[Any] = text_embeddings.repeat(1 , _SCREAMING_SNAKE_CASE , 1 )
UpperCAmelCase : Optional[Any] = text_embeddings.view(bs_embed * num_images_per_prompt , _SCREAMING_SNAKE_CASE , -1 )
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
UpperCAmelCase : List[Any] = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
UpperCAmelCase : List[str]
if negative_prompt is None:
UpperCAmelCase : str = [""""""] * batch_size
elif type(_SCREAMING_SNAKE_CASE ) is not type(_SCREAMING_SNAKE_CASE ):
raise TypeError(
F"`negative_prompt` should be the same type to `prompt`, but got {type(_SCREAMING_SNAKE_CASE )} !="
F" {type(_SCREAMING_SNAKE_CASE )}." )
elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
UpperCAmelCase : Union[str, Any] = [negative_prompt]
elif batch_size != len(_SCREAMING_SNAKE_CASE ):
raise ValueError(
F"`negative_prompt`: {negative_prompt} has batch size {len(_SCREAMING_SNAKE_CASE )}, but `prompt`:"
F" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
""" the batch size of `prompt`.""" )
else:
UpperCAmelCase : Any = negative_prompt
UpperCAmelCase : Dict = text_input_ids.shape[-1]
UpperCAmelCase : str = self.tokenizer(
_SCREAMING_SNAKE_CASE , padding="""max_length""" , max_length=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" , )
UpperCAmelCase : Optional[Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
UpperCAmelCase : int = uncond_embeddings.shape[1]
UpperCAmelCase : Dict = uncond_embeddings.repeat(1 , _SCREAMING_SNAKE_CASE , 1 )
UpperCAmelCase : int = uncond_embeddings.view(batch_size * num_images_per_prompt , _SCREAMING_SNAKE_CASE , -1 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
UpperCAmelCase : Optional[Any] = torch.cat([uncond_embeddings, text_embeddings] )
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
UpperCAmelCase : str = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8)
UpperCAmelCase : Tuple = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not exist on mps
UpperCAmelCase : List[str] = torch.randn(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device="""cpu""" , dtype=_SCREAMING_SNAKE_CASE ).to(
self.device )
else:
UpperCAmelCase : Optional[int] = torch.randn(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device=self.device , dtype=_SCREAMING_SNAKE_CASE )
else:
if latents.shape != latents_shape:
raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" )
UpperCAmelCase : List[str] = latents.to(self.device )
# set timesteps
self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE )
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
UpperCAmelCase : Union[str, Any] = self.scheduler.timesteps.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
UpperCAmelCase : List[Any] = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
UpperCAmelCase : Optional[Any] = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() )
UpperCAmelCase : Optional[int] = {}
if accepts_eta:
UpperCAmelCase : Dict = eta
for i, t in enumerate(self.progress_bar(_SCREAMING_SNAKE_CASE ) ):
# expand the latents if we are doing classifier free guidance
UpperCAmelCase : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
UpperCAmelCase : Dict = self.scheduler.scale_model_input(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# predict the noise residual
UpperCAmelCase : Tuple = self.unet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE ).sample
# perform guidance
if do_classifier_free_guidance:
UpperCAmelCase , UpperCAmelCase : Optional[int] = noise_pred.chunk(2 )
UpperCAmelCase : str = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
UpperCAmelCase : Tuple = self.scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
UpperCAmelCase : Optional[int] = 1 / 0.1_8215 * latents
UpperCAmelCase : Optional[Any] = self.vae.decode(_SCREAMING_SNAKE_CASE ).sample
UpperCAmelCase : List[Any] = (image / 2 + 0.5).clamp(0 , 1 )
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
UpperCAmelCase : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
UpperCAmelCase : List[Any] = self.numpy_to_pil(_SCREAMING_SNAKE_CASE )
if not return_dict:
return image
return StableDiffusionPipelineOutput(images=_SCREAMING_SNAKE_CASE , nsfw_content_detected=_SCREAMING_SNAKE_CASE )
| 109 | import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__a : str = logging.get_logger(__name__)
__a : int = {
"""microsoft/wavlm-base""": """https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json""",
# See all WavLM models at https://huggingface.co/models?filter=wavlm
}
class _UpperCamelCase ( _UpperCAmelCase ):
"""simple docstring"""
__a : Any = '''wavlm'''
def __init__( self , lowerCAmelCase__=32 , lowerCAmelCase__=7_68 , lowerCAmelCase__=12 , lowerCAmelCase__=12 , lowerCAmelCase__=30_72 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-5 , lowerCAmelCase__="group" , lowerCAmelCase__="gelu" , lowerCAmelCase__=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , lowerCAmelCase__=(5, 2, 2, 2, 2, 2, 2) , lowerCAmelCase__=(10, 3, 3, 3, 3, 2, 2) , lowerCAmelCase__=False , lowerCAmelCase__=1_28 , lowerCAmelCase__=16 , lowerCAmelCase__=3_20 , lowerCAmelCase__=8_00 , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=0.05 , lowerCAmelCase__=10 , lowerCAmelCase__=2 , lowerCAmelCase__=0.0 , lowerCAmelCase__=10 , lowerCAmelCase__=3_20 , lowerCAmelCase__=2 , lowerCAmelCase__=0.1 , lowerCAmelCase__=1_00 , lowerCAmelCase__=2_56 , lowerCAmelCase__=2_56 , lowerCAmelCase__=0.1 , lowerCAmelCase__="mean" , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=2_56 , lowerCAmelCase__=(5_12, 5_12, 5_12, 5_12, 15_00) , lowerCAmelCase__=(5, 3, 3, 1, 1) , lowerCAmelCase__=(1, 2, 3, 1, 1) , lowerCAmelCase__=5_12 , lowerCAmelCase__=80 , lowerCAmelCase__=0 , lowerCAmelCase__=1 , lowerCAmelCase__=2 , lowerCAmelCase__=False , lowerCAmelCase__=3 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=None , **lowerCAmelCase__ , ) -> Tuple:
'''simple docstring'''
super().__init__(**lowerCAmelCase__ , pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ )
__lowercase = hidden_size
__lowercase = feat_extract_norm
__lowercase = feat_extract_activation
__lowercase = list(lowerCAmelCase__ )
__lowercase = list(lowerCAmelCase__ )
__lowercase = list(lowerCAmelCase__ )
__lowercase = conv_bias
__lowercase = num_buckets
__lowercase = max_bucket_distance
__lowercase = num_conv_pos_embeddings
__lowercase = num_conv_pos_embedding_groups
__lowercase = len(self.conv_dim )
__lowercase = num_hidden_layers
__lowercase = intermediate_size
__lowercase = hidden_act
__lowercase = num_attention_heads
__lowercase = hidden_dropout
__lowercase = attention_dropout
__lowercase = activation_dropout
__lowercase = feat_proj_dropout
__lowercase = final_dropout
__lowercase = layerdrop
__lowercase = layer_norm_eps
__lowercase = initializer_range
__lowercase = num_ctc_classes
__lowercase = vocab_size
__lowercase = do_stable_layer_norm
__lowercase = use_weighted_layer_sum
__lowercase = classifier_proj_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='''
''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='''
F" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,"
F" `len(config.conv_kernel) = {len(self.conv_kernel )}`." )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__lowercase = apply_spec_augment
__lowercase = mask_time_prob
__lowercase = mask_time_length
__lowercase = mask_time_min_masks
__lowercase = mask_feature_prob
__lowercase = mask_feature_length
# parameters for pretraining with codevector quantized representations
__lowercase = num_codevectors_per_group
__lowercase = num_codevector_groups
__lowercase = contrastive_logits_temperature
__lowercase = num_negatives
__lowercase = codevector_dim
__lowercase = proj_codevector_dim
__lowercase = diversity_loss_weight
# ctc loss
__lowercase = ctc_loss_reduction
__lowercase = ctc_zero_infinity
# adapter
__lowercase = add_adapter
__lowercase = adapter_kernel_size
__lowercase = adapter_stride
__lowercase = num_adapter_layers
__lowercase = output_hidden_size or hidden_size
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
__lowercase = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
__lowercase = list(lowerCAmelCase__ )
__lowercase = list(lowerCAmelCase__ )
__lowercase = list(lowerCAmelCase__ )
__lowercase = xvector_output_dim
@property
def _SCREAMING_SNAKE_CASE ( self ) -> int:
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1 ) | 210 | 0 |
'''simple docstring'''
from math import pow
def a__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : int , ) -> tuple[int, int]:
"""simple docstring"""
if current_sum == needed_sum:
# If the sum of the powers is equal to needed_sum, then we have a solution.
solutions_count += 1
return current_sum, solutions_count
UpperCAmelCase_ : Any = int(pow(__snake_case , __snake_case ) )
if current_sum + i_to_n <= needed_sum:
# If the sum of the powers is less than needed_sum, then continue adding powers.
current_sum += i_to_n
UpperCAmelCase_ , UpperCAmelCase_ : int = backtrack(
__snake_case , __snake_case , current_number + 1 , __snake_case , __snake_case )
current_sum -= i_to_n
if i_to_n < needed_sum:
# If the power of i is less than needed_sum, then try with the next power.
UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = backtrack(
__snake_case , __snake_case , current_number + 1 , __snake_case , __snake_case )
return current_sum, solutions_count
def a__ ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Any ) -> int:
"""simple docstring"""
if not (1 <= needed_sum <= 10_00 and 2 <= power <= 10):
raise ValueError(
"Invalid input\n"
"needed_sum must be between 1 and 1000, power between 2 and 10." )
return backtrack(__snake_case , __snake_case , 1 , 0 , 0 )[1] # Return the solutions_count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 361 |
'''simple docstring'''
def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ) -> int:
"""simple docstring"""
return 1 if input_a == input_a else 0
def a__ ( ) -> None:
"""simple docstring"""
assert xnor_gate(0 , 0 ) == 1
assert xnor_gate(0 , 1 ) == 0
assert xnor_gate(1 , 0 ) == 0
assert xnor_gate(1 , 1 ) == 1
if __name__ == "__main__":
print(xnor_gate(0, 0))
print(xnor_gate(0, 1))
print(xnor_gate(1, 0))
print(xnor_gate(1, 1))
| 67 | 0 |
"""simple docstring"""
def snake_case ( A__ ):
UpperCAmelCase_ : str = len(A__ )
for i in range(1 ,A__ ):
UpperCAmelCase_ : Tuple = collection[i]
UpperCAmelCase_ : Any = 0
UpperCAmelCase_ : Any = i - 1
while low <= high:
UpperCAmelCase_ : Union[str, Any] = (low + high) // 2
if val < collection[mid]:
UpperCAmelCase_ : List[str] = mid - 1
else:
UpperCAmelCase_ : Dict = mid + 1
for j in range(A__ ,A__ ,-1 ):
UpperCAmelCase_ : Optional[Any] = collection[j - 1]
UpperCAmelCase_ : Optional[int] = val
return collection
if __name__ == "__main__":
lowerCamelCase_ = input('''Enter numbers separated by a comma:\n''').strip()
lowerCamelCase_ = [int(item) for item in user_input.split(''',''')]
print(binary_insertion_sort(unsorted))
| 268 |
"""simple docstring"""
from __future__ import annotations
import inspect
import unittest
from typing import List, Tuple
from transformers import RegNetConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class UpperCamelCase_ :
def __init__( self : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : Optional[int]=32 , lowerCAmelCase_ : List[Any]=3 , lowerCAmelCase_ : List[Any]=10 , lowerCAmelCase_ : Any=[10, 20, 30, 40] , lowerCAmelCase_ : Any=[1, 1, 2, 1] , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : int="relu" , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : Optional[int]=None , ) -> str:
UpperCAmelCase_ : Tuple = parent
UpperCAmelCase_ : int = batch_size
UpperCAmelCase_ : str = image_size
UpperCAmelCase_ : List[Any] = num_channels
UpperCAmelCase_ : Tuple = embeddings_size
UpperCAmelCase_ : Union[str, Any] = hidden_sizes
UpperCAmelCase_ : int = depths
UpperCAmelCase_ : Optional[Any] = is_training
UpperCAmelCase_ : Dict = use_labels
UpperCAmelCase_ : str = hidden_act
UpperCAmelCase_ : str = num_labels
UpperCAmelCase_ : str = scope
UpperCAmelCase_ : str = len(lowerCAmelCase_ )
def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict:
UpperCAmelCase_ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase_ : Union[str, Any] = None
if self.use_labels:
UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size] , self.num_labels )
UpperCAmelCase_ : Optional[Any] = self.get_config()
return config, pixel_values, labels
def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]:
return RegNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , )
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict ) -> str:
UpperCAmelCase_ : List[Any] = TFRegNetModel(config=lowerCAmelCase_ )
UpperCAmelCase_ : List[Any] = model(lowerCAmelCase_ , training=lowerCAmelCase_ )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] ) -> Optional[Any]:
UpperCAmelCase_ : Union[str, Any] = self.num_labels
UpperCAmelCase_ : List[Any] = TFRegNetForImageClassification(lowerCAmelCase_ )
UpperCAmelCase_ : Optional[int] = model(lowerCAmelCase_ , labels=lowerCAmelCase_ , training=lowerCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict:
UpperCAmelCase_ : Any = self.prepare_config_and_inputs()
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Dict = config_and_inputs
UpperCAmelCase_ : List[str] = {"pixel_values": pixel_values}
return config, inputs_dict
@require_tf
class UpperCamelCase_ (__A , __A , unittest.TestCase ):
__magic_name__ = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else ()
__magic_name__ = (
{'''feature-extraction''': TFRegNetModel, '''image-classification''': TFRegNetForImageClassification}
if is_tf_available()
else {}
)
__magic_name__ = False
__magic_name__ = False
__magic_name__ = False
__magic_name__ = False
__magic_name__ = False
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]:
UpperCAmelCase_ : Optional[int] = TFRegNetModelTester(self )
UpperCAmelCase_ : Optional[Any] = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ )
def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]:
return
@unittest.skip(reason="RegNet does not use inputs_embeds" )
def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]:
pass
@unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices("GPU" ) ) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , )
@slow
def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict:
super().test_keras_fit()
@unittest.skip(reason="RegNet does not support input and output embeddings" )
def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any:
pass
def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]:
UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ : Dict = model_class(lowerCAmelCase_ )
UpperCAmelCase_ : Tuple = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase_ : List[Any] = [*signature.parameters.keys()]
UpperCAmelCase_ : int = ["pixel_values"]
self.assertListEqual(arg_names[:1] , lowerCAmelCase_ )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]:
UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase_ )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]:
def check_hidden_states_output(lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int ):
UpperCAmelCase_ : str = model_class(lowerCAmelCase_ )
UpperCAmelCase_ : Any = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) , training=lowerCAmelCase_ )
UpperCAmelCase_ : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
UpperCAmelCase_ : Optional[Any] = self.model_tester.num_stages
self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 )
# RegNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , )
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ : Tuple = ["basic", "bottleneck"]
for model_class in self.all_model_classes:
for layer_type in layers_type:
UpperCAmelCase_ : List[Any] = layer_type
UpperCAmelCase_ : int = True
check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase_ : Optional[int] = True
check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any:
UpperCAmelCase_ , UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common()
def check_equivalence(lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str]={} ):
UpperCAmelCase_ : Tuple = model(lowerCAmelCase_ , return_dict=lowerCAmelCase_ , **lowerCAmelCase_ )
UpperCAmelCase_ : Optional[Any] = model(lowerCAmelCase_ , return_dict=lowerCAmelCase_ , **lowerCAmelCase_ ).to_tuple()
def recursive_check(lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any ):
if isinstance(lowerCAmelCase_ , (List, Tuple) ):
for tuple_iterable_value, dict_iterable_value in zip(lowerCAmelCase_ , lowerCAmelCase_ ):
recursive_check(lowerCAmelCase_ , lowerCAmelCase_ )
elif tuple_object is None:
return
else:
self.assertTrue(
all(tf.equal(lowerCAmelCase_ , lowerCAmelCase_ ) ) , msg=(
"Tuple and dict output are not equal. Difference:"
f""" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}"""
) , )
recursive_check(lowerCAmelCase_ , lowerCAmelCase_ )
for model_class in self.all_model_classes:
UpperCAmelCase_ : Union[str, Any] = model_class(lowerCAmelCase_ )
UpperCAmelCase_ : List[Any] = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ )
UpperCAmelCase_ : str = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ )
check_equivalence(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
UpperCAmelCase_ : Any = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ )
UpperCAmelCase_ : List[Any] = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ )
check_equivalence(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
UpperCAmelCase_ : Union[str, Any] = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ )
UpperCAmelCase_ : str = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ )
check_equivalence(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , {"output_hidden_states": True} )
UpperCAmelCase_ : List[str] = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ )
UpperCAmelCase_ : Tuple = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ )
check_equivalence(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , {"output_hidden_states": True} )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str:
UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ )
@slow
def _SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]:
for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : Any = TFRegNetModel.from_pretrained(lowerCAmelCase_ )
self.assertIsNotNone(lowerCAmelCase_ )
def snake_case ( ):
UpperCAmelCase_ : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_tf
@require_vision
class UpperCamelCase_ (unittest.TestCase ):
@cached_property
def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]:
return (
AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict:
UpperCAmelCase_ : Any = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
UpperCAmelCase_ : Union[str, Any] = self.default_image_processor
UpperCAmelCase_ : int = prepare_img()
UpperCAmelCase_ : List[Any] = image_processor(images=lowerCAmelCase_ , return_tensors="tf" )
# forward pass
UpperCAmelCase_ : Tuple = model(**lowerCAmelCase_ , training=lowerCAmelCase_ )
# verify the logits
UpperCAmelCase_ : List[str] = tf.TensorShape((1, 1_000) )
self.assertEqual(outputs.logits.shape , lowerCAmelCase_ )
UpperCAmelCase_ : Optional[Any] = tf.constant([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] )
tf.debugging.assert_near(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 )
| 268 | 1 |
'''simple docstring'''
import argparse
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from PIL import Image
from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
a__ : Dict = logging.get_logger(__name__)
def _lowercase ( __A ):
'''simple docstring'''
__UpperCamelCase = OrderedDict()
for key, value in state_dict.items():
if key.startswith("""module.encoder""" ):
__UpperCamelCase = key.replace("""module.encoder""" ,"""glpn.encoder""" )
if key.startswith("""module.decoder""" ):
__UpperCamelCase = key.replace("""module.decoder""" ,"""decoder.stages""" )
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
__UpperCamelCase = key[key.find("""patch_embed""" ) + len("""patch_embed""" )]
__UpperCamelCase = key.replace(f"patch_embed{idx}" ,f"patch_embeddings.{int(__A )-1}" )
if "norm" in key:
__UpperCamelCase = key.replace("""norm""" ,"""layer_norm""" )
if "glpn.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
__UpperCamelCase = key[key.find("""glpn.encoder.layer_norm""" ) + len("""glpn.encoder.layer_norm""" )]
__UpperCamelCase = key.replace(f"layer_norm{idx}" ,f"layer_norm.{int(__A )-1}" )
if "layer_norm1" in key:
__UpperCamelCase = key.replace("""layer_norm1""" ,"""layer_norm_1""" )
if "layer_norm2" in key:
__UpperCamelCase = key.replace("""layer_norm2""" ,"""layer_norm_2""" )
if "block" in key:
# replace for example block1 by block.0
__UpperCamelCase = key[key.find("""block""" ) + len("""block""" )]
__UpperCamelCase = key.replace(f"block{idx}" ,f"block.{int(__A )-1}" )
if "attn.q" in key:
__UpperCamelCase = key.replace("""attn.q""" ,"""attention.self.query""" )
if "attn.proj" in key:
__UpperCamelCase = key.replace("""attn.proj""" ,"""attention.output.dense""" )
if "attn" in key:
__UpperCamelCase = key.replace("""attn""" ,"""attention.self""" )
if "fc1" in key:
__UpperCamelCase = key.replace("""fc1""" ,"""dense1""" )
if "fc2" in key:
__UpperCamelCase = key.replace("""fc2""" ,"""dense2""" )
if "linear_pred" in key:
__UpperCamelCase = key.replace("""linear_pred""" ,"""classifier""" )
if "linear_fuse" in key:
__UpperCamelCase = key.replace("""linear_fuse.conv""" ,"""linear_fuse""" )
__UpperCamelCase = key.replace("""linear_fuse.bn""" ,"""batch_norm""" )
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
__UpperCamelCase = key[key.find("""linear_c""" ) + len("""linear_c""" )]
__UpperCamelCase = key.replace(f"linear_c{idx}" ,f"linear_c.{int(__A )-1}" )
if "bot_conv" in key:
__UpperCamelCase = key.replace("""bot_conv""" ,"""0.convolution""" )
if "skip_conv1" in key:
__UpperCamelCase = key.replace("""skip_conv1""" ,"""1.convolution""" )
if "skip_conv2" in key:
__UpperCamelCase = key.replace("""skip_conv2""" ,"""2.convolution""" )
if "fusion1" in key:
__UpperCamelCase = key.replace("""fusion1""" ,"""1.fusion""" )
if "fusion2" in key:
__UpperCamelCase = key.replace("""fusion2""" ,"""2.fusion""" )
if "fusion3" in key:
__UpperCamelCase = key.replace("""fusion3""" ,"""3.fusion""" )
if "fusion" in key and "conv" in key:
__UpperCamelCase = key.replace("""conv""" ,"""convolutional_layer""" )
if key.startswith("""module.last_layer_depth""" ):
__UpperCamelCase = key.replace("""module.last_layer_depth""" ,"""head.head""" )
__UpperCamelCase = value
return new_state_dict
def _lowercase ( __A ,__A ):
'''simple docstring'''
for i in range(config.num_encoder_blocks ):
for j in range(config.depths[i] ):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
__UpperCamelCase = state_dict.pop(f"glpn.encoder.block.{i}.{j}.attention.self.kv.weight" )
__UpperCamelCase = state_dict.pop(f"glpn.encoder.block.{i}.{j}.attention.self.kv.bias" )
# next, add keys and values (in that order) to the state dict
__UpperCamelCase = kv_weight[
: config.hidden_sizes[i], :
]
__UpperCamelCase = kv_bias[: config.hidden_sizes[i]]
__UpperCamelCase = kv_weight[
config.hidden_sizes[i] :, :
]
__UpperCamelCase = kv_bias[config.hidden_sizes[i] :]
def _lowercase ( ):
'''simple docstring'''
__UpperCamelCase = """http://images.cocodataset.org/val2017/000000039769.jpg"""
__UpperCamelCase = Image.open(requests.get(__A ,stream=__A ).raw )
return image
@torch.no_grad()
def _lowercase ( __A ,__A ,__A=False ,__A=None ):
'''simple docstring'''
__UpperCamelCase = GLPNConfig(hidden_sizes=[64, 128, 320, 512] ,decoder_hidden_size=64 ,depths=[3, 8, 27, 3] )
# load image processor (only resize + rescale)
__UpperCamelCase = GLPNImageProcessor()
# prepare image
__UpperCamelCase = prepare_img()
__UpperCamelCase = image_processor(images=__A ,return_tensors="""pt""" ).pixel_values
logger.info("""Converting model...""" )
# load original state dict
__UpperCamelCase = torch.load(__A ,map_location=torch.device("""cpu""" ) )
# rename keys
__UpperCamelCase = rename_keys(__A )
# key and value matrices need special treatment
read_in_k_v(__A ,__A )
# create HuggingFace model and load state dict
__UpperCamelCase = GLPNForDepthEstimation(__A )
model.load_state_dict(__A )
model.eval()
# forward pass
__UpperCamelCase = model(__A )
__UpperCamelCase = outputs.predicted_depth
# verify output
if model_name is not None:
if "nyu" in model_name:
__UpperCamelCase = torch.tensor(
[[4.4147, 4.0873, 4.0673], [3.7890, 3.2881, 3.1525], [3.7674, 3.5423, 3.4913]] )
elif "kitti" in model_name:
__UpperCamelCase = torch.tensor(
[[3.4291, 2.7865, 2.5151], [3.2841, 2.7021, 2.3502], [3.1147, 2.4625, 2.2481]] )
else:
raise ValueError(f"Unknown model name: {model_name}" )
__UpperCamelCase = torch.Size([1, 480, 640] )
assert predicted_depth.shape == expected_shape
assert torch.allclose(predicted_depth[0, :3, :3] ,__A ,atol=1E-4 )
print("""Looks ok!""" )
# finally, push to hub if required
if push_to_hub:
logger.info("""Pushing model and image processor to the hub...""" )
model.push_to_hub(
repo_path_or_name=Path(__A ,__A ) ,organization="""nielsr""" ,commit_message="""Add model""" ,use_temp_dir=__A ,)
image_processor.push_to_hub(
repo_path_or_name=Path(__A ,__A ) ,organization="""nielsr""" ,commit_message="""Add image processor""" ,use_temp_dir=__A ,)
if __name__ == "__main__":
a__ : str = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint_path',
default=None,
type=str,
help='Path to the original PyTorch checkpoint (.pth file).',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.'
)
parser.add_argument(
'--model_name',
default='glpn-kitti',
type=str,
help='Name of the model in case you\'re pushing to the hub.',
)
a__ : Optional[int] = parser.parse_args()
convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
| 364 |
'''simple docstring'''
def _lowercase ( __A = 10 ,__A = 22 ):
'''simple docstring'''
__UpperCamelCase = range(1 ,__A )
__UpperCamelCase = range(1 ,__A )
return sum(
1 for power in powers for base in bases if len(str(base**power ) ) == power )
if __name__ == "__main__":
print(f'''{solution(1_0, 2_2) = }''')
| 243 | 0 |
import copy
import os
from typing import TYPE_CHECKING, List, Union
if TYPE_CHECKING:
pass
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__UpperCamelCase : int = logging.get_logger(__name__)
__UpperCamelCase : Any = {
"""kakaobrain/align-base""": """https://huggingface.co/kakaobrain/align-base/resolve/main/config.json""",
}
class __SCREAMING_SNAKE_CASE( a_ ):
_UpperCAmelCase = "align_text_model"
def __init__( self: Union[str, Any] , UpperCamelCase: Optional[Any]=3_05_22 , UpperCamelCase: str=7_68 , UpperCamelCase: int=12 , UpperCamelCase: str=12 , UpperCamelCase: Union[str, Any]=30_72 , UpperCamelCase: List[str]="gelu" , UpperCamelCase: int=0.1 , UpperCamelCase: Optional[Any]=0.1 , UpperCamelCase: List[Any]=5_12 , UpperCamelCase: int=2 , UpperCamelCase: List[Any]=0.02 , UpperCamelCase: Dict=1e-12 , UpperCamelCase: List[str]=0 , UpperCamelCase: Optional[int]="absolute" , UpperCamelCase: List[str]=True , **UpperCamelCase: Dict , ) -> List[str]:
super().__init__(**UpperCamelCase )
snake_case__ = vocab_size
snake_case__ = hidden_size
snake_case__ = num_hidden_layers
snake_case__ = num_attention_heads
snake_case__ = hidden_act
snake_case__ = intermediate_size
snake_case__ = hidden_dropout_prob
snake_case__ = attention_probs_dropout_prob
snake_case__ = max_position_embeddings
snake_case__ = type_vocab_size
snake_case__ = initializer_range
snake_case__ = layer_norm_eps
snake_case__ = position_embedding_type
snake_case__ = use_cache
snake_case__ = pad_token_id
@classmethod
def lowerCAmelCase_ ( cls: Tuple , UpperCamelCase: Union[str, os.PathLike] , **UpperCamelCase: Any ) -> "PretrainedConfig":
cls._set_token_in_kwargs(UpperCamelCase )
snake_case__ , snake_case__ = cls.get_config_dict(UpperCamelCase , **UpperCamelCase )
# get the text config dict if we are loading from AlignConfig
if config_dict.get('model_type' ) == "align":
snake_case__ = config_dict['text_config']
if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type '''
F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(UpperCamelCase , **UpperCamelCase )
class __SCREAMING_SNAKE_CASE( a_ ):
_UpperCAmelCase = "align_vision_model"
def __init__( self: Optional[Any] , UpperCamelCase: int = 3 , UpperCamelCase: int = 6_00 , UpperCamelCase: float = 2.0 , UpperCamelCase: float = 3.1 , UpperCamelCase: int = 8 , UpperCamelCase: List[int] = [3, 3, 5, 3, 5, 5, 3] , UpperCamelCase: List[int] = [32, 16, 24, 40, 80, 1_12, 1_92] , UpperCamelCase: List[int] = [16, 24, 40, 80, 1_12, 1_92, 3_20] , UpperCamelCase: List[int] = [] , UpperCamelCase: List[int] = [1, 2, 2, 2, 1, 2, 1] , UpperCamelCase: List[int] = [1, 2, 2, 3, 3, 4, 1] , UpperCamelCase: List[int] = [1, 6, 6, 6, 6, 6, 6] , UpperCamelCase: float = 0.25 , UpperCamelCase: str = "swish" , UpperCamelCase: int = 25_60 , UpperCamelCase: str = "mean" , UpperCamelCase: float = 0.02 , UpperCamelCase: float = 0.001 , UpperCamelCase: float = 0.99 , UpperCamelCase: float = 0.2 , **UpperCamelCase: Any , ) -> Optional[Any]:
super().__init__(**UpperCamelCase )
snake_case__ = num_channels
snake_case__ = image_size
snake_case__ = width_coefficient
snake_case__ = depth_coefficient
snake_case__ = depth_divisor
snake_case__ = kernel_sizes
snake_case__ = in_channels
snake_case__ = out_channels
snake_case__ = depthwise_padding
snake_case__ = strides
snake_case__ = num_block_repeats
snake_case__ = expand_ratios
snake_case__ = squeeze_expansion_ratio
snake_case__ = hidden_act
snake_case__ = hidden_dim
snake_case__ = pooling_type
snake_case__ = initializer_range
snake_case__ = batch_norm_eps
snake_case__ = batch_norm_momentum
snake_case__ = drop_connect_rate
snake_case__ = sum(UpperCamelCase ) * 4
@classmethod
def lowerCAmelCase_ ( cls: str , UpperCamelCase: Union[str, os.PathLike] , **UpperCamelCase: List[Any] ) -> "PretrainedConfig":
cls._set_token_in_kwargs(UpperCamelCase )
snake_case__ , snake_case__ = cls.get_config_dict(UpperCamelCase , **UpperCamelCase )
# get the vision config dict if we are loading from AlignConfig
if config_dict.get('model_type' ) == "align":
snake_case__ = config_dict['vision_config']
if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type '''
F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(UpperCamelCase , **UpperCamelCase )
class __SCREAMING_SNAKE_CASE( a_ ):
_UpperCAmelCase = "align"
_UpperCAmelCase = True
def __init__( self: Optional[Any] , UpperCamelCase: Optional[int]=None , UpperCamelCase: Dict=None , UpperCamelCase: Optional[Any]=6_40 , UpperCamelCase: List[str]=1.0 , UpperCamelCase: int=0.02 , **UpperCamelCase: Tuple , ) -> Any:
super().__init__(**UpperCamelCase )
if text_config is None:
snake_case__ = {}
logger.info('text_config is None. Initializing the AlignTextConfig with default values.' )
if vision_config is None:
snake_case__ = {}
logger.info('vision_config is None. Initializing the AlignVisionConfig with default values.' )
snake_case__ = AlignTextConfig(**UpperCamelCase )
snake_case__ = AlignVisionConfig(**UpperCamelCase )
snake_case__ = projection_dim
snake_case__ = temperature_init_value
snake_case__ = initializer_range
@classmethod
def lowerCAmelCase_ ( cls: Optional[int] , UpperCamelCase: AlignTextConfig , UpperCamelCase: AlignVisionConfig , **UpperCamelCase: Union[str, Any] ) -> Union[str, Any]:
return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **UpperCamelCase )
def lowerCAmelCase_ ( self: Optional[Any] ) -> Optional[int]:
snake_case__ = copy.deepcopy(self.__dict__ )
snake_case__ = self.text_config.to_dict()
snake_case__ = self.vision_config.to_dict()
snake_case__ = self.__class__.model_type
return output
| 307 |
# Lint as: python3
import sys
from collections.abc import Mapping
from typing import TYPE_CHECKING
import numpy as np
import pyarrow as pa
from .. import config
from ..utils.py_utils import map_nested
from .formatting import TensorFormatter
if TYPE_CHECKING:
import torch
class __SCREAMING_SNAKE_CASE( TensorFormatter[Mapping, "torch.Tensor", Mapping] ):
def __init__( self: Any , UpperCamelCase: Optional[int]=None , **UpperCamelCase: Union[str, Any] ) -> int:
super().__init__(features=UpperCamelCase )
snake_case__ = torch_tensor_kwargs
import torch # noqa import torch at initialization
def lowerCAmelCase_ ( self: Any , UpperCamelCase: Any ) -> List[str]:
import torch
if isinstance(UpperCamelCase , UpperCamelCase ) and column:
if all(
isinstance(UpperCamelCase , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype
for x in column ):
return torch.stack(UpperCamelCase )
return column
def lowerCAmelCase_ ( self: str , UpperCamelCase: Dict ) -> Union[str, Any]:
import torch
if isinstance(UpperCamelCase , (str, bytes, type(UpperCamelCase )) ):
return value
elif isinstance(UpperCamelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ):
return value.tolist()
snake_case__ = {}
if isinstance(UpperCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ):
snake_case__ = {'dtype': torch.intaa}
elif isinstance(UpperCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ):
snake_case__ = {'dtype': torch.floataa}
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if isinstance(UpperCamelCase , PIL.Image.Image ):
snake_case__ = np.asarray(UpperCamelCase )
return torch.tensor(UpperCamelCase , **{**default_dtype, **self.torch_tensor_kwargs} )
def lowerCAmelCase_ ( self: Any , UpperCamelCase: str ) -> Any:
import torch
# support for torch, tf, jax etc.
if hasattr(UpperCamelCase , '__array__' ) and not isinstance(UpperCamelCase , torch.Tensor ):
snake_case__ = data_struct.__array__()
# support for nested types like struct of list of struct
if isinstance(UpperCamelCase , np.ndarray ):
if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects
return self._consolidate([self.recursive_tensorize(UpperCamelCase ) for substruct in data_struct] )
elif isinstance(UpperCamelCase , (list, tuple) ):
return self._consolidate([self.recursive_tensorize(UpperCamelCase ) for substruct in data_struct] )
return self._tensorize(UpperCamelCase )
def lowerCAmelCase_ ( self: List[Any] , UpperCamelCase: dict ) -> List[str]:
return map_nested(self._recursive_tensorize , UpperCamelCase , map_list=UpperCamelCase )
def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: pa.Table ) -> Mapping:
snake_case__ = self.numpy_arrow_extractor().extract_row(UpperCamelCase )
snake_case__ = self.python_features_decoder.decode_row(UpperCamelCase )
return self.recursive_tensorize(UpperCamelCase )
def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: pa.Table ) -> "torch.Tensor":
snake_case__ = self.numpy_arrow_extractor().extract_column(UpperCamelCase )
snake_case__ = self.python_features_decoder.decode_column(UpperCamelCase , pa_table.column_names[0] )
snake_case__ = self.recursive_tensorize(UpperCamelCase )
snake_case__ = self._consolidate(UpperCamelCase )
return column
def lowerCAmelCase_ ( self: Union[str, Any] , UpperCamelCase: pa.Table ) -> Mapping:
snake_case__ = self.numpy_arrow_extractor().extract_batch(UpperCamelCase )
snake_case__ = self.python_features_decoder.decode_batch(UpperCamelCase )
snake_case__ = self.recursive_tensorize(UpperCamelCase )
for column_name in batch:
snake_case__ = self._consolidate(batch[column_name] )
return batch
| 307 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase :Any = logging.get_logger(__name__)
lowerCamelCase :str = {
'''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''',
'''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''',
}
class _lowerCAmelCase ( __UpperCAmelCase ):
__SCREAMING_SNAKE_CASE : int = 'markuplm'
def __init__(self , lowercase=30522 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=2 , lowercase=0.02 , lowercase=1E-12 , lowercase=0 , lowercase=0 , lowercase=2 , lowercase=256 , lowercase=1024 , lowercase=216 , lowercase=1001 , lowercase=32 , lowercase=50 , lowercase="absolute" , lowercase=True , lowercase=None , **lowercase , ):
super().__init__(
pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase , )
A_ : int = vocab_size
A_ : int = hidden_size
A_ : Union[str, Any] = num_hidden_layers
A_ : Optional[int] = num_attention_heads
A_ : List[Any] = hidden_act
A_ : Dict = intermediate_size
A_ : Optional[int] = hidden_dropout_prob
A_ : List[str] = attention_probs_dropout_prob
A_ : Tuple = max_position_embeddings
A_ : Optional[int] = type_vocab_size
A_ : str = initializer_range
A_ : Optional[int] = layer_norm_eps
A_ : List[str] = position_embedding_type
A_ : Dict = use_cache
A_ : Optional[int] = classifier_dropout
# additional properties
A_ : Optional[int] = max_depth
A_ : Union[str, Any] = max_xpath_tag_unit_embeddings
A_ : str = max_xpath_subs_unit_embeddings
A_ : Optional[Any] = tag_pad_id
A_ : Union[str, Any] = subs_pad_id
A_ : List[str] = xpath_unit_hidden_size | 135 |
'''simple docstring'''
from maths.is_square_free import is_square_free
from maths.prime_factors import prime_factors
def a ( lowerCamelCase__ ):
'''simple docstring'''
A_ : List[Any] = prime_factors(lowerCamelCase__ )
if is_square_free(lowerCamelCase__ ):
return -1 if len(lowerCamelCase__ ) % 2 else 1
return 0
if __name__ == "__main__":
import doctest
doctest.testmod() | 135 | 1 |
'''simple docstring'''
import torch
from torch import nn
class lowerCamelCase_ (nn.Module ):
'''simple docstring'''
def __init__( self : Optional[Any] , A : Dict , A : Tuple , A : Optional[Any] , A : Tuple , A : Union[str, Any]=1 , A : str=False ):
super().__init__()
_UpperCAmelCase : Union[str, Any] = n_token
_UpperCAmelCase : List[Any] = d_embed
_UpperCAmelCase : List[str] = d_proj
_UpperCAmelCase : Union[str, Any] = cutoffs + [n_token]
_UpperCAmelCase : str = [0] + self.cutoffs
_UpperCAmelCase : Dict = div_val
_UpperCAmelCase : Tuple = self.cutoffs[0]
_UpperCAmelCase : Tuple = len(self.cutoffs ) - 1
_UpperCAmelCase : Tuple = self.shortlist_size + self.n_clusters
if self.n_clusters > 0:
_UpperCAmelCase : Any = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) )
_UpperCAmelCase : Optional[int] = nn.Parameter(torch.zeros(self.n_clusters ) )
_UpperCAmelCase : str = nn.ModuleList()
_UpperCAmelCase : Dict = nn.ParameterList()
if div_val == 1:
for i in range(len(self.cutoffs ) ):
if d_proj != d_embed:
self.out_projs.append(nn.Parameter(torch.FloatTensor(A , A ) ) )
else:
self.out_projs.append(A )
self.out_layers.append(nn.Linear(A , A ) )
else:
for i in range(len(self.cutoffs ) ):
_UpperCAmelCase , _UpperCAmelCase : Dict = self.cutoff_ends[i], self.cutoff_ends[i + 1]
_UpperCAmelCase : Tuple = d_embed // (div_val**i)
self.out_projs.append(nn.Parameter(torch.FloatTensor(A , A ) ) )
self.out_layers.append(nn.Linear(A , r_idx - l_idx ) )
_UpperCAmelCase : Dict = keep_order
def _A ( self : Optional[int] , A : Optional[int] , A : List[str] , A : Optional[Any] , A : List[str] ):
if proj is None:
_UpperCAmelCase : Optional[int] = nn.functional.linear(A , A , bias=A )
else:
# if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1:
_UpperCAmelCase : Optional[int] = nn.functional.linear(A , proj.t().contiguous() )
_UpperCAmelCase : str = nn.functional.linear(A , A , bias=A )
# else:
# logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t()))
# if bias is not None:
# logit = logit + bias
return logit
def _A ( self : Optional[int] , A : Tuple , A : Union[str, Any]=None , A : Any=False ):
if labels is not None:
# Shift so that tokens < n predict n
_UpperCAmelCase : Union[str, Any] = hidden[..., :-1, :].contiguous()
_UpperCAmelCase : str = labels[..., 1:].contiguous()
_UpperCAmelCase : Any = hidden.view(-1 , hidden.size(-1 ) )
_UpperCAmelCase : str = labels.view(-1 )
if hidden.size(0 ) != labels.size(0 ):
raise RuntimeError("Input and labels should have the same size in the batch dimension." )
else:
_UpperCAmelCase : Union[str, Any] = hidden.view(-1 , hidden.size(-1 ) )
if self.n_clusters == 0:
_UpperCAmelCase : Any = self._compute_logit(A , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] )
if labels is not None:
_UpperCAmelCase : Optional[int] = labels != -100
_UpperCAmelCase : List[str] = torch.zeros_like(A , dtype=hidden.dtype , device=hidden.device )
_UpperCAmelCase : List[str] = (
-nn.functional.log_softmax(A , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 )
)
else:
_UpperCAmelCase : str = nn.functional.log_softmax(A , dim=-1 )
else:
# construct weights and biases
_UpperCAmelCase , _UpperCAmelCase : Dict = [], []
for i in range(len(self.cutoffs ) ):
if self.div_val == 1:
_UpperCAmelCase , _UpperCAmelCase : List[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1]
_UpperCAmelCase : Any = self.out_layers[0].weight[l_idx:r_idx]
_UpperCAmelCase : Union[str, Any] = self.out_layers[0].bias[l_idx:r_idx]
else:
_UpperCAmelCase : Optional[int] = self.out_layers[i].weight
_UpperCAmelCase : Dict = self.out_layers[i].bias
if i == 0:
_UpperCAmelCase : int = torch.cat([weight_i, self.cluster_weight] , dim=0 )
_UpperCAmelCase : Union[str, Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 )
weights.append(A )
biases.append(A )
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[str] = weights[0], biases[0], self.out_projs[0]
_UpperCAmelCase : Dict = self._compute_logit(A , A , A , A )
_UpperCAmelCase : List[str] = nn.functional.log_softmax(A , dim=1 )
if labels is None:
_UpperCAmelCase : int = hidden.new_empty((head_logit.size(0 ), self.n_token) )
else:
_UpperCAmelCase : int = torch.zeros_like(A , dtype=hidden.dtype , device=hidden.device )
_UpperCAmelCase : Dict = 0
_UpperCAmelCase : Any = [0] + self.cutoffs
for i in range(len(A ) - 1 ):
_UpperCAmelCase , _UpperCAmelCase : str = cutoff_values[i], cutoff_values[i + 1]
if labels is not None:
_UpperCAmelCase : List[Any] = (labels >= l_idx) & (labels < r_idx)
_UpperCAmelCase : Any = mask_i.nonzero().squeeze()
if indices_i.numel() == 0:
continue
_UpperCAmelCase : Union[str, Any] = labels.index_select(0 , A ) - l_idx
_UpperCAmelCase : Any = head_logprob.index_select(0 , A )
_UpperCAmelCase : Dict = hidden.index_select(0 , A )
else:
_UpperCAmelCase : List[Any] = hidden
if i == 0:
if labels is not None:
_UpperCAmelCase : str = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 )
else:
_UpperCAmelCase : Optional[Any] = head_logprob[:, : self.cutoffs[0]]
else:
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = weights[i], biases[i], self.out_projs[i]
_UpperCAmelCase : Optional[Any] = self._compute_logit(A , A , A , A )
_UpperCAmelCase : Optional[int] = nn.functional.log_softmax(A , dim=1 )
_UpperCAmelCase : Tuple = self.cutoffs[0] + i - 1 # No probability for the head cluster
if labels is not None:
_UpperCAmelCase : Union[str, Any] = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather(
1 , target_i[:, None] ).squeeze(1 )
else:
_UpperCAmelCase : str = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i
_UpperCAmelCase : Optional[Any] = logprob_i
if labels is not None:
if (hasattr(self , "keep_order" ) and self.keep_order) or keep_order:
out.index_copy_(0 , A , -logprob_i )
else:
out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i )
offset += logprob_i.size(0 )
return out
def _A ( self : Optional[int] , A : str ):
if self.n_clusters == 0:
_UpperCAmelCase : List[str] = self._compute_logit(A , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] )
return nn.functional.log_softmax(A , dim=-1 )
else:
# construct weights and biases
_UpperCAmelCase , _UpperCAmelCase : List[Any] = [], []
for i in range(len(self.cutoffs ) ):
if self.div_val == 1:
_UpperCAmelCase , _UpperCAmelCase : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1]
_UpperCAmelCase : Union[str, Any] = self.out_layers[0].weight[l_idx:r_idx]
_UpperCAmelCase : List[Any] = self.out_layers[0].bias[l_idx:r_idx]
else:
_UpperCAmelCase : int = self.out_layers[i].weight
_UpperCAmelCase : List[str] = self.out_layers[i].bias
if i == 0:
_UpperCAmelCase : Tuple = torch.cat([weight_i, self.cluster_weight] , dim=0 )
_UpperCAmelCase : Any = torch.cat([bias_i, self.cluster_bias] , dim=0 )
weights.append(A )
biases.append(A )
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[int] = weights[0], biases[0], self.out_projs[0]
_UpperCAmelCase : Optional[Any] = self._compute_logit(A , A , A , A )
_UpperCAmelCase : Union[str, Any] = hidden.new_empty((head_logit.size(0 ), self.n_token) )
_UpperCAmelCase : Any = nn.functional.log_softmax(A , dim=1 )
_UpperCAmelCase : Optional[Any] = [0] + self.cutoffs
for i in range(len(A ) - 1 ):
_UpperCAmelCase , _UpperCAmelCase : List[str] = cutoff_values[i], cutoff_values[i + 1]
if i == 0:
_UpperCAmelCase : str = head_logprob[:, : self.cutoffs[0]]
else:
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Tuple = weights[i], biases[i], self.out_projs[i]
_UpperCAmelCase : int = self._compute_logit(A , A , A , A )
_UpperCAmelCase : List[str] = nn.functional.log_softmax(A , dim=1 )
_UpperCAmelCase : Optional[Any] = head_logprob[:, -i] + tail_logprob_i
_UpperCAmelCase : Any = logprob_i
return out
| 31 | '''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_distilbert import DistilBertTokenizer
__SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : str = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
__SCREAMING_SNAKE_CASE : Dict = {
"""vocab_file""": {
"""distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt""",
"""distilbert-base-uncased-distilled-squad""": (
"""https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt"""
),
"""distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt""",
"""distilbert-base-cased-distilled-squad""": (
"""https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt"""
),
"""distilbert-base-german-cased""": """https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt""",
"""distilbert-base-multilingual-cased""": (
"""https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json""",
"""distilbert-base-uncased-distilled-squad""": (
"""https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json"""
),
"""distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json""",
"""distilbert-base-cased-distilled-squad""": (
"""https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json"""
),
"""distilbert-base-german-cased""": (
"""https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json"""
),
"""distilbert-base-multilingual-cased""": (
"""https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json"""
),
},
}
__SCREAMING_SNAKE_CASE : Optional[Any] = {
"""distilbert-base-uncased""": 512,
"""distilbert-base-uncased-distilled-squad""": 512,
"""distilbert-base-cased""": 512,
"""distilbert-base-cased-distilled-squad""": 512,
"""distilbert-base-german-cased""": 512,
"""distilbert-base-multilingual-cased""": 512,
}
__SCREAMING_SNAKE_CASE : List[Any] = {
"""distilbert-base-uncased""": {"""do_lower_case""": True},
"""distilbert-base-uncased-distilled-squad""": {"""do_lower_case""": True},
"""distilbert-base-cased""": {"""do_lower_case""": False},
"""distilbert-base-cased-distilled-squad""": {"""do_lower_case""": False},
"""distilbert-base-german-cased""": {"""do_lower_case""": False},
"""distilbert-base-multilingual-cased""": {"""do_lower_case""": False},
}
class lowerCamelCase_ (snake_case__ ):
'''simple docstring'''
__UpperCamelCase: Union[str, Any] = VOCAB_FILES_NAMES
__UpperCamelCase: str = PRETRAINED_VOCAB_FILES_MAP
__UpperCamelCase: Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCamelCase: Any = PRETRAINED_INIT_CONFIGURATION
__UpperCamelCase: str = ["input_ids", "attention_mask"]
__UpperCamelCase: List[str] = DistilBertTokenizer
def __init__( self : str , A : int=None , A : Tuple=None , A : Tuple=True , A : Dict="[UNK]" , A : List[Any]="[SEP]" , A : Optional[Any]="[PAD]" , A : Dict="[CLS]" , A : Tuple="[MASK]" , A : str=True , A : Dict=None , **A : List[Any] , ):
super().__init__(
A , tokenizer_file=A , do_lower_case=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , tokenize_chinese_chars=A , strip_accents=A , **A , )
_UpperCAmelCase : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("lowercase" , A ) != do_lower_case
or normalizer_state.get("strip_accents" , A ) != strip_accents
or normalizer_state.get("handle_chinese_chars" , A ) != tokenize_chinese_chars
):
_UpperCAmelCase : Dict = getattr(A , normalizer_state.pop("type" ) )
_UpperCAmelCase : int = do_lower_case
_UpperCAmelCase : Optional[int] = strip_accents
_UpperCAmelCase : str = tokenize_chinese_chars
_UpperCAmelCase : List[Any] = normalizer_class(**A )
_UpperCAmelCase : Dict = do_lower_case
def _A ( self : List[Any] , A : Tuple , A : Any=None ):
_UpperCAmelCase : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def _A ( self : int , A : List[int] , A : Optional[List[int]] = None ):
_UpperCAmelCase : Any = [self.sep_token_id]
_UpperCAmelCase : str = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def _A ( self : Dict , A : str , A : Optional[str] = None ):
_UpperCAmelCase : Any = self._tokenizer.model.save(A , name=A )
return tuple(A )
| 31 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
lowerCAmelCase_ = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST',
'UniSpeechForCTC',
'UniSpeechForPreTraining',
'UniSpeechForSequenceClassification',
'UniSpeechModel',
'UniSpeechPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_unispeech import (
UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST,
UniSpeechForCTC,
UniSpeechForPreTraining,
UniSpeechForSequenceClassification,
UniSpeechModel,
UniSpeechPreTrainedModel,
)
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 361 |
import os
from pathlib import Path
import numpy as np
import pytest
from pack_dataset import pack_data_dir
from parameterized import parameterized
from save_len_file import save_len_file
from torch.utils.data import DataLoader
from transformers import AutoTokenizer
from transformers.models.mbart.modeling_mbart import shift_tokens_right
from transformers.testing_utils import TestCasePlus, slow
from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset
lowerCAmelCase_ = 'bert-base-cased'
lowerCAmelCase_ = 'google/pegasus-xsum'
lowerCAmelCase_ = [' Sam ate lunch today.', 'Sams lunch ingredients.']
lowerCAmelCase_ = ['A very interesting story about what I ate for lunch.', 'Avocado, celery, turkey, coffee']
lowerCAmelCase_ = 'patrickvonplaten/t5-tiny-random'
lowerCAmelCase_ = 'sshleifer/bart-tiny-random'
lowerCAmelCase_ = 'sshleifer/tiny-mbart'
lowerCAmelCase_ = 'sshleifer/tiny-marian-en-de'
def snake_case( __magic_name__ , __magic_name__ ) -> Optional[Any]:
'''simple docstring'''
lowercase : List[str] = '''\n'''.join(__magic_name__ )
Path(__magic_name__ ).open('''w''' ).writelines(__magic_name__ )
def snake_case( __magic_name__ ) -> Optional[int]:
'''simple docstring'''
for split in ["train", "val", "test"]:
_dump_articles(os.path.join(__magic_name__ , F"""{split}.source""" ) , __magic_name__ )
_dump_articles(os.path.join(__magic_name__ , F"""{split}.target""" ) , __magic_name__ )
return tmp_dir
class _A ( _lowerCamelCase ):
@parameterized.expand(
[
MBART_TINY,
MARIAN_TINY,
T5_TINY,
BART_TINY,
PEGASUS_XSUM,
] , )
@slow
def __a ( self : List[str] , _A : Optional[Any] ) -> Dict:
"""simple docstring"""
lowercase : int = AutoTokenizer.from_pretrained(_A )
lowercase : Optional[int] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() )
lowercase : List[str] = max(len(tokenizer.encode(_A ) ) for a in ARTICLES )
lowercase : Optional[int] = max(len(tokenizer.encode(_A ) ) for a in SUMMARIES )
lowercase : str = 4
lowercase : List[Any] = 8
assert max_len_target > max_src_len # Will be truncated
assert max_len_source > max_src_len # Will be truncated
lowercase , lowercase : Optional[int] = '''ro_RO''', '''de_DE''' # ignored for all but mbart, but never causes error.
lowercase : int = SeqaSeqDataset(
_A , data_dir=_A , type_path='''train''' , max_source_length=_A , max_target_length=_A , src_lang=_A , tgt_lang=_A , )
lowercase : Optional[int] = DataLoader(_A , batch_size=2 , collate_fn=train_dataset.collate_fn )
for batch in dataloader:
assert isinstance(_A , _A )
assert batch["attention_mask"].shape == batch["input_ids"].shape
# show that articles were trimmed.
assert batch["input_ids"].shape[1] == max_src_len
# show that targets are the same len
assert batch["labels"].shape[1] == max_tgt_len
if tok_name != MBART_TINY:
continue
# check language codes in correct place
lowercase : int = shift_tokens_right(batch['''labels'''] , tokenizer.pad_token_id )
assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang]
assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id
assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id
assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang]
break # No need to test every batch
@parameterized.expand([BART_TINY, BERT_BASE_CASED] )
def __a ( self : int , _A : Tuple ) -> List[str]:
"""simple docstring"""
lowercase : int = AutoTokenizer.from_pretrained(_A )
lowercase : int = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() )
lowercase : Optional[int] = max(len(tokenizer.encode(_A ) ) for a in ARTICLES )
lowercase : List[Any] = max(len(tokenizer.encode(_A ) ) for a in SUMMARIES )
lowercase : List[Any] = 4
lowercase : Any = LegacySeqaSeqDataset(
_A , data_dir=_A , type_path='''train''' , max_source_length=20 , max_target_length=_A , )
lowercase : Optional[Any] = DataLoader(_A , batch_size=2 , collate_fn=train_dataset.collate_fn )
for batch in dataloader:
assert batch["attention_mask"].shape == batch["input_ids"].shape
# show that articles were trimmed.
assert batch["input_ids"].shape[1] == max_len_source
assert 20 >= batch["input_ids"].shape[1] # trimmed significantly
# show that targets were truncated
assert batch["labels"].shape[1] == trunc_target # Truncated
assert max_len_target > trunc_target # Truncated
break # No need to test every batch
def __a ( self : List[str] ) -> int:
"""simple docstring"""
lowercase : Tuple = AutoTokenizer.from_pretrained('''facebook/mbart-large-cc25''' )
lowercase : List[str] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) )
lowercase : Optional[int] = tmp_dir.joinpath('''train.source''' ).open().readlines()
lowercase : List[Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) )
pack_data_dir(_A , _A , 128 , _A )
lowercase : Dict = {x.name for x in tmp_dir.iterdir()}
lowercase : Optional[Any] = {x.name for x in save_dir.iterdir()}
lowercase : int = save_dir.joinpath('''train.source''' ).open().readlines()
# orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.']
# desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.']
assert len(_A ) < len(_A )
assert len(_A ) == 1
assert len(packed_examples[0] ) == sum(len(_A ) for x in orig_examples )
assert orig_paths == new_paths
@pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='''This test requires fairseq''' )
def __a ( self : Any ) -> Dict:
"""simple docstring"""
if not FAIRSEQ_AVAILABLE:
return
lowercase , lowercase , lowercase : Any = self._get_dataset(max_len=64 )
lowercase : List[Any] = 64
lowercase : Any = ds.make_dynamic_sampler(_A , required_batch_size_multiple=_A )
lowercase : Tuple = [len(_A ) for x in batch_sampler]
assert len(set(_A ) ) > 1 # it's not dynamic batch size if every batch is the same length
assert sum(_A ) == len(_A ) # no dropped or added examples
lowercase : str = DataLoader(_A , batch_sampler=_A , collate_fn=ds.collate_fn , num_workers=2 )
lowercase : Optional[int] = []
lowercase : str = []
for batch in data_loader:
lowercase : Tuple = batch['''input_ids'''].shape
lowercase : List[Any] = src_shape[0]
assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple
lowercase : Dict = np.product(batch['''input_ids'''].shape )
num_src_per_batch.append(_A )
if num_src_tokens > (max_tokens * 1.1):
failures.append(_A )
assert num_src_per_batch[0] == max(_A )
if failures:
raise AssertionError(f"""too many tokens in {len(_A )} batches""" )
def __a ( self : int ) -> Any:
"""simple docstring"""
lowercase , lowercase , lowercase : Tuple = self._get_dataset(max_len=512 )
lowercase : Tuple = 2
lowercase : Union[str, Any] = ds.make_sortish_sampler(_A , shuffle=_A )
lowercase : List[Any] = DataLoader(_A , batch_size=_A , collate_fn=ds.collate_fn , num_workers=2 )
lowercase : List[Any] = DataLoader(_A , batch_size=_A , collate_fn=ds.collate_fn , num_workers=2 , sampler=_A )
lowercase : int = tokenizer.pad_token_id
def count_pad_tokens(_A : List[Any] , _A : Union[str, Any]="input_ids" ):
return [batch[k].eq(_A ).sum().item() for batch in data_loader]
assert sum(count_pad_tokens(_A , k='''labels''' ) ) < sum(count_pad_tokens(_A , k='''labels''' ) )
assert sum(count_pad_tokens(_A ) ) < sum(count_pad_tokens(_A ) )
assert len(_A ) == len(_A )
def __a ( self : Any , _A : Union[str, Any]=1_000 , _A : str=128 ) -> List[Any]:
"""simple docstring"""
if os.getenv('''USE_REAL_DATA''' , _A ):
lowercase : Optional[Any] = '''examples/seq2seq/wmt_en_ro'''
lowercase : Optional[int] = max_len * 2 * 64
if not Path(_A ).joinpath('''train.len''' ).exists():
save_len_file(_A , _A )
else:
lowercase : Tuple = '''examples/seq2seq/test_data/wmt_en_ro'''
lowercase : Optional[Any] = max_len * 4
save_len_file(_A , _A )
lowercase : Optional[Any] = AutoTokenizer.from_pretrained(_A )
lowercase : Union[str, Any] = SeqaSeqDataset(
_A , data_dir=_A , type_path='''train''' , max_source_length=_A , max_target_length=_A , n_obs=_A , )
return ds, max_tokens, tokenizer
def __a ( self : List[str] ) -> List[str]:
"""simple docstring"""
lowercase , lowercase , lowercase : Union[str, Any] = self._get_dataset()
lowercase : int = set(DistributedSortishSampler(_A , 256 , num_replicas=2 , rank=0 , add_extra_examples=_A ) )
lowercase : Dict = set(DistributedSortishSampler(_A , 256 , num_replicas=2 , rank=1 , add_extra_examples=_A ) )
assert idsa.intersection(_A ) == set()
@parameterized.expand(
[
MBART_TINY,
MARIAN_TINY,
T5_TINY,
BART_TINY,
PEGASUS_XSUM,
] , )
def __a ( self : Union[str, Any] , _A : Tuple ) -> Optional[int]:
"""simple docstring"""
lowercase : Union[str, Any] = AutoTokenizer.from_pretrained(_A , use_fast=_A )
if tok_name == MBART_TINY:
lowercase : Tuple = SeqaSeqDataset(
_A , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='''train''' , max_source_length=4 , max_target_length=8 , src_lang='''EN''' , tgt_lang='''FR''' , )
lowercase : Union[str, Any] = train_dataset.dataset_kwargs
assert "src_lang" in kwargs and "tgt_lang" in kwargs
else:
lowercase : List[Any] = SeqaSeqDataset(
_A , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='''train''' , max_source_length=4 , max_target_length=8 , )
lowercase : Dict = train_dataset.dataset_kwargs
assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs
assert len(_A ) == 1 if tok_name == BART_TINY else len(_A ) == 0 | 116 | 0 |
'''simple docstring'''
from transformers import DistilBertTokenizer, DistilBertTokenizerFast
from transformers.testing_utils import require_tokenizers, slow
from ..bert.test_tokenization_bert import BertTokenizationTest
@require_tokenizers
class UpperCAmelCase ( UpperCamelCase__ ):
__lowercase = DistilBertTokenizer
__lowercase = DistilBertTokenizerFast
__lowercase = True
@slow
def UpperCAmelCase_ ( self :List[str] )-> Optional[Any]:
A__ = DistilBertTokenizer.from_pretrained("distilbert-base-uncased" )
A__ = tokenizer.encode("sequence builders" , add_special_tokens=lowercase_ )
A__ = tokenizer.encode("multi-sequence build" , add_special_tokens=lowercase_ )
A__ = tokenizer.build_inputs_with_special_tokens(lowercase_ )
A__ = tokenizer.build_inputs_with_special_tokens(lowercase_ , lowercase_ )
assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id]
assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [
tokenizer.sep_token_id
]
| 237 |
'''simple docstring'''
import torch
from diffusers import DPMSolverSDEScheduler
from diffusers.utils import torch_device
from diffusers.utils.testing_utils import require_torchsde
from .test_schedulers import SchedulerCommonTest
@require_torchsde
class UpperCAmelCase ( UpperCamelCase__ ):
__lowercase = (DPMSolverSDEScheduler,)
__lowercase = 10
def UpperCAmelCase_ ( self :List[Any] , **lowercase_ :Optional[int] )-> str:
A__ = {
"num_train_timesteps": 11_00,
"beta_start": 0.0_0_0_1,
"beta_end": 0.0_2,
"beta_schedule": "linear",
"noise_sampler_seed": 0,
}
config.update(**lowercase_ )
return config
def UpperCAmelCase_ ( self :int )-> Dict:
for timesteps in [10, 50, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=lowercase_ )
def UpperCAmelCase_ ( self :List[Any] )-> Tuple:
for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ):
self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ )
def UpperCAmelCase_ ( self :Any )-> Optional[Any]:
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=lowercase_ )
def UpperCAmelCase_ ( self :List[Any] )-> Dict:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=lowercase_ )
def UpperCAmelCase_ ( self :List[str] )-> Union[str, Any]:
A__ = self.scheduler_classes[0]
A__ = self.get_scheduler_config()
A__ = scheduler_class(**lowercase_ )
scheduler.set_timesteps(self.num_inference_steps )
A__ = self.dummy_model()
A__ = self.dummy_sample_deter * scheduler.init_noise_sigma
A__ = sample.to(lowercase_ )
for i, t in enumerate(scheduler.timesteps ):
A__ = scheduler.scale_model_input(lowercase_ , lowercase_ )
A__ = model(lowercase_ , lowercase_ )
A__ = scheduler.step(lowercase_ , lowercase_ , lowercase_ )
A__ = output.prev_sample
A__ = torch.sum(torch.abs(lowercase_ ) )
A__ = torch.mean(torch.abs(lowercase_ ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 1_6_7.4_7_8_2_1_0_4_4_9_2_1_8_7_5 ) < 1E-2
assert abs(result_mean.item() - 0.2_1_7_8_7_0_5_9_6_4_5_6_5_2_7_7 ) < 1E-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 1_7_1.5_9_3_5_2_1_1_1_8_1_6_4_0_6 ) < 1E-2
assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_6_8_9_2_2_9_9_6_5_2 ) < 1E-3
else:
assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1E-2
assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1E-3
def UpperCAmelCase_ ( self :Optional[int] )-> Dict:
A__ = self.scheduler_classes[0]
A__ = self.get_scheduler_config(prediction_type="v_prediction" )
A__ = scheduler_class(**lowercase_ )
scheduler.set_timesteps(self.num_inference_steps )
A__ = self.dummy_model()
A__ = self.dummy_sample_deter * scheduler.init_noise_sigma
A__ = sample.to(lowercase_ )
for i, t in enumerate(scheduler.timesteps ):
A__ = scheduler.scale_model_input(lowercase_ , lowercase_ )
A__ = model(lowercase_ , lowercase_ )
A__ = scheduler.step(lowercase_ , lowercase_ , lowercase_ )
A__ = output.prev_sample
A__ = torch.sum(torch.abs(lowercase_ ) )
A__ = torch.mean(torch.abs(lowercase_ ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 1_2_4.7_7_1_4_9_2_0_0_4_3_9_4_5_3 ) < 1E-2
assert abs(result_mean.item() - 0.1_6_2_2_6_2_8_9_0_1_4_8_1_6_2_8_4 ) < 1E-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 1_2_8.1_6_6_3_3_6_0_5_9_5_7_0_3 ) < 1E-2
assert abs(result_mean.item() - 0.1_6_6_8_8_3_2_6_0_0_1_1_6_7_2_9_7 ) < 1E-3
else:
assert abs(result_sum.item() - 1_1_9.8_4_8_7_5_4_8_8_2_8_1_2_5 ) < 1E-2
assert abs(result_mean.item() - 0.1_5_6_0_5_3_0_6_6_2_5_3_6_6_2_1 ) < 1E-3
def UpperCAmelCase_ ( self :Optional[int] )-> List[str]:
A__ = self.scheduler_classes[0]
A__ = self.get_scheduler_config()
A__ = scheduler_class(**lowercase_ )
scheduler.set_timesteps(self.num_inference_steps , device=lowercase_ )
A__ = self.dummy_model()
A__ = self.dummy_sample_deter.to(lowercase_ ) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
A__ = scheduler.scale_model_input(lowercase_ , lowercase_ )
A__ = model(lowercase_ , lowercase_ )
A__ = scheduler.step(lowercase_ , lowercase_ , lowercase_ )
A__ = output.prev_sample
A__ = torch.sum(torch.abs(lowercase_ ) )
A__ = torch.mean(torch.abs(lowercase_ ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 1_6_7.4_6_9_5_7_3_9_7_4_6_0_9_3_8 ) < 1E-2
assert abs(result_mean.item() - 0.2_1_8_0_5_9_3_4_6_0_7_9_8_2_6_3_5 ) < 1E-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 1_7_1.5_9_3_5_3_6_3_7_6_9_5_3_1_2 ) < 1E-2
assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_8_3_8_2_4_1_5_7_7_1 ) < 1E-3
else:
assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1E-2
assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1E-3
def UpperCAmelCase_ ( self :Tuple )-> Dict:
A__ = self.scheduler_classes[0]
A__ = self.get_scheduler_config()
A__ = scheduler_class(**lowercase_ , use_karras_sigmas=lowercase_ )
scheduler.set_timesteps(self.num_inference_steps , device=lowercase_ )
A__ = self.dummy_model()
A__ = self.dummy_sample_deter.to(lowercase_ ) * scheduler.init_noise_sigma
A__ = sample.to(lowercase_ )
for t in scheduler.timesteps:
A__ = scheduler.scale_model_input(lowercase_ , lowercase_ )
A__ = model(lowercase_ , lowercase_ )
A__ = scheduler.step(lowercase_ , lowercase_ , lowercase_ )
A__ = output.prev_sample
A__ = torch.sum(torch.abs(lowercase_ ) )
A__ = torch.mean(torch.abs(lowercase_ ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 1_7_6.6_6_9_7_4_1_3_5_7_4_2_1_8_8 ) < 1E-2
assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 1_7_7.6_3_6_5_3_5_6_4_4_5_3_1_2_5 ) < 1E-2
assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2
else:
assert abs(result_sum.item() - 1_7_0.3_1_3_5_2_2_3_3_8_8_6_7_2 ) < 1E-2
assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2
| 237 | 1 |
"""simple docstring"""
import argparse
import logging
import os
import re
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
DataCollatorForLanguageModeling,
PushToHubCallback,
TFAutoModelForMaskedLM,
create_optimizer,
)
SCREAMING_SNAKE_CASE = logging.getLogger(__name__)
SCREAMING_SNAKE_CASE = tf.data.AUTOTUNE
def _SCREAMING_SNAKE_CASE ( ) -> str:
A__ = argparse.ArgumentParser(description="Train a masked language model on TPU." )
parser.add_argument(
"--pretrained_model_config" , type=lowercase_ , default="roberta-base" , help="The model config to use. Note that we don't copy the model's weights, only the config!" , )
parser.add_argument(
"--tokenizer" , type=lowercase_ , default="unigram-tokenizer-wikitext" , help="The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size." , )
parser.add_argument(
"--per_replica_batch_size" , type=lowercase_ , default=8 , help="Batch size per TPU core." , )
parser.add_argument(
"--no_tpu" , action="store_true" , help="If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances." , )
parser.add_argument(
"--tpu_name" , type=lowercase_ , help="Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs." , default="local" , )
parser.add_argument(
"--tpu_zone" , type=lowercase_ , help="Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes." , )
parser.add_argument(
"--gcp_project" , type=lowercase_ , help="Google cloud project name. Only used for non-Colab TPU nodes." )
parser.add_argument(
"--bfloat16" , action="store_true" , help="Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU." , )
parser.add_argument(
"--train_dataset" , type=lowercase_ , help="Path to training dataset to load. If the path begins with `gs://`"
" then the dataset will be loaded from a Google Cloud Storage bucket." , )
parser.add_argument(
"--shuffle_buffer_size" , type=lowercase_ , default=2**18 , help="Size of the shuffle buffer (in samples)" , )
parser.add_argument(
"--eval_dataset" , type=lowercase_ , help="Path to evaluation dataset to load. If the path begins with `gs://`"
" then the dataset will be loaded from a Google Cloud Storage bucket." , )
parser.add_argument(
"--num_epochs" , type=lowercase_ , default=1 , help="Number of epochs to train for." , )
parser.add_argument(
"--learning_rate" , type=lowercase_ , default=1E-4 , help="Learning rate to use for training." , )
parser.add_argument(
"--weight_decay_rate" , type=lowercase_ , default=1E-3 , help="Weight decay rate to use for training." , )
parser.add_argument(
"--max_length" , type=lowercase_ , default=5_12 , help="Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py" , )
parser.add_argument(
"--mlm_probability" , type=lowercase_ , default=0.1_5 , help="Fraction of tokens to mask during training." , )
parser.add_argument("--output_dir" , type=lowercase_ , required=lowercase_ , help="Path to save model checkpoints to." )
parser.add_argument("--hub_model_id" , type=lowercase_ , help="Model ID to upload to on the Hugging Face Hub." )
A__ = parser.parse_args()
return args
def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict:
try:
if args.tpu_name:
A__ = tf.distribute.cluster_resolver.TPUClusterResolver(
args.tpu_name , zone=args.tpu_zone , project=args.gcp_project )
else:
A__ = tf.distribute.cluster_resolver.TPUClusterResolver()
except ValueError:
raise RuntimeError(
"Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or "
"--gcp_project. When running on a TPU VM, use --tpu_name local." )
tf.config.experimental_connect_to_cluster(lowercase_ )
tf.tpu.experimental.initialize_tpu_system(lowercase_ )
return tpu
def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict:
A__ = 0
for file in file_list:
A__ = file.split("/" )[-1]
A__ = re.search(R"-\d+-(\d+)\.tfrecord" , lowercase_ ).group(1 )
A__ = int(lowercase_ )
num_samples += sample_count
return num_samples
def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_=None ) -> List[str]:
A__ = count_samples(lowercase_ )
A__ = tf.data.Dataset.from_tensor_slices(lowercase_ )
if shuffle:
A__ = dataset.shuffle(len(lowercase_ ) )
A__ = tf.data.TFRecordDataset(lowercase_ , num_parallel_reads=lowercase_ )
# TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here
A__ = dataset.apply(tf.data.experimental.assert_cardinality(lowercase_ ) )
A__ = dataset.map(lowercase_ , num_parallel_calls=lowercase_ )
if shuffle:
assert shuffle_buffer_size is not None
A__ = dataset.shuffle(args.shuffle_buffer_size )
A__ = dataset.batch(lowercase_ , drop_remainder=lowercase_ )
A__ = dataset.map(lowercase_ , num_parallel_calls=lowercase_ )
A__ = dataset.prefetch(lowercase_ )
return dataset
def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any:
if not args.no_tpu:
A__ = initialize_tpu(lowercase_ )
A__ = tf.distribute.TPUStrategy(lowercase_ )
else:
A__ = tf.distribute.OneDeviceStrategy(device="/gpu:0" )
if args.bfloataa:
tf.keras.mixed_precision.set_global_policy("mixed_bfloat16" )
A__ = AutoTokenizer.from_pretrained(args.tokenizer )
A__ = AutoConfig.from_pretrained(args.pretrained_model_config )
A__ = tokenizer.vocab_size
A__ = tf.io.gfile.glob(os.path.join(args.train_dataset , "*.tfrecord" ) )
if not training_records:
raise ValueError(f"""No .tfrecord files found in {args.train_dataset}.""" )
A__ = tf.io.gfile.glob(os.path.join(args.eval_dataset , "*.tfrecord" ) )
if not eval_records:
raise ValueError(f"""No .tfrecord files found in {args.eval_dataset}.""" )
A__ = count_samples(lowercase_ )
A__ = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync)
A__ = steps_per_epoch * args.num_epochs
with strategy.scope():
A__ = TFAutoModelForMaskedLM.from_config(lowercase_ )
model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built
A__, A__ = create_optimizer(
num_train_steps=lowercase_ , num_warmup_steps=total_train_steps // 20 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , )
# Transformers models compute the right loss for their task by default when labels are passed, and will
# use this for training unless you specify your own loss function in compile().
model.compile(optimizer=lowercase_ , metrics=["accuracy"] )
def decode_fn(lowercase_ ):
A__ = {
"input_ids": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ),
"attention_mask": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ),
}
return tf.io.parse_single_example(lowercase_ , lowercase_ )
# Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can
# use their methods in our data pipeline.
A__ = DataCollatorForLanguageModeling(
tokenizer=lowercase_ , mlm_probability=args.mlm_probability , mlm=lowercase_ , return_tensors="tf" )
def mask_with_collator(lowercase_ ):
# TF really needs an isin() function
A__ = (
~tf.cast(batch["attention_mask"] , tf.bool )
| (batch["input_ids"] == tokenizer.cls_token_id)
| (batch["input_ids"] == tokenizer.sep_token_id)
)
A__, A__ = data_collator.tf_mask_tokens(
batch["input_ids"] , vocab_size=len(lowercase_ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=lowercase_ , )
return batch
A__ = args.per_replica_batch_size * strategy.num_replicas_in_sync
A__ = prepare_dataset(
lowercase_ , decode_fn=lowercase_ , mask_fn=lowercase_ , batch_size=lowercase_ , shuffle=lowercase_ , shuffle_buffer_size=args.shuffle_buffer_size , )
A__ = prepare_dataset(
lowercase_ , decode_fn=lowercase_ , mask_fn=lowercase_ , batch_size=lowercase_ , shuffle=lowercase_ , )
A__ = []
if args.hub_model_id:
callbacks.append(
PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=lowercase_ ) )
model.fit(
lowercase_ , validation_data=lowercase_ , epochs=args.num_epochs , callbacks=lowercase_ , )
model.save_pretrained(args.output_dir )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE = parse_args()
main(args)
| 230 |
"""simple docstring"""
from typing import Optional
from torch import nn
from .transformer_ad import TransformeraDModel, TransformeraDModelOutput
class UpperCAmelCase_ ( nn.Module ):
def __init__( self : Optional[int] , snake_case_ : int = 16 , snake_case_ : int = 88 , snake_case_ : Optional[int] = None , snake_case_ : int = 1 , snake_case_ : float = 0.0 , snake_case_ : int = 32 , snake_case_ : Optional[int] = None , snake_case_ : bool = False , snake_case_ : Optional[int] = None , snake_case_ : Optional[int] = None , snake_case_ : str = "geglu" , snake_case_ : Optional[int] = None , ) -> str:
'''simple docstring'''
super().__init__()
A__ = nn.ModuleList(
[
TransformeraDModel(
num_attention_heads=snake_case_ , attention_head_dim=snake_case_ , in_channels=snake_case_ , num_layers=snake_case_ , dropout=snake_case_ , norm_num_groups=snake_case_ , cross_attention_dim=snake_case_ , attention_bias=snake_case_ , sample_size=snake_case_ , num_vector_embeds=snake_case_ , activation_fn=snake_case_ , num_embeds_ada_norm=snake_case_ , )
for _ in range(2 )
] )
# Variables that can be set by a pipeline:
# The ratio of transformer1 to transformer2's output states to be combined during inference
A__ = 0.5
# The shape of `encoder_hidden_states` is expected to be
# `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)`
A__ = [77, 257]
# Which transformer to use to encode which condition.
# E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])`
A__ = [1, 0]
def __magic_name__ ( self : Dict , snake_case_ : List[Any] , snake_case_ : Tuple , snake_case_ : Any=None , snake_case_ : int=None , snake_case_ : Union[str, Any]=None , snake_case_ : bool = True , ) -> Union[str, Any]:
'''simple docstring'''
A__ = hidden_states
A__ = []
A__ = 0
# attention_mask is not used yet
for i in range(2 ):
# for each of the two transformers, pass the corresponding condition tokens
A__ = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]]
A__ = self.transformer_index_for_condition[i]
A__ = self.transformers[transformer_index](
snake_case_ , encoder_hidden_states=snake_case_ , timestep=snake_case_ , cross_attention_kwargs=snake_case_ , return_dict=snake_case_ , )[0]
encoded_states.append(encoded_state - input_states )
tokens_start += self.condition_lengths[i]
A__ = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio)
A__ = output_states + input_states
if not return_dict:
return (output_states,)
return TransformeraDModelOutput(sample=snake_case_ )
| 230 | 1 |
from ..utils import DummyObject, requires_backends
class __snake_case ( metaclass=UpperCamelCase_ ):
_a = ['''onnx''']
def __init__( self : str , *A_ : Dict , **A_ : Union[str, Any]):
requires_backends(self , ['''onnx'''])
@classmethod
def UpperCAmelCase__ ( cls : Optional[int] , *A_ : List[str] , **A_ : Optional[Any]):
requires_backends(cls , ['''onnx'''])
@classmethod
def UpperCAmelCase__ ( cls : List[Any] , *A_ : Dict , **A_ : List[str]):
requires_backends(cls , ['''onnx'''])
| 103 |
import gc
import random
import unittest
import torch
from diffusers import (
IFImgaImgPipeline,
IFImgaImgSuperResolutionPipeline,
IFInpaintingPipeline,
IFInpaintingSuperResolutionPipeline,
IFPipeline,
IFSuperResolutionPipeline,
)
from diffusers.models.attention_processor import AttnAddedKVProcessor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
from . import IFPipelineTesterMixin
@skip_mps
class __snake_case ( UpperCamelCase_ ,UpperCamelCase_ ,unittest.TestCase ):
_a = IFPipeline
_a = TEXT_TO_IMAGE_PARAMS - {'''width''', '''height''', '''latents'''}
_a = TEXT_TO_IMAGE_BATCH_PARAMS
_a = PipelineTesterMixin.required_optional_params - {'''latents'''}
def UpperCAmelCase__ ( self : List[str]):
return self._get_dummy_components()
def UpperCAmelCase__ ( self : List[str] , A_ : List[Any] , A_ : Any=0):
if str(A_).startswith('''mps'''):
lowerCAmelCase_ : List[Any] = torch.manual_seed(A_)
else:
lowerCAmelCase_ : List[str] = torch.Generator(device=A_).manual_seed(A_)
lowerCAmelCase_ : Optional[Any] = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def UpperCAmelCase__ ( self : int):
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''')
def UpperCAmelCase__ ( self : str):
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1e-1)
def UpperCAmelCase__ ( self : str):
self._test_attention_slicing_forward_pass(expected_max_diff=1e-2)
def UpperCAmelCase__ ( self : int):
self._test_save_load_local()
def UpperCAmelCase__ ( self : str):
self._test_inference_batch_single_identical(
expected_max_diff=1e-2 , )
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , )
def UpperCAmelCase__ ( self : Optional[int]):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3)
@slow
@require_torch_gpu
class __snake_case ( unittest.TestCase ):
def UpperCAmelCase__ ( self : Optional[Any]):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ ( self : List[str]):
# if
lowerCAmelCase_ : Dict = IFPipeline.from_pretrained('''DeepFloyd/IF-I-XL-v1.0''' , variant='''fp16''' , torch_dtype=torch.floataa)
lowerCAmelCase_ : Dict = IFSuperResolutionPipeline.from_pretrained(
'''DeepFloyd/IF-II-L-v1.0''' , variant='''fp16''' , torch_dtype=torch.floataa , text_encoder=A_ , tokenizer=A_)
# pre compute text embeddings and remove T5 to save memory
pipe_a.text_encoder.to('''cuda''')
lowerCAmelCase_ , lowerCAmelCase_ : List[str] = pipe_a.encode_prompt('''anime turtle''' , device='''cuda''')
del pipe_a.tokenizer
del pipe_a.text_encoder
gc.collect()
lowerCAmelCase_ : Tuple = None
lowerCAmelCase_ : str = None
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor())
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor())
self._test_if(A_ , A_ , A_ , A_)
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# img2img
lowerCAmelCase_ : List[str] = IFImgaImgPipeline(**pipe_a.components)
lowerCAmelCase_ : Any = IFImgaImgSuperResolutionPipeline(**pipe_a.components)
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor())
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor())
self._test_if_imgaimg(A_ , A_ , A_ , A_)
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# inpainting
lowerCAmelCase_ : int = IFInpaintingPipeline(**pipe_a.components)
lowerCAmelCase_ : Union[str, Any] = IFInpaintingSuperResolutionPipeline(**pipe_a.components)
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor())
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor())
self._test_if_inpainting(A_ , A_ , A_ , A_)
def UpperCAmelCase__ ( self : int , A_ : Optional[int] , A_ : Any , A_ : str , A_ : Union[str, Any]):
# pipeline 1
_start_torch_memory_measurement()
lowerCAmelCase_ : Optional[Any] = torch.Generator(device='''cpu''').manual_seed(0)
lowerCAmelCase_ : Optional[Any] = pipe_a(
prompt_embeds=A_ , negative_prompt_embeds=A_ , num_inference_steps=2 , generator=A_ , output_type='''np''' , )
lowerCAmelCase_ : Dict = output.images[0]
assert image.shape == (6_4, 6_4, 3)
lowerCAmelCase_ : Any = torch.cuda.max_memory_allocated()
assert mem_bytes < 1_3 * 1_0**9
lowerCAmelCase_ : List[str] = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy''')
assert_mean_pixel_difference(A_ , A_)
# pipeline 2
_start_torch_memory_measurement()
lowerCAmelCase_ : List[str] = torch.Generator(device='''cpu''').manual_seed(0)
lowerCAmelCase_ : str = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0)).to(A_)
lowerCAmelCase_ : Optional[int] = pipe_a(
prompt_embeds=A_ , negative_prompt_embeds=A_ , image=A_ , generator=A_ , num_inference_steps=2 , output_type='''np''' , )
lowerCAmelCase_ : Union[str, Any] = output.images[0]
assert image.shape == (2_5_6, 2_5_6, 3)
lowerCAmelCase_ : Any = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 1_0**9
lowerCAmelCase_ : int = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy''')
assert_mean_pixel_difference(A_ , A_)
def UpperCAmelCase__ ( self : int , A_ : Optional[int] , A_ : Any , A_ : List[str] , A_ : List[str]):
# pipeline 1
_start_torch_memory_measurement()
lowerCAmelCase_ : Any = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0)).to(A_)
lowerCAmelCase_ : Tuple = torch.Generator(device='''cpu''').manual_seed(0)
lowerCAmelCase_ : Any = pipe_a(
prompt_embeds=A_ , negative_prompt_embeds=A_ , image=A_ , num_inference_steps=2 , generator=A_ , output_type='''np''' , )
lowerCAmelCase_ : Union[str, Any] = output.images[0]
assert image.shape == (6_4, 6_4, 3)
lowerCAmelCase_ : str = torch.cuda.max_memory_allocated()
assert mem_bytes < 1_0 * 1_0**9
lowerCAmelCase_ : Optional[int] = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy''')
assert_mean_pixel_difference(A_ , A_)
# pipeline 2
_start_torch_memory_measurement()
lowerCAmelCase_ : int = torch.Generator(device='''cpu''').manual_seed(0)
lowerCAmelCase_ : List[Any] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0)).to(A_)
lowerCAmelCase_ : Any = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0)).to(A_)
lowerCAmelCase_ : List[str] = pipe_a(
prompt_embeds=A_ , negative_prompt_embeds=A_ , image=A_ , original_image=A_ , generator=A_ , num_inference_steps=2 , output_type='''np''' , )
lowerCAmelCase_ : Union[str, Any] = output.images[0]
assert image.shape == (2_5_6, 2_5_6, 3)
lowerCAmelCase_ : str = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 1_0**9
lowerCAmelCase_ : Tuple = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy''')
assert_mean_pixel_difference(A_ , A_)
def UpperCAmelCase__ ( self : str , A_ : Optional[Any] , A_ : Optional[Any] , A_ : Dict , A_ : List[str]):
# pipeline 1
_start_torch_memory_measurement()
lowerCAmelCase_ : Union[str, Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0)).to(A_)
lowerCAmelCase_ : int = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(1)).to(A_)
lowerCAmelCase_ : Optional[Any] = torch.Generator(device='''cpu''').manual_seed(0)
lowerCAmelCase_ : Any = pipe_a(
prompt_embeds=A_ , negative_prompt_embeds=A_ , image=A_ , mask_image=A_ , num_inference_steps=2 , generator=A_ , output_type='''np''' , )
lowerCAmelCase_ : List[Any] = output.images[0]
assert image.shape == (6_4, 6_4, 3)
lowerCAmelCase_ : str = torch.cuda.max_memory_allocated()
assert mem_bytes < 1_0 * 1_0**9
lowerCAmelCase_ : int = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy''')
assert_mean_pixel_difference(A_ , A_)
# pipeline 2
_start_torch_memory_measurement()
lowerCAmelCase_ : Optional[Any] = torch.Generator(device='''cpu''').manual_seed(0)
lowerCAmelCase_ : Optional[Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0)).to(A_)
lowerCAmelCase_ : Union[str, Any] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0)).to(A_)
lowerCAmelCase_ : Optional[Any] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(1)).to(A_)
lowerCAmelCase_ : int = pipe_a(
prompt_embeds=A_ , negative_prompt_embeds=A_ , image=A_ , mask_image=A_ , original_image=A_ , generator=A_ , num_inference_steps=2 , output_type='''np''' , )
lowerCAmelCase_ : Tuple = output.images[0]
assert image.shape == (2_5_6, 2_5_6, 3)
lowerCAmelCase_ : int = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 1_0**9
lowerCAmelCase_ : Any = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy''')
assert_mean_pixel_difference(A_ , A_)
def UpperCamelCase( ):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
| 103 | 1 |
import argparse
import os
import re
UpperCAmelCase_ : Dict = '''src/diffusers'''
# Pattern that looks at the indentation in a line.
UpperCAmelCase_ : Union[str, Any] = re.compile(R'^(\s*)\S')
# Pattern that matches `"key":" and puts `key` in group 0.
UpperCAmelCase_ : Dict = re.compile(R'^\s*"([^"]+)":')
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
UpperCAmelCase_ : List[str] = re.compile(R'^\s*_import_structure\["([^"]+)"\]')
# Pattern that matches `"key",` and puts `key` in group 0.
UpperCAmelCase_ : Tuple = re.compile(R'^\s*"([^"]+)",\s*$')
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
UpperCAmelCase_ : Tuple = re.compile(R'\[([^\]]+)\]')
def SCREAMING_SNAKE_CASE_ ( __A : Dict ) -> Any:
"""simple docstring"""
a_ : Union[str, Any] = _re_indent.search(snake_case_ )
return "" if search is None else search.groups()[0]
def SCREAMING_SNAKE_CASE_ ( __A : Union[str, Any] , __A : Dict="" , __A : Dict=None , __A : Any=None ) -> Optional[Any]:
"""simple docstring"""
a_ : Optional[int] = 0
a_ : List[Any] = code.split('\n' )
if start_prompt is not None:
while not lines[index].startswith(snake_case_ ):
index += 1
a_ : Optional[Any] = ["""\n""".join(lines[:index] )]
else:
a_ : int = []
# We split into blocks until we get to the `end_prompt` (or the end of the block).
a_ : Any = [lines[index]]
index += 1
while index < len(snake_case_ ) and (end_prompt is None or not lines[index].startswith(snake_case_ )):
if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level:
if len(snake_case_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ):
current_block.append(lines[index] )
blocks.append('\n'.join(snake_case_ ) )
if index < len(snake_case_ ) - 1:
a_ : Any = [lines[index + 1]]
index += 1
else:
a_ : List[str] = []
else:
blocks.append('\n'.join(snake_case_ ) )
a_ : int = [lines[index]]
else:
current_block.append(lines[index] )
index += 1
# Adds current block if it's nonempty.
if len(snake_case_ ) > 0:
blocks.append('\n'.join(snake_case_ ) )
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(snake_case_ ):
blocks.append('\n'.join(lines[index:] ) )
return blocks
def SCREAMING_SNAKE_CASE_ ( __A : Optional[Any] ) -> str:
"""simple docstring"""
def _inner(__A : Tuple ):
return key(snake_case_ ).lower().replace('_' , '' )
return _inner
def SCREAMING_SNAKE_CASE_ ( __A : List[Any] , __A : Optional[int]=None ) -> int:
"""simple docstring"""
def noop(__A : Dict ):
return x
if key is None:
a_ : int = noop
# Constants are all uppercase, they go first.
a_ : List[Any] = [obj for obj in objects if key(snake_case_ ).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
a_ : str = [obj for obj in objects if key(snake_case_ )[0].isupper() and not key(snake_case_ ).isupper()]
# Functions begin with a lowercase, they go last.
a_ : List[str] = [obj for obj in objects if not key(snake_case_ )[0].isupper()]
a_ : Tuple = ignore_underscore(snake_case_ )
return sorted(snake_case_ , key=snake_case_ ) + sorted(snake_case_ , key=snake_case_ ) + sorted(snake_case_ , key=snake_case_ )
def SCREAMING_SNAKE_CASE_ ( __A : int ) -> List[Any]:
"""simple docstring"""
def _replace(__A : List[Any] ):
a_ : Any = match.groups()[0]
if "," not in imports:
return F"""[{imports}]"""
a_ : Union[str, Any] = [part.strip().replace('\"' , '' ) for part in imports.split(',' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
a_ : List[str] = keys[:-1]
return "[" + ", ".join([F"""\"{k}\"""" for k in sort_objects(snake_case_ )] ) + "]"
a_ : str = import_statement.split('\n' )
if len(snake_case_ ) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
a_ : str = 2 if lines[1].strip() == """[""" else 1
a_ : Dict = [(i, _re_strip_line.search(snake_case_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )]
a_ : int = sort_objects(snake_case_ , key=lambda __A : x[1] )
a_ : Any = [lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] )
elif len(snake_case_ ) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1] ) is not None:
a_ : List[Any] = _re_bracket_content.sub(_replace , lines[1] )
else:
a_ : Optional[Any] = [part.strip().replace('\"' , '' ) for part in lines[1].split(',' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
a_ : List[Any] = keys[:-1]
a_ : int = get_indent(lines[1] ) + """, """.join([F"""\"{k}\"""" for k in sort_objects(snake_case_ )] )
return "\n".join(snake_case_ )
else:
# Finally we have to deal with imports fitting on one line
a_ : List[str] = _re_bracket_content.sub(_replace , snake_case_ )
return import_statement
def SCREAMING_SNAKE_CASE_ ( __A : Tuple , __A : str=True ) -> Dict:
"""simple docstring"""
with open(snake_case_ , 'r' ) as f:
a_ : int = f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
a_ : Dict = split_code_in_indented_blocks(
snake_case_ , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' )
# We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1 , len(snake_case_ ) - 1 ):
# Check if the block contains some `_import_structure`s thingy to sort.
a_ : Optional[Any] = main_blocks[block_idx]
a_ : Optional[int] = block.split('\n' )
# Get to the start of the imports.
a_ : Union[str, Any] = 0
while line_idx < len(snake_case_ ) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
a_ : List[str] = len(snake_case_ )
else:
line_idx += 1
if line_idx >= len(snake_case_ ):
continue
# Ignore beginning and last line: they don't contain anything.
a_ : Dict = """\n""".join(block_lines[line_idx:-1] )
a_ : Union[str, Any] = get_indent(block_lines[1] )
# Slit the internal block into blocks of indent level 1.
a_ : Optional[int] = split_code_in_indented_blocks(snake_case_ , indent_level=snake_case_ )
# We have two categories of import key: list or _import_structure[key].append/extend
a_ : Union[str, Any] = _re_direct_key if """_import_structure""" in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
a_ : Union[str, Any] = [(pattern.search(snake_case_ ).groups()[0] if pattern.search(snake_case_ ) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
a_ : Optional[Any] = [(i, key) for i, key in enumerate(snake_case_ ) if key is not None]
a_ : List[Any] = [x[0] for x in sorted(snake_case_ , key=lambda __A : x[1] )]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
a_ : str = 0
a_ : List[Any] = []
for i in range(len(snake_case_ ) ):
if keys[i] is None:
reordered_blocks.append(internal_blocks[i] )
else:
a_ : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] )
reordered_blocks.append(snake_case_ )
count += 1
# And we put our main block back together with its first and last line.
a_ : Tuple = """\n""".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] )
if code != "\n".join(snake_case_ ):
if check_only:
return True
else:
print(F"""Overwriting {file}.""" )
with open(snake_case_ , 'w' ) as f:
f.write('\n'.join(snake_case_ ) )
def SCREAMING_SNAKE_CASE_ ( __A : int=True ) -> str:
"""simple docstring"""
a_ : Any = []
for root, _, files in os.walk(snake_case_ ):
if "__init__.py" in files:
a_ : Union[str, Any] = sort_imports(os.path.join(snake_case_ , '__init__.py' ) , check_only=snake_case_ )
if result:
a_ : Any = [os.path.join(snake_case_ , '__init__.py' )]
if len(snake_case_ ) > 0:
raise ValueError(F"""Would overwrite {len(snake_case_ )} files, run `make style`.""" )
if __name__ == "__main__":
UpperCAmelCase_ : Any = argparse.ArgumentParser()
parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.')
UpperCAmelCase_ : str = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only)
| 355 |
import logging
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only
from utils_rag import save_json
def SCREAMING_SNAKE_CASE_ ( __A : Any ) -> Optional[int]:
"""simple docstring"""
a_ : str = filter(lambda __A : p.requires_grad , model.parameters() )
a_ : List[Any] = sum([np.prod(p.size() ) for p in model_parameters] )
return params
UpperCAmelCase_ : Dict = logging.getLogger(__name__)
def SCREAMING_SNAKE_CASE_ ( __A : int , __A : int ) -> List[str]:
"""simple docstring"""
if metric == "rouge2":
a_ : Dict = '{val_avg_rouge2:.4f}-{step_count}'
elif metric == "bleu":
a_ : Dict = '{val_avg_bleu:.4f}-{step_count}'
elif metric == "em":
a_ : Union[str, Any] = '{val_avg_em:.4f}-{step_count}'
elif metric == "loss":
a_ : str = '{val_avg_loss:.4f}-{step_count}'
else:
raise NotImplementedError(
F"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this"""
' function.' )
a_ : Dict = ModelCheckpoint(
dirpath=__A , filename=__A , monitor=F"""val_{metric}""" , mode='max' , save_top_k=1 , every_n_epochs=1 , )
return checkpoint_callback
def SCREAMING_SNAKE_CASE_ ( __A : int , __A : List[Any] ) -> int:
"""simple docstring"""
return EarlyStopping(
monitor=F"""val_{metric}""" , mode='min' if 'loss' in metric else 'max' , patience=__A , verbose=__A , )
class SCREAMING_SNAKE_CASE__ ( pl.Callback ):
def SCREAMING_SNAKE_CASE ( self : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Any:
a_ : int = {F"""lr_group_{i}""": param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )}
pl_module.logger.log_metrics(SCREAMING_SNAKE_CASE__ )
@rank_zero_only
def SCREAMING_SNAKE_CASE ( self : List[str] , SCREAMING_SNAKE_CASE__ : pl.Trainer , SCREAMING_SNAKE_CASE__ : pl.LightningModule , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str]=True ) -> None:
logger.info(F"""***** {type_path} results at step {trainer.global_step:05d} *****""" )
a_ : List[str] = trainer.callback_metrics
trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} )
# Log results
a_ : Optional[int] = Path(pl_module.hparams.output_dir )
if type_path == "test":
a_ : Tuple = od / 'test_results.txt'
a_ : Optional[int] = od / 'test_generations.txt'
else:
# this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
# If people want this it will be easy enough to add back.
a_ : str = od / F"""{type_path}_results/{trainer.global_step:05d}.txt"""
a_ : Optional[Any] = od / F"""{type_path}_generations/{trainer.global_step:05d}.txt"""
results_file.parent.mkdir(exist_ok=SCREAMING_SNAKE_CASE__ )
generations_file.parent.mkdir(exist_ok=SCREAMING_SNAKE_CASE__ )
with open(SCREAMING_SNAKE_CASE__ , 'a+' ) as writer:
for key in sorted(SCREAMING_SNAKE_CASE__ ):
if key in ["log", "progress_bar", "preds"]:
continue
a_ : int = metrics[key]
if isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ):
a_ : List[str] = val.item()
a_ : int = F"""{key}: {val:.6f}\n"""
writer.write(SCREAMING_SNAKE_CASE__ )
if not save_generations:
return
if "preds" in metrics:
a_ : Optional[Any] = '\n'.join(metrics['preds'] )
generations_file.open('w+' ).write(SCREAMING_SNAKE_CASE__ )
@rank_zero_only
def SCREAMING_SNAKE_CASE ( self : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Dict:
try:
a_ : Any = pl_module.model.model.num_parameters()
except AttributeError:
a_ : List[str] = pl_module.model.num_parameters()
a_ : Any = count_trainable_parameters(SCREAMING_SNAKE_CASE__ )
# mp stands for million parameters
trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} )
@rank_zero_only
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : pl.Trainer , SCREAMING_SNAKE_CASE__ : pl.LightningModule ) -> Optional[int]:
save_json(pl_module.metrics , pl_module.metrics_save_path )
return self._write_logs(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'test' )
@rank_zero_only
def SCREAMING_SNAKE_CASE ( self : Any , SCREAMING_SNAKE_CASE__ : pl.Trainer , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[Any]:
save_json(pl_module.metrics , pl_module.metrics_save_path )
# Uncommenting this will save val generations
# return self._write_logs(trainer, pl_module, "valid")
| 120 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import _LazyModule
a__ : Dict = {'tokenization_bertweet': ['BertweetTokenizer']}
if TYPE_CHECKING:
from .tokenization_bertweet import BertweetTokenizer
else:
import sys
a__ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 80 |
'''simple docstring'''
from __future__ import annotations
def _UpperCamelCase ( __A ) -> float:
'''simple docstring'''
UpperCamelCase__ = 0.00
UpperCamelCase__ = 0
for resistor in resistors:
if resistor <= 0:
UpperCamelCase__ = F'''Resistor at index {index} has a negative or zero value!'''
raise ValueError(__A )
first_sum += 1 / float(__A )
index += 1
return 1 / first_sum
def _UpperCamelCase ( __A ) -> float:
'''simple docstring'''
UpperCamelCase__ = 0.00
UpperCamelCase__ = 0
for resistor in resistors:
sum_r += resistor
if resistor < 0:
UpperCamelCase__ = F'''Resistor at index {index} has a negative value!'''
raise ValueError(__A )
index += 1
return sum_r
if __name__ == "__main__":
import doctest
doctest.testmod()
| 80 | 1 |
from ... import PretrainedConfig
a_ = {
'sijunhe/nezha-cn-base': 'https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json',
}
class _lowercase ( snake_case_ ):
lowercase = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP
lowercase = 'nezha'
def __init__( self : int , snake_case : Tuple=2_1_1_2_8 , snake_case : Optional[int]=7_6_8 , snake_case : Any=1_2 , snake_case : Tuple=1_2 , snake_case : Dict=3_0_7_2 , snake_case : str="gelu" , snake_case : Any=0.1 , snake_case : str=0.1 , snake_case : Optional[int]=5_1_2 , snake_case : Dict=6_4 , snake_case : List[str]=2 , snake_case : List[Any]=0.02 , snake_case : Optional[int]=1e-12 , snake_case : Optional[int]=0.1 , snake_case : List[str]=0 , snake_case : Dict=2 , snake_case : str=3 , snake_case : Dict=True , **snake_case : Dict , ) -> Tuple:
"""simple docstring"""
super().__init__(pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case , **snake_case )
UpperCamelCase_ : int = vocab_size
UpperCamelCase_ : List[Any] = hidden_size
UpperCamelCase_ : str = num_hidden_layers
UpperCamelCase_ : List[Any] = num_attention_heads
UpperCamelCase_ : Union[str, Any] = hidden_act
UpperCamelCase_ : Union[str, Any] = intermediate_size
UpperCamelCase_ : Optional[Any] = hidden_dropout_prob
UpperCamelCase_ : List[Any] = attention_probs_dropout_prob
UpperCamelCase_ : List[Any] = max_position_embeddings
UpperCamelCase_ : Union[str, Any] = max_relative_position
UpperCamelCase_ : Any = type_vocab_size
UpperCamelCase_ : List[Any] = initializer_range
UpperCamelCase_ : int = layer_norm_eps
UpperCamelCase_ : List[str] = classifier_dropout
UpperCamelCase_ : Optional[Any] = use_cache
| 351 | import tempfile
import unittest
from transformers import TaConfig, is_torch_available
from transformers.testing_utils import (
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel
class _lowercase :
def __init__( self : List[Any] , snake_case : int , snake_case : Any=9_9 , snake_case : Tuple=1_3 , snake_case : str=7 , snake_case : List[str]=9 , snake_case : Optional[Any]=True , snake_case : Any=True , snake_case : Optional[Any]=False , snake_case : List[str]=3_2 , snake_case : str=5 , snake_case : Any=4 , snake_case : List[str]=3_7 , snake_case : Optional[Any]=8 , snake_case : Optional[Any]=0.1 , snake_case : Dict=0.002 , snake_case : Any=1 , snake_case : Optional[int]=0 , snake_case : List[str]=0 , snake_case : List[str]=None , snake_case : List[str]=None , ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase_ : int = parent
UpperCamelCase_ : List[Any] = batch_size
UpperCamelCase_ : int = encoder_seq_length
UpperCamelCase_ : int = decoder_seq_length
# For common tests
UpperCamelCase_ : List[Any] = self.decoder_seq_length
UpperCamelCase_ : Optional[Any] = is_training
UpperCamelCase_ : Tuple = use_attention_mask
UpperCamelCase_ : int = use_labels
UpperCamelCase_ : List[str] = vocab_size
UpperCamelCase_ : Dict = hidden_size
UpperCamelCase_ : Any = num_hidden_layers
UpperCamelCase_ : Any = num_attention_heads
UpperCamelCase_ : Dict = d_ff
UpperCamelCase_ : List[Any] = relative_attention_num_buckets
UpperCamelCase_ : List[Any] = dropout_rate
UpperCamelCase_ : Dict = initializer_factor
UpperCamelCase_ : Union[str, Any] = eos_token_id
UpperCamelCase_ : Optional[int] = pad_token_id
UpperCamelCase_ : List[str] = decoder_start_token_id
UpperCamelCase_ : str = None
UpperCamelCase_ : int = decoder_layers
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> List[str]:
"""simple docstring"""
return TaConfig.from_pretrained('google/umt5-base' )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , snake_case : Optional[int] , snake_case : Any , snake_case : Optional[int] , snake_case : Optional[int]=None , snake_case : List[Any]=None , snake_case : int=None , snake_case : Optional[int]=None , snake_case : Tuple=None , ) -> List[str]:
"""simple docstring"""
if attention_mask is None:
UpperCamelCase_ : Optional[Any] = input_ids.ne(config.pad_token_id )
if decoder_attention_mask is None:
UpperCamelCase_ : Optional[int] = decoder_input_ids.ne(config.pad_token_id )
if head_mask is None:
UpperCamelCase_ : Optional[int] = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=snake_case )
if decoder_head_mask is None:
UpperCamelCase_ : Dict = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=snake_case )
if cross_attn_head_mask is None:
UpperCamelCase_ : Optional[Any] = torch.ones(
config.num_decoder_layers , config.num_attention_heads , device=snake_case )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size )
UpperCamelCase_ : Any = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
# we need to clamp the input ids here to avoid having pad token in between
# this is because for NllbMoe the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
UpperCamelCase_ : Union[str, Any] = input_ids.clamp(self.pad_token_id + 1 )
UpperCamelCase_ : Any = decoder_input_ids.clamp(self.pad_token_id + 1 )
UpperCamelCase_ : Dict = self.get_config()
UpperCamelCase_ : Dict = config.num_attention_heads
UpperCamelCase_ : Optional[int] = self.prepare_inputs_dict(snake_case , snake_case , snake_case )
return config, input_dict
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
UpperCamelCase_, UpperCamelCase_ : Any = self.prepare_config_and_inputs()
return config, inputs_dict
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
return TaConfig(
vocab_size=1_6_6 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def SCREAMING_SNAKE_CASE__ ( self : int ) -> Optional[int]:
"""simple docstring"""
return TaConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def SCREAMING_SNAKE_CASE__ ( self : str , snake_case : Dict , snake_case : List[str] , snake_case : Tuple , snake_case : int , snake_case : List[str] , snake_case : Optional[Any] , ) -> Tuple:
"""simple docstring"""
UpperCamelCase_ : int = UMTaModel(config=snake_case )
model.to(snake_case )
model.eval()
UpperCamelCase_ : Any = model(
input_ids=snake_case , decoder_input_ids=snake_case , attention_mask=snake_case , decoder_attention_mask=snake_case , )
UpperCamelCase_ : List[str] = model(input_ids=snake_case , decoder_input_ids=snake_case )
UpperCamelCase_ : Optional[Any] = result.last_hidden_state
UpperCamelCase_ : Optional[Any] = result.past_key_values
UpperCamelCase_ : Optional[int] = result.encoder_last_hidden_state
self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) )
self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) )
# There should be `num_layers` key value embeddings stored in decoder_past
self.parent.assertEqual(len(snake_case ) , config.num_layers )
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple
self.parent.assertEqual(len(decoder_past[0] ) , 4 )
def SCREAMING_SNAKE_CASE__ ( self : Any , snake_case : Tuple , snake_case : List[Any] , snake_case : Optional[int] , snake_case : Any , snake_case : Tuple , snake_case : str , ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase_ : int = UMTaModel(config=snake_case ).get_decoder().to(snake_case ).eval()
# first forward pass
UpperCamelCase_ : str = model(snake_case , use_cache=snake_case )
UpperCamelCase_ : List[Any] = model(snake_case )
UpperCamelCase_ : Dict = model(snake_case , use_cache=snake_case )
self.parent.assertTrue(len(snake_case ) == len(snake_case ) )
self.parent.assertTrue(len(snake_case ) == len(snake_case ) + 1 )
UpperCamelCase_, UpperCamelCase_ : Optional[Any] = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
UpperCamelCase_ : Any = ids_tensor((self.batch_size, 1) , config.vocab_size )
# append to next input_ids and
UpperCamelCase_ : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCamelCase_ : List[Any] = model(snake_case )['last_hidden_state']
UpperCamelCase_ : List[str] = model(snake_case , past_key_values=snake_case )['last_hidden_state']
# select random slice
UpperCamelCase_ : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCamelCase_ : Union[str, Any] = output_from_no_past[:, -1, random_slice_idx].detach()
UpperCamelCase_ : Any = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-3 ) )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , snake_case : Tuple , snake_case : int , ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase_ : Optional[int] = UMTaModel(config=snake_case ).to(snake_case ).half().eval()
UpperCamelCase_ : Union[str, Any] = model(**snake_case )['last_hidden_state']
self.parent.assertFalse(torch.isnan(snake_case ).any().item() )
@require_torch
class _lowercase ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ):
lowercase = (
(UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else ()
)
lowercase = (UMTaForConditionalGeneration,) if is_torch_available() else ()
lowercase = (
{
'conversational': UMTaForConditionalGeneration,
'feature-extraction': UMTaModel,
'summarization': UMTaForConditionalGeneration,
'text2text-generation': UMTaForConditionalGeneration,
'translation': UMTaForConditionalGeneration,
'question-answering': UMTaForQuestionAnswering,
}
if is_torch_available()
else {}
)
lowercase = True
lowercase = False
lowercase = False
lowercase = True
lowercase = True
# The small UMT5 model needs higher percentages for CPU/MP tests
lowercase = [0.8, 0.9]
def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> List[Any]:
"""simple docstring"""
UpperCamelCase_ : Optional[Any] = UMTaModelTester(self )
@unittest.skip('Test has a segmentation fault on torch 1.8.0' )
def SCREAMING_SNAKE_CASE__ ( self : str ) -> List[str]:
"""simple docstring"""
UpperCamelCase_ : List[str] = self.model_tester.prepare_config_and_inputs()
UpperCamelCase_ : List[str] = UMTaModel(config_and_inputs[0] ).to(snake_case )
with tempfile.TemporaryDirectory() as tmpdirname:
torch.onnx.export(
snake_case , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f"{tmpdirname}/t5_test.onnx" , export_params=snake_case , opset_version=9 , input_names=['input_ids', 'decoder_input_ids'] , )
@unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision' )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase_ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_fpaa_forward(*snake_case )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase_ : Tuple = ['encoder_attentions', 'decoder_attentions', 'cross_attentions']
UpperCamelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
UpperCamelCase_ : Union[str, Any] = config_and_inputs[0]
UpperCamelCase_ : Tuple = UMTaForConditionalGeneration(snake_case ).eval()
model.to(snake_case )
UpperCamelCase_ : str = {
'head_mask': torch.zeros(config.num_layers , config.num_heads , device=snake_case ),
'decoder_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=snake_case ),
'cross_attn_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=snake_case ),
}
for attn_name, (name, mask) in zip(snake_case , head_masking.items() ):
UpperCamelCase_ : Optional[int] = {name: mask}
# Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified
if name == "head_mask":
UpperCamelCase_ : Union[str, Any] = torch.ones(
config.num_decoder_layers , config.num_heads , device=snake_case )
UpperCamelCase_ : Any = model.generate(
config_and_inputs[1]['input_ids'] , num_beams=1 , max_length=3 , output_attentions=snake_case , return_dict_in_generate=snake_case , **snake_case , )
# We check the state of decoder_attentions and cross_attentions just from the last step
UpperCamelCase_ : int = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 )
@unittest.skip('Does not work on the tiny model as we keep hitting edge cases.' )
def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Optional[Any]:
"""simple docstring"""
pass
@require_torch
@require_sentencepiece
@require_tokenizers
class _lowercase ( unittest.TestCase ):
@slow
@unittest.skip(
'Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged' )
def SCREAMING_SNAKE_CASE__ ( self : Any ) -> List[Any]:
"""simple docstring"""
UpperCamelCase_ : str = UMTaForConditionalGeneration.from_pretrained('google/umt5-small' , return_dict=snake_case ).to(snake_case )
UpperCamelCase_ : int = AutoTokenizer.from_pretrained('google/umt5-small' , use_fast=snake_case , legacy=snake_case )
UpperCamelCase_ : Dict = [
'Bonjour monsieur <extra_id_0> bien <extra_id_1>.',
'No se como puedo <extra_id_0>.',
'This is the reason why we <extra_id_0> them.',
'The <extra_id_0> walks in <extra_id_1>, seats',
'A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.',
]
UpperCamelCase_ : Dict = tokenizer(snake_case , return_tensors='pt' , padding=snake_case ).input_ids
# fmt: off
UpperCamelCase_ : List[str] = torch.tensor(
[
[ 3_8_5_3_0, 2_1_0_7_0_3, 2_5_6_2_9_9, 1_4_1_0, 2_5_6_2_9_8, 2_7_4, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 8_2_6, 3_2_1, 6_7_1, 2_5_9_2_2, 2_5_6_2_9_9, 2_7_4, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 1_4_6_0, 3_3_9, 3_1_2, 1_9_0_1_4, 1_0_6_2_0, 7_5_8, 2_5_6_2_9_9, 2_3_5_5,2_7_4, 1, 0, 0, 0, 0, 0, 0,0, 0],
[ 5_1_7, 2_5_6_2_9_9, 1_4_8_6_9, 2_8_1, 3_0_1, 2_5_6_2_9_8, 2_7_5, 1_1_9_9_8_3,1, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 3_2_0, 2_5_6_2_9_9, 1_4_8_6_9, 2_8_1, 2_2_3_4, 2_8_9, 2_2_7_5, 3_3_3,6_1_3_9_1, 2_8_9, 2_5_6_2_9_8, 5_4_3, 2_5_6_2_9_7, 1_6_8_7_1_4, 3_2_9, 2_5_6_2_9_6,2_7_4, 1],
] )
# fmt: on
torch.testing.assert_allclose(snake_case , snake_case )
UpperCamelCase_ : int = model.generate(input_ids.to(snake_case ) )
UpperCamelCase_ : List[Any] = [
'<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>',
'<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>',
'<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>',
'<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>',
'<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>',
]
UpperCamelCase_ : Dict = tokenizer.batch_decode(snake_case )
self.assertEqual(snake_case , snake_case )
| 50 | 0 |
def __lowercase ( a__ ) -> list:
for i in range(len(a__ ) - 1 , 0 , -1 ):
__SCREAMING_SNAKE_CASE = False
for j in range(a__ , 0 , -1 ):
if unsorted[j] < unsorted[j - 1]:
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = unsorted[j - 1], unsorted[j]
__SCREAMING_SNAKE_CASE = True
for j in range(a__ ):
if unsorted[j] > unsorted[j + 1]:
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = unsorted[j + 1], unsorted[j]
__SCREAMING_SNAKE_CASE = True
if not swapped:
break
return unsorted
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCAmelCase__ : Dict =input('''Enter numbers separated by a comma:\n''').strip()
lowerCAmelCase__ : Dict =[int(item) for item in user_input.split(''',''')]
print(F'''{cocktail_shaker_sort(unsorted) = }''')
| 257 |
from heapq import heappop, heappush
import numpy as np
def __lowercase ( a__ , a__ , a__ , a__ , ) -> tuple[float | int, list[tuple[int, int]]]:
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = grid.shape
__SCREAMING_SNAKE_CASE = [-1, 1, 0, 0]
__SCREAMING_SNAKE_CASE = [0, 0, -1, 1]
if allow_diagonal:
dx += [-1, -1, 1, 1]
dy += [-1, 1, -1, 1]
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = [(0, source)], set()
__SCREAMING_SNAKE_CASE = np.full((rows, cols) , np.inf )
__SCREAMING_SNAKE_CASE = 0
__SCREAMING_SNAKE_CASE = np.empty((rows, cols) , dtype=a__ )
__SCREAMING_SNAKE_CASE = None
while queue:
((__SCREAMING_SNAKE_CASE) , (__SCREAMING_SNAKE_CASE)) = heappop(a__ )
if (x, y) in visited:
continue
visited.add((x, y) )
if (x, y) == destination:
__SCREAMING_SNAKE_CASE = []
while (x, y) != source:
path.append((x, y) )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = predecessors[x, y]
path.append(a__ ) # add the source manually
path.reverse()
return matrix[destination], path
for i in range(len(a__ ) ):
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = x + dx[i], y + dy[i]
if 0 <= nx < rows and 0 <= ny < cols:
__SCREAMING_SNAKE_CASE = grid[nx][ny]
if next_node == 1 and matrix[nx, ny] > dist + 1:
heappush(a__ , (dist + 1, (nx, ny)) )
__SCREAMING_SNAKE_CASE = dist + 1
__SCREAMING_SNAKE_CASE = (x, y)
return np.inf, []
if __name__ == "__main__":
import doctest
doctest.testmod()
| 257 | 1 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from diffusers import StableDiffusionKDiffusionPipeline
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
@slow
@require_torch_gpu
class a__ ( unittest.TestCase ):
def _lowerCamelCase ( self ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowerCamelCase ( self ):
"""simple docstring"""
_lowercase : Tuple = StableDiffusionKDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" )
_lowercase : Union[str, Any] = sd_pipe.to(_UpperCamelCase )
sd_pipe.set_progress_bar_config(disable=_UpperCamelCase )
sd_pipe.set_scheduler("sample_euler" )
_lowercase : List[Any] = "A painting of a squirrel eating a burger"
_lowercase : Union[str, Any] = torch.manual_seed(0 )
_lowercase : Optional[int] = sd_pipe([prompt] , generator=_UpperCamelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" )
_lowercase : Any = output.images
_lowercase : List[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
_lowercase : int = np.array([0.0_4_4_7, 0.0_4_9_2, 0.0_4_6_8, 0.0_4_0_8, 0.0_3_8_3, 0.0_4_0_8, 0.0_3_5_4, 0.0_3_8_0, 0.0_3_3_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def _lowerCamelCase ( self ):
"""simple docstring"""
_lowercase : Optional[int] = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" )
_lowercase : List[str] = sd_pipe.to(_UpperCamelCase )
sd_pipe.set_progress_bar_config(disable=_UpperCamelCase )
sd_pipe.set_scheduler("sample_euler" )
_lowercase : List[str] = "A painting of a squirrel eating a burger"
_lowercase : Union[str, Any] = torch.manual_seed(0 )
_lowercase : Any = sd_pipe([prompt] , generator=_UpperCamelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" )
_lowercase : Tuple = output.images
_lowercase : List[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
_lowercase : Union[str, Any] = np.array([0.1_2_3_7, 0.1_3_2_0, 0.1_4_3_8, 0.1_3_5_9, 0.1_3_9_0, 0.1_1_3_2, 0.1_2_7_7, 0.1_1_7_5, 0.1_1_1_2] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1
def _lowerCamelCase ( self ):
"""simple docstring"""
_lowercase : List[str] = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" )
_lowercase : Any = sd_pipe.to(_UpperCamelCase )
sd_pipe.set_progress_bar_config(disable=_UpperCamelCase )
sd_pipe.set_scheduler("sample_dpmpp_2m" )
_lowercase : Union[str, Any] = "A painting of a squirrel eating a burger"
_lowercase : Dict = torch.manual_seed(0 )
_lowercase : List[str] = sd_pipe(
[prompt] , generator=_UpperCamelCase , guidance_scale=7.5 , num_inference_steps=15 , output_type="np" , use_karras_sigmas=_UpperCamelCase , )
_lowercase : int = output.images
_lowercase : int = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
_lowercase : int = np.array(
[0.1_1_3_8_1_6_8_9, 0.1_2_1_1_2_9_2_1, 0.1_3_8_9_4_5_7, 0.1_2_5_4_9_6_0_6, 0.1_2_4_4_9_6_4, 0.1_0_8_3_1_5_1_7, 0.1_1_5_6_2_8_6_6, 0.1_0_8_6_7_8_1_6, 0.1_0_4_9_9_0_4_8] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 369 |
'''simple docstring'''
def _A ( snake_case , snake_case ) -> int:
return int((input_a, input_a).count(0 ) != 0 )
def _A ( ) -> None:
assert nand_gate(0 , 0 ) == 1
assert nand_gate(0 , 1 ) == 1
assert nand_gate(1 , 0 ) == 1
assert nand_gate(1 , 1 ) == 0
if __name__ == "__main__":
print(nand_gate(0, 0))
print(nand_gate(0, 1))
print(nand_gate(1, 0))
print(nand_gate(1, 1))
| 199 | 0 |
import numpy as np
import torch
from imwatermark import WatermarkEncoder
# Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66
_A : Optional[int] = 0B101100111110110010010000011110111011000110011110
# bin(x)[2:] gives bits of x as str, use int to convert them to 0/1
_A : Union[str, Any] = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]]
class __SCREAMING_SNAKE_CASE :
def __init__( self : Optional[Any] ) ->str:
lowerCamelCase__ : List[str] = WATERMARK_BITS
lowerCamelCase__ : List[str] = WatermarkEncoder()
self.encoder.set_watermark('''bits''' , self.watermark )
def __lowerCamelCase ( self : Dict , A : torch.FloatTensor ) ->Optional[int]:
# can't encode images that are smaller than 256
if images.shape[-1] < 2_5_6:
return images
lowerCamelCase__ : Optional[Any] = (2_5_5 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
lowerCamelCase__ : Union[str, Any] = [self.encoder.encode(A , '''dwtDct''' ) for image in images]
lowerCamelCase__ : int = torch.from_numpy(np.array(A ) ).permute(0 , 3 , 1 , 2 )
lowerCamelCase__ : int = torch.clamp(2 * (images / 2_5_5 - 0.5) , min=-1.0 , max=1.0 )
return images
| 142 |
def _a ( UpperCAmelCase ) -> bool:
"""simple docstring"""
return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number
if __name__ == "__main__":
print('Program to check whether a number is a Perfect number or not...')
_A : str = int(input('Enter number: ').strip())
print(F'''{number} is {'' if perfect(number) else 'not '}a Perfect Number.''')
| 142 | 1 |
"""simple docstring"""
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel
from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class _UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
torch.manual_seed(0 )
__snake_case : Optional[int] = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , )
return model
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
torch.manual_seed(0 )
__snake_case : Tuple = VQModel(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=3 , )
return model
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
torch.manual_seed(0 )
__snake_case : List[str] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
return CLIPTextModel(a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = self.dummy_uncond_unet
__snake_case : int = DDIMScheduler()
__snake_case : str = self.dummy_vq_model
__snake_case : Union[str, Any] = LDMPipeline(unet=a_ , vqvae=a_ , scheduler=a_ )
ldm.to(a_ )
ldm.set_progress_bar_config(disable=a_ )
__snake_case : Union[str, Any] = torch.manual_seed(0 )
__snake_case : Optional[Any] = ldm(generator=a_ , num_inference_steps=2 , output_type='''numpy''' ).images
__snake_case : Any = torch.manual_seed(0 )
__snake_case : List[Any] = ldm(generator=a_ , num_inference_steps=2 , output_type='''numpy''' , return_dict=a_ )[0]
__snake_case : Dict = image[0, -3:, -3:, -1]
__snake_case : Optional[Any] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__snake_case : List[Any] = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] )
__snake_case : str = 1E-2 if torch_device != '''mps''' else 3E-2
assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance
@slow
@require_torch
class _UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[Any] = LDMPipeline.from_pretrained('''CompVis/ldm-celebahq-256''' )
ldm.to(a_ )
ldm.set_progress_bar_config(disable=a_ )
__snake_case : Tuple = torch.manual_seed(0 )
__snake_case : Dict = ldm(generator=a_ , num_inference_steps=5 , output_type='''numpy''' ).images
__snake_case : Any = image[0, -3:, -3:, -1]
assert image.shape == (1, 2_56, 2_56, 3)
__snake_case : Dict = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] )
__snake_case : str = 1E-2 if torch_device != '''mps''' else 3E-2
assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
| 24 |
"""simple docstring"""
import multiprocessing
from typing import TYPE_CHECKING, Optional, Union
from .. import Dataset, Features, config
from ..formatting import query_table
from ..packaged_modules.sql.sql import Sql
from ..utils import logging
from .abc import AbstractDatasetInputStream
if TYPE_CHECKING:
import sqlitea
import sqlalchemy
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
def __init__(self , a_ , a_ , a_ = None , a_ = None , a_ = False , **a_ , ):
'''simple docstring'''
super().__init__(features=a_ , cache_dir=a_ , keep_in_memory=a_ , **a_ )
__snake_case : Union[str, Any] = Sql(
cache_dir=a_ , features=a_ , sql=a_ , con=a_ , **a_ , )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Union[str, Any] = None
__snake_case : Dict = None
__snake_case : Dict = None
__snake_case : List[str] = None
self.builder.download_and_prepare(
download_config=a_ , download_mode=a_ , verification_mode=a_ , base_path=a_ , )
# Build dataset for splits
__snake_case : Any = self.builder.as_dataset(
split='''train''' , verification_mode=a_ , in_memory=self.keep_in_memory )
return dataset
class _UpperCAmelCase :
'''simple docstring'''
def __init__(self , a_ , a_ , a_ , a_ = None , a_ = None , **a_ , ):
'''simple docstring'''
if num_proc is not None and num_proc <= 0:
raise ValueError(f"""num_proc {num_proc} must be an integer > 0.""" )
__snake_case : List[str] = dataset
__snake_case : Tuple = name
__snake_case : Optional[int] = con
__snake_case : int = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
__snake_case : Dict = num_proc
__snake_case : Dict = to_sql_kwargs
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = self.to_sql_kwargs.pop('''sql''' , a_ )
__snake_case : Union[str, Any] = self.to_sql_kwargs.pop('''con''' , a_ )
__snake_case : Any = self.to_sql_kwargs.pop('''index''' , a_ )
__snake_case : Optional[Any] = self._write(index=a_ , **self.to_sql_kwargs )
return written
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
__snake_case , __snake_case , __snake_case : Optional[Any] = args
__snake_case : List[Any] = {**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs
__snake_case : Dict = query_table(
table=self.dataset.data , key=slice(a_ , offset + self.batch_size ) , indices=self.dataset._indices , )
__snake_case : Tuple = batch.to_pandas()
__snake_case : str = df.to_sql(self.name , self.con , index=a_ , **a_ )
return num_rows or len(a_ )
def SCREAMING_SNAKE_CASE (self , a_ , **a_ ):
'''simple docstring'''
__snake_case : int = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ):
written += self._batch_sql((offset, index, to_sql_kwargs) )
else:
__snake_case , __snake_case : Union[str, Any] = len(self.dataset ), self.batch_size
with multiprocessing.Pool(self.num_proc ) as pool:
for num_rows in logging.tqdm(
pool.imap(
self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , a_ , a_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ):
written += num_rows
return written
| 24 | 1 |
'''simple docstring'''
import math
class lowerCAmelCase :
def snake_case ( self : Optional[int] , __lowercase : list[list[float]] , __lowercase : list[int] ):
"""simple docstring"""
__lowercase =0.0
__lowercase =0.0
for i in range(len(__lowercase ) ):
da += math.pow((sample[i] - weights[0][i]) , 2 )
da += math.pow((sample[i] - weights[1][i]) , 2 )
return 0 if da > da else 1
return 0
def snake_case ( self : Union[str, Any] , __lowercase : list[list[int | float]] , __lowercase : list[int] , __lowercase : int , __lowercase : float ):
"""simple docstring"""
for i in range(len(__lowercase ) ):
weights[j][i] += alpha * (sample[i] - weights[j][i])
return weights
def __UpperCamelCase ( ):
'''simple docstring'''
__lowercase =[[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]]
# weight initialization ( n, C )
__lowercase =[[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]]
# training
__lowercase =SelfOrganizingMap()
__lowercase =3
__lowercase =0.5
for _ in range(lowercase__ ):
for j in range(len(lowercase__ ) ):
# training sample
__lowercase =training_samples[j]
# Compute the winning vector
__lowercase =self_organizing_map.get_winner(lowercase__, lowercase__ )
# Update the winning vector
__lowercase =self_organizing_map.update(lowercase__, lowercase__, lowercase__, lowercase__ )
# classify test sample
__lowercase =[0, 0, 0, 1]
__lowercase =self_organizing_map.get_winner(lowercase__, lowercase__ )
# results
print(F'''Clusters that the test sample belongs to : {winner}''' )
print(F'''Weights that have been trained : {weights}''' )
# running the main() function
if __name__ == "__main__":
main()
| 141 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
UpperCAmelCase = logging.get_logger(__name__)
UpperCAmelCase = {
'''google/bit-50''': '''https://huggingface.co/google/bit-50/resolve/main/config.json''',
}
class lowerCAmelCase ( A , A ):
lowerCAmelCase_ = "bit"
lowerCAmelCase_ = ["preactivation", "bottleneck"]
lowerCAmelCase_ = ["SAME", "VALID"]
def __init__( self : Union[str, Any] , __lowercase : Tuple=3 , __lowercase : Tuple=64 , __lowercase : List[str]=[256, 512, 1024, 2048] , __lowercase : int=[3, 4, 6, 3] , __lowercase : Optional[Any]="preactivation" , __lowercase : str="relu" , __lowercase : Tuple=None , __lowercase : int=32 , __lowercase : int=0.0 , __lowercase : Dict=False , __lowercase : List[Any]=32 , __lowercase : List[str]=1 , __lowercase : str=None , __lowercase : Any=None , **__lowercase : List[str] , ):
"""simple docstring"""
super().__init__(**__lowercase )
if layer_type not in self.layer_types:
raise ValueError(f'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' )
if global_padding is not None:
if global_padding.upper() in self.supported_padding:
__lowercase =global_padding.upper()
else:
raise ValueError(f'''Padding strategy {global_padding} not supported''' )
__lowercase =num_channels
__lowercase =embedding_size
__lowercase =hidden_sizes
__lowercase =depths
__lowercase =layer_type
__lowercase =hidden_act
__lowercase =global_padding
__lowercase =num_groups
__lowercase =drop_path_rate
__lowercase =embedding_dynamic_padding
__lowercase =output_stride
__lowercase =width_factor
__lowercase =['stem'] + [f'''stage{idx}''' for idx in range(1 , len(__lowercase ) + 1 )]
__lowercase , __lowercase =get_aligned_output_features_output_indices(
out_features=__lowercase , out_indices=__lowercase , stage_names=self.stage_names )
| 141 | 1 |
import argparse
import torch
from torch import nn
from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration
def UpperCamelCase__( UpperCamelCase__ : Optional[int] )->List[Any]:
A__ = [
"encoder.version",
"decoder.version",
"model.encoder.version",
"model.decoder.version",
"decoder.output_projection.weight",
"_float_tensor",
"encoder.embed_positions._float_tensor",
"decoder.embed_positions._float_tensor",
]
for k in ignore_keys:
state_dict.pop(UpperCamelCase__ , UpperCamelCase__ )
def UpperCamelCase__( UpperCamelCase__ : Any )->Optional[int]:
A__ = list(s_dict.keys() )
for key in keys:
if "transformer_layers" in key:
A__ = s_dict.pop(UpperCamelCase__ )
elif "subsample" in key:
A__ = s_dict.pop(UpperCamelCase__ )
def UpperCamelCase__( UpperCamelCase__ : int )->Union[str, Any]:
A__ = emb.weight.shape
A__ = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ )
A__ = emb.weight.data
return lin_layer
def UpperCamelCase__( UpperCamelCase__ : List[str] , UpperCamelCase__ : int )->Dict:
A__ = torch.load(UpperCamelCase__ , map_location='''cpu''' )
A__ = mam_aaa["args"]
A__ = mam_aaa["model"]
A__ = state_dict["decoder.output_projection.weight"]
remove_ignore_keys_(UpperCamelCase__ )
rename_keys(UpperCamelCase__ )
A__ = state_dict["decoder.embed_tokens.weight"].shape[0]
A__ = args.share_decoder_input_output_embed
A__ = [int(UpperCamelCase__ ) for i in args.conv_kernel_sizes.split(''',''' )]
A__ = SpeechaTextConfig(
vocab_size=UpperCamelCase__ , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''relu''' , num_conv_layers=len(UpperCamelCase__ ) , conv_channels=args.conv_channels , conv_kernel_sizes=UpperCamelCase__ , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=UpperCamelCase__ , num_beams=5 , max_length=2_00 , use_cache=UpperCamelCase__ , decoder_start_token_id=2 , early_stopping=UpperCamelCase__ , )
A__ = SpeechaTextForConditionalGeneration(UpperCamelCase__ )
A__ = model.model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ )
if len(UpperCamelCase__ ) > 0 and not set(UpperCamelCase__ ) <= {
"encoder.embed_positions.weights",
"decoder.embed_positions.weights",
}:
raise ValueError(
'''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,'''
f" but all the following weights are missing {missing}" )
if tie_embeds:
A__ = make_linear_from_emb(model.model.decoder.embed_tokens )
else:
A__ = lm_head_weights
model.save_pretrained(UpperCamelCase__ )
if __name__ == "__main__":
a__: Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument('--fairseq_path', type=str, help='Path to the fairseq model (.pt) file.')
