code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import colorsys from PIL import Image # type: ignore def _A ( lowercase , lowercase , lowercase ): """simple docstring""" a =x a =y for step in range(lowercase ): # noqa: B007 a =a * a - b * b + x a =2 * a * b + y a =a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def _A ( lowercase ): """simple docstring""" if distance == 1: return (0, 0, 0) else: return (2_55, 2_55, 2_55) def _A ( lowercase ): """simple docstring""" if distance == 1: return (0, 0, 0) else: return tuple(round(i * 2_55 ) for i in colorsys.hsv_to_rgb(lowercase , 1 , 1 ) ) def _A ( lowercase = 8_00 , lowercase = 6_00 , lowercase = -0.6 , lowercase = 0 , lowercase = 3.2 , lowercase = 50 , lowercase = True , ): """simple docstring""" a =Image.new('''RGB''' , (image_width, image_height) ) a =img.load() # loop through the image-coordinates for image_x in range(lowercase ): for image_y in range(lowercase ): # determine the figure-coordinates based on the image-coordinates a =figure_width / image_width * image_height a =figure_center_x + (image_x / image_width - 0.5) * figure_width a =figure_center_y + (image_y / image_height - 0.5) * figure_height a =get_distance(lowercase , lowercase , lowercase ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: a =get_color_coded_rgb(lowercase ) else: a =get_black_and_white_rgb(lowercase ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure lowerCamelCase_ : List[str] = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
81
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: lowerCamelCase__ : Union[str, Any] = None lowerCamelCase__ : Any = logging.get_logger(__name__) lowerCamelCase__ : Tuple = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} lowerCamelCase__ : List[Any] = { '''vocab_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/spiece.model''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/spiece.model''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/spiece.model''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/spiece.model''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/tokenizer.json''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/tokenizer.json''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/tokenizer.json''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/tokenizer.json''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/tokenizer.json''', }, } # TODO(PVP) - this should be removed in Transformers v5 lowerCamelCase__ : Optional[Any] = { '''t5-small''': 5_12, '''t5-base''': 5_12, '''t5-large''': 5_12, '''t5-3b''': 5_12, '''t5-11b''': 5_12, } class _UpperCAmelCase ( __a): __a : Optional[int] = VOCAB_FILES_NAMES __a : int = PRETRAINED_VOCAB_FILES_MAP __a : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : Union[str, Any] = ["""input_ids""", """attention_mask"""] __a : Dict = TaTokenizer __a : List[int] = [] def __init__( self , _A=None , _A=None , _A="</s>" , _A="<unk>" , _A="<pad>" , _A=1_00 , _A=None , **_A , ) -> Union[str, Any]: '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: _UpperCAmelCase : Any = [f'''<extra_id_{i}>''' for i in range(_A )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens _UpperCAmelCase : List[str] = len(set(filter(lambda _A : bool("""extra_id_""" in str(_A ) ) , _A ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' """ provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids""" """ tokens""" ) super().__init__( _A , tokenizer_file=_A , eos_token=_A , unk_token=_A , pad_token=_A , extra_ids=_A , additional_special_tokens=_A , **_A , ) _UpperCAmelCase : int = vocab_file _UpperCAmelCase : Any = False if not self.vocab_file else True _UpperCAmelCase : Optional[Any] = extra_ids @staticmethod def __snake_case ( _A , _A , _A ) -> Optional[int]: '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: _UpperCAmelCase : Union[str, Any] = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( """This tokenizer was incorrectly instantiated with a model max length of""" f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' """ behavior is kept to avoid breaking backwards compatibility when padding/encoding with""" """ `truncation is True`.\n- Be aware that you SHOULD NOT rely on""" f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' """ `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please""" """ instantiate this tokenizer with `model_max_length` set to your preferred value.""" , _A , ) return max_model_length def __snake_case ( self , _A , _A = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(_A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCAmelCase : List[Any] = os.path.join( _A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ): copyfile(self.vocab_file , _A ) logger.info(f'''Copy vocab file to {out_vocab_file}''' ) return (out_vocab_file,) def __snake_case ( self , _A , _A = None ) -> List[int]: '''simple docstring''' _UpperCAmelCase : List[Any] = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: _UpperCAmelCase : int = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def __snake_case ( self , _A , _A = None ) -> List[int]: '''simple docstring''' _UpperCAmelCase : str = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def __snake_case ( self ) -> List[str]: '''simple docstring''' return list( set(filter(lambda _A : bool(re.search(r"""<extra_id_\d+>""" , _A ) ) is not None , self.additional_special_tokens ) ) ) def __snake_case ( self ) -> int: '''simple docstring''' return [self.convert_tokens_to_ids(_A ) for token in self.get_sentinel_tokens()]
246
0
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCamelCase__ : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=30 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=10 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=3 , __UpperCAmelCase=0.6 , __UpperCAmelCase=None , ) -> Optional[Any]: _lowerCAmelCase =parent _lowerCAmelCase =batch_size _lowerCAmelCase =image_size _lowerCAmelCase =patch_size _lowerCAmelCase =num_channels _lowerCAmelCase =is_training _lowerCAmelCase =use_labels _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_act _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =type_sequence_label_size _lowerCAmelCase =initializer_range _lowerCAmelCase =mask_ratio _lowerCAmelCase =scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) _lowerCAmelCase =(image_size // patch_size) ** 2 _lowerCAmelCase =int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def _lowerCAmelCase ( self ) -> List[Any]: _lowerCAmelCase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase =None if self.use_labels: _lowerCAmelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase =self.get_config() return config, pixel_values, labels def _lowerCAmelCase ( self ) -> Any: return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: _lowerCAmelCase =ViTMAEModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _lowerCAmelCase =model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: _lowerCAmelCase =ViTMAEForPreTraining(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _lowerCAmelCase =model(_lowerCamelCase ) _lowerCAmelCase =(self.image_size // self.patch_size) ** 2 _lowerCAmelCase =self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images _lowerCAmelCase =1 _lowerCAmelCase =ViTMAEForPreTraining(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _lowerCAmelCase =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase =model(_lowerCamelCase ) _lowerCAmelCase =self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def _lowerCAmelCase ( self ) -> Optional[int]: _lowerCAmelCase =self.prepare_config_and_inputs() _lowerCAmelCase =config_and_inputs _lowerCAmelCase ={'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCamelCase__ ( a__ , a__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () lowerCamelCase = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def _lowerCAmelCase ( self ) -> int: _lowerCAmelCase =ViTMAEModelTester(self ) _lowerCAmelCase =ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def _lowerCAmelCase ( self ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""" ) def _lowerCAmelCase ( self ) -> Tuple: pass def _lowerCAmelCase ( self ) -> Union[str, Any]: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase =model_class(_lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase =model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCamelCase , nn.Linear ) ) def _lowerCAmelCase ( self ) -> str: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase =model_class(_lowerCamelCase ) _lowerCAmelCase =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase =[*signature.parameters.keys()] _lowerCAmelCase =['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _lowerCAmelCase ( self ) -> Any: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowerCamelCase ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: # make masks reproducible np.random.seed(2 ) _lowerCAmelCase =int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) _lowerCAmelCase =np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _lowerCAmelCase =torch.from_numpy(_lowerCamelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument _lowerCAmelCase =pt_noise super().check_pt_tf_models(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _lowerCAmelCase ( self ) -> List[Any]: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase =model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _lowerCAmelCase =model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) _lowerCAmelCase =outputs[0].cpu().numpy() _lowerCAmelCase =0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCamelCase ) _lowerCAmelCase =model_class.from_pretrained(_lowerCamelCase ) model.to(_lowerCamelCase ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _lowerCAmelCase =model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) # Make sure we don't have nans _lowerCAmelCase =after_outputs[0].cpu().numpy() _lowerCAmelCase =0 _lowerCAmelCase =np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCamelCase , 1e-5 ) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def _lowerCAmelCase ( self ) -> Any: pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def _lowerCAmelCase ( self ) -> Any: pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def _lowerCAmelCase ( self ) -> Tuple: pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" ) def _lowerCAmelCase ( self ) -> int: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _lowerCAmelCase ( self ) -> List[str]: pass @slow def _lowerCAmelCase ( self ) -> Optional[Any]: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase =ViTMAEModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def _lowerCamelCase() -> Any: _lowerCAmelCase =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def _lowerCAmelCase ( self ) -> Tuple: return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None @slow def _lowerCAmelCase ( self ) -> Union[str, Any]: # make random mask reproducible across the PT and TF model np.random.seed(2 ) _lowerCAmelCase =ViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ).to(_lowerCamelCase ) _lowerCAmelCase =self.default_image_processor _lowerCAmelCase =prepare_img() _lowerCAmelCase =image_processor(images=_lowerCamelCase , return_tensors="""pt""" ).to(_lowerCamelCase ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) _lowerCAmelCase =ViTMAEConfig() _lowerCAmelCase =int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) _lowerCAmelCase =np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): _lowerCAmelCase =model(**_lowerCamelCase , noise=torch.from_numpy(_lowerCamelCase ).to(device=_lowerCamelCase ) ) # verify the logits _lowerCAmelCase =torch.Size((1, 1_96, 7_68) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) _lowerCAmelCase =torch.tensor( [[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(_lowerCamelCase ) , atol=1e-4 ) )
369
"""simple docstring""" import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class lowerCamelCase__ : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=99 , __UpperCAmelCase=13 , __UpperCAmelCase=16 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=2 , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=30 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=None , ) -> Any: _lowerCAmelCase =parent _lowerCAmelCase =batch_size _lowerCAmelCase =decoder_seq_length # For common tests _lowerCAmelCase =self.decoder_seq_length _lowerCAmelCase =is_training _lowerCAmelCase =use_attention_mask _lowerCAmelCase =use_labels _lowerCAmelCase =vocab_size _lowerCAmelCase =d_model _lowerCAmelCase =d_model _lowerCAmelCase =decoder_layers _lowerCAmelCase =decoder_layers _lowerCAmelCase =decoder_ffn_dim _lowerCAmelCase =decoder_attention_heads _lowerCAmelCase =decoder_attention_heads _lowerCAmelCase =eos_token_id _lowerCAmelCase =bos_token_id _lowerCAmelCase =pad_token_id _lowerCAmelCase =decoder_start_token_id _lowerCAmelCase =use_cache _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =None _lowerCAmelCase =decoder_seq_length _lowerCAmelCase =2 _lowerCAmelCase =1 def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _lowerCAmelCase =None if self.use_attention_mask: _lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) _lowerCAmelCase =None if self.use_labels: _lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _lowerCAmelCase =TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> List[Any]: _lowerCAmelCase =True _lowerCAmelCase =TrOCRDecoder(config=__UpperCAmelCase ).to(__UpperCAmelCase ).eval() _lowerCAmelCase =input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass _lowerCAmelCase =model(__UpperCAmelCase , use_cache=__UpperCAmelCase ) _lowerCAmelCase =model(__UpperCAmelCase ) _lowerCAmelCase =model(__UpperCAmelCase , use_cache=__UpperCAmelCase ) self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) ) self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) + 1 ) _lowerCAmelCase =outputs["""past_key_values"""] # create hypothetical next token and extent to next_input_ids _lowerCAmelCase =ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and _lowerCAmelCase =torch.cat([input_ids, next_tokens] , dim=-1 ) _lowerCAmelCase =model(__UpperCAmelCase )["""last_hidden_state"""] _lowerCAmelCase =model(__UpperCAmelCase , past_key_values=__UpperCAmelCase )["""last_hidden_state"""] # select random slice _lowerCAmelCase =ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowerCAmelCase =output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() _lowerCAmelCase =output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) def _lowerCAmelCase ( self ) -> List[str]: _lowerCAmelCase =self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =config_and_inputs _lowerCAmelCase ={"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_torch class lowerCamelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowerCamelCase = (TrOCRForCausalLM,) if is_torch_available() else () lowerCamelCase = {'''text-generation''': TrOCRForCausalLM} if is_torch_available() else {} lowerCamelCase = True lowerCamelCase = False def _lowerCAmelCase ( self ) -> int: _lowerCAmelCase =TrOCRStandaloneDecoderModelTester(self , is_training=__UpperCAmelCase ) _lowerCAmelCase =ConfigTester(self , config_class=__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> List[str]: pass def _lowerCAmelCase ( self ) -> List[Any]: pass def _lowerCAmelCase ( self ) -> Any: pass def _lowerCAmelCase ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _lowerCAmelCase ( self ) -> Any: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> Tuple: return @unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :) def _lowerCAmelCase ( self ) -> str: pass
341
0
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging A : Optional[Any] = logging.get_logger(__name__) class _lowercase ( lowercase__): """simple docstring""" A__ = ['''input_features''', '''is_longer'''] def __init__( self : str , __lowerCamelCase : Union[str, Any]=64 , __lowerCamelCase : Optional[Any]=48000 , __lowerCamelCase : str=480 , __lowerCamelCase : Optional[int]=10 , __lowerCamelCase : str=1024 , __lowerCamelCase : List[str]=0.0 , __lowerCamelCase : int=False , __lowerCamelCase : float = 0 , __lowerCamelCase : float = 14000 , __lowerCamelCase : int = None , __lowerCamelCase : str = "fusion" , __lowerCamelCase : str = "repeatpad" , **__lowerCamelCase : Optional[int] , ): '''simple docstring''' super().__init__( feature_size=__lowerCAmelCase , sampling_rate=__lowerCAmelCase , padding_value=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , **__lowerCAmelCase , ) lowerCamelCase__ : str = top_db lowerCamelCase__ : Any = truncation lowerCamelCase__ : List[str] = padding lowerCamelCase__ : Union[str, Any] = fft_window_size lowerCamelCase__ : Dict = (fft_window_size >> 1) + 1 lowerCamelCase__ : Optional[int] = hop_length lowerCamelCase__ : List[str] = max_length_s lowerCamelCase__ : Dict = max_length_s * sampling_rate lowerCamelCase__ : List[Any] = sampling_rate lowerCamelCase__ : Union[str, Any] = frequency_min lowerCamelCase__ : str = frequency_max lowerCamelCase__ : int = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=__lowerCAmelCase , min_frequency=__lowerCAmelCase , max_frequency=__lowerCAmelCase , sampling_rate=__lowerCAmelCase , norm=__lowerCAmelCase , mel_scale="htk" , ) lowerCamelCase__ : int = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=__lowerCAmelCase , min_frequency=__lowerCAmelCase , max_frequency=__lowerCAmelCase , sampling_rate=__lowerCAmelCase , norm="slaney" , mel_scale="slaney" , ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' lowerCamelCase__ : List[str] = copy.deepcopy(self.__dict__ ) lowerCamelCase__ : Union[str, Any] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : np.array , __lowerCamelCase : Optional[np.array] = None ): '''simple docstring''' lowerCamelCase__ : List[str] = spectrogram( __lowerCAmelCase , window_function(self.fft_window_size , "hann" ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=__lowerCAmelCase , log_mel="dB" , ) return log_mel_spectrogram.T def lowerCAmelCase ( self : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : List[Any] ): '''simple docstring''' lowerCamelCase__ : List[Any] = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk lowerCamelCase__ : Any = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk lowerCamelCase__ : Optional[Any] = [0] # randomly choose index for each part lowerCamelCase__ : List[str] = np.random.choice(ranges[0] ) lowerCamelCase__ : int = np.random.choice(ranges[1] ) lowerCamelCase__ : int = np.random.choice(ranges[2] ) lowerCamelCase__ : Any = mel[idx_front : idx_front + chunk_frames, :] lowerCamelCase__ : str = mel[idx_middle : idx_middle + chunk_frames, :] lowerCamelCase__ : List[str] = mel[idx_back : idx_back + chunk_frames, :] lowerCamelCase__ : Dict = torch.tensor(mel[None, None, :] ) lowerCamelCase__ : Optional[Any] = torch.nn.functional.interpolate( __lowerCAmelCase , size=[chunk_frames, 64] , mode="bilinear" , align_corners=__lowerCAmelCase ) lowerCamelCase__ : str = mel_shrink[0][0].numpy() lowerCamelCase__ : List[str] = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : np.array , __lowerCamelCase : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : int ): '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": lowerCamelCase__ : int = True # random crop to max_length (for compatibility) -> this should be handled by self.pad lowerCamelCase__ : Tuple = len(__lowerCAmelCase ) - max_length lowerCamelCase__ : List[str] = np.random.randint(0 , overflow + 1 ) lowerCamelCase__ : Union[str, Any] = waveform[idx : idx + max_length] lowerCamelCase__ : Optional[Any] = self._np_extract_fbank_features(__lowerCAmelCase , self.mel_filters_slaney )[None, :] elif truncation == "fusion": lowerCamelCase__ : List[str] = self._np_extract_fbank_features(__lowerCAmelCase , self.mel_filters ) lowerCamelCase__ : Optional[int] = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed lowerCamelCase__ : int = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. lowerCamelCase__ : List[Any] = np.stack([mel, mel, mel, mel] , axis=0 ) lowerCamelCase__ : Tuple = False else: lowerCamelCase__ : str = self._random_mel_fusion(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ : List[Any] = True else: raise NotImplementedError(f"data_truncating {truncation} not implemented" ) else: lowerCamelCase__ : Any = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": lowerCamelCase__ : Any = int(max_length / len(__lowerCAmelCase ) ) lowerCamelCase__ : Tuple = np.stack(np.tile(__lowerCAmelCase , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": lowerCamelCase__ : Optional[Any] = int(max_length / len(__lowerCAmelCase ) ) lowerCamelCase__ : List[str] = np.stack(np.tile(__lowerCAmelCase , __lowerCAmelCase ) ) lowerCamelCase__ : Optional[Any] = np.pad(__lowerCAmelCase , (0, max_length - waveform.shape[0]) , mode="constant" , constant_values=0 ) if truncation == "fusion": lowerCamelCase__ : Union[str, Any] = self._np_extract_fbank_features(__lowerCAmelCase , self.mel_filters ) lowerCamelCase__ : int = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: lowerCamelCase__ : int = self._np_extract_fbank_features(__lowerCAmelCase , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : int , __lowerCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __lowerCamelCase : str = None , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[Union[str, TensorType]] = None , **__lowerCamelCase : Optional[int] , ): '''simple docstring''' lowerCamelCase__ : List[str] = truncation if truncation is not None else self.truncation lowerCamelCase__ : Tuple = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a" f" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input" f" was sampled with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowerCamelCase__ : Union[str, Any] = isinstance(__lowerCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}" ) lowerCamelCase__ : str = is_batched_numpy or ( isinstance(__lowerCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCamelCase__ : Dict = [np.asarray(__lowerCAmelCase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__lowerCAmelCase , np.ndarray ): lowerCamelCase__ : List[Any] = np.asarray(__lowerCAmelCase , dtype=np.floataa ) elif isinstance(__lowerCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCamelCase__ : List[str] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCamelCase__ : int = [np.asarray(__lowerCAmelCase )] # convert to mel spectrogram, truncate and pad if needed. lowerCamelCase__ : Dict = [ self._get_input_mel(__lowerCAmelCase , max_length if max_length else self.nb_max_samples , __lowerCAmelCase , __lowerCAmelCase ) for waveform in raw_speech ] lowerCamelCase__ : Dict = [] lowerCamelCase__ : Any = [] for mel, longer in padded_inputs: input_mel.append(__lowerCAmelCase ) is_longer.append(__lowerCAmelCase ) if truncation == "fusion" and sum(__lowerCAmelCase ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer lowerCamelCase__ : Union[str, Any] = np.random.randint(0 , len(__lowerCAmelCase ) ) lowerCamelCase__ : Tuple = True if isinstance(input_mel[0] , __lowerCAmelCase ): lowerCamelCase__ : Optional[Any] = [np.asarray(__lowerCAmelCase , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool lowerCamelCase__ : Dict = [[longer] for longer in is_longer] lowerCamelCase__ : Optional[int] = {"input_features": input_mel, "is_longer": is_longer} lowerCamelCase__ : Tuple = BatchFeature(__lowerCAmelCase ) if return_tensors is not None: lowerCamelCase__ : str = input_features.convert_to_tensors(__lowerCAmelCase ) return input_features
184