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
a__: Optional[int] = parser.parse_args()
convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
| 369 |
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer
@dataclass
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ):
__SCREAMING_SNAKE_CASE = 42
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ , UpperCamelCase__ ):
@register_to_config
def __init__( self,__lowerCamelCase = 3,__lowerCamelCase = 3,__lowerCamelCase = ("DownEncoderBlock2D",),__lowerCamelCase = ("UpDecoderBlock2D",),__lowerCamelCase = (64,),__lowerCamelCase = 1,__lowerCamelCase = "silu",__lowerCamelCase = 3,__lowerCamelCase = 32,__lowerCamelCase = 256,__lowerCamelCase = 32,__lowerCamelCase = None,__lowerCamelCase = 0.18215,__lowerCamelCase = "group",):
super().__init__()
# pass init params to Encoder
A__ = Encoder(
in_channels=__lowerCamelCase,out_channels=__lowerCamelCase,down_block_types=__lowerCamelCase,block_out_channels=__lowerCamelCase,layers_per_block=__lowerCamelCase,act_fn=__lowerCamelCase,norm_num_groups=__lowerCamelCase,double_z=__lowerCamelCase,)
A__ = vq_embed_dim if vq_embed_dim is not None else latent_channels
A__ = nn.Convad(__lowerCamelCase,__lowerCamelCase,1 )
A__ = VectorQuantizer(__lowerCamelCase,__lowerCamelCase,beta=0.25,remap=__lowerCamelCase,sane_index_shape=__lowerCamelCase )
A__ = nn.Convad(__lowerCamelCase,__lowerCamelCase,1 )
# pass init params to Decoder
A__ = Decoder(
in_channels=__lowerCamelCase,out_channels=__lowerCamelCase,up_block_types=__lowerCamelCase,block_out_channels=__lowerCamelCase,layers_per_block=__lowerCamelCase,act_fn=__lowerCamelCase,norm_num_groups=__lowerCamelCase,norm_type=__lowerCamelCase,)
@apply_forward_hook
def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = True ):
A__ = self.encoder(__lowerCamelCase )
A__ = self.quant_conv(__lowerCamelCase )
if not return_dict:
return (h,)
return VQEncoderOutput(latents=__lowerCamelCase )
@apply_forward_hook
def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = False,__lowerCamelCase = True ):
# also go through quantization layer
if not force_not_quantize:
A__ , A__ , A__ = self.quantize(__lowerCamelCase )
else:
A__ = h
A__ = self.post_quant_conv(__lowerCamelCase )
A__ = self.decoder(__lowerCamelCase,quant if self.config.norm_type == '''spatial''' else None )
if not return_dict:
return (dec,)
return DecoderOutput(sample=__lowerCamelCase )
def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = True ):
A__ = sample
A__ = self.encode(__lowerCamelCase ).latents
A__ = self.decode(__lowerCamelCase ).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=__lowerCamelCase )
| 39 | 0 |
"""simple docstring"""
import logging
from transformers.configuration_utils import PretrainedConfig
__UpperCamelCase = logging.getLogger(__name__)
class UpperCamelCase ( _lowerCamelCase ):
SCREAMING_SNAKE_CASE_ = "masked_bert"
def __init__( self, lowerCAmelCase__=3_0522, lowerCAmelCase__=768, lowerCAmelCase__=12, lowerCAmelCase__=12, lowerCAmelCase__=3072, lowerCAmelCase__="gelu", lowerCAmelCase__=0.1, lowerCAmelCase__=0.1, lowerCAmelCase__=512, lowerCAmelCase__=2, lowerCAmelCase__=0.02, lowerCAmelCase__=1e-12, lowerCAmelCase__=0, lowerCAmelCase__="topK", lowerCAmelCase__="constant", lowerCAmelCase__=0.0, **lowerCAmelCase__, ) -> Optional[int]:
super().__init__(pad_token_id=a_, **a_)
snake_case_ = vocab_size
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = num_attention_heads
snake_case_ = hidden_act
snake_case_ = intermediate_size
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = max_position_embeddings
snake_case_ = type_vocab_size
snake_case_ = initializer_range
snake_case_ = layer_norm_eps
snake_case_ = pruning_method
snake_case_ = mask_init
snake_case_ = mask_scale
| 69 |
'''simple docstring'''
from __future__ import annotations
import queue
class lowercase :
"""simple docstring"""
def __init__( self ,a_ ) -> str:
_UpperCAmelCase : Optional[Any] = data
_UpperCAmelCase : Optional[int] = None
_UpperCAmelCase : Union[str, Any] = None
def snake_case_ ( )-> TreeNode:
'''simple docstring'''
print("""\n********Press N to stop entering at any point of time********\n""" )
_UpperCAmelCase : Any = input("""Enter the value of the root node: """ ).strip().lower()
_UpperCAmelCase : queue.Queue = queue.Queue()
_UpperCAmelCase : List[str] = TreeNode(int(lowerCAmelCase_ ) )
q.put(lowerCAmelCase_ )
while not q.empty():
_UpperCAmelCase : str = q.get()
_UpperCAmelCase : Any = F'''Enter the left node of {node_found.data}: '''
_UpperCAmelCase : Union[str, Any] = input(lowerCAmelCase_ ).strip().lower() or """n"""
if check == "n":
return tree_node
_UpperCAmelCase : List[str] = TreeNode(int(lowerCAmelCase_ ) )
_UpperCAmelCase : Optional[int] = left_node
q.put(lowerCAmelCase_ )
_UpperCAmelCase : Dict = F'''Enter the right node of {node_found.data}: '''
_UpperCAmelCase : Tuple = input(lowerCAmelCase_ ).strip().lower() or """n"""
if check == "n":
return tree_node
_UpperCAmelCase : Any = TreeNode(int(lowerCAmelCase_ ) )
_UpperCAmelCase : Optional[Any] = right_node
q.put(lowerCAmelCase_ )
raise
def snake_case_ ( lowerCAmelCase_ )-> None:
'''simple docstring'''
if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or not node:
return
print(node.data , end=""",""" )
pre_order(node.left )
pre_order(node.right )
def snake_case_ ( lowerCAmelCase_ )-> None:
'''simple docstring'''
if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or not node:
return
in_order(node.left )
print(node.data , end=""",""" )
in_order(node.right )
def snake_case_ ( lowerCAmelCase_ )-> None:
'''simple docstring'''
if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or not node:
return
post_order(node.left )
post_order(node.right )
print(node.data , end=""",""" )
def snake_case_ ( lowerCAmelCase_ )-> None:
'''simple docstring'''
if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or not node:
return
_UpperCAmelCase : queue.Queue = queue.Queue()
q.put(lowerCAmelCase_ )
while not q.empty():
_UpperCAmelCase : Dict = q.get()
print(node_dequeued.data , end=""",""" )
if node_dequeued.left:
q.put(node_dequeued.left )
if node_dequeued.right:
q.put(node_dequeued.right )
def snake_case_ ( lowerCAmelCase_ )-> None:
'''simple docstring'''
if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or not node:
return
_UpperCAmelCase : queue.Queue = queue.Queue()
q.put(lowerCAmelCase_ )
while not q.empty():
_UpperCAmelCase : Optional[int] = []
while not q.empty():
_UpperCAmelCase : Optional[int] = q.get()
print(node_dequeued.data , end=""",""" )
if node_dequeued.left:
list_.append(node_dequeued.left )
if node_dequeued.right:
list_.append(node_dequeued.right )
print()
for node in list_:
q.put(lowerCAmelCase_ )
def snake_case_ ( lowerCAmelCase_ )-> None:
'''simple docstring'''
if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or not node:
return
_UpperCAmelCase : list[TreeNode] = []
_UpperCAmelCase : Optional[Any] = node
while n or stack:
while n: # start from root node, find its left child
print(n.data , end=""",""" )
stack.append(lowerCAmelCase_ )
_UpperCAmelCase : Union[str, Any] = n.left
# end of while means current node doesn't have left child
_UpperCAmelCase : int = stack.pop()
# start to traverse its right child
_UpperCAmelCase : Any = n.right
def snake_case_ ( lowerCAmelCase_ )-> None:
'''simple docstring'''
if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or not node:
return
_UpperCAmelCase : list[TreeNode] = []
_UpperCAmelCase : Optional[Any] = node
while n or stack:
while n:
stack.append(lowerCAmelCase_ )
_UpperCAmelCase : Tuple = n.left
_UpperCAmelCase : Union[str, Any] = stack.pop()
print(n.data , end=""",""" )
_UpperCAmelCase : Any = n.right
def snake_case_ ( lowerCAmelCase_ )-> None:
'''simple docstring'''
if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or not node:
return
_UpperCAmelCase ,_UpperCAmelCase : str = [], []
_UpperCAmelCase : Dict = node
stacka.append(lowerCAmelCase_ )
while stacka: # to find the reversed order of post order, store it in stack2
_UpperCAmelCase : Optional[int] = stacka.pop()
if n.left:
stacka.append(n.left )
if n.right:
stacka.append(n.right )
stacka.append(lowerCAmelCase_ )
while stacka: # pop up from stack2 will be the post order
print(stacka.pop().data , end=""",""" )
def snake_case_ ( lowerCAmelCase_ = "" , lowerCAmelCase_=50 , lowerCAmelCase_="*" )-> str:
'''simple docstring'''
if not s:
return "\n" + width * char
_UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = divmod(width - len(lowerCAmelCase_ ) - 2 , 2 )
return F'''{left * char} {s} {(left + extra) * char}'''
if __name__ == "__main__":
import doctest
doctest.testmod()
print(prompt("""Binary Tree Traversals"""))
A_ : TreeNode = build_tree()
print(prompt("""Pre Order Traversal"""))
pre_order(node)
print(prompt() + """\n""")
print(prompt("""In Order Traversal"""))
in_order(node)
print(prompt() + """\n""")
print(prompt("""Post Order Traversal"""))
post_order(node)
print(prompt() + """\n""")
print(prompt("""Level Order Traversal"""))
level_order(node)
print(prompt() + """\n""")
print(prompt("""Actual Level Order Traversal"""))
level_order_actual(node)
print("""*""" * 5_0 + """\n""")
print(prompt("""Pre Order Traversal - Iteration Version"""))
pre_order_iter(node)
print(prompt() + """\n""")
print(prompt("""In Order Traversal - Iteration Version"""))
in_order_iter(node)
print(prompt() + """\n""")
print(prompt("""Post Order Traversal - Iteration Version"""))
post_order_iter(node)
print(prompt())
| 215 | 0 |
def _lowercase ( UpperCamelCase_ , UpperCamelCase_ ) -> int:
'''simple docstring'''
return int((input_a, input_a).count(0 ) != 0 )
def _lowercase ( ) -> None:
'''simple docstring'''
assert nand_gate(0 , 0 ) == 1
assert nand_gate(0 , 1 ) == 1
assert nand_gate(1 , 0 ) == 1
assert nand_gate(1 , 1 ) == 0
if __name__ == "__main__":
print(nand_gate(0, 0))
print(nand_gate(0, 1))
print(nand_gate(1, 0))
print(nand_gate(1, 1))
| 361 |
import doctest
from collections import deque
import numpy as np
class lowercase__ :
def __init__( self : Optional[int] ):
SCREAMING_SNAKE_CASE__ = [2, 1, 2, -1]
SCREAMING_SNAKE_CASE__ = [1, 2, 3, 4]
def A_ ( self : List[str] ):
SCREAMING_SNAKE_CASE__ = len(self.first_signal )
SCREAMING_SNAKE_CASE__ = len(self.second_signal )
SCREAMING_SNAKE_CASE__ = max(UpperCAmelCase_ , UpperCAmelCase_ )
# create a zero matrix of max_length x max_length
SCREAMING_SNAKE_CASE__ = [[0] * max_length for i in range(UpperCAmelCase_ )]
# fills the smaller signal with zeros to make both signals of same length
if length_first_signal < length_second_signal:
self.first_signal += [0] * (max_length - length_first_signal)
elif length_first_signal > length_second_signal:
self.second_signal += [0] * (max_length - length_second_signal)
for i in range(UpperCAmelCase_ ):
SCREAMING_SNAKE_CASE__ = deque(self.second_signal )
rotated_signal.rotate(UpperCAmelCase_ )
for j, item in enumerate(UpperCAmelCase_ ):
matrix[i][j] += item
# multiply the matrix with the first signal
SCREAMING_SNAKE_CASE__ = np.matmul(np.transpose(UpperCAmelCase_ ) , np.transpose(self.first_signal ) )
# rounding-off to two decimal places
return [round(UpperCAmelCase_ , 2 ) for i in final_signal]
if __name__ == "__main__":
doctest.testmod()
| 169 | 0 |
import importlib.util
import json
import os
import warnings
from dataclasses import dataclass, field
import torch
from ..training_args import TrainingArguments
from ..utils import cached_property, is_sagemaker_dp_enabled, logging
__A = logging.get_logger(__name__)
def lowerCAmelCase_ ( ) -> Union[str, Any]:
"""simple docstring"""
lowerCamelCase__: Optional[int] =os.getenv("SM_HP_MP_PARAMETERS" , "{}" )
try:
# Parse it and check the field "partitions" is included, it is required for model parallel.
lowerCamelCase__: Union[str, Any] =json.loads(__UpperCAmelCase )
if "partitions" not in smp_options:
return False
except json.JSONDecodeError:
return False
# Get the sagemaker specific framework parameters from mpi_options variable.
lowerCamelCase__: List[Any] =os.getenv("SM_FRAMEWORK_PARAMS" , "{}" )
try:
# Parse it and check the field "sagemaker_distributed_dataparallel_enabled".
lowerCamelCase__: Tuple =json.loads(__UpperCAmelCase )
if not mpi_options.get("sagemaker_mpi_enabled" , __UpperCAmelCase ):
return False
except json.JSONDecodeError:
return False
# Lastly, check if the `smdistributed` module is present.
return importlib.util.find_spec("smdistributed" ) is not None
if is_sagemaker_model_parallel_available():
import smdistributed.modelparallel.torch as smp
smp.init()
@dataclass
class _SCREAMING_SNAKE_CASE ( a_ ):
'''simple docstring'''
lowercase_ = field(
default="" , metadata={"help": "Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"} , )
def SCREAMING_SNAKE_CASE_ (self : Tuple) ->List[Any]:
'''simple docstring'''
super().__post_init__()
warnings.warn(
"`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use "
"`TrainingArguments` instead." , UpperCAmelCase_ , )
@cached_property
def SCREAMING_SNAKE_CASE_ (self : Tuple) ->"torch.device":
'''simple docstring'''
logger.info("PyTorch: setting up devices")
if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1:
logger.warning(
"torch.distributed process group is initialized, but local_rank == -1. "
"In order to use Torch DDP, launch your script with `python -m torch.distributed.launch")
if self.no_cuda:
lowerCamelCase__: Dict =torch.device("cpu")
lowerCamelCase__: List[str] =0
elif is_sagemaker_model_parallel_available():
lowerCamelCase__: Union[str, Any] =smp.local_rank()
lowerCamelCase__: Dict =torch.device("cuda" , UpperCAmelCase_)
lowerCamelCase__: Tuple =1
elif is_sagemaker_dp_enabled():
import smdistributed.dataparallel.torch.torch_smddp # noqa: F401
torch.distributed.init_process_group(backend="smddp" , timeout=self.ddp_timeout_delta)
lowerCamelCase__: Dict =int(os.getenv("SMDATAPARALLEL_LOCAL_RANK"))
lowerCamelCase__: List[Any] =torch.device("cuda" , self.local_rank)
lowerCamelCase__: Any =1
elif self.local_rank == -1:
# if n_gpu is > 1 we'll use nn.DataParallel.
# If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0`
# Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will
# trigger an error that a device index is missing. Index 0 takes into account the
# GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0`
# will use the first GPU in that env, i.e. GPU#1
lowerCamelCase__: Any =torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at
# the default value.
lowerCamelCase__: Optional[int] =torch.cuda.device_count()
else:
# Here, we'll use torch.distributed.
# Initializes the distributed backend which will take care of synchronizing nodes/GPUs
if not torch.distributed.is_initialized():
torch.distributed.init_process_group(backend="nccl" , timeout=self.ddp_timeout_delta)
lowerCamelCase__: Union[str, Any] =torch.device("cuda" , self.local_rank)
lowerCamelCase__: Any =1
if device.type == "cuda":
torch.cuda.set_device(UpperCAmelCase_)
return device
@property
def SCREAMING_SNAKE_CASE_ (self : int) ->Union[str, Any]:
'''simple docstring'''
if is_sagemaker_model_parallel_available():
return smp.dp_size()
return super().world_size
@property
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->str:
'''simple docstring'''
return not is_sagemaker_model_parallel_available()
@property
def SCREAMING_SNAKE_CASE_ (self : str) ->List[str]:
'''simple docstring'''
return False
| 10 |
"""simple docstring"""
from __future__ import annotations
import bisect
def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = -1 ) -> int:
if hi < 0:
lowerCAmelCase__ : Union[str, Any] = len(__UpperCAmelCase )
while lo < hi:
lowerCAmelCase__ : Tuple = lo + (hi - lo) // 2
if sorted_collection[mid] < item:
lowerCAmelCase__ : Optional[int] = mid + 1
else:
lowerCAmelCase__ : List[Any] = mid
return lo
def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = -1 ) -> int:
if hi < 0:
lowerCAmelCase__ : Union[str, Any] = len(__UpperCAmelCase )
while lo < hi:
lowerCAmelCase__ : List[str] = lo + (hi - lo) // 2
if sorted_collection[mid] <= item:
lowerCAmelCase__ : Dict = mid + 1
else:
lowerCAmelCase__ : Any = mid
return lo
def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = -1 ) -> None:
sorted_collection.insert(bisect_left(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase )
def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = -1 ) -> None:
sorted_collection.insert(bisect_right(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase )
def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> int | None:
lowerCAmelCase__ : Any = 0
lowerCAmelCase__ : Union[str, Any] = len(__UpperCAmelCase ) - 1
while left <= right:
lowerCAmelCase__ : str = left + (right - left) // 2
lowerCAmelCase__ : List[Any] = sorted_collection[midpoint]
if current_item == item:
return midpoint
elif item < current_item:
lowerCAmelCase__ : Optional[int] = midpoint - 1
else:
lowerCAmelCase__ : Optional[int] = midpoint + 1
return None
def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> int | None:
lowerCAmelCase__ : Any = bisect.bisect_left(__UpperCAmelCase , __UpperCAmelCase )
if index != len(__UpperCAmelCase ) and sorted_collection[index] == item:
return index
return None
def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int | None:
if right < left:
return None
lowerCAmelCase__ : List[str] = left + (right - left) // 2
if sorted_collection[midpoint] == item:
return midpoint
elif sorted_collection[midpoint] > item:
return binary_search_by_recursion(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , midpoint - 1 )
else:
return binary_search_by_recursion(__UpperCAmelCase , __UpperCAmelCase , midpoint + 1 , __UpperCAmelCase )
if __name__ == "__main__":
_A = input("""Enter numbers separated by comma:\n""").strip()
_A = sorted(int(item) for item in user_input.split(""","""))
_A = int(input("""Enter a single number to be found in the list:\n"""))
_A = binary_search(collection, target)
if result is None:
print(f"""{target} was not found in {collection}.""")
else:
print(f"""{target} was found at position {result} in {collection}.""")
| 242 | 0 |
"""simple docstring"""
import json
import os
import unittest
from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import (
VOCAB_FILES_NAMES,
GPTSanJapaneseTokenizer,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __A ( _UpperCAmelCase , unittest.TestCase ):
__A = GPTSanJapaneseTokenizer
__A = False
__A = {"do_clean_text": False, "add_prefix_space": False}
def _snake_case ( self ):
super().setUp()
# fmt: off
lowerCamelCase =['''こん''', '''こんに''', '''にちは''', '''ばんは''', '''世界,㔺界''', '''、''', '''。''', '''<BR>''', '''<SP>''', '''<TAB>''', '''<URL>''', '''<EMAIL>''', '''<TEL>''', '''<DATE>''', '''<PRICE>''', '''<BLOCK>''', '''<KIGOU>''', '''<U2000U2BFF>''', '''<|emoji1|>''', '''<unk>''', '''<|bagoftoken|>''', '''<|endoftext|>''']
# fmt: on
lowerCamelCase ={'''emoji''': {'''\ud83d\ude00''': '''<|emoji1|>'''}, '''emoji_inv''': {'''<|emoji1|>''': '''\ud83d\ude00'''}} # 😀
lowerCamelCase ={'''unk_token''': '''<unk>'''}
lowerCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
lowerCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""emoji_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
with open(self.emoji_file , """w""" ) as emoji_writer:
emoji_writer.write(json.dumps(_UpperCAmelCase ) )
def _snake_case ( self , **UpperCAmelCase_ ):
kwargs.update(self.special_tokens_map )
return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase )
def _snake_case ( self , UpperCAmelCase_ ):
lowerCamelCase ='''こんにちは、世界。 \nこんばんは、㔺界。😀'''
lowerCamelCase ='''こんにちは、世界。 \nこんばんは、世界。😀'''
return input_text, output_text
def _snake_case ( self , UpperCAmelCase_ ):
lowerCamelCase =self.get_input_output_texts(_UpperCAmelCase )
lowerCamelCase =tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
lowerCamelCase =tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase )
return text, ids
def _snake_case ( self ):
pass # TODO add if relevant
def _snake_case ( self ):
pass # TODO add if relevant
def _snake_case ( self ):
pass # TODO add if relevant
def _snake_case ( self ):
lowerCamelCase =self.get_tokenizer()
# Testing tokenization
lowerCamelCase ='''こんにちは、世界。 こんばんは、㔺界。'''
lowerCamelCase =['''こん''', '''にちは''', '''、''', '''世界''', '''。''', '''<SP>''', '''こん''', '''ばんは''', '''、''', '''㔺界''', '''。''']
lowerCamelCase =tokenizer.tokenize(_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
# Testing conversion to ids without special tokens
lowerCamelCase =[0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6]
lowerCamelCase =tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
# Testing conversion to ids with special tokens
lowerCamelCase =tokens + [tokenizer.unk_token]
lowerCamelCase =[0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19]
lowerCamelCase =tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
def _snake_case ( self ):
lowerCamelCase =self.get_tokenizer()
# Testing tokenization
lowerCamelCase ='''こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。'''
lowerCamelCase ='''こんにちは、、、、世界。こんばんは、、、、世界。'''
lowerCamelCase =tokenizer.encode(_UpperCAmelCase )
lowerCamelCase =tokenizer.decode(_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
@slow
def _snake_case ( self ):
lowerCamelCase =self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" )
# Testing tokenization
lowerCamelCase ='''こんにちは、世界。'''
lowerCamelCase ='''こんばんは、㔺界。😀'''
lowerCamelCase ='''こんにちは、世界。こんばんは、世界。😀'''
lowerCamelCase =tokenizer.encode(prefix_text + input_text )
lowerCamelCase =tokenizer.encode("""""" , prefix_text=prefix_text + input_text )
lowerCamelCase =tokenizer.encode(_UpperCAmelCase , prefix_text=_UpperCAmelCase )
lowerCamelCase =tokenizer.decode(_UpperCAmelCase )
lowerCamelCase =tokenizer.decode(_UpperCAmelCase )
lowerCamelCase =tokenizer.decode(_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
@slow
def _snake_case ( self ):
lowerCamelCase =self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" )
# Testing tokenization
lowerCamelCase ='''こんにちは、世界。'''
lowerCamelCase ='''こんばんは、㔺界。😀'''
lowerCamelCase =len(tokenizer.encode(_UpperCAmelCase ) ) - 2
lowerCamelCase =len(tokenizer.encode(_UpperCAmelCase ) ) - 2
lowerCamelCase =[1] + [0] * (len_prefix + len_text + 1)
lowerCamelCase =[1] * (len_prefix + len_text + 1) + [0]
lowerCamelCase =[1] + [1] * (len_prefix) + [0] * (len_text + 1)
lowerCamelCase =tokenizer(prefix_text + input_text ).token_type_ids
lowerCamelCase =tokenizer("""""" , prefix_text=prefix_text + input_text ).token_type_ids
lowerCamelCase =tokenizer(_UpperCAmelCase , prefix_text=_UpperCAmelCase ).token_type_ids
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
@slow
def _snake_case ( self ):
lowerCamelCase =self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" )
lowerCamelCase =tokenizer.encode("""あンいワ""" )
lowerCamelCase =tokenizer.encode("""""" , prefix_text="""あンいワ""" )
lowerCamelCase =tokenizer.encode("""いワ""" , prefix_text="""あン""" )
self.assertEqual(tokenizer.decode(_UpperCAmelCase ) , tokenizer.decode(_UpperCAmelCase ) )
self.assertEqual(tokenizer.decode(_UpperCAmelCase ) , tokenizer.decode(_UpperCAmelCase ) )
self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token
self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token
@slow
def _snake_case ( self ):
lowerCamelCase =self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" )
lowerCamelCase =[['''武田信玄''', '''は、'''], ['''織田信長''', '''の配下の、''']]
lowerCamelCase =tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase )
lowerCamelCase =tokenizer.batch_encode_plus(_UpperCAmelCase , padding=_UpperCAmelCase )
# fmt: off
lowerCamelCase =[[35993, 8640, 25948, 35998, 30647, 35675, 35999, 35999], [35993, 10382, 9868, 35998, 30646, 9459, 30646, 35675]]
lowerCamelCase =[[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]]
lowerCamelCase =[[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]]
# fmt: on
self.assertListEqual(x_token.input_ids , _UpperCAmelCase )
self.assertListEqual(x_token.token_type_ids , _UpperCAmelCase )
self.assertListEqual(x_token.attention_mask , _UpperCAmelCase )
self.assertListEqual(x_token_a.input_ids , _UpperCAmelCase )
self.assertListEqual(x_token_a.token_type_ids , _UpperCAmelCase )
self.assertListEqual(x_token_a.attention_mask , _UpperCAmelCase )
def _snake_case ( self ):
# Intentionally convert some words to accommodate character fluctuations unique to Japanese
pass
def _snake_case ( self ):
# tokenizer has no padding token
pass
| 352 |
from __future__ import annotations
from typing import Dict
from ...configuration_utils import PretrainedConfig
UpperCAmelCase__ : Optional[Any] ={
'''susnato/ernie-m-base_pytorch''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json''',
'''susnato/ernie-m-large_pytorch''': '''https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json''',
}
class __A ( a ):
__A = """ernie_m"""
__A = {"dropout": "classifier_dropout", "num_classes": "num_labels"}
def __init__( self , UpperCAmelCase_ = 250002 , UpperCAmelCase_ = 768 , UpperCAmelCase_ = 12 , UpperCAmelCase_ = 12 , UpperCAmelCase_ = 3072 , UpperCAmelCase_ = "gelu" , UpperCAmelCase_ = 0.1 , UpperCAmelCase_ = 0.1 , UpperCAmelCase_ = 514 , UpperCAmelCase_ = 0.0_2 , UpperCAmelCase_ = 1 , UpperCAmelCase_ = 1E-05 , UpperCAmelCase_=None , UpperCAmelCase_=False , UpperCAmelCase_=0.0 , **UpperCAmelCase_ , ):
super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_ )
lowerCamelCase =vocab_size
lowerCamelCase =hidden_size
lowerCamelCase =num_hidden_layers
lowerCamelCase =num_attention_heads
lowerCamelCase =intermediate_size
lowerCamelCase =hidden_act
lowerCamelCase =hidden_dropout_prob
lowerCamelCase =attention_probs_dropout_prob
lowerCamelCase =max_position_embeddings
lowerCamelCase =initializer_range
lowerCamelCase =layer_norm_eps
lowerCamelCase =classifier_dropout
lowerCamelCase =is_decoder
lowerCamelCase =act_dropout
| 262 | 0 |
class lowerCamelCase :
"""simple docstring"""
def __init__( self : int , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ) -> Tuple:
SCREAMING_SNAKE_CASE_ = None
SCREAMING_SNAKE_CASE_ = None
SCREAMING_SNAKE_CASE_ = graph
self._normalize_graph(_lowerCAmelCase , _lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = len(_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = None
def __A ( self : int , __magic_name__ : Tuple , __magic_name__ : Any ) -> Any:
if sources is int:
SCREAMING_SNAKE_CASE_ = [sources]
if sinks is int:
SCREAMING_SNAKE_CASE_ = [sinks]
if len(_lowerCAmelCase ) == 0 or len(_lowerCAmelCase ) == 0:
return
SCREAMING_SNAKE_CASE_ = sources[0]
SCREAMING_SNAKE_CASE_ = sinks[0]
# make fake vertex if there are more
# than one source or sink
if len(_lowerCAmelCase ) > 1 or len(_lowerCAmelCase ) > 1:
SCREAMING_SNAKE_CASE_ = 0
for i in sources:
max_input_flow += sum(self.graph[i] )
SCREAMING_SNAKE_CASE_ = len(self.graph ) + 1
for room in self.graph:
room.insert(0 , 0 )
self.graph.insert(0 , [0] * size )
for i in sources:
SCREAMING_SNAKE_CASE_ = max_input_flow
SCREAMING_SNAKE_CASE_ = 0
SCREAMING_SNAKE_CASE_ = len(self.graph ) + 1
for room in self.graph:
room.append(0 )
self.graph.append([0] * size )
for i in sinks:
SCREAMING_SNAKE_CASE_ = max_input_flow
SCREAMING_SNAKE_CASE_ = size - 1
def __A ( self : Tuple ) -> int:
if self.maximum_flow_algorithm is None:
raise Exception("You need to set maximum flow algorithm before." )
if self.source_index is None or self.sink_index is None:
return 0
self.maximum_flow_algorithm.execute()
return self.maximum_flow_algorithm.getMaximumFlow()
def __A ( self : Optional[int] , __magic_name__ : int ) -> str:
SCREAMING_SNAKE_CASE_ = algorithm(self )
class lowerCamelCase :
"""simple docstring"""
def __init__( self : Optional[Any] , __magic_name__ : Optional[Any] ) -> int:
SCREAMING_SNAKE_CASE_ = flow_network
SCREAMING_SNAKE_CASE_ = flow_network.verticesCount
SCREAMING_SNAKE_CASE_ = flow_network.sourceIndex
SCREAMING_SNAKE_CASE_ = flow_network.sinkIndex
# it's just a reference, so you shouldn't change
# it in your algorithms, use deep copy before doing that
SCREAMING_SNAKE_CASE_ = flow_network.graph
SCREAMING_SNAKE_CASE_ = False
def __A ( self : str ) -> Dict:
if not self.executed:
self._algorithm()
SCREAMING_SNAKE_CASE_ = True
def __A ( self : Any ) -> Any:
pass
class lowerCamelCase (A__ ):
"""simple docstring"""
def __init__( self : Optional[int] , __magic_name__ : Tuple ) -> List[str]:
super().__init__(_lowerCAmelCase )
# use this to save your result
SCREAMING_SNAKE_CASE_ = -1
def __A ( self : Optional[int] ) -> Optional[Any]:
if not self.executed:
raise Exception("You should execute algorithm before using its result!" )
return self.maximum_flow
class lowerCamelCase (A__ ):
"""simple docstring"""
def __init__( self : Tuple , __magic_name__ : str ) -> Union[str, Any]:
super().__init__(_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = [[0] * self.verticies_count for i in range(self.verticies_count )]
SCREAMING_SNAKE_CASE_ = [0] * self.verticies_count
SCREAMING_SNAKE_CASE_ = [0] * self.verticies_count
def __A ( self : Dict ) -> Union[str, Any]:
SCREAMING_SNAKE_CASE_ = self.verticies_count
# push some substance to graph
for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ):
self.preflow[self.source_index][nextvertex_index] += bandwidth
self.preflow[nextvertex_index][self.source_index] -= bandwidth
self.excesses[nextvertex_index] += bandwidth
# Relabel-to-front selection rule
SCREAMING_SNAKE_CASE_ = [
i
for i in range(self.verticies_count )
if i != self.source_index and i != self.sink_index
]
# move through list
SCREAMING_SNAKE_CASE_ = 0
while i < len(_lowerCAmelCase ):
SCREAMING_SNAKE_CASE_ = vertices_list[i]
SCREAMING_SNAKE_CASE_ = self.heights[vertex_index]
self.process_vertex(_lowerCAmelCase )
if self.heights[vertex_index] > previous_height:
# if it was relabeled, swap elements
# and start from 0 index
vertices_list.insert(0 , vertices_list.pop(_lowerCAmelCase ) )
SCREAMING_SNAKE_CASE_ = 0
else:
i += 1
SCREAMING_SNAKE_CASE_ = sum(self.preflow[self.source_index] )
def __A ( self : Tuple , __magic_name__ : str ) -> Tuple:
while self.excesses[vertex_index] > 0:
for neighbour_index in range(self.verticies_count ):
# if it's neighbour and current vertex is higher
if (
self.graph[vertex_index][neighbour_index]
- self.preflow[vertex_index][neighbour_index]
> 0
and self.heights[vertex_index] > self.heights[neighbour_index]
):
self.push(_lowerCAmelCase , _lowerCAmelCase )
self.relabel(_lowerCAmelCase )
def __A ( self : Dict , __magic_name__ : Optional[int] , __magic_name__ : List[Any] ) -> Any:
SCREAMING_SNAKE_CASE_ = min(
self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , )
self.preflow[from_index][to_index] += preflow_delta
self.preflow[to_index][from_index] -= preflow_delta
self.excesses[from_index] -= preflow_delta
self.excesses[to_index] += preflow_delta
def __A ( self : Dict , __magic_name__ : List[str] ) -> Dict:
SCREAMING_SNAKE_CASE_ = None
for to_index in range(self.verticies_count ):
if (
self.graph[vertex_index][to_index]
- self.preflow[vertex_index][to_index]
> 0
) and (min_height is None or self.heights[to_index] < min_height):
SCREAMING_SNAKE_CASE_ = self.heights[to_index]
if min_height is not None:
SCREAMING_SNAKE_CASE_ = min_height + 1
if __name__ == "__main__":
A : Optional[int] = [0]
A : int = [3]
# graph = [
# [0, 0, 4, 6, 0, 0],
# [0, 0, 5, 2, 0, 0],
# [0, 0, 0, 0, 4, 4],
# [0, 0, 0, 0, 6, 6],
# [0, 0, 0, 0, 0, 0],
# [0, 0, 0, 0, 0, 0],
# ]
A : str = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]]
# prepare our network
A : Optional[Any] = FlowNetwork(graph, entrances, exits)
# set algorithm
flow_network.set_maximum_flow_algorithm(PushRelabelExecutor)
# and calculate
A : Optional[int] = flow_network.find_maximum_flow()
print(f"maximum flow is {maximum_flow}")
| 118 |
'''simple docstring'''
def __a ( UpperCAmelCase , UpperCAmelCase ) ->int:
"""simple docstring"""
return int((input_a, input_a).count(1 ) != 0 )
def __a ( ) ->None:
"""simple docstring"""
assert or_gate(0 , 0 ) == 0
assert or_gate(0 , 1 ) == 1
assert or_gate(1 , 0 ) == 1
assert or_gate(1 , 1 ) == 1
if __name__ == "__main__":
print(or_gate(0, 1))
print(or_gate(1, 0))
print(or_gate(0, 0))
print(or_gate(1, 1))
| 258 | 0 |
'''simple docstring'''
def UpperCamelCase_ ( A__ : list[int] ):
'''simple docstring'''
lowerCAmelCase_ : List[Any] = len(A__ )
for i in range(A__ ):
for j in range(i + 1 , A__ ):
if numbers[j] < numbers[i]:
lowerCAmelCase_, lowerCAmelCase_ : List[Any] = numbers[j], numbers[i]
return numbers
if __name__ == "__main__":
__A : str = input("Enter numbers separated by a comma:\n").strip()
__A : Optional[Any] = [int(item) for item in user_input.split(",")]
print(exchange_sort(unsorted))
| 89 |
'''simple docstring'''
import inspect
import math
import tempfile
import unittest
import numpy as np
from transformers import ViTMAEConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTMAEForPreTraining, ViTMAEModel
from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class __snake_case :
"""simple docstring"""
def __init__( self : Optional[Any] , lowerCamelCase : Tuple , lowerCamelCase : Tuple=13 , lowerCamelCase : Dict=30 , lowerCamelCase : Dict=2 , lowerCamelCase : Optional[int]=3 , lowerCamelCase : List[Any]=True , lowerCamelCase : Any=True , lowerCamelCase : str=32 , lowerCamelCase : Any=5 , lowerCamelCase : int=4 , lowerCamelCase : List[str]=37 , lowerCamelCase : Any="gelu" , lowerCamelCase : Optional[Any]=0.1 , lowerCamelCase : List[str]=0.1 , lowerCamelCase : str=10 , lowerCamelCase : Optional[Any]=0.02 , lowerCamelCase : List[str]=3 , lowerCamelCase : Union[str, Any]=0.6 , lowerCamelCase : List[Any]=None , ) -> Optional[int]:
lowerCAmelCase_ : Optional[Any] = parent
lowerCAmelCase_ : Optional[int] = batch_size
lowerCAmelCase_ : int = image_size
lowerCAmelCase_ : List[Any] = patch_size
lowerCAmelCase_ : int = num_channels
lowerCAmelCase_ : Any = is_training
lowerCAmelCase_ : Tuple = use_labels
lowerCAmelCase_ : Optional[Any] = hidden_size
lowerCAmelCase_ : List[Any] = num_hidden_layers
lowerCAmelCase_ : Optional[Any] = num_attention_heads
lowerCAmelCase_ : Dict = intermediate_size
lowerCAmelCase_ : Union[str, Any] = hidden_act
lowerCAmelCase_ : Union[str, Any] = hidden_dropout_prob
lowerCAmelCase_ : Any = attention_probs_dropout_prob
lowerCAmelCase_ : List[Any] = type_sequence_label_size
lowerCAmelCase_ : Dict = initializer_range
lowerCAmelCase_ : List[str] = mask_ratio
lowerCAmelCase_ : Tuple = scope
# in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above
# (we add 1 for the [CLS] token)
lowerCAmelCase_ : Union[str, Any] = (image_size // patch_size) ** 2
lowerCAmelCase_ : Any = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) )
def __lowercase ( self : Optional[int] ) -> str:
lowerCAmelCase_ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCAmelCase_ : Optional[int] = None
if self.use_labels:
lowerCAmelCase_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase_ : str = self.get_config()
return config, pixel_values, labels
def __lowercase ( self : Optional[int] ) -> Optional[int]:
return ViTMAEConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , )
def __lowercase ( self : Any , lowerCamelCase : Any , lowerCamelCase : Union[str, Any] , lowerCamelCase : Dict ) -> Tuple:
lowerCAmelCase_ : Tuple = ViTMAEModel(config=lowerCamelCase )
model.to(lowerCamelCase )
model.eval()
lowerCAmelCase_ : Dict = model(lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowercase ( self : List[str] , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[str] , lowerCamelCase : Union[str, Any] ) -> Dict:
lowerCAmelCase_ : Tuple = ViTMAEForPreTraining(lowerCamelCase )
model.to(lowerCamelCase )
model.eval()
lowerCAmelCase_ : List[str] = model(lowerCamelCase )
lowerCAmelCase_ : int = (self.image_size // self.patch_size) ** 2
lowerCAmelCase_ : int = self.patch_size**2 * self.num_channels
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) )
# test greyscale images
lowerCAmelCase_ : List[Any] = 1
lowerCAmelCase_ : List[str] = ViTMAEForPreTraining(lowerCamelCase )
model.to(lowerCamelCase )
model.eval()
lowerCAmelCase_ : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
lowerCAmelCase_ : Tuple = model(lowerCamelCase )
lowerCAmelCase_ : List[Any] = self.patch_size**2
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) )
def __lowercase ( self : Optional[int] ) -> str:
lowerCAmelCase_ : Any = self.prepare_config_and_inputs()
lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ : List[Any] = config_and_inputs
lowerCAmelCase_ : Any = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class __snake_case ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,unittest.TestCase):
"""simple docstring"""
lowercase = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else ()
lowercase = {'feature-extraction': ViTMAEModel} if is_torch_available() else {}
lowercase = False
lowercase = False
lowercase = False
lowercase = False
def __lowercase ( self : Optional[Any] ) -> List[Any]:
lowerCAmelCase_ : Optional[int] = ViTMAEModelTester(self )
lowerCAmelCase_ : Optional[int] = ConfigTester(self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase , hidden_size=37 )
def __lowercase ( self : Dict ) -> Tuple:
self.config_tester.run_common_tests()
@unittest.skip(reason="""ViTMAE does not use inputs_embeds""" )
def __lowercase ( self : Optional[int] ) -> Optional[int]:
pass
def __lowercase ( self : List[str] ) -> Tuple:
lowerCAmelCase_, lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase_ : List[str] = model_class(lowerCamelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
lowerCAmelCase_ : Tuple = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(lowerCamelCase , nn.Linear ) )
def __lowercase ( self : Optional[Any] ) -> Any:
lowerCAmelCase_, lowerCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase_ : Optional[int] = model_class(lowerCamelCase )
lowerCAmelCase_ : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCAmelCase_ : Any = [*signature.parameters.keys()]
lowerCAmelCase_ : Optional[Any] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , lowerCamelCase )
def __lowercase ( self : Tuple ) -> str:
lowerCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCamelCase )
def __lowercase ( self : Optional[int] ) -> str:
lowerCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*lowerCamelCase )
def __lowercase ( self : Optional[int] , lowerCamelCase : Dict , lowerCamelCase : List[Any] , lowerCamelCase : Optional[Any] ) -> str:
# make masks reproducible
np.random.seed(2 )
lowerCAmelCase_ : Tuple = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 )
lowerCAmelCase_ : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
lowerCAmelCase_ : Optional[Any] = torch.from_numpy(lowerCamelCase )
# Add `noise` argument.
# PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument
lowerCAmelCase_ : int = pt_noise
super().check_pt_tf_models(lowerCamelCase , lowerCamelCase , lowerCamelCase )
def __lowercase ( self : int ) -> Dict:
lowerCAmelCase_, lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase_ : Optional[int] = model_class(lowerCamelCase )
model.to(lowerCamelCase )
model.eval()
# make random mask reproducible
torch.manual_seed(2 )
with torch.no_grad():
lowerCAmelCase_ : Any = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) )
lowerCAmelCase_ : Any = outputs[0].cpu().numpy()
lowerCAmelCase_ : List[str] = 0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(lowerCamelCase )
lowerCAmelCase_ : int = model_class.from_pretrained(lowerCamelCase )
model.to(lowerCamelCase )
# make random mask reproducible
torch.manual_seed(2 )
with torch.no_grad():
lowerCAmelCase_ : str = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) )
# Make sure we don't have nans
lowerCAmelCase_ : Optional[Any] = after_outputs[0].cpu().numpy()
lowerCAmelCase_ : str = 0
lowerCAmelCase_ : List[Any] = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(lowerCamelCase , 1E-5 )
@unittest.skip(
reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load
to get deterministic results.""" )
def __lowercase ( self : Optional[int] ) -> List[Any]:
pass
@unittest.skip(
reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load
to get deterministic results.""" )
def __lowercase ( self : Union[str, Any] ) -> str:
pass
@unittest.skip(
reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load
to get deterministic results.""" )
def __lowercase ( self : Optional[Any] ) -> Union[str, Any]:
pass
@unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" )
def __lowercase ( self : Tuple ) -> Optional[Any]:
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def __lowercase ( self : List[Any] ) -> str:
pass
@slow
def __lowercase ( self : List[str] ) -> List[Any]:
for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase_ : List[Any] = ViTMAEModel.from_pretrained(lowerCamelCase )
self.assertIsNotNone(lowerCamelCase )
def UpperCamelCase_ ( ):
'''simple docstring'''
lowerCAmelCase_ : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class __snake_case ( unittest.TestCase):
"""simple docstring"""
@cached_property
def __lowercase ( self : Union[str, Any] ) -> Union[str, Any]:
return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None
@slow
def __lowercase ( self : int ) -> List[Any]:
# make random mask reproducible across the PT and TF model
np.random.seed(2 )
lowerCAmelCase_ : Dict = ViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ).to(lowerCamelCase )
lowerCAmelCase_ : Union[str, Any] = self.default_image_processor
lowerCAmelCase_ : Union[str, Any] = prepare_img()
lowerCAmelCase_ : Dict = image_processor(images=lowerCamelCase , return_tensors="""pt""" ).to(lowerCamelCase )
# prepare a noise vector that will be also used for testing the TF model
# (this way we can ensure that the PT and TF models operate on the same inputs)
lowerCAmelCase_ : Optional[int] = ViTMAEConfig()
lowerCAmelCase_ : Optional[Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 )
lowerCAmelCase_ : Optional[int] = np.random.uniform(size=(1, num_patches) )
# forward pass
with torch.no_grad():
lowerCAmelCase_ : str = model(**lowerCamelCase , noise=torch.from_numpy(lowerCamelCase ).to(device=lowerCamelCase ) )
# verify the logits
lowerCAmelCase_ : str = torch.Size((1, 1_96, 7_68) )
self.assertEqual(outputs.logits.shape , lowerCamelCase )
lowerCAmelCase_ : str = torch.tensor(
[[-0.0_548, -1.7_023, -0.9_325], [0.3_721, -0.5_670, -0.2_233], [0.8_235, -1.3_878, -0.3_524]] )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(lowerCamelCase ) , atol=1E-4 ) )
| 89 | 1 |
"""simple docstring"""
import argparse
from pathlib import Path
import torch
from packaging import version
from torch.onnx import export
from diffusers import AutoencoderKL
_snake_case = version.parse(version.parse(torch.__version__).base_version) < version.parse('1.11')
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False , ):
'''simple docstring'''
output_path.parent.mkdir(parents=_UpperCamelCase , exist_ok=_UpperCamelCase )
# PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11,
# so we check the torch version for backwards compatibility
if is_torch_less_than_1_11:
export(
_UpperCamelCase , _UpperCamelCase , f=output_path.as_posix() , input_names=_UpperCamelCase , output_names=_UpperCamelCase , dynamic_axes=_UpperCamelCase , do_constant_folding=_UpperCamelCase , use_external_data_format=_UpperCamelCase , enable_onnx_checker=_UpperCamelCase , opset_version=_UpperCamelCase , )
else:
export(
_UpperCamelCase , _UpperCamelCase , f=output_path.as_posix() , input_names=_UpperCamelCase , output_names=_UpperCamelCase , dynamic_axes=_UpperCamelCase , do_constant_folding=_UpperCamelCase , opset_version=_UpperCamelCase , )
@torch.no_grad()
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False ):
'''simple docstring'''
_a : int = torch.floataa if fpaa else torch.floataa
if fpaa and torch.cuda.is_available():
_a : Optional[int] = """cuda"""
elif fpaa and not torch.cuda.is_available():
raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" )
else:
_a : List[Any] = """cpu"""
_a : str = Path(_UpperCamelCase )
# VAE DECODER
_a : Optional[Any] = AutoencoderKL.from_pretrained(model_path + """/vae""" )
_a : Tuple = vae_decoder.config.latent_channels
# forward only through the decoder part
_a : Dict = vae_decoder.decode
onnx_export(
_UpperCamelCase , model_args=(
torch.randn(1 , _UpperCamelCase , 2_5 , 2_5 ).to(device=_UpperCamelCase , dtype=_UpperCamelCase ),
False,
) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={
"""latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""},
} , opset=_UpperCamelCase , )
del vae_decoder
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
parser.add_argument(
'--model_path',
type=str,
required=True,
help='Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).',
)
parser.add_argument('--output_path', type=str, required=True, help='Path to the output model.')
parser.add_argument(
'--opset',
default=14,
type=int,
help='The version of the ONNX operator set to use.',
)
parser.add_argument('--fp16', action='store_true', default=False, help='Export the models in `float16` mode')
_snake_case = parser.parse_args()
print(args.output_path)
convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
print('SD: Done: ONNX')
| 294 |
"""simple docstring"""
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from transformers import (
VisualBertConfig,
VisualBertForMultipleChoice,
VisualBertForPreTraining,
VisualBertForQuestionAnswering,
VisualBertForVisualReasoning,
)
from transformers.utils import logging
logging.set_verbosity_info()
A : Tuple = logging.get_logger(__name__)
A : Tuple = [
("bert.bert", "visual_bert"),
("bert.cls", "cls"),
("bert.classifier", "cls"),
("token_type_embeddings_visual", "visual_token_type_embeddings"),
("position_embeddings_visual", "visual_position_embeddings"),
("projection", "visual_projection"),
]
A : Optional[Any] = [
"nlvr2_coco_pre_trained.th",
"nlvr2_fine_tuned.th",
"nlvr2_pre_trained.th",
"vcr_coco_pre_train.th",
"vcr_fine_tune.th",
"vcr_pre_train.th",
"vqa_coco_pre_trained.th",
"vqa_fine_tuned.th",
"vqa_pre_trained.th",
]
def _lowerCamelCase ( _UpperCamelCase ):
'''simple docstring'''
__lowerCAmelCase = torch.load(_UpperCamelCase , map_location="cpu" )
return sd
def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=rename_keys_prefix ):
'''simple docstring'''
__lowerCAmelCase = OrderedDict()
__lowerCAmelCase = torch.arange(config.max_position_embeddings ).expand((1, -1) )
# detector_d = OrderedDict()
for key in d:
if "detector" in key:
# detector_d[key.replace('detector.','')] = d[key]
continue
__lowerCAmelCase = key
for name_pair in rename_keys_prefix:
__lowerCAmelCase = new_key.replace(name_pair[0] , name_pair[1] )
__lowerCAmelCase = d[key]
if key == "bert.cls.predictions.decoder.weight":
# Old bert code didn't have `decoder.bias`, but was added separately
__lowerCAmelCase = new_d["cls.predictions.bias"]
return new_d
@torch.no_grad()
def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ):
'''simple docstring'''
assert (
checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS
), f"The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}."
# Get Config
if "pre" in checkpoint_path:
__lowerCAmelCase = "pretraining"
if "vcr" in checkpoint_path:
__lowerCAmelCase = {"visual_embedding_dim": 512}
elif "vqa_advanced" in checkpoint_path:
__lowerCAmelCase = {"visual_embedding_dim": 2048}
elif "vqa" in checkpoint_path:
__lowerCAmelCase = {"visual_embedding_dim": 2048}
elif "nlvr" in checkpoint_path:
__lowerCAmelCase = {"visual_embedding_dim": 1024}
else:
raise NotImplementedError(f"No implementation found for `{checkpoint_path}`." )
else:
if "vcr" in checkpoint_path:
__lowerCAmelCase = {"visual_embedding_dim": 512}
__lowerCAmelCase = "multichoice"
elif "vqa_advanced" in checkpoint_path:
__lowerCAmelCase = {"visual_embedding_dim": 2048}
__lowerCAmelCase = "vqa_advanced"
elif "vqa" in checkpoint_path:
__lowerCAmelCase = {"visual_embedding_dim": 2048, "num_labels": 3129}
__lowerCAmelCase = "vqa"
elif "nlvr" in checkpoint_path:
__lowerCAmelCase = {
"visual_embedding_dim": 1024,
"num_labels": 2,
}
__lowerCAmelCase = "nlvr"
__lowerCAmelCase = VisualBertConfig(**_UpperCamelCase )
# Load State Dict
__lowerCAmelCase = load_state_dict(_UpperCamelCase )
__lowerCAmelCase = get_new_dict(_UpperCamelCase , _UpperCamelCase )
if model_type == "pretraining":
__lowerCAmelCase = VisualBertForPreTraining(_UpperCamelCase )
elif model_type == "vqa":
__lowerCAmelCase = VisualBertForQuestionAnswering(_UpperCamelCase )
elif model_type == "nlvr":
__lowerCAmelCase = VisualBertForVisualReasoning(_UpperCamelCase )
elif model_type == "multichoice":
__lowerCAmelCase = VisualBertForMultipleChoice(_UpperCamelCase )
model.load_state_dict(_UpperCamelCase )
# Save Checkpoints
Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase )
model.save_pretrained(_UpperCamelCase )
if __name__ == "__main__":
A : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument("orig_checkpoint_path", type=str, help="A path to .th on local filesystem.")
parser.add_argument("pytorch_dump_folder_path", type=str, help="Path to the output PyTorch model.")
A : Optional[int] = parser.parse_args()
convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
| 57 | 0 |
'''simple docstring'''
import requests
A_ : str = """https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey="""
def snake_case_ ( lowerCAmelCase_ )-> None:
'''simple docstring'''
_UpperCAmelCase : Any = requests.get(_NEWS_API + bbc_news_api_key ).json()
# each article in the list is a dict
for i, article in enumerate(bbc_news_page["""articles"""] , 1 ):
print(F'''{i}.) {article['title']}''' )
if __name__ == "__main__":
fetch_bbc_news(bbc_news_api_key="""<Your BBC News API key goes here>""")
| 349 |
'''simple docstring'''
def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 0 , lowerCAmelCase_ = 0 )-> int:
'''simple docstring'''
_UpperCAmelCase : Optional[Any] = right or len(lowerCAmelCase_ ) - 1
if left > right:
return -1
elif list_data[left] == key:
return left
elif list_data[right] == key:
return right
else:
return search(lowerCAmelCase_ , lowerCAmelCase_ , left + 1 , right - 1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 349 | 1 |
'''simple docstring'''
import doctest
import logging
import os
import unittest
from pathlib import Path
from typing import List, Union
import transformers
from transformers.testing_utils import require_tf, require_torch, slow
_lowerCAmelCase = logging.getLogger()
@unittest.skip('''Temporarily disable the doc tests.''' )
@require_torch
@require_tf
@slow
class lowerCAmelCase_( unittest.TestCase ):
'''simple docstring'''
def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = True ,) -> Tuple:
lowerCAmelCase__ : Optional[Any] = [file for file in os.listdir(__UpperCamelCase ) if os.path.isfile(os.path.join(__UpperCamelCase ,__UpperCamelCase ) )]
if identifier is not None:
lowerCAmelCase__ : List[str] = [file for file in files if identifier in file]
if n_identifier is not None:
if isinstance(__UpperCamelCase ,__UpperCamelCase ):
for n_ in n_identifier:
lowerCAmelCase__ : Dict = [file for file in files if n_ not in file]
else:
lowerCAmelCase__ : Dict = [file for file in files if n_identifier not in file]
lowerCAmelCase__ : List[str] = ignore_files or []
ignore_files.append("""__init__.py""" )
lowerCAmelCase__ : Optional[int] = [file for file in files if file not in ignore_files]
for file in files:
# Open all files
print("""Testing""" ,__UpperCamelCase )
if only_modules:
lowerCAmelCase__ : Union[str, Any] = file.split(""".""" )[0]
try:
lowerCAmelCase__ : List[str] = getattr(__UpperCamelCase ,__UpperCamelCase )
lowerCAmelCase__ : List[Any] = doctest.DocTestSuite(__UpperCamelCase )
lowerCAmelCase__ : List[str] = unittest.TextTestRunner().run(__UpperCamelCase )
self.assertIs(len(result.failures ) ,0 )
except AttributeError:
logger.info(F"""{module_identifier} is not a module.""" )
else:
lowerCAmelCase__ : Optional[int] = doctest.testfile(str("""..""" / directory / file ) ,optionflags=doctest.ELLIPSIS )
self.assertIs(result.failed ,0 )
def UpperCAmelCase_ ( self ) -> Optional[Any]:
lowerCAmelCase__ : Optional[Any] = Path("""src/transformers""" )
lowerCAmelCase__ : int = """modeling"""
lowerCAmelCase__ : Optional[Any] = [
"""modeling_ctrl.py""",
"""modeling_tf_ctrl.py""",
]
self.analyze_directory(__UpperCamelCase ,identifier=__UpperCamelCase ,ignore_files=__UpperCamelCase )
def UpperCAmelCase_ ( self ) -> Union[str, Any]:
lowerCAmelCase__ : str = Path("""src/transformers""" )
lowerCAmelCase__ : Tuple = """tokenization"""
self.analyze_directory(__UpperCamelCase ,identifier=__UpperCamelCase )
def UpperCAmelCase_ ( self ) -> Any:
lowerCAmelCase__ : Tuple = Path("""src/transformers""" )
lowerCAmelCase__ : Optional[Any] = """configuration"""
self.analyze_directory(__UpperCamelCase ,identifier=__UpperCamelCase )
def UpperCAmelCase_ ( self ) -> Union[str, Any]:
lowerCAmelCase__ : Dict = Path("""src/transformers""" )
lowerCAmelCase__ : List[str] = ["""configuration""", """modeling""", """tokenization"""]
self.analyze_directory(__UpperCamelCase ,n_identifier=__UpperCamelCase )
def UpperCAmelCase_ ( self ) -> Dict:
lowerCAmelCase__ : int = Path("""docs/source""" )
lowerCAmelCase__ : str = ["""favicon.ico"""]
self.analyze_directory(__UpperCamelCase ,ignore_files=__UpperCamelCase ,only_modules=__UpperCamelCase )
| 37 |
import unittest
from transformers import (
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
Pipeline,
ZeroShotClassificationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow
from .test_pipelines_common import ANY
# These 2 model types require different inputs than those of the usual text models.
_A = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''}
@is_pipeline_test
class lowercase_ ( unittest.TestCase ):
A__ : List[str] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
A__ : Union[str, Any] = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if model_mapping is not None:
A__ : Union[str, Any] = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP}
if tf_model_mapping is not None:
A__ : List[Any] = {
config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP
}
def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ = ZeroShotClassificationPipeline(
model=__UpperCamelCase , tokenizer=__UpperCamelCase , candidate_labels=["""polics""", """health"""] )
return classifier, ["Who are you voting for in 2020?", "My stomach hurts."]
def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ = classifier("""Who are you voting for in 2020?""" , candidate_labels="""politics""" )
self.assertEqual(__UpperCamelCase , {"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase )]} )
# No kwarg
UpperCamelCase_ = classifier("""Who are you voting for in 2020?""" , ["""politics"""] )
self.assertEqual(__UpperCamelCase , {"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase )]} )
UpperCamelCase_ = classifier("""Who are you voting for in 2020?""" , candidate_labels=["""politics"""] )
self.assertEqual(__UpperCamelCase , {"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase )]} )
UpperCamelCase_ = classifier("""Who are you voting for in 2020?""" , candidate_labels="""politics, public health""" )
self.assertEqual(
__UpperCamelCase , {"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )]} )
self.assertAlmostEqual(sum(nested_simplify(outputs["""scores"""] ) ) , 1.0 )
UpperCamelCase_ = classifier("""Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health"""] )
self.assertEqual(
__UpperCamelCase , {"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )]} )
self.assertAlmostEqual(sum(nested_simplify(outputs["""scores"""] ) ) , 1.0 )
UpperCamelCase_ = classifier(
"""Who are you voting for in 2020?""" , candidate_labels="""politics""" , hypothesis_template="""This text is about {}""" )
self.assertEqual(__UpperCamelCase , {"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase )]} )
# https://github.com/huggingface/transformers/issues/13846
UpperCamelCase_ = classifier(["""I am happy"""] , ["""positive""", """negative"""] )
self.assertEqual(
__UpperCamelCase , [
{"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )]}
for i in range(1 )
] , )
UpperCamelCase_ = classifier(["""I am happy""", """I am sad"""] , ["""positive""", """negative"""] )
self.assertEqual(
__UpperCamelCase , [
{"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )]}
for i in range(2 )
] , )
with self.assertRaises(__UpperCamelCase ):
classifier("""""" , candidate_labels="""politics""" )
with self.assertRaises(__UpperCamelCase ):
classifier(__UpperCamelCase , candidate_labels="""politics""" )
with self.assertRaises(__UpperCamelCase ):
classifier("""Who are you voting for in 2020?""" , candidate_labels="""""" )
with self.assertRaises(__UpperCamelCase ):
classifier("""Who are you voting for in 2020?""" , candidate_labels=__UpperCamelCase )
with self.assertRaises(__UpperCamelCase ):
classifier(
"""Who are you voting for in 2020?""" , candidate_labels="""politics""" , hypothesis_template="""Not formatting template""" , )
with self.assertRaises(__UpperCamelCase ):
classifier(
"""Who are you voting for in 2020?""" , candidate_labels="""politics""" , hypothesis_template=__UpperCamelCase , )
self.run_entailment_id(__UpperCamelCase )
def lowerCamelCase_ ( self , __UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ = zero_shot_classifier.model.config
UpperCamelCase_ = config.labelaid
UpperCamelCase_ = zero_shot_classifier.entailment_id
UpperCamelCase_ = {"""LABEL_0""": 0, """LABEL_1""": 1, """LABEL_2""": 2}
self.assertEqual(zero_shot_classifier.entailment_id , -1 )
UpperCamelCase_ = {"""entailment""": 0, """neutral""": 1, """contradiction""": 2}
self.assertEqual(zero_shot_classifier.entailment_id , 0 )
UpperCamelCase_ = {"""ENTAIL""": 0, """NON-ENTAIL""": 1}
self.assertEqual(zero_shot_classifier.entailment_id , 0 )
UpperCamelCase_ = {"""ENTAIL""": 2, """NEUTRAL""": 1, """CONTR""": 0}
self.assertEqual(zero_shot_classifier.entailment_id , 2 )
UpperCamelCase_ = original_labelaid
self.assertEqual(__UpperCamelCase , zero_shot_classifier.entailment_id )
@require_torch
def lowerCamelCase_ ( self ):
"""simple docstring"""
UpperCamelCase_ = pipeline(
"""zero-shot-classification""" , model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" , framework="""pt""" , )
# There was a regression in 4.10 for this
# Adding a test so we don't make the mistake again.
# https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499
zero_shot_classifier(
"""Who are you voting for in 2020?""" * 1_0_0 , candidate_labels=["""politics""", """public health""", """science"""] )
@require_torch
def lowerCamelCase_ ( self ):
"""simple docstring"""
UpperCamelCase_ = pipeline(
"""zero-shot-classification""" , model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" , framework="""pt""" , )
UpperCamelCase_ = zero_shot_classifier(
"""Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] )
self.assertEqual(
nested_simplify(__UpperCamelCase ) , {
"""sequence""": """Who are you voting for in 2020?""",
"""labels""": ["""science""", """public health""", """politics"""],
"""scores""": [0.333, 0.333, 0.333],
} , )
@require_tf
def lowerCamelCase_ ( self ):
"""simple docstring"""
UpperCamelCase_ = pipeline(
"""zero-shot-classification""" , model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" , framework="""tf""" , )
UpperCamelCase_ = zero_shot_classifier(
"""Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] )
self.assertEqual(
nested_simplify(__UpperCamelCase ) , {
"""sequence""": """Who are you voting for in 2020?""",
"""labels""": ["""science""", """public health""", """politics"""],
"""scores""": [0.333, 0.333, 0.333],
} , )
@slow
@require_torch
def lowerCamelCase_ ( self ):
"""simple docstring"""
UpperCamelCase_ = pipeline("""zero-shot-classification""" , model="""roberta-large-mnli""" , framework="""pt""" )
UpperCamelCase_ = zero_shot_classifier(
"""Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] )
self.assertEqual(
nested_simplify(__UpperCamelCase ) , {
"""sequence""": """Who are you voting for in 2020?""",
"""labels""": ["""politics""", """public health""", """science"""],
"""scores""": [0.976, 0.015, 0.009],
} , )
UpperCamelCase_ = zero_shot_classifier(
"""The dominant sequence transduction models are based on complex recurrent or convolutional neural networks"""
""" in an encoder-decoder configuration. The best performing models also connect the encoder and decoder"""
""" through an attention mechanism. We propose a new simple network architecture, the Transformer, based"""
""" solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two"""
""" machine translation tasks show these models to be superior in quality while being more parallelizable"""
""" and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014"""
""" English-to-German translation task, improving over the existing best results, including ensembles by"""
""" over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new"""
""" single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small"""
""" fraction of the training costs of the best models from the literature. We show that the Transformer"""
""" generalizes well to other tasks by applying it successfully to English constituency parsing both with"""
""" large and limited training data.""" , candidate_labels=["""machine learning""", """statistics""", """translation""", """vision"""] , multi_label=__UpperCamelCase , )
self.assertEqual(
nested_simplify(__UpperCamelCase ) , {
"""sequence""": (
"""The dominant sequence transduction models are based on complex recurrent or convolutional neural"""
""" networks in an encoder-decoder configuration. The best performing models also connect the"""
""" encoder and decoder through an attention mechanism. We propose a new simple network"""
""" architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence"""
""" and convolutions entirely. Experiments on two machine translation tasks show these models to be"""
""" superior in quality while being more parallelizable and requiring significantly less time to"""
""" train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,"""
""" improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014"""
""" English-to-French translation task, our model establishes a new single-model state-of-the-art"""
""" BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training"""
""" costs of the best models from the literature. We show that the Transformer generalizes well to"""
""" other tasks by applying it successfully to English constituency parsing both with large and"""
""" limited training data."""
),
"""labels""": ["""translation""", """machine learning""", """vision""", """statistics"""],
"""scores""": [0.817, 0.713, 0.018, 0.018],
} , )
@slow
@require_tf
def lowerCamelCase_ ( self ):
"""simple docstring"""
UpperCamelCase_ = pipeline("""zero-shot-classification""" , model="""roberta-large-mnli""" , framework="""tf""" )
UpperCamelCase_ = zero_shot_classifier(
"""Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] )
self.assertEqual(
nested_simplify(__UpperCamelCase ) , {
"""sequence""": """Who are you voting for in 2020?""",
"""labels""": ["""politics""", """public health""", """science"""],
"""scores""": [0.976, 0.015, 0.009],
} , )
UpperCamelCase_ = zero_shot_classifier(
"""The dominant sequence transduction models are based on complex recurrent or convolutional neural networks"""
""" in an encoder-decoder configuration. The best performing models also connect the encoder and decoder"""
""" through an attention mechanism. We propose a new simple network architecture, the Transformer, based"""
""" solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two"""
""" machine translation tasks show these models to be superior in quality while being more parallelizable"""
""" and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014"""
""" English-to-German translation task, improving over the existing best results, including ensembles by"""
""" over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new"""
""" single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small"""
""" fraction of the training costs of the best models from the literature. We show that the Transformer"""
""" generalizes well to other tasks by applying it successfully to English constituency parsing both with"""
""" large and limited training data.""" , candidate_labels=["""machine learning""", """statistics""", """translation""", """vision"""] , multi_label=__UpperCamelCase , )
self.assertEqual(
nested_simplify(__UpperCamelCase ) , {
"""sequence""": (
"""The dominant sequence transduction models are based on complex recurrent or convolutional neural"""
""" networks in an encoder-decoder configuration. The best performing models also connect the"""
""" encoder and decoder through an attention mechanism. We propose a new simple network"""
""" architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence"""
""" and convolutions entirely. Experiments on two machine translation tasks show these models to be"""
""" superior in quality while being more parallelizable and requiring significantly less time to"""
""" train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,"""
""" improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014"""
""" English-to-French translation task, our model establishes a new single-model state-of-the-art"""
""" BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training"""
""" costs of the best models from the literature. We show that the Transformer generalizes well to"""
""" other tasks by applying it successfully to English constituency parsing both with large and"""
""" limited training data."""
),
"""labels""": ["""translation""", """machine learning""", """vision""", """statistics"""],
"""scores""": [0.817, 0.713, 0.018, 0.018],
} , )
| 122 | 0 |
# Lint as: python3
# pylint: enable=line-too-long
# pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position
UpperCAmelCase__ = "2.13.1"
import platform
import pyarrow
from packaging import version
if version.parse(platform.python_version()) < version.parse("3.7"):
raise ImportWarning(
"To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition."
)
if version.parse(pyarrow.__version__).major < 8:
raise ImportWarning(
"To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n"
"If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`."
)
del platform
del pyarrow
del version
from .arrow_dataset import Dataset
from .arrow_reader import ReadInstruction
from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder
from .combine import concatenate_datasets, interleave_datasets
from .dataset_dict import DatasetDict, IterableDatasetDict
from .download import *
from .features import *
from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled
from .info import DatasetInfo, MetricInfo
from .inspect import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
list_datasets,
list_metrics,
)
from .iterable_dataset import IterableDataset
from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric
from .metric import Metric
from .splits import (
NamedSplit,
NamedSplitAll,
Split,
SplitBase,
SplitDict,
SplitGenerator,
SplitInfo,
SubSplitInfo,
percent,
)
from .tasks import *
from .utils import *
from .utils import logging
# deprecated modules
from datasets import arrow_dataset as _arrow_dataset # isort:skip
from datasets import utils as _utils # isort:skip
from datasets.utils import download_manager as _deprecated_download_manager # isort:skip
UpperCAmelCase__ = concatenate_datasets
UpperCAmelCase__ = DownloadConfig
UpperCAmelCase__ = DownloadManager
UpperCAmelCase__ = DownloadMode
UpperCAmelCase__ = DownloadConfig
UpperCAmelCase__ = DownloadMode
UpperCAmelCase__ = DownloadManager
del _arrow_dataset, _utils, _deprecated_download_manager
| 364 |
import json
import multiprocessing as mp
import re
from collections import defaultdict
from functools import partial
from typing import Dict, List, Optional, Set, Tuple, Type
from datasets import Dataset
from datasketch import MinHash, MinHashLSH
from dpu_utils.utils.iterators import ThreadedIterator
from tqdm import tqdm
UpperCAmelCase__ = re.compile("[^A-Za-z_0-9]")
# parameters used in DuplicationIndex
UpperCAmelCase__ = 10
UpperCAmelCase__ = 256
def _a ( a :List[str] ) -> Optional[MinHash]:
if len(a ) < MIN_NUM_TOKENS:
return None
a = MinHash(num_perm=a )
for token in set(a ):
min_hash.update(token.encode() )
return min_hash
def _a ( a :str ) -> Set[str]:
return {t for t in NON_ALPHA.split(a ) if len(t.strip() ) > 0}
class lowercase_ :
'''simple docstring'''
def __init__( self : Any , *,
__UpperCAmelCase : float = 0.85 , ) ->Dict:
"""simple docstring"""
a = duplication_jaccard_threshold
a = NUM_PERM
a = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm )
a = defaultdict(__UpperCAmelCase )
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Tuple , __UpperCAmelCase : MinHash ) ->None:
"""simple docstring"""
a = self._index.query(__UpperCAmelCase )
if code_key in self._index.keys:
print(F"""Duplicate key {code_key}""" )
return
self._index.insert(__UpperCAmelCase , __UpperCAmelCase )
if len(__UpperCAmelCase ) > 0:
for base_duplicate in close_duplicates:
if base_duplicate in self._duplicate_clusters:
self._duplicate_clusters[base_duplicate].add(__UpperCAmelCase )
break
else:
self._duplicate_clusters[close_duplicates[0]].add(__UpperCAmelCase )
def __lowerCAmelCase ( self : Dict ) ->List[List[Dict]]:
"""simple docstring"""
a = []
for base, duplicates in self._duplicate_clusters.items():
a = [base] + list(__UpperCAmelCase )
# reformat the cluster to be a list of dict
a = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster]
duplicate_clusters.append(__UpperCAmelCase )
return duplicate_clusters
def __lowerCAmelCase ( self : Any , __UpperCAmelCase : Dict ) ->None:
"""simple docstring"""
a = self.get_duplicate_clusters()
with open(__UpperCAmelCase , '''w''' ) as f:
json.dump(__UpperCAmelCase , __UpperCAmelCase )
def _a ( a :List[Any] ) -> List[Any]:
a , a = element
a = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] )
if min_hash is not None:
return (index, data["repo_name"], data["path"]), min_hash
def _a ( a :Type[Dataset] ) -> List[Any]:
with mp.Pool() as pool:
for data in pool.imap_unordered(
_compute_min_hash , ThreadedIterator(a , max_queue_size=10_000 ) , chunksize=100 , ):
if data is not None:
yield data
def _a ( a :Type[Dataset] , a :float ) -> str:
a = DuplicationIndex(duplication_jaccard_threshold=a )
for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(a ) ) , max_queue_size=100 ) ):
di.add(a , a )
# Returns a List[Cluster] where Cluster is List[str] with the filenames.
return di.get_duplicate_clusters()
def _a ( a :str , a :str ) -> float:
a = get_tokens(a )
a = get_tokens(a )
return len(tokensa & tokensa ) / len(tokensa | tokensa )
UpperCAmelCase__ = None
def _a ( a :Tuple , a :Tuple ) -> Any:
a = []
for elementa in cluster:
a = _shared_dataset[elementa['''base_index''']]['''content''']
for elementa in extremes:
a = _shared_dataset[elementa['''base_index''']]['''content''']
if jaccard_similarity(a , a ) >= jaccard_threshold:
elementa["copies"] += 1
break
else:
a = 1
extremes.append(a )
return extremes
def _a ( a :List[Any] , a :Optional[Any] , a :Union[str, Any] ) -> Optional[int]:
global _shared_dataset
a = dataset
a = []
a = partial(_find_cluster_extremes_shared , jaccard_threshold=a )
with mp.Pool() as pool:
for extremes in tqdm(
pool.imap_unordered(
a , a , ) , total=len(a ) , ):
extremes_list.append(a )
return extremes_list
def _a ( a :Type[Dataset] , a :float = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]:
a = make_duplicate_clusters(a , a )
a = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster}
a = {}
a = find_extremes(a , a , a )
for extremes in extremes_clusters:
for element in extremes:
a = element
a = duplicate_indices - set(extreme_dict.keys() )
a = dataset.filter(lambda a , a : idx not in remove_indices , with_indices=a )
# update duplicate_clusters
for cluster in duplicate_clusters:
for element in cluster:
a = element['''base_index'''] in extreme_dict
if element["is_extreme"]:
a = extreme_dict[element['''base_index''']]['''copies''']
print(F"""Original dataset size: {len(a )}""" )
print(F"""Number of duplicate clusters: {len(a )}""" )
print(F"""Files in duplicate cluster: {len(a )}""" )
print(F"""Unique files in duplicate cluster: {len(a )}""" )
print(F"""Filtered dataset size: {len(a )}""" )
return ds_filter, duplicate_clusters
| 26 | 0 |
"""simple docstring"""
import string
def lowercase (SCREAMING_SNAKE_CASE_ : str ) -> None:
for key in range(len(string.ascii_uppercase ) ):
SCREAMING_SNAKE_CASE = ''
for symbol in message:
if symbol in string.ascii_uppercase:
SCREAMING_SNAKE_CASE = string.ascii_uppercase.find(SCREAMING_SNAKE_CASE_ )
SCREAMING_SNAKE_CASE = num - key
if num < 0:
SCREAMING_SNAKE_CASE = num + len(string.ascii_uppercase )
SCREAMING_SNAKE_CASE = translated + string.ascii_uppercase[num]
else:
SCREAMING_SNAKE_CASE = translated + symbol
print(F'Decryption using Key #{key}: {translated}' )
def lowercase () -> None:
SCREAMING_SNAKE_CASE = input('Encrypted message: ' )
SCREAMING_SNAKE_CASE = message.upper()
decrypt(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 113 |
"""simple docstring"""
# Usage:
# ./gen-card-facebook-wmt19.py
import os
from pathlib import Path
def lowercase (SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : int ) -> List[str]:
SCREAMING_SNAKE_CASE = {
'en': 'Machine learning is great, isn\'t it?',
'ru': 'Машинное обучение - это здорово, не так ли?',
'de': 'Maschinelles Lernen ist großartig, oder?',
}
# BLUE scores as follows:
# "pair": [fairseq, transformers]
SCREAMING_SNAKE_CASE = {
'ru-en': ['[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)', '39.20'],
'en-ru': ['[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)', '33.47'],
'en-de': ['[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)', '42.83'],
'de-en': ['[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)', '41.35'],
}
SCREAMING_SNAKE_CASE = F'{src_lang}-{tgt_lang}'
SCREAMING_SNAKE_CASE = F'\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = "facebook/wmt19-{src_lang}-{tgt_lang}"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = "{texts[src_lang]}"\ninput_ids = tokenizer.encode(input, return_tensors="pt")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR\'s WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n'
os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ )
SCREAMING_SNAKE_CASE = os.path.join(SCREAMING_SNAKE_CASE_ , 'README.md' )
print(F'Generating {path}' )
with open(SCREAMING_SNAKE_CASE_ , 'w' , encoding='utf-8' ) as f:
f.write(SCREAMING_SNAKE_CASE_ )
# make sure we are under the root of the project
__UpperCamelCase = Path(__file__).resolve().parent.parent.parent
__UpperCamelCase = repo_dir / '''model_cards'''
for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]:
__UpperCamelCase,__UpperCamelCase,__UpperCamelCase = model_name.split('''-''')
__UpperCamelCase = model_cards_dir / '''facebook''' / model_name
write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
| 113 | 1 |
def lowerCamelCase__ ( a__ : Optional[int] ) -> List[str]:
if not head:
return True
# split the list to two parts
UpperCamelCase_ , UpperCamelCase_ = head.next, head
while fast and fast.next:
UpperCamelCase_ = fast.next.next
UpperCamelCase_ = slow.next
UpperCamelCase_ = slow.next
UpperCamelCase_ = None # Don't forget here! But forget still works!