from collections import deque class A : '''simple docstring''' def __init__( self : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : int , __lowerCAmelCase : int ) -> None: """simple docstring""" A__ = process_name # process name A__ = arrival_time # arrival time of the process # completion time of finished process or last interrupted time A__ = arrival_time A__ = burst_time # remaining burst time A__ = 0 # total time of the process wait in ready queue A__ = 0 # time from arrival time to completion time class A : '''simple docstring''' def __init__( self : Tuple , __lowerCAmelCase : int , __lowerCAmelCase : list[int] , __lowerCAmelCase : deque[Process] , __lowerCAmelCase : int , ) -> None: """simple docstring""" A__ = number_of_queues # time slice of queues that round robin algorithm applied A__ = time_slices # unfinished process is in this ready_queue A__ = queue # current time A__ = current_time # finished process is in this sequence queue A__ = deque() def a_ ( self : Dict ) -> list[str]: """simple docstring""" A__ = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def a_ ( self : Tuple , __lowerCAmelCase : list[Process] ) -> list[int]: """simple docstring""" A__ = [] for i in range(len(__lowerCAmelCase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def a_ ( self : Optional[Any] , __lowerCAmelCase : list[Process] ) -> list[int]: """simple docstring""" A__ = [] for i in range(len(__lowerCAmelCase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def a_ ( self : Dict , __lowerCAmelCase : list[Process] ) -> list[int]: """simple docstring""" A__ = [] for i in range(len(__lowerCAmelCase ) ): completion_times.append(queue[i].stop_time ) return completion_times def a_ ( self : int , __lowerCAmelCase : deque[Process] ) -> list[int]: """simple docstring""" return [q.burst_time for q in queue] def a_ ( self : Any , __lowerCAmelCase : Process ) -> int: """simple docstring""" process.waiting_time += self.current_time - process.stop_time return process.waiting_time def a_ ( self : Union[str, Any] , __lowerCAmelCase : deque[Process] ) -> deque[Process]: """simple docstring""" A__ = deque() # sequence deque of finished process while len(__lowerCAmelCase ) != 0: A__ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(__lowerCAmelCase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 A__ = 0 # set the process's turnaround time because it is finished A__ = self.current_time - cp.arrival_time # set the completion time A__ = self.current_time # add the process to queue that has finished queue finished.append(__lowerCAmelCase ) self.finish_queue.extend(__lowerCAmelCase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def a_ ( self : Optional[Any] , __lowerCAmelCase : deque[Process] , __lowerCAmelCase : int ) -> tuple[deque[Process], deque[Process]]: """simple docstring""" A__ = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(__lowerCAmelCase ) ): A__ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(__lowerCAmelCase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time A__ = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(__lowerCAmelCase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished A__ = 0 # set the finish time A__ = self.current_time # update the process' turnaround time because it is finished A__ = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(__lowerCAmelCase ) self.finish_queue.extend(__lowerCAmelCase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def a_ ( self : List[Any] ) -> deque[Process]: """simple docstring""" for i in range(self.number_of_queues - 1 ): A__ , A__ = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest A : Union[str, Any] = Process('''P1''', 0, 5_3) A : Optional[Any] = Process('''P2''', 0, 1_7) A : Optional[int] = Process('''P3''', 0, 6_8) A : int = Process('''P4''', 0, 2_4) A : Any = 3 A : List[Any] = [1_7, 2_5] A : Optional[Any] = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'''queue''': deque([Pa, Pa, Pa, Pa])}) A : Optional[Any] = Process('''P1''', 0, 5_3) A : int = Process('''P2''', 0, 1_7) A : Optional[int] = Process('''P3''', 0, 6_8) A : Tuple = Process('''P4''', 0, 2_4) A : Union[str, Any] = 3 A : Optional[Any] = [1_7, 2_5] A : Tuple = deque([Pa, Pa, Pa, Pa]) A : Optional[int] = MLFQ(number_of_queues, time_slices, queue, 0) A : Dict = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F'''waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print completion times of processes(P1, P2, P3, P4) print( F'''completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print total turnaround times of processes(P1, P2, P3, P4) print( F'''turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print sequence of finished processes print( F'''sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}''' )
274
0
def snake_case ( snake_case__ :float , snake_case__ :float) -> float: if mass < 0: raise ValueError("""The mass of a body cannot be negative""") return 0.5 * mass * abs(snake_case__) * abs(snake_case__) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
81
import colorsys from PIL import Image # type: ignore def snake_case ( snake_case__ :float , snake_case__ :float , snake_case__ :int) -> float: _A = x _A = y for step in range(snake_case__): # noqa: B007 _A = a * a - b * b + x _A = 2 * a * b + y _A = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def snake_case ( snake_case__ :float) -> tuple: if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def snake_case ( snake_case__ :float) -> tuple: if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255) for i in colorsys.hsv_to_rgb(snake_case__ , 1 , 1)) def snake_case ( snake_case__ :int = 800 , snake_case__ :int = 600 , snake_case__ :float = -0.6 , snake_case__ :float = 0 , snake_case__ :float = 3.2 , snake_case__ :int = 50 , snake_case__ :bool = True , ) -> Image.Image: _A = Image.new("""RGB""" , (image_width, image_height)) _A = img.load() # loop through the image-coordinates for image_x in range(snake_case__): for image_y in range(snake_case__): # determine the figure-coordinates based on the image-coordinates _A = figure_width / image_width * image_height _A = figure_center_x + (image_x / image_width - 0.5) * figure_width _A = figure_center_y + (image_y / image_height - 0.5) * figure_height _A = get_distance(snake_case__ , snake_case__ , snake_case__) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: _A = get_color_coded_rgb(snake_case__) else: _A = get_black_and_white_rgb(snake_case__) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure _SCREAMING_SNAKE_CASE = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
81
1
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. lowerCamelCase : List[Any] = 1_0 def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ) -> int: for i in range(lowercase ,lowercase ): if array[i] == target: return i return -1 def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> int: snake_case : Union[str, Any] = 0 snake_case : Optional[Any] = len(lowercase ) while left <= right: if right - left < precision: return lin_search(lowercase ,lowercase ,lowercase ,lowercase ) snake_case : List[str] = (left + right) // 3 + 1 snake_case : Tuple = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: snake_case : List[str] = one_third - 1 elif array[two_third] < target: snake_case : Any = two_third + 1 else: snake_case : Dict = one_third + 1 snake_case : Any = two_third - 1 else: return -1 def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ) -> int: if left < right: if right - left < precision: return lin_search(lowercase ,lowercase ,lowercase ,lowercase ) snake_case : str = (left + right) // 3 + 1 snake_case : int = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(lowercase ,one_third - 1 ,lowercase ,lowercase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 ,lowercase ,lowercase ,lowercase ) else: return rec_ternary_search(one_third + 1 ,two_third - 1 ,lowercase ,lowercase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : str = input('Enter numbers separated by comma:\n').strip() lowerCamelCase : Optional[Any] = [int(item.strip()) for item in user_input.split(',')] assert collection == sorted(collection), f"List must be ordered.\n{collection}." lowerCamelCase : int = int(input('Enter the number to be found in the list:\n').strip()) lowerCamelCase : Tuple = ite_ternary_search(collection, target) lowerCamelCase : Any = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f"""Iterative search: {target} found at positions: {resulta}""") print(f"""Recursive search: {target} found at positions: {resulta}""") else: print('Not found')
124
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> float: if not nums: # Makes sure that the list is not empty raise ValueError("""List is empty""" ) snake_case : Optional[Any] = sum(lowercase ) / len(lowercase ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
124
1
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class lowerCamelCase__( __lowerCamelCase): def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: float ): return 0.0 def lowerCamelCase__ ( A__ : np.ndarray , A__ : int ): '''simple docstring''' __lowerCamelCase = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) __lowerCamelCase = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def lowerCamelCase__ ( A__ : FilterType , A__ : int ): '''simple docstring''' __lowerCamelCase = 512 __lowerCamelCase = [1] + [0] * (size - 1) __lowerCamelCase = [filter_type.process(A__ ) for item in inputs] __lowerCamelCase = [0] * (samplerate - size) # zero-padding outputs += filler __lowerCamelCase = np.abs(np.fft.fft(A__ ) ) __lowerCamelCase = 20 * np.logaa(A__ ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) # Display within reasonable bounds __lowerCamelCase = get_bounds(A__ , A__ ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("""Gain (dB)""" ) plt.plot(A__ ) plt.show() def lowerCamelCase__ ( A__ : FilterType , A__ : int ): '''simple docstring''' __lowerCamelCase = 512 __lowerCamelCase = [1] + [0] * (size - 1) __lowerCamelCase = [filter_type.process(A__ ) for item in inputs] __lowerCamelCase = [0] * (samplerate - size) # zero-padding outputs += filler __lowerCamelCase = np.angle(np.fft.fft(A__ ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("""Phase shift (Radians)""" ) plt.plot(np.unwrap(A__ , -2 * pi ) ) plt.show()
29
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(__lowerCamelCase) class lowerCamelCase__( __lowerCamelCase): def __init__( self: List[Any] , *UpperCamelCase_: Dict , **UpperCamelCase_: Dict ): super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) self.check_model_type(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: str=None , UpperCamelCase_: Optional[int]=None , UpperCamelCase_: Optional[int]=None , **UpperCamelCase_: List[Any] ): __lowerCamelCase, __lowerCamelCase = {}, {} if padding is not None: __lowerCamelCase = padding if truncation is not None: __lowerCamelCase = truncation if top_k is not None: __lowerCamelCase = top_k return preprocess_params, {}, postprocess_params def __call__( self: Optional[Any] , UpperCamelCase_: Union["Image.Image", str] , UpperCamelCase_: str = None , **UpperCamelCase_: List[str] ): if isinstance(UpperCamelCase_ , (Image.Image, str) ) and isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = {"""image""": image, """question""": question} else: __lowerCamelCase = image __lowerCamelCase = super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) return results def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: str , UpperCamelCase_: Any=False , UpperCamelCase_: Optional[int]=False ): __lowerCamelCase = load_image(inputs["""image"""] ) __lowerCamelCase = self.tokenizer( inputs["""question"""] , return_tensors=self.framework , padding=UpperCamelCase_ , truncation=UpperCamelCase_ ) __lowerCamelCase = self.image_processor(images=UpperCamelCase_ , return_tensors=self.framework ) model_inputs.update(UpperCamelCase_ ) return model_inputs def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: Tuple ): __lowerCamelCase = self.model(**UpperCamelCase_ ) return model_outputs def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any]=5 ): if top_k > self.model.config.num_labels: __lowerCamelCase = self.model.config.num_labels if self.framework == "pt": __lowerCamelCase = model_outputs.logits.sigmoid()[0] __lowerCamelCase, __lowerCamelCase = probs.topk(UpperCamelCase_ ) else: raise ValueError(F'Unsupported framework: {self.framework}' ) __lowerCamelCase = scores.tolist() __lowerCamelCase = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(UpperCamelCase_ , UpperCamelCase_ )]
29
1
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class lowerCAmelCase__ ( __lowercase ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple=13 , SCREAMING_SNAKE_CASE__ : str=7 , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Any=False , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : int=99 , SCREAMING_SNAKE_CASE__ : List[Any]=32 , SCREAMING_SNAKE_CASE__ : str=5 , SCREAMING_SNAKE_CASE__ : List[str]=4 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=64 , SCREAMING_SNAKE_CASE__ : int="gelu" , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : Tuple=0.1 , SCREAMING_SNAKE_CASE__ : int=5_12 , SCREAMING_SNAKE_CASE__ : int=16 , SCREAMING_SNAKE_CASE__ : Optional[int]=2 , SCREAMING_SNAKE_CASE__ : Dict=0.02 , SCREAMING_SNAKE_CASE__ : Tuple=3 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=4 , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE__ : int=2 , SCREAMING_SNAKE_CASE__ : Optional[int]=2 , SCREAMING_SNAKE_CASE__ : Tuple=2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=4 , SCREAMING_SNAKE_CASE__ : str=1 , ) -> Tuple: __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_input_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_labels __lowerCamelCase = num_choices __lowerCamelCase = scope __lowerCamelCase = q_groups __lowerCamelCase = k_groups __lowerCamelCase = v_groups __lowerCamelCase = post_attention_groups __lowerCamelCase = intermediate_groups __lowerCamelCase = output_groups def __A ( self : str ) -> Tuple: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_input_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCamelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self : Dict ) -> Optional[Any]: return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def __A ( self : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Tuple: __lowerCamelCase = SqueezeBertModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple ) -> Tuple: __lowerCamelCase = SqueezeBertForMaskedLM(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int ) -> Tuple: __lowerCamelCase = SqueezeBertForQuestionAnswering(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __lowerCamelCase = model( SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , start_positions=SCREAMING_SNAKE_CASE__ , end_positions=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : str ) -> Optional[Any]: __lowerCamelCase = self.num_labels __lowerCamelCase = SqueezeBertForSequenceClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int ) -> Any: __lowerCamelCase = self.num_labels __lowerCamelCase = SqueezeBertForTokenClassification(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self : Any , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict ) -> Union[str, Any]: __lowerCamelCase = self.num_choices __lowerCamelCase = SqueezeBertForMultipleChoice(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __lowerCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCamelCase = model( SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self : Optional[Any] ) -> Tuple: __lowerCamelCase = self.prepare_config_and_inputs() ((__lowerCamelCase) , (__lowerCamelCase) , (__lowerCamelCase) , (__lowerCamelCase) , (__lowerCamelCase) , (__lowerCamelCase)) = config_and_inputs __lowerCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( __lowercase , __lowercase , unittest.TestCase ): a__ : List[Any] = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) a__ : Any = ( { """feature-extraction""": SqueezeBertModel, """fill-mask""": SqueezeBertForMaskedLM, """question-answering""": SqueezeBertForQuestionAnswering, """text-classification""": SqueezeBertForSequenceClassification, """token-classification""": SqueezeBertForTokenClassification, """zero-shot""": SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) a__ : int = False a__ : Dict = True a__ : str = False def __A ( self : Any ) -> Tuple: __lowerCamelCase = SqueezeBertModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , dim=37 ) def __A ( self : Tuple ) -> Tuple: self.config_tester.run_common_tests() def __A ( self : Optional[int] ) -> List[str]: __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*SCREAMING_SNAKE_CASE__ ) def __A ( self : Dict ) -> Tuple: __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*SCREAMING_SNAKE_CASE__ ) def __A ( self : Union[str, Any] ) -> List[str]: __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*SCREAMING_SNAKE_CASE__ ) def __A ( self : Optional[Any] ) -> str: __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*SCREAMING_SNAKE_CASE__ ) def __A ( self : Tuple ) -> List[str]: __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*SCREAMING_SNAKE_CASE__ ) def __A ( self : Any ) -> Any: __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*SCREAMING_SNAKE_CASE__ ) @slow def __A ( self : Dict ) -> Union[str, Any]: for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = SqueezeBertModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) @require_sentencepiece @require_tokenizers @require_torch class lowerCAmelCase__ ( unittest.TestCase ): @slow def __A ( self : str ) -> Optional[Any]: __lowerCamelCase = SqueezeBertForSequenceClassification.from_pretrained('''squeezebert/squeezebert-mnli''' ) __lowerCamelCase = torch.tensor([[1, 2_94_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 13, 15_88, 2]] ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ )[0] __lowerCamelCase = torch.Size((1, 3) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = torch.tensor([[0.6401, -0.0349, -0.6041]] ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) )
270
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
270
1
'''simple docstring''' def _lowerCAmelCase ( lowercase ) -> str: if not all(char in """01""" for char in bin_string ): raise ValueError("""Non-binary value was passed to the function""" ) if not bin_string: raise ValueError("""Empty string was passed to the function""" ) __lowerCAmelCase = """""" while len(lowercase ) % 3 != 0: __lowerCAmelCase = """0""" + bin_string __lowerCAmelCase = [ bin_string[index : index + 3] for index in range(len(lowercase ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: __lowerCAmelCase = 0 for index, val in enumerate(lowercase ): oct_val += int(2 ** (2 - index) * int(lowercase ) ) oct_string += str(lowercase ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
353
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : Dict = logging.get_logger(__name__) _a : Optional[int] = """▁""" _a : Any = {"""vocab_file""": """sentencepiece.bpe.model"""} _a : List[Any] = { """vocab_file""": { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model""" ), } } _a : Tuple = { """xlm-roberta-base""": 5_1_2, """xlm-roberta-large""": 5_1_2, """xlm-roberta-large-finetuned-conll02-dutch""": 5_1_2, """xlm-roberta-large-finetuned-conll02-spanish""": 5_1_2, """xlm-roberta-large-finetuned-conll03-english""": 5_1_2, """xlm-roberta-large-finetuned-conll03-german""": 5_1_2, } class _UpperCAmelCase ( lowerCAmelCase_ ): a : List[Any] =VOCAB_FILES_NAMES a : str =PRETRAINED_VOCAB_FILES_MAP a : Any =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : Optional[Any] =["""input_ids""", """attention_mask"""] def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE="<s>",__SCREAMING_SNAKE_CASE="</s>",__SCREAMING_SNAKE_CASE="</s>",__SCREAMING_SNAKE_CASE="<s>",__SCREAMING_SNAKE_CASE="<unk>",__SCREAMING_SNAKE_CASE="<pad>",__SCREAMING_SNAKE_CASE="<mask>",__SCREAMING_SNAKE_CASE = None,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = AddedToken(__SCREAMING_SNAKE_CASE,lstrip=__SCREAMING_SNAKE_CASE,rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) else mask_token __lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__SCREAMING_SNAKE_CASE,eos_token=__SCREAMING_SNAKE_CASE,unk_token=__SCREAMING_SNAKE_CASE,sep_token=__SCREAMING_SNAKE_CASE,cls_token=__SCREAMING_SNAKE_CASE,pad_token=__SCREAMING_SNAKE_CASE,mask_token=__SCREAMING_SNAKE_CASE,sp_model_kwargs=self.sp_model_kwargs,**__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token __lowerCAmelCase = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __lowerCAmelCase = 1 __lowerCAmelCase = len(self.sp_model ) + self.fairseq_offset __lowerCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): '''simple docstring''' __lowerCAmelCase = self.__dict__.copy() __lowerCAmelCase = None __lowerCAmelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = d # for backward compatibility if not hasattr(self,"""sp_model_kwargs""" ): __lowerCAmelCase = {} __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] __lowerCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE,token_ids_a=__SCREAMING_SNAKE_CASE,already_has_special_tokens=__SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCamelCase__ ( self ): '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.sp_model.encode(__SCREAMING_SNAKE_CASE,out_type=__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __lowerCAmelCase = self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = """""".join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE,""" """ ).strip() return out_string def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __lowerCAmelCase = os.path.join( __SCREAMING_SNAKE_CASE,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file,__SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE,"""wb""" ) as fi: __lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
46
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ="▁" _lowerCamelCase ={"vocab_file": "sentencepiece.bpe.model"} _lowerCamelCase ={ "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model" ), } } _lowerCamelCase ={ "facebook/nllb-200-distilled-600M": 10_24, } # fmt: off _lowerCamelCase =["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = ['input_ids', 'attention_mask'] __UpperCAmelCase = [] __UpperCAmelCase = [] def __init__( self : List[str] ,snake_case : List[str] ,snake_case : Any="<s>" ,snake_case : str="</s>" ,snake_case : List[str]="</s>" ,snake_case : Dict="<s>" ,snake_case : Dict="<unk>" ,snake_case : List[str]="<pad>" ,snake_case : List[str]="<mask>" ,snake_case : Optional[int]=None ,snake_case : str=None ,snake_case : Dict=None ,snake_case : Optional[Dict[str, Any]] = None ,snake_case : Optional[int]=None ,snake_case : Tuple=False ,**snake_case : List[Any] ,): # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE =AddedToken(snake_case ,lstrip=snake_case ,rstrip=snake_case ) if isinstance(snake_case ,snake_case ) else mask_token SCREAMING_SNAKE_CASE ={} if sp_model_kwargs is None else sp_model_kwargs SCREAMING_SNAKE_CASE =legacy_behaviour super().__init__( bos_token=snake_case ,eos_token=snake_case ,unk_token=snake_case ,sep_token=snake_case ,cls_token=snake_case ,pad_token=snake_case ,mask_token=snake_case ,tokenizer_file=snake_case ,src_lang=snake_case ,tgt_lang=snake_case ,additional_special_tokens=snake_case ,sp_model_kwargs=self.sp_model_kwargs ,legacy_behaviour=snake_case ,**snake_case ,) SCREAMING_SNAKE_CASE =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case ) ) SCREAMING_SNAKE_CASE =vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token SCREAMING_SNAKE_CASE ={'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab SCREAMING_SNAKE_CASE =1 SCREAMING_SNAKE_CASE =len(self.sp_model ) SCREAMING_SNAKE_CASE ={ code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(snake_case ) } SCREAMING_SNAKE_CASE ={v: k for k, v in self.lang_code_to_id.items()} SCREAMING_SNAKE_CASE =len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) SCREAMING_SNAKE_CASE ={v: k for k, v in self.fairseq_tokens_to_ids.items()} SCREAMING_SNAKE_CASE =list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) SCREAMING_SNAKE_CASE =src_lang if src_lang is not None else 'eng_Latn' SCREAMING_SNAKE_CASE =self.lang_code_to_id[self._src_lang] SCREAMING_SNAKE_CASE =tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Any ): SCREAMING_SNAKE_CASE =self.__dict__.copy() SCREAMING_SNAKE_CASE =None SCREAMING_SNAKE_CASE =self.sp_model.serialized_model_proto() return state def __setstate__( self : Dict ,snake_case : Optional[int] ): SCREAMING_SNAKE_CASE =d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): SCREAMING_SNAKE_CASE ={} SCREAMING_SNAKE_CASE =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def _lowerCAmelCase ( self : Dict ): return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def _lowerCAmelCase ( self : Tuple ): return self._src_lang @src_lang.setter def _lowerCAmelCase ( self : Tuple ,snake_case : str ): SCREAMING_SNAKE_CASE =new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _lowerCAmelCase ( self : str ,snake_case : List[int] ,snake_case : Optional[List[int]] = None ,snake_case : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case ,token_ids_a=snake_case ,already_has_special_tokens=snake_case ) SCREAMING_SNAKE_CASE =[1] * len(self.prefix_tokens ) SCREAMING_SNAKE_CASE =[1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(snake_case )) + suffix_ones return prefix_ones + ([0] * len(snake_case )) + ([0] * len(snake_case )) + suffix_ones def _lowerCAmelCase ( self : str ,snake_case : List[int] ,snake_case : Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowerCAmelCase ( self : Any ,snake_case : List[int] ,snake_case : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE =[self.sep_token_id] SCREAMING_SNAKE_CASE =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCAmelCase ( self : int ,snake_case : str ,snake_case : str ,snake_case : Optional[str] ,snake_case : Optional[str] ,**snake_case : Optional[Any] ): if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) SCREAMING_SNAKE_CASE =src_lang SCREAMING_SNAKE_CASE =self(snake_case ,add_special_tokens=snake_case ,return_tensors=snake_case ,**snake_case ) SCREAMING_SNAKE_CASE =self.convert_tokens_to_ids(snake_case ) SCREAMING_SNAKE_CASE =tgt_lang_id return inputs def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE ={self.convert_ids_to_tokens(snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _lowerCAmelCase ( self : Optional[Any] ,snake_case : str ): return self.sp_model.encode(snake_case ,out_type=snake_case ) def _lowerCAmelCase ( self : Dict ,snake_case : Any ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] SCREAMING_SNAKE_CASE =self.sp_model.PieceToId(snake_case ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _lowerCAmelCase ( self : Optional[int] ,snake_case : str ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _lowerCAmelCase ( self : Optional[int] ,snake_case : Any ): SCREAMING_SNAKE_CASE =''.join(snake_case ).replace(snake_case ,' ' ).strip() return out_string def _lowerCAmelCase ( self : Any ,snake_case : str ,snake_case : Optional[str] = None ): if not os.path.isdir(snake_case ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return SCREAMING_SNAKE_CASE =os.path.join( snake_case ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,snake_case ) elif not os.path.isfile(self.vocab_file ): with open(snake_case ,'wb' ) as fi: SCREAMING_SNAKE_CASE =self.sp_model.serialized_model_proto() fi.write(snake_case ) return (out_vocab_file,) def _lowerCAmelCase ( self : Optional[int] ,snake_case : List[str] ,snake_case : str = "eng_Latn" ,snake_case : Optional[List[str]] = None ,snake_case : str = "fra_Latn" ,**snake_case : Dict ,): SCREAMING_SNAKE_CASE =src_lang SCREAMING_SNAKE_CASE =tgt_lang return super().prepare_seqaseq_batch(snake_case ,snake_case ,**snake_case ) def _lowerCAmelCase ( self : List[str] ): return self.set_src_lang_special_tokens(self.src_lang ) def _lowerCAmelCase ( self : str ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _lowerCAmelCase ( self : List[Any] ,snake_case : int ): SCREAMING_SNAKE_CASE =self.lang_code_to_id[src_lang] if self.legacy_behaviour: SCREAMING_SNAKE_CASE =[] SCREAMING_SNAKE_CASE =[self.eos_token_id, self.cur_lang_code] else: SCREAMING_SNAKE_CASE =[self.cur_lang_code] SCREAMING_SNAKE_CASE =[self.eos_token_id] def _lowerCAmelCase ( self : str ,snake_case : str ): SCREAMING_SNAKE_CASE =self.lang_code_to_id[lang] if self.legacy_behaviour: SCREAMING_SNAKE_CASE =[] SCREAMING_SNAKE_CASE =[self.eos_token_id, self.cur_lang_code] else: SCREAMING_SNAKE_CASE =[self.cur_lang_code] SCREAMING_SNAKE_CASE =[self.eos_token_id]
334
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available _lowerCamelCase ={ "configuration_ernie": ["ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieConfig", "ErnieOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase =[ "ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST", "ErnieForCausalLM", "ErnieForMaskedLM", "ErnieForMultipleChoice", "ErnieForNextSentencePrediction", "ErnieForPreTraining", "ErnieForQuestionAnswering", "ErnieForSequenceClassification", "ErnieForTokenClassification", "ErnieModel", "ErniePreTrainedModel", ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys _lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
334
1
# This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests __snake_case = open # noqa: we just need to have a builtin inside this module to test it properly
169
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) __snake_case = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation="""relu""") ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation="""relu""")) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=1_28, activation="""relu""")) classifier.add(layers.Dense(units=1, activation="""sigmoid""")) # Compiling the CNN classifier.compile( optimizer="""adam""", loss="""binary_crossentropy""", metrics=["""accuracy"""] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') __snake_case = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 2_55, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) __snake_case = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_55) __snake_case = train_datagen.flow_from_directory( """dataset/training_set""", target_size=(64, 64), batch_size=32, class_mode="""binary""" ) __snake_case = test_datagen.flow_from_directory( """dataset/test_set""", target_size=(64, 64), batch_size=32, class_mode="""binary""" ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save("""cnn.h5""") # Part 3 - Making new predictions __snake_case = tf.keras.preprocessing.image.load_img( """dataset/single_prediction/image.png""", target_size=(64, 64) ) __snake_case = tf.keras.preprocessing.image.img_to_array(test_image) __snake_case = np.expand_dims(test_image, axis=0) __snake_case = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: __snake_case = """Normal""" if result[0][0] == 1: __snake_case = """Abnormality detected"""
169
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer __a: str = logging.get_logger(__name__) __a: Optional[int] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} __a: Tuple = { """vocab_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/vocab.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/vocab.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/vocab.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json""" ), }, """merges_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/merges.txt""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/merges.txt""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/merges.txt""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt""" ), }, """tokenizer_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/tokenizer.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/tokenizer.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json""", """roberta-base-openai-detector""": ( """https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json""" ), """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json""" ), }, } __a: List[Any] = { """roberta-base""": 5_12, """roberta-large""": 5_12, """roberta-large-mnli""": 5_12, """distilroberta-base""": 5_12, """roberta-base-openai-detector""": 5_12, """roberta-large-openai-detector""": 5_12, } class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE = RobertaTokenizer def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase="replace" , __lowerCAmelCase="<s>" , __lowerCAmelCase="</s>" , __lowerCAmelCase="</s>" , __lowerCAmelCase="<s>" , __lowerCAmelCase="<unk>" , __lowerCAmelCase="<pad>" , __lowerCAmelCase="<mask>" , __lowerCAmelCase=False , __lowerCAmelCase=True , **__lowerCAmelCase , ) -> str: super().__init__( __lowerCAmelCase , __lowerCAmelCase , tokenizer_file=__lowerCAmelCase , errors=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase , **__lowerCAmelCase , ) lowercase__ : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , __lowerCAmelCase ) != add_prefix_space: lowercase__ : Optional[Any] = getattr(__lowerCAmelCase , pre_tok_state.pop('''type''' ) ) lowercase__ : Optional[int] = add_prefix_space lowercase__ : Any = pre_tok_class(**__lowerCAmelCase ) lowercase__ : Optional[Any] = add_prefix_space lowercase__ : Union[str, Any] = '''post_processor''' lowercase__ : List[Any] = getattr(self.backend_tokenizer , __lowerCAmelCase , __lowerCAmelCase ) if tokenizer_component_instance: lowercase__ : List[str] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase__ : List[str] = tuple(state['''sep'''] ) if "cls" in state: lowercase__ : Tuple = tuple(state['''cls'''] ) lowercase__ : List[Any] = False if state.get('''add_prefix_space''' , __lowerCAmelCase ) != add_prefix_space: lowercase__ : Union[str, Any] = add_prefix_space lowercase__ : Dict = True if state.get('''trim_offsets''' , __lowerCAmelCase ) != trim_offsets: lowercase__ : Optional[int] = trim_offsets lowercase__ : Optional[int] = True if changes_to_apply: lowercase__ : str = getattr(__lowerCAmelCase , state.pop('''type''' ) ) lowercase__ : str = component_class(**__lowerCAmelCase ) setattr(self.backend_tokenizer , __lowerCAmelCase , __lowerCAmelCase ) @property def _lowerCAmelCase( self ) -> str: if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def _lowerCAmelCase( self , __lowerCAmelCase ) -> str: lowercase__ : str = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else value lowercase__ : str = value def _lowerCAmelCase( self , *__lowerCAmelCase , **__lowerCAmelCase ) -> BatchEncoding: lowercase__ : List[Any] = kwargs.get('''is_split_into_words''' , __lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__lowerCAmelCase , **__lowerCAmelCase ) def _lowerCAmelCase( self , *__lowerCAmelCase , **__lowerCAmelCase ) -> BatchEncoding: lowercase__ : str = kwargs.get('''is_split_into_words''' , __lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*__lowerCAmelCase , **__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None ) -> Tuple[str]: lowercase__ : Optional[Any] = self._tokenizer.model.save(__lowerCAmelCase , name=__lowerCAmelCase ) return tuple(__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase=None ) -> Union[str, Any]: lowercase__ : List[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None ) -> List[int]: lowercase__ : List[Any] = [self.sep_token_id] lowercase__ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
198
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __a: Optional[Any] = 16 __a: Any = 32 def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase = 16 ): lowercase__ : Dict = AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowercase__ : Optional[int] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) lowercase__ : Optional[Any] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=UpperCAmelCase , max_length=UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ : List[Any] = datasets.map( UpperCAmelCase , batched=UpperCAmelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : str = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ : List[str] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ : List[str] = 16 elif accelerator.mixed_precision != "no": lowercase__ : Dict = 8 else: lowercase__ : Optional[int] = None return tokenizer.pad( UpperCAmelCase , padding='''longest''' , max_length=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. lowercase__ : str = DataLoader( tokenized_datasets['''train'''] , shuffle=UpperCAmelCase , collate_fn=UpperCAmelCase , batch_size=UpperCAmelCase ) lowercase__ : Optional[int] = DataLoader( tokenized_datasets['''validation'''] , shuffle=UpperCAmelCase , collate_fn=UpperCAmelCase , batch_size=UpperCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders __a: Tuple = mocked_dataloaders # noqa: F811 def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , UpperCAmelCase ) == "1": lowercase__ : Optional[int] = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: lowercase__ : Union[str, Any] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: lowercase__ : Any = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : int = config['''lr'''] lowercase__ : Optional[int] = int(config['''num_epochs'''] ) lowercase__ : Optional[Any] = int(config['''seed'''] ) lowercase__ : int = int(config['''batch_size'''] ) set_seed(UpperCAmelCase ) lowercase__ , lowercase__ : str = get_dataloaders(UpperCAmelCase , UpperCAmelCase ) lowercase__ : Union[str, Any] = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation lowercase__ : Any = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowercase__ : Union[str, Any] = batch_size // MAX_GPU_BATCH_SIZE lowercase__ : Any = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : Optional[int] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ : List[str] = model.to(accelerator.device ) # Instantiate optimizer lowercase__ : List[Any] = AdamW(params=model.parameters() , lr=UpperCAmelCase ) # Instantiate scheduler lowercase__ : List[str] = get_linear_schedule_with_warmup( optimizer=UpperCAmelCase , num_warmup_steps=100 , num_training_steps=(len(UpperCAmelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[str] = accelerator.prepare( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: lowercase__ : Optional[Any] = os.path.split(UpperCAmelCase )[-1].split('''.''' )[0] accelerator.init_trackers(UpperCAmelCase , UpperCAmelCase ) # Now we train the model for epoch in range(UpperCAmelCase ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: lowercase__ : str = 0 for step, batch in enumerate(UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase__ : List[str] = model(**UpperCAmelCase ) lowercase__ : List[str] = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() lowercase__ : List[str] = loss / gradient_accumulation_steps accelerator.backward(UpperCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): lowercase__ : List[str] = model(**UpperCAmelCase ) lowercase__ : Optional[int] = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ : Optional[int] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=UpperCAmelCase , references=UpperCAmelCase , ) lowercase__ : int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , UpperCAmelCase ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(UpperCAmelCase ), '''epoch''': epoch, } , step=UpperCAmelCase , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def __UpperCamelCase ( ): lowercase__ : Any = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=UpperCAmelCase , default=UpperCAmelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=UpperCAmelCase , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) lowercase__ : str = parser.parse_args() lowercase__ : Tuple = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(UpperCAmelCase , UpperCAmelCase ) if __name__ == "__main__": main()
198
1
"""simple docstring""" from datetime import datetime import matplotlib.pyplot as plt import torch def lowerCamelCase ( _UpperCamelCase : str ) -> int: '''simple docstring''' for param in module.parameters(): __UpperCAmelCase : Any = False def lowerCamelCase ( ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): __UpperCAmelCase : int = "mps" if device == "mps": print( """WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch""" """ errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues""" """ with generations.""" ) return device def lowerCamelCase ( _UpperCamelCase : Optional[Any] ) -> int: '''simple docstring''' __UpperCAmelCase : int = plt.imshow(a_ ) fig.axes.get_xaxis().set_visible(a_ ) fig.axes.get_yaxis().set_visible(a_ ) plt.show() def lowerCamelCase ( ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = datetime.now() __UpperCAmelCase : List[str] = current_time.strftime("""%H:%M:%S""" ) return timestamp
367
"""simple docstring""" UpperCAmelCase : Dict = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/' def lowerCamelCase ( _UpperCamelCase : bytes ) -> bytes: '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ): __UpperCAmelCase : Any = f'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(_UpperCamelCase ) __UpperCAmelCase : str = """""".join(bin(_UpperCamelCase )[2:].zfill(8 ) for byte in data ) __UpperCAmelCase : int = len(_UpperCamelCase ) % 6 != 0 if padding_needed: # The padding that will be added later __UpperCAmelCase : Dict = b"""=""" * ((6 - len(_UpperCamelCase ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(_UpperCamelCase ) % 6) else: __UpperCAmelCase : List[str] = b"""""" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(_UpperCamelCase ) , 6 ) ).encode() + padding ) def lowerCamelCase ( _UpperCamelCase : str ) -> bytes: '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ) and not isinstance(_UpperCamelCase , _UpperCamelCase ): __UpperCAmelCase : Tuple = ( """argument should be a bytes-like object or ASCII string, """ f'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(_UpperCamelCase ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(_UpperCamelCase , _UpperCamelCase ): try: __UpperCAmelCase : Optional[Any] = encoded_data.decode("""utf-8""" ) except UnicodeDecodeError: raise ValueError("""base64 encoded data should only contain ASCII characters""" ) __UpperCAmelCase : str = encoded_data.count("""=""" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(_UpperCamelCase ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one __UpperCAmelCase : List[str] = encoded_data[:-padding] __UpperCAmelCase : int = """""".join( bin(B64_CHARSET.index(_UpperCamelCase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: __UpperCAmelCase : Optional[Any] = """""".join( bin(B64_CHARSET.index(_UpperCamelCase ) )[2:].zfill(6 ) for char in encoded_data ) __UpperCAmelCase : List[Any] = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(_UpperCamelCase ) , 8 ) ] return bytes(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
320
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ = { """configuration_trajectory_transformer""": [ """TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrajectoryTransformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrajectoryTransformerModel""", """TrajectoryTransformerPreTrainedModel""", """load_tf_weights_in_trajectory_transformer""", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
82
from __future__ import annotations import math def _UpperCAmelCase ( snake_case ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = str(snake_case ) _lowerCAmelCase = [n] for i in range(1 , len(snake_case ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def _UpperCAmelCase ( snake_case ): """simple docstring""" if len(str(snake_case ) ) > 3: if not is_prime(int(str(snake_case )[-3:] ) ) or not is_prime(int(str(snake_case )[:3] ) ): return False return True def _UpperCAmelCase ( snake_case = 11 ): """simple docstring""" _lowerCAmelCase = [] _lowerCAmelCase = 13 while len(snake_case ) != count: if validate(snake_case ): _lowerCAmelCase = list_truncated_nums(snake_case ) if all(is_prime(snake_case ) for i in list_nums ): list_truncated_primes.append(snake_case ) num += 2 return list_truncated_primes def _UpperCAmelCase ( ): """simple docstring""" return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(f"{sum(compute_truncated_primes(11)) = }")
82
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase : List[Any] = { 'configuration_bigbird_pegasus': [ 'BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BigBirdPegasusConfig', 'BigBirdPegasusOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : str = [ 'BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST', 'BigBirdPegasusForCausalLM', 'BigBirdPegasusForConditionalGeneration', 'BigBirdPegasusForQuestionAnswering', 'BigBirdPegasusForSequenceClassification', 'BigBirdPegasusModel', 'BigBirdPegasusPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys _UpperCamelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
358
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def snake_case (A_ :Dict ): '''simple docstring''' a : str = [] embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''', f'''stage{idx}.patch_embed.proj.weight''', ) ) embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''', f'''stage{idx}.patch_embed.proj.bias''', ) ) embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''', f'''stage{idx}.patch_embed.norm.weight''', ) ) embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''', f'''stage{idx}.patch_embed.norm.bias''', ) ) return embed def snake_case (A_ :Any , A_ :List[Any] ): '''simple docstring''' a : Union[str, Any] = [] attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj.bias''', ) ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', f'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', f'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', f'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', f'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', f'''stage{idx}.blocks.{cnt}.norm1.weight''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', f'''stage{idx}.blocks.{cnt}.norm1.bias''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', f'''stage{idx}.blocks.{cnt}.norm2.weight''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', f'''stage{idx}.blocks.{cnt}.norm2.bias''') ) return attention_weights def snake_case (A_ :Dict ): '''simple docstring''' a : int = [] token.append((f'''cvt.encoder.stages.{idx}.cls_token''', 'stage2.cls_token') ) return token def snake_case (): '''simple docstring''' a : int = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def snake_case (A_ :int , A_ :Optional[int] , A_ :Dict , A_ :Dict ): '''simple docstring''' a : Optional[Any] = 'imagenet-1k-id2label.json' a : Dict = 1_0_0_0 a : Tuple = 'huggingface/label-files' a : List[Any] = num_labels a : List[str] = json.load(open(cached_download(hf_hub_url(A_ , A_ , repo_type='dataset' ) ) , 'r' ) ) a : int = {int(A_ ): v for k, v in idalabel.items()} a : str = idalabel a : Optional[int] = {v: k for k, v in idalabel.items()} a : Tuple = CvtConfig(num_labels=A_ , idalabel=A_ , labelaid=A_ ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": a : int = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": a : List[Any] = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: a : Optional[int] = [2, 2, 2_0] a : Any = [3, 1_2, 1_6] a : str = [1_9_2, 7_6_8, 1_0_2_4] a : List[Any] = CvtForImageClassification(A_ ) a : Optional[int] = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) a : Union[str, Any] = image_size a : Optional[Any] = torch.load(A_ , map_location=torch.device('cpu' ) ) a : int = OrderedDict() a : Any = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: a : Dict = list_of_state_dict + cls_token(A_ ) a : Any = list_of_state_dict + embeddings(A_ ) for cnt in range(config.depth[idx] ): a : Dict = list_of_state_dict + attention(A_ , A_ ) a : Any = list_of_state_dict + final() for gg in list_of_state_dict: print(A_ ) for i in range(len(A_ ) ): a : List[Any] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(A_ ) model.save_pretrained(A_ ) image_processor.save_pretrained(A_ ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _UpperCamelCase : Any = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=384, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=r'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _UpperCamelCase : int = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
186
0