# reverse the second part
UpperCamelCase_ = None
while second:
UpperCamelCase_ = second.next
UpperCamelCase_ = node
UpperCamelCase_ = second
UpperCamelCase_ = nxt
# compare two parts
# second part has the same or one less node
while node:
if node.val != head.val:
return False
UpperCamelCase_ = node.next
UpperCamelCase_ = head.next
return True
def lowerCamelCase__ ( a__ : List[str] ) -> int:
if not head or not head.next:
return True
# 1. Get the midpoint (slow)
UpperCamelCase_ = UpperCamelCase_ = UpperCamelCase_ = head
while fast and fast.next:
UpperCamelCase_ , UpperCamelCase_ = fast.next.next, slow.next
# 2. Push the second half into the stack
UpperCamelCase_ = [slow.val]
while slow.next:
UpperCamelCase_ = slow.next
stack.append(slow.val )
# 3. Comparison
while stack:
if stack.pop() != cur.val:
return False
UpperCamelCase_ = cur.next
return True
def lowerCamelCase__ ( a__ : Tuple ) -> Dict:
if not head or not head.next:
return True
UpperCamelCase_ = {}
UpperCamelCase_ = 0
while head:
if head.val in d:
d[head.val].append(a__ )
else:
UpperCamelCase_ = [pos]
UpperCamelCase_ = head.next
pos += 1
UpperCamelCase_ = pos - 1
UpperCamelCase_ = 0
for v in d.values():
if len(a__ ) % 2 != 0:
middle += 1
else:
UpperCamelCase_ = 0
for i in range(0 , len(a__ ) ):
if v[i] + v[len(a__ ) - 1 - step] != checksum:
return False
step += 1
if middle > 1:
return False
return True
| 360 |
from typing import List, Optional
import numpy as np
from ...processing_utils import ProcessorMixin
from ...utils import to_numpy
class lowercase_ ( __SCREAMING_SNAKE_CASE ):
A__ : List[Any] = """EncodecFeatureExtractor"""
A__ : Tuple = ("""T5Tokenizer""", """T5TokenizerFast""")
def __init__( self , __UpperCamelCase , __UpperCamelCase ):
"""simple docstring"""
super().__init__(__UpperCamelCase , __UpperCamelCase )
UpperCamelCase_ = self.feature_extractor
UpperCamelCase_ = False
def lowerCamelCase_ ( self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=True ):
"""simple docstring"""
return self.tokenizer.get_decoder_prompt_ids(task=__UpperCamelCase , language=__UpperCamelCase , no_timestamps=__UpperCamelCase )
def __call__( self , *__UpperCamelCase , **__UpperCamelCase ):
"""simple docstring"""
if self._in_target_context_manager:
return self.current_processor(*__UpperCamelCase , **__UpperCamelCase )
UpperCamelCase_ = kwargs.pop("""audio""" , __UpperCamelCase )
UpperCamelCase_ = kwargs.pop("""sampling_rate""" , __UpperCamelCase )
UpperCamelCase_ = kwargs.pop("""text""" , __UpperCamelCase )
if len(__UpperCamelCase ) > 0:
UpperCamelCase_ = args[0]
UpperCamelCase_ = args[1:]
if audio is None and text is None:
raise ValueError("""You need to specify either an `audio` or `text` input to process.""" )
if text is not None:
UpperCamelCase_ = self.tokenizer(__UpperCamelCase , **__UpperCamelCase )
if audio is not None:
UpperCamelCase_ = self.feature_extractor(__UpperCamelCase , *__UpperCamelCase , sampling_rate=__UpperCamelCase , **__UpperCamelCase )
if audio is None:
return inputs
elif text is None:
return audio_inputs
else:
UpperCamelCase_ = audio_inputs["""input_values"""]
if "padding_mask" in audio_inputs:
UpperCamelCase_ = audio_inputs["""padding_mask"""]
return inputs
def lowerCamelCase_ ( self , *__UpperCamelCase , **__UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ = kwargs.pop("""audio""" , __UpperCamelCase )
UpperCamelCase_ = kwargs.pop("""padding_mask""" , __UpperCamelCase )
if len(__UpperCamelCase ) > 0:
UpperCamelCase_ = args[0]
UpperCamelCase_ = args[1:]
if audio_values is not None:
return self._decode_audio(__UpperCamelCase , padding_mask=__UpperCamelCase )
else:
return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase )
def lowerCamelCase_ ( self , *__UpperCamelCase , **__UpperCamelCase ):
"""simple docstring"""
return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase )
def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase = None ):
"""simple docstring"""
UpperCamelCase_ = to_numpy(__UpperCamelCase )
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = audio_values.shape
if padding_mask is None:
return list(__UpperCamelCase )
UpperCamelCase_ = to_numpy(__UpperCamelCase )
# match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding**
# token (so that the generated audio values are **not** treated as padded tokens)
UpperCamelCase_ = seq_len - padding_mask.shape[-1]
UpperCamelCase_ = 1 - self.feature_extractor.padding_value
UpperCamelCase_ = np.pad(__UpperCamelCase , ((0, 0), (0, difference)) , """constant""" , constant_values=__UpperCamelCase )
UpperCamelCase_ = audio_values.tolist()
for i in range(__UpperCamelCase ):
UpperCamelCase_ = np.asarray(audio_values[i] )[
padding_mask[i][None, :] != self.feature_extractor.padding_value
]
UpperCamelCase_ = sliced_audio.reshape(__UpperCamelCase , -1 )
return audio_values
| 261 | 0 |
'''simple docstring'''
import torch
from diffusers import KDPMaDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class __magic_name__ ( a__):
UpperCamelCase__ = (KDPMaDiscreteScheduler,)
UpperCamelCase__ = 10
def SCREAMING_SNAKE_CASE_ ( self : int , **lowercase_ : Optional[Any] ):
lowercase_ : Dict = {
"""num_train_timesteps""": 1100,
"""beta_start""": 0.00_01,
"""beta_end""": 0.02,
"""beta_schedule""": """linear""",
}
config.update(**lowercase_ )
return config
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
for timesteps in [10, 50, 100, 1000]:
self.check_over_configs(num_train_timesteps=lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
for beta_start, beta_end in zip([0.0_00_01, 0.00_01, 0.0_01] , [0.00_02, 0.0_02, 0.02] ):
self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Any ):
lowercase_ : Dict = self.scheduler_classes[0]
lowercase_ : Optional[int] = self.get_scheduler_config(prediction_type="""v_prediction""" )
lowercase_ : Tuple = scheduler_class(**lowercase_ )
scheduler.set_timesteps(self.num_inference_steps )
lowercase_ : int = self.dummy_model()
lowercase_ : int = self.dummy_sample_deter * scheduler.init_noise_sigma
lowercase_ : Optional[int] = sample.to(lowercase_ )
for i, t in enumerate(scheduler.timesteps ):
lowercase_ : Dict = scheduler.scale_model_input(lowercase_ , lowercase_ )
lowercase_ : Optional[int] = model(lowercase_ , lowercase_ )
lowercase_ : List[str] = scheduler.step(lowercase_ , lowercase_ , lowercase_ )
lowercase_ : Tuple = output.prev_sample
lowercase_ : Union[str, Any] = torch.sum(torch.abs(lowercase_ ) )
lowercase_ : Dict = torch.mean(torch.abs(lowercase_ ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 4.6934E-07 ) < 1E-2
assert abs(result_mean.item() - 6.1112E-10 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 4.693_4286_5017_0972E-07 ) < 1E-2
assert abs(result_mean.item() - 0.00_02 ) < 1E-3
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
if torch_device == "mps":
return
lowercase_ : Dict = self.scheduler_classes[0]
lowercase_ : Optional[int] = self.get_scheduler_config()
lowercase_ : Optional[int] = scheduler_class(**lowercase_ )
scheduler.set_timesteps(self.num_inference_steps )
lowercase_ : int = self.dummy_model()
lowercase_ : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma
lowercase_ : Tuple = sample.to(lowercase_ )
for i, t in enumerate(scheduler.timesteps ):
lowercase_ : Any = scheduler.scale_model_input(lowercase_ , lowercase_ )
lowercase_ : str = model(lowercase_ , lowercase_ )
lowercase_ : Optional[int] = scheduler.step(lowercase_ , lowercase_ , lowercase_ )
lowercase_ : Optional[Any] = output.prev_sample
lowercase_ : List[str] = torch.sum(torch.abs(lowercase_ ) )
lowercase_ : str = torch.mean(torch.abs(lowercase_ ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 20.41_25 ) < 1E-2
assert abs(result_mean.item() - 0.02_66 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 20.41_25 ) < 1E-2
assert abs(result_mean.item() - 0.02_66 ) < 1E-3
def SCREAMING_SNAKE_CASE_ ( self : Any ):
if torch_device == "mps":
return
lowercase_ : Any = self.scheduler_classes[0]
lowercase_ : Any = self.get_scheduler_config()
lowercase_ : List[Any] = scheduler_class(**lowercase_ )
scheduler.set_timesteps(self.num_inference_steps , device=lowercase_ )
lowercase_ : Any = self.dummy_model()
lowercase_ : Optional[Any] = self.dummy_sample_deter.to(lowercase_ ) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
lowercase_ : Optional[Any] = scheduler.scale_model_input(lowercase_ , lowercase_ )
lowercase_ : List[Any] = model(lowercase_ , lowercase_ )
lowercase_ : List[Any] = scheduler.step(lowercase_ , lowercase_ , lowercase_ )
lowercase_ : Dict = output.prev_sample
lowercase_ : Tuple = torch.sum(torch.abs(lowercase_ ) )
lowercase_ : Optional[Any] = torch.mean(torch.abs(lowercase_ ) )
if str(lowercase_ ).startswith("""cpu""" ):
# The following sum varies between 148 and 156 on mps. Why?
assert abs(result_sum.item() - 20.41_25 ) < 1E-2
assert abs(result_mean.item() - 0.02_66 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 20.41_25 ) < 1E-2
assert abs(result_mean.item() - 0.02_66 ) < 1E-3
| 239 |
'''simple docstring'''
from __future__ import annotations
import math
def _UpperCamelCase ( __A , __A , __A , __A , __A ) -> int:
'''simple docstring'''
if depth < 0:
raise ValueError("Depth cannot be less than 0" )
if not scores:
raise ValueError("Scores cannot be empty" )
if depth == height:
return scores[node_index]
return (
max(
minimax(depth + 1 , node_index * 2 , __A , __A , __A ) , minimax(depth + 1 , node_index * 2 + 1 , __A , __A , __A ) , )
if is_max
else min(
minimax(depth + 1 , node_index * 2 , __A , __A , __A ) , minimax(depth + 1 , node_index * 2 + 1 , __A , __A , __A ) , )
)
def _UpperCamelCase ( ) -> None:
'''simple docstring'''
UpperCamelCase__ = [90, 23, 6, 33, 21, 65, 123, 34423]
UpperCamelCase__ = math.log(len(__A ) , 2 )
print(F'''Optimal value : {minimax(0 , 0 , __A , __A , __A )}''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 80 | 0 |
"""simple docstring"""
import math
from enum import Enum
from typing import Optional, Union
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LambdaLR
from .utils import logging
lowercase : str = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ):
"""simple docstring"""
lowercase : Any = 'linear'
lowercase : str = 'cosine'
lowercase : Union[str, Any] = 'cosine_with_restarts'
lowercase : Optional[int] = 'polynomial'
lowercase : List[Any] = 'constant'
lowercase : Union[str, Any] = 'constant_with_warmup'
lowercase : Union[str, Any] = 'piecewise_constant'
def UpperCAmelCase_ (_lowerCAmelCase : Optimizer , _lowerCAmelCase : int = -1 ):
return LambdaLR(_lowerCAmelCase , lambda _lowerCAmelCase : 1 , last_epoch=_lowerCAmelCase )
def UpperCAmelCase_ (_lowerCAmelCase : Optimizer , _lowerCAmelCase : int , _lowerCAmelCase : int = -1 ):
def lr_lambda(_lowerCAmelCase : int ):
if current_step < num_warmup_steps:
return float(_lowerCAmelCase ) / float(max(1.0 , _lowerCAmelCase ) )
return 1.0
return LambdaLR(_lowerCAmelCase , _lowerCAmelCase , last_epoch=_lowerCAmelCase )
def UpperCAmelCase_ (_lowerCAmelCase : Optimizer , _lowerCAmelCase : str , _lowerCAmelCase : int = -1 ):
__UpperCamelCase : int = {}
__UpperCamelCase : List[Any] = step_rules.split("," )
for rule_str in rule_list[:-1]:
__UpperCamelCase : Tuple = rule_str.split(":" )
__UpperCamelCase : Tuple = int(_lowerCAmelCase )
__UpperCamelCase : int = float(_lowerCAmelCase )
__UpperCamelCase : List[Any] = value
__UpperCamelCase : Any = float(rule_list[-1] )
def create_rules_function(_lowerCAmelCase : Dict , _lowerCAmelCase : List[str] ):
def rule_func(_lowerCAmelCase : int ) -> float:
__UpperCamelCase : Tuple = sorted(rules_dict.keys() )
for i, sorted_step in enumerate(_lowerCAmelCase ):
if steps < sorted_step:
return rules_dict[sorted_steps[i]]
return last_lr_multiple
return rule_func
__UpperCamelCase : Optional[int] = create_rules_function(_lowerCAmelCase , _lowerCAmelCase )
return LambdaLR(_lowerCAmelCase , _lowerCAmelCase , last_epoch=_lowerCAmelCase )
def UpperCAmelCase_ (_lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : int=-1 ):
def lr_lambda(_lowerCAmelCase : int ):
if current_step < num_warmup_steps:
return float(_lowerCAmelCase ) / float(max(1 , _lowerCAmelCase ) )
return max(
0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) )
return LambdaLR(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
def UpperCAmelCase_ (_lowerCAmelCase : Optimizer , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 0.5 , _lowerCAmelCase : int = -1 ):
def lr_lambda(_lowerCAmelCase : Tuple ):
if current_step < num_warmup_steps:
return float(_lowerCAmelCase ) / float(max(1 , _lowerCAmelCase ) )
__UpperCamelCase : Optional[Any] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) )
return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(_lowerCAmelCase ) * 2.0 * progress )) )
return LambdaLR(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
def UpperCAmelCase_ (_lowerCAmelCase : Optimizer , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = -1 ):
def lr_lambda(_lowerCAmelCase : int ):
if current_step < num_warmup_steps:
return float(_lowerCAmelCase ) / float(max(1 , _lowerCAmelCase ) )
__UpperCamelCase : List[Any] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) )
if progress >= 1.0:
return 0.0
return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(_lowerCAmelCase ) * progress) % 1.0) )) )
return LambdaLR(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
def UpperCAmelCase_ (_lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : str=1E-7 , _lowerCAmelCase : Any=1.0 , _lowerCAmelCase : Union[str, Any]=-1 ):
__UpperCamelCase : List[Any] = optimizer.defaults["lr"]
if not (lr_init > lr_end):
raise ValueError(F'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''' )
def lr_lambda(_lowerCAmelCase : int ):
if current_step < num_warmup_steps:
return float(_lowerCAmelCase ) / float(max(1 , _lowerCAmelCase ) )
elif current_step > num_training_steps:
return lr_end / lr_init # as LambdaLR multiplies by lr_init
else:
__UpperCamelCase : Dict = lr_init - lr_end
__UpperCamelCase : Optional[Any] = num_training_steps - num_warmup_steps
__UpperCamelCase : Dict = 1 - (current_step - num_warmup_steps) / decay_steps
__UpperCamelCase : Optional[Any] = lr_range * pct_remaining**power + lr_end
return decay / lr_init # as LambdaLR multiplies by lr_init
return LambdaLR(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
lowercase : int = {
SchedulerType.LINEAR: get_linear_schedule_with_warmup,
SchedulerType.COSINE: get_cosine_schedule_with_warmup,
SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup,
SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup,
SchedulerType.CONSTANT: get_constant_schedule,
SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup,
SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule,
}
def UpperCAmelCase_ (_lowerCAmelCase : Union[str, SchedulerType] , _lowerCAmelCase : Optimizer , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : int = 1 , _lowerCAmelCase : float = 1.0 , _lowerCAmelCase : int = -1 , ):
__UpperCamelCase : Any = SchedulerType(_lowerCAmelCase )
__UpperCamelCase : List[str] = TYPE_TO_SCHEDULER_FUNCTION[name]
if name == SchedulerType.CONSTANT:
return schedule_func(_lowerCAmelCase , last_epoch=_lowerCAmelCase )
if name == SchedulerType.PIECEWISE_CONSTANT:
return schedule_func(_lowerCAmelCase , step_rules=_lowerCAmelCase , last_epoch=_lowerCAmelCase )
# All other schedulers require `num_warmup_steps`
if num_warmup_steps is None:
raise ValueError(F'''{name} requires `num_warmup_steps`, please provide that argument.''' )
if name == SchedulerType.CONSTANT_WITH_WARMUP:
return schedule_func(_lowerCAmelCase , num_warmup_steps=_lowerCAmelCase , last_epoch=_lowerCAmelCase )
# All other schedulers require `num_training_steps`
if num_training_steps is None:
raise ValueError(F'''{name} requires `num_training_steps`, please provide that argument.''' )
if name == SchedulerType.COSINE_WITH_RESTARTS:
return schedule_func(
_lowerCAmelCase , num_warmup_steps=_lowerCAmelCase , num_training_steps=_lowerCAmelCase , num_cycles=_lowerCAmelCase , last_epoch=_lowerCAmelCase , )
if name == SchedulerType.POLYNOMIAL:
return schedule_func(
_lowerCAmelCase , num_warmup_steps=_lowerCAmelCase , num_training_steps=_lowerCAmelCase , power=_lowerCAmelCase , last_epoch=_lowerCAmelCase , )
return schedule_func(
_lowerCAmelCase , num_warmup_steps=_lowerCAmelCase , num_training_steps=_lowerCAmelCase , last_epoch=_lowerCAmelCase ) | 371 |
import argparse
import os
import torch
from transformers import (
XLNetConfig,
XLNetForQuestionAnswering,
XLNetForSequenceClassification,
XLNetLMHeadModel,
load_tf_weights_in_xlnet,
)
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
lowercase : Optional[int] = {
"cola": 2,
"mnli": 3,
"mrpc": 2,
"sst-2": 2,
"sts-b": 1,
"qqp": 2,
"qnli": 2,
"rte": 2,
"wnli": 2,
}
logging.set_verbosity_info()
def UpperCAmelCase_ (_lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int=None ):
# Initialise PyTorch model
__UpperCamelCase : str = XLNetConfig.from_json_file(_lowerCAmelCase )
__UpperCamelCase : int = finetuning_task.lower() if finetuning_task is not None else ""
if finetuning_task in GLUE_TASKS_NUM_LABELS:
print(F'''Building PyTorch XLNetForSequenceClassification model from configuration: {config}''' )
__UpperCamelCase : List[str] = finetuning_task
__UpperCamelCase : List[str] = GLUE_TASKS_NUM_LABELS[finetuning_task]
__UpperCamelCase : Dict = XLNetForSequenceClassification(_lowerCAmelCase )
elif "squad" in finetuning_task:
__UpperCamelCase : List[str] = finetuning_task
__UpperCamelCase : Optional[int] = XLNetForQuestionAnswering(_lowerCAmelCase )
else:
__UpperCamelCase : Optional[int] = XLNetLMHeadModel(_lowerCAmelCase )
# Load weights from tf checkpoint
load_tf_weights_in_xlnet(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
# Save pytorch-model
__UpperCamelCase : Optional[Any] = os.path.join(_lowerCAmelCase , _lowerCAmelCase )
__UpperCamelCase : Union[str, Any] = os.path.join(_lowerCAmelCase , _lowerCAmelCase )
print(F'''Save PyTorch model to {os.path.abspath(_lowerCAmelCase )}''' )
torch.save(model.state_dict() , _lowerCAmelCase )
print(F'''Save configuration file to {os.path.abspath(_lowerCAmelCase )}''' )
with open(_lowerCAmelCase , "w" , encoding="utf-8" ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
lowercase : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--xlnet_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained XLNet model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=str,
required=True,
help="Path to the folder to store the PyTorch model or dataset/vocab.",
)
parser.add_argument(
"--finetuning_task",
default=None,
type=str,
help="Name of a task on which the XLNet TensorFlow model was fine-tuned",
)
lowercase : Dict = parser.parse_args()
print(args)
convert_xlnet_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task
) | 171 | 0 |
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
__lowerCamelCase : Optional[int] = get_tests_dir("""fixtures/test_sentencepiece.model""")
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
__lowerCamelCase : Optional[Any] = 25_0004
__lowerCamelCase : Optional[Any] = 25_0020
@require_sentencepiece
@require_tokenizers
class A__ ( __snake_case , unittest.TestCase ):
_UpperCAmelCase :Optional[int] = MBartTokenizer
_UpperCAmelCase :int = MBartTokenizerFast
_UpperCAmelCase :Dict = True
_UpperCAmelCase :Any = True
def __UpperCamelCase( self ):
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
UpperCamelCase : List[Any] = MBartTokenizer(A_ , keep_accents=A_ )
tokenizer.save_pretrained(self.tmpdirname )
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : Any = MBartTokenizer(A_ , keep_accents=A_ )
UpperCamelCase : str = tokenizer.tokenize("This is a test" )
self.assertListEqual(A_ , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(A_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
UpperCamelCase : Optional[Any] = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
A_ , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"9",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"é",
".",
] , )
UpperCamelCase : Any = tokenizer.convert_tokens_to_ids(A_ )
self.assertListEqual(
A_ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
# ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^
] , )
UpperCamelCase : str = tokenizer.convert_ids_to_tokens(A_ )
self.assertListEqual(
A_ , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"<unk>",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"<unk>",
".",
] , )
def __UpperCamelCase( self ):
'''simple docstring'''
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
UpperCamelCase : Union[str, Any] = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-mbart", {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
UpperCamelCase : Any = self.rust_tokenizer_class.from_pretrained(A_ , **A_ )
UpperCamelCase : Any = self.tokenizer_class.from_pretrained(A_ , **A_ )
UpperCamelCase : Union[str, Any] = tempfile.mkdtemp()
UpperCamelCase : Any = tokenizer_r.save_pretrained(A_ )
UpperCamelCase : str = tokenizer_p.save_pretrained(A_ )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) )
UpperCamelCase : Dict = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f )
self.assertSequenceEqual(A_ , A_ )
# Checks everything loads correctly in the same way
UpperCamelCase : Dict = tokenizer_r.from_pretrained(A_ )
UpperCamelCase : List[str] = tokenizer_p.from_pretrained(A_ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(A_ , A_ ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(A_ )
# Save tokenizer rust, legacy_format=True
UpperCamelCase : Any = tempfile.mkdtemp()
UpperCamelCase : List[str] = tokenizer_r.save_pretrained(A_ , legacy_format=A_ )
UpperCamelCase : Dict = tokenizer_p.save_pretrained(A_ )
# Checks it save with the same files
self.assertSequenceEqual(A_ , A_ )
# Checks everything loads correctly in the same way
UpperCamelCase : Any = tokenizer_r.from_pretrained(A_ )
UpperCamelCase : Optional[Any] = tokenizer_p.from_pretrained(A_ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(A_ , A_ ) )
shutil.rmtree(A_ )
# Save tokenizer rust, legacy_format=False
UpperCamelCase : str = tempfile.mkdtemp()
UpperCamelCase : int = tokenizer_r.save_pretrained(A_ , legacy_format=A_ )
UpperCamelCase : List[Any] = tokenizer_p.save_pretrained(A_ )
# Checks it saved the tokenizer.json file
self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
UpperCamelCase : Union[str, Any] = tokenizer_r.from_pretrained(A_ )
UpperCamelCase : Dict = tokenizer_p.from_pretrained(A_ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(A_ , A_ ) )
shutil.rmtree(A_ )
@require_torch
@require_sentencepiece
@require_tokenizers
class A__ ( unittest.TestCase ):
_UpperCAmelCase :Optional[Any] = 'facebook/mbart-large-en-ro'
_UpperCAmelCase :Optional[Any] = [
' UN Chief Says There Is No Military Solution in Syria',
' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.',
]
_UpperCAmelCase :int = [
'Şeful ONU declară că nu există o soluţie militară în Siria',
'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei'
' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor'
' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.',
]
_UpperCAmelCase :Dict = [8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2, EN_CODE]
@classmethod
def __UpperCamelCase( cls ):
'''simple docstring'''
UpperCamelCase : MBartTokenizer = MBartTokenizer.from_pretrained(
cls.checkpoint_name , src_lang="en_XX" , tgt_lang="ro_RO" )
UpperCamelCase : Tuple = 1
return cls
def __UpperCamelCase( self ):
'''simple docstring'''
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"] , 25_0001 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"] , 25_0004 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"] , 25_0020 )
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : List[Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , A_ )
def __UpperCamelCase( self ):
'''simple docstring'''
self.assertIn(A_ , self.tokenizer.all_special_ids )
UpperCamelCase : int = [RO_CODE, 884, 9019, 96, 9, 916, 8_6792, 36, 1_8743, 1_5596, 5, 2]
UpperCamelCase : Optional[Any] = self.tokenizer.decode(A_ , skip_special_tokens=A_ )
UpperCamelCase : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=A_ )
self.assertEqual(A_ , A_ )
self.assertNotIn(self.tokenizer.eos_token , A_ )
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : Optional[int] = ["this is gunna be a long sentence " * 20]
assert isinstance(src_text[0] , A_ )
UpperCamelCase : Union[str, Any] = 10
UpperCamelCase : List[Any] = self.tokenizer(A_ , max_length=A_ , truncation=A_ ).input_ids[0]
self.assertEqual(ids[-2] , 2 )
self.assertEqual(ids[-1] , A_ )
self.assertEqual(len(A_ ) , A_ )
def __UpperCamelCase( self ):
'''simple docstring'''
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) , [25_0026, 25_0001] )
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : Tuple = tempfile.mkdtemp()
UpperCamelCase : List[str] = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(A_ )
UpperCamelCase : List[Any] = MBartTokenizer.from_pretrained(A_ )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , A_ )
@require_torch
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : Any = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=A_ , return_tensors="pt" )
UpperCamelCase : int = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE]
assert batch.decoder_input_ids[1][0].tolist() == RO_CODE
assert batch.decoder_input_ids[1][-1] == 2
assert batch.labels[1][-2:].tolist() == [2, RO_CODE]
@require_torch
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : Union[str, Any] = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=A_ , truncation=A_ , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , )
UpperCamelCase : List[str] = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id )
self.assertIsInstance(A_ , A_ )
self.assertEqual((2, 14) , batch.input_ids.shape )
self.assertEqual((2, 14) , batch.attention_mask.shape )
UpperCamelCase : Union[str, Any] = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , A_ )
self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] )
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : Tuple = self.tokenizer(self.src_text , padding=A_ , truncation=A_ , max_length=3 , return_tensors="pt" )
UpperCamelCase : str = self.tokenizer(
text_target=self.tgt_text , padding=A_ , truncation=A_ , max_length=10 , return_tensors="pt" )
UpperCamelCase : Optional[int] = targets["input_ids"]
UpperCamelCase : Any = shift_tokens_right(A_ , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : Optional[Any] = self.tokenizer._build_translation_inputs(
"A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="ar_AR" )
self.assertEqual(
nested_simplify(A_ ) , {
# A, test, EOS, en_XX
"input_ids": [[62, 3034, 2, 25_0004]],
"attention_mask": [[1, 1, 1, 1]],
# ar_AR
"forced_bos_token_id": 25_0001,
} , )
| 52 |
'''simple docstring'''
import argparse
import os
import pickle
import sys
import torch
from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl
from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils
from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
# We do this to be able to load python 2 datasets pickles
# See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918
_UpperCamelCase = data_utils.TransfoXLTokenizer
_UpperCamelCase = data_utils.TransfoXLCorpus
_UpperCamelCase = data_utils
_UpperCamelCase = data_utils
def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) -> Optional[Any]:
if transfo_xl_dataset_file:
# Convert a pre-processed corpus (see original TensorFlow repo)
with open(_lowerCAmelCase ,'rb' ) as fp:
__lowerCamelCase : Optional[Any] = pickle.load(_lowerCAmelCase ,encoding='latin1' )
# Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term)
__lowerCamelCase : Tuple = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file']
print(F'Save vocabulary to {pytorch_vocab_dump_path}' )
__lowerCamelCase : str = corpus.vocab.__dict__
torch.save(_lowerCAmelCase ,_lowerCAmelCase )
__lowerCamelCase : Optional[Any] = corpus.__dict__
corpus_dict_no_vocab.pop('vocab' ,_lowerCAmelCase )
__lowerCamelCase : Optional[Any] = pytorch_dump_folder_path + '/' + CORPUS_NAME
print(F'Save dataset to {pytorch_dataset_dump_path}' )
torch.save(_lowerCAmelCase ,_lowerCAmelCase )
if tf_checkpoint_path:
# Convert a pre-trained TensorFlow model
__lowerCamelCase : int = os.path.abspath(_lowerCAmelCase )
__lowerCamelCase : Any = os.path.abspath(_lowerCAmelCase )
print(F'Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.' )
# Initialise PyTorch model
if transfo_xl_config_file == "":
__lowerCamelCase : Optional[int] = TransfoXLConfig()
else:
__lowerCamelCase : Optional[int] = TransfoXLConfig.from_json_file(_lowerCAmelCase )
print(F'Building PyTorch model from configuration: {config}' )
__lowerCamelCase : List[str] = TransfoXLLMHeadModel(_lowerCAmelCase )
__lowerCamelCase : Dict = load_tf_weights_in_transfo_xl(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
# Save pytorch-model
__lowerCamelCase : List[str] = os.path.join(_lowerCAmelCase ,_lowerCAmelCase )
__lowerCamelCase : int = os.path.join(_lowerCAmelCase ,_lowerCAmelCase )
print(F'Save PyTorch model to {os.path.abspath(_lowerCAmelCase )}' )
torch.save(model.state_dict() ,_lowerCAmelCase )
print(F'Save configuration file to {os.path.abspath(_lowerCAmelCase )}' )
with open(_lowerCAmelCase ,'w' ,encoding='utf-8' ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
required=True,
help='Path to the folder to store the PyTorch model or dataset/vocab.',
)
parser.add_argument(
'--tf_checkpoint_path',
default='',
type=str,
help='An optional path to a TensorFlow checkpoint path to be converted.',
)
parser.add_argument(
'--transfo_xl_config_file',
default='',
type=str,
help=(
'An optional config json file corresponding to the pre-trained BERT model. \n'
'This specifies the model architecture.'
),
)
parser.add_argument(
'--transfo_xl_dataset_file',
default='',
type=str,
help='An optional dataset file to be converted in a vocabulary.',
)
_UpperCamelCase = parser.parse_args()
convert_transfo_xl_checkpoint_to_pytorch(
args.tf_checkpoint_path,
args.transfo_xl_config_file,
args.pytorch_dump_folder_path,
args.transfo_xl_dataset_file,
)
| 208 | 0 |
"""simple docstring"""
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class lowerCamelCase_( A__ ):
'''simple docstring'''
lowercase__ : Optional[Any] = ['image_processor', 'tokenizer']
lowercase__ : Any = 'BlipImageProcessor'
lowercase__ : Optional[int] = 'AutoTokenizer'
def __init__( self , lowerCamelCase__ , lowerCamelCase__ ):
_lowerCamelCase = False
super().__init__(lowerCamelCase__ , lowerCamelCase__ )
_lowerCamelCase = self.image_processor
def __call__( self , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = True , lowerCamelCase__ = False , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = 0 , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = True , lowerCamelCase__ = None , **lowerCamelCase__ , ):
if images is None and text is None:
raise ValueError('''You have to specify either images or text.''' )
# Get only text
if images is None:
_lowerCamelCase = self.tokenizer
_lowerCamelCase = self.tokenizer(
text=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , stride=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , return_overflowing_tokens=lowerCamelCase__ , return_special_tokens_mask=lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , return_token_type_ids=lowerCamelCase__ , return_length=lowerCamelCase__ , verbose=lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ , )
return text_encoding
# add pixel_values
_lowerCamelCase = self.image_processor(lowerCamelCase__ , return_tensors=lowerCamelCase__ )
if text is not None:
_lowerCamelCase = self.tokenizer(
text=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , stride=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , return_overflowing_tokens=lowerCamelCase__ , return_special_tokens_mask=lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , return_token_type_ids=lowerCamelCase__ , return_length=lowerCamelCase__ , verbose=lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ , )
else:
_lowerCamelCase = None
if text_encoding is not None:
encoding_image_processor.update(lowerCamelCase__ )
return encoding_image_processor
def snake_case__ ( self , *lowerCamelCase__ , **lowerCamelCase__ ):
return self.tokenizer.batch_decode(*lowerCamelCase__ , **lowerCamelCase__ )
def snake_case__ ( self , *lowerCamelCase__ , **lowerCamelCase__ ):
return self.tokenizer.decode(*lowerCamelCase__ , **lowerCamelCase__ )
@property
# Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names
def snake_case__ ( self ):
_lowerCamelCase = self.tokenizer.model_input_names
_lowerCamelCase = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 73 |
"""simple docstring"""
import os
import tempfile
import unittest
import uuid
from pathlib import Path
from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision
from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText
from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_soundfile_availble():
import soundfile as sf
if is_vision_available():
from PIL import Image
def lowerCAmelCase_( lowercase_ : List[str]="" ) -> str:
_lowerCamelCase = tempfile.mkdtemp()
return os.path.join(lowercase_ , str(uuid.uuida() ) + suffix )
@require_soundfile
@require_torch
class lowerCamelCase_( unittest.TestCase ):
'''simple docstring'''
def snake_case__ ( self ):
_lowerCamelCase = torch.rand(1_2 , dtype=torch.floataa ) - 0.5
_lowerCamelCase = AgentAudio(lowerCamelCase__ )
_lowerCamelCase = str(agent_type.to_string() )
# Ensure that the tensor and the agent_type's tensor are the same
self.assertTrue(torch.allclose(lowerCamelCase__ , agent_type.to_raw() , atol=1e-4 ) )
del agent_type
# Ensure the path remains even after the object deletion
self.assertTrue(os.path.exists(lowerCamelCase__ ) )
# Ensure that the file contains the same value as the original tensor
_lowerCamelCase , _lowerCamelCase = sf.read(lowerCamelCase__ )
self.assertTrue(torch.allclose(lowerCamelCase__ , torch.tensor(lowerCamelCase__ ) , atol=1e-4 ) )
def snake_case__ ( self ):
_lowerCamelCase = torch.rand(1_2 , dtype=torch.floataa ) - 0.5
_lowerCamelCase = get_new_path(suffix='''.wav''' )
sf.write(lowerCamelCase__ , lowerCamelCase__ , 1_6_0_0_0 )
_lowerCamelCase = AgentAudio(lowerCamelCase__ )
self.assertTrue(torch.allclose(lowerCamelCase__ , agent_type.to_raw() , atol=1e-4 ) )
self.assertEqual(agent_type.to_string() , lowerCamelCase__ )
@require_vision
@require_torch
class lowerCamelCase_( unittest.TestCase ):
'''simple docstring'''
def snake_case__ ( self ):
_lowerCamelCase = torch.randint(0 , 2_5_6 , (6_4, 6_4, 3) )
_lowerCamelCase = AgentImage(lowerCamelCase__ )
_lowerCamelCase = str(agent_type.to_string() )
# Ensure that the tensor and the agent_type's tensor are the same
self.assertTrue(torch.allclose(lowerCamelCase__ , agent_type._tensor , atol=1e-4 ) )
self.assertIsInstance(agent_type.to_raw() , Image.Image )
# Ensure the path remains even after the object deletion
del agent_type
self.assertTrue(os.path.exists(lowerCamelCase__ ) )
def snake_case__ ( self ):
_lowerCamelCase = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png'''
_lowerCamelCase = Image.open(lowerCamelCase__ )
_lowerCamelCase = AgentImage(lowerCamelCase__ )
self.assertTrue(path.samefile(agent_type.to_string() ) )
self.assertTrue(image == agent_type.to_raw() )
# Ensure the path remains even after the object deletion
del agent_type
self.assertTrue(os.path.exists(lowerCamelCase__ ) )
def snake_case__ ( self ):
_lowerCamelCase = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png'''
_lowerCamelCase = Image.open(lowerCamelCase__ )
_lowerCamelCase = AgentImage(lowerCamelCase__ )
self.assertFalse(path.samefile(agent_type.to_string() ) )
self.assertTrue(image == agent_type.to_raw() )
# Ensure the path remains even after the object deletion
del agent_type
self.assertTrue(os.path.exists(lowerCamelCase__ ) )
class lowerCamelCase_( unittest.TestCase ):
'''simple docstring'''
def snake_case__ ( self ):
_lowerCamelCase = '''Hey!'''
_lowerCamelCase = AgentText(lowerCamelCase__ )
self.assertEqual(lowerCamelCase__ , agent_type.to_string() )
self.assertEqual(lowerCamelCase__ , agent_type.to_raw() )
self.assertEqual(lowerCamelCase__ , lowerCamelCase__ )
| 73 | 1 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
A__ : Dict = logging.get_logger(__name__)
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : str = ['pixel_values']
def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = PIL.Image.BICUBIC , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 / 2_55 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> None:
super().__init__(**SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Any = size if size is not None else {'height': 2_56, 'width': 2_56}
__lowerCamelCase : Any = get_size_dict(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24}
__lowerCamelCase : Optional[int] = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='crop_size' )
__lowerCamelCase : str = do_resize
__lowerCamelCase : int = size
__lowerCamelCase : List[str] = resample
__lowerCamelCase : Optional[int] = do_center_crop
__lowerCamelCase : Optional[int] = crop_size
__lowerCamelCase : Union[str, Any] = do_rescale
__lowerCamelCase : List[Any] = rescale_factor
__lowerCamelCase : Optional[Any] = do_normalize
__lowerCamelCase : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
__lowerCamelCase : Dict = image_std if image_std is not None else IMAGENET_STANDARD_STD
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = PIL.Image.BICUBIC , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> np.ndarray:
__lowerCamelCase : Union[str, Any] = get_size_dict(SCREAMING_SNAKE_CASE_ )
if "height" not in size or "width" not in size:
raise ValueError(f'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}' )
return resize(
SCREAMING_SNAKE_CASE_ , size=(size['height'], size['width']) , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> np.ndarray:
__lowerCamelCase : List[str] = get_size_dict(SCREAMING_SNAKE_CASE_ )
if "height" not in size or "width" not in size:
raise ValueError(f'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}' )
return center_crop(SCREAMING_SNAKE_CASE_ , size=(size['height'], size['width']) , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> str:
return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> np.ndarray:
return normalize(SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , ) -> PIL.Image.Image:
__lowerCamelCase : Tuple = do_resize if do_resize is not None else self.do_resize
__lowerCamelCase : int = resample if resample is not None else self.resample
__lowerCamelCase : Any = do_center_crop if do_center_crop is not None else self.do_center_crop
__lowerCamelCase : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale
__lowerCamelCase : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor
__lowerCamelCase : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize
__lowerCamelCase : List[str] = image_mean if image_mean is not None else self.image_mean
__lowerCamelCase : Dict = image_std if image_std is not None else self.image_std
__lowerCamelCase : Optional[Any] = size if size is not None else self.size
__lowerCamelCase : Optional[Any] = get_size_dict(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = crop_size if crop_size is not None else self.crop_size
__lowerCamelCase : Tuple = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='crop_size' )
__lowerCamelCase : Union[str, Any] = make_list_of_images(SCREAMING_SNAKE_CASE_ )
if not valid_images(SCREAMING_SNAKE_CASE_ ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_center_crop and crop_size is None:
raise ValueError('Crop size must be specified if do_center_crop is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# All transformations expect numpy arrays.
__lowerCamelCase : List[Any] = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images]
if do_resize:
__lowerCamelCase : List[Any] = [self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images]
if do_center_crop:
__lowerCamelCase : List[str] = [self.center_crop(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ ) for image in images]
if do_rescale:
__lowerCamelCase : List[str] = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ ) for image in images]
if do_normalize:
__lowerCamelCase : Optional[int] = [self.normalize(image=SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ ) for image in images]
__lowerCamelCase : int = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images]
__lowerCamelCase : Dict = {'pixel_values': images}
return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ )
| 185 |
'''simple docstring'''
import unittest
from knapsack import knapsack as k
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
def lowercase_ ( self ) -> Optional[Any]:
__lowerCamelCase : int = 0
__lowerCamelCase : Union[str, Any] = [0]
__lowerCamelCase : Any = [0]
__lowerCamelCase : Union[str, Any] = len(SCREAMING_SNAKE_CASE_ )
self.assertEqual(k.knapsack(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , 0 )
__lowerCamelCase : List[str] = [60]
__lowerCamelCase : Union[str, Any] = [10]
__lowerCamelCase : List[Any] = len(SCREAMING_SNAKE_CASE_ )
self.assertEqual(k.knapsack(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , 0 )
def lowercase_ ( self ) -> List[str]:
__lowerCamelCase : Optional[int] = 3
__lowerCamelCase : int = [1, 2, 3]
__lowerCamelCase : str = [3, 2, 1]
__lowerCamelCase : Union[str, Any] = len(SCREAMING_SNAKE_CASE_ )
self.assertEqual(k.knapsack(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , 5 )
def lowercase_ ( self ) -> int:
__lowerCamelCase : Optional[int] = 50
__lowerCamelCase : List[str] = [60, 1_00, 1_20]
__lowerCamelCase : List[str] = [10, 20, 30]
__lowerCamelCase : List[str] = len(SCREAMING_SNAKE_CASE_ )
self.assertEqual(k.knapsack(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , 2_20 )
if __name__ == "__main__":
unittest.main()
| 185 | 1 |
"""simple docstring"""
def __A ( a_ :dict) -> bool:
__a : set[int] = set()
# To detect a back edge, keep track of vertices currently in the recursion stack
__a : set[int] = set()
return any(
node not in visited and depth_first_search(a_ , a_ , a_ , a_)
for node in graph)
def __A ( a_ :dict , a_ :int , a_ :set , a_ :set) -> bool:
visited.add(a_)
rec_stk.add(a_)
for node in graph[vertex]:
if node not in visited:
if depth_first_search(a_ , a_ , a_ , a_):
return True
elif node in rec_stk:
return True
# The node needs to be removed from recursion stack before function ends
rec_stk.remove(a_)
return False
if __name__ == "__main__":
from doctest import testmod
testmod() | 188 |
"""simple docstring"""
import unittest
from transformers import SqueezeBertConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
)
class __lowercase ( _UpperCamelCase ):
'''simple docstring'''
def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=64 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , _UpperCAmelCase=2 , _UpperCAmelCase=2 , _UpperCAmelCase=2 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=1 , ):
__a : Dict = parent
__a : str = batch_size
__a : Union[str, Any] = seq_length
__a : Any = is_training
__a : int = use_input_mask
__a : Optional[int] = use_token_type_ids
__a : int = use_labels
__a : int = vocab_size
__a : int = hidden_size
__a : str = num_hidden_layers
__a : str = num_attention_heads
__a : Any = intermediate_size
__a : Union[str, Any] = hidden_act
__a : Optional[int] = hidden_dropout_prob
__a : str = attention_probs_dropout_prob
__a : int = max_position_embeddings
__a : Union[str, Any] = type_vocab_size
__a : List[str] = type_sequence_label_size
__a : List[str] = initializer_range
__a : Optional[int] = num_labels
__a : List[str] = num_choices
__a : int = scope
__a : Union[str, Any] = q_groups
__a : Dict = k_groups
__a : List[str] = v_groups
__a : Any = post_attention_groups
__a : Optional[int] = intermediate_groups
__a : List[str] = output_groups
def _lowerCamelCase ( self ):
__a : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__a : Optional[Any] = None
if self.use_input_mask:
__a : int = random_attention_mask([self.batch_size, self.seq_length] )
__a : List[str] = None
__a : Union[str, Any] = None
__a : int = None
if self.use_labels:
__a : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__a : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__a : Dict = ids_tensor([self.batch_size] , self.num_choices )
__a : int = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def _lowerCamelCase ( self ):
return SqueezeBertConfig(
embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , )
def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
__a : Dict = SqueezeBertModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__a : Optional[Any] = model(_UpperCAmelCase , _UpperCAmelCase )
__a : Dict = model(_UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
__a : Optional[Any] = SqueezeBertForMaskedLM(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__a : int = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
__a : int = SqueezeBertForQuestionAnswering(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__a : Optional[int] = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
__a : Any = self.num_labels
__a : List[Any] = SqueezeBertForSequenceClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__a : int = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
__a : List[Any] = self.num_labels
__a : List[str] = SqueezeBertForTokenClassification(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__a : Any = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
__a : List[str] = self.num_choices
__a : Union[str, Any] = SqueezeBertForMultipleChoice(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__a : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__a : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__a : Union[str, Any] = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def _lowerCamelCase ( self ):
__a : Any = self.prepare_config_and_inputs()
((__a) , (__a) , (__a) , (__a) , (__a) , (__a)) : Optional[Any] = config_and_inputs
__a : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class __lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__lowerCAmelCase = (
(
SqueezeBertModel,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
)
if is_torch_available()
else None
)
__lowerCAmelCase = (
{
'''feature-extraction''': SqueezeBertModel,
'''fill-mask''': SqueezeBertForMaskedLM,
'''question-answering''': SqueezeBertForQuestionAnswering,
'''text-classification''': SqueezeBertForSequenceClassification,
'''token-classification''': SqueezeBertForTokenClassification,
'''zero-shot''': SqueezeBertForSequenceClassification,
}
if is_torch_available()
else {}
)
__lowerCAmelCase = False
__lowerCAmelCase = True
__lowerCAmelCase = False
def _lowerCamelCase ( self ):
__a : Union[str, Any] = SqueezeBertModelTester(self )
__a : Dict = ConfigTester(self , config_class=_UpperCAmelCase , dim=37 )
def _lowerCamelCase ( self ):
self.config_tester.run_common_tests()
def _lowerCamelCase ( self ):
__a : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_model(*_UpperCAmelCase )
def _lowerCamelCase ( self ):
__a : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_masked_lm(*_UpperCAmelCase )
def _lowerCamelCase ( self ):
__a : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_question_answering(*_UpperCAmelCase )
def _lowerCamelCase ( self ):
__a : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_sequence_classification(*_UpperCAmelCase )
def _lowerCamelCase ( self ):
__a : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_token_classification(*_UpperCAmelCase )
def _lowerCamelCase ( self ):
__a : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_multiple_choice(*_UpperCAmelCase )
@slow
def _lowerCamelCase ( self ):
for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__a : Any = SqueezeBertModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
@require_sentencepiece
@require_tokenizers
@require_torch
class __lowercase ( unittest.TestCase ):
'''simple docstring'''
@slow
def _lowerCamelCase ( self ):
__a : int = SqueezeBertForSequenceClassification.from_pretrained('''squeezebert/squeezebert-mnli''' )
__a : Tuple = torch.tensor([[1, 29414, 232, 328, 740, 1140, 12695, 69, 13, 1588, 2]] )
__a : List[str] = model(_UpperCAmelCase )[0]
__a : int = torch.Size((1, 3) )
self.assertEqual(output.shape , _UpperCAmelCase )
__a : int = torch.tensor([[0.6_4_0_1, -0.0_3_4_9, -0.6_0_4_1]] )
self.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-4 ) ) | 188 | 1 |
"""simple docstring"""
from argparse import ArgumentParser
from .env import EnvironmentCommand
def __a ( ):
UpperCAmelCase_ : str = ArgumentParser("Diffusers CLI tool", usage="diffusers-cli <command> [<args>]" )
UpperCAmelCase_ : Optional[int] = parser.add_subparsers(help="diffusers-cli command helpers" )
# Register commands
EnvironmentCommand.register_subcommand(__lowerCamelCase )
# Let's go
UpperCAmelCase_ : Optional[Any] = parser.parse_args()
if not hasattr(__lowerCamelCase, "func" ):
parser.print_help()
exit(1 )
# Run
UpperCAmelCase_ : List[str] = args.func(__lowerCamelCase )
service.run()
if __name__ == "__main__":
main()
| 61 |
import argparse
import logging
import os
import sys
import numpy as np
import onnxruntime
import torch
from bart_onnx.generation_onnx import BARTBeamSearchGenerator
from bart_onnx.reduce_onnx_size import remove_dup_initializers
import transformers
from transformers import BartForConditionalGeneration, BartTokenizer
logging.basicConfig(
format="""%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s""",
datefmt="""%Y-%m-%d %H:%M:%S""",
level=os.environ.get("""LOGLEVEL""", """INFO""").upper(),
stream=sys.stdout,
)
__snake_case : Any = logging.getLogger(__name__)
__snake_case : Any = {"""facebook/bart-base""": BartForConditionalGeneration}
__snake_case : Tuple = {"""facebook/bart-base""": BartTokenizer}
def _UpperCAmelCase ( ):
'''simple docstring'''
a_ : List[str] = argparse.ArgumentParser(description="""Export Bart model + Beam Search to ONNX graph.""")
parser.add_argument(
"""--validation_file""" , type=a__ , default=a__ , help="""A csv or a json file containing the validation data.""")
parser.add_argument(
"""--max_length""" , type=a__ , default=5 , help="""The maximum total input sequence length after tokenization.""" , )
parser.add_argument(
"""--num_beams""" , type=a__ , default=a__ , help=(
"""Number of beams to use for evaluation. This argument will be """
"""passed to ``model.generate``, which is used during ``evaluate`` and ``predict``."""
) , )
parser.add_argument(
"""--model_name_or_path""" , type=a__ , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=a__ , )
parser.add_argument(
"""--config_name""" , type=a__ , default=a__ , help="""Pretrained config name or path if not the same as model_name""" , )
parser.add_argument(
"""--device""" , type=a__ , default="""cpu""" , help="""Device where the model will be run""" , )
parser.add_argument("""--output_file_path""" , type=a__ , default=a__ , help="""Where to store the final ONNX file.""")
a_ : Any = parser.parse_args()
return args
def _UpperCAmelCase ( a__ , a__="cpu"):
'''simple docstring'''
a_ : Optional[int] = model_dict[model_name].from_pretrained(a__).to(a__)
a_ : List[str] = tokenizer_dict[model_name].from_pretrained(a__)
if model_name in ["facebook/bart-base"]:
a_ : Tuple = 0
a_ : Optional[int] = None
a_ : Union[str, Any] = 0
return huggingface_model, tokenizer
def _UpperCAmelCase ( a__ , a__ , a__ , a__ , a__):
'''simple docstring'''
model.eval()
a_ : Optional[Any] = None
a_ : Optional[Any] = torch.jit.script(BARTBeamSearchGenerator(a__))
with torch.no_grad():
a_ : Any = """My friends are cool but they eat too many carbs."""
a_ : Dict = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_0_2_4 , return_tensors="""pt""").to(model.device)
a_ : Optional[int] = model.generate(
inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , num_beams=a__ , max_length=a__ , early_stopping=a__ , decoder_start_token_id=model.config.decoder_start_token_id , )
torch.onnx.export(
a__ , (
inputs["""input_ids"""],
inputs["""attention_mask"""],
num_beams,
max_length,
model.config.decoder_start_token_id,
) , a__ , opset_version=1_4 , input_names=["""input_ids""", """attention_mask""", """num_beams""", """max_length""", """decoder_start_token_id"""] , output_names=["""output_ids"""] , dynamic_axes={
"""input_ids""": {0: """batch""", 1: """seq"""},
"""output_ids""": {0: """batch""", 1: """seq_out"""},
} , example_outputs=a__ , )
logger.info("""Model exported to {}""".format(a__))
a_ : List[str] = remove_dup_initializers(os.path.abspath(a__))
logger.info("""Deduplicated and optimized model written to {}""".format(a__))
a_ : Union[str, Any] = onnxruntime.InferenceSession(a__)
a_ : Any = ort_sess.run(
a__ , {
"""input_ids""": inputs["""input_ids"""].cpu().numpy(),
"""attention_mask""": inputs["""attention_mask"""].cpu().numpy(),
"""num_beams""": np.array(a__),
"""max_length""": np.array(a__),
"""decoder_start_token_id""": np.array(model.config.decoder_start_token_id),
} , )
np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3)
logger.info("""Model outputs from torch and ONNX Runtime are similar.""")
logger.info("""Success.""")
def _UpperCAmelCase ( ):
'''simple docstring'''
a_ : List[str] = parse_args()
a_ : str = 5
a_ : Union[str, Any] = 4
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , )
logger.setLevel(logging.INFO)
transformers.utils.logging.set_verbosity_error()
a_ : int = torch.device(args.device)
a_ , a_ : Optional[Any] = load_model_tokenizer(args.model_name_or_path , a__)
if model.config.decoder_start_token_id is None:
raise ValueError("""Make sure that `config.decoder_start_token_id` is correctly defined""")
model.to(a__)
if args.max_length:
a_ : List[str] = args.max_length
if args.num_beams:
a_ : Optional[Any] = args.num_beams
if args.output_file_path:
a_ : Optional[int] = args.output_file_path
else:
a_ : Tuple = """BART.onnx"""
logger.info("""Exporting model to ONNX""")
export_and_validate_model(a__ , a__ , a__ , a__ , a__)
if __name__ == "__main__":
main()
| 248 | 0 |
'''simple docstring'''
import re
def UpperCamelCase_ ( A__ : str ):
'''simple docstring'''
lowerCAmelCase_ : int = re.compile(R"""^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$""" )
if match := re.search(A__ , A__ ):
return match.string == phone
return False
if __name__ == "__main__":
print(indian_phone_validator("+918827897895"))
| 89 |
'''simple docstring'''
import unittest
from diffusers.pipelines.pipeline_utils import is_safetensors_compatible
class __snake_case ( unittest.TestCase):
"""simple docstring"""
def __lowercase ( self : Tuple ) -> Dict:
lowerCAmelCase_ : str = [
"""safety_checker/pytorch_model.bin""",
"""safety_checker/model.safetensors""",
"""vae/diffusion_pytorch_model.bin""",
"""vae/diffusion_pytorch_model.safetensors""",
"""text_encoder/pytorch_model.bin""",
"""text_encoder/model.safetensors""",
"""unet/diffusion_pytorch_model.bin""",
"""unet/diffusion_pytorch_model.safetensors""",
]
self.assertTrue(is_safetensors_compatible(lowerCamelCase ) )
def __lowercase ( self : List[Any] ) -> int:
lowerCAmelCase_ : Tuple = [
"""unet/diffusion_pytorch_model.bin""",
"""unet/diffusion_pytorch_model.safetensors""",
]
self.assertTrue(is_safetensors_compatible(lowerCamelCase ) )
def __lowercase ( self : Optional[int] ) -> Optional[Any]:
lowerCAmelCase_ : int = [
"""safety_checker/pytorch_model.bin""",
"""safety_checker/model.safetensors""",
"""vae/diffusion_pytorch_model.bin""",
"""vae/diffusion_pytorch_model.safetensors""",
"""text_encoder/pytorch_model.bin""",
"""text_encoder/model.safetensors""",
"""unet/diffusion_pytorch_model.bin""",
# Removed: 'unet/diffusion_pytorch_model.safetensors',
]
self.assertFalse(is_safetensors_compatible(lowerCamelCase ) )
def __lowercase ( self : int ) -> List[Any]:
lowerCAmelCase_ : Dict = [
"""text_encoder/pytorch_model.bin""",
"""text_encoder/model.safetensors""",
]
self.assertTrue(is_safetensors_compatible(lowerCamelCase ) )
def __lowercase ( self : str ) -> List[str]:
lowerCAmelCase_ : Union[str, Any] = [
"""safety_checker/pytorch_model.bin""",
"""safety_checker/model.safetensors""",
"""vae/diffusion_pytorch_model.bin""",
"""vae/diffusion_pytorch_model.safetensors""",
"""text_encoder/pytorch_model.bin""",
# Removed: 'text_encoder/model.safetensors',
"""unet/diffusion_pytorch_model.bin""",
"""unet/diffusion_pytorch_model.safetensors""",
]
self.assertFalse(is_safetensors_compatible(lowerCamelCase ) )
def __lowercase ( self : List[Any] ) -> Tuple:
lowerCAmelCase_ : Union[str, Any] = [
"""safety_checker/pytorch_model.fp16.bin""",
"""safety_checker/model.fp16.safetensors""",
"""vae/diffusion_pytorch_model.fp16.bin""",
"""vae/diffusion_pytorch_model.fp16.safetensors""",
"""text_encoder/pytorch_model.fp16.bin""",
"""text_encoder/model.fp16.safetensors""",
"""unet/diffusion_pytorch_model.fp16.bin""",
"""unet/diffusion_pytorch_model.fp16.safetensors""",
]
lowerCAmelCase_ : Union[str, Any] = """fp16"""
self.assertTrue(is_safetensors_compatible(lowerCamelCase , variant=lowerCamelCase ) )
def __lowercase ( self : Optional[Any] ) -> List[str]:
lowerCAmelCase_ : str = [
"""unet/diffusion_pytorch_model.fp16.bin""",
"""unet/diffusion_pytorch_model.fp16.safetensors""",
]
lowerCAmelCase_ : Optional[int] = """fp16"""
self.assertTrue(is_safetensors_compatible(lowerCamelCase , variant=lowerCamelCase ) )
def __lowercase ( self : Tuple ) -> Optional[Any]:
# pass variant but use the non-variant filenames
lowerCAmelCase_ : Dict = [
"""unet/diffusion_pytorch_model.bin""",
"""unet/diffusion_pytorch_model.safetensors""",
]
lowerCAmelCase_ : str = """fp16"""
self.assertTrue(is_safetensors_compatible(lowerCamelCase , variant=lowerCamelCase ) )
def __lowercase ( self : Optional[int] ) -> List[str]:
lowerCAmelCase_ : str = [
"""safety_checker/pytorch_model.fp16.bin""",
"""safety_checker/model.fp16.safetensors""",
"""vae/diffusion_pytorch_model.fp16.bin""",
"""vae/diffusion_pytorch_model.fp16.safetensors""",
"""text_encoder/pytorch_model.fp16.bin""",
"""text_encoder/model.fp16.safetensors""",
"""unet/diffusion_pytorch_model.fp16.bin""",
# Removed: 'unet/diffusion_pytorch_model.fp16.safetensors',
]
lowerCAmelCase_ : List[str] = """fp16"""
self.assertFalse(is_safetensors_compatible(lowerCamelCase , variant=lowerCamelCase ) )
def __lowercase ( self : Union[str, Any] ) -> Optional[int]:
lowerCAmelCase_ : str = [
"""text_encoder/pytorch_model.fp16.bin""",
"""text_encoder/model.fp16.safetensors""",
]
lowerCAmelCase_ : Optional[Any] = """fp16"""
self.assertTrue(is_safetensors_compatible(lowerCamelCase , variant=lowerCamelCase ) )
def __lowercase ( self : List[Any] ) -> List[Any]:
# pass variant but use the non-variant filenames
lowerCAmelCase_ : Dict = [
"""text_encoder/pytorch_model.bin""",
"""text_encoder/model.safetensors""",
]
lowerCAmelCase_ : Any = """fp16"""
self.assertTrue(is_safetensors_compatible(lowerCamelCase , variant=lowerCamelCase ) )
def __lowercase ( self : Dict ) -> Any:
lowerCAmelCase_ : Optional[int] = [
"""safety_checker/pytorch_model.fp16.bin""",
"""safety_checker/model.fp16.safetensors""",
"""vae/diffusion_pytorch_model.fp16.bin""",
"""vae/diffusion_pytorch_model.fp16.safetensors""",
"""text_encoder/pytorch_model.fp16.bin""",
# 'text_encoder/model.fp16.safetensors',
"""unet/diffusion_pytorch_model.fp16.bin""",
"""unet/diffusion_pytorch_model.fp16.safetensors""",
]
lowerCAmelCase_ : int = """fp16"""
self.assertFalse(is_safetensors_compatible(lowerCamelCase , variant=lowerCamelCase ) )
| 89 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase_ : Union[str, Any] = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ : Optional[Any] = [
"""FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""FocalNetForImageClassification""",
"""FocalNetForMaskedImageModeling""",
"""FocalNetBackbone""",
"""FocalNetModel""",
"""FocalNetPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_focalnet import (
FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FocalNetBackbone,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetModel,
FocalNetPreTrainedModel,
)
else:
import sys
UpperCAmelCase_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 91 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__)
UpperCAmelCase_ : Any = {"""openai-gpt""": """https://huggingface.co/openai-gpt/resolve/main/config.json"""}
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
__UpperCamelCase = "openai-gpt"
__UpperCamelCase = {
"max_position_embeddings": "n_positions",
"hidden_size": "n_embd",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self : List[str] , lowercase_ : List[str]=40478 , lowercase_ : List[str]=512 , lowercase_ : Optional[Any]=768 , lowercase_ : Tuple=12 , lowercase_ : Tuple=12 , lowercase_ : Union[str, Any]="gelu" , lowercase_ : List[Any]=0.1 , lowercase_ : Tuple=0.1 , lowercase_ : List[Any]=0.1 , lowercase_ : List[Any]=1e-5 , lowercase_ : int=0.02 , lowercase_ : Optional[int]="cls_index" , lowercase_ : Any=True , lowercase_ : List[Any]=None , lowercase_ : List[str]=True , lowercase_ : Optional[Any]=0.1 , **lowercase_ : List[str] , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[int] = vocab_size
SCREAMING_SNAKE_CASE_ : Tuple = n_positions
SCREAMING_SNAKE_CASE_ : Optional[int] = n_embd
SCREAMING_SNAKE_CASE_ : Dict = n_layer
SCREAMING_SNAKE_CASE_ : Any = n_head
SCREAMING_SNAKE_CASE_ : Union[str, Any] = afn
SCREAMING_SNAKE_CASE_ : int = resid_pdrop
SCREAMING_SNAKE_CASE_ : List[str] = embd_pdrop
SCREAMING_SNAKE_CASE_ : Union[str, Any] = attn_pdrop
SCREAMING_SNAKE_CASE_ : Union[str, Any] = layer_norm_epsilon
SCREAMING_SNAKE_CASE_ : List[Any] = initializer_range
SCREAMING_SNAKE_CASE_ : List[str] = summary_type
SCREAMING_SNAKE_CASE_ : Tuple = summary_use_proj
SCREAMING_SNAKE_CASE_ : Union[str, Any] = summary_activation
SCREAMING_SNAKE_CASE_ : Any = summary_first_dropout
SCREAMING_SNAKE_CASE_ : List[str] = summary_proj_to_labels
super().__init__(**lowercase_)
| 91 | 1 |
def a__ ( snake_case__ , snake_case__ ) -> str:
if a < 0 or b < 0:
raise ValueError("""the value of both inputs must be positive""" )
lowerCamelCase = str(bin(snake_case__ ) )[2:] # remove the leading "0b"
lowerCamelCase = str(bin(snake_case__ ) )[2:] # remove the leading "0b"
lowerCamelCase = max(len(snake_case__ ) , len(snake_case__ ) )
return "0b" + "".join(
str(int(char_a != char_b ) )
for char_a, char_b in zip(a_binary.zfill(snake_case__ ) , b_binary.zfill(snake_case__ ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 370 |
"""simple docstring"""
import argparse
import math
import traceback
import dateutil.parser as date_parser
import requests
def a__ ( snake_case__ ) -> Optional[Any]:
lowerCamelCase = {}
lowerCamelCase = job["""started_at"""]
lowerCamelCase = job["""completed_at"""]
lowerCamelCase = date_parser.parse(snake_case__ )
lowerCamelCase = date_parser.parse(snake_case__ )
lowerCamelCase = round((end_datetime - start_datetime).total_seconds() / 60.0 )
lowerCamelCase = start
lowerCamelCase = end
lowerCamelCase = duration_in_min
return job_info
def a__ ( snake_case__ , snake_case__=None ) -> Optional[Any]:
lowerCamelCase = None
if token is not None:
lowerCamelCase = {"""Accept""": """application/vnd.github+json""", """Authorization""": F'Bearer {token}'}
lowerCamelCase = F'https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100'
lowerCamelCase = requests.get(snake_case__ , headers=snake_case__ ).json()
lowerCamelCase = {}
try:
job_time.update({job["""name"""]: extract_time_from_single_job(snake_case__ ) for job in result["""jobs"""]} )
lowerCamelCase = math.ceil((result["""total_count"""] - 1_00) / 1_00 )
for i in range(snake_case__ ):
lowerCamelCase = requests.get(url + F'&page={i + 2}' , headers=snake_case__ ).json()
job_time.update({job["""name"""]: extract_time_from_single_job(snake_case__ ) for job in result["""jobs"""]} )
return job_time
except Exception:
print(F'Unknown error, could not fetch links:\n{traceback.format_exc()}' )
return {}
if __name__ == "__main__":
lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""")
lowerCAmelCase : Any = parser.parse_args()
lowerCAmelCase : Optional[int] = get_job_time(args.workflow_run_id)
lowerCAmelCase : Dict = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True))
for k, v in job_time.items():
print(F"""{k}: {v['duration']}""")
| 168 | 0 |
def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ):
'''simple docstring'''
return int(input_a == input_a == 0 )
def UpperCamelCase ( ):
'''simple docstring'''
print('''Truth Table of NOR Gate:''' )
print('''| Input 1 | Input 2 | Output |''' )
print(f'| 0 | 0 | {nor_gate(0 , 0 )} |' )
print(f'| 0 | 1 | {nor_gate(0 , 1 )} |' )
print(f'| 1 | 0 | {nor_gate(1 , 0 )} |' )
print(f'| 1 | 1 | {nor_gate(1 , 1 )} |' )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 101 |
'''simple docstring'''
from pickle import UnpicklingError
import jax
import jax.numpy as jnp
import numpy as np
from flax.serialization import from_bytes
from flax.traverse_util import flatten_dict
from ..utils import logging
UpperCAmelCase_ : List[Any] = logging.get_logger(__name__)
def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
"""simple docstring"""
try:
with open(SCREAMING_SNAKE_CASE__ , """rb""" ) as flax_state_f:
_SCREAMING_SNAKE_CASE : Dict = from_bytes(SCREAMING_SNAKE_CASE__ , flax_state_f.read() )
except UnpicklingError as e:
try:
with open(SCREAMING_SNAKE_CASE__ ) as f:
if f.read().startswith("""version""" ):
raise OSError(
"""You seem to have cloned a repository without having git-lfs installed. Please"""
""" install git-lfs and run `git lfs install` followed by `git lfs pull` in the"""
""" folder you cloned.""" )
else:
raise ValueError from e
except (UnicodeDecodeError, ValueError):
raise EnvironmentError(f"""Unable to convert {model_file} to Flax deserializable object. """ )
return load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
"""simple docstring"""
try:
import torch # noqa: F401
except ImportError:
logger.error(
"""Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see"""
""" https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation"""
""" instructions.""" )
raise
# check if we have bf16 weights
_SCREAMING_SNAKE_CASE : List[Any] = flatten_dict(jax.tree_util.tree_map(lambda SCREAMING_SNAKE_CASE__ : x.dtype == jnp.bfloataa , SCREAMING_SNAKE_CASE__ ) ).values()
if any(SCREAMING_SNAKE_CASE__ ):
# convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16
# and bf16 is not fully supported in PT yet.
logger.warning(
"""Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """
"""before loading those in PyTorch model.""" )
_SCREAMING_SNAKE_CASE : Dict = jax.tree_util.tree_map(
lambda SCREAMING_SNAKE_CASE__ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , SCREAMING_SNAKE_CASE__ )
_SCREAMING_SNAKE_CASE : Optional[Any] = """"""
_SCREAMING_SNAKE_CASE : str = flatten_dict(SCREAMING_SNAKE_CASE__ , sep=""".""" )
_SCREAMING_SNAKE_CASE : str = pt_model.state_dict()
# keep track of unexpected & missing keys
_SCREAMING_SNAKE_CASE : Tuple = []
_SCREAMING_SNAKE_CASE : int = set(pt_model_dict.keys() )
for flax_key_tuple, flax_tensor in flax_state_dict.items():
_SCREAMING_SNAKE_CASE : Any = flax_key_tuple.split(""".""" )
if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4:
_SCREAMING_SNAKE_CASE : Optional[Any] = flax_key_tuple_array[:-1] + ["""weight"""]
_SCREAMING_SNAKE_CASE : List[str] = jnp.transpose(SCREAMING_SNAKE_CASE__ , (3, 2, 0, 1) )
elif flax_key_tuple_array[-1] == "kernel":
_SCREAMING_SNAKE_CASE : Union[str, Any] = flax_key_tuple_array[:-1] + ["""weight"""]
_SCREAMING_SNAKE_CASE : Any = flax_tensor.T
elif flax_key_tuple_array[-1] == "scale":
_SCREAMING_SNAKE_CASE : Optional[int] = flax_key_tuple_array[:-1] + ["""weight"""]
if "time_embedding" not in flax_key_tuple_array:
for i, flax_key_tuple_string in enumerate(SCREAMING_SNAKE_CASE__ ):
_SCREAMING_SNAKE_CASE : Optional[int] = (
flax_key_tuple_string.replace("""_0""" , """.0""" )
.replace("""_1""" , """.1""" )
.replace("""_2""" , """.2""" )
.replace("""_3""" , """.3""" )
.replace("""_4""" , """.4""" )
.replace("""_5""" , """.5""" )
.replace("""_6""" , """.6""" )
.replace("""_7""" , """.7""" )
.replace("""_8""" , """.8""" )
.replace("""_9""" , """.9""" )
)
_SCREAMING_SNAKE_CASE : Tuple = """.""".join(SCREAMING_SNAKE_CASE__ )
if flax_key in pt_model_dict:
if flax_tensor.shape != pt_model_dict[flax_key].shape:
raise ValueError(
f"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """
f"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" )
else:
# add weight to pytorch dict
_SCREAMING_SNAKE_CASE : Union[str, Any] = np.asarray(SCREAMING_SNAKE_CASE__ ) if not isinstance(SCREAMING_SNAKE_CASE__ , np.ndarray ) else flax_tensor
_SCREAMING_SNAKE_CASE : int = torch.from_numpy(SCREAMING_SNAKE_CASE__ )
# remove from missing keys
missing_keys.remove(SCREAMING_SNAKE_CASE__ )
else:
# weight is not expected by PyTorch model
unexpected_keys.append(SCREAMING_SNAKE_CASE__ )
pt_model.load_state_dict(SCREAMING_SNAKE_CASE__ )
# re-transform missing_keys to list
_SCREAMING_SNAKE_CASE : Optional[Any] = list(SCREAMING_SNAKE_CASE__ )
if len(SCREAMING_SNAKE_CASE__ ) > 0:
logger.warning(
"""Some weights of the Flax model were not used when initializing the PyTorch model"""
f""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing"""
f""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture"""
""" (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This"""
f""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect"""
""" to be exactly identical (e.g. initializing a BertForSequenceClassification model from a"""
""" FlaxBertForSequenceClassification model).""" )
if len(SCREAMING_SNAKE_CASE__ ) > 0:
logger.warning(
f"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly"""
f""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to"""
""" use it for predictions and inference.""" )
return pt_model
| 200 | 0 |
'''simple docstring'''
def UpperCAmelCase ( a_ ) -> list:
"""simple docstring"""
A_ : Optional[int] = False
while is_sorted is False: # Until all the indices are traversed keep looping
A_ : Union[str, Any] = True
for i in range(0 , len(a_ ) - 1 , 2 ): # iterating over all even indices
if input_list[i] > input_list[i + 1]:
A_ , A_ : str = input_list[i + 1], input_list[i]
# swapping if elements not in order
A_ : List[str] = False
for i in range(1 , len(a_ ) - 1 , 2 ): # iterating over all odd indices
if input_list[i] > input_list[i + 1]:
A_ , A_ : Optional[int] = input_list[i + 1], input_list[i]
# swapping if elements not in order
A_ : Union[str, Any] = False
return input_list
if __name__ == "__main__":
print('Enter list to be sorted')
UpperCamelCase__ : Union[str, Any] = [int(x) for x in input().split()]
# inputing elements of the list in one line
UpperCamelCase__ : int = odd_even_sort(input_list)
print('The sorted list is')
print(sorted_list)
| 164 |
'''simple docstring'''
from __future__ import annotations
from collections.abc import Iterator
from typing import Any
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self , _lowerCamelCase ) -> Optional[Any]:
A_ : Any = data
A_ : Node | None = None
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self ) -> List[str]:
A_ : Tuple = None
A_ : str = None
def __iter__( self ) -> Iterator[Any]:
A_ : Dict = self.head
while self.head:
yield node.data
A_ : Optional[Any] = node.next
if node == self.head:
break
def __len__( self ) -> int:
return sum(1 for _ in self )
def __repr__( self ) -> str:
return "->".join(str(_lowerCamelCase ) for item in iter(self ) )
def UpperCAmelCase_ ( self , _lowerCamelCase ) -> None:
self.insert_nth(len(self ) , _lowerCamelCase )
def UpperCAmelCase_ ( self , _lowerCamelCase ) -> None:
self.insert_nth(0 , _lowerCamelCase )
def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> None:
if index < 0 or index > len(self ):
raise IndexError("""list index out of range.""" )
A_ : Optional[int] = Node(_lowerCamelCase )
if self.head is None:
A_ : str = new_node # first node points itself
A_ : Union[str, Any] = new_node
elif index == 0: # insert at head
A_ : List[Any] = self.head
A_ : List[Any] = new_node
else:
A_ : List[str] = self.head
for _ in range(index - 1 ):
A_ : Optional[int] = temp.next
A_ : Tuple = temp.next
A_ : str = new_node
if index == len(self ) - 1: # insert at tail
A_ : Optional[int] = new_node
def UpperCAmelCase_ ( self ) -> List[Any]:
return self.delete_nth(0 )
def UpperCAmelCase_ ( self ) -> Any:
return self.delete_nth(len(self ) - 1 )
def UpperCAmelCase_ ( self , _lowerCamelCase = 0 ) -> Any:
if not 0 <= index < len(self ):
raise IndexError("""list index out of range.""" )
A_ : int = self.head
if self.head == self.tail: # just one node
A_ : int = None
elif index == 0: # delete head node
A_ : Union[str, Any] = self.tail.next.next
A_ : Tuple = self.head.next
else:
A_ : Optional[int] = self.head
for _ in range(index - 1 ):
A_ : Tuple = temp.next
A_ : Any = temp.next
A_ : Tuple = temp.next.next
if index == len(self ) - 1: # delete at tail
A_ : List[str] = temp
return delete_node.data
def UpperCAmelCase_ ( self ) -> bool:
return len(self ) == 0
def UpperCAmelCase ( ) -> None:
"""simple docstring"""
A_ : Any = CircularLinkedList()
assert len(a_ ) == 0
assert circular_linked_list.is_empty() is True
assert str(a_ ) == ""
try:
circular_linked_list.delete_front()
raise AssertionError # This should not happen
except IndexError:
assert True # This should happen
try:
circular_linked_list.delete_tail()
raise AssertionError # This should not happen
except IndexError:
assert True # This should happen
try:
circular_linked_list.delete_nth(-1 )
raise AssertionError
except IndexError:
assert True
try:
circular_linked_list.delete_nth(0 )
raise AssertionError
except IndexError:
assert True
assert circular_linked_list.is_empty() is True
for i in range(5 ):
assert len(a_ ) == i
circular_linked_list.insert_nth(a_ , i + 1 )
assert str(a_ ) == "->".join(str(a_ ) for i in range(1 , 6 ) )
circular_linked_list.insert_tail(6 )
assert str(a_ ) == "->".join(str(a_ ) for i in range(1 , 7 ) )
circular_linked_list.insert_head(0 )
assert str(a_ ) == "->".join(str(a_ ) for i in range(0 , 7 ) )
assert circular_linked_list.delete_front() == 0
assert circular_linked_list.delete_tail() == 6
assert str(a_ ) == "->".join(str(a_ ) for i in range(1 , 6 ) )
assert circular_linked_list.delete_nth(2 ) == 3
circular_linked_list.insert_nth(2 , 3 )
assert str(a_ ) == "->".join(str(a_ ) for i in range(1 , 6 ) )
assert circular_linked_list.is_empty() is False
if __name__ == "__main__":
import doctest
doctest.testmod()
| 164 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
_lowerCamelCase : List[Any] = logging.get_logger(__name__)
_lowerCamelCase : Union[str, Any] = {
"""shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""",
# See all Nat models at https://huggingface.co/models?filter=nat
}
class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = '''nat'''
UpperCAmelCase__ = {
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__( self : Dict , UpperCAmelCase__ : Optional[Any]=4 , UpperCAmelCase__ : Union[str, Any]=3 , UpperCAmelCase__ : Optional[int]=64 , UpperCAmelCase__ : Dict=[3, 4, 6, 5] , UpperCAmelCase__ : Dict=[2, 4, 8, 16] , UpperCAmelCase__ : int=7 , UpperCAmelCase__ : List[Any]=3.0 , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : List[Any]=0.0 , UpperCAmelCase__ : str=0.0 , UpperCAmelCase__ : Dict=0.1 , UpperCAmelCase__ : Union[str, Any]="gelu" , UpperCAmelCase__ : Any=0.02 , UpperCAmelCase__ : Optional[Any]=1e-5 , UpperCAmelCase__ : List[Any]=0.0 , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Dict=None , **UpperCAmelCase__ : Any , ) ->str:
'''simple docstring'''
super().__init__(**UpperCAmelCase__)
A__ = patch_size
A__ = num_channels
A__ = embed_dim
A__ = depths
A__ = len(UpperCAmelCase__)
A__ = num_heads
A__ = kernel_size
A__ = mlp_ratio
A__ = qkv_bias
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = drop_path_rate
A__ = hidden_act
A__ = layer_norm_eps
A__ = initializer_range
# we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
A__ = int(embed_dim * 2 ** (len(UpperCAmelCase__) - 1))
A__ = layer_scale_init_value
A__ = ['''stem'''] + [f"""stage{idx}""" for idx in range(1 , len(UpperCAmelCase__) + 1)]
A__ , A__ = get_aligned_output_features_output_indices(
out_features=UpperCAmelCase__ , out_indices=UpperCAmelCase__ , stage_names=self.stage_names)
| 14 |
import argparse
import torch
from safetensors.torch import load_file
from diffusers import StableDiffusionPipeline
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]:
"""simple docstring"""
A__ = StableDiffusionPipeline.from_pretrained(lowercase_ , torch_dtype=torch.floataa )
# load LoRA weight from .safetensors
A__ = load_file(lowercase_ )
A__ = []
# directly update weight in diffusers model
for key in state_dict:
# it is suggested to print out the key, it usually will be something like below
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
# as we have set the alpha beforehand, so just skip
if ".alpha" in key or key in visited:
continue
if "text" in key:
A__ = key.split('''.''' )[0].split(LORA_PREFIX_TEXT_ENCODER + '''_''' )[-1].split('''_''' )
A__ = pipeline.text_encoder
else:
A__ = key.split('''.''' )[0].split(LORA_PREFIX_UNET + '''_''' )[-1].split('''_''' )
A__ = pipeline.unet
# find the target layer
A__ = layer_infos.pop(0 )
while len(lowercase_ ) > -1:
try:
A__ = curr_layer.__getattr__(lowercase_ )
if len(lowercase_ ) > 0:
A__ = layer_infos.pop(0 )
elif len(lowercase_ ) == 0:
break
except Exception:
if len(lowercase_ ) > 0:
temp_name += "_" + layer_infos.pop(0 )
else:
A__ = layer_infos.pop(0 )
A__ = []
if "lora_down" in key:
pair_keys.append(key.replace('''lora_down''' , '''lora_up''' ) )
pair_keys.append(lowercase_ )
else:
pair_keys.append(lowercase_ )
pair_keys.append(key.replace('''lora_up''' , '''lora_down''' ) )
# update weight
if len(state_dict[pair_keys[0]].shape ) == 4:
A__ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
A__ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ ).unsqueeze(2 ).unsqueeze(3 )
else:
A__ = state_dict[pair_keys[0]].to(torch.floataa )
A__ = state_dict[pair_keys[1]].to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ )
# update visited list
for item in pair_keys:
visited.append(lowercase_ )
return pipeline
if __name__ == "__main__":
_lowerCamelCase : Tuple = argparse.ArgumentParser()
parser.add_argument(
"""--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format."""
)
parser.add_argument(
"""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert."""
)
parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""")
parser.add_argument(
"""--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors"""
)
parser.add_argument(
"""--lora_prefix_text_encoder""",
default="""lora_te""",
type=str,
help="""The prefix of text encoder weight in safetensors""",
)
parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""")
parser.add_argument(
"""--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not."""
)
parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""")
_lowerCamelCase : Tuple = parser.parse_args()
_lowerCamelCase : List[Any] = args.base_model_path
_lowerCamelCase : Optional[int] = args.checkpoint_path
_lowerCamelCase : Dict = args.dump_path
_lowerCamelCase : Optional[Any] = args.lora_prefix_unet
_lowerCamelCase : Optional[int] = args.lora_prefix_text_encoder
_lowerCamelCase : List[Any] = args.alpha
_lowerCamelCase : int = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha)
_lowerCamelCase : Tuple = pipe.to(args.device)
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 14 | 1 |
from __future__ import annotations
import copy
import inspect
import unittest
import numpy as np
from transformers import is_tf_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_tf, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
TFLayoutLMvaModel,
)
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class lowercase__ :
def __init__( self : Optional[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : int=3 , UpperCAmelCase_ : List[str]=4 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : List[str]=7 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Union[str, Any]=99 , UpperCAmelCase_ : List[str]=36 , UpperCAmelCase_ : Optional[Any]=2 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : Optional[Any]=37 , UpperCAmelCase_ : Dict="gelu" , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Optional[Any]=512 , UpperCAmelCase_ : List[Any]=16 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : Dict=6 , UpperCAmelCase_ : Optional[int]=6 , UpperCAmelCase_ : int=3 , UpperCAmelCase_ : List[str]=4 , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : str=1000 , ):
SCREAMING_SNAKE_CASE__ = parent
SCREAMING_SNAKE_CASE__ = batch_size
SCREAMING_SNAKE_CASE__ = num_channels
SCREAMING_SNAKE_CASE__ = image_size
SCREAMING_SNAKE_CASE__ = patch_size
SCREAMING_SNAKE_CASE__ = is_training
SCREAMING_SNAKE_CASE__ = use_input_mask
SCREAMING_SNAKE_CASE__ = use_token_type_ids
SCREAMING_SNAKE_CASE__ = use_labels
SCREAMING_SNAKE_CASE__ = vocab_size
SCREAMING_SNAKE_CASE__ = hidden_size
SCREAMING_SNAKE_CASE__ = num_hidden_layers
SCREAMING_SNAKE_CASE__ = num_attention_heads
SCREAMING_SNAKE_CASE__ = intermediate_size
SCREAMING_SNAKE_CASE__ = hidden_act
SCREAMING_SNAKE_CASE__ = hidden_dropout_prob
SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE__ = max_position_embeddings
SCREAMING_SNAKE_CASE__ = type_vocab_size
SCREAMING_SNAKE_CASE__ = type_sequence_label_size
SCREAMING_SNAKE_CASE__ = initializer_range
SCREAMING_SNAKE_CASE__ = coordinate_size
SCREAMING_SNAKE_CASE__ = shape_size
SCREAMING_SNAKE_CASE__ = num_labels
SCREAMING_SNAKE_CASE__ = num_choices
SCREAMING_SNAKE_CASE__ = scope
SCREAMING_SNAKE_CASE__ = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
SCREAMING_SNAKE_CASE__ = text_seq_length
SCREAMING_SNAKE_CASE__ = (image_size // patch_size) ** 2 + 1
SCREAMING_SNAKE_CASE__ = self.text_seq_length + self.image_seq_length
def A_ ( self : str ):
SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size )
SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox )
SCREAMING_SNAKE_CASE__ = bbox.numpy()
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
SCREAMING_SNAKE_CASE__ = bbox[i, j, 3]
SCREAMING_SNAKE_CASE__ = bbox[i, j, 1]
SCREAMING_SNAKE_CASE__ = tmp_coordinate
if bbox[i, j, 2] < bbox[i, j, 0]:
SCREAMING_SNAKE_CASE__ = bbox[i, j, 2]
SCREAMING_SNAKE_CASE__ = bbox[i, j, 0]
SCREAMING_SNAKE_CASE__ = tmp_coordinate
SCREAMING_SNAKE_CASE__ = tf.constant(UpperCAmelCase_ )
SCREAMING_SNAKE_CASE__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE__ = None
if self.use_input_mask:
SCREAMING_SNAKE_CASE__ = random_attention_mask([self.batch_size, self.text_seq_length] )
SCREAMING_SNAKE_CASE__ = None
if self.use_token_type_ids:
SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size )
SCREAMING_SNAKE_CASE__ = None
SCREAMING_SNAKE_CASE__ = None
if self.use_labels:
SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels )
SCREAMING_SNAKE_CASE__ = LayoutLMvaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , )
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def A_ ( self : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any ):
SCREAMING_SNAKE_CASE__ = TFLayoutLMvaModel(config=UpperCAmelCase_ )
# text + image
SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , training=UpperCAmelCase_ )
SCREAMING_SNAKE_CASE__ = model(
UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , training=UpperCAmelCase_ , )
SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , training=UpperCAmelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# text only
SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ , training=UpperCAmelCase_ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
SCREAMING_SNAKE_CASE__ = model({'pixel_values': pixel_values} , training=UpperCAmelCase_ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) )
def A_ ( self : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] ):
SCREAMING_SNAKE_CASE__ = self.num_labels
SCREAMING_SNAKE_CASE__ = TFLayoutLMvaForSequenceClassification(config=UpperCAmelCase_ )
SCREAMING_SNAKE_CASE__ = model(
UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , training=UpperCAmelCase_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def A_ ( self : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] ):
SCREAMING_SNAKE_CASE__ = self.num_labels
SCREAMING_SNAKE_CASE__ = TFLayoutLMvaForTokenClassification(config=UpperCAmelCase_ )
SCREAMING_SNAKE_CASE__ = model(
UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , training=UpperCAmelCase_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) )
def A_ ( self : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str ):
SCREAMING_SNAKE_CASE__ = 2
SCREAMING_SNAKE_CASE__ = TFLayoutLMvaForQuestionAnswering(config=UpperCAmelCase_ )
SCREAMING_SNAKE_CASE__ = model(
UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , training=UpperCAmelCase_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def A_ ( self : List[str] ):
SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs()
((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) = config_and_inputs
SCREAMING_SNAKE_CASE__ = {
'input_ids': input_ids,
'bbox': bbox,
'pixel_values': pixel_values,
'token_type_ids': token_type_ids,
'attention_mask': input_mask,
}
return config, inputs_dict
@require_tf
class lowercase__ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
A__ : str =(
(
TFLayoutLMvaModel,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
)
if is_tf_available()
else ()
)
A__ : Union[str, Any] =(
{"""document-question-answering""": TFLayoutLMvaForQuestionAnswering, """feature-extraction""": TFLayoutLMvaModel}
if is_tf_available()
else {}
)
A__ : Union[str, Any] =False
A__ : Optional[int] =False
A__ : Optional[Any] =False
def A_ ( self : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Any ):
return True
def A_ ( self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any]=False ):
SCREAMING_SNAKE_CASE__ = copy.deepcopy(UpperCAmelCase_ )
if model_class in get_values(UpperCAmelCase_ ):
SCREAMING_SNAKE_CASE__ = {
k: tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) )
if isinstance(UpperCAmelCase_ , tf.Tensor ) and v.ndim > 0
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(UpperCAmelCase_ ):
SCREAMING_SNAKE_CASE__ = tf.ones(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(UpperCAmelCase_ ):
SCREAMING_SNAKE_CASE__ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
SCREAMING_SNAKE_CASE__ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(UpperCAmelCase_ ):
SCREAMING_SNAKE_CASE__ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(UpperCAmelCase_ ):
SCREAMING_SNAKE_CASE__ = tf.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa )
return inputs_dict
def A_ ( self : int ):
SCREAMING_SNAKE_CASE__ = TFLayoutLMvaModelTester(self )
SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 )
def A_ ( self : Optional[Any] ):
self.config_tester.run_common_tests()
def A_ ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE__ = model_class(UpperCAmelCase_ )
if getattr(UpperCAmelCase_ , 'hf_compute_loss' , UpperCAmelCase_ ):
# The number of elements in the loss should be the same as the number of elements in the label
SCREAMING_SNAKE_CASE__ = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
SCREAMING_SNAKE_CASE__ = prepared_for_class[
sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=UpperCAmelCase_ )[0]
]
SCREAMING_SNAKE_CASE__ = added_label.shape.as_list()[:1]
# Test that model correctly compute the loss with kwargs
SCREAMING_SNAKE_CASE__ = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
SCREAMING_SNAKE_CASE__ = prepared_for_class.pop('input_ids' )
SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ , **UpperCAmelCase_ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss when we mask some positions
SCREAMING_SNAKE_CASE__ = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
SCREAMING_SNAKE_CASE__ = prepared_for_class.pop('input_ids' )
if "labels" in prepared_for_class:
SCREAMING_SNAKE_CASE__ = prepared_for_class['labels'].numpy()
if len(labels.shape ) > 1 and labels.shape[1] != 1:
SCREAMING_SNAKE_CASE__ = -100
SCREAMING_SNAKE_CASE__ = tf.convert_to_tensor(UpperCAmelCase_ )
SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ , **UpperCAmelCase_ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) )
# Test that model correctly compute the loss with a dict
SCREAMING_SNAKE_CASE__ = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss with a tuple
SCREAMING_SNAKE_CASE__ = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
# Get keys that were added with the _prepare_for_class function
SCREAMING_SNAKE_CASE__ = prepared_for_class.keys() - inputs_dict.keys()
SCREAMING_SNAKE_CASE__ = inspect.signature(model.call ).parameters
SCREAMING_SNAKE_CASE__ = list(signature.keys() )
# Create a dictionary holding the location of the tensors in the tuple
SCREAMING_SNAKE_CASE__ = {0: 'input_ids'}
for label_key in label_keys:
SCREAMING_SNAKE_CASE__ = signature_names.index(UpperCAmelCase_ )
SCREAMING_SNAKE_CASE__ = label_key
SCREAMING_SNAKE_CASE__ = sorted(tuple_index_mapping.items() )
# Initialize a list with their default values, update the values and convert to a tuple
SCREAMING_SNAKE_CASE__ = []
for name in signature_names:
if name != "kwargs":
list_input.append(signature[name].default )
for index, value in sorted_tuple_index_mapping:
SCREAMING_SNAKE_CASE__ = prepared_for_class[value]
SCREAMING_SNAKE_CASE__ = tuple(UpperCAmelCase_ )
# Send to model
SCREAMING_SNAKE_CASE__ = model(tuple_input[:-1] )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
def A_ ( self : List[str] ):
(
(
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) ,
) = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
def A_ ( self : List[str] ):
(
(
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) ,
) = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
SCREAMING_SNAKE_CASE__ = type
self.model_tester.create_and_check_model(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
def A_ ( self : str ):
(
(
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) ,
) = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
def A_ ( self : Any ):
(
(
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) ,
) = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
def A_ ( self : List[Any] ):
(
(
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) ,
) = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
@slow
def A_ ( self : Tuple ):
for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE__ = TFLayoutLMvaModel.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
def _lowercase ( ) -> Optional[int]:
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_tf
class lowercase__ ( unittest.TestCase ):
@cached_property
def A_ ( self : List[Any] ):
return LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase_ ) if is_vision_available() else None
@slow
def A_ ( self : Dict ):
SCREAMING_SNAKE_CASE__ = TFLayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' )
SCREAMING_SNAKE_CASE__ = self.default_image_processor
SCREAMING_SNAKE_CASE__ = prepare_img()
SCREAMING_SNAKE_CASE__ = image_processor(images=UpperCAmelCase_ , return_tensors='tf' ).pixel_values
SCREAMING_SNAKE_CASE__ = tf.constant([[1, 2]] )
SCREAMING_SNAKE_CASE__ = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 )
# forward pass
SCREAMING_SNAKE_CASE__ = model(input_ids=UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , training=UpperCAmelCase_ )
# verify the logits
SCREAMING_SNAKE_CASE__ = (1, 199, 768)
self.assertEqual(outputs.last_hidden_state.shape , UpperCAmelCase_ )
SCREAMING_SNAKE_CASE__ = tf.constant(
[[-0.0_529, 0.3_618, 0.1_632], [-0.1_587, -0.1_667, -0.0_400], [-0.1_557, -0.1_671, -0.0_505]] )
self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase_ , atol=1e-4 ) )
| 169 |
import argparse
import pickle
import numpy as np
import torch
from torch import nn
from transformers import ReformerConfig, ReformerModelWithLMHead
from transformers.utils import logging
logging.set_verbosity_info()
def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None ) -> Optional[Any]:
'''simple docstring'''
assert torch_layer.weight.shape == weight.shape, F'{torch_layer} layer.weight does not match'
SCREAMING_SNAKE_CASE__ = nn.Parameter(UpperCamelCase_ )
if bias is not None:
assert torch_layer.bias.shape == bias.shape, F'{torch_layer} layer.bias does not match'
SCREAMING_SNAKE_CASE__ = nn.Parameter(UpperCamelCase_ )
def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]:
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = np.asarray(weights[0] )
SCREAMING_SNAKE_CASE__ = np.asarray(weights[1] )
SCREAMING_SNAKE_CASE__ = np.asarray(weights[2] )
set_param(
torch_layer.self_attention.query_key , torch.tensor(UpperCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase_ ) , )
set_param(
torch_layer.self_attention.value , torch.tensor(UpperCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase_ ) , )
set_param(
torch_layer.output.dense , torch.tensor(UpperCamelCase_ ).view(-1 , UpperCamelCase_ ).contiguous().transpose(0 , 1 ) , )
def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> str:
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = np.asarray(weights[0] )
SCREAMING_SNAKE_CASE__ = np.asarray(weights[1] )
SCREAMING_SNAKE_CASE__ = np.asarray(weights[2] )
SCREAMING_SNAKE_CASE__ = np.asarray(weights[3] )
set_param(
torch_layer.self_attention.query , torch.tensor(UpperCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase_ ) , )
set_param(
torch_layer.self_attention.key , torch.tensor(UpperCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase_ ) , )
set_param(
torch_layer.self_attention.value , torch.tensor(UpperCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase_ ) , )
set_param(
torch_layer.output.dense , torch.tensor(UpperCamelCase_ ).view(-1 , UpperCamelCase_ ).contiguous().transpose(0 , 1 ) , )
def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Tuple:
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = weights[0][0][0]
SCREAMING_SNAKE_CASE__ = np.asarray(layer_norm_a[0] )
SCREAMING_SNAKE_CASE__ = np.asarray(layer_norm_a[1] )
set_param(
torch_block.attention.layer_norm , torch.tensor(UpperCamelCase_ ) , torch.tensor(UpperCamelCase_ ) , )
# lsh weights + output
SCREAMING_SNAKE_CASE__ = weights[0][1]
if len(UpperCamelCase_ ) < 4:
set_layer_weights_in_torch_lsh(UpperCamelCase_ , torch_block.attention , UpperCamelCase_ )
else:
set_layer_weights_in_torch_local(UpperCamelCase_ , torch_block.attention , UpperCamelCase_ )
# intermediate weighs
SCREAMING_SNAKE_CASE__ = weights[2][0][1][2]
# Chunked Feed Forward
if len(UpperCamelCase_ ) == 4:
SCREAMING_SNAKE_CASE__ = intermediate_weights[2]
# layernorm 2
SCREAMING_SNAKE_CASE__ = np.asarray(intermediate_weights[0][0] )
SCREAMING_SNAKE_CASE__ = np.asarray(intermediate_weights[0][1] )
set_param(
torch_block.feed_forward.layer_norm , torch.tensor(UpperCamelCase_ ) , torch.tensor(UpperCamelCase_ ) , )
# intermediate dense
SCREAMING_SNAKE_CASE__ = np.asarray(intermediate_weights[1][0] )
SCREAMING_SNAKE_CASE__ = np.asarray(intermediate_weights[1][1] )
set_param(
torch_block.feed_forward.dense.dense , torch.tensor(UpperCamelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(UpperCamelCase_ ) , )
# intermediate out
SCREAMING_SNAKE_CASE__ = np.asarray(intermediate_weights[4][0] )
SCREAMING_SNAKE_CASE__ = np.asarray(intermediate_weights[4][1] )
set_param(
torch_block.feed_forward.output.dense , torch.tensor(UpperCamelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(UpperCamelCase_ ) , )
def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[str]:
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = torch_model.reformer
# word embeds
SCREAMING_SNAKE_CASE__ = np.asarray(weights[1] )
set_param(
torch_model_reformer.embeddings.word_embeddings , torch.tensor(UpperCamelCase_ ) , )
if isinstance(weights[3] , UpperCamelCase_ ):
SCREAMING_SNAKE_CASE__ = torch_model_reformer.embeddings.position_embeddings
for emb_idx in range(len(position_embeddings.weights ) ):
SCREAMING_SNAKE_CASE__ = np.asarray(weights[3][emb_idx][0] )
assert (
position_embeddings.weights[emb_idx].shape == emb_weights.shape
), F'{position_embeddings[emb_idx]} emb does not match'
SCREAMING_SNAKE_CASE__ = nn.Parameter(torch.tensor(UpperCamelCase_ ) )
SCREAMING_SNAKE_CASE__ = weights[5]
assert len(torch_model_reformer.encoder.layers ) * 4 == len(
UpperCamelCase_ ), "HF and trax model do not have the same number of layers"
for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ):
SCREAMING_SNAKE_CASE__ = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)]
set_block_weights_in_torch(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
# output layer norm
SCREAMING_SNAKE_CASE__ = np.asarray(weights[7][0] )
SCREAMING_SNAKE_CASE__ = np.asarray(weights[7][1] )
set_param(
torch_model_reformer.encoder.layer_norm , torch.tensor(UpperCamelCase_ ) , torch.tensor(UpperCamelCase_ ) , )
# output embeddings
SCREAMING_SNAKE_CASE__ = np.asarray(weights[9][0] )
SCREAMING_SNAKE_CASE__ = np.asarray(weights[9][1] )
set_param(
torch_model.lm_head.decoder , torch.tensor(UpperCamelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(UpperCamelCase_ ) , )
def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]:
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = ReformerConfig.from_json_file(UpperCamelCase_ )
print(F'Building PyTorch model from configuration: {config}' )
SCREAMING_SNAKE_CASE__ = ReformerModelWithLMHead(UpperCamelCase_ )
with open(UpperCamelCase_ , 'rb' ) as f:
SCREAMING_SNAKE_CASE__ = pickle.load(UpperCamelCase_ )['weights']
set_model_weights_in_torch(UpperCamelCase_ , UpperCamelCase_ , config.hidden_size )
# Save pytorch-model
print(F'Save PyTorch model to {pytorch_dump_path}' )
torch.save(model.state_dict() , UpperCamelCase_ )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--trax_model_pkl_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path."""
)
parser.add_argument(
"""--config_file""",
default=None,
type=str,
required=True,
help=(
"""The config json file corresponding to the pre-trained Reformer model. \n"""
"""This specifies the model architecture."""
),
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
__snake_case = parser.parse_args()
convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
| 169 | 1 |
"""simple docstring"""
import argparse
import os
from pathlib import Path
import torch
from bark.generation import _load_model as _bark_load_model
from huggingface_hub import hf_hub_download
from transformers import EncodecConfig, EncodecModel, set_seed
from transformers.models.bark.configuration_bark import (
BarkCoarseConfig,
BarkConfig,
BarkFineConfig,
BarkSemanticConfig,
)
from transformers.models.bark.generation_configuration_bark import (
BarkCoarseGenerationConfig,
BarkFineGenerationConfig,
BarkGenerationConfig,
BarkSemanticGenerationConfig,
)
from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel
from transformers.utils import logging
logging.set_verbosity_info()
__lowercase = logging.get_logger(__name__)
set_seed(770)
__lowercase = {
"""c_attn""": """att_proj""",
"""c_proj""": """out_proj""",
"""c_fc""": """in_proj""",
"""transformer.""": """""",
"""h.""": """layers.""",
"""ln_1""": """layernorm_1""",
"""ln_2""": """layernorm_2""",
"""ln_f""": """layernorm_final""",
"""wpe""": """position_embeds_layer""",
"""wte""": """input_embeds_layer""",
}
__lowercase = {
"""text_small""": {
"""repo_id""": """suno/bark""",
"""file_name""": """text.pt""",
},
"""coarse_small""": {
"""repo_id""": """suno/bark""",
"""file_name""": """coarse.pt""",
},
"""fine_small""": {
"""repo_id""": """suno/bark""",
"""file_name""": """fine.pt""",
},
"""text""": {
"""repo_id""": """suno/bark""",
"""file_name""": """text_2.pt""",
},
"""coarse""": {
"""repo_id""": """suno/bark""",
"""file_name""": """coarse_2.pt""",
},
"""fine""": {
"""repo_id""": """suno/bark""",
"""file_name""": """fine_2.pt""",
},
}
__lowercase = os.path.dirname(os.path.abspath(__file__))
__lowercase = os.path.join(os.path.expanduser("""~"""), """.cache""")
__lowercase = os.path.join(os.getenv("""XDG_CACHE_HOME""", default_cache_dir), """suno""", """bark_v0""")
def lowercase ( A_ , A_=False )-> Dict:
'''simple docstring'''
a : str = model_type
if use_small:
key += "_small"
return os.path.join(A_ , REMOTE_MODEL_PATHS[key]["file_name"] )
def lowercase ( A_ , A_ )-> Any:
'''simple docstring'''
os.makedirs(A_ , exist_ok=A_ )
hf_hub_download(repo_id=A_ , filename=A_ , local_dir=A_ )
def lowercase ( A_ , A_ , A_=False , A_="text" )-> int:
'''simple docstring'''
if model_type == "text":
a : Any = BarkSemanticModel
a : List[Any] = BarkSemanticConfig
a : List[Any] = BarkSemanticGenerationConfig
elif model_type == "coarse":
a : Optional[Any] = BarkCoarseModel
a : Tuple = BarkCoarseConfig
a : List[str] = BarkCoarseGenerationConfig
elif model_type == "fine":
a : Optional[Any] = BarkFineModel
a : Dict = BarkFineConfig
a : List[str] = BarkFineGenerationConfig
else:
raise NotImplementedError()
a : Dict = F'''{model_type}_small''' if use_small else model_type
a : Any = REMOTE_MODEL_PATHS[model_key]
if not os.path.exists(A_ ):
logger.info(F'''{model_type} model not found, downloading into `{CACHE_DIR}`.''' )
_download(model_info["repo_id"] , model_info["file_name"] )
a : Optional[int] = torch.load(A_ , map_location=A_ )
# this is a hack
a : List[str] = checkpoint["model_args"]
if "input_vocab_size" not in model_args:
a : str = model_args["vocab_size"]
a : Union[str, Any] = model_args["vocab_size"]
del model_args["vocab_size"]
# convert Bark model arguments to HF Bark model arguments
a : Tuple = model_args.pop("n_head" )
a : Tuple = model_args.pop("n_embd" )
a : int = model_args.pop("n_layer" )
a : List[Any] = ConfigClass(**checkpoint["model_args"] )
a : Tuple = ModelClass(config=A_ )
a : int = GenerationConfigClass()
a : Optional[int] = model_generation_config
a : Any = checkpoint["model"]
# fixup checkpoint
a : Optional[Any] = "_orig_mod."
for k, v in list(state_dict.items() ):
if k.startswith(A_ ):
# replace part of the key with corresponding layer name in HF implementation
a : Tuple = k[len(A_ ) :]
for old_layer_name in new_layer_name_dict:
a : Tuple = new_k.replace(A_ , new_layer_name_dict[old_layer_name] )
a : Tuple = state_dict.pop(A_ )
a : Dict = set(state_dict.keys() ) - set(model.state_dict().keys() )
a : Any = {k for k in extra_keys if not k.endswith(".attn.bias" )}
a : Any = set(model.state_dict().keys() ) - set(state_dict.keys() )
a : Optional[Any] = {k for k in missing_keys if not k.endswith(".attn.bias" )}
if len(A_ ) != 0:
raise ValueError(F'''extra keys found: {extra_keys}''' )
if len(A_ ) != 0:
raise ValueError(F'''missing keys: {missing_keys}''' )
model.load_state_dict(A_ , strict=A_ )
a : List[Any] = model.num_parameters(exclude_embeddings=A_ )
a : int = checkpoint["best_val_loss"].item()
logger.info(F'''model loaded: {round(n_params/1e6 , 1 )}M params, {round(A_ , 3 )} loss''' )
model.eval()
model.to(A_ )
del checkpoint, state_dict
return model
def lowercase ( A_ , A_=False , A_="text" )-> Dict:
'''simple docstring'''
if model_type not in ("text", "coarse", "fine"):
raise NotImplementedError()
a : Dict = "cpu" # do conversion on cpu
a : Optional[Any] = _get_ckpt_path(A_ , use_small=A_ )
a : Optional[int] = _load_model(A_ , A_ , model_type=A_ , use_small=A_ )
# load bark initial model
a : Optional[Any] = _bark_load_model(A_ , "cpu" , model_type=A_ , use_small=A_ )
if model_type == "text":
a : Dict = bark_model["model"]
if model.num_parameters(exclude_embeddings=A_ ) != bark_model.get_num_params():
raise ValueError("initial and new models don't have the same number of parameters" )
# check if same output as the bark model
a : Dict = 5
a : List[Any] = 10
if model_type in ["text", "coarse"]:
a : List[Any] = torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int )
a : Optional[Any] = bark_model(A_ )[0]
a : str = model(A_ )
# take last logits
a : Tuple = output_new_model_total.logits[:, [-1], :]
else:
a : int = 3
a : Any = 8
a : Tuple = torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int )
a : Union[str, Any] = model(A_ , A_ )
a : str = bark_model(A_ , A_ )
a : Optional[int] = output_new_model_total.logits
# output difference should come from the difference of self-attention implementation design
if output_new_model.shape != output_old_model.shape:
raise ValueError("initial and new outputs don't have the same shape" )
if (output_new_model - output_old_model).abs().max().item() > 1e-3:
raise ValueError("initial and new outputs are not equal" )
Path(A_ ).mkdir(exist_ok=A_ )
model.save_pretrained(A_ )
def lowercase ( A_ , A_ , A_ , A_ , A_ , A_ , )-> Any:
'''simple docstring'''
a : Tuple = os.path.join(A_ , A_ )
a : int = BarkSemanticConfig.from_pretrained(os.path.join(A_ , "config.json" ) )
a : Tuple = BarkCoarseConfig.from_pretrained(os.path.join(A_ , "config.json" ) )
a : Tuple = BarkFineConfig.from_pretrained(os.path.join(A_ , "config.json" ) )
a : List[str] = EncodecConfig.from_pretrained("facebook/encodec_24khz" )
a : Tuple = BarkSemanticModel.from_pretrained(A_ )
a : Tuple = BarkCoarseModel.from_pretrained(A_ )
a : Any = BarkFineModel.from_pretrained(A_ )
a : Tuple = EncodecModel.from_pretrained("facebook/encodec_24khz" )
a : List[str] = BarkConfig.from_sub_model_configs(
A_ , A_ , A_ , A_ )
a : str = BarkGenerationConfig.from_sub_model_configs(
semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config )
a : Optional[int] = BarkModel(A_ )
a : Tuple = semantic
a : int = coarseAcoustic
a : List[str] = fineAcoustic
a : Dict = codec
a : str = bark_generation_config
Path(A_ ).mkdir(exist_ok=A_ )
bark.save_pretrained(A_ , repo_id=A_ , push_to_hub=A_ )
if __name__ == "__main__":
__lowercase = argparse.ArgumentParser()
# Required parameters
parser.add_argument("""model_type""", type=str, help="""text, coarse or fine.""")
parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--is_small""", action="""store_true""", help="""convert the small version instead of the large.""")
__lowercase = parser.parse_args()
load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
| 40 |
"""simple docstring"""
def lowercase ( A_ , A_ )-> float:
'''simple docstring'''
if mass < 0:
raise ValueError("The mass of a body cannot be negative" )
return 0.5 * mass * abs(A_ ) * abs(A_ )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 40 | 1 |
"""simple docstring"""
from math import isqrt
def snake_case ( A__ ):
return all(number % divisor != 0 for divisor in range(2 ,isqrt(A__ ) + 1 ) )
def snake_case ( A__ = 10**6 ):
UpperCAmelCase_ : Dict = 0
UpperCAmelCase_ : Optional[Any] = 1
UpperCAmelCase_ : List[Any] = 7
while prime_candidate < max_prime:
primes_count += is_prime(A__ )
cube_index += 1
prime_candidate += 6 * cube_index
return primes_count
if __name__ == "__main__":
print(f'{solution() = }')
| 360 |
"""simple docstring"""
import pickle
import unittest
import torch
from accelerate import Accelerator
from accelerate.state import AcceleratorState
from accelerate.test_utils import require_cpu
@require_cpu
class UpperCamelCase_ (unittest.TestCase ):
def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict:
UpperCAmelCase_ : str = torch.nn.Linear(10 , 10 )
UpperCAmelCase_ : Optional[Any] = torch.optim.SGD(model.parameters() , 0.1 )
UpperCAmelCase_ : Optional[Any] = Accelerator()
UpperCAmelCase_ : Optional[Any] = accelerator.prepare(lowerCAmelCase_ )
try:
pickle.loads(pickle.dumps(lowerCAmelCase_ ) )
except Exception as e:
self.fail(f"""Accelerated optimizer pickling failed with {e}""" )
AcceleratorState._reset_state()
| 253 | 0 |
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str:
'''simple docstring'''
if number < 0 or shift_amount < 0:
raise ValueError('''both inputs must be positive integers''' )
UpperCAmelCase : Dict =str(bin(__lowerCAmelCase ) )
binary_number += "0" * shift_amount
return binary_number
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str:
'''simple docstring'''
if number < 0 or shift_amount < 0:
raise ValueError('''both inputs must be positive integers''' )
UpperCAmelCase : Any =str(bin(__lowerCAmelCase ) )[2:]
if shift_amount >= len(__lowerCAmelCase ):
return "0b0"
UpperCAmelCase : Optional[Any] =binary_number[: len(__lowerCAmelCase ) - shift_amount]
return "0b" + shifted_binary_number
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str:
'''simple docstring'''
if number >= 0: # Get binary representation of positive number
UpperCAmelCase : Optional[Any] ='''0''' + str(bin(__lowerCAmelCase ) ).strip('''-''' )[2:]
else: # Get binary (2's complement) representation of negative number
UpperCAmelCase : int =len(bin(__lowerCAmelCase )[3:] ) # Find 2's complement of number
UpperCAmelCase : Any =bin(abs(__lowerCAmelCase ) - (1 << binary_number_length) )[3:]
UpperCAmelCase : Optional[Any] =(
'''1''' + '''0''' * (binary_number_length - len(__lowerCAmelCase )) + binary_number
)
if shift_amount >= len(__lowerCAmelCase ):
return "0b" + binary_number[0] * len(__lowerCAmelCase )
return (
"0b"
+ binary_number[0] * shift_amount
+ binary_number[: len(__lowerCAmelCase ) - shift_amount]
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 348 | import torch
from diffusers import KDPMaDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class __snake_case ( lowerCamelCase__ ):
__lowerCamelCase : Optional[int] = (KDPMaDiscreteScheduler,)
__lowerCamelCase : List[str] = 10
def UpperCAmelCase__ ( self , **snake_case__ ) -> str:
'''simple docstring'''
UpperCAmelCase : int ={
'''num_train_timesteps''': 1100,
'''beta_start''': 0.0001,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
}
config.update(**snake_case__ )
return config
def UpperCAmelCase__ ( self ) -> Tuple:
'''simple docstring'''
for timesteps in [10, 50, 100, 1000]:
self.check_over_configs(num_train_timesteps=snake_case__ )
def UpperCAmelCase__ ( self ) -> Optional[int]:
'''simple docstring'''
for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ):
self.check_over_configs(beta_start=snake_case__ , beta_end=snake_case__ )
def UpperCAmelCase__ ( self ) -> str:
'''simple docstring'''
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=snake_case__ )
def UpperCAmelCase__ ( self ) -> Dict:
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=snake_case__ )
def UpperCAmelCase__ ( self ) -> str:
'''simple docstring'''
UpperCAmelCase : Optional[Any] =self.scheduler_classes[0]
UpperCAmelCase : Optional[int] =self.get_scheduler_config(prediction_type='''v_prediction''' )
UpperCAmelCase : Optional[Any] =scheduler_class(**snake_case__ )
scheduler.set_timesteps(self.num_inference_steps )
UpperCAmelCase : str =self.dummy_model()
UpperCAmelCase : Optional[Any] =self.dummy_sample_deter * scheduler.init_noise_sigma
UpperCAmelCase : Union[str, Any] =sample.to(snake_case__ )
for i, t in enumerate(scheduler.timesteps ):
UpperCAmelCase : str =scheduler.scale_model_input(snake_case__ , snake_case__ )
UpperCAmelCase : Any =model(snake_case__ , snake_case__ )
UpperCAmelCase : Union[str, Any] =scheduler.step(snake_case__ , snake_case__ , snake_case__ )
UpperCAmelCase : int =output.prev_sample
UpperCAmelCase : Dict =torch.sum(torch.abs(snake_case__ ) )
UpperCAmelCase : Optional[Any] =torch.mean(torch.abs(snake_case__ ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 4.69_34e-07 ) < 1e-2
assert abs(result_mean.item() - 6.11_12e-10 ) < 1e-3
else:
# CUDA
assert abs(result_sum.item() - 4.6_93_42_86_50_17_09_72e-07 ) < 1e-2
assert abs(result_mean.item() - 0.0002 ) < 1e-3
def UpperCAmelCase__ ( self ) -> int:
'''simple docstring'''
if torch_device == "mps":
return
UpperCAmelCase : Any =self.scheduler_classes[0]
UpperCAmelCase : Optional[int] =self.get_scheduler_config()
UpperCAmelCase : Optional[Any] =scheduler_class(**snake_case__ )
scheduler.set_timesteps(self.num_inference_steps )
UpperCAmelCase : Optional[int] =self.dummy_model()
UpperCAmelCase : Union[str, Any] =self.dummy_sample_deter * scheduler.init_noise_sigma
UpperCAmelCase : str =sample.to(snake_case__ )
for i, t in enumerate(scheduler.timesteps ):
UpperCAmelCase : Dict =scheduler.scale_model_input(snake_case__ , snake_case__ )
UpperCAmelCase : Union[str, Any] =model(snake_case__ , snake_case__ )
UpperCAmelCase : List[str] =scheduler.step(snake_case__ , snake_case__ , snake_case__ )
UpperCAmelCase : Optional[int] =output.prev_sample
UpperCAmelCase : Any =torch.sum(torch.abs(snake_case__ ) )
UpperCAmelCase : Union[str, Any] =torch.mean(torch.abs(snake_case__ ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 20.4125 ) < 1e-2
assert abs(result_mean.item() - 0.0266 ) < 1e-3
else:
# CUDA
assert abs(result_sum.item() - 20.4125 ) < 1e-2
assert abs(result_mean.item() - 0.0266 ) < 1e-3
def UpperCAmelCase__ ( self ) -> str:
'''simple docstring'''
if torch_device == "mps":
return
UpperCAmelCase : List[Any] =self.scheduler_classes[0]
UpperCAmelCase : Dict =self.get_scheduler_config()
UpperCAmelCase : List[str] =scheduler_class(**snake_case__ )
scheduler.set_timesteps(self.num_inference_steps , device=snake_case__ )
UpperCAmelCase : int =self.dummy_model()
UpperCAmelCase : Tuple =self.dummy_sample_deter.to(snake_case__ ) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
UpperCAmelCase : Optional[Any] =scheduler.scale_model_input(snake_case__ , snake_case__ )
UpperCAmelCase : int =model(snake_case__ , snake_case__ )
UpperCAmelCase : str =scheduler.step(snake_case__ , snake_case__ , snake_case__ )
UpperCAmelCase : List[str] =output.prev_sample
UpperCAmelCase : List[str] =torch.sum(torch.abs(snake_case__ ) )
UpperCAmelCase : Dict =torch.mean(torch.abs(snake_case__ ) )
if str(snake_case__ ).startswith('''cpu''' ):
# The following sum varies between 148 and 156 on mps. Why?
assert abs(result_sum.item() - 20.4125 ) < 1e-2
assert abs(result_mean.item() - 0.0266 ) < 1e-3
else:
# CUDA
assert abs(result_sum.item() - 20.4125 ) < 1e-2
assert abs(result_mean.item() - 0.0266 ) < 1e-3
| 348 | 1 |
"""simple docstring"""
from typing import Dict
import numpy as np
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException
if is_tf_available():
import tensorflow as tf
from ..tf_utils import stable_softmax
if is_torch_available():
import torch
_UpperCamelCase: List[Any] = logging.get_logger(__name__)
@add_end_docstrings(
A__, R'\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n ', )
class a__ ( A__ ):
def lowercase ( self : List[Any], lowerCAmelCase : Dict ) -> np.ndarray:
if self.framework == "tf":
lowercase : Any = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()
elif self.framework == "pt":
lowercase : List[str] = torch.nonzero(input_ids == self.tokenizer.mask_token_id, as_tuple=__A )
else:
raise ValueError('Unsupported framework' )
return masked_index
def lowercase ( self : List[str], lowerCAmelCase : Tuple ) -> np.ndarray:
lowercase : List[Any] = self.get_masked_index(__A )
lowercase : List[str] = np.prod(masked_index.shape )
if numel < 1:
raise PipelineException(
'fill-mask', self.model.base_model_prefix, f'''No mask_token ({self.tokenizer.mask_token}) found on the input''', )
def lowercase ( self : Dict, lowerCAmelCase : List[Any] ) -> str:
if isinstance(__A, __A ):
for model_input in model_inputs:
self._ensure_exactly_one_mask_token(model_input['input_ids'][0] )
else:
for input_ids in model_inputs["input_ids"]:
self._ensure_exactly_one_mask_token(__A )
def lowercase ( self : Tuple, lowerCAmelCase : str, lowerCAmelCase : int=None, **lowerCAmelCase : Optional[Any] ) -> Dict[str, GenericTensor]:
if return_tensors is None:
lowercase : Dict = self.framework
lowercase : Optional[Any] = self.tokenizer(__A, return_tensors=__A )
self.ensure_exactly_one_mask_token(__A )
return model_inputs
def lowercase ( self : List[str], lowerCAmelCase : Optional[int] ) -> Union[str, Any]:
lowercase : str = self.model(**__A )
lowercase : Dict = model_inputs["""input_ids"""]
return model_outputs
def lowercase ( self : Optional[int], lowerCAmelCase : Optional[int], lowerCAmelCase : Tuple=5, lowerCAmelCase : List[str]=None ) -> Optional[int]:
# Cap top_k if there are targets
if target_ids is not None and target_ids.shape[0] < top_k:
lowercase : Union[str, Any] = target_ids.shape[0]
lowercase : Any = model_outputs["""input_ids"""][0]
lowercase : Any = model_outputs["""logits"""]
if self.framework == "tf":
lowercase : Any = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0]
lowercase : Dict = outputs.numpy()
lowercase : Tuple = outputs[0, masked_index, :]
lowercase : Tuple = stable_softmax(__A, axis=-1 )
if target_ids is not None:
lowercase : Any = tf.gather_nd(tf.squeeze(__A, 0 ), target_ids.reshape(-1, 1 ) )
lowercase : str = tf.expand_dims(__A, 0 )
lowercase : Tuple = tf.math.top_k(__A, k=__A )
lowercase : str = topk.values.numpy(), topk.indices.numpy()
else:
lowercase : Optional[int] = torch.nonzero(input_ids == self.tokenizer.mask_token_id, as_tuple=__A ).squeeze(-1 )
# Fill mask pipeline supports only one ${mask_token} per sample
lowercase : List[Any] = outputs[0, masked_index, :]
lowercase : Tuple = logits.softmax(dim=-1 )
if target_ids is not None:
lowercase : List[str] = probs[..., target_ids]
lowercase : List[str] = probs.topk(__A )
lowercase : int = []
lowercase : Any = values.shape[0] == 1
for i, (_values, _predictions) in enumerate(zip(values.tolist(), predictions.tolist() ) ):
lowercase : Any = []
for v, p in zip(_values, _predictions ):
# Copy is important since we're going to modify this array in place
lowercase : int = input_ids.numpy().copy()
if target_ids is not None:
lowercase : str = target_ids[p].tolist()
lowercase : Union[str, Any] = p
# Filter padding out:
lowercase : Optional[int] = tokens[np.where(tokens != self.tokenizer.pad_token_id )]
# Originally we skip special tokens to give readable output.
# For multi masks though, the other [MASK] would be removed otherwise
# making the output look odd, so we add them back
lowercase : Dict = self.tokenizer.decode(__A, skip_special_tokens=__A )
lowercase : Dict = {"""score""": v, """token""": p, """token_str""": self.tokenizer.decode([p] ), """sequence""": sequence}
row.append(__A )
result.append(__A )
if single_mask:
return result[0]
return result
def lowercase ( self : Optional[Any], lowerCAmelCase : Union[str, Any], lowerCAmelCase : Tuple=None ) -> Optional[Any]:
if isinstance(__A, __A ):
lowercase : Dict = [targets]
try:
lowercase : Optional[Any] = self.tokenizer.get_vocab()
except Exception:
lowercase : int = {}
lowercase : str = []
for target in targets:
lowercase : List[Any] = vocab.get(__A, __A )
if id_ is None:
lowercase : Optional[int] = self.tokenizer(
__A, add_special_tokens=__A, return_attention_mask=__A, return_token_type_ids=__A, max_length=1, truncation=__A, )["""input_ids"""]
if len(__A ) == 0:
logger.warning(
f'''The specified target token `{target}` does not exist in the model vocabulary. '''
'We cannot replace it with anything meaningful, ignoring it' )
continue
lowercase : Any = input_ids[0]
# XXX: If users encounter this pass
# it becomes pretty slow, so let's make sure
# The warning enables them to fix the input to
# get faster performance.
logger.warning(
f'''The specified target token `{target}` does not exist in the model vocabulary. '''
f'''Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.''' )
target_ids.append(id_ )
lowercase : Optional[int] = list(set(__A ) )
if len(__A ) == 0:
raise ValueError('At least one target must be provided when passed.' )
lowercase : Union[str, Any] = np.array(__A )
return target_ids
def lowercase ( self : Optional[int], lowerCAmelCase : Union[str, Any]=None, lowerCAmelCase : List[Any]=None ) -> Dict:
lowercase : Union[str, Any] = {}
if targets is not None:
lowercase : List[Any] = self.get_target_ids(__A, __A )
lowercase : Optional[Any] = target_ids
if top_k is not None:
lowercase : List[str] = top_k
if self.tokenizer.mask_token_id is None:
raise PipelineException(
'fill-mask', self.model.base_model_prefix, 'The tokenizer does not define a `mask_token`.' )
return {}, {}, postprocess_params
def __call__( self : str, lowerCAmelCase : str, *lowerCAmelCase : Tuple, **lowerCAmelCase : int ) -> Optional[int]:
lowercase : int = super().__call__(__A, **__A )
if isinstance(__A, __A ) and len(__A ) == 1:
return outputs[0]
return outputs
| 351 |
"""simple docstring"""
import argparse
import requests
import torch
# pip3 install salesforce-lavis
# I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis
from lavis.models import load_model_and_preprocess
from PIL import Image
from transformers import (
AutoTokenizer,
BlipaConfig,
BlipaForConditionalGeneration,
BlipaProcessor,
BlipaVisionConfig,
BlipImageProcessor,
OPTConfig,
TaConfig,
)
from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
def lowercase__ ( ) -> Dict:
'''simple docstring'''
lowercase : List[Any] = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png'
lowercase : int = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ).convert('RGB' )
return image
def lowercase__ ( _UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
lowercase : str = []
# fmt: off
# vision encoder
rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') )
rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') )
rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') )
rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') )
rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') )
rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') )
for i in range(config.vision_config.num_hidden_layers ):
rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.weight''', f'''vision_model.encoder.layers.{i}.layer_norm1.weight''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.bias''', f'''vision_model.encoder.layers.{i}.layer_norm1.bias''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.weight''', f'''vision_model.encoder.layers.{i}.layer_norm2.weight''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.bias''', f'''vision_model.encoder.layers.{i}.layer_norm2.bias''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.attn.qkv.weight''', f'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.weight''', f'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) )
rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.bias''', f'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') )
# QFormer
rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') )
rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') )
# fmt: on
return rename_keys
def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
lowercase : Tuple = dct.pop(_UpperCAmelCase )
lowercase : Tuple = val
def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> str:
'''simple docstring'''
for i in range(config.vision_config.num_hidden_layers ):
# read in original q and v biases
lowercase : Optional[int] = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.q_bias''' )
lowercase : int = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.v_bias''' )
# next, set bias in the state dict
lowercase : List[Any] = torch.cat((q_bias, torch.zeros_like(_UpperCAmelCase , requires_grad=_UpperCAmelCase ), v_bias) )
lowercase : Optional[Any] = qkv_bias
def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
lowercase : List[str] = 3_64 if 'coco' in model_name else 2_24
lowercase : int = BlipaVisionConfig(image_size=_UpperCAmelCase ).to_dict()
# make sure the models have proper bos_token_id and eos_token_id set (important for generation)
# seems like flan-T5 models don't have bos_token_id properly set?
if "opt-2.7b" in model_name:
lowercase : Optional[int] = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=_UpperCAmelCase ).to_dict()
elif "opt-6.7b" in model_name:
lowercase : List[str] = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=_UpperCAmelCase ).to_dict()
elif "t5-xl" in model_name:
lowercase : int = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict()
elif "t5-xxl" in model_name:
lowercase : Optional[Any] = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict()
lowercase : int = BlipaConfig(vision_config=_UpperCAmelCase , text_config=_UpperCAmelCase )
return config, image_size
@torch.no_grad()
def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=False ) -> Optional[int]:
'''simple docstring'''
lowercase : Any = (
AutoTokenizer.from_pretrained('facebook/opt-2.7b' )
if 'opt' in model_name
else AutoTokenizer.from_pretrained('google/flan-t5-xl' )
)
lowercase : Any = tokenizer('\n' , add_special_tokens=_UpperCAmelCase ).input_ids[0]
lowercase , lowercase : Union[str, Any] = get_blipa_config(_UpperCAmelCase , eos_token_id=_UpperCAmelCase )
lowercase : Any = BlipaForConditionalGeneration(_UpperCAmelCase ).eval()
lowercase : Any = {
'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'),
'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'),
'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'),
'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'),
'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'),
'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'),
'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'),
}
lowercase , lowercase : Optional[int] = model_name_to_original[model_name]
# load original model
print('Loading original model...' )
lowercase : Dict = 'cuda' if torch.cuda.is_available() else 'cpu'
lowercase , lowercase , lowercase : List[str] = load_model_and_preprocess(
name=_UpperCAmelCase , model_type=_UpperCAmelCase , is_eval=_UpperCAmelCase , device=_UpperCAmelCase )
original_model.eval()
print('Done!' )
# update state dict keys
lowercase : int = original_model.state_dict()
lowercase : str = create_rename_keys(_UpperCAmelCase )
for src, dest in rename_keys:
rename_key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
# some keys can be renamed efficiently
for key, val in state_dict.copy().items():
lowercase : Dict = state_dict.pop(_UpperCAmelCase )
if key.startswith('Qformer.bert' ):
lowercase : List[Any] = key.replace('Qformer.bert' , 'qformer' )
if "attention.self" in key:
lowercase : List[Any] = key.replace('self' , 'attention' )
if "opt_proj" in key:
lowercase : Any = key.replace('opt_proj' , 'language_projection' )
if "t5_proj" in key:
lowercase : List[Any] = key.replace('t5_proj' , 'language_projection' )
if key.startswith('opt' ):
lowercase : Optional[Any] = key.replace('opt' , 'language' )
if key.startswith('t5' ):
lowercase : Optional[Any] = key.replace('t5' , 'language' )
lowercase : Tuple = val
# read in qv biases
read_in_q_v_bias(_UpperCAmelCase , _UpperCAmelCase )
lowercase , lowercase : str = hf_model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase )
assert len(_UpperCAmelCase ) == 0
assert unexpected_keys == ["qformer.embeddings.position_ids"]
lowercase : List[Any] = load_demo_image()
lowercase : Optional[Any] = vis_processors['eval'](_UpperCAmelCase ).unsqueeze(0 ).to(_UpperCAmelCase )
lowercase : str = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(_UpperCAmelCase )
# create processor
lowercase : List[Any] = BlipImageProcessor(
size={'height': image_size, 'width': image_size} , image_mean=_UpperCAmelCase , image_std=_UpperCAmelCase )
lowercase : Union[str, Any] = BlipaProcessor(image_processor=_UpperCAmelCase , tokenizer=_UpperCAmelCase )
lowercase : Tuple = processor(images=_UpperCAmelCase , return_tensors='pt' ).pixel_values.to(_UpperCAmelCase )
# make sure processor creates exact same pixel values
assert torch.allclose(_UpperCAmelCase , _UpperCAmelCase )
original_model.to(_UpperCAmelCase )
hf_model.to(_UpperCAmelCase )
with torch.no_grad():
if "opt" in model_name:
lowercase : Any = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits
lowercase : str = hf_model(_UpperCAmelCase , _UpperCAmelCase ).logits
else:
lowercase : Tuple = original_model(
{'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits
lowercase : Dict = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 )
lowercase : Tuple = hf_model(_UpperCAmelCase , _UpperCAmelCase , labels=_UpperCAmelCase ).logits
assert original_logits.shape == logits.shape
print('First values of original logits:' , original_logits[0, :3, :3] )
print('First values of HF logits:' , logits[0, :3, :3] )
# assert values
if model_name == "blip2-flan-t5-xl":
lowercase : str = torch.tensor(
[[-4_1.5_8_5_0, -4.4_4_4_0, -8.9_9_2_2], [-4_7.4_3_2_2, -5.9_1_4_3, -1.7_3_4_0]] , device=_UpperCAmelCase )
assert torch.allclose(logits[0, :3, :3] , _UpperCAmelCase , atol=1e-4 )
elif model_name == "blip2-flan-t5-xl-coco":
lowercase : Any = torch.tensor(
[[-5_7.0_1_0_9, -9.8_9_6_7, -1_2.6_2_8_0], [-6_8.6_5_7_8, -1_2.7_1_9_1, -1_0.5_0_6_5]] , device=_UpperCAmelCase )
else:
# cast to same type
lowercase : Dict = logits.dtype
assert torch.allclose(original_logits.to(_UpperCAmelCase ) , _UpperCAmelCase , atol=1e-2 )
print('Looks ok!' )
print('Generating a caption...' )
lowercase : str = ''
lowercase : List[str] = tokenizer(_UpperCAmelCase , return_tensors='pt' ).input_ids.to(_UpperCAmelCase )
lowercase : Any = original_model.generate({'image': original_pixel_values} )
lowercase : Union[str, Any] = hf_model.generate(
_UpperCAmelCase , _UpperCAmelCase , do_sample=_UpperCAmelCase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , )
print('Original generation:' , _UpperCAmelCase )
lowercase : str = input_ids.shape[1]
lowercase : Dict = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=_UpperCAmelCase )
lowercase : Optional[int] = [text.strip() for text in output_text]
print('HF generation:' , _UpperCAmelCase )
if pytorch_dump_folder_path is not None:
processor.save_pretrained(_UpperCAmelCase )
hf_model.save_pretrained(_UpperCAmelCase )
if push_to_hub:
processor.push_to_hub(f'''nielsr/{model_name}''' )
hf_model.push_to_hub(f'''nielsr/{model_name}''' )
if __name__ == "__main__":
_UpperCamelCase: Optional[Any] = argparse.ArgumentParser()
_UpperCamelCase: Dict = [
'blip2-opt-2.7b',
'blip2-opt-6.7b',
'blip2-opt-2.7b-coco',
'blip2-opt-6.7b-coco',
'blip2-flan-t5-xl',
'blip2-flan-t5-xl-coco',
'blip2-flan-t5-xxl',
]
parser.add_argument(
'--model_name',
default='blip2-opt-2.7b',
choices=choices,
type=str,
help='Path to hf config.json of model to convert',
)
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Whether to push the model and processor to the hub after converting',
)
_UpperCamelCase: int = parser.parse_args()
convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 53 | 0 |
import math
from collections.abc import Iterator
from itertools import takewhile
def UpperCamelCase_( lowerCamelCase_ ) -> bool:
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(lowerCamelCase_ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def UpperCamelCase_( ) -> Iterator[int]:
_lowercase : Optional[Any] = 2
while True:
if is_prime(lowerCamelCase_ ):
yield num
num += 1
def UpperCamelCase_( lowerCamelCase_ = 200_0000 ) -> int:
return sum(takewhile(lambda lowerCamelCase_ : x < n , prime_generator() ) )
if __name__ == "__main__":
print(F"{solution() = }")
| 21 |
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert import BertTokenizer
SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE : Union[str, Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
SCREAMING_SNAKE_CASE : Union[str, Any] = {
"vocab_file": {
"facebook/dpr-ctx_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-ctx_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-ctx_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-ctx_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json"
),
},
}
SCREAMING_SNAKE_CASE : Dict = {
"vocab_file": {
"facebook/dpr-question_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-question_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-question_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-question_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json"
),
},
}
SCREAMING_SNAKE_CASE : str = {
"vocab_file": {
"facebook/dpr-reader-single-nq-base": (
"https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-reader-multiset-base": (
"https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-reader-single-nq-base": (
"https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-reader-multiset-base": (
"https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json"
),
},
}
SCREAMING_SNAKE_CASE : Dict = {
"facebook/dpr-ctx_encoder-single-nq-base": 512,
"facebook/dpr-ctx_encoder-multiset-base": 512,
}
SCREAMING_SNAKE_CASE : Optional[Any] = {
"facebook/dpr-question_encoder-single-nq-base": 512,
"facebook/dpr-question_encoder-multiset-base": 512,
}
SCREAMING_SNAKE_CASE : Dict = {
"facebook/dpr-reader-single-nq-base": 512,
"facebook/dpr-reader-multiset-base": 512,
}
SCREAMING_SNAKE_CASE : List[Any] = {
"facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True},
"facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True},
}
SCREAMING_SNAKE_CASE : Dict = {
"facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True},
"facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True},
}
SCREAMING_SNAKE_CASE : Dict = {
"facebook/dpr-reader-single-nq-base": {"do_lower_case": True},
"facebook/dpr-reader-multiset-base": {"do_lower_case": True},
}
class _lowerCamelCase( _a ):
lowercase_ : Any = VOCAB_FILES_NAMES
lowercase_ : Optional[int] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP
lowercase_ : str = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase_ : str = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION
class _lowerCamelCase( _a ):
lowercase_ : Optional[int] = VOCAB_FILES_NAMES
lowercase_ : Any = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP
lowercase_ : str = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase_ : Union[str, Any] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION
SCREAMING_SNAKE_CASE : Optional[int] = collections.namedtuple(
"DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"]
)
SCREAMING_SNAKE_CASE : Any = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"])
SCREAMING_SNAKE_CASE : str = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n "
@add_start_docstrings(_a )
class _lowerCamelCase:
def __call__( self, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = False, lowerCamelCase = False, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = None, **lowerCamelCase, ) -> BatchEncoding:
"""simple docstring"""
if titles is None and texts is None:
return super().__call__(
lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase, max_length=lowerCamelCase, return_tensors=lowerCamelCase, return_attention_mask=lowerCamelCase, **lowerCamelCase, )
elif titles is None or texts is None:
_lowercase : Dict = titles if texts is None else texts
return super().__call__(
lowerCamelCase, lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase, max_length=lowerCamelCase, return_tensors=lowerCamelCase, return_attention_mask=lowerCamelCase, **lowerCamelCase, )
_lowercase : Union[str, Any] = titles if not isinstance(lowerCamelCase, lowerCamelCase) else [titles]
_lowercase : Tuple = texts if not isinstance(lowerCamelCase, lowerCamelCase) else [texts]
_lowercase : Optional[Any] = len(lowerCamelCase)
_lowercase : Any = questions if not isinstance(lowerCamelCase, lowerCamelCase) else [questions] * n_passages
if len(lowerCamelCase) != len(lowerCamelCase):
raise ValueError(
F'''There should be as many titles than texts but got {len(lowerCamelCase)} titles and {len(lowerCamelCase)} texts.''')