"""simple docstring""" import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available UpperCAmelCase_ : Tuple = logging.getLogger(__name__) @dataclass class lowerCAmelCase__ : '''simple docstring''' __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 @dataclass class lowerCAmelCase__ : '''simple docstring''' __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = None __UpperCamelCase = None class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "train" __UpperCamelCase = "dev" __UpperCamelCase = "test" class lowerCAmelCase__ : '''simple docstring''' @staticmethod def _SCREAMING_SNAKE_CASE ( lowercase_ : Any , lowercase_ : Union[Split, str]): '''simple docstring''' raise NotImplementedError @staticmethod def _SCREAMING_SNAKE_CASE ( lowercase_ : str): '''simple docstring''' raise NotImplementedError @staticmethod def _SCREAMING_SNAKE_CASE ( lowercase_ : List[InputExample] , lowercase_ : List[str] , lowercase_ : int , lowercase_ : PreTrainedTokenizer , lowercase_ : str=False , lowercase_ : Dict="[CLS]" , lowercase_ : List[Any]=1 , lowercase_ : Optional[int]="[SEP]" , lowercase_ : Optional[Any]=False , lowercase_ : Optional[Any]=False , lowercase_ : str=0 , lowercase_ : Dict=0 , lowercase_ : Union[str, Any]=-100 , lowercase_ : List[str]=0 , lowercase_ : Any=True , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = {label: i for i, label in enumerate(lowercase_)} SCREAMING_SNAKE_CASE_ : int = [] for ex_index, example in enumerate(lowercase_): if ex_index % 10000 == 0: logger.info('''Writing example %d of %d''' , lowercase_ , len(lowercase_)) SCREAMING_SNAKE_CASE_ : Tuple = [] SCREAMING_SNAKE_CASE_ : List[str] = [] for word, label in zip(example.words , example.labels): SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.tokenize(lowercase_) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(lowercase_) > 0: tokens.extend(lowercase_) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(lowercase_) - 1)) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.num_special_tokens_to_add() if len(lowercase_) > max_seq_length - special_tokens_count: SCREAMING_SNAKE_CASE_ : Dict = tokens[: (max_seq_length - special_tokens_count)] SCREAMING_SNAKE_CASE_ : Union[str, Any] = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] SCREAMING_SNAKE_CASE_ : Optional[Any] = [sequence_a_segment_id] * len(lowercase_) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: SCREAMING_SNAKE_CASE_ : int = [cls_token] + tokens SCREAMING_SNAKE_CASE_ : Any = [pad_token_label_id] + label_ids SCREAMING_SNAKE_CASE_ : Tuple = [cls_token_segment_id] + segment_ids SCREAMING_SNAKE_CASE_ : List[str] = tokenizer.convert_tokens_to_ids(lowercase_) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. SCREAMING_SNAKE_CASE_ : Dict = [1 if mask_padding_with_zero else 0] * len(lowercase_) # Zero-pad up to the sequence length. SCREAMING_SNAKE_CASE_ : Optional[Any] = max_seq_length - len(lowercase_) if pad_on_left: SCREAMING_SNAKE_CASE_ : int = ([pad_token] * padding_length) + input_ids SCREAMING_SNAKE_CASE_ : int = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask SCREAMING_SNAKE_CASE_ : Optional[int] = ([pad_token_segment_id] * padding_length) + segment_ids SCREAMING_SNAKE_CASE_ : str = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(lowercase_) == max_seq_length assert len(lowercase_) == max_seq_length assert len(lowercase_) == max_seq_length assert len(lowercase_) == max_seq_length if ex_index < 5: logger.info('''*** Example ***''') logger.info('''guid: %s''' , example.guid) logger.info('''tokens: %s''' , ''' '''.join([str(lowercase_) for x in tokens])) logger.info('''input_ids: %s''' , ''' '''.join([str(lowercase_) for x in input_ids])) logger.info('''input_mask: %s''' , ''' '''.join([str(lowercase_) for x in input_mask])) logger.info('''segment_ids: %s''' , ''' '''.join([str(lowercase_) for x in segment_ids])) logger.info('''label_ids: %s''' , ''' '''.join([str(lowercase_) for x in label_ids])) if "token_type_ids" not in tokenizer.model_input_names: SCREAMING_SNAKE_CASE_ : Dict = None features.append( InputFeatures( input_ids=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , label_ids=lowercase_)) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = 42 __UpperCamelCase = nn.CrossEntropyLoss().ignore_index def __init__( self : List[str] , lowercase_ : TokenClassificationTask , lowercase_ : str , lowercase_ : PreTrainedTokenizer , lowercase_ : List[str] , lowercase_ : str , lowercase_ : Optional[int] = None , lowercase_ : Tuple=False , lowercase_ : Split = Split.train , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = os.path.join( lowercase_ , '''cached_{}_{}_{}'''.format(mode.value , tokenizer.__class__.__name__ , str(lowercase_)) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. SCREAMING_SNAKE_CASE_ : Tuple = cached_features_file + '''.lock''' with FileLock(lowercase_): if os.path.exists(lowercase_) and not overwrite_cache: logger.info(F'Loading features from cached file {cached_features_file}') SCREAMING_SNAKE_CASE_ : Tuple = torch.load(lowercase_) else: logger.info(F'Creating features from dataset file at {data_dir}') SCREAMING_SNAKE_CASE_ : List[Any] = token_classification_task.read_examples_from_file(lowercase_ , lowercase_) # TODO clean up all this to leverage built-in features of tokenizers SCREAMING_SNAKE_CASE_ : Dict = token_classification_task.convert_examples_to_features( lowercase_ , lowercase_ , lowercase_ , lowercase_ , cls_token_at_end=bool(model_type in ['''xlnet''']) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=lowercase_ , pad_on_left=bool(tokenizer.padding_side == '''left''') , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(F'Saving features into cached file {cached_features_file}') torch.save(self.features , lowercase_) def __len__( self : List[str]): '''simple docstring''' return len(self.features) def __getitem__( self : List[Any] , lowercase_ : str): '''simple docstring''' return self.features[i] if is_tf_available(): import tensorflow as tf class lowerCAmelCase__ : '''simple docstring''' __UpperCamelCase = 42 __UpperCamelCase = -1_0_0 def __init__( self : List[str] , lowercase_ : TokenClassificationTask , lowercase_ : str , lowercase_ : PreTrainedTokenizer , lowercase_ : List[str] , lowercase_ : str , lowercase_ : Optional[int] = None , lowercase_ : str=False , lowercase_ : Split = Split.train , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = token_classification_task.read_examples_from_file(lowercase_ , lowercase_) # TODO clean up all this to leverage built-in features of tokenizers SCREAMING_SNAKE_CASE_ : Union[str, Any] = token_classification_task.convert_examples_to_features( lowercase_ , lowercase_ , lowercase_ , lowercase_ , cls_token_at_end=bool(model_type in ['''xlnet''']) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=lowercase_ , pad_on_left=bool(tokenizer.padding_side == '''left''') , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: SCREAMING_SNAKE_CASE_ : Tuple = tf.data.Dataset.from_generator( lowercase_ , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa}, tf.intaa) , ( {'''input_ids''': tf.TensorShape([None]), '''attention_mask''': tf.TensorShape([None])}, tf.TensorShape([None]), ) , ) else: SCREAMING_SNAKE_CASE_ : str = tf.data.Dataset.from_generator( lowercase_ , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa}, tf.intaa) , ( { '''input_ids''': tf.TensorShape([None]), '''attention_mask''': tf.TensorShape([None]), '''token_type_ids''': tf.TensorShape([None]), }, tf.TensorShape([None]), ) , ) def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features))) return self.dataset def __len__( self : Optional[Any]): '''simple docstring''' return len(self.features) def __getitem__( self : Tuple , lowercase_ : str): '''simple docstring''' return self.features[i]
91
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ : Dict = logging.get_logger(__name__) UpperCAmelCase_ : Tuple = """▁""" UpperCAmelCase_ : Optional[Any] = {"""vocab_file""": """sentencepiece.bpe.model"""} UpperCAmelCase_ : str = { """vocab_file""": { """facebook/xglm-564M""": """https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model""", } } UpperCAmelCase_ : str = { """facebook/xglm-564M""": 2048, } class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ["input_ids", "attention_mask"] def __init__( self : List[Any] , lowercase_ : str , lowercase_ : Tuple="<s>" , lowercase_ : Any="</s>" , lowercase_ : Optional[int]="</s>" , lowercase_ : List[Any]="<s>" , lowercase_ : Union[str, Any]="<unk>" , lowercase_ : Union[str, Any]="<pad>" , lowercase_ : Optional[Dict[str, Any]] = None , **lowercase_ : Tuple , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer SCREAMING_SNAKE_CASE_ : List[str] = 7 SCREAMING_SNAKE_CASE_ : Tuple = [F'<madeupword{i}>' for i in range(self.num_madeup_words)] SCREAMING_SNAKE_CASE_ : List[Any] = kwargs.get('''additional_special_tokens''' , []) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , cls_token=lowercase_ , pad_token=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , ) SCREAMING_SNAKE_CASE_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(lowercase_)) SCREAMING_SNAKE_CASE_ : Union[str, Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab SCREAMING_SNAKE_CASE_ : Union[str, Any] = 1 # Mimic fairseq token-to-id alignment for the first 4 token SCREAMING_SNAKE_CASE_ : Optional[Any] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} SCREAMING_SNAKE_CASE_ : List[Any] = len(self.sp_model) SCREAMING_SNAKE_CASE_ : Optional[Any] = {F'<madeupword{i}>': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words)} self.fairseq_tokens_to_ids.update(lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = self.__dict__.copy() SCREAMING_SNAKE_CASE_ : str = None SCREAMING_SNAKE_CASE_ : Optional[int] = self.sp_model.serialized_model_proto() return state def __setstate__( self : Tuple , lowercase_ : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): SCREAMING_SNAKE_CASE_ : Union[str, Any] = {} SCREAMING_SNAKE_CASE_ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None): '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a SCREAMING_SNAKE_CASE_ : Dict = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None , lowercase_ : bool = False): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_) if token_ids_a is None: return [1] + ([0] * len(lowercase_)) return [1] + ([0] * len(lowercase_)) + [1, 1] + ([0] * len(lowercase_)) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a) * [0] @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' return len(self.sp_model) + self.fairseq_offset + self.num_madeup_words def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = {self.convert_ids_to_tokens(lowercase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def _SCREAMING_SNAKE_CASE ( self : Dict , lowercase_ : str): '''simple docstring''' return self.sp_model.encode(lowercase_ , out_type=lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowercase_ : Union[str, Any]): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] SCREAMING_SNAKE_CASE_ : Optional[Any] = self.sp_model.PieceToId(lowercase_) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : Optional[Any]): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = ''''''.join(lowercase_).replace(lowercase_ , ''' ''').strip() return out_string def _SCREAMING_SNAKE_CASE ( self : str , lowercase_ : str , lowercase_ : Optional[str] = None): '''simple docstring''' if not os.path.isdir(lowercase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return SCREAMING_SNAKE_CASE_ : List[Any] = os.path.join( lowercase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowercase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , lowercase_) elif not os.path.isfile(self.vocab_file): with open(lowercase_ , '''wb''') as fi: SCREAMING_SNAKE_CASE_ : int = self.sp_model.serialized_model_proto() fi.write(lowercase_) return (out_vocab_file,)
91
1
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES __UpperCamelCase : Dict = logging.get_logger(__name__) __UpperCamelCase : Any = OrderedDict( [ # Base model mapping ("albert", "FlaxAlbertModel"), ("bart", "FlaxBartModel"), ("beit", "FlaxBeitModel"), ("bert", "FlaxBertModel"), ("big_bird", "FlaxBigBirdModel"), ("blenderbot", "FlaxBlenderbotModel"), ("blenderbot-small", "FlaxBlenderbotSmallModel"), ("clip", "FlaxCLIPModel"), ("distilbert", "FlaxDistilBertModel"), ("electra", "FlaxElectraModel"), ("gpt-sw3", "FlaxGPT2Model"), ("gpt2", "FlaxGPT2Model"), ("gpt_neo", "FlaxGPTNeoModel"), ("gptj", "FlaxGPTJModel"), ("longt5", "FlaxLongT5Model"), ("marian", "FlaxMarianModel"), ("mbart", "FlaxMBartModel"), ("mt5", "FlaxMT5Model"), ("opt", "FlaxOPTModel"), ("pegasus", "FlaxPegasusModel"), ("regnet", "FlaxRegNetModel"), ("resnet", "FlaxResNetModel"), ("roberta", "FlaxRobertaModel"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormModel"), ("roformer", "FlaxRoFormerModel"), ("t5", "FlaxT5Model"), ("vision-text-dual-encoder", "FlaxVisionTextDualEncoderModel"), ("vit", "FlaxViTModel"), ("wav2vec2", "FlaxWav2Vec2Model"), ("whisper", "FlaxWhisperModel"), ("xglm", "FlaxXGLMModel"), ("xlm-roberta", "FlaxXLMRobertaModel"), ] ) __UpperCamelCase : int = OrderedDict( [ # Model for pre-training mapping ("albert", "FlaxAlbertForPreTraining"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForPreTraining"), ("big_bird", "FlaxBigBirdForPreTraining"), ("electra", "FlaxElectraForPreTraining"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("t5", "FlaxT5ForConditionalGeneration"), ("wav2vec2", "FlaxWav2Vec2ForPreTraining"), ("whisper", "FlaxWhisperForConditionalGeneration"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) __UpperCamelCase : Tuple = OrderedDict( [ # Model for Masked LM mapping ("albert", "FlaxAlbertForMaskedLM"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForMaskedLM"), ("big_bird", "FlaxBigBirdForMaskedLM"), ("distilbert", "FlaxDistilBertForMaskedLM"), ("electra", "FlaxElectraForMaskedLM"), ("mbart", "FlaxMBartForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) __UpperCamelCase : str = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("bart", "FlaxBartForConditionalGeneration"), ("blenderbot", "FlaxBlenderbotForConditionalGeneration"), ("blenderbot-small", "FlaxBlenderbotSmallForConditionalGeneration"), ("encoder-decoder", "FlaxEncoderDecoderModel"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("marian", "FlaxMarianMTModel"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("pegasus", "FlaxPegasusForConditionalGeneration"), ("t5", "FlaxT5ForConditionalGeneration"), ] ) __UpperCamelCase : Union[str, Any] = OrderedDict( [ # Model for Image-classsification ("beit", "FlaxBeitForImageClassification"), ("regnet", "FlaxRegNetForImageClassification"), ("resnet", "FlaxResNetForImageClassification"), ("vit", "FlaxViTForImageClassification"), ] ) __UpperCamelCase : Optional[Any] = OrderedDict( [ ("vision-encoder-decoder", "FlaxVisionEncoderDecoderModel"), ] ) __UpperCamelCase : str = OrderedDict( [ # Model for Causal LM mapping ("bart", "FlaxBartForCausalLM"), ("bert", "FlaxBertForCausalLM"), ("big_bird", "FlaxBigBirdForCausalLM"), ("electra", "FlaxElectraForCausalLM"), ("gpt-sw3", "FlaxGPT2LMHeadModel"), ("gpt2", "FlaxGPT2LMHeadModel"), ("gpt_neo", "FlaxGPTNeoForCausalLM"), ("gptj", "FlaxGPTJForCausalLM"), ("opt", "FlaxOPTForCausalLM"), ("roberta", "FlaxRobertaForCausalLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForCausalLM"), ("xglm", "FlaxXGLMForCausalLM"), ("xlm-roberta", "FlaxXLMRobertaForCausalLM"), ] ) __UpperCamelCase : Union[str, Any] = OrderedDict( [ # Model for Sequence Classification mapping ("albert", "FlaxAlbertForSequenceClassification"), ("bart", "FlaxBartForSequenceClassification"), ("bert", "FlaxBertForSequenceClassification"), ("big_bird", "FlaxBigBirdForSequenceClassification"), ("distilbert", "FlaxDistilBertForSequenceClassification"), ("electra", "FlaxElectraForSequenceClassification"), ("mbart", "FlaxMBartForSequenceClassification"), ("roberta", "FlaxRobertaForSequenceClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForSequenceClassification"), ("roformer", "FlaxRoFormerForSequenceClassification"), ("xlm-roberta", "FlaxXLMRobertaForSequenceClassification"), ] ) __UpperCamelCase : Optional[int] = OrderedDict( [ # Model for Question Answering mapping ("albert", "FlaxAlbertForQuestionAnswering"), ("bart", "FlaxBartForQuestionAnswering"), ("bert", "FlaxBertForQuestionAnswering"), ("big_bird", "FlaxBigBirdForQuestionAnswering"), ("distilbert", "FlaxDistilBertForQuestionAnswering"), ("electra", "FlaxElectraForQuestionAnswering"), ("mbart", "FlaxMBartForQuestionAnswering"), ("roberta", "FlaxRobertaForQuestionAnswering"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForQuestionAnswering"), ("roformer", "FlaxRoFormerForQuestionAnswering"), ("xlm-roberta", "FlaxXLMRobertaForQuestionAnswering"), ] ) __UpperCamelCase : str = OrderedDict( [ # Model for Token Classification mapping ("albert", "FlaxAlbertForTokenClassification"), ("bert", "FlaxBertForTokenClassification"), ("big_bird", "FlaxBigBirdForTokenClassification"), ("distilbert", "FlaxDistilBertForTokenClassification"), ("electra", "FlaxElectraForTokenClassification"), ("roberta", "FlaxRobertaForTokenClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForTokenClassification"), ("roformer", "FlaxRoFormerForTokenClassification"), ("xlm-roberta", "FlaxXLMRobertaForTokenClassification"), ] ) __UpperCamelCase : Optional[int] = OrderedDict( [ # Model for Multiple Choice mapping ("albert", "FlaxAlbertForMultipleChoice"), ("bert", "FlaxBertForMultipleChoice"), ("big_bird", "FlaxBigBirdForMultipleChoice"), ("distilbert", "FlaxDistilBertForMultipleChoice"), ("electra", "FlaxElectraForMultipleChoice"), ("roberta", "FlaxRobertaForMultipleChoice"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMultipleChoice"), ("roformer", "FlaxRoFormerForMultipleChoice"), ("xlm-roberta", "FlaxXLMRobertaForMultipleChoice"), ] ) __UpperCamelCase : Optional[Any] = OrderedDict( [ ("bert", "FlaxBertForNextSentencePrediction"), ] ) __UpperCamelCase : Union[str, Any] = OrderedDict( [ ("speech-encoder-decoder", "FlaxSpeechEncoderDecoderModel"), ("whisper", "FlaxWhisperForConditionalGeneration"), ] ) __UpperCamelCase : Union[str, Any] = OrderedDict( [ ("whisper", "FlaxWhisperForAudioClassification"), ] ) __UpperCamelCase : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) __UpperCamelCase : Union[str, Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) __UpperCamelCase : Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) __UpperCamelCase : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) __UpperCamelCase : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) __UpperCamelCase : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) __UpperCamelCase : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) __UpperCamelCase : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) __UpperCamelCase : Dict = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) __UpperCamelCase : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) __UpperCamelCase : Dict = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) __UpperCamelCase : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) __UpperCamelCase : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) __UpperCamelCase : Dict = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class __lowerCAmelCase ( _BaseAutoModelClass ): UpperCamelCase__ = FLAX_MODEL_MAPPING __UpperCamelCase : Dict = auto_class_update(FlaxAutoModel) class __lowerCAmelCase ( _BaseAutoModelClass ): UpperCamelCase__ = FLAX_MODEL_FOR_PRETRAINING_MAPPING __UpperCamelCase : Any = auto_class_update(FlaxAutoModelForPreTraining, head_doc="pretraining") class __lowerCAmelCase ( _BaseAutoModelClass ): UpperCamelCase__ = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING __UpperCamelCase : Tuple = auto_class_update(FlaxAutoModelForCausalLM, head_doc="causal language modeling") class __lowerCAmelCase ( _BaseAutoModelClass ): UpperCamelCase__ = FLAX_MODEL_FOR_MASKED_LM_MAPPING __UpperCamelCase : Union[str, Any] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="masked language modeling") class __lowerCAmelCase ( _BaseAutoModelClass ): UpperCamelCase__ = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __UpperCamelCase : List[Any] = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="sequence-to-sequence language modeling", checkpoint_for_example="t5-base" ) class __lowerCAmelCase ( _BaseAutoModelClass ): UpperCamelCase__ = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING __UpperCamelCase : List[str] = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="sequence classification" ) class __lowerCAmelCase ( _BaseAutoModelClass ): UpperCamelCase__ = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING __UpperCamelCase : List[Any] = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="question answering") class __lowerCAmelCase ( _BaseAutoModelClass ): UpperCamelCase__ = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING __UpperCamelCase : List[str] = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="token classification" ) class __lowerCAmelCase ( _BaseAutoModelClass ): UpperCamelCase__ = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING __UpperCamelCase : Any = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="multiple choice") class __lowerCAmelCase ( _BaseAutoModelClass ): UpperCamelCase__ = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING __UpperCamelCase : Any = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="next sentence prediction" ) class __lowerCAmelCase ( _BaseAutoModelClass ): UpperCamelCase__ = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING __UpperCamelCase : Optional[Any] = auto_class_update( FlaxAutoModelForImageClassification, head_doc="image classification" ) class __lowerCAmelCase ( _BaseAutoModelClass ): UpperCamelCase__ = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING __UpperCamelCase : str = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="vision-to-text modeling") class __lowerCAmelCase ( _BaseAutoModelClass ): UpperCamelCase__ = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING __UpperCamelCase : Any = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="sequence-to-sequence speech-to-text modeling" )
370
__UpperCamelCase : Dict = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def __A ( ) -> None: a = input("""Enter message: """ ) a = input("""Enter key [alphanumeric]: """ ) a = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): a = """encrypt""" a = encrypt_message(__lowerCamelCase , __lowerCamelCase ) elif mode.lower().startswith("""d""" ): a = """decrypt""" a = decrypt_message(__lowerCamelCase , __lowerCamelCase ) print(f'\n{mode.title()}ed message:' ) print(__lowerCamelCase ) def __A ( __lowerCamelCase , __lowerCamelCase ) -> str: return translate_message(__lowerCamelCase , __lowerCamelCase , """encrypt""" ) def __A ( __lowerCamelCase , __lowerCamelCase ) -> str: return translate_message(__lowerCamelCase , __lowerCamelCase , """decrypt""" ) def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str: a = [] a = 0 a = key.upper() for symbol in message: a = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(__lowerCamelCase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(__lowerCamelCase ): a = 0 else: translated.append(__lowerCamelCase ) return "".join(__lowerCamelCase ) if __name__ == "__main__": main()
347
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' lowerCamelCase__: Dict =TFCamembertModel.from_pretrained("jplu/tf-camembert-base") lowerCamelCase__: int =tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25_543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" lowerCamelCase__: Tuple =model(UpperCAmelCase_)["last_hidden_state"] lowerCamelCase__: Union[str, Any] =tf.TensorShape((1, 10, 768)) self.assertEqual(output.shape , UpperCAmelCase_) # compare the actual values for a slice. lowerCamelCase__: List[str] =tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4))
10
"""simple docstring""" import heapq as hq import math from collections.abc import Iterator class __UpperCamelCase : def __init__( self , lowerCAmelCase__ ) -> Optional[int]: a : List[str] = str(id_ ) a : Optional[Any] = None a : Tuple = None a : str = [] a : Any = {} # {vertex:distance} def __lt__( self , lowerCAmelCase__ ) -> Any: return self.key < other.key def __repr__( self ) -> Optional[Any]: return self.id def __a ( self , lowerCAmelCase__ ) -> Any: self.neighbors.append(lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: a : Optional[Any] = weight def _SCREAMING_SNAKE_CASE ( _lowercase : int , _lowercase : int , _lowercase : int , _lowercase : Union[str, Any] ) ->str: '''simple docstring''' graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , _lowercase ) graph[b - 1].add_edge(graph[a - 1] , _lowercase ) def _SCREAMING_SNAKE_CASE ( _lowercase : list , _lowercase : Vertex ) ->list: '''simple docstring''' a : int = [] for u in graph: a : List[str] = math.inf a : int = None a : str = 0 a : Union[str, Any] = graph[:] while q: a : List[Any] = min(_lowercase ) q.remove(_lowercase ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): a : List[Any] = u a : Optional[int] = u.edges[v.id] for i in range(1 , len(_lowercase ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def _SCREAMING_SNAKE_CASE ( _lowercase : list , _lowercase : Vertex ) ->Iterator[tuple]: '''simple docstring''' for u in graph: a : str = math.inf a : Dict = None a : Dict = 0 a : List[Any] = list(_lowercase ) hq.heapify(_lowercase ) while h: a : Dict = hq.heappop(_lowercase ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): a : Dict = u a : Optional[Any] = u.edges[v.id] hq.heapify(_lowercase ) for i in range(1 , len(_lowercase ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def _SCREAMING_SNAKE_CASE ( ) ->None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
105
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : Union[str, Any] = logging.get_logger(__name__) A : Optional[Any] = { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json''' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class A (A_ ): '''simple docstring''' __lowerCamelCase : str = '''roformer''' def __init__( self : Optional[Any] , __lowerCAmelCase : int=5_00_00 , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Dict=7_68 , __lowerCAmelCase : int=12 , __lowerCAmelCase : Union[str, Any]=12 , __lowerCAmelCase : Tuple=30_72 , __lowerCAmelCase : List[str]="gelu" , __lowerCAmelCase : int=0.1 , __lowerCAmelCase : Dict=0.1 , __lowerCAmelCase : Tuple=15_36 , __lowerCAmelCase : List[str]=2 , __lowerCAmelCase : Optional[int]=0.0_2 , __lowerCAmelCase : Any=1e-12 , __lowerCAmelCase : Union[str, Any]=0 , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : List[Any]=True , **__lowerCAmelCase : Tuple , ) -> List[str]: """simple docstring""" super().__init__(pad_token_id=_lowerCamelCase , **_lowerCamelCase ) A__ = vocab_size A__ = hidden_size if embedding_size is None else embedding_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = initializer_range A__ = layer_norm_eps A__ = rotary_value A__ = use_cache class A (A_ ): '''simple docstring''' @property def a_ ( self : Any ) -> Tuple: """simple docstring""" if self.task == "multiple-choice": A__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A__ = {0: """batch""", 1: """sequence"""} A__ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
368
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def __lowerCamelCase ( __a :int ) -> int: """simple docstring""" A__ = prime_factors(__a ) if is_square_free(__a ): return -1 if len(__a ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
276
0
def A ( a_ = 1_000_000 ) -> int: __UpperCamelCase : List[Any] =limit + 1 __UpperCamelCase : Any =[0] * limit for first_term in range(1 ,a_ ): for n in range(a_ ,a_ ,a_ ): __UpperCamelCase : str =first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a __UpperCamelCase : Dict =sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f"{solution() = }")
71
'''simple docstring''' from __future__ import annotations def _A ( snake_case ) -> float: _lowercase : Optional[Any] = 0.00 _lowercase : Dict = 0 for resistor in resistors: if resistor <= 0: _lowercase : Union[str, Any] = F'''Resistor at index {index} has a negative or zero value!''' raise ValueError(snake_case ) first_sum += 1 / float(snake_case ) index += 1 return 1 / first_sum def _A ( snake_case ) -> float: _lowercase : Dict = 0.00 _lowercase : List[str] = 0 for resistor in resistors: sum_r += resistor if resistor < 0: _lowercase : Dict = F'''Resistor at index {index} has a negative value!''' raise ValueError(snake_case ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
250
0
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : Optional[int] )-> Optional[int]: snake_case = """ZinengTang/tvlt-base""" snake_case = tempfile.mkdtemp() def lowerCAmelCase ( self : List[Any] , **__snake_case : Optional[int] )-> List[str]: return TvltImageProcessor.from_pretrained(self.checkpoint , **__snake_case ) def lowerCAmelCase ( self : int , **__snake_case : Any )-> Union[str, Any]: return TvltFeatureExtractor.from_pretrained(self.checkpoint , **__snake_case ) def lowerCAmelCase ( self : Union[str, Any] )-> Dict: shutil.rmtree(self.tmpdirname ) def lowerCAmelCase ( self : List[Any] )-> Any: snake_case = self.get_image_processor() snake_case = self.get_feature_extractor() snake_case = TvltProcessor(image_processor=__snake_case , feature_extractor=__snake_case ) processor.save_pretrained(self.tmpdirname ) snake_case = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , __snake_case ) self.assertIsInstance(processor.image_processor , __snake_case ) def lowerCAmelCase ( self : List[str] )-> List[str]: snake_case = self.get_image_processor() snake_case = self.get_feature_extractor() snake_case = TvltProcessor(image_processor=__snake_case , feature_extractor=__snake_case ) snake_case = np.ones([1_20_00] ) snake_case = feature_extractor(__snake_case , return_tensors="""np""" ) snake_case = processor(audio=__snake_case , return_tensors="""np""" ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase ( self : List[str] )-> str: snake_case = self.get_image_processor() snake_case = self.get_feature_extractor() snake_case = TvltProcessor(image_processor=__snake_case , feature_extractor=__snake_case ) snake_case = np.ones([3, 2_24, 2_24] ) snake_case = image_processor(__snake_case , return_tensors="""np""" ) snake_case = processor(images=__snake_case , return_tensors="""np""" ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase ( self : Tuple )-> Optional[Any]: snake_case = self.get_image_processor() snake_case = self.get_feature_extractor() snake_case = TvltProcessor(image_processor=__snake_case , feature_extractor=__snake_case ) snake_case = np.ones([1_20_00] ) snake_case = np.ones([3, 2_24, 2_24] ) snake_case = processor(audio=__snake_case , images=__snake_case ) self.assertListEqual(list(inputs.keys() ) , ["""audio_values""", """audio_mask""", """pixel_values""", """pixel_mask"""] ) # test if it raises when no input is passed with pytest.raises(__snake_case ): processor() def lowerCAmelCase ( self : Optional[Any] )-> Union[str, Any]: snake_case = self.get_image_processor() snake_case = self.get_feature_extractor() snake_case = TvltProcessor(image_processor=__snake_case , feature_extractor=__snake_case ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg="""`processor` and `image_processor`+`feature_extractor` model input names do not match""" , )
363
'''simple docstring''' import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/dummy_feature_extractor_config.json") _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/vocab.json") _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures") class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" snake_case_ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def lowerCAmelCase ( self : str )-> Any: snake_case = 0 def lowerCAmelCase ( self : Tuple )-> Optional[Any]: snake_case = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : Dict )-> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = WavaVecaConfig() snake_case = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) # save in new folder model_config.save_pretrained(__snake_case ) processor.save_pretrained(__snake_case ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : int )-> str: with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(__snake_case , os.path.join(__snake_case , __snake_case ) ) copyfile(__snake_case , os.path.join(__snake_case , """vocab.json""" ) ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[Any] )-> str: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = WavaVecaFeatureExtractor() snake_case = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) snake_case = WavaVecaProcessor(__snake_case , __snake_case ) # save in new folder processor.save_pretrained(__snake_case ) # drop `processor_class` in tokenizer with open(os.path.join(__snake_case , __snake_case ) , """r""" ) as f: snake_case = json.load(__snake_case ) config_dict.pop("""processor_class""" ) with open(os.path.join(__snake_case , __snake_case ) , """w""" ) as f: f.write(json.dumps(__snake_case ) ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : Dict )-> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = WavaVecaFeatureExtractor() snake_case = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) snake_case = WavaVecaProcessor(__snake_case , __snake_case ) # save in new folder processor.save_pretrained(__snake_case ) # drop `processor_class` in feature extractor with open(os.path.join(__snake_case , __snake_case ) , """r""" ) as f: snake_case = json.load(__snake_case ) config_dict.pop("""processor_class""" ) with open(os.path.join(__snake_case , __snake_case ) , """w""" ) as f: f.write(json.dumps(__snake_case ) ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : Optional[int] )-> str: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = WavaVecaConfig(processor_class="""Wav2Vec2Processor""" ) model_config.save_pretrained(__snake_case ) # copy relevant files copyfile(__snake_case , os.path.join(__snake_case , """vocab.json""" ) ) # create emtpy sample processor with open(os.path.join(__snake_case , __snake_case ) , """w""" ) as f: f.write("""{}""" ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : int )-> Any: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__snake_case ): snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__snake_case ): snake_case = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case ) snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) snake_case = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) snake_case = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version snake_case = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case , use_fast=__snake_case ) snake_case = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , """NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) def lowerCAmelCase ( self : List[Any] )-> List[Any]: try: AutoConfig.register("""custom""" , __snake_case ) AutoFeatureExtractor.register(__snake_case , __snake_case ) AutoTokenizer.register(__snake_case , slow_tokenizer_class=__snake_case ) AutoProcessor.register(__snake_case , __snake_case ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__snake_case ): AutoProcessor.register(__snake_case , __snake_case ) # Now that the config is registered, it can be used as any other config with the auto-API snake_case = CustomFeatureExtractor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: snake_case = os.path.join(__snake_case , """vocab.txt""" ) with open(__snake_case , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) snake_case = CustomTokenizer(__snake_case ) snake_case = CustomProcessor(__snake_case , __snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(__snake_case ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase ( self : Any )-> Tuple: class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = False class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = False class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "AutoFeatureExtractor" snake_case_ = "AutoTokenizer" snake_case_ = False try: AutoConfig.register("""custom""" , __snake_case ) AutoFeatureExtractor.register(__snake_case , __snake_case ) AutoTokenizer.register(__snake_case , slow_tokenizer_class=__snake_case ) AutoProcessor.register(__snake_case , __snake_case ) # If remote code is not set, the default is to use local classes. snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. snake_case = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. snake_case = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase ( self : str )-> Union[str, Any]: snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(processor.__class__.__name__ , """BertTokenizerFast""" ) def lowerCAmelCase ( self : Any )-> List[str]: snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-convnext""" ) self.assertEqual(processor.__class__.__name__ , """ConvNextImageProcessor""" ) @is_staging_test class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" snake_case_ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def lowerCAmelCase ( cls : Optional[Any] )-> Tuple: snake_case = TOKEN HfFolder.save_token(__snake_case ) @classmethod def lowerCAmelCase ( cls : Optional[Any] )-> Optional[Any]: try: delete_repo(token=cls._token , repo_id="""test-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-processor""" ) except HTTPError: pass def lowerCAmelCase ( self : List[Any] )-> str: snake_case = WavaVecaProcessor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__snake_case , """test-processor""" ) , push_to_hub=__snake_case , use_auth_token=self._token ) snake_case = WavaVecaProcessor.from_pretrained(f'''{USER}/test-processor''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__snake_case , getattr(new_processor.feature_extractor , __snake_case ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def lowerCAmelCase ( self : Any )-> Optional[Any]: snake_case = WavaVecaProcessor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__snake_case , """test-processor-org""" ) , push_to_hub=__snake_case , use_auth_token=self._token , organization="""valid_org""" , ) snake_case = WavaVecaProcessor.from_pretrained("""valid_org/test-processor-org""" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__snake_case , getattr(new_processor.feature_extractor , __snake_case ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def lowerCAmelCase ( self : List[str] )-> int: CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() snake_case = CustomFeatureExtractor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: snake_case = os.path.join(__snake_case , """vocab.txt""" ) with open(__snake_case , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) snake_case = CustomTokenizer(__snake_case ) snake_case = CustomProcessor(__snake_case , __snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(f'''{USER}/test-dynamic-processor''' , token=self._token ) snake_case = Repository(__snake_case , clone_from=f'''{USER}/test-dynamic-processor''' , token=self._token ) processor.save_pretrained(__snake_case ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { """AutoFeatureExtractor""": """custom_feature_extraction.CustomFeatureExtractor""", """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(__snake_case , """tokenizer_config.json""" ) ) as f: snake_case = json.load(__snake_case ) self.assertDictEqual( tokenizer_config["""auto_map"""] , { """AutoTokenizer""": ["""custom_tokenization.CustomTokenizer""", None], """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(__snake_case , """custom_feature_extraction.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(__snake_case , """custom_tokenization.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(__snake_case , """custom_processing.py""" ) ) ) repo.push_to_hub() snake_case = AutoProcessor.from_pretrained(f'''{USER}/test-dynamic-processor''' , trust_remote_code=__snake_case ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , """CustomProcessor""" )
3
0
'''simple docstring''' from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class lowercase ( A__ ): """simple docstring""" def __lt__( self ,a_ ) -> int: return self[-1] < other[-1] def __eq__( self ,a_ ) -> Optional[int]: return self[-1] == other[-1] def snake_case_ ( lowerCAmelCase_ )-> list: '''simple docstring''' _UpperCAmelCase : List[Any] = [] # sort into stacks for element in collection: _UpperCAmelCase : Tuple = Stack([element] ) _UpperCAmelCase : Tuple = bisect_left(lowerCAmelCase_ , lowerCAmelCase_ ) if i != len(lowerCAmelCase_ ): stacks[i].append(lowerCAmelCase_ ) else: stacks.append(lowerCAmelCase_ ) # use a heap-based merge to merge stack efficiently _UpperCAmelCase : List[str] = merge(*(reversed(lowerCAmelCase_ ) for stack in stacks) ) return collection if __name__ == "__main__": A_ : Union[str, Any] = input("""Enter numbers separated by a comma:\n""").strip() A_ : List[str] = [int(item) for item in user_input.split(""",""")] print(patience_sort(unsorted))
215
'''simple docstring''' from __future__ import annotations import numpy as np def __a ( UpperCAmelCase ) ->Optional[int]: """simple docstring""" return np.maximum(0 , UpperCAmelCase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
258
0
"""simple docstring""" from __future__ import annotations SCREAMING_SNAKE_CASE__ = "Muhammad Umer Farooq" SCREAMING_SNAKE_CASE__ = "MIT" SCREAMING_SNAKE_CASE__ = "1.0.0" SCREAMING_SNAKE_CASE__ = "Muhammad Umer Farooq" SCREAMING_SNAKE_CASE__ = "[email protected]" SCREAMING_SNAKE_CASE__ = "Alpha" import re from html.parser import HTMLParser from urllib import parse import requests class lowerCAmelCase_ ( lowerCAmelCase ): """simple docstring""" def __init__( self , lowerCAmelCase ): """simple docstring""" super().__init__() snake_case = [] snake_case = domain def snake_case ( self , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: snake_case = parse.urljoin(self.domain , lowerCAmelCase ) self.urls.append(lowerCAmelCase ) def lowerCAmelCase__ ( _UpperCamelCase : str ) -> str: """simple docstring""" return ".".join(get_sub_domain_name(_UpperCamelCase ).split('.' )[-2:] ) def lowerCAmelCase__ ( _UpperCamelCase : str ) -> str: """simple docstring""" return parse.urlparse(_UpperCamelCase ).netloc def lowerCAmelCase__ ( _UpperCamelCase : str = "https://github.com" ) -> list[str]: """simple docstring""" snake_case = get_domain_name(_UpperCamelCase ) # Initialize the parser snake_case = Parser(_UpperCamelCase ) try: # Open URL snake_case = requests.get(_UpperCamelCase ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through snake_case = set() for link in parser.urls: # open URL. # read = requests.get(link) try: snake_case = requests.get(_UpperCamelCase ) # Get the valid email. snake_case = re.findall('[a-zA-Z0-9]+@' + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(_UpperCamelCase ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(_UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = emails_from_url("https://github.com") print(f"""{len(emails)} emails found:""") print("\n".join(sorted(emails)))
149
"""simple docstring""" from __future__ import annotations from typing import Any class lowerCAmelCase_ ( lowerCAmelCase ): """simple docstring""" pass class lowerCAmelCase_ : """simple docstring""" def __init__( self , lowerCAmelCase ): """simple docstring""" snake_case = data snake_case = None def __iter__( self ): """simple docstring""" snake_case = self snake_case = [] while node: if node in visited: raise ContainsLoopError visited.append(lowerCAmelCase ) yield node.data snake_case = node.next_node @property def snake_case ( self ): """simple docstring""" try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = Node(1) SCREAMING_SNAKE_CASE__ = Node(2) SCREAMING_SNAKE_CASE__ = Node(3) SCREAMING_SNAKE_CASE__ = Node(4) print(root_node.has_loop) # False SCREAMING_SNAKE_CASE__ = root_node.next_node print(root_node.has_loop) # True SCREAMING_SNAKE_CASE__ = Node(5) SCREAMING_SNAKE_CASE__ = Node(6) SCREAMING_SNAKE_CASE__ = Node(5) SCREAMING_SNAKE_CASE__ = Node(6) print(root_node.has_loop) # False SCREAMING_SNAKE_CASE__ = Node(1) print(root_node.has_loop) # False
149
1
"""simple docstring""" import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =['input_values', 'attention_mask'] def __init__(self , a_ = 1 , a_ = 1_60_00 , a_ = 0.0 , a_ = False , a_ = 80 , a_ = 16 , a_ = 64 , a_ = "hann_window" , a_ = 1.0 , a_ = 80 , a_ = 76_00 , a_ = 1E-10 , a_ = 2 , a_ = True , **a_ , ): '''simple docstring''' super().__init__(feature_size=a_ , sampling_rate=a_ , padding_value=a_ , **a_ ) __snake_case : Optional[Any] = do_normalize __snake_case : Optional[int] = return_attention_mask __snake_case : int = num_mel_bins __snake_case : List[str] = hop_length __snake_case : List[Any] = win_length __snake_case : Union[str, Any] = win_function __snake_case : List[Any] = frame_signal_scale __snake_case : List[Any] = fmin __snake_case : int = fmax __snake_case : Optional[int] = mel_floor __snake_case : List[str] = reduction_factor __snake_case : Union[str, Any] = win_length * sampling_rate // 10_00 __snake_case : Dict = hop_length * sampling_rate // 10_00 __snake_case : str = optimal_fft_length(self.sample_size ) __snake_case : Union[str, Any] = (self.n_fft // 2) + 1 __snake_case : Optional[int] = window_function(window_length=self.sample_size , name=self.win_function , periodic=a_ ) __snake_case : Dict = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='''slaney''' , mel_scale='''slaney''' , ) if frame_signal_scale != 1.0: warnings.warn( '''The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers''' , a_ , ) if reduction_factor != 2.0: warnings.warn( '''The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers''' , a_ , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def SCREAMING_SNAKE_CASE (a_ , a_ , a_ = 0.0 ): '''simple docstring''' if attention_mask is not None: __snake_case : Tuple = np.array(a_ , np.intaa ) __snake_case : Dict = [] for vector, length in zip(a_ , attention_mask.sum(-1 ) ): __snake_case : str = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: __snake_case : Union[str, Any] = padding_value normed_input_values.append(a_ ) else: __snake_case : Optional[int] = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def SCREAMING_SNAKE_CASE (self , a_ , ): '''simple docstring''' __snake_case : Any = spectrogram( a_ , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='''log10''' , ) return log_mel_spec.T def __call__(self , a_ = None , a_ = None , a_ = False , a_ = None , a_ = False , a_ = None , a_ = None , a_ = None , a_ = None , **a_ , ): '''simple docstring''' if audio is None and audio_target is None: raise ValueError('''You must provide either `audio` or `audio_target` values.''' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" f""" {self.sampling_rate}. Please make sure that the provided audio input was sampled with""" f""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the ``sampling_rate`` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) if audio is not None: __snake_case : int = self._process_audio( a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , **a_ , ) else: __snake_case : Optional[int] = None if audio_target is not None: __snake_case : int = self._process_audio( a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , **a_ , ) if inputs is None: return inputs_target else: __snake_case : Union[str, Any] = inputs_target['''input_values'''] __snake_case : Union[str, Any] = inputs_target.get('''attention_mask''' ) if decoder_attention_mask is not None: __snake_case : Optional[Any] = decoder_attention_mask return inputs def SCREAMING_SNAKE_CASE (self , a_ , a_ = False , a_ = False , a_ = None , a_ = False , a_ = None , a_ = None , a_ = None , **a_ , ): '''simple docstring''' __snake_case : List[Any] = isinstance(a_ , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) __snake_case : int = is_batched_numpy or ( isinstance(a_ , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __snake_case : Any = [np.asarray(a_ , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(a_ , np.ndarray ): __snake_case : Optional[int] = np.asarray(a_ , dtype=np.floataa ) elif isinstance(a_ , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): __snake_case : Union[str, Any] = speech.astype(np.floataa ) # always return batch if not is_batched: __snake_case : List[Any] = [speech] # needed to make pad() work on spectrogram inputs __snake_case : List[str] = self.feature_size # convert into correct format for padding if is_target: __snake_case : List[str] = [self._extract_mel_features(a_ ) for waveform in speech] __snake_case : List[str] = BatchFeature({'''input_values''': features} ) __snake_case : Dict = self.num_mel_bins else: __snake_case : Dict = BatchFeature({'''input_values''': speech} ) __snake_case : Dict = self.pad( a_ , padding=a_ , max_length=a_ , truncation=a_ , pad_to_multiple_of=a_ , return_attention_mask=a_ , **a_ , ) __snake_case : List[Any] = feature_size_hack # convert input values to correct format __snake_case : Dict = padded_inputs['''input_values'''] if not isinstance(input_values[0] , np.ndarray ): __snake_case : Union[str, Any] = [np.asarray(a_ , dtype=np.floataa ) for array in input_values] elif ( not isinstance(a_ , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): __snake_case : Union[str, Any] = [array.astype(np.floataa ) for array in input_values] elif isinstance(a_ , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): __snake_case : Optional[Any] = input_values.astype(np.floataa ) # convert attention_mask to correct format __snake_case : Dict = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: __snake_case : List[str] = [np.asarray(a_ , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: __snake_case : Optional[int] = ( attention_mask if self._get_padding_strategies(a_ , max_length=a_ ) is not PaddingStrategy.DO_NOT_PAD else None ) __snake_case : Dict = self.zero_mean_unit_var_norm( padded_inputs['''input_values'''] , attention_mask=a_ , padding_value=self.padding_value ) if return_tensors is not None: __snake_case : Tuple = padded_inputs.convert_to_tensors(a_ ) return padded_inputs def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = super().to_dict() # Don't serialize these as they are derived from the other properties. __snake_case : Any = ['''window''', '''mel_filters''', '''sample_size''', '''sample_stride''', '''n_fft''', '''n_freqs'''] for name in names: if name in output: del output[name] return output