_lowercase : Any = super().__call__(lowerCamelCase, lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase)['input_ids']
_lowercase : Tuple = super().__call__(lowerCamelCase, add_special_tokens=lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase)['input_ids']
_lowercase : int = {
'input_ids': [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(lowerCamelCase, lowerCamelCase)
]
}
if return_attention_mask is not False:
_lowercase : Optional[Any] = []
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids])
_lowercase : Union[str, Any] = attention_mask
return self.pad(lowerCamelCase, padding=lowerCamelCase, max_length=lowerCamelCase, return_tensors=lowerCamelCase)
def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase = 16, lowerCamelCase = 64, lowerCamelCase = 4, ) -> List[DPRSpanPrediction]:
"""simple docstring"""
_lowercase : Union[str, Any] = reader_input['input_ids']
_lowercase , _lowercase , _lowercase : Tuple = reader_output[:3]
_lowercase : Tuple = len(lowerCamelCase)
_lowercase : str = sorted(range(lowerCamelCase), reverse=lowerCamelCase, key=relevance_logits.__getitem__)
_lowercase : List[DPRReaderOutput] = []
for doc_id in sorted_docs:
_lowercase : str = list(input_ids[doc_id])
# assuming question & title information is at the beginning of the sequence
_lowercase : Any = sequence_ids.index(self.sep_token_id, 2) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
_lowercase : List[Any] = sequence_ids.index(self.pad_token_id)
else:
_lowercase : List[str] = len(lowerCamelCase)
_lowercase : Tuple = self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len], end_logits=end_logits[doc_id][passage_offset:sequence_len], max_answer_length=lowerCamelCase, top_spans=lowerCamelCase, )
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index], relevance_score=relevance_logits[doc_id], doc_id=lowerCamelCase, start_index=lowerCamelCase, end_index=lowerCamelCase, text=self.decode(sequence_ids[start_index : end_index + 1]), ))
if len(lowerCamelCase) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) -> List[DPRSpanPrediction]:
"""simple docstring"""
_lowercase : str = []
for start_index, start_score in enumerate(lowerCamelCase):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]):
scores.append(((start_index, start_index + answer_length), start_score + end_score))
_lowercase : Dict = sorted(lowerCamelCase, key=lambda lowerCamelCase: x[1], reverse=lowerCamelCase)
_lowercase : List[str] = []
for (start_index, end_index), score in scores:
if start_index > end_index:
raise ValueError(F'''Wrong span indices: [{start_index}:{end_index}]''')
_lowercase : Dict = end_index - start_index + 1
if length > max_answer_length:
raise ValueError(F'''Span is too long: {length} > {max_answer_length}''')
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals):
continue
chosen_span_intervals.append((start_index, end_index))
if len(lowerCamelCase) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(_a )
class _lowerCamelCase( _a, _a ):
lowercase_ : Union[str, Any] = VOCAB_FILES_NAMES
lowercase_ : Any = READER_PRETRAINED_VOCAB_FILES_MAP
lowercase_ : Dict = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase_ : Optional[int] = READER_PRETRAINED_INIT_CONFIGURATION
lowercase_ : str = ["""input_ids""", """attention_mask"""]
| 21 | 1 |
'''simple docstring'''
import inspect
from typing import Optional, Union
import numpy as np
import PIL
import torch
from torch.nn import functional as F
from torchvision import transforms
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
DPMSolverMultistepScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.utils import (
PIL_INTERPOLATION,
randn_tensor,
)
def UpperCamelCase ( a , a , a ) -> int:
'''simple docstring'''
if isinstance(lowerCAmelCase__ , torch.Tensor ):
return image
elif isinstance(lowerCAmelCase__ , PIL.Image.Image ):
__magic_name__ = [image]
if isinstance(image[0] , PIL.Image.Image ):
__magic_name__ = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image]
__magic_name__ = np.concatenate(lowerCAmelCase__ , axis=0 )
__magic_name__ = np.array(lowerCAmelCase__ ).astype(np.floataa ) / 255.0
__magic_name__ = image.transpose(0 , 3 , 1 , 2 )
__magic_name__ = 2.0 * image - 1.0
__magic_name__ = torch.from_numpy(lowerCAmelCase__ )
elif isinstance(image[0] , torch.Tensor ):
__magic_name__ = torch.cat(lowerCAmelCase__ , dim=0 )
return image
def UpperCamelCase ( a , a , a , a=0.99_95 ) -> Any:
'''simple docstring'''
if not isinstance(lowerCAmelCase__ , np.ndarray ):
__magic_name__ = True
__magic_name__ = va.device
__magic_name__ = va.cpu().numpy()
__magic_name__ = va.cpu().numpy()
__magic_name__ = np.sum(va * va / (np.linalg.norm(lowerCAmelCase__ ) * np.linalg.norm(lowerCAmelCase__ )) )
if np.abs(lowerCAmelCase__ ) > DOT_THRESHOLD:
__magic_name__ = (1 - t) * va + t * va
else:
__magic_name__ = np.arccos(lowerCAmelCase__ )
__magic_name__ = np.sin(lowerCAmelCase__ )
__magic_name__ = theta_a * t
__magic_name__ = np.sin(lowerCAmelCase__ )
__magic_name__ = np.sin(theta_a - theta_t ) / sin_theta_a
__magic_name__ = sin_theta_t / sin_theta_a
__magic_name__ = sa * va + sa * va
if inputs_are_torch:
__magic_name__ = torch.from_numpy(lowerCAmelCase__ ).to(lowerCAmelCase__ )
return va
def UpperCamelCase ( a , a ) -> List[str]:
'''simple docstring'''
__magic_name__ = F.normalize(lowerCAmelCase__ , dim=-1 )
__magic_name__ = F.normalize(lowerCAmelCase__ , dim=-1 )
return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 )
def UpperCamelCase ( a , a ) -> Optional[Any]:
'''simple docstring'''
for param in model.parameters():
__magic_name__ = value
class _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ ):
def __init__( self : Dict , a__ : Dict , a__ : Any , a__ : str , a__ : Any , a__ : Dict , a__ : Optional[int] , a__ : int , a__ : int=None , a__ : Union[str, Any]=None , a__ : Any=None , ):
super().__init__()
self.register_modules(
vae=A__ , text_encoder=A__ , clip_model=A__ , tokenizer=A__ , unet=A__ , scheduler=A__ , feature_extractor=A__ , coca_model=A__ , coca_tokenizer=A__ , coca_transform=A__ , )
__magic_name__ = (
feature_extractor.size
if isinstance(feature_extractor.size , A__ )
else feature_extractor.size['''shortest_edge''']
)
__magic_name__ = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std )
set_requires_grad(self.text_encoder , A__ )
set_requires_grad(self.clip_model , A__ )
def snake_case__ ( self : Optional[int] , a__ : Optional[int] = "auto" ):
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
__magic_name__ = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(A__ )
def snake_case__ ( self : Dict ):
self.enable_attention_slicing(A__ )
def snake_case__ ( self : Dict ):
set_requires_grad(self.vae , A__ )
def snake_case__ ( self : Optional[int] ):
set_requires_grad(self.vae , A__ )
def snake_case__ ( self : str ):
set_requires_grad(self.unet , A__ )
def snake_case__ ( self : Optional[int] ):
set_requires_grad(self.unet , A__ )
def snake_case__ ( self : Dict , a__ : List[Any] , a__ : List[Any] , a__ : Optional[int] ):
# get the original timestep using init_timestep
__magic_name__ = min(int(num_inference_steps * strength ) , A__ )
__magic_name__ = max(num_inference_steps - init_timestep , 0 )
__magic_name__ = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def snake_case__ ( self : List[Any] , a__ : Union[str, Any] , a__ : str , a__ : Any , a__ : Optional[Any] , a__ : Optional[Any] , a__ : str=None ):
if not isinstance(A__ , torch.Tensor ):
raise ValueError(F'''`image` has to be of type `torch.Tensor` but is {type(A__ )}''' )
__magic_name__ = image.to(device=A__ , dtype=A__ )
if isinstance(A__ , A__ ):
__magic_name__ = [
self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(A__ )
]
__magic_name__ = torch.cat(A__ , dim=0 )
else:
__magic_name__ = self.vae.encode(A__ ).latent_dist.sample(A__ )
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
__magic_name__ = 0.18_215 * init_latents
__magic_name__ = init_latents.repeat_interleave(A__ , dim=0 )
__magic_name__ = randn_tensor(init_latents.shape , generator=A__ , device=A__ , dtype=A__ )
# get latents
__magic_name__ = self.scheduler.add_noise(A__ , A__ , A__ )
__magic_name__ = init_latents
return latents
def snake_case__ ( self : Dict , a__ : str ):
__magic_name__ = self.coca_transform(A__ ).unsqueeze(0 )
with torch.no_grad(), torch.cuda.amp.autocast():
__magic_name__ = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) )
__magic_name__ = self.coca_tokenizer.decode(generated[0].cpu().numpy() )
return generated.split('''<end_of_text>''' )[0].replace('''<start_of_text>''' , '''''' ).rstrip(''' .,''' )
def snake_case__ ( self : List[Any] , a__ : List[Any] , a__ : Optional[Any] ):
__magic_name__ = self.feature_extractor.preprocess(A__ )
__magic_name__ = torch.from_numpy(clip_image_input['''pixel_values'''][0] ).unsqueeze(0 ).to(self.device ).half()
__magic_name__ = self.clip_model.get_image_features(A__ )
__magic_name__ = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=A__ )
__magic_name__ = image_embeddings_clip.repeat_interleave(A__ , dim=0 )
return image_embeddings_clip
@torch.enable_grad()
def snake_case__ ( self : Union[str, Any] , a__ : Tuple , a__ : List[Any] , a__ : int , a__ : str , a__ : List[str] , a__ : Any , a__ : Union[str, Any] , ):
__magic_name__ = latents.detach().requires_grad_()
__magic_name__ = self.scheduler.scale_model_input(A__ , A__ )
# predict the noise residual
__magic_name__ = self.unet(A__ , A__ , encoder_hidden_states=A__ ).sample
if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ):
__magic_name__ = self.scheduler.alphas_cumprod[timestep]
__magic_name__ = 1 - alpha_prod_t
# compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
__magic_name__ = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5
__magic_name__ = torch.sqrt(A__ )
__magic_name__ = pred_original_sample * (fac) + latents * (1 - fac)
elif isinstance(self.scheduler , A__ ):
__magic_name__ = self.scheduler.sigmas[index]
__magic_name__ = latents - sigma * noise_pred
else:
raise ValueError(F'''scheduler type {type(self.scheduler )} not supported''' )
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
__magic_name__ = 1 / 0.18_215 * sample
__magic_name__ = self.vae.decode(A__ ).sample
__magic_name__ = (image / 2 + 0.5).clamp(0 , 1 )
__magic_name__ = transforms.Resize(self.feature_extractor_size )(A__ )
__magic_name__ = self.normalize(A__ ).to(latents.dtype )
__magic_name__ = self.clip_model.get_image_features(A__ )
__magic_name__ = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=A__ )
__magic_name__ = spherical_dist_loss(A__ , A__ ).mean() * clip_guidance_scale
__magic_name__ = -torch.autograd.grad(A__ , A__ )[0]
if isinstance(self.scheduler , A__ ):
__magic_name__ = latents.detach() + grads * (sigma**2)
__magic_name__ = noise_pred_original
else:
__magic_name__ = noise_pred_original - torch.sqrt(A__ ) * grads
return noise_pred, latents
@torch.no_grad()
def __call__( self : List[Any] , a__ : Optional[Any] , a__ : Optional[int] , a__ : Tuple = None , a__ : Tuple = None , a__ : int = 512 , a__ : Optional[int] = 512 , a__ : Optional[Any] = 0.6 , a__ : Optional[Any] = 50 , a__ : Union[str, Any] = 7.5 , a__ : Optional[Any] = 1 , a__ : int = 0.0 , a__ : List[str] = 100 , a__ : List[Any] = None , a__ : Dict = "pil" , a__ : Dict = True , a__ : Union[str, Any] = 0.8 , a__ : Optional[Any] = 0.1 , a__ : List[str] = 0.1 , ):
if isinstance(A__ , A__ ) and len(A__ ) != batch_size:
raise ValueError(F'''You have passed {batch_size} batch_size, but only {len(A__ )} generators.''' )
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' )
if isinstance(A__ , torch.Generator ) and batch_size > 1:
__magic_name__ = [generator] + [None] * (batch_size - 1)
__magic_name__ = [
('''model''', self.coca_model is None),
('''tokenizer''', self.coca_tokenizer is None),
('''transform''', self.coca_transform is None),
]
__magic_name__ = [x[0] for x in coca_is_none if x[1]]
__magic_name__ = ''', '''.join(A__ )
# generate prompts with coca model if prompt is None
if content_prompt is None:
if len(A__ ):
raise ValueError(
F'''Content prompt is None and CoCa [{coca_is_none_str}] is None.'''
F'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' )
__magic_name__ = self.get_image_description(A__ )
if style_prompt is None:
if len(A__ ):
raise ValueError(
F'''Style prompt is None and CoCa [{coca_is_none_str}] is None.'''
F''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' )
__magic_name__ = self.get_image_description(A__ )
# get prompt text embeddings for content and style
__magic_name__ = self.tokenizer(
A__ , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=A__ , return_tensors='''pt''' , )
__magic_name__ = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0]
__magic_name__ = self.tokenizer(
A__ , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=A__ , return_tensors='''pt''' , )
__magic_name__ = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0]
__magic_name__ = slerp(A__ , A__ , A__ )
# duplicate text embeddings for each generation per prompt
__magic_name__ = text_embeddings.repeat_interleave(A__ , dim=0 )
# set timesteps
__magic_name__ = '''offset''' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() )
__magic_name__ = {}
if accepts_offset:
__magic_name__ = 1
self.scheduler.set_timesteps(A__ , **A__ )
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
self.scheduler.timesteps.to(self.device )
__magic_name__ , __magic_name__ = self.get_timesteps(A__ , A__ , self.device )
__magic_name__ = timesteps[:1].repeat(A__ )
# Preprocess image
__magic_name__ = preprocess(A__ , A__ , A__ )
__magic_name__ = self.prepare_latents(
A__ , A__ , A__ , text_embeddings.dtype , self.device , A__ )
__magic_name__ = preprocess(A__ , A__ , A__ )
__magic_name__ = self.prepare_latents(
A__ , A__ , A__ , text_embeddings.dtype , self.device , A__ )
__magic_name__ = slerp(A__ , A__ , A__ )
if clip_guidance_scale > 0:
__magic_name__ = self.get_clip_image_embeddings(A__ , A__ )
__magic_name__ = self.get_clip_image_embeddings(A__ , A__ )
__magic_name__ = slerp(
A__ , A__ , A__ )
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
__magic_name__ = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
__magic_name__ = content_text_input.input_ids.shape[-1]
__magic_name__ = self.tokenizer([''''''] , padding='''max_length''' , max_length=A__ , return_tensors='''pt''' )
__magic_name__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# duplicate unconditional embeddings for each generation per prompt
__magic_name__ = uncond_embeddings.repeat_interleave(A__ , dim=0 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
__magic_name__ = torch.cat([uncond_embeddings, text_embeddings] )
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
__magic_name__ = (batch_size, self.unet.config.in_channels, height // 8, width // 8)
__magic_name__ = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not work reproducibly on mps
__magic_name__ = torch.randn(A__ , generator=A__ , device='''cpu''' , dtype=A__ ).to(
self.device )
else:
__magic_name__ = torch.randn(A__ , generator=A__ , device=self.device , dtype=A__ )
else:
if latents.shape != latents_shape:
raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' )
__magic_name__ = latents.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
__magic_name__ = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
__magic_name__ = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
__magic_name__ = {}
if accepts_eta:
__magic_name__ = eta
# check if the scheduler accepts generator
__magic_name__ = '''generator''' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
if accepts_generator:
__magic_name__ = generator
with self.progress_bar(total=A__ ):
for i, t in enumerate(A__ ):
# expand the latents if we are doing classifier free guidance
__magic_name__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
__magic_name__ = self.scheduler.scale_model_input(A__ , A__ )
# predict the noise residual
__magic_name__ = self.unet(A__ , A__ , encoder_hidden_states=A__ ).sample
# perform classifier free guidance
if do_classifier_free_guidance:
__magic_name__ , __magic_name__ = noise_pred.chunk(2 )
__magic_name__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# perform clip guidance
if clip_guidance_scale > 0:
__magic_name__ = (
text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings
)
__magic_name__ , __magic_name__ = self.cond_fn(
A__ , A__ , A__ , A__ , A__ , A__ , A__ , )
# compute the previous noisy sample x_t -> x_t-1
__magic_name__ = self.scheduler.step(A__ , A__ , A__ , **A__ ).prev_sample
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
__magic_name__ = 1 / 0.18_215 * latents
__magic_name__ = self.vae.decode(A__ ).sample
__magic_name__ = (image / 2 + 0.5).clamp(0 , 1 )
__magic_name__ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
__magic_name__ = self.numpy_to_pil(A__ )
if not return_dict:
return (image, None)
return StableDiffusionPipelineOutput(images=A__ , nsfw_content_detected=A__ )
| 359 |
'''simple docstring'''
import unittest
from transformers import (
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TextaTextGenerationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, require_tf, require_torch
from transformers.utils import is_torch_available
from .test_pipelines_common import ANY
if is_torch_available():
import torch
@is_pipeline_test
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
__SCREAMING_SNAKE_CASE :List[Any] = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
__SCREAMING_SNAKE_CASE :Any = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
def snake_case__ ( self : Tuple , a__ : Tuple , a__ : int , a__ : int ):
__magic_name__ = TextaTextGenerationPipeline(model=a__ , tokenizer=a__ )
return generator, ["Something to write", "Something else"]
def snake_case__ ( self : List[str] , a__ : List[Any] , a__ : List[str] ):
__magic_name__ = generator('''Something there''' )
self.assertEqual(a__ , [{'''generated_text''': ANY(a__ )}] )
# These are encoder decoder, they don't just append to incoming string
self.assertFalse(outputs[0]['''generated_text'''].startswith('''Something there''' ) )
__magic_name__ = generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=a__ )
self.assertEqual(
a__ , [
[{'''generated_text''': ANY(a__ )}, {'''generated_text''': ANY(a__ )}],
[{'''generated_text''': ANY(a__ )}, {'''generated_text''': ANY(a__ )}],
] , )
__magic_name__ = generator(
['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=a__ )
self.assertEqual(
a__ , [
[{'''generated_text''': ANY(a__ )}, {'''generated_text''': ANY(a__ )}],
[{'''generated_text''': ANY(a__ )}, {'''generated_text''': ANY(a__ )}],
] , )
with self.assertRaises(a__ ):
generator(4 )
@require_torch
def snake_case__ ( self : Any ):
__magic_name__ = pipeline('''text2text-generation''' , model='''patrickvonplaten/t5-tiny-random''' , framework='''pt''' )
# do_sample=False necessary for reproducibility
__magic_name__ = generator('''Something there''' , do_sample=a__ )
self.assertEqual(a__ , [{'''generated_text''': ''''''}] )
__magic_name__ = 3
__magic_name__ = generator(
'''Something there''' , num_return_sequences=a__ , num_beams=a__ , )
__magic_name__ = [
{'''generated_text''': '''Beide Beide Beide Beide Beide Beide Beide Beide Beide'''},
{'''generated_text''': '''Beide Beide Beide Beide Beide Beide Beide Beide'''},
{'''generated_text''': ''''''},
]
self.assertEqual(a__ , a__ )
__magic_name__ = generator('''This is a test''' , do_sample=a__ , num_return_sequences=2 , return_tensors=a__ )
self.assertEqual(
a__ , [
{'''generated_token_ids''': ANY(torch.Tensor )},
{'''generated_token_ids''': ANY(torch.Tensor )},
] , )
__magic_name__ = generator.model.config.eos_token_id
__magic_name__ = '''<pad>'''
__magic_name__ = generator(
['''This is a test''', '''This is a second test'''] , do_sample=a__ , num_return_sequences=2 , batch_size=2 , return_tensors=a__ , )
self.assertEqual(
a__ , [
[
{'''generated_token_ids''': ANY(torch.Tensor )},
{'''generated_token_ids''': ANY(torch.Tensor )},
],
[
{'''generated_token_ids''': ANY(torch.Tensor )},
{'''generated_token_ids''': ANY(torch.Tensor )},
],
] , )
@require_tf
def snake_case__ ( self : int ):
__magic_name__ = pipeline('''text2text-generation''' , model='''patrickvonplaten/t5-tiny-random''' , framework='''tf''' )
# do_sample=False necessary for reproducibility
__magic_name__ = generator('''Something there''' , do_sample=a__ )
self.assertEqual(a__ , [{'''generated_text''': ''''''}] )
| 98 | 0 |
def _snake_case( SCREAMING_SNAKE_CASE__ : str ) -> str:
'''simple docstring'''
A__ = 0
# if input_string is "aba" than new_input_string become "a|b|a"
A__ = ''
A__ = ''
# append each character + "|" in new_string for range(0, length-1)
for i in input_string[: len(SCREAMING_SNAKE_CASE__ ) - 1]:
new_input_string += i + "|"
# append last character
new_input_string += input_string[-1]
# we will store the starting and ending of previous furthest ending palindromic
# substring
A__ , A__ = 0, 0
# length[i] shows the length of palindromic substring with center i
A__ = [1 for i in range(len(SCREAMING_SNAKE_CASE__ ) )]
# for each character in new_string find corresponding palindromic string
A__ = 0
for j in range(len(SCREAMING_SNAKE_CASE__ ) ):
A__ = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 )
while (
j - k >= 0
and j + k < len(SCREAMING_SNAKE_CASE__ )
and new_input_string[k + j] == new_input_string[j - k]
):
k += 1
A__ = 2 * k - 1
# does this string is ending after the previously explored end (that is r) ?
# if yes the update the new r to the last index of this
if j + k - 1 > r:
A__ = j - k + 1 # noqa: E741
A__ = j + k - 1
# update max_length and start position
if max_length < length[j]:
A__ = length[j]
A__ = j
# create that string
A__ = new_input_string[start - max_length // 2 : start + max_length // 2 + 1]
for i in s:
if i != "|":
output_string += i
return output_string
if __name__ == "__main__":
import doctest
doctest.testmod()
| 7 | """simple docstring"""
import sacrebleu as scb
from packaging import version
from sacrebleu import CHRF
import datasets
__lowerCamelCase = "\\n@inproceedings{popovic-2015-chrf,\n title = \"chr{F}: character n-gram {F}-score for automatic {MT} evaluation\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Tenth Workshop on Statistical Machine Translation\",\n month = sep,\n year = \"2015\",\n address = \"Lisbon, Portugal\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W15-3049\",\n doi = \"10.18653/v1/W15-3049\",\n pages = \"392--395\",\n}\n@inproceedings{popovic-2017-chrf,\n title = \"chr{F}++: words helping character n-grams\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Second Conference on Machine Translation\",\n month = sep,\n year = \"2017\",\n address = \"Copenhagen, Denmark\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W17-4770\",\n doi = \"10.18653/v1/W17-4770\",\n pages = \"612--618\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n"
__lowerCamelCase = "\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n"
__lowerCamelCase = "\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n 'score' (float): The chrF (chrF++) score,\n 'char_order' (int): The character n-gram order,\n 'word_order' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n 'beta' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {'score': 84.64214891738334, 'char_order': 6, 'word_order': 0, 'beta': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {'score': 82.87263732906315, 'char_order': 6, 'word_order': 2, 'beta': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {'score': 92.12853119829202, 'char_order': 6, 'word_order': 2, 'beta': 2}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCamelCase__( datasets.Metric ):
def snake_case__ ( self ) -> Tuple:
if version.parse(scb.__version__ ) < version.parse('1.4.12' ):
raise ImportWarning(
'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n'
'You can install it with `pip install "sacrebleu>=1.4.12"`.' )
return datasets.MetricInfo(
description=_DESCRIPTION ,citation=_CITATION ,homepage='https://github.com/mjpost/sacreBLEU#chrf--chrf' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(
{
'predictions': datasets.Value('string' ,id='sequence' ),
'references': datasets.Sequence(datasets.Value('string' ,id='sequence' ) ,id='references' ),
} ) ,codebase_urls=['https://github.com/mjpost/sacreBLEU#chrf--chrf'] ,reference_urls=[
'https://github.com/m-popovic/chrF',
] ,)
def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = CHRF.CHAR_ORDER ,__UpperCAmelCase = CHRF.WORD_ORDER ,__UpperCAmelCase = CHRF.BETA ,__UpperCAmelCase = False ,__UpperCAmelCase = False ,__UpperCAmelCase = False ,) -> Union[str, Any]:
A__ = len(references[0] )
if any(len(__UpperCAmelCase ) != references_per_prediction for refs in references ):
raise ValueError('Sacrebleu requires the same number of references for each prediction' )
A__ = [[refs[i] for refs in references] for i in range(__UpperCAmelCase )]
A__ = CHRF(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase )
A__ = sb_chrf.corpus_score(__UpperCAmelCase ,__UpperCAmelCase )
return {
"score": output.score,
"char_order": output.char_order,
"word_order": output.word_order,
"beta": output.beta,
}
| 221 | 0 |
"""simple docstring"""
import logging
import os
from dataclasses import dataclass
from enum import Enum
from typing import List, Optional, Union
from filelock import FileLock
from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available
a = logging.getLogger(__name__)
@dataclass
class lowercase_ :
'''simple docstring'''
UpperCAmelCase : str
UpperCAmelCase : List[str]
UpperCAmelCase : Optional[List[str]]
@dataclass
class lowercase_ :
'''simple docstring'''
UpperCAmelCase : List[int]
UpperCAmelCase : List[int]
UpperCAmelCase : Optional[List[int]] = None
UpperCAmelCase : Optional[List[int]] = None
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Any = '''train'''
UpperCAmelCase : Tuple = '''dev'''
UpperCAmelCase : int = '''test'''
class lowercase_ :
'''simple docstring'''
@staticmethod
def lowerCAmelCase_ ( _UpperCAmelCase : int , _UpperCAmelCase : Union[Split, str] ):
raise NotImplementedError
@staticmethod
def lowerCAmelCase_ ( _UpperCAmelCase : str ):
raise NotImplementedError
@staticmethod
def lowerCAmelCase_ ( _UpperCAmelCase : List[InputExample] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : PreTrainedTokenizer , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : List[str]="[CLS]" , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Tuple="[SEP]" , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : str=0 , _UpperCAmelCase : Optional[int]=0 , _UpperCAmelCase : Any=-100 , _UpperCAmelCase : Union[str, Any]=0 , _UpperCAmelCase : List[Any]=True , ):
_A = {label: i for i, label in enumerate(_UpperCAmelCase )}
_A = []
for ex_index, example in enumerate(_UpperCAmelCase ):
if ex_index % 10_000 == 0:
logger.info('Writing example %d of %d' , _UpperCAmelCase , len(_UpperCAmelCase ) )
_A = []
_A = []
for word, label in zip(example.words , example.labels ):
_A = tokenizer.tokenize(_UpperCAmelCase )
# bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space.
if len(_UpperCAmelCase ) > 0:
tokens.extend(_UpperCAmelCase )
# Use the real label id for the first token of the word, and padding ids for the remaining tokens
label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(_UpperCAmelCase ) - 1) )
# Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa.
_A = tokenizer.num_special_tokens_to_add()
if len(_UpperCAmelCase ) > max_seq_length - special_tokens_count:
_A = tokens[: (max_seq_length - special_tokens_count)]
_A = label_ids[: (max_seq_length - special_tokens_count)]
# The convention in BERT is:
# (a) For sequence pairs:
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
# (b) For single sequences:
# tokens: [CLS] the dog is hairy . [SEP]
# type_ids: 0 0 0 0 0 0 0
#
# Where "type_ids" are used to indicate whether this is the first
# sequence or the second sequence. The embedding vectors for `type=0` and
# `type=1` were learned during pre-training and are added to the wordpiece
# embedding vector (and position vector). This is not *strictly* necessary
# since the [SEP] token unambiguously separates the sequences, but it makes
# it easier for the model to learn the concept of sequences.
#
# For classification tasks, the first vector (corresponding to [CLS]) is
# used as the "sentence vector". Note that this only makes sense because
# the entire model is fine-tuned.
tokens += [sep_token]
label_ids += [pad_token_label_id]
if sep_token_extra:
# roberta uses an extra separator b/w pairs of sentences
tokens += [sep_token]
label_ids += [pad_token_label_id]
_A = [sequence_a_segment_id] * len(_UpperCAmelCase )
if cls_token_at_end:
tokens += [cls_token]
label_ids += [pad_token_label_id]
segment_ids += [cls_token_segment_id]
else:
_A = [cls_token] + tokens
_A = [pad_token_label_id] + label_ids
_A = [cls_token_segment_id] + segment_ids
_A = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
_A = [1 if mask_padding_with_zero else 0] * len(_UpperCAmelCase )
# Zero-pad up to the sequence length.
_A = max_seq_length - len(_UpperCAmelCase )
if pad_on_left:
_A = ([pad_token] * padding_length) + input_ids
_A = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask
_A = ([pad_token_segment_id] * padding_length) + segment_ids
_A = ([pad_token_label_id] * padding_length) + label_ids
else:
input_ids += [pad_token] * padding_length
input_mask += [0 if mask_padding_with_zero else 1] * padding_length
segment_ids += [pad_token_segment_id] * padding_length
label_ids += [pad_token_label_id] * padding_length
assert len(_UpperCAmelCase ) == max_seq_length
assert len(_UpperCAmelCase ) == max_seq_length
assert len(_UpperCAmelCase ) == max_seq_length
assert len(_UpperCAmelCase ) == max_seq_length
if ex_index < 5:
logger.info('*** Example ***' )
logger.info('guid: %s' , example.guid )
logger.info('tokens: %s' , ' '.join([str(_UpperCAmelCase ) for x in tokens] ) )
logger.info('input_ids: %s' , ' '.join([str(_UpperCAmelCase ) for x in input_ids] ) )
logger.info('input_mask: %s' , ' '.join([str(_UpperCAmelCase ) for x in input_mask] ) )
logger.info('segment_ids: %s' , ' '.join([str(_UpperCAmelCase ) for x in segment_ids] ) )
logger.info('label_ids: %s' , ' '.join([str(_UpperCAmelCase ) for x in label_ids] ) )
if "token_type_ids" not in tokenizer.model_input_names:
_A = None
features.append(
InputFeatures(
input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , label_ids=_UpperCAmelCase ) )
return features
if is_torch_available():
import torch
from torch import nn
from torch.utils.data import Dataset
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : List[InputFeatures]
UpperCAmelCase : int = nn.CrossEntropyLoss().ignore_index
def __init__( self : int , _UpperCAmelCase : TokenClassificationTask , _UpperCAmelCase : str , _UpperCAmelCase : PreTrainedTokenizer , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : Split = Split.train , ):
# Load data features from cache or dataset file
_A = os.path.join(
_UpperCAmelCase , 'cached_{}_{}_{}'.format(mode.value , tokenizer.__class__.__name__ , str(_UpperCAmelCase ) ) , )
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
_A = cached_features_file + '.lock'
with FileLock(_UpperCAmelCase ):
if os.path.exists(_UpperCAmelCase ) and not overwrite_cache:
logger.info(F'''Loading features from cached file {cached_features_file}''' )
_A = torch.load(_UpperCAmelCase )
else:
logger.info(F'''Creating features from dataset file at {data_dir}''' )
_A = token_classification_task.read_examples_from_file(_UpperCAmelCase , _UpperCAmelCase )
# TODO clean up all this to leverage built-in features of tokenizers
_A = token_classification_task.convert_examples_to_features(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , cls_token_at_end=bool(model_type in ['xlnet'] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['xlnet'] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=_UpperCAmelCase , pad_on_left=bool(tokenizer.padding_side == 'left' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , )
logger.info(F'''Saving features into cached file {cached_features_file}''' )
torch.save(self.features , _UpperCAmelCase )
def __len__( self : Dict ):
return len(self.features )
def __getitem__( self : int , _UpperCAmelCase : Union[str, Any] ):
return self.features[i]
if is_tf_available():
import tensorflow as tf
class lowercase_ :
'''simple docstring'''
UpperCAmelCase : List[InputFeatures]
UpperCAmelCase : int = -100
def __init__( self : int , _UpperCAmelCase : TokenClassificationTask , _UpperCAmelCase : str , _UpperCAmelCase : PreTrainedTokenizer , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : Split = Split.train , ):
_A = token_classification_task.read_examples_from_file(_UpperCAmelCase , _UpperCAmelCase )
# TODO clean up all this to leverage built-in features of tokenizers
_A = token_classification_task.convert_examples_to_features(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , cls_token_at_end=bool(model_type in ['xlnet'] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['xlnet'] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=_UpperCAmelCase , pad_on_left=bool(tokenizer.padding_side == 'left' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , )
def gen():
for ex in self.features:
if ex.token_type_ids is None:
yield (
{"input_ids": ex.input_ids, "attention_mask": ex.attention_mask},
ex.label_ids,
)
else:
yield (
{
"input_ids": ex.input_ids,
"attention_mask": ex.attention_mask,
"token_type_ids": ex.token_type_ids,
},
ex.label_ids,
)
if "token_type_ids" not in tokenizer.model_input_names:
_A = tf.data.Dataset.from_generator(
_UpperCAmelCase , ({'input_ids': tf.intaa, 'attention_mask': tf.intaa}, tf.intaa) , (
{'input_ids': tf.TensorShape([None] ), 'attention_mask': tf.TensorShape([None] )},
tf.TensorShape([None] ),
) , )
else:
_A = tf.data.Dataset.from_generator(
_UpperCAmelCase , ({'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa}, tf.intaa) , (
{
'input_ids': tf.TensorShape([None] ),
'attention_mask': tf.TensorShape([None] ),
'token_type_ids': tf.TensorShape([None] ),
},
tf.TensorShape([None] ),
) , )
def lowerCAmelCase_ ( self : Dict ):
_A = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) )
return self.dataset
def __len__( self : Tuple ):
return len(self.features )
def __getitem__( self : Dict , _UpperCAmelCase : Optional[int] ):
return self.features[i]
| 364 |
"""simple docstring"""
import contextlib
import copy
import random
from typing import Any, Dict, Iterable, Optional, Union
import numpy as np
import torch
from .utils import deprecate, is_transformers_available
if is_transformers_available():
import transformers
def _snake_case ( _snake_case : int ) -> Any:
'''simple docstring'''
random.seed(_snake_case )
np.random.seed(_snake_case )
torch.manual_seed(_snake_case )
torch.cuda.manual_seed_all(_snake_case )
# ^^ safe to call this function even if cuda is not available
class lowercase_ :
'''simple docstring'''
def __init__( self : Tuple , _UpperCAmelCase : Iterable[torch.nn.Parameter] , _UpperCAmelCase : float = 0.9999 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : int = 0 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Union[float, int] = 1.0 , _UpperCAmelCase : Union[float, int] = 2 / 3 , _UpperCAmelCase : Optional[Any] = None , _UpperCAmelCase : Dict[str, Any] = None , **_UpperCAmelCase : Optional[int] , ):
if isinstance(_UpperCAmelCase , torch.nn.Module ):
_A = (
'Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. '
'Please pass the parameters of the module instead.'
)
deprecate(
'passing a `torch.nn.Module` to `ExponentialMovingAverage`' , '1.0.0' , _UpperCAmelCase , standard_warn=_UpperCAmelCase , )
_A = parameters.parameters()
# set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility
_A = True
if kwargs.get('max_value' , _UpperCAmelCase ) is not None:
_A = 'The `max_value` argument is deprecated. Please use `decay` instead.'
deprecate('max_value' , '1.0.0' , _UpperCAmelCase , standard_warn=_UpperCAmelCase )
_A = kwargs['max_value']
if kwargs.get('min_value' , _UpperCAmelCase ) is not None:
_A = 'The `min_value` argument is deprecated. Please use `min_decay` instead.'
deprecate('min_value' , '1.0.0' , _UpperCAmelCase , standard_warn=_UpperCAmelCase )
_A = kwargs['min_value']
_A = list(_UpperCAmelCase )
_A = [p.clone().detach() for p in parameters]
if kwargs.get('device' , _UpperCAmelCase ) is not None:
_A = 'The `device` argument is deprecated. Please use `to` instead.'
deprecate('device' , '1.0.0' , _UpperCAmelCase , standard_warn=_UpperCAmelCase )
self.to(device=kwargs['device'] )
_A = None
_A = decay
_A = min_decay
_A = update_after_step
_A = use_ema_warmup
_A = inv_gamma
_A = power
_A = 0
_A = None # set in `step()`
_A = model_cls
_A = model_config
@classmethod
def lowerCAmelCase_ ( cls : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] ):
_A , _A = model_cls.load_config(_UpperCAmelCase , return_unused_kwargs=_UpperCAmelCase )
_A = model_cls.from_pretrained(_UpperCAmelCase )
_A = cls(model.parameters() , model_cls=_UpperCAmelCase , model_config=model.config )
ema_model.load_state_dict(_UpperCAmelCase )
return ema_model
def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Tuple ):
if self.model_cls is None:
raise ValueError('`save_pretrained` can only be used if `model_cls` was defined at __init__.' )
if self.model_config is None:
raise ValueError('`save_pretrained` can only be used if `model_config` was defined at __init__.' )
_A = self.model_cls.from_config(self.model_config )
_A = self.state_dict()
state_dict.pop('shadow_params' , _UpperCAmelCase )
model.register_to_config(**_UpperCAmelCase )
self.copy_to(model.parameters() )
model.save_pretrained(_UpperCAmelCase )
def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : int ):
_A = max(0 , optimization_step - self.update_after_step - 1 )
if step <= 0:
return 0.0
if self.use_ema_warmup:
_A = 1 - (1 + step / self.inv_gamma) ** -self.power
else:
_A = (1 + step) / (10 + step)
_A = min(_UpperCAmelCase , self.decay )
# make sure decay is not smaller than min_decay
_A = max(_UpperCAmelCase , self.min_decay )
return cur_decay_value
@torch.no_grad()
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Iterable[torch.nn.Parameter] ):
if isinstance(_UpperCAmelCase , torch.nn.Module ):
_A = (
'Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. '
'Please pass the parameters of the module instead.'
)
deprecate(
'passing a `torch.nn.Module` to `ExponentialMovingAverage.step`' , '1.0.0' , _UpperCAmelCase , standard_warn=_UpperCAmelCase , )
_A = parameters.parameters()
_A = list(_UpperCAmelCase )
self.optimization_step += 1
# Compute the decay factor for the exponential moving average.
_A = self.get_decay(self.optimization_step )
_A = decay
_A = 1 - decay
_A = contextlib.nullcontext
if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled():
import deepspeed
for s_param, param in zip(self.shadow_params , _UpperCAmelCase ):
if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled():
_A = deepspeed.zero.GatheredParameters(_UpperCAmelCase , modifier_rank=_UpperCAmelCase )
with context_manager():
if param.requires_grad:
s_param.sub_(one_minus_decay * (s_param - param) )
else:
s_param.copy_(_UpperCAmelCase )
def lowerCAmelCase_ ( self : str , _UpperCAmelCase : Iterable[torch.nn.Parameter] ):
_A = list(_UpperCAmelCase )
for s_param, param in zip(self.shadow_params , _UpperCAmelCase ):
param.data.copy_(s_param.to(param.device ).data )
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Dict=None ):
_A = [
p.to(device=_UpperCAmelCase , dtype=_UpperCAmelCase ) if p.is_floating_point() else p.to(device=_UpperCAmelCase )
for p in self.shadow_params
]
def lowerCAmelCase_ ( self : Dict ):
return {
"decay": self.decay,
"min_decay": self.min_decay,
"optimization_step": self.optimization_step,
"update_after_step": self.update_after_step,
"use_ema_warmup": self.use_ema_warmup,
"inv_gamma": self.inv_gamma,
"power": self.power,
"shadow_params": self.shadow_params,
}
def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : Iterable[torch.nn.Parameter] ):
_A = [param.detach().cpu().clone() for param in parameters]
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Iterable[torch.nn.Parameter] ):
if self.temp_stored_params is None:
raise RuntimeError('This ExponentialMovingAverage has no `store()`ed weights ' 'to `restore()`' )
for c_param, param in zip(self.temp_stored_params , _UpperCAmelCase ):
param.data.copy_(c_param.data )
# Better memory-wise.
_A = None
def lowerCAmelCase_ ( self : int , _UpperCAmelCase : dict ):
_A = copy.deepcopy(_UpperCAmelCase )
_A = state_dict.get('decay' , self.decay )
if self.decay < 0.0 or self.decay > 1.0:
raise ValueError('Decay must be between 0 and 1' )
_A = state_dict.get('min_decay' , self.min_decay )
if not isinstance(self.min_decay , _UpperCAmelCase ):
raise ValueError('Invalid min_decay' )
_A = state_dict.get('optimization_step' , self.optimization_step )
if not isinstance(self.optimization_step , _UpperCAmelCase ):
raise ValueError('Invalid optimization_step' )
_A = state_dict.get('update_after_step' , self.update_after_step )
if not isinstance(self.update_after_step , _UpperCAmelCase ):
raise ValueError('Invalid update_after_step' )
_A = state_dict.get('use_ema_warmup' , self.use_ema_warmup )
if not isinstance(self.use_ema_warmup , _UpperCAmelCase ):
raise ValueError('Invalid use_ema_warmup' )
_A = state_dict.get('inv_gamma' , self.inv_gamma )
if not isinstance(self.inv_gamma , (float, int) ):
raise ValueError('Invalid inv_gamma' )
_A = state_dict.get('power' , self.power )
if not isinstance(self.power , (float, int) ):
raise ValueError('Invalid power' )
_A = state_dict.get('shadow_params' , _UpperCAmelCase )
if shadow_params is not None:
_A = shadow_params
if not isinstance(self.shadow_params , _UpperCAmelCase ):
raise ValueError('shadow_params must be a list' )
if not all(isinstance(_UpperCAmelCase , torch.Tensor ) for p in self.shadow_params ):
raise ValueError('shadow_params must all be Tensors' )
| 271 | 0 |
"""simple docstring"""
import qiskit
def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> qiskit.result.counts.Counts:
snake_case_ = qiskit.Aer.get_backend('aer_simulator' )
# Create a Quantum Circuit acting on the q register
snake_case_ = qiskit.QuantumCircuit(UpperCAmelCase , UpperCAmelCase )
# Apply X (NOT) Gate to Qubits 0 & 1
circuit.x(0 )
circuit.x(1 )
# Map the quantum measurement to the classical bits
circuit.measure([0, 1] , [0, 1] )
# Execute the circuit on the qasm simulator
snake_case_ = qiskit.execute(UpperCAmelCase , UpperCAmelCase , shots=1000 )
# Return the histogram data of the results of the experiment.
return job.result().get_counts(UpperCAmelCase )
if __name__ == "__main__":
__UpperCamelCase = single_qubit_measure(2, 2)
print(F"""Total count for various states are: {counts}""")
| 69 | """simple docstring"""
def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> int:
while a != 0:
snake_case_ , snake_case_ = b % a, a
return b
def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> int:
if gcd(UpperCAmelCase , UpperCAmelCase ) != 1:
snake_case_ = f'mod inverse of {a!r} and {m!r} does not exist'
raise ValueError(UpperCAmelCase )
snake_case_ , snake_case_ , snake_case_ = 1, 0, a
snake_case_ , snake_case_ , snake_case_ = 0, 1, m
while va != 0:
snake_case_ = ua // va
snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va
return ua % m
| 69 | 1 |
import numpy as np
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
def __snake_case ( _UpperCAmelCase ):
return (data["data"], data["target"])
def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
__a = XGBRegressor(verbosity=0 , random_state=42 )
xgb.fit(_UpperCAmelCase , _UpperCAmelCase )
# Predict target for test data
__a = xgb.predict(_UpperCAmelCase )
__a = predictions.reshape(len(_UpperCAmelCase ) , 1 )
return predictions
def __snake_case ( ):
__a = fetch_california_housing()
__a , __a = data_handling(_UpperCAmelCase )
__a , __a , __a , __a = train_test_split(
_UpperCAmelCase , _UpperCAmelCase , test_size=0.25 , random_state=1 )
__a = xgboost(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
# Error printing
print(f'Mean Absolute Error : {mean_absolute_error(_UpperCAmelCase , _UpperCAmelCase )}' )
print(f'Mean Square Error : {mean_squared_error(_UpperCAmelCase , _UpperCAmelCase )}' )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 131 |
import multiprocessing
import os
from typing import BinaryIO, Optional, Union
import fsspec
from .. import Dataset, Features, NamedSplit, config
from ..formatting import query_table
from ..packaged_modules.json.json import Json
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class _A ( __UpperCAmelCase ):
def __init__( self : Dict , __SCREAMING_SNAKE_CASE : NestedDataStructureLike[PathLike] , __SCREAMING_SNAKE_CASE : Optional[NamedSplit] = None , __SCREAMING_SNAKE_CASE : Optional[Features] = None , __SCREAMING_SNAKE_CASE : str = None , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional[str] = None , __SCREAMING_SNAKE_CASE : Optional[int] = None , **__SCREAMING_SNAKE_CASE : Any , ):
'''simple docstring'''
super().__init__(
__SCREAMING_SNAKE_CASE , split=__SCREAMING_SNAKE_CASE , features=__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE , keep_in_memory=__SCREAMING_SNAKE_CASE , streaming=__SCREAMING_SNAKE_CASE , num_proc=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , )
__a = field
__a = path_or_paths if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) else {self.split: path_or_paths}
__a = Json(
cache_dir=__SCREAMING_SNAKE_CASE , data_files=__SCREAMING_SNAKE_CASE , features=__SCREAMING_SNAKE_CASE , field=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , )
def _lowerCamelCase ( self : List[Any]):
'''simple docstring'''
if self.streaming:
__a = self.builder.as_streaming_dataset(split=self.split)
# Build regular (map-style) dataset
else:
__a = None
__a = None
__a = None
__a = None
self.builder.download_and_prepare(
download_config=__SCREAMING_SNAKE_CASE , download_mode=__SCREAMING_SNAKE_CASE , verification_mode=__SCREAMING_SNAKE_CASE , base_path=__SCREAMING_SNAKE_CASE , num_proc=self.num_proc , )
__a = self.builder.as_dataset(
split=self.split , verification_mode=__SCREAMING_SNAKE_CASE , in_memory=self.keep_in_memory)
return dataset
class _A :
def __init__( self : Any , __SCREAMING_SNAKE_CASE : Dataset , __SCREAMING_SNAKE_CASE : Union[PathLike, BinaryIO] , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : Optional[int] = None , **__SCREAMING_SNAKE_CASE : List[str] , ):
'''simple docstring'''
if num_proc is not None and num_proc <= 0:
raise ValueError(F'num_proc {num_proc} must be an integer > 0.')
__a = dataset
__a = path_or_buf
__a = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
__a = num_proc
__a = '''utf-8'''
__a = to_json_kwargs
def _lowerCamelCase ( self : int):
'''simple docstring'''
__a = self.to_json_kwargs.pop('''path_or_buf''' , __SCREAMING_SNAKE_CASE)
__a = self.to_json_kwargs.pop('''orient''' , '''records''')
__a = self.to_json_kwargs.pop('''lines''' , True if orient == '''records''' else False)
__a = self.to_json_kwargs.pop('''index''' , False if orient in ['''split''', '''table'''] else True)
__a = self.to_json_kwargs.pop('''compression''' , __SCREAMING_SNAKE_CASE)
if compression not in [None, "infer", "gzip", "bz2", "xz"]:
raise NotImplementedError(F'`datasets` currently does not support {compression} compression')
if isinstance(self.path_or_buf , (str, bytes, os.PathLike)):
with fsspec.open(self.path_or_buf , '''wb''' , compression=__SCREAMING_SNAKE_CASE) as buffer:
__a = self._write(file_obj=__SCREAMING_SNAKE_CASE , orient=__SCREAMING_SNAKE_CASE , lines=__SCREAMING_SNAKE_CASE , index=__SCREAMING_SNAKE_CASE , **self.to_json_kwargs)
else:
if compression:
raise NotImplementedError(
F'The compression parameter is not supported when writing to a buffer, but compression={compression}'
''' was passed. Please provide a local path instead.''')
__a = self._write(
file_obj=self.path_or_buf , orient=__SCREAMING_SNAKE_CASE , lines=__SCREAMING_SNAKE_CASE , index=__SCREAMING_SNAKE_CASE , **self.to_json_kwargs)
return written
def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : str):
'''simple docstring'''
__a , __a , __a , __a , __a = args
__a = query_table(
table=self.dataset.data , key=slice(__SCREAMING_SNAKE_CASE , offset + self.batch_size) , indices=self.dataset._indices , )
__a = batch.to_pandas().to_json(
path_or_buf=__SCREAMING_SNAKE_CASE , orient=__SCREAMING_SNAKE_CASE , lines=__SCREAMING_SNAKE_CASE , index=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE)
if not json_str.endswith('''\n'''):
json_str += "\n"
return json_str.encode(self.encoding)
def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : BinaryIO , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any] , **__SCREAMING_SNAKE_CASE : Optional[Any] , ):
'''simple docstring'''
__a = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 , len(self.dataset) , self.batch_size) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ):
__a = self._batch_json((offset, orient, lines, index, to_json_kwargs))
written += file_obj.write(__SCREAMING_SNAKE_CASE)
else:
__a , __a = len(self.dataset), self.batch_size
with multiprocessing.Pool(self.num_proc) as pool:
for json_str in logging.tqdm(
pool.imap(
self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ):
written += file_obj.write(__SCREAMING_SNAKE_CASE)
return written
| 131 | 1 |
"""simple docstring"""
import webbrowser
from sys import argv
from urllib.parse import parse_qs, quote
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
if __name__ == "__main__":
__snake_case = """%20""".join(argv[1:]) if len(argv) > 1 else quote(str(input("""Search: """)))
print("""Googling.....""")
__snake_case = F'''https://www.google.com/search?q={query}&num=100'''
__snake_case = requests.get(
url,
headers={"""User-Agent""": str(UserAgent().random)},
)
try:
__snake_case = (
BeautifulSoup(res.text, """html.parser""")
.find("""div""", attrs={"""class""": """yuRUbf"""})
.find("""a""")
.get("""href""")
)
except AttributeError:
__snake_case = parse_qs(
BeautifulSoup(res.text, """html.parser""")
.find("""div""", attrs={"""class""": """kCrYT"""})
.find("""a""")
.get("""href""")
)["""url"""][0]
webbrowser.open(link)
| 203 | from dataclasses import dataclass
from typing import Optional
import numpy as np
import torch
import torch.nn as nn
from ..utils import BaseOutput, is_torch_version, randn_tensor
from .attention_processor import SpatialNorm
from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block
@dataclass
class A ( UpperCAmelCase_ ):
__UpperCAmelCase : torch.FloatTensor
class A ( nn.Module ):
def __init__(self : Union[str, Any] , __UpperCAmelCase : int=3 , __UpperCAmelCase : Dict=3 , __UpperCAmelCase : Optional[Any]=("DownEncoderBlock2D",) , __UpperCAmelCase : int=(6_4,) , __UpperCAmelCase : Union[str, Any]=2 , __UpperCAmelCase : Any=3_2 , __UpperCAmelCase : str="silu" , __UpperCAmelCase : Any=True , ) -> Dict:
"""simple docstring"""
super().__init__()
UpperCAmelCase__ = layers_per_block
UpperCAmelCase__ = torch.nn.Convad(
__UpperCAmelCase , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , )
UpperCAmelCase__ = None
UpperCAmelCase__ = nn.ModuleList([] )
# down
UpperCAmelCase__ = block_out_channels[0]
for i, down_block_type in enumerate(__UpperCAmelCase ):
UpperCAmelCase__ = output_channel
UpperCAmelCase__ = block_out_channels[i]
UpperCAmelCase__ = i == len(__UpperCAmelCase ) - 1
UpperCAmelCase__ = get_down_block(
__UpperCAmelCase , num_layers=self.layers_per_block , in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , add_downsample=not is_final_block , resnet_eps=1E-6 , downsample_padding=0 , resnet_act_fn=__UpperCAmelCase , resnet_groups=__UpperCAmelCase , attention_head_dim=__UpperCAmelCase , temb_channels=__UpperCAmelCase , )
self.down_blocks.append(__UpperCAmelCase )
# mid
UpperCAmelCase__ = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=__UpperCAmelCase , output_scale_factor=1 , resnet_time_scale_shift="default" , attention_head_dim=block_out_channels[-1] , resnet_groups=__UpperCAmelCase , temb_channels=__UpperCAmelCase , )
# out
UpperCAmelCase__ = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=__UpperCAmelCase , eps=1E-6 )
UpperCAmelCase__ = nn.SiLU()
UpperCAmelCase__ = 2 * out_channels if double_z else out_channels
UpperCAmelCase__ = nn.Convad(block_out_channels[-1] , __UpperCAmelCase , 3 , padding=1 )
UpperCAmelCase__ = False
def lowercase_ (self : List[Any] , __UpperCAmelCase : int ) -> str:
"""simple docstring"""
UpperCAmelCase__ = x
UpperCAmelCase__ = self.conv_in(__UpperCAmelCase )
if self.training and self.gradient_checkpointing:
def create_custom_forward(__UpperCAmelCase : int ):
def custom_forward(*__UpperCAmelCase : Optional[Any] ):
return module(*__UpperCAmelCase )
return custom_forward
# down
if is_torch_version(">=" , "1.11.0" ):
for down_block in self.down_blocks:
UpperCAmelCase__ = torch.utils.checkpoint.checkpoint(
create_custom_forward(__UpperCAmelCase ) , __UpperCAmelCase , use_reentrant=__UpperCAmelCase )
# middle
UpperCAmelCase__ = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , __UpperCAmelCase , use_reentrant=__UpperCAmelCase )
else:
for down_block in self.down_blocks:
UpperCAmelCase__ = torch.utils.checkpoint.checkpoint(create_custom_forward(__UpperCAmelCase ) , __UpperCAmelCase )
# middle
UpperCAmelCase__ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , __UpperCAmelCase )
else:
# down
for down_block in self.down_blocks:
UpperCAmelCase__ = down_block(__UpperCAmelCase )
# middle
UpperCAmelCase__ = self.mid_block(__UpperCAmelCase )
# post-process
UpperCAmelCase__ = self.conv_norm_out(__UpperCAmelCase )
UpperCAmelCase__ = self.conv_act(__UpperCAmelCase )
UpperCAmelCase__ = self.conv_out(__UpperCAmelCase )
return sample
class A ( nn.Module ):
def __init__(self : List[Any] , __UpperCAmelCase : str=3 , __UpperCAmelCase : Union[str, Any]=3 , __UpperCAmelCase : Optional[int]=("UpDecoderBlock2D",) , __UpperCAmelCase : str=(6_4,) , __UpperCAmelCase : Optional[Any]=2 , __UpperCAmelCase : Tuple=3_2 , __UpperCAmelCase : Any="silu" , __UpperCAmelCase : Any="group" , ) -> Dict:
"""simple docstring"""
super().__init__()
UpperCAmelCase__ = layers_per_block
UpperCAmelCase__ = nn.Convad(
__UpperCAmelCase , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , )
UpperCAmelCase__ = None
UpperCAmelCase__ = nn.ModuleList([] )
UpperCAmelCase__ = in_channels if norm_type == "spatial" else None
# mid
UpperCAmelCase__ = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=__UpperCAmelCase , output_scale_factor=1 , resnet_time_scale_shift="default" if norm_type == "group" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=__UpperCAmelCase , temb_channels=__UpperCAmelCase , )
# up
UpperCAmelCase__ = list(reversed(__UpperCAmelCase ) )
UpperCAmelCase__ = reversed_block_out_channels[0]
for i, up_block_type in enumerate(__UpperCAmelCase ):
UpperCAmelCase__ = output_channel
UpperCAmelCase__ = reversed_block_out_channels[i]
UpperCAmelCase__ = i == len(__UpperCAmelCase ) - 1
UpperCAmelCase__ = get_up_block(
__UpperCAmelCase , num_layers=self.layers_per_block + 1 , in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , prev_output_channel=__UpperCAmelCase , add_upsample=not is_final_block , resnet_eps=1E-6 , resnet_act_fn=__UpperCAmelCase , resnet_groups=__UpperCAmelCase , attention_head_dim=__UpperCAmelCase , temb_channels=__UpperCAmelCase , resnet_time_scale_shift=__UpperCAmelCase , )
self.up_blocks.append(__UpperCAmelCase )
UpperCAmelCase__ = output_channel
# out
if norm_type == "spatial":
UpperCAmelCase__ = SpatialNorm(block_out_channels[0] , __UpperCAmelCase )
else:
UpperCAmelCase__ = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=__UpperCAmelCase , eps=1E-6 )
UpperCAmelCase__ = nn.SiLU()
UpperCAmelCase__ = nn.Convad(block_out_channels[0] , __UpperCAmelCase , 3 , padding=1 )
UpperCAmelCase__ = False
def lowercase_ (self : Optional[int] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict=None ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = z
UpperCAmelCase__ = self.conv_in(__UpperCAmelCase )
UpperCAmelCase__ = next(iter(self.up_blocks.parameters() ) ).dtype
if self.training and self.gradient_checkpointing:
def create_custom_forward(__UpperCAmelCase : str ):
def custom_forward(*__UpperCAmelCase : List[str] ):
return module(*__UpperCAmelCase )
return custom_forward
if is_torch_version(">=" , "1.11.0" ):
# middle
UpperCAmelCase__ = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , __UpperCAmelCase , __UpperCAmelCase , use_reentrant=__UpperCAmelCase )
UpperCAmelCase__ = sample.to(__UpperCAmelCase )
# up
for up_block in self.up_blocks:
UpperCAmelCase__ = torch.utils.checkpoint.checkpoint(
create_custom_forward(__UpperCAmelCase ) , __UpperCAmelCase , __UpperCAmelCase , use_reentrant=__UpperCAmelCase )
else:
# middle
UpperCAmelCase__ = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , __UpperCAmelCase , __UpperCAmelCase )
UpperCAmelCase__ = sample.to(__UpperCAmelCase )
# up
for up_block in self.up_blocks:
UpperCAmelCase__ = torch.utils.checkpoint.checkpoint(create_custom_forward(__UpperCAmelCase ) , __UpperCAmelCase , __UpperCAmelCase )
else:
# middle
UpperCAmelCase__ = self.mid_block(__UpperCAmelCase , __UpperCAmelCase )
UpperCAmelCase__ = sample.to(__UpperCAmelCase )
# up
for up_block in self.up_blocks:
UpperCAmelCase__ = up_block(__UpperCAmelCase , __UpperCAmelCase )
# post-process
if latent_embeds is None:
UpperCAmelCase__ = self.conv_norm_out(__UpperCAmelCase )
else:
UpperCAmelCase__ = self.conv_norm_out(__UpperCAmelCase , __UpperCAmelCase )
UpperCAmelCase__ = self.conv_act(__UpperCAmelCase )
UpperCAmelCase__ = self.conv_out(__UpperCAmelCase )
return sample
class A ( nn.Module ):
def __init__(self : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Union[str, Any]="random" , __UpperCAmelCase : Dict=False , __UpperCAmelCase : Union[str, Any]=True ) -> Dict:
"""simple docstring"""
super().__init__()
UpperCAmelCase__ = n_e
UpperCAmelCase__ = vq_embed_dim
UpperCAmelCase__ = beta
UpperCAmelCase__ = legacy
UpperCAmelCase__ = nn.Embedding(self.n_e , self.vq_embed_dim )
self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e )
UpperCAmelCase__ = remap
if self.remap is not None:
self.register_buffer("used" , torch.tensor(np.load(self.remap ) ) )
UpperCAmelCase__ = self.used.shape[0]
UpperCAmelCase__ = unknown_index # "random" or "extra" or integer
if self.unknown_index == "extra":
UpperCAmelCase__ = self.re_embed
UpperCAmelCase__ = self.re_embed + 1
print(
f"""Remapping {self.n_e} indices to {self.re_embed} indices. """
f"""Using {self.unknown_index} for unknown indices.""" )
else:
UpperCAmelCase__ = n_e
UpperCAmelCase__ = sane_index_shape
def lowercase_ (self : str , __UpperCAmelCase : str ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = inds.shape
assert len(__UpperCAmelCase ) > 1
UpperCAmelCase__ = inds.reshape(ishape[0] , -1 )
UpperCAmelCase__ = self.used.to(__UpperCAmelCase )
UpperCAmelCase__ = (inds[:, :, None] == used[None, None, ...]).long()
UpperCAmelCase__ = match.argmax(-1 )
UpperCAmelCase__ = match.sum(2 ) < 1
if self.unknown_index == "random":
UpperCAmelCase__ = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device )
else:
UpperCAmelCase__ = self.unknown_index
return new.reshape(__UpperCAmelCase )
def lowercase_ (self : Tuple , __UpperCAmelCase : Optional[int] ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = inds.shape
assert len(__UpperCAmelCase ) > 1
UpperCAmelCase__ = inds.reshape(ishape[0] , -1 )
UpperCAmelCase__ = self.used.to(__UpperCAmelCase )
if self.re_embed > self.used.shape[0]: # extra token
UpperCAmelCase__ = 0 # simply set to zero
UpperCAmelCase__ = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , __UpperCAmelCase )
return back.reshape(__UpperCAmelCase )
def lowercase_ (self : Optional[Any] , __UpperCAmelCase : Dict ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = z.permute(0 , 2 , 3 , 1 ).contiguous()
UpperCAmelCase__ = z.view(-1 , self.vq_embed_dim )
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
UpperCAmelCase__ = torch.argmin(torch.cdist(__UpperCAmelCase , self.embedding.weight ) , dim=1 )
UpperCAmelCase__ = self.embedding(__UpperCAmelCase ).view(z.shape )
UpperCAmelCase__ = None
UpperCAmelCase__ = None
# compute loss for embedding
if not self.legacy:
UpperCAmelCase__ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 )
else:
UpperCAmelCase__ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 )
# preserve gradients
UpperCAmelCase__ = z + (z_q - z).detach()
# reshape back to match original input shape
UpperCAmelCase__ = z_q.permute(0 , 3 , 1 , 2 ).contiguous()
if self.remap is not None:
UpperCAmelCase__ = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis
UpperCAmelCase__ = self.remap_to_used(__UpperCAmelCase )
UpperCAmelCase__ = min_encoding_indices.reshape(-1 , 1 ) # flatten
if self.sane_index_shape:
UpperCAmelCase__ = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] )
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
def lowercase_ (self : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any] ) -> Any:
"""simple docstring"""
if self.remap is not None:
UpperCAmelCase__ = indices.reshape(shape[0] , -1 ) # add batch axis
UpperCAmelCase__ = self.unmap_to_all(__UpperCAmelCase )
UpperCAmelCase__ = indices.reshape(-1 ) # flatten again
# get quantized latent vectors
UpperCAmelCase__ = self.embedding(__UpperCAmelCase )
if shape is not None:
UpperCAmelCase__ = z_q.view(__UpperCAmelCase )
# reshape back to match original input shape
UpperCAmelCase__ = z_q.permute(0 , 3 , 1 , 2 ).contiguous()
return z_q
class A ( UpperCAmelCase_ ):
def __init__(self : Any , __UpperCAmelCase : Dict , __UpperCAmelCase : str=False ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = parameters
UpperCAmelCase__ , UpperCAmelCase__ = torch.chunk(__UpperCAmelCase , 2 , dim=1 )
UpperCAmelCase__ = torch.clamp(self.logvar , -30.0 , 20.0 )
UpperCAmelCase__ = deterministic
UpperCAmelCase__ = torch.exp(0.5 * self.logvar )
UpperCAmelCase__ = torch.exp(self.logvar )
if self.deterministic:
UpperCAmelCase__ = UpperCAmelCase__ = torch.zeros_like(
self.mean , device=self.parameters.device , dtype=self.parameters.dtype )
def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : Optional[torch.Generator] = None ) -> torch.FloatTensor:
"""simple docstring"""
UpperCAmelCase__ = randn_tensor(
self.mean.shape , generator=__UpperCAmelCase , device=self.parameters.device , dtype=self.parameters.dtype )
UpperCAmelCase__ = self.mean + self.std * sample
return x
def lowercase_ (self : str , __UpperCAmelCase : int=None ) -> Any:
"""simple docstring"""
if self.deterministic:
return torch.Tensor([0.0] )
else:
if other is None:
return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] )
else:
return 0.5 * torch.sum(
torch.pow(self.mean - other.mean , 2 ) / other.var
+ self.var / other.var
- 1.0
- self.logvar
+ other.logvar , dim=[1, 2, 3] , )
def lowercase_ (self : Dict , __UpperCAmelCase : Tuple , __UpperCAmelCase : Any=[1, 2, 3] ) -> Dict:
"""simple docstring"""
if self.deterministic:
return torch.Tensor([0.0] )
UpperCAmelCase__ = np.log(2.0 * np.pi )
return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=__UpperCAmelCase )
def lowercase_ (self : Tuple ) -> Optional[Any]:
"""simple docstring"""
return self.mean
| 65 | 0 |
"""simple docstring"""
import unittest
import numpy as np
from transformers import AlbertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.albert.modeling_flax_albert import (
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForPreTraining,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertModel,
)
class lowerCamelCase_( unittest.TestCase ):
'''simple docstring'''
def __init__( self , lowerCamelCase__ , lowerCamelCase__=1_3 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=9_9 , lowerCamelCase__=3_2 , lowerCamelCase__=5 , lowerCamelCase__=4 , lowerCamelCase__=3_7 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=5_1_2 , lowerCamelCase__=1_6 , lowerCamelCase__=2 , lowerCamelCase__=0.0_2 , lowerCamelCase__=4 , ):
_lowerCamelCase = parent
_lowerCamelCase = batch_size
_lowerCamelCase = seq_length
_lowerCamelCase = is_training
_lowerCamelCase = use_attention_mask
_lowerCamelCase = use_token_type_ids
_lowerCamelCase = use_labels
_lowerCamelCase = vocab_size
_lowerCamelCase = hidden_size
_lowerCamelCase = num_hidden_layers
_lowerCamelCase = num_attention_heads
_lowerCamelCase = intermediate_size
_lowerCamelCase = hidden_act
_lowerCamelCase = hidden_dropout_prob
_lowerCamelCase = attention_probs_dropout_prob
_lowerCamelCase = max_position_embeddings
_lowerCamelCase = type_vocab_size
_lowerCamelCase = type_sequence_label_size
_lowerCamelCase = initializer_range
_lowerCamelCase = num_choices
def snake_case__ ( self ):
_lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_lowerCamelCase = None
if self.use_attention_mask:
_lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
_lowerCamelCase = None
if self.use_token_type_ids:
_lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_lowerCamelCase = AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_a , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def snake_case__ ( self ):
_lowerCamelCase = self.prepare_config_and_inputs()
_lowerCamelCase = config_and_inputs
_lowerCamelCase = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask}
return config, inputs_dict
@require_flax
class lowerCamelCase_( A__, unittest.TestCase ):
'''simple docstring'''
lowercase__ : Optional[Any] = (
(
FlaxAlbertModel,
FlaxAlbertForPreTraining,
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def snake_case__ ( self ):
_lowerCamelCase = FlaxAlbertModelTester(self )
@slow
def snake_case__ ( self ):
for model_class_name in self.all_model_classes:
_lowerCamelCase = model_class_name.from_pretrained('''albert-base-v2''' )
_lowerCamelCase = model(np.ones((1, 1) ) )
self.assertIsNotNone(_a )
@require_flax
class lowerCamelCase_( unittest.TestCase ):
'''simple docstring'''
@slow
def snake_case__ ( self ):
_lowerCamelCase = FlaxAlbertModel.from_pretrained('''albert-base-v2''' )
_lowerCamelCase = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] )
_lowerCamelCase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
_lowerCamelCase = model(_a , attention_mask=_a )[0]
_lowerCamelCase = (1, 1_1, 7_6_8)
self.assertEqual(output.shape , _a )
_lowerCamelCase = np.array(
[[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] )
self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , _a , atol=1e-4 ) )
| 369 |
"""simple docstring"""
import os
from collections.abc import Iterator
def lowerCAmelCase_( lowercase_ : str = "." ) -> Iterator[str]:
for dir_path, dir_names, filenames in os.walk(lowercase_ ):
_lowerCamelCase = [d for d in dir_names if d != '''scripts''' and d[0] not in '''._''']
for filename in filenames:
if filename == "__init__.py":
continue
if os.path.splitext(lowercase_ )[1] in (".py", ".ipynb"):
yield os.path.join(lowercase_ , lowercase_ ).lstrip('''./''' )
def lowerCAmelCase_( lowercase_ : Dict ) -> List[Any]:
return F"""{i * " "}*""" if i else "\n##"
def lowerCAmelCase_( lowercase_ : str , lowercase_ : str ) -> str:
_lowerCamelCase = old_path.split(os.sep )
for i, new_part in enumerate(new_path.split(os.sep ) ):
if (i + 1 > len(lowercase_ ) or old_parts[i] != new_part) and new_part:
print(F"""{md_prefix(lowercase_ )} {new_part.replace("_" , " " ).title()}""" )
return new_path
def lowerCAmelCase_( lowercase_ : str = "." ) -> None:
_lowerCamelCase = ''''''
for filepath in sorted(good_file_paths(lowercase_ ) ):
_lowerCamelCase , _lowerCamelCase = os.path.split(lowercase_ )
if filepath != old_path:
_lowerCamelCase = print_path(lowercase_ , lowercase_ )
_lowerCamelCase = (filepath.count(os.sep ) + 1) if filepath else 0
_lowerCamelCase = F"""{filepath}/{filename}""".replace(''' ''' , '''%20''' )
_lowerCamelCase = os.path.splitext(filename.replace('''_''' , ''' ''' ).title() )[0]
print(F"""{md_prefix(lowercase_ )} [{filename}]({url})""" )
if __name__ == "__main__":
print_directory_md('''.''')