102
from collections import defaultdict from math import ceil, sqrt def SCREAMING_SNAKE_CASE_ ( snake_case__ = 1_0_0_0_0_0_0 , snake_case__ = 1_0 ) -> int: lowerCAmelCase = defaultdict(snake_case__ ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: lowerCAmelCase = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: lowerCAmelCase = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(snake_case__ , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 1_0 ) if __name__ == "__main__": print(f'{solution() = }')
338
0
"""simple docstring""" from __future__ import annotations def _lowerCAmelCase ( lowercase_ , lowercase_ = None , lowercase_ = None ): if start is None: UpperCAmelCase = 0 if end is None: UpperCAmelCase = len(a__ ) - 1 if start >= end: return UpperCAmelCase = (start + end) // 2 slowsort(a__ , a__ , a__ ) slowsort(a__ , mid + 1 , a__ ) if sequence[end] < sequence[mid]: UpperCAmelCase , UpperCAmelCase = sequence[mid], sequence[end] slowsort(a__ , a__ , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
360
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case_ = { """configuration_rembert""": ["""REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RemBertConfig""", """RemBertOnnxConfig"""] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ["""RemBertTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ["""RemBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ """REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """RemBertForCausalLM""", """RemBertForMaskedLM""", """RemBertForMultipleChoice""", """RemBertForQuestionAnswering""", """RemBertForSequenceClassification""", """RemBertForTokenClassification""", """RemBertLayer""", """RemBertModel""", """RemBertPreTrainedModel""", """load_tf_weights_in_rembert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ """TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRemBertForCausalLM""", """TFRemBertForMaskedLM""", """TFRemBertForMultipleChoice""", """TFRemBertForQuestionAnswering""", """TFRemBertForSequenceClassification""", """TFRemBertForTokenClassification""", """TFRemBertLayer""", """TFRemBertModel""", """TFRemBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
181
0
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 650, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'pytorch', 'script': 'run_ddp.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 600, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'tensorflow', 'script': 'run_tf_dist.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 600, 'eval_accuracy': 0.6, 'eval_loss': 0.7}, }, ] ) class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Optional[Any]: if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='''utf-8''' , check=_lowerCamelCase , ) assert hasattr(self , '''env''' ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : Optional[int] = F"""{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}""" # distributed data settings SCREAMING_SNAKE_CASE : List[Any] = {"smdistributed": {"dataparallel": {"enabled": True}}} if self.script != "run_ddp.py" else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=_lowerCamelCase , instance_count=_lowerCamelCase , instance_type=self.instance_type , debugger_hook_config=_lowerCamelCase , hyperparameters={**self.env.distributed_hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=_lowerCamelCase , py_version='''py36''' , ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: TrainingJobAnalytics(_lowerCamelCase ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(2,)] ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Tuple = self.create_estimator(_lowerCamelCase ) # run training estimator.fit() # result dataframe SCREAMING_SNAKE_CASE : Union[str, Any] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis SCREAMING_SNAKE_CASE : int = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) SCREAMING_SNAKE_CASE : Tuple = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping SCREAMING_SNAKE_CASE : Optional[int] = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , _lowerCamelCase )
313
import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __magic_name__ : """simple docstring""" def __init__( self :Dict , snake_case :Optional[int] , snake_case :Tuple=13 , snake_case :List[Any]=30 , snake_case :Union[str, Any]=2 , snake_case :List[Any]=3 , snake_case :Tuple=True , snake_case :Dict=True , snake_case :Dict=32 , snake_case :List[str]=5 , snake_case :Optional[Any]=4 , snake_case :Any=37 , snake_case :Dict="gelu" , snake_case :List[str]=0.1 , snake_case :str=0.1 , snake_case :Tuple=10 , snake_case :str=0.02 , snake_case :Optional[Any]=None , ): '''simple docstring''' A_ : Tuple = parent A_ : int = batch_size A_ : List[str] = image_size A_ : List[Any] = patch_size A_ : Optional[Any] = num_channels A_ : List[Any] = is_training A_ : Tuple = use_labels A_ : Union[str, Any] = hidden_size A_ : Tuple = num_hidden_layers A_ : Any = num_attention_heads A_ : List[str] = intermediate_size A_ : Optional[int] = hidden_act A_ : List[str] = hidden_dropout_prob A_ : str = attention_probs_dropout_prob A_ : Any = type_sequence_label_size A_ : List[str] = initializer_range A_ : Dict = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) A_ : Optional[int] = (image_size // patch_size) ** 2 A_ : List[str] = num_patches + 1 def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Tuple = None if self.use_labels: A_ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Dict = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE ( self :List[Any] , snake_case :List[Any] , snake_case :str , snake_case :Tuple ): '''simple docstring''' A_ : Optional[Any] = ViTMSNModel(config=snake_case ) model.to(snake_case ) model.eval() A_ : int = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self :int , snake_case :Optional[int] , snake_case :List[str] , snake_case :List[str] ): '''simple docstring''' A_ : Dict = self.type_sequence_label_size A_ : Tuple = ViTMSNForImageClassification(snake_case ) model.to(snake_case ) model.eval() A_ : Union[str, Any] = model(snake_case , labels=snake_case ) print("Pixel and labels shape: {pixel_values.shape}, {labels.shape}" ) print("Labels: {labels}" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A_ : Union[str, Any] = 1 A_ : int = ViTMSNForImageClassification(snake_case ) model.to(snake_case ) model.eval() A_ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ : Optional[Any] = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : List[str] = self.prepare_config_and_inputs() A_ , A_ , A_ : Optional[int] = config_and_inputs A_ : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () __UpperCamelCase = ( {'''feature-extraction''': ViTMSNModel, '''image-classification''': ViTMSNForImageClassification} if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' A_ : Tuple = ViTMSNModelTester(self ) A_ : str = ConfigTester(self , config_class=snake_case , has_text_modality=snake_case , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViTMSN does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ , A_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Optional[int] = model_class(snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case , nn.Linear ) ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ , A_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Optional[Any] = model_class(snake_case ) A_ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : List[str] = [*signature.parameters.keys()] A_ : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case ) def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case ) @slow def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Optional[Any] = ViTMSNModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def __snake_case ( ) -> Optional[Any]: A_ : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __magic_name__ ( unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' return ViTImageProcessor.from_pretrained("facebook/vit-msn-small" ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' torch.manual_seed(2 ) A_ : Any = ViTMSNForImageClassification.from_pretrained("facebook/vit-msn-small" ).to(snake_case ) A_ : List[str] = self.default_image_processor A_ : int = prepare_img() A_ : List[str] = image_processor(images=snake_case , return_tensors="pt" ).to(snake_case ) # forward pass with torch.no_grad(): A_ : Optional[int] = model(**snake_case ) # verify the logits A_ : List[Any] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , snake_case ) A_ : int = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case , atol=1e-4 ) )
300
0
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class __a ( unittest.TestCase ): def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCamelCase__ : List[str] = logging.get_logger() # the current default level is logging.WARNING UpperCamelCase__ : Optional[Any] = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(__A ) def __lowercase ( self : Any ): '''simple docstring''' UpperCamelCase__ : List[Any] = logging.get_verbosity() UpperCamelCase__ : List[str] = logging.get_logger("transformers.models.bart.tokenization_bart" ) UpperCamelCase__ : Optional[int] = """Testing 1, 2, 3""" # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(__A ) as cl: logger.warning(__A ) self.assertEqual(cl.out , msg + "\n" ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(__A ) as cl: logger.warning(__A ) self.assertEqual(cl.out , "" ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(__A ) as cl: logger.warning(__A ) self.assertEqual(cl.out , msg + "\n" ) # restore to the original level logging.set_verbosity(__A ) @mockenv(TRANSFORMERS_VERBOSITY="error" ) def __lowercase ( self : str ): '''simple docstring''' transformers.utils.logging._reset_library_root_logger() # this action activates the env var UpperCamelCase__ : Tuple = logging.get_logger("transformers.models.bart.tokenization_bart" ) UpperCamelCase__ : str = os.getenv("TRANSFORMERS_VERBOSITY" , __A ) UpperCamelCase__ : Optional[Any] = logging.log_levels[env_level_str] UpperCamelCase__ : Union[str, Any] = logging.get_verbosity() self.assertEqual( __A , __A , F'TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}' , ) # restore to the original level UpperCamelCase__ : Any = """""" transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY="super-error" ) def __lowercase ( self : Any ): '''simple docstring''' transformers.utils.logging._reset_library_root_logger() UpperCamelCase__ : Optional[int] = logging.logging.getLogger() with CaptureLogger(__A ) as cl: # this action activates the env var logging.get_logger("transformers.models.bart.tokenization_bart" ) self.assertIn("Unknown option TRANSFORMERS_VERBOSITY=super-error" , cl.out ) # no need to restore as nothing was changed def __lowercase ( self : Optional[Any] ): '''simple docstring''' transformers.utils.logging._reset_library_root_logger() UpperCamelCase__ : List[str] = logging.get_logger("transformers.models.bart.tokenization_bart" ) UpperCamelCase__ : List[str] = """Testing 1, 2, 3""" with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="1" ): # nothing should be logged as env var disables this method with CaptureLogger(__A ) as cl: logger.warning_advice(__A ) self.assertEqual(cl.out , "" ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="" ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(__A ) as cl: logger.warning_advice(__A ) self.assertEqual(cl.out , msg + "\n" ) def SCREAMING_SNAKE_CASE ( ) -> List[str]: """simple docstring""" disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
351
from __future__ import annotations def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None ) -> None: if start is None: UpperCamelCase__ : Union[str, Any] = 0 if end is None: UpperCamelCase__ : List[Any] = len(__lowerCAmelCase ) - 1 if start >= end: return UpperCamelCase__ : Union[str, Any] = (start + end) // 2 slowsort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) slowsort(__lowerCAmelCase , mid + 1 , __lowerCAmelCase ) if sequence[end] < sequence[mid]: UpperCamelCase__ , UpperCamelCase__ : Optional[int] = sequence[mid], sequence[end] slowsort(__lowerCAmelCase , __lowerCAmelCase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
196
0
import math import qiskit def lowerCamelCase ( SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 1 ): '''simple docstring''' if ( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ): raise TypeError('''inputs must be integers.''' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('''inputs must be positive.''' ) if ( (math.floor(SCREAMING_SNAKE_CASE ) != input_a) or (math.floor(SCREAMING_SNAKE_CASE ) != input_a) or (math.floor(SCREAMING_SNAKE_CASE ) != carry_in) ): raise ValueError('''inputs must be exact integers.''' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('''inputs must be less or equal to 2.''' ) # build registers __UpperCamelCase :List[str] = qiskit.QuantumRegister(4 , '''qr''' ) __UpperCamelCase :str = qiskit.ClassicalRegister(2 , '''cr''' ) # list the entries __UpperCamelCase :Tuple = [input_a, input_a, carry_in] __UpperCamelCase :Optional[int] = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(SCREAMING_SNAKE_CASE ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(SCREAMING_SNAKE_CASE ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(SCREAMING_SNAKE_CASE ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , SCREAMING_SNAKE_CASE ) # measure the last two qbits __UpperCamelCase :Optional[Any] = qiskit.Aer.get_backend('''aer_simulator''' ) __UpperCamelCase :Tuple = qiskit.execute(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , shots=1_000 ) return job.result().get_counts(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(F'Total sum count for state is: {quantum_full_adder(1, 1, 1)}')
43
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging a : Tuple = logging.get_logger(__name__) a : Optional[Any] = { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json", } class a ( lowercase__ ): """simple docstring""" a : str = 'mvp' a : Optional[Any] = ['past_key_values'] a : int = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Dict , __lowercase : Tuple=50267 , __lowercase : Optional[int]=1024 , __lowercase : Any=12 , __lowercase : List[Any]=4096 , __lowercase : Optional[Any]=16 , __lowercase : List[str]=12 , __lowercase : Optional[Any]=4096 , __lowercase : Tuple=16 , __lowercase : Union[str, Any]=0.0 , __lowercase : str=0.0 , __lowercase : Any="gelu" , __lowercase : Any=1024 , __lowercase : List[str]=0.1 , __lowercase : List[Any]=0.0 , __lowercase : int=0.0 , __lowercase : str=0.02 , __lowercase : Tuple=0.0 , __lowercase : Union[str, Any]=False , __lowercase : Dict=True , __lowercase : List[Any]=1 , __lowercase : Optional[Any]=0 , __lowercase : Union[str, Any]=2 , __lowercase : Optional[int]=True , __lowercase : Dict=2 , __lowercase : int=2 , __lowercase : Union[str, Any]=False , __lowercase : Union[str, Any]=100 , __lowercase : str=800 , **__lowercase : Union[str, Any] , ) -> Any: __UpperCAmelCase : List[str] = vocab_size __UpperCAmelCase : Union[str, Any] = max_position_embeddings __UpperCAmelCase : Optional[Any] = d_model __UpperCAmelCase : int = encoder_ffn_dim __UpperCAmelCase : Tuple = encoder_layers __UpperCAmelCase : List[str] = encoder_attention_heads __UpperCAmelCase : Any = decoder_ffn_dim __UpperCAmelCase : List[Any] = decoder_layers __UpperCAmelCase : str = decoder_attention_heads __UpperCAmelCase : Optional[int] = dropout __UpperCAmelCase : Tuple = attention_dropout __UpperCAmelCase : int = activation_dropout __UpperCAmelCase : List[Any] = activation_function __UpperCAmelCase : Tuple = init_std __UpperCAmelCase : Any = encoder_layerdrop __UpperCAmelCase : Union[str, Any] = decoder_layerdrop __UpperCAmelCase : List[Any] = classifier_dropout __UpperCAmelCase : Optional[int] = use_cache __UpperCAmelCase : int = encoder_layers __UpperCAmelCase : Union[str, Any] = scale_embedding # scale factor will be sqrt(d_model) if True __UpperCAmelCase : Tuple = use_prompt __UpperCAmelCase : str = prompt_length __UpperCAmelCase : Union[str, Any] = prompt_mid_dim super().__init__( pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , is_encoder_decoder=__lowercase , decoder_start_token_id=__lowercase , forced_eos_token_id=__lowercase , **__lowercase , ) if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , __lowercase ): __UpperCAmelCase : Optional[Any] = self.bos_token_id warnings.warn( f"""Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. """ """The config can simply be saved and uploaded again to be fixed.""" )
114
0
from __future__ import annotations from cmath import sqrt def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if a == 0: raise ValueError("Coefficient 'a' must not be zero." ) A : Union[str, Any] = b * b - 4 * a * c A : List[str] = (-b + sqrt(_lowerCamelCase )) / (2 * a) A : Optional[Any] = (-b - sqrt(_lowerCamelCase )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def UpperCAmelCase ( ): A , A : List[str] = quadratic_roots(a=5 , b=6 , c=1 ) print(f"""The solutions are: {solutiona} and {solutiona}""" ) if __name__ == "__main__": main()
256
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = {"""vocab_file""": """spiece.model"""} __SCREAMING_SNAKE_CASE = { """vocab_file""": { """bert_for_seq_generation""": ( """https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model""" ), } } __SCREAMING_SNAKE_CASE = {"""bert_for_seq_generation""": 512} class lowerCamelCase_ ( _A ): '''simple docstring''' a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = [] a__ = ["input_ids", "attention_mask"] def __init__( self : str , __lowerCamelCase : List[Any] , __lowerCamelCase : int="<s>" , __lowerCamelCase : List[str]="</s>" , __lowerCamelCase : Dict="<unk>" , __lowerCamelCase : Optional[int]="<pad>" , __lowerCamelCase : Optional[int]="<::::>" , __lowerCamelCase : Optional[Dict[str, Any]] = None , **__lowerCamelCase : Tuple , ) -> None: A : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , sep_token=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) A : Union[str, Any] = vocab_file A : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowerCamelCase ) @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Any: return self.sp_model.get_piece_size() def SCREAMING_SNAKE_CASE__ ( self : int ) -> Dict: A : str = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[Any] ) -> Tuple: A : Tuple = self.__dict__.copy() A : Optional[int] = None return state def __setstate__( self : Dict , __lowerCamelCase : Union[str, Any] ) -> Tuple: A : Optional[int] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): A : int = {} A : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE__ ( self : Dict , __lowerCamelCase : str ) -> List[str]: return self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : str , __lowerCamelCase : Union[str, Any] ) -> Dict: return self.sp_model.piece_to_id(__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : Dict , __lowerCamelCase : Tuple ) -> Optional[Any]: A : Optional[int] = self.sp_model.IdToPiece(__lowerCamelCase ) return token def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , __lowerCamelCase : Optional[int] ) -> List[str]: A : List[str] = [] A : List[str] = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__lowerCamelCase ) + token A : Union[str, Any] = [] else: current_sub_tokens.append(__lowerCamelCase ) out_string += self.sp_model.decode(__lowerCamelCase ) return out_string.strip() def SCREAMING_SNAKE_CASE__ ( self : Any , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return A : str = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase , "wb" ) as fi: A : str = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,)
256
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ = { 'configuration_lilt': ['LILT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LiltConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ 'LILT_PRETRAINED_MODEL_ARCHIVE_LIST', 'LiltForQuestionAnswering', 'LiltForSequenceClassification', 'LiltForTokenClassification', 'LiltModel', 'LiltPreTrainedModel', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
65