| 73 | 0 |
'''simple docstring'''
from decimal import Decimal, getcontext
from math import ceil, factorial
def _UpperCamelCase ( __A ) -> str:
'''simple docstring'''
if not isinstance(__A , __A ):
raise TypeError("Undefined for non-integers" )
elif precision < 1:
raise ValueError("Undefined for non-natural numbers" )
UpperCamelCase__ = precision
UpperCamelCase__ = ceil(precision / 14 )
UpperCamelCase__ = 426880 * Decimal(10005 ).sqrt()
UpperCamelCase__ = 1
UpperCamelCase__ = 13591409
UpperCamelCase__ = Decimal(__A )
for k in range(1 , __A ):
UpperCamelCase__ = factorial(6 * k ) // (factorial(3 * k ) * factorial(__A ) ** 3)
linear_term += 545140134
exponential_term *= -262537412640768000
partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term
return str(constant_term / partial_sum )[:-1]
if __name__ == "__main__":
a__ : int = 5_0
print(F"""The first {n} digits of pi is: {pi(n)}""")
| 80 |
'''simple docstring'''
def _UpperCamelCase ( __A ) -> int:
'''simple docstring'''
UpperCamelCase__ = 0
while num > 0:
digit_sum += num % 10
num //= 10
return digit_sum
def _UpperCamelCase ( __A = 100 ) -> int:
'''simple docstring'''
UpperCamelCase__ = 1
UpperCamelCase__ = 2
for i in range(2 , max_n + 1 ):
UpperCamelCase__ = pre_numerator
UpperCamelCase__ = 2 * i // 3 if i % 3 == 0 else 1
UpperCamelCase__ = cur_numerator
UpperCamelCase__ = e_cont * pre_numerator + temp
return sum_digits(__A )
if __name__ == "__main__":
print(F"""{solution() = }""")
| 80 | 1 |
'''simple docstring'''
import json
import os
import shutil
import warnings
from argparse import ArgumentParser, Namespace
from pathlib import Path
from typing import List
from ..utils import logging
from . import BaseTransformersCLICommand
try:
from cookiecutter.main import cookiecutter
lowerCamelCase :List[str] = True
except ImportError:
lowerCamelCase :Optional[int] = False
lowerCamelCase :Any = logging.get_logger(__name__) # pylint: disable=invalid-name
def a ( lowerCamelCase__ ):
'''simple docstring'''
return AddNewModelCommand(args.testing , args.testing_file , path=args.path )
class _lowerCAmelCase ( __UpperCAmelCase ):
@staticmethod
def _a (lowercase ):
A_ : Any = parser.add_parser("""add-new-model""" )
add_new_model_parser.add_argument("""--testing""" , action="""store_true""" , help="""If in testing mode.""" )
add_new_model_parser.add_argument("""--testing_file""" , type=lowercase , help="""Configuration file on which to run.""" )
add_new_model_parser.add_argument(
"""--path""" , type=lowercase , help="""Path to cookiecutter. Should only be used for testing purposes.""" )
add_new_model_parser.set_defaults(func=lowercase )
def __init__(self , lowercase , lowercase , lowercase=None , *lowercase ):
A_ : List[str] = testing
A_ : List[Any] = testing_file
A_ : Union[str, Any] = path
def _a (self ):
warnings.warn(
"""The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. """
"""It is not actively maintained anymore, so might give a result that won't pass all tests and quality """
"""checks, you should use `transformers-cli add-new-model-like` instead.""" )
if not _has_cookiecutter:
raise ImportError(
"""Model creation dependencies are required to use the `add_new_model` command. Install them by running """
"""the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n""" )
# Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory
A_ : Optional[int] = [directory for directory in os.listdir() if """cookiecutter-template-""" == directory[:22]]
if len(lowercase ) > 0:
raise ValueError(
"""Several directories starting with `cookiecutter-template-` in current working directory. """
"""Please clean your directory by removing all folders starting with `cookiecutter-template-` or """
"""change your working directory.""" )
A_ : Tuple = (
Path(lowercase ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent
)
A_ : Optional[int] = path_to_transformer_root / """templates""" / """adding_a_new_model"""
# Execute cookiecutter
if not self._testing:
cookiecutter(str(lowercase ) )
else:
with open(self._testing_file , """r""" ) as configuration_file:
A_ : Dict = json.load(lowercase )
cookiecutter(
str(path_to_cookiecutter if self._path is None else self._path ) , no_input=lowercase , extra_context=lowercase , )
A_ : Union[str, Any] = [directory for directory in os.listdir() if """cookiecutter-template-""" in directory[:22]][0]
# Retrieve configuration
with open(directory + """/configuration.json""" , """r""" ) as configuration_file:
A_ : Optional[Any] = json.load(lowercase )
A_ : str = configuration["""lowercase_modelname"""]
A_ : Optional[int] = configuration["""generate_tensorflow_pytorch_and_flax"""]
os.remove(F'{directory}/configuration.json' )
A_ : Union[str, Any] = """PyTorch""" in generate_tensorflow_pytorch_and_flax
A_ : int = """TensorFlow""" in generate_tensorflow_pytorch_and_flax
A_ : List[str] = """Flax""" in generate_tensorflow_pytorch_and_flax
A_ : List[str] = F'{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}'
os.makedirs(lowercase , exist_ok=lowercase )
os.makedirs(F'{path_to_transformer_root}/tests/models/{lowercase_model_name}' , exist_ok=lowercase )
# Tests require submodules as they have parent imports
with open(F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py' , """w""" ):
pass
shutil.move(
F'{directory}/__init__.py' , F'{model_dir}/__init__.py' , )
shutil.move(
F'{directory}/configuration_{lowercase_model_name}.py' , F'{model_dir}/configuration_{lowercase_model_name}.py' , )
def remove_copy_lines(lowercase ):
with open(lowercase , """r""" ) as f:
A_ : Any = f.readlines()
with open(lowercase , """w""" ) as f:
for line in lines:
if "# Copied from transformers." not in line:
f.write(lowercase )
if output_pytorch:
if not self._testing:
remove_copy_lines(F'{directory}/modeling_{lowercase_model_name}.py' )
shutil.move(
F'{directory}/modeling_{lowercase_model_name}.py' , F'{model_dir}/modeling_{lowercase_model_name}.py' , )
shutil.move(
F'{directory}/test_modeling_{lowercase_model_name}.py' , F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py' , )
else:
os.remove(F'{directory}/modeling_{lowercase_model_name}.py' )
os.remove(F'{directory}/test_modeling_{lowercase_model_name}.py' )
if output_tensorflow:
if not self._testing:
remove_copy_lines(F'{directory}/modeling_tf_{lowercase_model_name}.py' )
shutil.move(
F'{directory}/modeling_tf_{lowercase_model_name}.py' , F'{model_dir}/modeling_tf_{lowercase_model_name}.py' , )
shutil.move(
F'{directory}/test_modeling_tf_{lowercase_model_name}.py' , F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py' , )
else:
os.remove(F'{directory}/modeling_tf_{lowercase_model_name}.py' )
os.remove(F'{directory}/test_modeling_tf_{lowercase_model_name}.py' )
if output_flax:
if not self._testing:
remove_copy_lines(F'{directory}/modeling_flax_{lowercase_model_name}.py' )
shutil.move(
F'{directory}/modeling_flax_{lowercase_model_name}.py' , F'{model_dir}/modeling_flax_{lowercase_model_name}.py' , )
shutil.move(
F'{directory}/test_modeling_flax_{lowercase_model_name}.py' , F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py' , )
else:
os.remove(F'{directory}/modeling_flax_{lowercase_model_name}.py' )
os.remove(F'{directory}/test_modeling_flax_{lowercase_model_name}.py' )
shutil.move(
F'{directory}/{lowercase_model_name}.md' , F'{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md' , )
shutil.move(
F'{directory}/tokenization_{lowercase_model_name}.py' , F'{model_dir}/tokenization_{lowercase_model_name}.py' , )
shutil.move(
F'{directory}/tokenization_fast_{lowercase_model_name}.py' , F'{model_dir}/tokenization_{lowercase_model_name}_fast.py' , )
from os import fdopen, remove
from shutil import copymode, move
from tempfile import mkstemp
def replace(lowercase , lowercase , lowercase ):
# Create temp file
A_, A_ : Dict = mkstemp()
A_ : Tuple = False
with fdopen(lowercase , """w""" ) as new_file:
with open(lowercase ) as old_file:
for line in old_file:
new_file.write(lowercase )
if line_to_copy_below in line:
A_ : Optional[int] = True
for line_to_copy in lines_to_copy:
new_file.write(lowercase )
if not line_found:
raise ValueError(F'Line {line_to_copy_below} was not found in file.' )
# Copy the file permissions from the old file to the new file
copymode(lowercase , lowercase )
# Remove original file
remove(lowercase )
# Move new file
move(lowercase , lowercase )
def skip_units(lowercase ):
return (
("generating PyTorch" in line and not output_pytorch)
or ("generating TensorFlow" in line and not output_tensorflow)
or ("generating Flax" in line and not output_flax)
)
def replace_in_files(lowercase ):
with open(lowercase ) as datafile:
A_ : Union[str, Any] = []
A_ : List[Any] = False
A_ : List[Any] = False
for line in datafile:
if "# To replace in: " in line and "##" not in line:
A_ : Optional[int] = line.split("""\"""" )[1]
A_ : str = skip_units(lowercase )
elif "# Below: " in line and "##" not in line:
A_ : Any = line.split("""\"""" )[1]
A_ : Any = skip_units(lowercase )
elif "# End." in line and "##" not in line:
if not skip_file and not skip_snippet:
replace(lowercase , lowercase , lowercase )
A_ : Tuple = []
elif "# Replace with" in line and "##" not in line:
A_ : Optional[int] = []
elif "##" not in line:
lines_to_copy.append(lowercase )
remove(lowercase )
replace_in_files(F'{directory}/to_replace_{lowercase_model_name}.py' )
os.rmdir(lowercase ) | 135 |
'''simple docstring'''
from typing import Dict
from .base import GenericTensor, Pipeline
class _lowerCAmelCase ( __UpperCAmelCase ):
def _a (self , lowercase=None , lowercase=None , lowercase=None , **lowercase ):
if tokenize_kwargs is None:
A_ : Optional[Any] = {}
if truncation is not None:
if "truncation" in tokenize_kwargs:
raise ValueError(
"""truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)""" )
A_ : str = truncation
A_ : List[str] = tokenize_kwargs
A_ : Dict = {}
if return_tensors is not None:
A_ : List[Any] = return_tensors
return preprocess_params, {}, postprocess_params
def _a (self , lowercase , **lowercase ):
A_ : Optional[int] = self.framework
A_ : str = self.tokenizer(lowercase , return_tensors=lowercase , **lowercase )
return model_inputs
def _a (self , lowercase ):
A_ : str = self.model(**lowercase )
return model_outputs
def _a (self , lowercase , lowercase=False ):
# [0] is the first available tensor, logits or last_hidden_state.
if return_tensors:
return model_outputs[0]
if self.framework == "pt":
return model_outputs[0].tolist()
elif self.framework == "tf":
return model_outputs[0].numpy().tolist()
def __call__(self , *lowercase , **lowercase ):
return super().__call__(*lowercase , **lowercase ) | 135 | 1 |
import warnings
from ...utils import logging
from .image_processing_deit import DeiTImageProcessor
UpperCamelCase = logging.get_logger(__name__)
class __UpperCAmelCase (lowerCamelCase_ ):
def __init__( self: Tuple , *UpperCAmelCase_: List[str] , **UpperCAmelCase_: Any ):
'''simple docstring'''
warnings.warn(
"""The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use DeiTImageProcessor instead.""" , __snake_case , )
super().__init__(*__snake_case , **__snake_case )
| 306 |
import os
import random
import sys
from . import cryptomath_module as cryptoMath # noqa: N812
from . import rabin_miller as rabinMiller # noqa: N812
def __lowercase ( ):
print('Making key files...' )
make_key_files('rsa' , 1_0_2_4 )
print('Key files generation successful.' )
def __lowercase ( __lowerCAmelCase : int ):
print('Generating prime p...' )
a__ = rabinMiller.generate_large_prime(__lowerCAmelCase )
print('Generating prime q...' )
a__ = rabinMiller.generate_large_prime(__lowerCAmelCase )
a__ = p * q
print('Generating e that is relatively prime to (p - 1) * (q - 1)...' )
while True:
a__ = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) )
if cryptoMath.gcd(__lowerCAmelCase , (p - 1) * (q - 1) ) == 1:
break
print('Calculating d that is mod inverse of e...' )
a__ = cryptoMath.find_mod_inverse(__lowerCAmelCase , (p - 1) * (q - 1) )
a__ = (n, e)
a__ = (n, d)
return (public_key, private_key)
def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : int ):
if os.path.exists(F'{name}_pubkey.txt' ) or os.path.exists(F'{name}_privkey.txt' ):
print('\nWARNING:' )
print(
F'"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n'
'Use a different name or delete these files and re-run this program.' )
sys.exit()
a__ , a__ = generate_key(__lowerCAmelCase )
print(F'\nWriting public key to file {name}_pubkey.txt...' )
with open(F'{name}_pubkey.txt' , 'w' ) as out_file:
out_file.write(F'{key_size},{public_key[0]},{public_key[1]}' )
print(F'Writing private key to file {name}_privkey.txt...' )
with open(F'{name}_privkey.txt' , 'w' ) as out_file:
out_file.write(F'{key_size},{private_key[0]},{private_key[1]}' )
if __name__ == "__main__":
main()
| 240 | 0 |
'''simple docstring'''
import argparse
import json
import os
import pickle
import shutil
import numpy as np
import torch
from distiller import Distiller
from lm_seqs_dataset import LmSeqsDataset
from transformers import (
BertConfig,
BertForMaskedLM,
BertTokenizer,
DistilBertConfig,
DistilBertForMaskedLM,
DistilBertTokenizer,
GPTaConfig,
GPTaLMHeadModel,
GPTaTokenizer,
RobertaConfig,
RobertaForMaskedLM,
RobertaTokenizer,
)
from utils import git_log, init_gpu_params, logger, set_seed
UpperCamelCase = {
'''distilbert''': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer),
'''roberta''': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer),
'''bert''': (BertConfig, BertForMaskedLM, BertTokenizer),
'''gpt2''': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer),
}
def SCREAMING_SNAKE_CASE( __lowercase ) -> Any:
assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0)
assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0)
if args.mlm:
assert os.path.isfile(args.token_counts )
assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"])
else:
assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"])
assert args.teacher_type == args.student_type or (
args.student_type == "distilbert" and args.teacher_type == "bert"
)
assert os.path.isfile(args.student_config )
if args.student_pretrained_weights is not None:
assert os.path.isfile(args.student_pretrained_weights )
if args.freeze_token_type_embds:
assert args.student_type in ["roberta"]
assert args.alpha_ce >= 0.0
assert args.alpha_mlm >= 0.0
assert args.alpha_clm >= 0.0
assert args.alpha_mse >= 0.0
assert args.alpha_cos >= 0.0
assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> List[str]:
if args.student_type == "roberta":
A: Optional[int] = False
elif args.student_type == "gpt2":
A: List[Any] = False
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> List[Any]:
if args.student_type == "roberta":
A: Union[str, Any] = False
def SCREAMING_SNAKE_CASE( ) -> Union[str, Any]:
A: str = argparse.ArgumentParser(description='''Training''' )
parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' )
parser.add_argument(
'''--dump_path''' , type=__lowercase , required=__lowercase , help='''The output directory (log, checkpoints, parameters, etc.)''' )
parser.add_argument(
'''--data_file''' , type=__lowercase , required=__lowercase , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , )
parser.add_argument(
'''--student_type''' , type=__lowercase , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=__lowercase , help='''The student type (DistilBERT, RoBERTa).''' , )
parser.add_argument('''--student_config''' , type=__lowercase , required=__lowercase , help='''Path to the student configuration.''' )
parser.add_argument(
'''--student_pretrained_weights''' , default=__lowercase , type=__lowercase , help='''Load student initialization checkpoint.''' )
parser.add_argument(
'''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=__lowercase , help='''Teacher type (BERT, RoBERTa).''' )
parser.add_argument('''--teacher_name''' , type=__lowercase , required=__lowercase , help='''The teacher model.''' )
parser.add_argument('''--temperature''' , default=2.0 , type=__lowercase , help='''Temperature for the softmax temperature.''' )
parser.add_argument(
'''--alpha_ce''' , default=0.5 , type=__lowercase , help='''Linear weight for the distillation loss. Must be >=0.''' )
parser.add_argument(
'''--alpha_mlm''' , default=0.0 , type=__lowercase , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , )
parser.add_argument('''--alpha_clm''' , default=0.5 , type=__lowercase , help='''Linear weight for the CLM loss. Must be >=0.''' )
parser.add_argument('''--alpha_mse''' , default=0.0 , type=__lowercase , help='''Linear weight of the MSE loss. Must be >=0.''' )
parser.add_argument(
'''--alpha_cos''' , default=0.0 , type=__lowercase , help='''Linear weight of the cosine embedding loss. Must be >=0.''' )
parser.add_argument(
'''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' )
parser.add_argument(
'''--mlm_mask_prop''' , default=0.1_5 , type=__lowercase , help='''Proportion of tokens for which we need to make a prediction.''' , )
parser.add_argument('''--word_mask''' , default=0.8 , type=__lowercase , help='''Proportion of tokens to mask out.''' )
parser.add_argument('''--word_keep''' , default=0.1 , type=__lowercase , help='''Proportion of tokens to keep.''' )
parser.add_argument('''--word_rand''' , default=0.1 , type=__lowercase , help='''Proportion of tokens to randomly replace.''' )
parser.add_argument(
'''--mlm_smoothing''' , default=0.7 , type=__lowercase , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , )
parser.add_argument('''--token_counts''' , type=__lowercase , help='''The token counts in the data_file for MLM.''' )
parser.add_argument(
'''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , )
parser.add_argument(
'''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , )
parser.add_argument(
'''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , )
parser.add_argument('''--n_epoch''' , type=__lowercase , default=3 , help='''Number of pass on the whole dataset.''' )
parser.add_argument('''--batch_size''' , type=__lowercase , default=5 , help='''Batch size (for each process).''' )
parser.add_argument(
'''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , )
parser.add_argument(
'''--gradient_accumulation_steps''' , type=__lowercase , default=5_0 , help='''Gradient accumulation for larger training batches.''' , )
parser.add_argument('''--warmup_prop''' , default=0.0_5 , type=__lowercase , help='''Linear warmup proportion.''' )
parser.add_argument('''--weight_decay''' , default=0.0 , type=__lowercase , help='''Weight decay if we apply some.''' )
parser.add_argument('''--learning_rate''' , default=5E-4 , type=__lowercase , help='''The initial learning rate for Adam.''' )
parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=__lowercase , help='''Epsilon for Adam optimizer.''' )
parser.add_argument('''--max_grad_norm''' , default=5.0 , type=__lowercase , help='''Max gradient norm.''' )
parser.add_argument('''--initializer_range''' , default=0.0_2 , type=__lowercase , help='''Random initialization range.''' )
parser.add_argument(
'''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , )
parser.add_argument(
'''--fp16_opt_level''' , type=__lowercase , default='''O1''' , help=(
'''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].'''
'''See details at https://nvidia.github.io/apex/amp.html'''
) , )
parser.add_argument('''--n_gpu''' , type=__lowercase , default=1 , help='''Number of GPUs in the node.''' )
parser.add_argument('''--local_rank''' , type=__lowercase , default=-1 , help='''Distributed training - Local rank''' )
parser.add_argument('''--seed''' , type=__lowercase , default=5_6 , help='''Random seed''' )
parser.add_argument('''--log_interval''' , type=__lowercase , default=5_0_0 , help='''Tensorboard logging interval.''' )
parser.add_argument('''--checkpoint_interval''' , type=__lowercase , default=4_0_0_0 , help='''Checkpoint interval.''' )
A: List[str] = parser.parse_args()
sanity_checks(__lowercase )
# ARGS #
init_gpu_params(__lowercase )
set_seed(__lowercase )
if args.is_master:
if os.path.exists(args.dump_path ):
if not args.force:
raise ValueError(
F"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite"""
''' itUse `--force` if you want to overwrite it''' )
else:
shutil.rmtree(args.dump_path )
if not os.path.exists(args.dump_path ):
os.makedirs(args.dump_path )
logger.info(F"""Experiment will be dumped and logged in {args.dump_path}""" )
# SAVE PARAMS #
logger.info(F"""Param: {args}""" )
with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f:
json.dump(vars(__lowercase ) , __lowercase , indent=4 )
git_log(args.dump_path )
A , A , A: Union[str, Any] = MODEL_CLASSES[args.student_type]
A , A , A: int = MODEL_CLASSES[args.teacher_type]
# TOKENIZER #
A: Tuple = teacher_tokenizer_class.from_pretrained(args.teacher_name )
A: int = {}
for tok_name, tok_symbol in tokenizer.special_tokens_map.items():
A: int = tokenizer.all_special_tokens.index(__lowercase )
A: Any = tokenizer.all_special_ids[idx]
logger.info(F"""Special tokens {special_tok_ids}""" )
A: Tuple = special_tok_ids
A: Optional[int] = tokenizer.max_model_input_sizes[args.teacher_name]
# DATA LOADER #
logger.info(F"""Loading data from {args.data_file}""" )
with open(args.data_file , '''rb''' ) as fp:
A: Any = pickle.load(__lowercase )
if args.mlm:
logger.info(F"""Loading token counts from {args.token_counts} (already pre-computed)""" )
with open(args.token_counts , '''rb''' ) as fp:
A: Optional[int] = pickle.load(__lowercase )
A: str = np.maximum(__lowercase , 1 ) ** -args.mlm_smoothing
for idx in special_tok_ids.values():
A: Any = 0.0 # do not predict special tokens
A: Optional[Any] = torch.from_numpy(__lowercase )
else:
A: Tuple = None
A: Optional[int] = LmSeqsDataset(params=__lowercase , data=__lowercase )
logger.info('''Data loader created.''' )
# STUDENT #
logger.info(F"""Loading student config from {args.student_config}""" )
A: Tuple = student_config_class.from_pretrained(args.student_config )
A: Any = True
if args.student_pretrained_weights is not None:
logger.info(F"""Loading pretrained weights from {args.student_pretrained_weights}""" )
A: str = student_model_class.from_pretrained(args.student_pretrained_weights , config=__lowercase )
else:
A: int = student_model_class(__lowercase )
if args.n_gpu > 0:
student.to(F"""cuda:{args.local_rank}""" )
logger.info('''Student loaded.''' )
# TEACHER #
A: List[Any] = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=__lowercase )
if args.n_gpu > 0:
teacher.to(F"""cuda:{args.local_rank}""" )
logger.info(F"""Teacher loaded from {args.teacher_name}.""" )
# FREEZING #
if args.freeze_pos_embs:
freeze_pos_embeddings(__lowercase , __lowercase )
if args.freeze_token_type_embds:
freeze_token_type_embeddings(__lowercase , __lowercase )
# SANITY CHECKS #
assert student.config.vocab_size == teacher.config.vocab_size
assert student.config.hidden_size == teacher.config.hidden_size
assert student.config.max_position_embeddings == teacher.config.max_position_embeddings
if args.mlm:
assert token_probs.size(0 ) == stu_architecture_config.vocab_size
# DISTILLER #
torch.cuda.empty_cache()
A: str = Distiller(
params=__lowercase , dataset=__lowercase , token_probs=__lowercase , student=__lowercase , teacher=__lowercase )
distiller.train()
logger.info('''Let\'s go get some drinks.''' )
if __name__ == "__main__":
main()
| 334 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE( __lowercase ) -> Tuple:
A: Tuple = len(__lowercase )
for i in range(length - 1 ):
A: Dict = i
for k in range(i + 1 , __lowercase ):
if collection[k] < collection[least]:
A: List[str] = k
if least != i:
A , A: Tuple = (collection[i], collection[least])
return collection
if __name__ == "__main__":
UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip()
UpperCamelCase = [int(item) for item in user_input.split(''',''')]
print(selection_sort(unsorted))
| 334 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
UpperCAmelCase_ : Optional[Any] = {
"""configuration_tapas""": ["""TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TapasConfig"""],
"""tokenization_tapas""": ["""TapasTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ : int = [
"""TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TapasForMaskedLM""",
"""TapasForQuestionAnswering""",
"""TapasForSequenceClassification""",
"""TapasModel""",
"""TapasPreTrainedModel""",
"""load_tf_weights_in_tapas""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ : int = [
"""TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFTapasForMaskedLM""",
"""TFTapasForQuestionAnswering""",
"""TFTapasForSequenceClassification""",
"""TFTapasModel""",
"""TFTapasPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig
from .tokenization_tapas import TapasTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tapas import (
TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST,
TapasForMaskedLM,
TapasForQuestionAnswering,
TapasForSequenceClassification,
TapasModel,
TapasPreTrainedModel,
load_tf_weights_in_tapas,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_tapas import (
TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST,
TFTapasForMaskedLM,
TFTapasForQuestionAnswering,
TFTapasForSequenceClassification,
TFTapasModel,
TFTapasPreTrainedModel,
)
else:
import sys
UpperCAmelCase_ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 91 |
"""simple docstring"""
import numpy as np
from cva import destroyAllWindows, imread, imshow, waitKey
class __lowercase :
'''simple docstring'''
def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
if dst_width < 0 or dst_height < 0:
raise ValueError('''Destination width/height should be > 0''' )
__a : Optional[int] = img
__a : Any = img.shape[1]
__a : Optional[int] = img.shape[0]
__a : Tuple = dst_width
__a : List[Any] = dst_height
__a : Optional[int] = self.src_w / self.dst_w
__a : Tuple = self.src_h / self.dst_h
__a : Union[str, Any] = (
np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 255
)
def _lowerCamelCase ( self ):
for i in range(self.dst_h ):
for j in range(self.dst_w ):
__a : Optional[int] = self.img[self.get_y(_UpperCAmelCase )][self.get_x(_UpperCAmelCase )]
def _lowerCamelCase ( self , _UpperCAmelCase ):
return int(self.ratio_x * x )
def _lowerCamelCase ( self , _UpperCAmelCase ):
return int(self.ratio_y * y )
if __name__ == "__main__":
A , A = 800, 600
A = imread('''image_data/lena.jpg''', 1)
A = NearestNeighbour(im, dst_w, dst_h)
n.process()
imshow(
F'Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}', n.output
)
waitKey(0)
destroyAllWindows() | 160 | 0 |
import multiprocessing
import os
from typing import BinaryIO, Optional, Union
import fsspec
from .. import Dataset, Features, NamedSplit, config
from ..formatting import query_table
from ..packaged_modules.json.json import Json
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class lowerCamelCase (_snake_case ):
'''simple docstring'''
def __init__( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ) -> List[str]:
super().__init__(
_UpperCamelCase , split=_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase , keep_in_memory=_UpperCamelCase , streaming=_UpperCamelCase , num_proc=_UpperCamelCase , **_UpperCamelCase , )
UpperCAmelCase_ : List[Any] = field
UpperCAmelCase_ : List[Any] = path_or_paths if isinstance(_UpperCamelCase , _UpperCamelCase ) else {self.split: path_or_paths}
UpperCAmelCase_ : str = Json(
cache_dir=_UpperCamelCase , data_files=_UpperCamelCase , features=_UpperCamelCase , field=_UpperCamelCase , **_UpperCamelCase , )
def __UpperCAmelCase ( self ) -> Optional[Any]:
# Build iterable dataset
if self.streaming:
UpperCAmelCase_ : List[Any] = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
UpperCAmelCase_ : List[str] = None
UpperCAmelCase_ : Optional[int] = None
UpperCAmelCase_ : int = None
UpperCAmelCase_ : int = None
self.builder.download_and_prepare(
download_config=_UpperCamelCase , download_mode=_UpperCamelCase , verification_mode=_UpperCamelCase , base_path=_UpperCamelCase , num_proc=self.num_proc , )
UpperCAmelCase_ : Dict = self.builder.as_dataset(
split=self.split , verification_mode=_UpperCamelCase , in_memory=self.keep_in_memory )
return dataset
class lowerCamelCase :
'''simple docstring'''
def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ) -> Dict:
if num_proc is not None and num_proc <= 0:
raise ValueError(f"num_proc {num_proc} must be an integer > 0." )
UpperCAmelCase_ : Dict = dataset
UpperCAmelCase_ : Optional[Any] = path_or_buf
UpperCAmelCase_ : int = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
UpperCAmelCase_ : Optional[int] = num_proc
UpperCAmelCase_ : List[Any] = 'utf-8'
UpperCAmelCase_ : Any = to_json_kwargs
def __UpperCAmelCase ( self ) -> int:
UpperCAmelCase_ : int = self.to_json_kwargs.pop('path_or_buf' , _UpperCamelCase )
UpperCAmelCase_ : Tuple = self.to_json_kwargs.pop('orient' , 'records' )
UpperCAmelCase_ : List[str] = self.to_json_kwargs.pop('lines' , True if orient == 'records' else False )
UpperCAmelCase_ : Any = self.to_json_kwargs.pop('index' , False if orient in ['split', 'table'] else True )
UpperCAmelCase_ : Dict = self.to_json_kwargs.pop('compression' , _UpperCamelCase )
if compression not in [None, "infer", "gzip", "bz2", "xz"]:
raise NotImplementedError(f"`datasets` currently does not support {compression} compression" )
if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ):
with fsspec.open(self.path_or_buf , 'wb' , compression=_UpperCamelCase ) as buffer:
UpperCAmelCase_ : List[str] = self._write(file_obj=_UpperCamelCase , orient=_UpperCamelCase , lines=_UpperCamelCase , index=_UpperCamelCase , **self.to_json_kwargs )
else:
if compression:
raise NotImplementedError(
f"The compression parameter is not supported when writing to a buffer, but compression={compression}"
' was passed. Please provide a local path instead.' )
UpperCAmelCase_ : Optional[int] = self._write(
file_obj=self.path_or_buf , orient=_UpperCamelCase , lines=_UpperCamelCase , index=_UpperCamelCase , **self.to_json_kwargs )
return written
def __UpperCAmelCase ( self , _UpperCamelCase ) -> Optional[Any]:
UpperCAmelCase_ : List[str] = args
UpperCAmelCase_ : Tuple = query_table(
table=self.dataset.data , key=slice(_UpperCamelCase , offset + self.batch_size ) , indices=self.dataset._indices , )
UpperCAmelCase_ : Tuple = batch.to_pandas().to_json(
path_or_buf=_UpperCamelCase , orient=_UpperCamelCase , lines=_UpperCamelCase , index=_UpperCamelCase , **_UpperCamelCase )
if not json_str.endswith('\n' ):
json_str += "\n"
return json_str.encode(self.encoding )
def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase , ) -> int:
UpperCAmelCase_ : Optional[Any] = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 , len(self.dataset ) , self.batch_size ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating json from Arrow format' , ):
UpperCAmelCase_ : Tuple = self._batch_json((offset, orient, lines, index, to_json_kwargs) )
written += file_obj.write(_UpperCamelCase )
else:
UpperCAmelCase_ : str = len(self.dataset ), self.batch_size
with multiprocessing.Pool(self.num_proc ) as pool:
for json_str in logging.tqdm(
pool.imap(
self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , _UpperCamelCase , _UpperCamelCase )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating json from Arrow format' , ):
written += file_obj.write(_UpperCamelCase )
return written
| 370 |
import re
import string
from collections import Counter
import sacrebleu
import sacremoses
from packaging import version
import datasets
__UpperCAmelCase = '\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n'
__UpperCAmelCase = '\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n'
__UpperCAmelCase = '\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=["About 95 species are currently accepted ."]\n >>> predictions=["About 95 you now get in ."]\n >>> references=[["About 95 species are currently known ."]]\n >>> wiki_split = datasets.load_metric("wiki_split")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0}\n'
def lowercase__ ( __snake_case : Optional[int] ):
'''simple docstring'''
def remove_articles(__snake_case : Tuple ):
UpperCAmelCase_ : Optional[int] = re.compile(R'\b(a|an|the)\b' , re.UNICODE )
return re.sub(__snake_case , ' ' , __snake_case )
def white_space_fix(__snake_case : int ):
return " ".join(text.split() )
def remove_punc(__snake_case : int ):
UpperCAmelCase_ : Optional[Any] = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(__snake_case : List[str] ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(__snake_case ) ) ) )
def lowercase__ ( __snake_case : List[str] , __snake_case : List[Any] ):
'''simple docstring'''
return int(normalize_answer(__snake_case ) == normalize_answer(__snake_case ) )
def lowercase__ ( __snake_case : Optional[Any] , __snake_case : Tuple ):
'''simple docstring'''
UpperCAmelCase_ : Tuple = [any(compute_exact(__snake_case , __snake_case ) for ref in refs ) for pred, refs in zip(__snake_case , __snake_case )]
return (sum(__snake_case ) / len(__snake_case )) * 100
def lowercase__ ( __snake_case : Optional[Any] , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase_ : str = [rgram for rgrams in rgramslist for rgram in rgrams]
UpperCAmelCase_ : str = Counter(__snake_case )
UpperCAmelCase_ : List[Any] = Counter(__snake_case )
UpperCAmelCase_ : int = Counter()
for sgram, scount in sgramcounter.items():
UpperCAmelCase_ : Any = scount * numref
UpperCAmelCase_ : List[Any] = Counter(__snake_case )
UpperCAmelCase_ : Dict = Counter()
for cgram, ccount in cgramcounter.items():
UpperCAmelCase_ : int = ccount * numref
# KEEP
UpperCAmelCase_ : Optional[Any] = sgramcounter_rep & cgramcounter_rep
UpperCAmelCase_ : Any = keepgramcounter_rep & rgramcounter
UpperCAmelCase_ : Union[str, Any] = sgramcounter_rep & rgramcounter
UpperCAmelCase_ : Dict = 0
UpperCAmelCase_ : List[Any] = 0
for keepgram in keepgramcountergood_rep:
keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram]
# Fix an alleged bug [2] in the keep score computation.
# keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram]
keeptmpscorea += keepgramcountergood_rep[keepgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
UpperCAmelCase_ : Optional[Any] = 1
UpperCAmelCase_ : Optional[Any] = 1
if len(__snake_case ) > 0:
UpperCAmelCase_ : List[str] = keeptmpscorea / len(__snake_case )
if len(__snake_case ) > 0:
# Fix an alleged bug [2] in the keep score computation.
# keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep)
UpperCAmelCase_ : List[Any] = keeptmpscorea / sum(keepgramcounterall_rep.values() )
UpperCAmelCase_ : List[Any] = 0
if keepscore_precision > 0 or keepscore_recall > 0:
UpperCAmelCase_ : List[Any] = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall)
# DELETION
UpperCAmelCase_ : Optional[int] = sgramcounter_rep - cgramcounter_rep
UpperCAmelCase_ : Dict = delgramcounter_rep - rgramcounter
UpperCAmelCase_ : Optional[Any] = sgramcounter_rep - rgramcounter
UpperCAmelCase_ : str = 0
UpperCAmelCase_ : str = 0
for delgram in delgramcountergood_rep:
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram]
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
UpperCAmelCase_ : List[Any] = 1
if len(__snake_case ) > 0:
UpperCAmelCase_ : Dict = deltmpscorea / len(__snake_case )
# ADDITION
UpperCAmelCase_ : Tuple = set(__snake_case ) - set(__snake_case )
UpperCAmelCase_ : Union[str, Any] = set(__snake_case ) & set(__snake_case )
UpperCAmelCase_ : Dict = set(__snake_case ) - set(__snake_case )
UpperCAmelCase_ : List[str] = 0
for addgram in addgramcountergood:
addtmpscore += 1
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
UpperCAmelCase_ : List[str] = 1
UpperCAmelCase_ : Any = 1
if len(__snake_case ) > 0:
UpperCAmelCase_ : Dict = addtmpscore / len(__snake_case )
if len(__snake_case ) > 0:
UpperCAmelCase_ : Optional[int] = addtmpscore / len(__snake_case )
UpperCAmelCase_ : Optional[Any] = 0
if addscore_precision > 0 or addscore_recall > 0:
UpperCAmelCase_ : List[str] = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall)
return (keepscore, delscore_precision, addscore)
def lowercase__ ( __snake_case : str , __snake_case : Any , __snake_case : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase_ : int = len(__snake_case )
UpperCAmelCase_ : List[str] = ssent.split(' ' )
UpperCAmelCase_ : Union[str, Any] = csent.split(' ' )
UpperCAmelCase_ : List[str] = []
UpperCAmelCase_ : List[Any] = []
UpperCAmelCase_ : Dict = []
UpperCAmelCase_ : Optional[Any] = []
UpperCAmelCase_ : Optional[Any] = []
UpperCAmelCase_ : int = []
UpperCAmelCase_ : List[Any] = []
UpperCAmelCase_ : List[str] = []
UpperCAmelCase_ : Optional[Any] = []
UpperCAmelCase_ : Tuple = []
for rsent in rsents:
UpperCAmelCase_ : List[Any] = rsent.split(' ' )
UpperCAmelCase_ : Any = []
UpperCAmelCase_ : Dict = []
UpperCAmelCase_ : str = []
ragramslist.append(__snake_case )
for i in range(0 , len(__snake_case ) - 1 ):
if i < len(__snake_case ) - 1:
UpperCAmelCase_ : Tuple = ragrams[i] + ' ' + ragrams[i + 1]
ragrams.append(__snake_case )
if i < len(__snake_case ) - 2:
UpperCAmelCase_ : List[str] = ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2]
ragrams.append(__snake_case )
if i < len(__snake_case ) - 3:
UpperCAmelCase_ : Union[str, Any] = ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] + ' ' + ragrams[i + 3]
ragrams.append(__snake_case )
ragramslist.append(__snake_case )
ragramslist.append(__snake_case )
ragramslist.append(__snake_case )
for i in range(0 , len(__snake_case ) - 1 ):
if i < len(__snake_case ) - 1:
UpperCAmelCase_ : str = sagrams[i] + ' ' + sagrams[i + 1]
sagrams.append(__snake_case )
if i < len(__snake_case ) - 2:
UpperCAmelCase_ : List[str] = sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2]
sagrams.append(__snake_case )
if i < len(__snake_case ) - 3:
UpperCAmelCase_ : Any = sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] + ' ' + sagrams[i + 3]
sagrams.append(__snake_case )
for i in range(0 , len(__snake_case ) - 1 ):
if i < len(__snake_case ) - 1:
UpperCAmelCase_ : Optional[int] = cagrams[i] + ' ' + cagrams[i + 1]
cagrams.append(__snake_case )
if i < len(__snake_case ) - 2:
UpperCAmelCase_ : Tuple = cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2]
cagrams.append(__snake_case )
if i < len(__snake_case ) - 3:
UpperCAmelCase_ : Union[str, Any] = cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] + ' ' + cagrams[i + 3]
cagrams.append(__snake_case )
((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) : int = SARIngram(__snake_case , __snake_case , __snake_case , __snake_case )
((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) : str = SARIngram(__snake_case , __snake_case , __snake_case , __snake_case )
((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) : Tuple = SARIngram(__snake_case , __snake_case , __snake_case , __snake_case )
((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) : int = SARIngram(__snake_case , __snake_case , __snake_case , __snake_case )
UpperCAmelCase_ : List[str] = sum([keepascore, keepascore, keepascore, keepascore] ) / 4
UpperCAmelCase_ : Optional[Any] = sum([delascore, delascore, delascore, delascore] ) / 4
UpperCAmelCase_ : List[str] = sum([addascore, addascore, addascore, addascore] ) / 4
UpperCAmelCase_ : Dict = (avgkeepscore + avgdelscore + avgaddscore) / 3
return finalscore
def lowercase__ ( __snake_case : List[Any] , __snake_case : bool = True , __snake_case : str = "13a" , __snake_case : bool = True ):
'''simple docstring'''
if lowercase:
UpperCAmelCase_ : Optional[Any] = sentence.lower()
if tokenizer in ["13a", "intl"]:
if version.parse(sacrebleu.__version__ ).major >= 2:
UpperCAmelCase_ : Union[str, Any] = sacrebleu.metrics.bleu._get_tokenizer(__snake_case )()(__snake_case )
else:
UpperCAmelCase_ : Union[str, Any] = sacrebleu.TOKENIZERS[tokenizer]()(__snake_case )
elif tokenizer == "moses":
UpperCAmelCase_ : Optional[Any] = sacremoses.MosesTokenizer().tokenize(__snake_case , return_str=__snake_case , escape=__snake_case )
elif tokenizer == "penn":
UpperCAmelCase_ : Dict = sacremoses.MosesTokenizer().penn_tokenize(__snake_case , return_str=__snake_case )
else:
UpperCAmelCase_ : int = sentence
if not return_str:
UpperCAmelCase_ : Any = normalized_sent.split()
return normalized_sent
def lowercase__ ( __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : Dict ):
'''simple docstring'''
if not (len(__snake_case ) == len(__snake_case ) == len(__snake_case )):
raise ValueError('Sources length must match predictions and references lengths.' )
UpperCAmelCase_ : Tuple = 0
for src, pred, refs in zip(__snake_case , __snake_case , __snake_case ):
sari_score += SARIsent(normalize(__snake_case ) , normalize(__snake_case ) , [normalize(__snake_case ) for sent in refs] )
UpperCAmelCase_ : Any = sari_score / len(__snake_case )
return 100 * sari_score
def lowercase__ ( __snake_case : int , __snake_case : Union[str, Any] , __snake_case : str="exp" , __snake_case : Any=None , __snake_case : Union[str, Any]=False , __snake_case : Union[str, Any]=False , __snake_case : List[str]=False , ):
'''simple docstring'''
UpperCAmelCase_ : int = len(references[0] )
if any(len(__snake_case ) != references_per_prediction for refs in references ):
raise ValueError('Sacrebleu requires the same number of references for each prediction' )
UpperCAmelCase_ : Dict = [[refs[i] for refs in references] for i in range(__snake_case )]
UpperCAmelCase_ : str = sacrebleu.corpus_bleu(
__snake_case , __snake_case , smooth_method=__snake_case , smooth_value=__snake_case , force=__snake_case , lowercase=__snake_case , use_effective_order=__snake_case , )
return output.score
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCamelCase (datasets.Metric ):
'''simple docstring'''
def __UpperCAmelCase ( self ) -> Any:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('string' , id='sequence' ),
'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ),
} ) , codebase_urls=[
'https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py',
'https://github.com/cocoxu/simplification/blob/master/SARI.py',
'https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py',
'https://github.com/mjpost/sacreBLEU',
] , reference_urls=[
'https://www.aclweb.org/anthology/Q16-1029.pdf',
'https://github.com/mjpost/sacreBLEU',
'https://en.wikipedia.org/wiki/BLEU',
'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213',
] , )
def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> str:
UpperCAmelCase_ : List[Any] = {}
result.update({'sari': compute_sari(sources=_UpperCamelCase , predictions=_UpperCamelCase , references=_UpperCamelCase )} )
result.update({'sacrebleu': compute_sacrebleu(predictions=_UpperCamelCase , references=_UpperCamelCase )} )
result.update({'exact': compute_em(predictions=_UpperCamelCase , references=_UpperCamelCase )} )
return result
| 145 | 0 |
'''simple docstring'''
import json
import os
from collections import Counter
import torch
import torchvision
import torchvision.transforms as transforms
from PIL import Image
from torch import nn
from torch.utils.data import Dataset
A ={1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)}
class _a ( nn.Module ):
def __init__( self : int , lowercase : List[Any] ):
'''simple docstring'''
super().__init__()
UpperCAmelCase = torchvision.models.resnetaaa(pretrained=snake_case__ )
UpperCAmelCase = list(model.children() )[:-2]
UpperCAmelCase = nn.Sequential(*snake_case__ )
UpperCAmelCase = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] )
def A ( self : Tuple , lowercase : str ):
'''simple docstring'''
UpperCAmelCase = self.pool(self.model(snake_case__ ) )
UpperCAmelCase = torch.flatten(snake_case__ , start_dim=2 )
UpperCAmelCase = out.transpose(1 , 2 ).contiguous()
return out # BxNx2048
class _a ( UpperCAmelCase__ ):
def __init__( self : Optional[Any] , lowercase : List[str] , lowercase : Dict , lowercase : Any , lowercase : Optional[int] , lowercase : List[str] ):
'''simple docstring'''
UpperCAmelCase = [json.loads(snake_case__ ) for l in open(snake_case__ )]
UpperCAmelCase = os.path.dirname(snake_case__ )
UpperCAmelCase = tokenizer
UpperCAmelCase = labels
UpperCAmelCase = len(snake_case__ )
UpperCAmelCase = max_seq_length
UpperCAmelCase = transforms
def __len__( self : Tuple ):
'''simple docstring'''
return len(self.data )
def __getitem__( self : Union[str, Any] , lowercase : int ):
'''simple docstring'''
UpperCAmelCase = torch.LongTensor(self.tokenizer.encode(self.data[index]['''text'''] , add_special_tokens=snake_case__ ) )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = sentence[0], sentence[1:-1], sentence[-1]
UpperCAmelCase = sentence[: self.max_seq_length]
UpperCAmelCase = torch.zeros(self.n_classes )
UpperCAmelCase = 1
UpperCAmelCase = Image.open(os.path.join(self.data_dir , self.data[index]['''img'''] ) ).convert('''RGB''' )
UpperCAmelCase = self.transforms(snake_case__ )
return {
"image_start_token": start_token,
"image_end_token": end_token,
"sentence": sentence,
"image": image,
"label": label,
}
def A ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase = Counter()
for row in self.data:
label_freqs.update(row['''label'''] )
return label_freqs
def snake_case_ (_a : str ):
UpperCAmelCase = [len(row['''sentence'''] ) for row in batch]
UpperCAmelCase , UpperCAmelCase = len(snake_case_ ), max(snake_case_ )
UpperCAmelCase = torch.zeros(snake_case_ , snake_case_ , dtype=torch.long )
UpperCAmelCase = torch.zeros(snake_case_ , snake_case_ , dtype=torch.long )
for i_batch, (input_row, length) in enumerate(zip(snake_case_ , snake_case_ ) ):
UpperCAmelCase = input_row['''sentence''']
UpperCAmelCase = 1
UpperCAmelCase = torch.stack([row['''image'''] for row in batch] )
UpperCAmelCase = torch.stack([row['''label'''] for row in batch] )
UpperCAmelCase = torch.stack([row['''image_start_token'''] for row in batch] )
UpperCAmelCase = torch.stack([row['''image_end_token'''] for row in batch] )
return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor
def snake_case_ ():
return [
"Crime",
"Drama",
"Thriller",
"Action",
"Comedy",
"Romance",
"Documentary",
"Short",
"Mystery",
"History",
"Family",
"Adventure",
"Fantasy",
"Sci-Fi",
"Western",
"Horror",
"Sport",
"War",
"Music",
"Musical",
"Animation",
"Biography",
"Film-Noir",
]
def snake_case_ ():
return transforms.Compose(
[
transforms.Resize(2_5_6 ),
transforms.CenterCrop(2_2_4 ),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.4677_7044, 0.4453_1429, 0.4066_1017] , std=[0.1222_1994, 0.1214_5835, 0.1438_0469] , ),
] )
| 34 |
import json
import os
import unittest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_ftfy, require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __lowerCAmelCase ( UpperCAmelCase__ , unittest.TestCase ):
snake_case_ : Any = CLIPTokenizer
snake_case_ : Optional[Any] = CLIPTokenizerFast
snake_case_ : Any = True
snake_case_ : Union[str, Any] = {}
snake_case_ : Optional[int] = False
def UpperCamelCase ( self : List[str] ):
"""simple docstring"""
super().setUp()
# fmt: off
_UpperCAmelCase = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"]
# fmt: on
_UpperCAmelCase = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) )
_UpperCAmelCase = ["#version: 0.2", "l o", "lo w</w>", "e r</w>"]
_UpperCAmelCase = {"unk_token": "<unk>"}
_UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
_UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(snake_case__ ) + "\n" )
with open(self.merges_file , "w" , encoding="utf-8" ) as fp:
fp.write("\n".join(snake_case__ ) )
def UpperCamelCase ( self : Any , **snake_case__ : int ):
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return CLIPTokenizer.from_pretrained(self.tmpdirname , **snake_case__ )
def UpperCamelCase ( self : int , **snake_case__ : Any ):
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **snake_case__ )
def UpperCamelCase ( self : int , snake_case__ : int ):
"""simple docstring"""
_UpperCAmelCase = "lower newer"
_UpperCAmelCase = "lower newer"
return input_text, output_text
def UpperCamelCase ( self : int ):
"""simple docstring"""
_UpperCAmelCase = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
_UpperCAmelCase = "lower newer"
_UpperCAmelCase = ["lo", "w", "er</w>", "n", "e", "w", "er</w>"]
_UpperCAmelCase = tokenizer.tokenize(snake_case__ )
self.assertListEqual(snake_case__ , snake_case__ )
_UpperCAmelCase = tokens + [tokenizer.unk_token]
_UpperCAmelCase = [10, 2, 16, 9, 3, 2, 16, 20]
self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , snake_case__ )
@require_ftfy
def UpperCamelCase ( self : Optional[Any] ):
"""simple docstring"""
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
_UpperCAmelCase = self.tokenizer_class.from_pretrained(snake_case__ , **snake_case__ )
_UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(snake_case__ , **snake_case__ )
_UpperCAmelCase = "A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d."
_UpperCAmelCase = tokenizer_s.tokenize(snake_case__ )
_UpperCAmelCase = tokenizer_r.tokenize(snake_case__ )
self.assertListEqual(snake_case__ , snake_case__ )
# Test that the tokenization is identical on an example containing a character (Latin Small Letter A
# with Tilde) encoded in 2 different ways
_UpperCAmelCase = "xa\u0303y" + " " + "x\xe3y"
_UpperCAmelCase = tokenizer_s.tokenize(snake_case__ )
_UpperCAmelCase = tokenizer_r.tokenize(snake_case__ )
self.assertListEqual(snake_case__ , snake_case__ )
# Test that the tokenization is identical on unicode of space type
_UpperCAmelCase = [
"\u0009", # (horizontal tab, '\t')
"\u000B", # (vertical tab)
"\u000C", # (form feed)
"\u0020", # (space, ' ')
"\u200E", # (left-to-right mark):w
"\u200F", # (right-to-left mark)
]
for unicode_seq in spaces_unicodes:
_UpperCAmelCase = tokenizer_s.tokenize(snake_case__ )
_UpperCAmelCase = tokenizer_r.tokenize(snake_case__ )
self.assertListEqual(snake_case__ , snake_case__ )
# Test that the tokenization is identical on unicode of line break type
_UpperCAmelCase = [
"\u000A", # (line feed, '\n')
"\r\n", # (carriage return and line feed, '\r\n')
"\u000D", # (carriage return, '\r')
"\r", # (carriage return, '\r')
"\u000D", # (carriage return, '\r')
"\u2028", # (line separator)
"\u2029", # (paragraph separator)
# "\u0085", # (next line)
]
# The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms
# it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a
# space (and thus into an empty list).
for unicode_seq in line_break_unicodes:
_UpperCAmelCase = tokenizer_s.tokenize(snake_case__ )
_UpperCAmelCase = tokenizer_r.tokenize(snake_case__ )
self.assertListEqual(snake_case__ , snake_case__ )
def UpperCamelCase ( self : Union[str, Any] ):
"""simple docstring"""
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
_UpperCAmelCase = "hello" # `hello` is a token in the vocabulary of `pretrained_name`
_UpperCAmelCase = F"""{text_of_1_token} {text_of_1_token}"""
_UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(
snake_case__ , use_fast=snake_case__ , )
_UpperCAmelCase = tokenizer_r(snake_case__ , return_offsets_mapping=snake_case__ , add_special_tokens=snake_case__ )
self.assertEqual(encoding.offset_mapping[0] , (0, len(snake_case__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(snake_case__ ) + 1, len(snake_case__ ) + 1 + len(snake_case__ )) , )
_UpperCAmelCase = F""" {text}"""
_UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(
snake_case__ , use_fast=snake_case__ , )
_UpperCAmelCase = tokenizer_r(snake_case__ , return_offsets_mapping=snake_case__ , add_special_tokens=snake_case__ )
self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(snake_case__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(snake_case__ ) + 1, 1 + len(snake_case__ ) + 1 + len(snake_case__ )) , )
def UpperCamelCase ( self : Union[str, Any] ):
"""simple docstring"""
with self.assertRaises(snake_case__ ) as context:
self.rust_tokenizer_class.from_pretrained("robot-test/old-clip-tokenizer" )
self.assertTrue(
context.exception.args[0].startswith(
"The `backend_tokenizer` provided does not match the expected format." ) )
@require_ftfy
def UpperCamelCase ( self : Dict ):
"""simple docstring"""
super().test_tokenization_python_rust_equals()
def UpperCamelCase ( self : str ):
"""simple docstring"""
pass
| 133 | 0 |
"""simple docstring"""
import inspect
import unittest
from datasets import load_dataset
from packaging import version
from transformers import BeitConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_MAPPING,
BeitForImageClassification,
BeitForMaskedImageModeling,
BeitForSemanticSegmentation,
BeitModel,
)
from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
import PIL
from PIL import Image
from transformers import BeitImageProcessor
class lowerCAmelCase__ :
def __init__( self : Any , snake_case__ : Union[str, Any] , snake_case__ : str=1_0_0 , snake_case__ : str=1_3 , snake_case__ : Optional[int]=3_0 , snake_case__ : List[Any]=2 , snake_case__ : Any=3 , snake_case__ : Union[str, Any]=True , snake_case__ : List[Any]=True , snake_case__ : Any=3_2 , snake_case__ : List[str]=4 , snake_case__ : Any=4 , snake_case__ : Dict=3_7 , snake_case__ : str="gelu" , snake_case__ : Union[str, Any]=0.1 , snake_case__ : int=0.1 , snake_case__ : List[Any]=1_0 , snake_case__ : Any=0.02 , snake_case__ : List[str]=3 , snake_case__ : Tuple=None , snake_case__ : Tuple=[0, 1, 2, 3] , ):
'''simple docstring'''
UpperCAmelCase__ : int = parent
UpperCAmelCase__ : List[str] = 1_0_0
UpperCAmelCase__ : List[Any] = batch_size
UpperCAmelCase__ : int = image_size
UpperCAmelCase__ : List[Any] = patch_size
UpperCAmelCase__ : List[Any] = num_channels
UpperCAmelCase__ : Any = is_training
UpperCAmelCase__ : str = use_labels
UpperCAmelCase__ : Any = hidden_size
UpperCAmelCase__ : Dict = num_hidden_layers
UpperCAmelCase__ : int = num_attention_heads
UpperCAmelCase__ : Tuple = intermediate_size
UpperCAmelCase__ : Any = hidden_act
UpperCAmelCase__ : Optional[int] = hidden_dropout_prob
UpperCAmelCase__ : str = attention_probs_dropout_prob
UpperCAmelCase__ : Optional[int] = type_sequence_label_size
UpperCAmelCase__ : Any = initializer_range
UpperCAmelCase__ : Any = scope
UpperCAmelCase__ : Optional[Any] = out_indices
UpperCAmelCase__ : int = num_labels
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
UpperCAmelCase__ : List[Any] = (image_size // patch_size) ** 2
UpperCAmelCase__ : Optional[int] = num_patches + 1
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase__ : str = None
UpperCAmelCase__ : Optional[int] = None
if self.use_labels:
UpperCAmelCase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase__ : Any = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
UpperCAmelCase__ : Tuple = self.get_config()
return config, pixel_values, labels, pixel_labels
def __a ( self : int ):
'''simple docstring'''
return BeitConfig(
vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , out_indices=self.out_indices , )
def __a ( self : int , snake_case__ : str , snake_case__ : str , snake_case__ : Dict , snake_case__ : List[str] ):
'''simple docstring'''
UpperCAmelCase__ : Dict = BeitModel(config=snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : Dict = model(snake_case__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __a ( self : Any , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : Any ):
'''simple docstring'''
UpperCAmelCase__ : int = BeitForMaskedImageModeling(config=snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : List[Any] = model(snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) )
def __a ( self : Optional[Any] , snake_case__ : Tuple , snake_case__ : Tuple , snake_case__ : str , snake_case__ : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = self.type_sequence_label_size
UpperCAmelCase__ : Union[str, Any] = BeitForImageClassification(snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : Union[str, Any] = model(snake_case__ , labels=snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
UpperCAmelCase__ : Any = 1
UpperCAmelCase__ : List[Any] = BeitForImageClassification(snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCAmelCase__ : Optional[Any] = model(snake_case__ , labels=snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def __a ( self : Union[str, Any] , snake_case__ : int , snake_case__ : str , snake_case__ : Any , snake_case__ : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = self.num_labels
UpperCAmelCase__ : int = BeitForSemanticSegmentation(snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : int = model(snake_case__ )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
UpperCAmelCase__ : Dict = model(snake_case__ , labels=snake_case__ )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
def __a ( self : int ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = self.prepare_config_and_inputs()
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[str] = config_and_inputs
UpperCAmelCase__ : Any = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =(
(BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation)
if is_torch_available()
else ()
)
SCREAMING_SNAKE_CASE_ =(
{
'''feature-extraction''': BeitModel,
'''image-classification''': BeitForImageClassification,
'''image-segmentation''': BeitForSemanticSegmentation,
}
if is_torch_available()
else {}
)
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Dict = BeitModelTester(self )
UpperCAmelCase__ : List[str] = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=3_7 )
def __a ( self : List[str] ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="BEiT does not use inputs_embeds" )
def __a ( self : List[Any] ):
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`" )
def __a ( self : List[str] ):
'''simple docstring'''
pass
def __a ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase__ , UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ : Dict = model_class(snake_case__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
UpperCAmelCase__ : Tuple = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(snake_case__ , nn.Linear ) )
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ : int = model_class(snake_case__ )
UpperCAmelCase__ : int = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase__ : str = [*signature.parameters.keys()]
UpperCAmelCase__ : int = ["pixel_values"]
self.assertListEqual(arg_names[:1] , snake_case__ )
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case__ )
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*snake_case__ )
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*snake_case__ )
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*snake_case__ )
def __a ( self : List[Any] ):
'''simple docstring'''
if not self.model_tester.is_training:
return
UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ : Optional[int] = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if model_class in [*get_values(snake_case__ ), BeitForMaskedImageModeling]:
continue
UpperCAmelCase__ : Optional[Any] = model_class(snake_case__ )
model.to(snake_case__ )
model.train()
UpperCAmelCase__ : Optional[int] = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ )
UpperCAmelCase__ : Tuple = model(**snake_case__ ).loss
loss.backward()
def __a ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
UpperCAmelCase__ : Optional[int] = False
UpperCAmelCase__ : List[str] = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if (
model_class in [*get_values(snake_case__ ), BeitForMaskedImageModeling]
or not model_class.supports_gradient_checkpointing
):
continue
UpperCAmelCase__ : List[Any] = model_class(snake_case__ )
model.gradient_checkpointing_enable()
model.to(snake_case__ )
model.train()
UpperCAmelCase__ : Dict = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ )
UpperCAmelCase__ : Optional[Any] = model(**snake_case__ ).loss
loss.backward()
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ : Union[str, Any] = _config_zero_init(snake_case__ )
for model_class in self.all_model_classes:
UpperCAmelCase__ : int = model_class(config=snake_case__ )
for name, param in model.named_parameters():
# we skip lambda parameters as these require special initial values
# determined by config.layer_scale_init_value
if "lambda" in name:
continue
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , )
@slow
def __a ( self : Any ):
'''simple docstring'''
for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase__ : Optional[Any] = BeitModel.from_pretrained(snake_case__ )
self.assertIsNotNone(snake_case__ )
def SCREAMING_SNAKE_CASE__ ( )-> Optional[Any]:
'''simple docstring'''
UpperCAmelCase__ : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class lowerCAmelCase__ ( unittest.TestCase ):
@cached_property
def __a ( self : Union[str, Any] ):
'''simple docstring'''
return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None
@slow
def __a ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ).to(snake_case__ )
UpperCAmelCase__ : int = self.default_image_processor
UpperCAmelCase__ : List[Any] = prepare_img()
UpperCAmelCase__ : Dict = image_processor(images=snake_case__ , return_tensors="pt" ).pixel_values.to(snake_case__ )
# prepare bool_masked_pos
UpperCAmelCase__ : Union[str, Any] = torch.ones((1, 1_9_6) , dtype=torch.bool ).to(snake_case__ )
# forward pass
with torch.no_grad():
UpperCAmelCase__ : Optional[int] = model(pixel_values=snake_case__ , bool_masked_pos=snake_case__ )
UpperCAmelCase__ : str = outputs.logits
# verify the logits
UpperCAmelCase__ : int = torch.Size((1, 1_9_6, 8_1_9_2) )
self.assertEqual(logits.shape , snake_case__ )
UpperCAmelCase__ : Any = torch.tensor(
[[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(snake_case__ )
self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , snake_case__ , atol=1e-2 ) )
@slow
def __a ( self : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ).to(snake_case__ )
UpperCAmelCase__ : Tuple = self.default_image_processor
UpperCAmelCase__ : Dict = prepare_img()
UpperCAmelCase__ : Tuple = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ )
# forward pass
with torch.no_grad():
UpperCAmelCase__ : Union[str, Any] = model(**snake_case__ )
UpperCAmelCase__ : Any = outputs.logits
# verify the logits
UpperCAmelCase__ : Optional[Any] = torch.Size((1, 1_0_0_0) )
self.assertEqual(logits.shape , snake_case__ )
UpperCAmelCase__ : Optional[Any] = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(snake_case__ )
self.assertTrue(torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 ) )
UpperCAmelCase__ : List[str] = 2_8_1
self.assertEqual(logits.argmax(-1 ).item() , snake_case__ )
@slow
def __a ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ : int = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ).to(
snake_case__ )
UpperCAmelCase__ : Tuple = self.default_image_processor
UpperCAmelCase__ : Any = prepare_img()
UpperCAmelCase__ : Union[str, Any] = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ )
# forward pass
with torch.no_grad():
UpperCAmelCase__ : List[Any] = model(**snake_case__ )
UpperCAmelCase__ : int = outputs.logits
# verify the logits
UpperCAmelCase__ : int = torch.Size((1, 2_1_8_4_1) )
self.assertEqual(logits.shape , snake_case__ )
UpperCAmelCase__ : int = torch.tensor([1.6881, -0.2787, 0.5901] ).to(snake_case__ )
self.assertTrue(torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 ) )
UpperCAmelCase__ : Any = 2_3_9_6
self.assertEqual(logits.argmax(-1 ).item() , snake_case__ )
@slow
def __a ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ : Dict = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" )
UpperCAmelCase__ : List[Any] = model.to(snake_case__ )
UpperCAmelCase__ : int = BeitImageProcessor(do_resize=snake_case__ , size=6_4_0 , do_center_crop=snake_case__ )
UpperCAmelCase__ : Any = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" )
UpperCAmelCase__ : List[Any] = Image.open(ds[0]["file"] )
UpperCAmelCase__ : str = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ )
# forward pass
with torch.no_grad():
UpperCAmelCase__ : List[str] = model(**snake_case__ )
UpperCAmelCase__ : Dict = outputs.logits
# verify the logits
UpperCAmelCase__ : Any = torch.Size((1, 1_5_0, 1_6_0, 1_6_0) )
self.assertEqual(logits.shape , snake_case__ )
UpperCAmelCase__ : List[str] = version.parse(PIL.__version__ ) < version.parse("9.0.0" )
if is_pillow_less_than_a:
UpperCAmelCase__ : Optional[Any] = torch.tensor(
[
[[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]],
[[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]],
[[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]],
] , device=snake_case__ , )
else:
UpperCAmelCase__ : int = torch.tensor(
[
[[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]],
[[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]],
[[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]],
] , device=snake_case__ , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , snake_case__ , atol=1e-4 ) )
@slow
def __a ( self : Any ):
'''simple docstring'''
UpperCAmelCase__ : str = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" )
UpperCAmelCase__ : Any = model.to(snake_case__ )
UpperCAmelCase__ : Dict = BeitImageProcessor(do_resize=snake_case__ , size=6_4_0 , do_center_crop=snake_case__ )
UpperCAmelCase__ : Tuple = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" )
UpperCAmelCase__ : Optional[int] = Image.open(ds[0]["file"] )
UpperCAmelCase__ : Optional[int] = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ )
# forward pass
with torch.no_grad():
UpperCAmelCase__ : Optional[int] = model(**snake_case__ )
UpperCAmelCase__ : int = outputs.logits.detach().cpu()
UpperCAmelCase__ : str = image_processor.post_process_semantic_segmentation(outputs=snake_case__ , target_sizes=[(5_0_0, 3_0_0)] )
UpperCAmelCase__ : List[Any] = torch.Size((5_0_0, 3_0_0) )
self.assertEqual(segmentation[0].shape , snake_case__ )
UpperCAmelCase__ : Any = image_processor.post_process_semantic_segmentation(outputs=snake_case__ )
UpperCAmelCase__ : int = torch.Size((1_6_0, 1_6_0) )
self.assertEqual(segmentation[0].shape , snake_case__ )
| 298 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
_lowerCAmelCase : Tuple = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase : Dict = ["""MLukeTokenizer"""]
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mluke import MLukeTokenizer
else:
import sys
_lowerCAmelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 298 | 1 |
from __future__ import annotations
from collections.abc import Iterable, Iterator
from dataclasses import dataclass
SCREAMING_SNAKE_CASE : Tuple = (3, 9, -11, 0, 7, 5, 1, -1)
SCREAMING_SNAKE_CASE : Union[str, Any] = (4, 6, 2, 0, 8, 10, 3, -2)
@dataclass
class _lowerCamelCase:
lowercase_ : int
lowercase_ : Node | None
class _lowerCamelCase:
def __init__( self, lowerCamelCase) -> None:
"""simple docstring"""
_lowercase : Node | None = None
for i in sorted(lowerCamelCase, reverse=lowerCamelCase):
_lowercase : Tuple = Node(lowerCamelCase, self.head)
def __iter__( self) -> Iterator[int]:
"""simple docstring"""
_lowercase : Union[str, Any] = self.head
while node:
yield node.data
_lowercase : int = node.next_node
def __len__( self) -> int:
"""simple docstring"""
return sum(1 for _ in self)
def __str__( self) -> str:
"""simple docstring"""
return " -> ".join([str(lowerCamelCase) for node in self])
def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> SortedLinkedList:
return SortedLinkedList(list(lowerCamelCase_ ) + list(lowerCamelCase_ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
SCREAMING_SNAKE_CASE : int = SortedLinkedList
print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
| 21 |
import os
from bleurt import score # From: git+https://github.com/google-research/bleurt.git
import datasets
lowerCAmelCase_ = datasets.logging.get_logger(__name__)
lowerCAmelCase_ = '''\
@inproceedings{bleurt,
title={BLEURT: Learning Robust Metrics for Text Generation},
author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh},
booktitle={ACL},
year={2020},
url={https://arxiv.org/abs/2004.04696}
}
'''
lowerCAmelCase_ = '''\
BLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018)
and then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune
it for your specific application (the latter is expected to perform better).