"""simple docstring""" from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class UpperCAmelCase : """simple docstring""" _UpperCAmelCase :Union[str, Any] = MBartConfig _UpperCAmelCase :str = {} _UpperCAmelCase :Union[str, Any] = "gelu" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=20 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , ): lowercase__: List[str] = parent lowercase__: List[Any] = batch_size lowercase__: List[Any] = seq_length lowercase__: str = is_training lowercase__: List[str] = use_labels lowercase__: Optional[int] = vocab_size lowercase__: int = hidden_size lowercase__: Optional[int] = num_hidden_layers lowercase__: int = num_attention_heads lowercase__: Tuple = intermediate_size lowercase__: Optional[Any] = hidden_dropout_prob lowercase__: Optional[int] = attention_probs_dropout_prob lowercase__: str = max_position_embeddings lowercase__: Union[str, Any] = eos_token_id lowercase__: int = pad_token_id lowercase__: List[str] = bos_token_id def _snake_case ( self ): lowercase__: int = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowercase__: str = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowercase__: List[Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) lowercase__: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__: Optional[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowercase__: Optional[int] = prepare_mbart_inputs_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return config, inputs_dict def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: List[str] = TFMBartModel(config=_UpperCAmelCase ).get_decoder() lowercase__: Tuple = inputs_dict['''input_ids'''] lowercase__: Optional[Any] = input_ids[:1, :] lowercase__: Optional[int] = inputs_dict['''attention_mask'''][:1, :] lowercase__: List[str] = inputs_dict['''head_mask'''] lowercase__: Optional[int] = 1 # first forward pass lowercase__: List[Any] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase ) lowercase__, lowercase__: Any = outputs.to_tuple() lowercase__: List[str] = past_key_values[1] def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> int: if attention_mask is None: lowercase__: Union[str, Any] = tf.cast(tf.math.not_equal(__UpperCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowercase__: List[str] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowercase__: str = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowercase__: List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowercase__: Union[str, Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Dict = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () _UpperCAmelCase :List[Any] = (TFMBartForConditionalGeneration,) if is_tf_available() else () _UpperCAmelCase :List[str] = ( { "conversational": TFMBartForConditionalGeneration, "feature-extraction": TFMBartModel, "summarization": TFMBartForConditionalGeneration, "text2text-generation": TFMBartForConditionalGeneration, "translation": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) _UpperCAmelCase :str = True _UpperCAmelCase :List[Any] = False _UpperCAmelCase :str = False def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _snake_case ( self ): lowercase__: Tuple = TFMBartModelTester(self ) lowercase__: Optional[Any] = ConfigTester(self , config_class=_UpperCAmelCase ) def _snake_case ( self ): self.config_tester.run_common_tests() def _snake_case ( self ): lowercase__: List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_UpperCAmelCase ) @require_sentencepiece @require_tokenizers @require_tf class UpperCAmelCase (unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Optional[int] = [ " UN Chief Says There Is No Military Solution in Syria", ] _UpperCAmelCase :Any = [ "Şeful ONU declară că nu există o soluţie militară în Siria", ] _UpperCAmelCase :Tuple = "facebook/mbart-large-en-ro" @cached_property def _snake_case ( self ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _snake_case ( self ): lowercase__: Optional[int] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _snake_case ( self , **_UpperCAmelCase ): lowercase__: List[Any] = self.translate_src_text(**_UpperCAmelCase ) self.assertListEqual(self.expected_text , _UpperCAmelCase ) def _snake_case ( self , **_UpperCAmelCase ): lowercase__: str = self.tokenizer(self.src_text , **_UpperCAmelCase , return_tensors='''tf''' ) lowercase__: Optional[int] = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) lowercase__: Tuple = self.tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) return generated_words @slow def _snake_case ( self ): self._assert_generated_batch_equal_expected()
177
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowerCAmelCase : List[str] =logging.get_logger(__name__) class _A ( lowerCAmelCase ): snake_case__ : List[str] = ['pixel_values'] def __init__( self , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = 0.9 , __lowerCAmelCase = PILImageResampling.BICUBIC , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = 1 / 255 , __lowerCAmelCase = True , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" super().__init__(**__lowerCAmelCase ) lowercase = size if size is not None else {"""shortest_edge""": 224} lowercase = get_size_dict(__lowerCAmelCase , default_to_square=__lowerCAmelCase ) lowercase = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} lowercase = get_size_dict(__lowerCAmelCase , param_name="""crop_size""" ) lowercase = do_resize lowercase = size lowercase = crop_pct lowercase = resample lowercase = do_center_crop lowercase = crop_size lowercase = do_rescale lowercase = rescale_factor lowercase = do_normalize lowercase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowercase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = PILImageResampling.BICUBIC , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" lowercase = get_size_dict(__lowerCAmelCase , default_to_square=__lowerCAmelCase ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f'size must contain \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) if crop_pct is not None: if "shortest_edge" in size: lowercase = int(size["""shortest_edge"""] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: lowercase = int(size["""height"""] / crop_pct ) else: lowercase = (int(size["""height"""] / crop_pct ), int(size["""width"""] / crop_pct )) else: raise ValueError("""Invalid size for resize: {}""".format(__lowerCAmelCase ) ) lowercase = get_resize_output_image_size(__lowerCAmelCase , size=__lowerCAmelCase , default_to_square=__lowerCAmelCase ) else: if "shortest_edge" in size: lowercase = get_resize_output_image_size(__lowerCAmelCase , size=size["""shortest_edge"""] , default_to_square=__lowerCAmelCase ) elif "height" in size and "width" in size: lowercase = (size["""height"""], size["""width"""]) else: raise ValueError("""Invalid size for resize: {}""".format(__lowerCAmelCase ) ) return resize(__lowerCAmelCase , size=__lowerCAmelCase , resample=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" lowercase = get_size_dict(__lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'size must contain \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(__lowerCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" return rescale(__lowerCAmelCase , scale=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" return normalize(__lowerCAmelCase , mean=__lowerCAmelCase , std=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = ChannelDimension.FIRST , **__lowerCAmelCase , ): """simple docstring""" lowercase = do_resize if do_resize is not None else self.do_resize lowercase = crop_pct if crop_pct is not None else self.crop_pct lowercase = resample if resample is not None else self.resample lowercase = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase = do_rescale if do_rescale is not None else self.do_rescale lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase = do_normalize if do_normalize is not None else self.do_normalize lowercase = image_mean if image_mean is not None else self.image_mean lowercase = image_std if image_std is not None else self.image_std lowercase = size if size is not None else self.size lowercase = get_size_dict(__lowerCAmelCase , default_to_square=__lowerCAmelCase ) lowercase = crop_size if crop_size is not None else self.crop_size lowercase = get_size_dict(__lowerCAmelCase , param_name="""crop_size""" ) lowercase = make_list_of_images(__lowerCAmelCase ) if not valid_images(__lowerCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_pct is None: raise ValueError("""Crop_pct must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. lowercase = [to_numpy_array(__lowerCAmelCase ) for image in images] if do_resize: lowercase = [self.resize(image=__lowerCAmelCase , size=__lowerCAmelCase , crop_pct=__lowerCAmelCase , resample=__lowerCAmelCase ) for image in images] if do_center_crop: lowercase = [self.center_crop(image=__lowerCAmelCase , size=__lowerCAmelCase ) for image in images] if do_rescale: lowercase = [self.rescale(image=__lowerCAmelCase , scale=__lowerCAmelCase ) for image in images] if do_normalize: lowercase = [self.normalize(image=__lowerCAmelCase , mean=__lowerCAmelCase , std=__lowerCAmelCase ) for image in images] lowercase = [to_channel_dimension_format(__lowerCAmelCase , __lowerCAmelCase ) for image in images] lowercase = {"""pixel_values""": images} return BatchFeature(data=__lowerCAmelCase , tensor_type=__lowerCAmelCase )
32
"""simple docstring""" import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __lowerCAmelCase : List[str] =logging.getLogger(__name__) __lowerCAmelCase : Dict =tf.data.AUTOTUNE def UpperCAmelCase__ ( ) -> List[str]: '''simple docstring''' lowercase = argparse.ArgumentParser(description="""Train a masked language model on TPU.""" ) parser.add_argument( """--pretrained_model_config""" , type=lowerCAmelCase__ , default="""roberta-base""" , help="""The model config to use. Note that we don't copy the model's weights, only the config!""" , ) parser.add_argument( """--tokenizer""" , type=lowerCAmelCase__ , default="""unigram-tokenizer-wikitext""" , help="""The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.""" , ) parser.add_argument( """--per_replica_batch_size""" , type=lowerCAmelCase__ , default=8 , help="""Batch size per TPU core.""" , ) parser.add_argument( """--no_tpu""" , action="""store_true""" , help="""If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.""" , ) parser.add_argument( """--tpu_name""" , type=lowerCAmelCase__ , help="""Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.""" , default="""local""" , ) parser.add_argument( """--tpu_zone""" , type=lowerCAmelCase__ , help="""Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.""" , ) parser.add_argument( """--gcp_project""" , type=lowerCAmelCase__ , help="""Google cloud project name. Only used for non-Colab TPU nodes.""" ) parser.add_argument( """--bfloat16""" , action="""store_true""" , help="""Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.""" , ) parser.add_argument( """--train_dataset""" , type=lowerCAmelCase__ , help="""Path to training dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""" , ) parser.add_argument( """--shuffle_buffer_size""" , type=lowerCAmelCase__ , default=2**1_8 , help="""Size of the shuffle buffer (in samples)""" , ) parser.add_argument( """--eval_dataset""" , type=lowerCAmelCase__ , help="""Path to evaluation dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""" , ) parser.add_argument( """--num_epochs""" , type=lowerCAmelCase__ , default=1 , help="""Number of epochs to train for.""" , ) parser.add_argument( """--learning_rate""" , type=lowerCAmelCase__ , default=1e-4 , help="""Learning rate to use for training.""" , ) parser.add_argument( """--weight_decay_rate""" , type=lowerCAmelCase__ , default=1e-3 , help="""Weight decay rate to use for training.""" , ) parser.add_argument( """--max_length""" , type=lowerCAmelCase__ , default=5_1_2 , help="""Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py""" , ) parser.add_argument( """--mlm_probability""" , type=lowerCAmelCase__ , default=0.15 , help="""Fraction of tokens to mask during training.""" , ) parser.add_argument("""--output_dir""" , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to save model checkpoints to.""" ) parser.add_argument("""--hub_model_id""" , type=lowerCAmelCase__ , help="""Model ID to upload to on the Hugging Face Hub.""" ) lowercase = parser.parse_args() return args def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> List[Any]: '''simple docstring''' try: if args.tpu_name: lowercase = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: lowercase = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( """Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or """ """--gcp_project. When running on a TPU VM, use --tpu_name local.""" ) tf.config.experimental_connect_to_cluster(lowerCAmelCase__ ) tf.tpu.experimental.initialize_tpu_system(lowerCAmelCase__ ) return tpu def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase = 0 for file in file_list: lowercase = file.split("""/""" )[-1] lowercase = re.search(R"""-\d+-(\d+)\.tfrecord""" , lowerCAmelCase__ ).group(1 ) lowercase = int(lowerCAmelCase__ ) num_samples += sample_count return num_samples def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any]=None ) -> List[Any]: '''simple docstring''' lowercase = count_samples(lowerCAmelCase__ ) lowercase = tf.data.Dataset.from_tensor_slices(lowerCAmelCase__ ) if shuffle: lowercase = dataset.shuffle(len(lowerCAmelCase__ ) ) lowercase = tf.data.TFRecordDataset(lowerCAmelCase__ , num_parallel_reads=lowerCAmelCase__ ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here lowercase = dataset.apply(tf.data.experimental.assert_cardinality(lowerCAmelCase__ ) ) lowercase = dataset.map(lowerCAmelCase__ , num_parallel_calls=lowerCAmelCase__ ) if shuffle: assert shuffle_buffer_size is not None lowercase = dataset.shuffle(args.shuffle_buffer_size ) lowercase = dataset.batch(lowerCAmelCase__ , drop_remainder=lowerCAmelCase__ ) lowercase = dataset.map(lowerCAmelCase__ , num_parallel_calls=lowerCAmelCase__ ) lowercase = dataset.prefetch(lowerCAmelCase__ ) return dataset def UpperCAmelCase__ ( lowerCAmelCase__ :Any ) -> Optional[int]: '''simple docstring''' if not args.no_tpu: lowercase = initialize_tpu(lowerCAmelCase__ ) lowercase = tf.distribute.TPUStrategy(lowerCAmelCase__ ) else: lowercase = tf.distribute.OneDeviceStrategy(device="""/gpu:0""" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("""mixed_bfloat16""" ) lowercase = AutoTokenizer.from_pretrained(args.tokenizer ) lowercase = AutoConfig.from_pretrained(args.pretrained_model_config ) lowercase = tokenizer.vocab_size lowercase = tf.io.gfile.glob(os.path.join(args.train_dataset , """*.tfrecord""" ) ) if not training_records: raise ValueError(f'No .tfrecord files found in {args.train_dataset}.' ) lowercase = tf.io.gfile.glob(os.path.join(args.eval_dataset , """*.tfrecord""" ) ) if not eval_records: raise ValueError(f'No .tfrecord files found in {args.eval_dataset}.' ) lowercase = count_samples(lowerCAmelCase__ ) lowercase = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) lowercase = steps_per_epoch * args.num_epochs with strategy.scope(): lowercase = TFAutoModelForMaskedLM.from_config(lowerCAmelCase__ ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built lowercase , lowercase = create_optimizer( num_train_steps=lowerCAmelCase__ , num_warmup_steps=total_train_steps // 2_0 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=lowerCAmelCase__ , metrics=["""accuracy"""] ) def decode_fn(lowerCAmelCase__ :Any ): lowercase = { """input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), """attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(lowerCAmelCase__ , lowerCAmelCase__ ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. lowercase = DataCollatorForLanguageModeling( tokenizer=lowerCAmelCase__ , mlm_probability=args.mlm_probability , mlm=lowerCAmelCase__ , return_tensors="""tf""" ) def mask_with_collator(lowerCAmelCase__ :Dict ): # TF really needs an isin() function lowercase = ( ~tf.cast(batch["""attention_mask"""] , tf.bool ) | (batch["""input_ids"""] == tokenizer.cls_token_id) | (batch["""input_ids"""] == tokenizer.sep_token_id) ) lowercase , lowercase = data_collator.tf_mask_tokens( batch["""input_ids"""] , vocab_size=len(lowerCAmelCase__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=lowerCAmelCase__ , ) return batch lowercase = args.per_replica_batch_size * strategy.num_replicas_in_sync lowercase = prepare_dataset( lowerCAmelCase__ , decode_fn=lowerCAmelCase__ , mask_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , shuffle=lowerCAmelCase__ , shuffle_buffer_size=args.shuffle_buffer_size , ) lowercase = prepare_dataset( lowerCAmelCase__ , decode_fn=lowerCAmelCase__ , mask_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , shuffle=lowerCAmelCase__ , ) lowercase = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=lowerCAmelCase__ ) ) model.fit( lowerCAmelCase__ , validation_data=lowerCAmelCase__ , epochs=args.num_epochs , callbacks=lowerCAmelCase__ , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __lowerCAmelCase : Optional[int] =parse_args() main(args)
32
1
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path __A = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) __A = [ord(letter) for letter in string.ascii_lowercase] __A = {ord(char) for char in VALID_CHARS} __A = ["the", "be", "to", "of", "and", "in", "that", "have"] def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> str | None: __lowerCAmelCase: str = "" __lowerCAmelCase: int __lowerCAmelCase: int __lowerCAmelCase: int for keychar, cipherchar in zip(cycle(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ): __lowerCAmelCase: Optional[Any] = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(__SCREAMING_SNAKE_CASE ) return decoded def a__ ( __SCREAMING_SNAKE_CASE ) -> list[str]: __lowerCAmelCase: list[str] = [] for key in product(__SCREAMING_SNAKE_CASE , repeat=3 ): __lowerCAmelCase: str = try_key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if encoded is not None: possibles.append(__SCREAMING_SNAKE_CASE ) return possibles def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> list[str]: return [possible for possible in possibles if common_word in possible.lower()] def a__ ( __SCREAMING_SNAKE_CASE = "p059_cipher.txt" ) -> int: __lowerCAmelCase: list[int] __lowerCAmelCase: list[str] __lowerCAmelCase: str __lowerCAmelCase: str __lowerCAmelCase: str = Path(__SCREAMING_SNAKE_CASE ).parent.joinpath(__SCREAMING_SNAKE_CASE ).read_text(encoding="utf-8" ) __lowerCAmelCase: Dict = [int(__SCREAMING_SNAKE_CASE ) for number in data.strip().split("," )] __lowerCAmelCase: Tuple = filter_valid_chars(__SCREAMING_SNAKE_CASE ) for common_word in COMMON_WORDS: __lowerCAmelCase: int = filter_common_word(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) == 1: break __lowerCAmelCase: Dict = possibles[0] return sum(ord(__SCREAMING_SNAKE_CASE ) for char in decoded_text ) if __name__ == "__main__": print(F'''{solution() = }''')
217
"""simple docstring""" from __future__ import annotations def a__ ( __SCREAMING_SNAKE_CASE ) -> bool: __lowerCAmelCase: Tuple = str(__SCREAMING_SNAKE_CASE ) return len(__SCREAMING_SNAKE_CASE ) == 9 and set(__SCREAMING_SNAKE_CASE ) == set("123456789" ) def a__ ( ) -> int | None: for base_num in range(9_9_9_9 , 4_9_9_9 , -1 ): __lowerCAmelCase: Tuple = 1_0_0_0_0_2 * base_num if is_9_pandigital(__SCREAMING_SNAKE_CASE ): return candidate for base_num in range(3_3_3 , 9_9 , -1 ): __lowerCAmelCase: int = 1_0_0_2_0_0_3 * base_num if is_9_pandigital(__SCREAMING_SNAKE_CASE ): return candidate return None if __name__ == "__main__": print(F'''{solution() = }''')
217
1
import flax.linen as nn import jax import jax.numpy as jnp class __A( nn.Module ): snake_case_ = 4_2 snake_case_ = jnp.floataa def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , _snake_case ) -> Optional[Any]: '''simple docstring''' __a , __a , __a , __a = hidden_states.shape __a = jax.image.resize( _snake_case , shape=(batch, height * 2, width * 2, channels) , method='''nearest''' , ) __a = self.conv(_snake_case ) return hidden_states class __A( nn.Module ): snake_case_ = 4_2 snake_case_ = jnp.floataa def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' __a = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , _snake_case ) -> Tuple: '''simple docstring''' __a = self.conv(_snake_case ) return hidden_states class __A( nn.Module ): snake_case_ = 4_2 snake_case_ = None snake_case_ = 0.0 snake_case_ = None snake_case_ = jnp.floataa def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = self.in_channels if self.out_channels is None else self.out_channels __a = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) __a = nn.Conv( _snake_case , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __a = nn.Dense(_snake_case , dtype=self.dtype ) __a = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) __a = nn.Dropout(self.dropout_prob ) __a = nn.Conv( _snake_case , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __a = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut __a = None if use_nin_shortcut: __a = nn.Conv( _snake_case , kernel_size=(1, 1) , strides=(1, 1) , padding='''VALID''' , dtype=self.dtype , ) def __call__( self , _snake_case , _snake_case , _snake_case=True ) -> List[str]: '''simple docstring''' __a = hidden_states __a = self.norma(_snake_case ) __a = nn.swish(_snake_case ) __a = self.conva(_snake_case ) __a = self.time_emb_proj(nn.swish(_snake_case ) ) __a = jnp.expand_dims(jnp.expand_dims(_snake_case , 1 ) , 1 ) __a = hidden_states + temb __a = self.norma(_snake_case ) __a = nn.swish(_snake_case ) __a = self.dropout(_snake_case , _snake_case ) __a = self.conva(_snake_case ) if self.conv_shortcut is not None: __a = self.conv_shortcut(_snake_case ) return hidden_states + residual
353
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __A( a ): @slow @require_torch def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a = EncoderDecoderModel.from_encoder_decoder_pretrained('''prajjwal1/bert-tiny''' , '''prajjwal1/bert-tiny''' ) __a = BertTokenizer.from_pretrained('''bert-base-uncased''' ) __a = bertabert.config.encoder.vocab_size __a = tokenizer.sep_token_id __a = tokenizer.cls_token_id __a = 128 __a = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''train[:1%]''' ) __a = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''validation[:1%]''' ) __a = train_dataset.select(range(32 ) ) __a = val_dataset.select(range(16 ) ) __a = 4 def _map_to_encoder_decoder_inputs(_snake_case ): # Tokenizer will automatically set [BOS] <text> [EOS] __a = tokenizer(batch['''article'''] , padding='''max_length''' , truncation=_snake_case , max_length=512 ) __a = tokenizer(batch['''highlights'''] , padding='''max_length''' , truncation=_snake_case , max_length=128 ) __a = inputs.input_ids __a = inputs.attention_mask __a = outputs.input_ids __a = outputs.input_ids.copy() __a = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['''labels'''] ] __a = outputs.attention_mask assert all(len(_snake_case ) == 512 for x in inputs.input_ids ) assert all(len(_snake_case ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_snake_case ): __a = pred.label_ids __a = pred.predictions # all unnecessary tokens are removed __a = tokenizer.batch_decode(_snake_case , skip_special_tokens=_snake_case ) __a = tokenizer.batch_decode(_snake_case , skip_special_tokens=_snake_case ) __a = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_snake_case ) )] ) / len(_snake_case ) return {"accuracy": accuracy} # map train dataset __a = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_snake_case , batch_size=_snake_case , remove_columns=['''article''', '''highlights'''] , ) train_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) # same for validation dataset __a = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_snake_case , batch_size=_snake_case , remove_columns=['''article''', '''highlights'''] , ) val_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) __a = self.get_auto_remove_tmp_dir() __a = SeqaSeqTrainingArguments( output_dir=_snake_case , per_device_train_batch_size=_snake_case , per_device_eval_batch_size=_snake_case , predict_with_generate=_snake_case , evaluation_strategy='''steps''' , do_train=_snake_case , do_eval=_snake_case , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer __a = SeqaSeqTrainer( model=_snake_case , args=_snake_case , compute_metrics=_compute_metrics , train_dataset=_snake_case , eval_dataset=_snake_case , tokenizer=_snake_case , ) # start training trainer.train()
33
0
def lowerCAmelCase_ ( _snake_case : int = 50 ) -> int: '''simple docstring''' __magic_name__ : str = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(F"{solution() = }")
281
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets snake_case : List[Any] = "\\n@inproceedings{lin-2004-rouge,\n title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\",\n author = \"Lin, Chin-Yew\",\n booktitle = \"Text Summarization Branches Out\",\n month = jul,\n year = \"2004\",\n address = \"Barcelona, Spain\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W04-1013\",\n pages = \"74--81\",\n}\n" snake_case : Any = "\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n" snake_case : str = "\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring,\n `\"rougeL\"`: Longest common subsequence based scoring.\n `\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric('rouge')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n ['rouge1', 'rouge2', 'rougeL', 'rougeLsum']\n >>> print(results[\"rouge1\"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results[\"rouge1\"].mid.fmeasure)\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def SCREAMING_SNAKE_CASE ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/google-research/google-research/tree/master/rouge"] , reference_urls=[ "https://en.wikipedia.org/wiki/ROUGE_(metric)", "https://github.com/google-research/google-research/tree/master/rouge", ] , ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a=None , _a=True , _a=False ): if rouge_types is None: __magic_name__ : str = ["rouge1", "rouge2", "rougeL", "rougeLsum"] __magic_name__ : List[str] = rouge_scorer.RougeScorer(rouge_types=_a , use_stemmer=_a ) if use_aggregator: __magic_name__ : Dict = scoring.BootstrapAggregator() else: __magic_name__ : str = [] for ref, pred in zip(_a , _a ): __magic_name__ : Union[str, Any] = scorer.score(_a , _a ) if use_aggregator: aggregator.add_scores(_a ) else: scores.append(_a ) if use_aggregator: __magic_name__ : Any = aggregator.aggregate() else: __magic_name__ : List[Any] = {} for key in scores[0]: __magic_name__ : str = [score[key] for score in scores] return result