See the project\'s README at https://github.com/google-research/bleurt#readme for more information.
'''
lowerCAmelCase_ = '''
BLEURT score.
Args:
`predictions` (list of str): prediction/candidate sentences
`references` (list of str): reference sentences
`checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None.
Returns:
\'scores\': List of scores.
Examples:
>>> predictions = ["hello there", "general kenobi"]
>>> references = ["hello there", "general kenobi"]
>>> bleurt = datasets.load_metric("bleurt")
>>> results = bleurt.compute(predictions=predictions, references=references)
>>> print([round(v, 2) for v in results["scores"]])
[1.03, 1.04]
'''
lowerCAmelCase_ = {
'''bleurt-tiny-128''': '''https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip''',
'''bleurt-tiny-512''': '''https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip''',
'''bleurt-base-128''': '''https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip''',
'''bleurt-base-512''': '''https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip''',
'''bleurt-large-128''': '''https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip''',
'''bleurt-large-512''': '''https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip''',
'''BLEURT-20-D3''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip''',
'''BLEURT-20-D6''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip''',
'''BLEURT-20-D12''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip''',
'''BLEURT-20''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip''',
}
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION )
class __lowerCAmelCase ( datasets.Metric ):
def lowerCamelCase (self ) -> Optional[int]:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/google-research/bleurt''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Value('''string''' , id='''sequence''' ),
} ) , codebase_urls=['''https://github.com/google-research/bleurt'''] , reference_urls=['''https://github.com/google-research/bleurt''', '''https://arxiv.org/abs/2004.04696'''] , )
def lowerCamelCase (self , __magic_name__ ) -> List[Any]:
'''simple docstring'''
if self.config_name == "default":
logger.warning(
'''Using default BLEURT-Base checkpoint for sequence maximum length 128. '''
'''You can use a bigger model for better results with e.g.: datasets.load_metric(\'bleurt\', \'bleurt-large-512\').''' )
snake_case_ : Dict = '''bleurt-base-128'''
if self.config_name.lower() in CHECKPOINT_URLS:
snake_case_ : Optional[int] = self.config_name.lower()
elif self.config_name.upper() in CHECKPOINT_URLS:
snake_case_ : Union[str, Any] = self.config_name.upper()
else:
raise KeyError(
F'''{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}''' )
# download the model checkpoint specified by self.config_name and set up the scorer
snake_case_ : Any = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] )
snake_case_ : Dict = score.BleurtScorer(os.path.join(__magic_name__ , __magic_name__ ) )
def lowerCamelCase (self , __magic_name__ , __magic_name__ ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ : Dict = self.scorer.score(references=__magic_name__ , candidates=__magic_name__ )
return {"scores": scores}
| 279 | 0 |
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
class UpperCamelCase ( A__ ):
'''simple docstring'''
lowercase : Any =42
lowercase : List[str] =42
lowercase : List[Any] =None
class UpperCamelCase ( A__ , A__ ):
'''simple docstring'''
lowercase : List[Any] =2
@register_to_config
def __init__( self , UpperCamelCase_ = 0.02 , UpperCamelCase_ = 100 , UpperCamelCase_ = 1.007 , UpperCamelCase_ = 80 , UpperCamelCase_ = 0.05 , UpperCamelCase_ = 50 , ):
# standard deviation of the initial noise distribution
lowercase_ :List[str] = sigma_max
# setable values
lowercase_ :Any = None
lowercase_ :List[str] = None
lowercase_ :Optional[int] = None # sigma(t_i)
def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = None ):
return sample
def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = None ):
lowercase_ :List[Any] = num_inference_steps
lowercase_ :str = np.arange(0 , self.num_inference_steps )[::-1].copy()
lowercase_ :Union[str, Any] = torch.from_numpy(__snake_case ).to(__snake_case )
lowercase_ :Union[str, Any] = [
(
self.config.sigma_max**2
* (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1))
)
for i in self.timesteps
]
lowercase_ :Optional[Any] = torch.tensor(__snake_case , dtype=torch.floataa , device=__snake_case )
def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None ):
if self.config.s_min <= sigma <= self.config.s_max:
lowercase_ :List[str] = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 )
else:
lowercase_ :List[str] = 0
# sample eps ~ N(0, S_noise^2 * I)
lowercase_ :List[str] = self.config.s_noise * randn_tensor(sample.shape , generator=__snake_case ).to(sample.device )
lowercase_ :int = sigma + gamma * sigma
lowercase_ :List[str] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)
return sample_hat, sigma_hat
def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = True , ):
lowercase_ :Dict = sample_hat + sigma_hat * model_output
lowercase_ :Dict = (sample_hat - pred_original_sample) / sigma_hat
lowercase_ :Tuple = sample_hat + (sigma_prev - sigma_hat) * derivative
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=__snake_case , derivative=__snake_case , pred_original_sample=__snake_case )
def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = True , ):
lowercase_ :Tuple = sample_prev + sigma_prev * model_output
lowercase_ :Any = (sample_prev - pred_original_sample) / sigma_prev
lowercase_ :Optional[int] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=__snake_case , derivative=__snake_case , pred_original_sample=__snake_case )
def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ):
raise NotImplementedError()
| 353 |
import argparse
import torch
from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def UpperCamelCase ( _a , _a , _a ) -> Tuple:
'''simple docstring'''
if gpta_config_file == "":
lowercase_ :int = GPTaConfig()
else:
lowercase_ :Union[str, Any] = GPTaConfig.from_json_file(_a )
lowercase_ :List[str] = GPTaModel(_a )
# Load weights from numpy
load_tf_weights_in_gpta(_a , _a , _a )
# Save pytorch-model
lowercase_ :Dict = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME
lowercase_ :int = pytorch_dump_folder_path + '''/''' + CONFIG_NAME
print(f"Save PyTorch model to {pytorch_weights_dump_path}" )
torch.save(model.state_dict() , _a )
print(f"Save configuration file to {pytorch_config_dump_path}" )
with open(_a , '''w''' , encoding='''utf-8''' ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--gpt2_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--gpt2_config_file",
default="",
type=str,
help=(
"An optional config json file corresponding to the pre-trained OpenAI model. \n"
"This specifies the model architecture."
),
)
SCREAMING_SNAKE_CASE : Tuple = parser.parse_args()
convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
| 252 | 0 |
'''simple docstring'''
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
a_ : Dict = logging.get_logger(__name__)
a_ : int = {"""vocab_file""": """spiece.model"""}
a_ : Optional[int] = {
"""vocab_file""": {
"""TsinghuaAI/CPM-Generate""": """https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model""",
}
}
class snake_case ( lowercase ):
"""simple docstring"""
def __init__( self , UpperCamelCase , UpperCamelCase=False , UpperCamelCase=True , UpperCamelCase=False , UpperCamelCase="<s>" , UpperCamelCase="</s>" , UpperCamelCase="<unk>" , UpperCamelCase="<sep>" , UpperCamelCase="<pad>" , UpperCamelCase="<cls>" , UpperCamelCase="<mask>" , UpperCamelCase=["<eop>", "<eod>"] , UpperCamelCase = None , **UpperCamelCase , ):
"""simple docstring"""
lowerCamelCase_ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token
lowerCamelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=__A , remove_space=__A , keep_accents=__A , bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , pad_token=__A , cls_token=__A , mask_token=__A , additional_special_tokens=__A , sp_model_kwargs=self.sp_model_kwargs , **__A , )
lowerCamelCase_ = 3
lowerCamelCase_ = do_lower_case
lowerCamelCase_ = remove_space
lowerCamelCase_ = keep_accents
lowerCamelCase_ = vocab_file
lowerCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__A )
try:
import jieba
except ModuleNotFoundError as error:
raise error.__class__(
"You need to install jieba to use CpmTokenizer or CpmTokenizerFast. "
"See https://pypi.org/project/jieba/ for installation." )
lowerCamelCase_ = jieba
lowerCamelCase_ = str.maketrans(" \n" , "\u2582\u2583" )
@property
# Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size
def snake_case ( self ):
"""simple docstring"""
return len(self.sp_model )
def snake_case ( self ):
"""simple docstring"""
lowerCamelCase_ = {self.convert_ids_to_tokens(__A ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ):
"""simple docstring"""
lowerCamelCase_ = self.__dict__.copy()
lowerCamelCase_ = None
return state
def __setstate__( self , UpperCamelCase ):
"""simple docstring"""
lowerCamelCase_ = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
lowerCamelCase_ = {}
lowerCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def snake_case ( self , UpperCamelCase ):
"""simple docstring"""
if self.remove_space:
lowerCamelCase_ = " ".join(inputs.strip().split() )
else:
lowerCamelCase_ = inputs
lowerCamelCase_ = outputs.replace("``" , "\"" ).replace("''" , "\"" )
if not self.keep_accents:
lowerCamelCase_ = unicodedata.normalize("NFKD" , __A )
lowerCamelCase_ = "".join([c for c in outputs if not unicodedata.combining(__A )] )
if self.do_lower_case:
lowerCamelCase_ = outputs.lower()
return outputs
def snake_case ( self , UpperCamelCase ):
"""simple docstring"""
lowerCamelCase_ = self.preprocess_text(__A )
lowerCamelCase_ = self.sp_model.encode(__A , out_type=__A )
lowerCamelCase_ = []
for piece in pieces:
if len(__A ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit():
lowerCamelCase_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(__A , "" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
lowerCamelCase_ = cur_pieces[1:]
else:
lowerCamelCase_ = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(__A )
else:
new_pieces.append(__A )
return new_pieces
def snake_case ( self , UpperCamelCase ):
"""simple docstring"""
return self.sp_model.PieceToId(__A )
def snake_case ( self , UpperCamelCase ):
"""simple docstring"""
return self.sp_model.IdToPiece(__A )
def snake_case ( self , UpperCamelCase ):
"""simple docstring"""
lowerCamelCase_ = "".join(__A ).replace(__A , " " ).strip()
return out_string
def snake_case ( self , UpperCamelCase , UpperCamelCase = None ):
"""simple docstring"""
lowerCamelCase_ = [self.sep_token_id]
lowerCamelCase_ = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def snake_case ( self , UpperCamelCase , UpperCamelCase = None , UpperCamelCase = False ):
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A )
if token_ids_a is not None:
return ([0] * len(__A )) + [1] + ([0] * len(__A )) + [1, 1]
return ([0] * len(__A )) + [1, 1]
def snake_case ( self , UpperCamelCase , UpperCamelCase = None ):
"""simple docstring"""
lowerCamelCase_ = [self.sep_token_id]
lowerCamelCase_ = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def snake_case ( self , UpperCamelCase , UpperCamelCase = None ):
"""simple docstring"""
if not os.path.isdir(__A ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
lowerCamelCase_ = os.path.join(
__A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __A )
elif not os.path.isfile(self.vocab_file ):
with open(__A , "wb" ) as fi:
lowerCamelCase_ = self.sp_model.serialized_model_proto()
fi.write(__A )
return (out_vocab_file,)
def snake_case ( self , *UpperCamelCase , **UpperCamelCase ):
"""simple docstring"""
lowerCamelCase_ = super()._decode(*__A , **__A )
lowerCamelCase_ = text.replace(" " , "" ).replace("\u2582" , " " ).replace("\u2583" , "\n" )
return text
| 55 |
import argparse
import torch
from transformers import YosoConfig, YosoForMaskedLM
def lowercase_( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
if "model" in orig_key:
lowerCamelCase : Dict = orig_key.replace("model." , "" )
if "norm1" in orig_key:
lowerCamelCase : Union[str, Any] = orig_key.replace("norm1" , "attention.output.LayerNorm" )
if "norm2" in orig_key:
lowerCamelCase : Union[str, Any] = orig_key.replace("norm2" , "output.LayerNorm" )
if "norm" in orig_key:
lowerCamelCase : Optional[Any] = orig_key.replace("norm" , "LayerNorm" )
if "transformer" in orig_key:
lowerCamelCase : int = orig_key.split("." )[0].split("_" )[-1]
lowerCamelCase : Dict = orig_key.replace(f"""transformer_{layer_num}""" , f"""encoder.layer.{layer_num}""" )
if "mha.attn" in orig_key:
lowerCamelCase : List[str] = orig_key.replace("mha.attn" , "attention.self" )
if "mha" in orig_key:
lowerCamelCase : List[Any] = orig_key.replace("mha" , "attention" )
if "W_q" in orig_key:
lowerCamelCase : Optional[int] = orig_key.replace("W_q" , "self.query" )
if "W_k" in orig_key:
lowerCamelCase : List[Any] = orig_key.replace("W_k" , "self.key" )
if "W_v" in orig_key:
lowerCamelCase : Union[str, Any] = orig_key.replace("W_v" , "self.value" )
if "ff1" in orig_key:
lowerCamelCase : Union[str, Any] = orig_key.replace("ff1" , "intermediate.dense" )
if "ff2" in orig_key:
lowerCamelCase : Optional[int] = orig_key.replace("ff2" , "output.dense" )
if "ff" in orig_key:
lowerCamelCase : Optional[int] = orig_key.replace("ff" , "output.dense" )
if "mlm_class" in orig_key:
lowerCamelCase : Dict = orig_key.replace("mlm.mlm_class" , "cls.predictions.decoder" )
if "mlm" in orig_key:
lowerCamelCase : List[Any] = orig_key.replace("mlm" , "cls.predictions.transform" )
if "cls" not in orig_key:
lowerCamelCase : int = "yoso." + orig_key
return orig_key
def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
for key in orig_state_dict.copy().keys():
lowerCamelCase : List[str] = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ )
if ("pooler" in key) or ("sen_class" in key):
continue
else:
lowerCamelCase : Dict = val
lowerCamelCase : Dict = orig_state_dict["cls.predictions.decoder.bias"]
lowerCamelCase : Dict = torch.arange(SCREAMING_SNAKE_CASE_ ).expand((1, -1) ) + 2
return orig_state_dict
def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
lowerCamelCase : List[Any] = torch.load(SCREAMING_SNAKE_CASE_ , map_location="cpu" )["model_state_dict"]
lowerCamelCase : List[str] = YosoConfig.from_json_file(SCREAMING_SNAKE_CASE_ )
lowerCamelCase : Any = YosoForMaskedLM(SCREAMING_SNAKE_CASE_ )
lowerCamelCase : List[Any] = convert_checkpoint_helper(config.max_position_embeddings , SCREAMING_SNAKE_CASE_ )
print(model.load_state_dict(SCREAMING_SNAKE_CASE_ ) )
model.eval()
model.save_pretrained(SCREAMING_SNAKE_CASE_ )
print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--pytorch_model_path''', default=None, type=str, required=True, help='''Path to YOSO pytorch checkpoint.'''
)
parser.add_argument(
'''--config_file''',
default=None,
type=str,
required=True,
help='''The json file for YOSO model config.''',
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
_snake_case = parser.parse_args()
convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
| 283 | 0 |
import absl # noqa: F401 # Here to have a nice missing dependency error message early on
import nltk # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import six # noqa: F401 # Here to have a nice missing dependency error message early on
from rouge_score import rouge_scorer, scoring
import datasets
UpperCAmelCase__ = "\\n@inproceedings{lin-2004-rouge,\n title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\",\n author = \"Lin, Chin-Yew\",\n booktitle = \"Text Summarization Branches Out\",\n month = jul,\n year = \"2004\",\n address = \"Barcelona, Spain\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W04-1013\",\n pages = \"74--81\",\n}\n"
UpperCAmelCase__ = "\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n"
UpperCAmelCase__ = "\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring,\n `\"rougeL\"`: Longest common subsequence based scoring.\n `\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric('rouge')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n ['rouge1', 'rouge2', 'rougeL', 'rougeLsum']\n >>> print(results[\"rouge1\"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results[\"rouge1\"].mid.fmeasure)\n 1.0\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __lowerCAmelCase ( datasets.Metric ):
def _lowerCamelCase ( self : Union[str, Any]) -> int:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('string' , id='sequence'),
'references': datasets.Value('string' , id='sequence'),
}) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[
'https://en.wikipedia.org/wiki/ROUGE_(metric)',
'https://github.com/google-research/google-research/tree/master/rouge',
] , )
def _lowerCamelCase ( self : Dict , A : Tuple , A : Any , A : List[str]=None , A : Union[str, Any]=True , A : str=False) -> List[str]:
"""simple docstring"""
if rouge_types is None:
_UpperCAmelCase = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum']
_UpperCAmelCase = rouge_scorer.RougeScorer(rouge_types=A , use_stemmer=A)
if use_aggregator:
_UpperCAmelCase = scoring.BootstrapAggregator()
else:
_UpperCAmelCase = []
for ref, pred in zip(A , A):
_UpperCAmelCase = scorer.score(A , A)
if use_aggregator:
aggregator.add_scores(A)
else:
scores.append(A)
if use_aggregator:
_UpperCAmelCase = aggregator.aggregate()
else:
_UpperCAmelCase = {}
for key in scores[0]:
_UpperCAmelCase = [score[key] for score in scores]
return result
| 365 |
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , )
@pytest.mark.usefixtures('''sm_env''' )
@parameterized_class(
[
{
'''framework''': '''pytorch''',
'''script''': '''run_glue.py''',
'''model_name_or_path''': '''distilbert-base-cased''',
'''instance_type''': '''ml.g4dn.xlarge''',
'''results''': {'''train_runtime''': 6_5_0, '''eval_accuracy''': 0.6, '''eval_loss''': 0.9},
},
{
'''framework''': '''tensorflow''',
'''script''': '''run_tf.py''',
'''model_name_or_path''': '''distilbert-base-cased''',
'''instance_type''': '''ml.g4dn.xlarge''',
'''results''': {'''train_runtime''': 6_0_0, '''eval_accuracy''': 0.3, '''eval_loss''': 0.9},
},
] )
class __lowerCAmelCase ( unittest.TestCase ):
def _lowerCamelCase ( self : List[Any]) -> Any:
"""simple docstring"""
if self.framework == "pytorch":
subprocess.run(
F"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding='utf-8' , check=A , )
assert hasattr(self , 'env')
def _lowerCamelCase ( self : Any , A : Tuple=1) -> List[str]:
"""simple docstring"""
return HuggingFace(
entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"{self.env.base_job_name}-single" , instance_count=A , instance_type=self.instance_type , debugger_hook_config=A , hyperparameters={**self.env.hyperparameters, 'model_name_or_path': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version='py36' , )
def _lowerCamelCase ( self : Dict , A : int) -> str:
"""simple docstring"""
TrainingJobAnalytics(A).export_csv(F"{self.env.test_path}/{job_name}_metrics.csv")
def _lowerCamelCase ( self : Union[str, Any]) -> Dict:
"""simple docstring"""
_UpperCAmelCase = self.create_estimator()
# run training
estimator.fit()
# result dataframe
_UpperCAmelCase = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe()
# extract kpis
_UpperCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'])
_UpperCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'])
# get train time from SageMaker job, this includes starting, preprocessing, stopping
_UpperCAmelCase = (
Session().describe_training_job(estimator.latest_training_job.name).get('TrainingTimeInSeconds' , 99_99_99)
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy)
assert all(t <= self.results['eval_loss'] for t in eval_loss)
# dump tests result into json file to share in PR
with open(F"{estimator.latest_training_job.name}.json" , 'w') as outfile:
json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , A)
| 290 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
lowerCAmelCase__ = {
'''configuration_groupvit''': [
'''GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''GroupViTConfig''',
'''GroupViTOnnxConfig''',
'''GroupViTTextConfig''',
'''GroupViTVisionConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = [
'''GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''GroupViTModel''',
'''GroupViTPreTrainedModel''',
'''GroupViTTextModel''',
'''GroupViTVisionModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = [
'''TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFGroupViTModel''',
'''TFGroupViTPreTrainedModel''',
'''TFGroupViTTextModel''',
'''TFGroupViTVisionModel''',
]
if TYPE_CHECKING:
from .configuration_groupvit import (
GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GroupViTConfig,
GroupViTOnnxConfig,
GroupViTTextConfig,
GroupViTVisionConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_groupvit import (
GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GroupViTModel,
GroupViTPreTrainedModel,
GroupViTTextModel,
GroupViTVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_groupvit import (
TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFGroupViTModel,
TFGroupViTPreTrainedModel,
TFGroupViTTextModel,
TFGroupViTVisionModel,
)
else:
import sys
lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 108 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_A = {
'''configuration_megatron_bert''': ['''MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegatronBertConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A = [
'''MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MegatronBertForCausalLM''',
'''MegatronBertForMaskedLM''',
'''MegatronBertForMultipleChoice''',
'''MegatronBertForNextSentencePrediction''',
'''MegatronBertForPreTraining''',
'''MegatronBertForQuestionAnswering''',
'''MegatronBertForSequenceClassification''',
'''MegatronBertForTokenClassification''',
'''MegatronBertModel''',
'''MegatronBertPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_megatron_bert import (
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
MegatronBertPreTrainedModel,
)
else:
import sys
_A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 122 | 0 |
"""simple docstring"""
import dataclasses
import json
import warnings
from dataclasses import dataclass, field
from time import time
from typing import List
from ..utils import logging
SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__)
def __lowercase ( _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]:
'''simple docstring'''
return field(default_factory=lambda: default , metadata=_SCREAMING_SNAKE_CASE )
@dataclass
class UpperCamelCase__ :
'''simple docstring'''
__snake_case : List[str] = list_field(
default=[] , metadata={
"help": (
"Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version"
" of all available models"
)
} , )
__snake_case : List[int] = list_field(
default=[8] , metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} )
__snake_case : List[int] = list_field(
default=[8, 32, 128, 512] , metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"} , )
__snake_case : bool = field(
default=lowerCAmelCase_ , metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."} , )
__snake_case : bool = field(
default=lowerCAmelCase_ , metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."} , )
__snake_case : bool = field(
default=lowerCAmelCase_ , metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} )
__snake_case : bool = field(default=lowerCAmelCase_ , metadata={"help": "Use FP16 to accelerate inference."} )
__snake_case : bool = field(default=lowerCAmelCase_ , metadata={"help": "Benchmark training of model"} )
__snake_case : bool = field(default=lowerCAmelCase_ , metadata={"help": "Verbose memory tracing"} )
__snake_case : bool = field(
default=lowerCAmelCase_ , metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."} , )
__snake_case : bool = field(
default=lowerCAmelCase_ , metadata={
"help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory"
} , )
__snake_case : bool = field(default=lowerCAmelCase_ , metadata={"help": "Trace memory line by line"} )
__snake_case : bool = field(default=lowerCAmelCase_ , metadata={"help": "Save result to a CSV file"} )
__snake_case : bool = field(default=lowerCAmelCase_ , metadata={"help": "Save all print statements in a log file"} )
__snake_case : bool = field(default=lowerCAmelCase_ , metadata={"help": "Whether to print environment information"} )
__snake_case : bool = field(
default=lowerCAmelCase_ , metadata={
"help": (
"Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use"
" multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled"
" for debugging / testing and on TPU."
)
} , )
__snake_case : str = field(
default=F"inference_time_{round(time() )}.csv" , metadata={"help": "CSV filename used if saving time results to csv."} , )
__snake_case : str = field(
default=F"inference_memory_{round(time() )}.csv" , metadata={"help": "CSV filename used if saving memory results to csv."} , )
__snake_case : str = field(
default=F"train_time_{round(time() )}.csv" , metadata={"help": "CSV filename used if saving time results to csv for training."} , )
__snake_case : str = field(
default=F"train_memory_{round(time() )}.csv" , metadata={"help": "CSV filename used if saving memory results to csv for training."} , )
__snake_case : str = field(
default=F"env_info_{round(time() )}.csv" , metadata={"help": "CSV filename used if saving environment information."} , )
__snake_case : str = field(
default=F"log_{round(time() )}.csv" , metadata={"help": "Log filename used if print statements are saved in log."} , )
__snake_case : int = field(default=3 , metadata={"help": "Times an experiment will be run."} )
__snake_case : bool = field(
default=lowerCAmelCase_ , metadata={
"help": (
"Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain"
" model weights."
)
} , )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Dict:
'''simple docstring'''
warnings.warn(
F"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils"""
""" are deprecated in general and it is advised to use external Benchmarking libraries """
""" to benchmark Transformer models.""" ,lowerCamelCase__ ,)
def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Optional[Any]:
'''simple docstring'''
return json.dumps(dataclasses.asdict(self ) ,indent=2 )
@property
def SCREAMING_SNAKE_CASE__ ( self : str ) -> List[str]:
'''simple docstring'''
if len(self.models ) <= 0:
raise ValueError(
"""Please make sure you provide at least one model name / model identifier, *e.g.* `--models"""
""" bert-base-cased` or `args.models = ['bert-base-cased'].""" )
return self.models
@property
def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Dict:
'''simple docstring'''
if not self.multi_process:
return False
elif self.is_tpu:
logger.info("""Multiprocessing is currently not possible on TPU.""" )
return False
else:
return True
| 371 |
import unittest
from dataclasses import dataclass
import pytest
from accelerate.commands.config.config_args import SageMakerConfig
from accelerate.utils import ComputeEnvironment
from accelerate.utils.launch import _convert_nargs_to_dict
@dataclass
class UpperCamelCase__ ( lowerCAmelCase_ ):
'''simple docstring'''
__snake_case : int = ComputeEnvironment.AMAZON_SAGEMAKER
__snake_case : List[Any] = True
__snake_case : Optional[int] = "ml.p3.2xlarge"
__snake_case : List[str] = "accelerate_sagemaker_execution_role"
__snake_case : Tuple = "hf-sm"
__snake_case : Any = "us-east-1"
__snake_case : Union[str, Any] = 1
__snake_case : Dict = "accelerate-sagemaker-1"
__snake_case : Tuple = "1.6"
__snake_case : List[str] = "4.4"
__snake_case : str = "train.py"
__snake_case : List[str] = [
"--model_name_or_path",
"bert",
"--do_train",
"False",
"--epochs",
"3",
"--learning_rate",
"5e-5",
"--max_steps",
"50.5",
]
__snake_case : Optional[int] = [
"--model_name_or_path",
"bert",
"--do_train",
"--do_test",
"False",
"--do_predict",
"--epochs",
"3",
"--learning_rate",
"5e-5",
"--max_steps",
"50.5",
]
class UpperCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> int:
'''simple docstring'''
SCREAMING_SNAKE_CASE = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args )
assert isinstance(converted_args["""model_name_or_path"""] ,lowerCamelCase__ )
assert isinstance(converted_args["""do_train"""] ,lowerCamelCase__ )
assert isinstance(converted_args["""epochs"""] ,lowerCamelCase__ )
assert isinstance(converted_args["""learning_rate"""] ,lowerCamelCase__ )
assert isinstance(converted_args["""max_steps"""] ,lowerCamelCase__ )
with pytest.raises(lowerCamelCase__ ):
_convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
| 193 | 0 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import importlib.metadata
import json
import os
from dataclasses import dataclass
from typing import Any, Dict, Union
from packaging import version
from ..utils import is_torch_available, logging
if is_torch_available():
import torch
_a : Union[str, Any]= logging.get_logger(__name__)
@dataclass
class UpperCamelCase :
def __init__(self : Tuple , _A : List[str]=False , _A : Dict=False , _A : str=6.0 , _A : int=None , _A : Any=False , _A : Dict=False , _A : str=None , _A : Optional[Any]="fp4" , _A : int=False , **_A : Tuple , ) -> List[str]:
__snake_case : Union[str, Any] = load_in_abit
__snake_case : Tuple = load_in_abit
__snake_case : int = llm_inta_threshold
__snake_case : Any = llm_inta_skip_modules
__snake_case : int = llm_inta_enable_fpaa_cpu_offload
__snake_case : List[Any] = llm_inta_has_fpaa_weight
__snake_case : Optional[Any] = bnb_abit_quant_type
__snake_case : Union[str, Any] = bnb_abit_use_double_quant
if bnb_abit_compute_dtype is None:
__snake_case : Optional[int] = torch.floataa
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
__snake_case : List[str] = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
elif isinstance(SCREAMING_SNAKE_CASE_ , torch.dtype):
__snake_case : Union[str, Any] = bnb_abit_compute_dtype
else:
raise ValueError('bnb_4bit_compute_dtype must be a string or a torch.dtype')
self.post_init()
def _lowercase (self : Any) -> Any:
if not isinstance(self.llm_inta_threshold , SCREAMING_SNAKE_CASE_):
raise ValueError('llm_int8_threshold must be a float')
if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , SCREAMING_SNAKE_CASE_):
raise ValueError('llm_int8_skip_modules must be a list of strings')
if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , SCREAMING_SNAKE_CASE_):
raise ValueError('llm_int8_enable_fp32_cpu_offload must be a boolean')
if not isinstance(self.llm_inta_has_fpaa_weight , SCREAMING_SNAKE_CASE_):
raise ValueError('llm_int8_has_fp16_weight must be a boolean')
if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype):
raise ValueError('bnb_4bit_compute_dtype must be torch.dtype')
if not isinstance(self.bnb_abit_quant_type , SCREAMING_SNAKE_CASE_):
raise ValueError('bnb_4bit_quant_type must be a string')
if not isinstance(self.bnb_abit_use_double_quant , SCREAMING_SNAKE_CASE_):
raise ValueError('bnb_4bit_use_double_quant must be a boolean')
if self.load_in_abit and not version.parse(importlib.metadata.version('bitsandbytes')) >= version.parse(
'0.39.0'):
raise ValueError(
'4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version')
def _lowercase (self : int) -> Optional[int]:
return self.load_in_abit or self.load_in_abit
def _lowercase (self : Union[str, Any]) -> List[str]:
if self.load_in_abit:
return "llm_int8"
elif self.load_in_abit and self.bnb_abit_quant_type == "fp4":
return "fp4"
elif self.load_in_abit and self.bnb_abit_quant_type == "nf4":
return "nf4"
else:
return None
@classmethod
def _lowercase (cls : Tuple , _A : List[str] , _A : str , **_A : List[Any]) -> Any:
__snake_case : Any = cls(**SCREAMING_SNAKE_CASE_)
__snake_case : Union[str, Any] = []
for key, value in kwargs.items():
if hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
to_remove.append(SCREAMING_SNAKE_CASE_)
for key in to_remove:
kwargs.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
if return_unused_kwargs:
return config, kwargs
else:
return config
def _lowercase (self : Optional[int] , _A : Union[str, Any]) -> Union[str, Any]:
with open(SCREAMING_SNAKE_CASE_ , 'w' , encoding='utf-8') as writer:
__snake_case : List[str] = self.to_dict()
__snake_case : List[Any] = json.dumps(SCREAMING_SNAKE_CASE_ , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_) + '\n'
writer.write(SCREAMING_SNAKE_CASE_)
def _lowercase (self : Optional[Any]) -> Optional[Any]:
__snake_case : Any = copy.deepcopy(self.__dict__)
__snake_case : Optional[int] = str(output['bnb_4bit_compute_dtype']).split('.')[1]
return output
def __repr__(self : Optional[int]) -> Optional[Any]:
return f"{self.__class__.__name__} {self.to_json_string()}"
def _lowercase (self : str , _A : Dict = True) -> Tuple:
if use_diff is True:
__snake_case : Dict = self.to_diff_dict()
else:
__snake_case : Any = self.to_dict()
return json.dumps(SCREAMING_SNAKE_CASE_ , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_) + "\n"
def _lowercase (self : Union[str, Any]) -> Union[str, Any]:
__snake_case : Optional[int] = self.to_dict()
# get the default config dict
__snake_case : Any = BitsAndBytesConfig().to_dict()
__snake_case : Union[str, Any] = {}
# only serialize values that differ from the default config
for key, value in config_dict.items():
if value != default_config_dict[key]:
__snake_case : List[Any] = value
return serializable_config_dict
| 172 |
lowerCamelCase_ = frozenset(
[
'''prompt''',
'''height''',
'''width''',
'''guidance_scale''',
'''negative_prompt''',
'''prompt_embeds''',
'''negative_prompt_embeds''',
'''cross_attention_kwargs''',
]
)
lowerCamelCase_ = frozenset(['''prompt''', '''negative_prompt'''])
lowerCamelCase_ = frozenset([])
lowerCamelCase_ = frozenset(['''image'''])
lowerCamelCase_ = frozenset(
[
'''image''',
'''height''',
'''width''',
'''guidance_scale''',
]
)
lowerCamelCase_ = frozenset(['''image'''])
lowerCamelCase_ = frozenset(
[
'''prompt''',
'''image''',
'''height''',
'''width''',
'''guidance_scale''',
'''negative_prompt''',
'''prompt_embeds''',
'''negative_prompt_embeds''',
]
)
lowerCamelCase_ = frozenset(['''prompt''', '''image''', '''negative_prompt'''])
lowerCamelCase_ = frozenset(
[
# Text guided image variation with an image mask
'''prompt''',
'''image''',
'''mask_image''',
'''height''',
'''width''',
'''guidance_scale''',
'''negative_prompt''',
'''prompt_embeds''',
'''negative_prompt_embeds''',
]
)
lowerCamelCase_ = frozenset(['''prompt''', '''image''', '''mask_image''', '''negative_prompt'''])
lowerCamelCase_ = frozenset(
[
# image variation with an image mask
'''image''',
'''mask_image''',
'''height''',
'''width''',
'''guidance_scale''',
]
)
lowerCamelCase_ = frozenset(['''image''', '''mask_image'''])
lowerCamelCase_ = frozenset(
[
'''example_image''',
'''image''',
'''mask_image''',
'''height''',
'''width''',
'''guidance_scale''',
]
)
lowerCamelCase_ = frozenset(['''example_image''', '''image''', '''mask_image'''])
lowerCamelCase_ = frozenset(['''class_labels'''])
lowerCamelCase_ = frozenset(['''class_labels'''])
lowerCamelCase_ = frozenset(['''batch_size'''])
lowerCamelCase_ = frozenset([])
lowerCamelCase_ = frozenset(['''batch_size'''])
lowerCamelCase_ = frozenset([])
lowerCamelCase_ = frozenset(
[
'''prompt''',
'''audio_length_in_s''',
'''guidance_scale''',
'''negative_prompt''',
'''prompt_embeds''',
'''negative_prompt_embeds''',
'''cross_attention_kwargs''',
]
)
lowerCamelCase_ = frozenset(['''prompt''', '''negative_prompt'''])
lowerCamelCase_ = frozenset(['''input_tokens'''])
lowerCamelCase_ = frozenset(['''input_tokens'''])
| 244 | 0 |
"""simple docstring"""
import itertools
import random
import unittest
import numpy as np
from transformers import ASTFeatureExtractor
from transformers.testing_utils import require_torch, require_torchaudio
from transformers.utils.import_utils import is_torch_available
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
_a : Tuple= random.Random()
if is_torch_available():
import torch
def __UpperCAmelCase ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=1.0 , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Optional[int]=None ) -> List[Any]:
'''simple docstring'''
if rng is None:
__snake_case : List[Any] = global_rng
__snake_case : Optional[Any] = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
class UpperCamelCase ( unittest.TestCase ):
def __init__(self : int , _A : Any , _A : int=7 , _A : int=4_00 , _A : Any=20_00 , _A : Tuple=1 , _A : Tuple=0.0 , _A : List[str]=1_60_00 , _A : Tuple=True , _A : Optional[int]=True , ) -> Tuple:
__snake_case : Optional[Any] = parent
__snake_case : Tuple = batch_size
__snake_case : Optional[Any] = min_seq_length
__snake_case : List[str] = max_seq_length
__snake_case : int = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
__snake_case : Union[str, Any] = feature_size
__snake_case : Optional[Any] = padding_value
__snake_case : Optional[int] = sampling_rate
__snake_case : Tuple = return_attention_mask
__snake_case : Any = do_normalize
def _lowercase (self : List[Any]) -> Any:
return {
"feature_size": self.feature_size,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def _lowercase (self : Optional[Any] , _A : Any=False , _A : int=False) -> Union[str, Any]:
def _flatten(_A : int):
return list(itertools.chain(*_A))
if equal_length:
__snake_case : str = floats_list((self.batch_size, self.max_seq_length))
else:
# make sure that inputs increase in size
__snake_case : Union[str, Any] = [
_flatten(floats_list((x, self.feature_size)))
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff)
]
if numpify:
__snake_case : Any = [np.asarray(_A) for x in speech_inputs]
return speech_inputs
@require_torch
@require_torchaudio
class UpperCamelCase ( lowercase , unittest.TestCase ):
UpperCAmelCase : List[Any] = ASTFeatureExtractor
def _lowercase (self : Optional[int]) -> Optional[int]:
__snake_case : int = ASTFeatureExtractionTester(self)
def _lowercase (self : Dict) -> Tuple:
# Tests that all call wrap to encode_plus and batch_encode_plus
__snake_case : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
# create three inputs of length 800, 1000, and 1200
__snake_case : Union[str, Any] = [floats_list((1, x))[0] for x in range(8_00 , 14_00 , 2_00)]
__snake_case : List[str] = [np.asarray(_A) for speech_input in speech_inputs]
# Test not batched input
__snake_case : Union[str, Any] = feat_extract(speech_inputs[0] , return_tensors='np').input_values
__snake_case : int = feat_extract(np_speech_inputs[0] , return_tensors='np').input_values
self.assertTrue(np.allclose(_A , _A , atol=1E-3))
# Test batched
__snake_case : Tuple = feat_extract(_A , padding=_A , return_tensors='np').input_values
__snake_case : Union[str, Any] = feat_extract(_A , padding=_A , return_tensors='np').input_values
for enc_seq_a, enc_seq_a in zip(_A , _A):
self.assertTrue(np.allclose(_A , _A , atol=1E-3))
# Test 2-D numpy arrays are batched.
__snake_case : Union[str, Any] = [floats_list((1, x))[0] for x in (8_00, 8_00, 8_00)]
__snake_case : Dict = np.asarray(_A)
__snake_case : Optional[int] = feat_extract(_A , return_tensors='np').input_values
__snake_case : List[str] = feat_extract(_A , return_tensors='np').input_values
for enc_seq_a, enc_seq_a in zip(_A , _A):
self.assertTrue(np.allclose(_A , _A , atol=1E-3))
@require_torch
def _lowercase (self : List[Any]) -> str:
import torch
__snake_case : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
__snake_case : str = np.random.rand(1_00).astype(np.floataa)
__snake_case : Dict = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
__snake_case : Optional[int] = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np')
self.assertTrue(np_processed.input_values.dtype == np.floataa)
__snake_case : Dict = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt')
self.assertTrue(pt_processed.input_values.dtype == torch.floataa)
def _lowercase (self : List[str] , _A : Dict) -> List[str]:
from datasets import load_dataset
__snake_case : Union[str, Any] = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation')
# automatic decoding with librispeech
__snake_case : Optional[Any] = ds.sort('id').select(range(_A))[:num_samples]['audio']
return [x["array"] for x in speech_samples]
@require_torch
def _lowercase (self : int) -> Dict:
# fmt: off
__snake_case : Tuple = torch.tensor(
[-0.9_894, -1.2_776, -0.9_066, -1.2_776, -0.9_349, -1.2_609, -1.0_386, -1.2_776,
-1.1_561, -1.2_776, -1.2_052, -1.2_723, -1.2_190, -1.2_132, -1.2_776, -1.1_133,
-1.1_953, -1.1_343, -1.1_584, -1.2_203, -1.1_770, -1.2_474, -1.2_381, -1.1_936,
-0.9_270, -0.8_317, -0.8_049, -0.7_706, -0.7_565, -0.7_869])
# fmt: on
__snake_case : int = self._load_datasamples(1)
__snake_case : Dict = ASTFeatureExtractor()
__snake_case : Union[str, Any] = feature_extractor(_A , return_tensors='pt').input_values
self.assertEquals(input_values.shape , (1, 10_24, 1_28))
self.assertTrue(torch.allclose(input_values[0, 0, :30] , _A , atol=1E-4))
| 95 | """simple docstring"""
from __future__ import annotations
import math
def __UpperCAmelCase ( UpperCAmelCase_ : int ) -> bool:
'''simple docstring'''
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(UpperCAmelCase_ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
_a : Any= [num for num in range(3, 100_001, 2) if not is_prime(num)]
def __UpperCAmelCase ( UpperCAmelCase_ : int ) -> list[int]:
'''simple docstring'''
if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
raise ValueError('n must be an integer' )
if n <= 0:
raise ValueError('n must be >= 0' )
__snake_case : int = []
for num in range(len(UpperCAmelCase_ ) ):
__snake_case : List[str] = 0
while 2 * i * i <= odd_composites[num]:
__snake_case : List[Any] = odd_composites[num] - 2 * i * i
if is_prime(UpperCAmelCase_ ):
break
i += 1
else:
list_nums.append(odd_composites[num] )
if len(UpperCAmelCase_ ) == n:
return list_nums
return []
def __UpperCAmelCase ( ) -> int:
'''simple docstring'''
return compute_nums(1 )[0]
if __name__ == "__main__":
print(f'''{solution() = }''')
| 95 | 1 |
"""simple docstring"""
import unittest
import torch
from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel
from diffusers.training_utils import set_seed
from diffusers.utils.testing_utils import slow
__SCREAMING_SNAKE_CASE =False
class UpperCamelCase ( unittest.TestCase ):
def _UpperCAmelCase ( self ,__UpperCamelCase=32 ) -> Tuple:
'''simple docstring'''
set_seed(0 )
lowercase_ : str = UNetaDModel(sample_size=_lowercase ,in_channels=3 ,out_channels=3 )
lowercase_ : Dict = torch.optim.SGD(model.parameters() ,lr=0.0001 )
return model, optimizer
@slow
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : int = """cpu""" # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable
lowercase_ : Optional[int] = DDPMScheduler(
num_train_timesteps=1000 ,beta_start=0.0001 ,beta_end=0.02 ,beta_schedule='linear' ,clip_sample=_lowercase ,)
lowercase_ : Dict = DDIMScheduler(
num_train_timesteps=1000 ,beta_start=0.0001 ,beta_end=0.02 ,beta_schedule='linear' ,clip_sample=_lowercase ,)
assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps
# shared batches for DDPM and DDIM
set_seed(0 )
lowercase_ : Optional[Any] = [torch.randn((4, 3, 32, 32) ).clip(-1 ,1 ).to(_lowercase ) for _ in range(4 )]
lowercase_ : Dict = [torch.randn((4, 3, 32, 32) ).to(_lowercase ) for _ in range(4 )]
lowercase_ : Dict = [torch.randint(0 ,1000 ,(4,) ).long().to(_lowercase ) for _ in range(4 )]
# train with a DDPM scheduler
lowercase_ : Union[str, Any] = self.get_model_optimizer(resolution=32 )
model.train().to(_lowercase )
for i in range(4 ):
optimizer.zero_grad()
lowercase_ : Any = ddpm_scheduler.add_noise(clean_images[i] ,noise[i] ,timesteps[i] )
lowercase_ : List[Any] = model(_lowercase ,timesteps[i] ).sample
lowercase_ : Optional[int] = torch.nn.functional.mse_loss(_lowercase ,noise[i] )
loss.backward()
optimizer.step()
del model, optimizer
# recreate the model and optimizer, and retry with DDIM
lowercase_ : Any = self.get_model_optimizer(resolution=32 )
model.train().to(_lowercase )
for i in range(4 ):
optimizer.zero_grad()
lowercase_ : Optional[Any] = ddim_scheduler.add_noise(clean_images[i] ,noise[i] ,timesteps[i] )
lowercase_ : Tuple = model(_lowercase ,timesteps[i] ).sample
lowercase_ : List[Any] = torch.nn.functional.mse_loss(_lowercase ,noise[i] )
loss.backward()
optimizer.step()
del model, optimizer
self.assertTrue(torch.allclose(_lowercase ,_lowercase ,atol=1e-5 ) )
self.assertTrue(torch.allclose(_lowercase ,_lowercase ,atol=1e-5 ) )
| 213 |
import gc
import unittest
from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline
from diffusers.utils import is_flax_available, load_image, slow
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@slow
@require_flax
class A__(unittest.TestCase ):
"""simple docstring"""
def UpperCamelCase__ ( self ) -> List[Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
def UpperCamelCase__ ( self ) -> List[Any]:
a_ , a_ : Any = FlaxControlNetModel.from_pretrained(
"""lllyasviel/sd-controlnet-canny""" , from_pt=_lowercase , dtype=jnp.bfloataa )
a_ , a_ : Any = FlaxStableDiffusionControlNetPipeline.from_pretrained(
"""runwayml/stable-diffusion-v1-5""" , controlnet=_lowercase , from_pt=_lowercase , dtype=jnp.bfloataa )
a_ : Union[str, Any] = controlnet_params
a_ : int = """bird"""
a_ : Tuple = jax.device_count()
a_ : List[Any] = pipe.prepare_text_inputs([prompts] * num_samples )
a_ : List[Any] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png""" )
a_ : Optional[Any] = pipe.prepare_image_inputs([canny_image] * num_samples )
a_ : int = jax.random.PRNGKey(0 )
a_ : Union[str, Any] = jax.random.split(_lowercase , jax.device_count() )
a_ : Any = replicate(_lowercase )
a_ : Optional[int] = shard(_lowercase )
a_ : List[Any] = shard(_lowercase )
a_ : int = pipe(
prompt_ids=_lowercase , image=_lowercase , params=_lowercase , prng_seed=_lowercase , num_inference_steps=50 , jit=_lowercase , ).images
assert images.shape == (jax.device_count(), 1, 768, 512, 3)
a_ : Optional[Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] )
a_ : str = images[0, 253:256, 253:256, -1]
a_ : Optional[int] = jnp.asarray(jax.device_get(image_slice.flatten() ) )
a_ : List[Any] = jnp.array(
[0.1_6_7_9_6_9, 0.1_1_6_6_9_9, 0.0_8_1_5_4_3, 0.1_5_4_2_9_7, 0.1_3_2_8_1_2, 0.1_0_8_8_8_7, 0.1_6_9_9_2_2, 0.1_6_9_9_2_2, 0.2_0_5_0_7_8] )
print(F'''output_slice: {output_slice}''' )
assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
def UpperCamelCase__ ( self ) -> str:
a_ , a_ : str = FlaxControlNetModel.from_pretrained(
"""lllyasviel/sd-controlnet-openpose""" , from_pt=_lowercase , dtype=jnp.bfloataa )
a_ , a_ : Any = FlaxStableDiffusionControlNetPipeline.from_pretrained(
"""runwayml/stable-diffusion-v1-5""" , controlnet=_lowercase , from_pt=_lowercase , dtype=jnp.bfloataa )
a_ : Tuple = controlnet_params
a_ : str = """Chef in the kitchen"""
a_ : Optional[Any] = jax.device_count()
a_ : Any = pipe.prepare_text_inputs([prompts] * num_samples )
a_ : Union[str, Any] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png""" )
a_ : Any = pipe.prepare_image_inputs([pose_image] * num_samples )
a_ : str = jax.random.PRNGKey(0 )
a_ : int = jax.random.split(_lowercase , jax.device_count() )
a_ : Optional[int] = replicate(_lowercase )
a_ : Tuple = shard(_lowercase )
a_ : List[Any] = shard(_lowercase )
a_ : str = pipe(
prompt_ids=_lowercase , image=_lowercase , params=_lowercase , prng_seed=_lowercase , num_inference_steps=50 , jit=_lowercase , ).images
assert images.shape == (jax.device_count(), 1, 768, 512, 3)
a_ : List[str] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] )
a_ : List[str] = images[0, 253:256, 253:256, -1]
a_ : str = jnp.asarray(jax.device_get(image_slice.flatten() ) )
a_ : Optional[int] = jnp.array(
[[0.2_7_1_4_8_4, 0.2_6_1_7_1_9, 0.2_7_5_3_9_1, 0.2_7_7_3_4_4, 0.2_7_9_2_9_7, 0.2_9_1_0_1_6, 0.2_9_4_9_2_2, 0.3_0_2_7_3_4, 0.3_0_2_7_3_4]] )
print(F'''output_slice: {output_slice}''' )
assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
| 248 | 0 |
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Dict = [
'VerificationMode',
'Version',
'disable_progress_bar',
'enable_progress_bar',
'is_progress_bar_enabled',
'experimental',
]
from .info_utils import VerificationMode
from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled
from .version import Version
from .experimental import experimental
| 370 |
"""simple docstring"""
import math
class __A :
'''simple docstring'''
def __init__( self : List[str] , UpperCAmelCase_ : Tuple=0 ) ->Optional[int]: # a graph with Node 0,1,...,N-1
"""simple docstring"""
snake_case_ = n
snake_case_ = [
[math.inf for j in range(0 , UpperCAmelCase_ )] for i in range(0 , UpperCAmelCase_ )
] # adjacency matrix for weight
snake_case_ = [
[math.inf for j in range(0 , UpperCAmelCase_ )] for i in range(0 , UpperCAmelCase_ )
] # dp[i][j] stores minimum distance from i to j
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = w
def lowerCAmelCase ( self : Optional[int] ) ->Any:
"""simple docstring"""
for k in range(0 , self.n ):
for i in range(0 , self.n ):
for j in range(0 , self.n ):
snake_case_ = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] ) ->Union[str, Any]:
"""simple docstring"""
return self.dp[u][v]
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Optional[int] = Graph(5)
graph.add_edge(0, 2, 9)
graph.add_edge(0, 4, 10)
graph.add_edge(1, 3, 5)
graph.add_edge(2, 3, 7)
graph.add_edge(3, 0, 10)
graph.add_edge(3, 1, 2)
graph.add_edge(3, 2, 1)
graph.add_edge(3, 4, 6)
graph.add_edge(4, 1, 3)
graph.add_edge(4, 2, 4)
graph.add_edge(4, 3, 9)
graph.floyd_warshall()
graph.show_min(1, 4)
graph.show_min(0, 3)
| 233 | 0 |
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_flava import FlavaImageProcessor
A : int = logging.get_logger(__name__)
class _UpperCamelCase ( lowerCAmelCase__ ):
'''simple docstring'''
def __init__( self , *__a , **__a ):
warnings.warn(
"The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
" use FlavaImageProcessor instead." , __a , )
super().__init__(*__a , **__a )
| 57 |
"""simple docstring"""
import json
import os
from dataclasses import dataclass
from functools import partial
from typing import Callable
import flax.linen as nn
import jax
import jax.numpy as jnp
import joblib
import optax
import wandb
from flax import jax_utils, struct, traverse_util
from flax.serialization import from_bytes, to_bytes
from flax.training import train_state
from flax.training.common_utils import shard
from tqdm.auto import tqdm
from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering
from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule
class a ( a_ ):
UpperCAmelCase_ : BigBirdConfig
UpperCAmelCase_ : jnp.dtype =jnp.floataa
UpperCAmelCase_ : bool =True
def UpperCamelCase_ ( self ):
super().setup()
lowercase = nn.Dense(5 , dtype=self.dtype )
def __call__( self , *_lowerCamelCase , **_lowerCamelCase ):
lowercase = super().__call__(*_lowerCamelCase , **_lowerCamelCase )
lowercase = self.cls(outputs[2] )
return outputs[:2] + (cls_out,)
class a ( a_ ):
UpperCAmelCase_ : str =FlaxBigBirdForNaturalQuestionsModule
def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[int] , __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : Tuple ):
'''simple docstring'''
def cross_entropy(__snake_case : Dict , __snake_case : str , __snake_case : Any=None ):
lowercase = logits.shape[-1]
lowercase = (labels[..., None] == jnp.arange(__snake_case )[None]).astype('f4' )
lowercase = jax.nn.log_softmax(__snake_case , axis=-1 )
lowercase = -jnp.sum(labels * logits , axis=-1 )
if reduction is not None:
lowercase = reduction(__snake_case )
return loss
lowercase = partial(__snake_case , reduction=jnp.mean )
lowercase = cross_entropy(__snake_case , __snake_case )
lowercase = cross_entropy(__snake_case , __snake_case )
lowercase = cross_entropy(__snake_case , __snake_case )
return (start_loss + end_loss + pooled_loss) / 3
@dataclass
class a :
UpperCAmelCase_ : str ="google/bigbird-roberta-base"
UpperCAmelCase_ : int =3000
UpperCAmelCase_ : int =1_0500
UpperCAmelCase_ : int =128
UpperCAmelCase_ : int =3
UpperCAmelCase_ : int =1
UpperCAmelCase_ : int =5
# tx_args
UpperCAmelCase_ : float =3e-5
UpperCAmelCase_ : float =0.0
UpperCAmelCase_ : int =2_0000
UpperCAmelCase_ : float =0.00_95
UpperCAmelCase_ : str ="bigbird-roberta-natural-questions"
UpperCAmelCase_ : str ="training-expt"
UpperCAmelCase_ : str ="data/nq-training.jsonl"
UpperCAmelCase_ : str ="data/nq-validation.jsonl"
def UpperCamelCase_ ( self ):
os.makedirs(self.base_dir , exist_ok=_lowerCamelCase )
lowercase = os.path.join(self.base_dir , self.save_dir )
lowercase = self.batch_size_per_device * jax.device_count()
@dataclass
class a :
UpperCAmelCase_ : int
UpperCAmelCase_ : int =4096 # no dynamic padding on TPUs
def __call__( self , _lowerCamelCase ):
lowercase = self.collate_fn(_lowerCamelCase )
lowercase = jax.tree_util.tree_map(_lowerCamelCase , _lowerCamelCase )
return batch
def UpperCamelCase_ ( self , _lowerCamelCase ):
lowercase , lowercase = self.fetch_inputs(features['input_ids'] )
lowercase = {
'input_ids': jnp.array(_lowerCamelCase , dtype=jnp.intaa ),
'attention_mask': jnp.array(_lowerCamelCase , dtype=jnp.intaa ),
'start_labels': jnp.array(features['start_token'] , dtype=jnp.intaa ),
'end_labels': jnp.array(features['end_token'] , dtype=jnp.intaa ),
'pooled_labels': jnp.array(features['category'] , dtype=jnp.intaa ),
}
return batch
def UpperCamelCase_ ( self , _lowerCamelCase ):
lowercase = [self._fetch_inputs(_lowerCamelCase ) for ids in input_ids]
return zip(*_lowerCamelCase )
def UpperCamelCase_ ( self , _lowerCamelCase ):
lowercase = [1 for _ in range(len(_lowerCamelCase ) )]
while len(_lowerCamelCase ) < self.max_length:
input_ids.append(self.pad_id )
attention_mask.append(0 )
return input_ids, attention_mask
def _SCREAMING_SNAKE_CASE ( __snake_case : Any , __snake_case : Tuple , __snake_case : Optional[Any]=None ):
'''simple docstring'''
if seed is not None:
lowercase = dataset.shuffle(seed=__snake_case )
for i in range(len(__snake_case ) // batch_size ):
lowercase = dataset[i * batch_size : (i + 1) * batch_size]
yield dict(__snake_case )
@partial(jax.pmap , axis_name='batch' )
def _SCREAMING_SNAKE_CASE ( __snake_case : Dict , __snake_case : List[Any] , **__snake_case : List[Any] ):
'''simple docstring'''
def loss_fn(__snake_case : str ):
lowercase = model_inputs.pop('start_labels' )
lowercase = model_inputs.pop('end_labels' )
lowercase = model_inputs.pop('pooled_labels' )
lowercase = state.apply_fn(**__snake_case , params=__snake_case , dropout_rng=__snake_case , train=__snake_case )
lowercase , lowercase , lowercase = outputs
return state.loss_fn(
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , )
lowercase , lowercase = jax.random.split(__snake_case )
lowercase = jax.value_and_grad(__snake_case )
lowercase , lowercase = grad_fn(state.params )
lowercase = jax.lax.pmean({'loss': loss} , axis_name='batch' )
lowercase = jax.lax.pmean(__snake_case , 'batch' )
lowercase = state.apply_gradients(grads=__snake_case )
return state, metrics, new_drp_rng
@partial(jax.pmap , axis_name='batch' )
def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[int] , **__snake_case : Dict ):
'''simple docstring'''
lowercase = model_inputs.pop('start_labels' )
lowercase = model_inputs.pop('end_labels' )
lowercase = model_inputs.pop('pooled_labels' )
lowercase = state.apply_fn(**__snake_case , params=state.params , train=__snake_case )
lowercase , lowercase , lowercase = outputs
lowercase = state.loss_fn(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case )
lowercase = jax.lax.pmean({'loss': loss} , axis_name='batch' )
return metrics
class a ( train_state.TrainState ):
UpperCAmelCase_ : Callable =struct.field(pytree_node=a_ )
@dataclass
class a :
UpperCAmelCase_ : Args
UpperCAmelCase_ : Callable
UpperCAmelCase_ : Callable
UpperCAmelCase_ : Callable
UpperCAmelCase_ : Callable
UpperCAmelCase_ : wandb
UpperCAmelCase_ : Callable =None
def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ):
lowercase = model.params
lowercase = TrainState.create(
apply_fn=model.__call__ , params=_lowerCamelCase , tx=_lowerCamelCase , loss_fn=_lowerCamelCase , )
if ckpt_dir is not None:
lowercase , lowercase , lowercase , lowercase , lowercase = restore_checkpoint(_lowerCamelCase , _lowerCamelCase )
lowercase = {
'lr': args.lr,
'init_lr': args.init_lr,
'warmup_steps': args.warmup_steps,
'num_train_steps': num_train_steps,
'weight_decay': args.weight_decay,
}
lowercase , lowercase = build_tx(**_lowerCamelCase )
lowercase = train_state.TrainState(
step=_lowerCamelCase , apply_fn=model.__call__ , params=_lowerCamelCase , tx=_lowerCamelCase , opt_state=_lowerCamelCase , )
lowercase = args
lowercase = data_collator
lowercase = lr
lowercase = params
lowercase = jax_utils.replicate(_lowerCamelCase )
return state
def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
lowercase = self.args
lowercase = len(_lowerCamelCase ) // args.batch_size
lowercase = jax.random.PRNGKey(0 )
lowercase = jax.random.split(_lowerCamelCase , jax.device_count() )
for epoch in range(args.max_epochs ):
lowercase = jnp.array(0 , dtype=jnp.floataa )
lowercase = get_batched_dataset(_lowerCamelCase , args.batch_size , seed=_lowerCamelCase )
lowercase = 0
for batch in tqdm(_lowerCamelCase , total=_lowerCamelCase , desc=F'Running EPOCH-{epoch}' ):
lowercase = self.data_collator(_lowerCamelCase )
lowercase , lowercase , lowercase = self.train_step_fn(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase )
running_loss += jax_utils.unreplicate(metrics['loss'] )
i += 1
if i % args.logging_steps == 0:
lowercase = jax_utils.unreplicate(state.step )
lowercase = running_loss.item() / i
lowercase = self.scheduler_fn(state_step - 1 )
lowercase = self.evaluate(_lowerCamelCase , _lowerCamelCase )
lowercase = {
'step': state_step.item(),
'eval_loss': eval_loss.item(),
'tr_loss': tr_loss,
'lr': lr.item(),
}
tqdm.write(str(_lowerCamelCase ) )
self.logger.log(_lowerCamelCase , commit=_lowerCamelCase )
if i % args.save_steps == 0:
self.save_checkpoint(args.save_dir + F'-e{epoch}-s{i}' , state=_lowerCamelCase )
def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase ):
lowercase = get_batched_dataset(_lowerCamelCase , self.args.batch_size )
lowercase = len(_lowerCamelCase ) // self.args.batch_size
lowercase = jnp.array(0 , dtype=jnp.floataa )
lowercase = 0
for batch in tqdm(_lowerCamelCase , total=_lowerCamelCase , desc='Evaluating ... ' ):
lowercase = self.data_collator(_lowerCamelCase )
lowercase = self.val_step_fn(_lowerCamelCase , **_lowerCamelCase )
running_loss += jax_utils.unreplicate(metrics['loss'] )
i += 1
return running_loss / i
def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase ):
lowercase = jax_utils.unreplicate(_lowerCamelCase )
print(F'SAVING CHECKPOINT IN {save_dir}' , end=' ... ' )
self.model_save_fn(_lowerCamelCase , params=state.params )
with open(os.path.join(_lowerCamelCase , 'opt_state.msgpack' ) , 'wb' ) as f:
f.write(to_bytes(state.opt_state ) )
joblib.dump(self.args , os.path.join(_lowerCamelCase , 'args.joblib' ) )
joblib.dump(self.data_collator , os.path.join(_lowerCamelCase , 'data_collator.joblib' ) )
with open(os.path.join(_lowerCamelCase , 'training_state.json' ) , 'w' ) as f:
json.dump({'step': state.step.item()} , _lowerCamelCase )
print('DONE' )
def _SCREAMING_SNAKE_CASE ( __snake_case : int , __snake_case : Tuple ):
'''simple docstring'''
print(f'RESTORING CHECKPOINT FROM {save_dir}' , end=' ... ' )
with open(os.path.join(__snake_case , 'flax_model.msgpack' ) , 'rb' ) as f:
lowercase = from_bytes(state.params , f.read() )
with open(os.path.join(__snake_case , 'opt_state.msgpack' ) , 'rb' ) as f:
lowercase = from_bytes(state.opt_state , f.read() )
lowercase = joblib.load(os.path.join(__snake_case , 'args.joblib' ) )
lowercase = joblib.load(os.path.join(__snake_case , 'data_collator.joblib' ) )
with open(os.path.join(__snake_case , 'training_state.json' ) , 'r' ) as f:
lowercase = json.load(__snake_case )
lowercase = training_state['step']
print('DONE' )
return params, opt_state, step, args, data_collator
def _SCREAMING_SNAKE_CASE ( __snake_case : int , __snake_case : str , __snake_case : Any , __snake_case : Any ):
'''simple docstring'''
lowercase = num_train_steps - warmup_steps
lowercase = optax.linear_schedule(init_value=__snake_case , end_value=__snake_case , transition_steps=__snake_case )
lowercase = optax.linear_schedule(init_value=__snake_case , end_value=1e-7 , transition_steps=__snake_case )
lowercase = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] )
return lr
def _SCREAMING_SNAKE_CASE ( __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : str , __snake_case : Optional[int] ):
'''simple docstring'''
def weight_decay_mask(__snake_case : Tuple ):
lowercase = traverse_util.flatten_dict(__snake_case )
lowercase = {k: (v[-1] != 'bias' and v[-2:] != ('LayerNorm', 'scale')) for k, v in params.items()}
return traverse_util.unflatten_dict(__snake_case )
lowercase = scheduler_fn(__snake_case , __snake_case , __snake_case , __snake_case )
lowercase = optax.adamw(learning_rate=__snake_case , weight_decay=__snake_case , mask=__snake_case )
return tx, lr
| 220 | 0 |
'''simple docstring'''
from __future__ import annotations
import math
from collections import Counter
from string import ascii_lowercase
def __UpperCAmelCase ( a_: str ):
_UpperCAmelCase , _UpperCAmelCase : Dict = analyze_text(lowercase_ )
_UpperCAmelCase : List[str] = list(" " + ascii_lowercase )
# what is our total sum of probabilities.
_UpperCAmelCase : List[Any] = sum(single_char_strings.values() )
# one length string
_UpperCAmelCase : List[str] = 0
# for each alpha we go in our dict and if it is in it we calculate entropy
for ch in my_alphas:
if ch in single_char_strings:
_UpperCAmelCase : Union[str, Any] = single_char_strings[ch]
_UpperCAmelCase : List[Any] = my_str / all_sum
my_fir_sum += prob * math.loga(lowercase_ ) # entropy formula.
# print entropy
print(f"""{round(-1 * my_fir_sum ):.1f}""" )
# two len string
_UpperCAmelCase : Optional[Any] = sum(two_char_strings.values() )
_UpperCAmelCase : Dict = 0
# for each alpha (two in size) calculate entropy.
for cha in my_alphas:
for cha in my_alphas:
_UpperCAmelCase : Optional[int] = cha + cha
if sequence in two_char_strings:
_UpperCAmelCase : List[Any] = two_char_strings[sequence]
_UpperCAmelCase : List[str] = int(lowercase_ ) / all_sum
my_sec_sum += prob * math.loga(lowercase_ )
# print second entropy
print(f"""{round(-1 * my_sec_sum ):.1f}""" )
# print the difference between them
print(f"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" )
def __UpperCAmelCase ( a_: str ):
_UpperCAmelCase : Dict = Counter() # type: ignore
_UpperCAmelCase : Optional[Any] = Counter() # type: ignore
single_char_strings[text[-1]] += 1
# first case when we have space at start.
two_char_strings[" " + text[0]] += 1
for i in range(0, len(lowercase_ ) - 1 ):
single_char_strings[text[i]] += 1
two_char_strings[text[i : i + 2]] += 1
return single_char_strings, two_char_strings
def __UpperCAmelCase ( ):
import doctest
doctest.testmod()
# text = (
# "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark "
# "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest "
# "jointure saw horrible. He private he on be imagine suppose. Fertile "
# "beloved evident through no service elderly is. Blind there if every no so "
# "at. Own neglected you preferred way sincerity delivered his attempted. To "
# "of message cottage windows do besides against uncivil. Delightful "
# "unreserved impossible few estimating men favourable see entreaties. She "
# "propriety immediate was improving. He or entrance humoured likewise "
# "moderate. Much nor game son say feel. Fat make met can must form into "
# "gate. Me we offending prevailed discovery. "
# )
# calculate_prob(text)
if __name__ == "__main__":
main() | 356 | '''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
__a = {
'configuration_layoutlmv2': ['LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv2Config'],
'processing_layoutlmv2': ['LayoutLMv2Processor'],
'tokenization_layoutlmv2': ['LayoutLMv2Tokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = ['LayoutLMv2TokenizerFast']
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = ['LayoutLMv2FeatureExtractor']
__a = ['LayoutLMv2ImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = [
'LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST',
'LayoutLMv2ForQuestionAnswering',
'LayoutLMv2ForSequenceClassification',
'LayoutLMv2ForTokenClassification',
'LayoutLMv2Layer',
'LayoutLMv2Model',
'LayoutLMv2PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig
from .processing_layoutlmva import LayoutLMvaProcessor
from .tokenization_layoutlmva import LayoutLMvaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_layoutlmva import (
LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaLayer,
LayoutLMvaModel,
LayoutLMvaPreTrainedModel,
)
else:
import sys
__a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 17 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.