281
1
def a( ) -> str: """simple docstring""" a = 0 for i in range(1 , 1001 ): total += i**i return str(A )[-10:] if __name__ == "__main__": print(solution())
71
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class _lowercase ( lowerCAmelCase, lowerCAmelCase, unittest.TestCase ): """simple docstring""" __A = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) __A = ( { "feature-extraction": TFMobileBertModel, "fill-mask": TFMobileBertForMaskedLM, "question-answering": TFMobileBertForQuestionAnswering, "text-classification": TFMobileBertForSequenceClassification, "token-classification": TFMobileBertForTokenClassification, "zero-shot": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) __A = False __A = False def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False ): """simple docstring""" a = super()._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ , return_labels=lowerCamelCase_ ) if return_labels: if model_class in get_values(lowerCamelCase_ ): a = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class _lowercase ( lowerCAmelCase ): """simple docstring""" def __init__(self , lowerCamelCase_ , lowerCamelCase_=13 , lowerCamelCase_=7 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=99 , lowerCamelCase_=32 , lowerCamelCase_=32 , lowerCamelCase_=2 , lowerCamelCase_=4 , lowerCamelCase_=37 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=512 , lowerCamelCase_=16 , lowerCamelCase_=2 , lowerCamelCase_=0.02 , lowerCamelCase_=3 , lowerCamelCase_=4 , lowerCamelCase_=None , ): """simple docstring""" a = parent a = batch_size a = seq_length a = is_training a = use_input_mask a = use_token_type_ids a = use_labels a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = type_sequence_label_size a = initializer_range a = num_labels a = num_choices a = scope a = embedding_size def UpperCamelCase_ (self ): """simple docstring""" a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a = None if self.use_input_mask: a = random_attention_mask([self.batch_size, self.seq_length] ) a = None if self.use_token_type_ids: a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a = None a = None a = None if self.use_labels: a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a = ids_tensor([self.batch_size] , self.num_choices ) a = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" a = TFMobileBertModel(config=lowerCamelCase_ ) a = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} a = model(lowerCamelCase_ ) a = [input_ids, input_mask] a = model(lowerCamelCase_ ) a = model(lowerCamelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" a = TFMobileBertForMaskedLM(config=lowerCamelCase_ ) a = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} a = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" a = TFMobileBertForNextSentencePrediction(config=lowerCamelCase_ ) a = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} a = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" a = TFMobileBertForPreTraining(config=lowerCamelCase_ ) a = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} a = model(lowerCamelCase_ ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" a = self.num_labels a = TFMobileBertForSequenceClassification(config=lowerCamelCase_ ) a = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} a = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" a = self.num_choices a = TFMobileBertForMultipleChoice(config=lowerCamelCase_ ) a = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) ) a = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) ) a = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) ) a = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } a = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" a = self.num_labels a = TFMobileBertForTokenClassification(config=lowerCamelCase_ ) a = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} a = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" a = TFMobileBertForQuestionAnswering(config=lowerCamelCase_ ) a = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} a = model(lowerCamelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase_ (self ): """simple docstring""" a = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) = config_and_inputs a = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict def UpperCamelCase_ (self ): """simple docstring""" a = TFMobileBertModelTest.TFMobileBertModelTester(self ) a = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37 ) def UpperCamelCase_ (self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase_ (self ): """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCamelCase_ ) @slow def UpperCamelCase_ (self ): """simple docstring""" for model_name in ["google/mobilebert-uncased"]: a = TFMobileBertModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) @require_tf class _lowercase ( unittest.TestCase ): """simple docstring""" @slow def UpperCamelCase_ (self ): """simple docstring""" a = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased" ) a = tf.constant([[0, 1, 2, 3, 4, 5]] ) a = model(lowerCamelCase_ )[0] a = [1, 6, 30522] self.assertEqual(output.shape , lowerCamelCase_ ) a = tf.constant( [ [ [-4.591_9547, -9.24_8295, -9.64_5256], [-6.730_6175, -6.44_0284, -6.605_2837], [-7.274_3506, -6.784_7915, -6.02_4673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowerCamelCase_ , atol=1E-4 )
71
1
"""simple docstring""" import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" __A = StableDiffusionPipeline.from_pretrained(__UpperCamelCase , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors __A = load_file(__UpperCamelCase ) __A = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: __A = key.split('''.''' )[0].split(LORA_PREFIX_TEXT_ENCODER + '''_''' )[-1].split('''_''' ) __A = pipeline.text_encoder else: __A = key.split('''.''' )[0].split(LORA_PREFIX_UNET + '''_''' )[-1].split('''_''' ) __A = pipeline.unet # find the target layer __A = layer_infos.pop(0 ) while len(__UpperCamelCase ) > -1: try: __A = curr_layer.__getattr__(__UpperCamelCase ) if len(__UpperCamelCase ) > 0: __A = layer_infos.pop(0 ) elif len(__UpperCamelCase ) == 0: break except Exception: if len(__UpperCamelCase ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: __A = layer_infos.pop(0 ) __A = [] if "lora_down" in key: pair_keys.append(key.replace('''lora_down''' , '''lora_up''' ) ) pair_keys.append(__UpperCamelCase ) else: pair_keys.append(__UpperCamelCase ) pair_keys.append(key.replace('''lora_up''' , '''lora_down''' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: __A = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) __A = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(__UpperCamelCase , __UpperCamelCase ).unsqueeze(2 ).unsqueeze(3 ) else: __A = state_dict[pair_keys[0]].to(torch.floataa ) __A = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(__UpperCamelCase , __UpperCamelCase ) # update visited list for item in pair_keys: visited.append(__UpperCamelCase ) return pipeline if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( '--base_model_path', default=None, type=str, required=True, help='Path to the base model in diffusers format.' ) parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--lora_prefix_unet', default='lora_unet', type=str, help='The prefix of UNet weight in safetensors' ) parser.add_argument( '--lora_prefix_text_encoder', default='lora_te', type=str, help='The prefix of text encoder weight in safetensors', ) parser.add_argument('--alpha', default=0.75, type=float, help='The merging ratio in W = W0 + alpha * deltaW') parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.' ) parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') lowercase_ = parser.parse_args() lowercase_ = args.base_model_path lowercase_ = args.checkpoint_path lowercase_ = args.dump_path lowercase_ = args.lora_prefix_unet lowercase_ = args.lora_prefix_text_encoder lowercase_ = args.alpha lowercase_ = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) lowercase_ = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
266
"""simple docstring""" import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets lowercase_ = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n' lowercase_ = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n' lowercase_ = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case ( datasets.Metric ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Any ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, homepage='''https://github.com/krishnap25/mauve''', inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { '''predictions''': datasets.Value('''string''', id='''sequence''' ), '''references''': datasets.Value('''string''', id='''sequence''' ), } ), codebase_urls=['''https://github.com/krishnap25/mauve'''], reference_urls=[ '''https://arxiv.org/abs/2102.01454''', '''https://github.com/krishnap25/mauve''', ], ) def _SCREAMING_SNAKE_CASE ( self : int, _lowerCamelCase : str, _lowerCamelCase : Optional[Any], _lowerCamelCase : Any=None, _lowerCamelCase : Tuple=None, _lowerCamelCase : Optional[Any]=None, _lowerCamelCase : Union[str, Any]=None, _lowerCamelCase : str="auto", _lowerCamelCase : Union[str, Any]=-1, _lowerCamelCase : List[str]=0.9, _lowerCamelCase : int=5, _lowerCamelCase : Tuple=5_00, _lowerCamelCase : Union[str, Any]="gpt2-large", _lowerCamelCase : int=-1, _lowerCamelCase : Union[str, Any]=10_24, _lowerCamelCase : Union[str, Any]=25, _lowerCamelCase : str=5, _lowerCamelCase : Any=True, _lowerCamelCase : Union[str, Any]=25, ): '''simple docstring''' __A = compute_mauve( p_text=_lowerCamelCase, q_text=_lowerCamelCase, p_features=_lowerCamelCase, q_features=_lowerCamelCase, p_tokens=_lowerCamelCase, q_tokens=_lowerCamelCase, num_buckets=_lowerCamelCase, pca_max_data=_lowerCamelCase, kmeans_explained_var=_lowerCamelCase, kmeans_num_redo=_lowerCamelCase, kmeans_max_iter=_lowerCamelCase, featurize_model_name=_lowerCamelCase, device_id=_lowerCamelCase, max_text_length=_lowerCamelCase, divergence_curve_discretization_size=_lowerCamelCase, mauve_scaling_factor=_lowerCamelCase, verbose=_lowerCamelCase, seed=_lowerCamelCase, ) return out
266
1
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( 'The RoBERTa Model transformer with early exiting (DeeRoBERTa). ' , __lowerCAmelCase , ) class __a ( __lowerCAmelCase ): _a : Any = RobertaConfig _a : Union[str, Any] = "roberta" def __init__( self , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" super().__init__(lowerCamelCase__ ) _UpperCAmelCase = RobertaEmbeddings(lowerCamelCase__ ) self.init_weights() @add_start_docstrings( 'RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. ' , __lowerCAmelCase , ) class __a ( __lowerCAmelCase ): _a : List[str] = RobertaConfig _a : str = "roberta" def __init__( self , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" super().__init__(lowerCamelCase__ ) _UpperCAmelCase = config.num_labels _UpperCAmelCase = config.num_hidden_layers _UpperCAmelCase = DeeRobertaModel(lowerCamelCase__ ) _UpperCAmelCase = nn.Dropout(config.hidden_dropout_prob ) _UpperCAmelCase = nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(lowerCamelCase__ ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=-1 , _SCREAMING_SNAKE_CASE=False , ) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.num_layers try: _UpperCAmelCase = self.roberta( lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , position_ids=lowerCamelCase__ , head_mask=lowerCamelCase__ , inputs_embeds=lowerCamelCase__ , ) _UpperCAmelCase = outputs[1] _UpperCAmelCase = self.dropout(lowerCamelCase__ ) _UpperCAmelCase = self.classifier(lowerCamelCase__ ) _UpperCAmelCase = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: _UpperCAmelCase = e.message _UpperCAmelCase = e.exit_layer _UpperCAmelCase = outputs[0] if not self.training: _UpperCAmelCase = entropy(lowerCamelCase__ ) _UpperCAmelCase = [] _UpperCAmelCase = [] if labels is not None: if self.num_labels == 1: # We are doing regression _UpperCAmelCase = MSELoss() _UpperCAmelCase = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: _UpperCAmelCase = CrossEntropyLoss() _UpperCAmelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits _UpperCAmelCase = [] for highway_exit in outputs[-1]: _UpperCAmelCase = highway_exit[0] if not self.training: highway_logits_all.append(lowerCamelCase__ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression _UpperCAmelCase = MSELoss() _UpperCAmelCase = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: _UpperCAmelCase = CrossEntropyLoss() _UpperCAmelCase = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(lowerCamelCase__ ) if train_highway: _UpperCAmelCase = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: _UpperCAmelCase = (loss,) + outputs if not self.training: _UpperCAmelCase = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: _UpperCAmelCase = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
357
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets lowerCAmelCase__ :Optional[Any] = datasets.logging.get_logger(__name__) lowerCAmelCase__ :str = '''\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric", author = "Moosavi, Nafise Sadat and Strube, Michael", booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = aug, year = "2016", address = "Berlin, Germany", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/P16-1060", doi = "10.18653/v1/P16-1060", pages = "632--642", } ''' lowerCAmelCase__ :List[Any] = '''\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. ''' lowerCAmelCase__ :Optional[int] = ''' Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting \'keep_singletons=False\', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs. min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: \'mentions\': mentions \'muc\': MUC metric [Vilain et al, 1995] \'bcub\': B-cubed [Bagga and Baldwin, 1998] \'ceafe\': CEAFe [Luo et al., 2005] \'lea\': LEA [Moosavi and Strube, 2016] \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric(\'coval\') >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\', ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\', ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\', ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\', ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\', ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0} ''' def lowerCAmelCase__ ( a__: int , a__: int , a__: Dict=False , a__: str=False , a__: Optional[int]=True , a__: Any=False , a__: str="dummy_doc" ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = {doc: key_lines} _UpperCAmelCase = {doc: sys_lines} _UpperCAmelCase = {} _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase , _UpperCAmelCase = reader.get_doc_mentions(a__ , key_doc_lines[doc] , a__ ) key_singletons_num += singletons_num if NP_only or min_span: _UpperCAmelCase = reader.set_annotated_parse_trees(a__ , key_doc_lines[doc] , a__ , a__ ) _UpperCAmelCase , _UpperCAmelCase = reader.get_doc_mentions(a__ , sys_doc_lines[doc] , a__ ) sys_singletons_num += singletons_num if NP_only or min_span: _UpperCAmelCase = reader.set_annotated_parse_trees(a__ , key_doc_lines[doc] , a__ , a__ ) if remove_nested: _UpperCAmelCase , _UpperCAmelCase = reader.remove_nested_coref_mentions(a__ , a__ ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters _UpperCAmelCase , _UpperCAmelCase = reader.remove_nested_coref_mentions(a__ , a__ ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters _UpperCAmelCase = reader.get_mention_assignments(a__ , a__ ) _UpperCAmelCase = reader.get_mention_assignments(a__ , a__ ) _UpperCAmelCase = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( 'Number of removed nested coreferring mentions in the key ' F'''annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}''' ) logger.info( 'Number of resulting singleton clusters in the key ' F'''annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}''' ) if not keep_singletons: logger.info( F'''{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ''' 'files, respectively' ) return doc_coref_infos def lowerCAmelCase__ ( a__: Any , a__: List[str] , a__: List[str] , a__: Optional[int] , a__: Optional[Any] , a__: Any , a__: Any ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = get_coref_infos(a__ , a__ , a__ , a__ , a__ , a__ ) _UpperCAmelCase = {} _UpperCAmelCase = 0 _UpperCAmelCase = 0 for name, metric in metrics: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = evaluator.evaluate_documents(a__ , a__ , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F'''{name}/recall''': recall, F'''{name}/precision''': precision, F'''{name}/f1''': fa} ) logger.info( name.ljust(1_0 ) , F'''Recall: {recall * 1_0_0:.2f}''' , F''' Precision: {precision * 1_0_0:.2f}''' , F''' F1: {fa * 1_0_0:.2f}''' , ) if conll_subparts_num == 3: _UpperCAmelCase = (conll / 3) * 1_0_0 logger.info(F'''CoNLL score: {conll:.2f}''' ) output_scores.update({'conll_score': conll} ) return output_scores def lowerCAmelCase__ ( a__: Union[str, Any] ) -> Dict: '''simple docstring''' _UpperCAmelCase = False for line in key_lines: if not line.startswith('#' ): if len(line.split() ) > 6: _UpperCAmelCase = line.split()[5] if not parse_col == "-": _UpperCAmelCase = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __a ( datasets.Metric ): def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Sequence(datasets.Value('string' ) ), } ) , codebase_urls=['https://github.com/ns-moosavi/coval'] , reference_urls=[ 'https://github.com/ns-moosavi/coval', 'https://www.aclweb.org/anthology/P16-1060', 'http://www.conll.cemantix.org/2012/data.html', ] , ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ) -> str: """simple docstring""" _UpperCAmelCase = [ ('mentions', evaluator.mentions), ('muc', evaluator.muc), ('bcub', evaluator.b_cubed), ('ceafe', evaluator.ceafe), ('lea', evaluator.lea), ] if min_span: _UpperCAmelCase = util.check_gold_parse_annotation(_SCREAMING_SNAKE_CASE ) if not has_gold_parse: raise NotImplementedError('References should have gold parse annotation to use \'min_span\'.' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" _UpperCAmelCase = evaluate( key_lines=_SCREAMING_SNAKE_CASE , sys_lines=_SCREAMING_SNAKE_CASE , metrics=_SCREAMING_SNAKE_CASE , NP_only=_SCREAMING_SNAKE_CASE , remove_nested=_SCREAMING_SNAKE_CASE , keep_singletons=_SCREAMING_SNAKE_CASE , min_span=_SCREAMING_SNAKE_CASE , ) return score
185
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: _lowerCAmelCase :Any = None _lowerCAmelCase :Union[str, Any] = logging.get_logger(__name__) _lowerCAmelCase :str = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} _lowerCAmelCase :Dict = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/tokenizer.json', }, } _lowerCAmelCase :Union[str, Any] = { 'camembert-base': 512, } _lowerCAmelCase :Optional[int] = '▁' class _UpperCAmelCase ( a ): '''simple docstring''' a__ =VOCAB_FILES_NAMES a__ =PRETRAINED_VOCAB_FILES_MAP a__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ =['''input_ids''', '''attention_mask'''] a__ =CamembertTokenizer def __init__( self , A=None , A=None , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , A=["<s>NOTUSED", "</s>NOTUSED"] , **A , ) -> List[str]: # Mask token behave like a normal word, i.e. include the space before it _UpperCAmelCase : Union[str, Any] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( A , tokenizer_file=A , bos_token=A , eos_token=A , sep_token=A , cls_token=A , unk_token=A , pad_token=A , mask_token=A , additional_special_tokens=A , **A , ) _UpperCAmelCase : Union[str, Any] = vocab_file _UpperCAmelCase : Union[str, Any] = False if not self.vocab_file else True def __lowerCAmelCase ( self , A , A = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCAmelCase : Optional[int] = [self.cls_token_id] _UpperCAmelCase : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __lowerCAmelCase ( self , A , A = None ) -> List[int]: _UpperCAmelCase : Optional[Any] = [self.sep_token_id] _UpperCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self , A , A = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(A ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _UpperCAmelCase : Dict = os.path.join( A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) return (out_vocab_file,)
263
"""simple docstring""" import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def lowerCamelCase_ (UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any] ): _UpperCAmelCase : int = OmegaConf.load(UpperCamelCase__ ) _UpperCAmelCase : str = torch.load(UpperCamelCase__ , map_location='''cpu''' )['''model'''] _UpperCAmelCase : Optional[Any] = list(state_dict.keys() ) # extract state_dict for VQVAE _UpperCAmelCase : Any = {} _UpperCAmelCase : Any = '''first_stage_model.''' for key in keys: if key.startswith(UpperCamelCase__ ): _UpperCAmelCase : Dict = state_dict[key] # extract state_dict for UNetLDM _UpperCAmelCase : Tuple = {} _UpperCAmelCase : int = '''model.diffusion_model.''' for key in keys: if key.startswith(UpperCamelCase__ ): _UpperCAmelCase : Dict = state_dict[key] _UpperCAmelCase : List[str] = config.model.params.first_stage_config.params _UpperCAmelCase : Union[str, Any] = config.model.params.unet_config.params _UpperCAmelCase : Any = VQModel(**UpperCamelCase__ ).eval() vqvae.load_state_dict(UpperCamelCase__ ) _UpperCAmelCase : Union[str, Any] = UNetLDMModel(**UpperCamelCase__ ).eval() unet.load_state_dict(UpperCamelCase__ ) _UpperCAmelCase : int = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule='''scaled_linear''' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=UpperCamelCase__ , ) _UpperCAmelCase : Optional[Any] = LDMPipeline(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) pipeline.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": _lowerCAmelCase :Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', type=str, required=True) parser.add_argument('--config_path', type=str, required=True) parser.add_argument('--output_path', type=str, required=True) _lowerCAmelCase :List[Any] = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
263
1
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class lowerCamelCase__ ( unittest.TestCase ): def _UpperCamelCase ( self ): UpperCAmelCase = inspect.getfile(accelerate.test_utils ) UpperCAmelCase = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["""scripts""", """external_deps""", """test_metrics.py"""] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 UpperCAmelCase = test_metrics @require_cpu def _UpperCamelCase ( self ): debug_launcher(self.test_metrics.main ,num_processes=1 ) @require_cpu def _UpperCamelCase ( self ): debug_launcher(self.test_metrics.main ) @require_single_gpu def _UpperCamelCase ( self ): self.test_metrics.main() @require_multi_gpu def _UpperCamelCase ( self ): print(F'''Found {torch.cuda.device_count()} devices.''' ) UpperCAmelCase = ['''torchrun''', F'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowercase ,env=os.environ.copy() )
367
"""simple docstring""" import numpy as np def _a ( _snake_case ): """simple docstring""" return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
234
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _A ( unittest.TestCase ): """simple docstring""" def __init__( self : Any , __UpperCAmelCase : Dict , __UpperCAmelCase : Tuple=13 , __UpperCAmelCase : List[str]=3 , __UpperCAmelCase : Union[str, Any]=224 , __UpperCAmelCase : Optional[int]=30 , __UpperCAmelCase : Tuple=400 , __UpperCAmelCase : int=True , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : int=True , __UpperCAmelCase : Dict=[0.5, 0.5, 0.5] , __UpperCAmelCase : Optional[Any]=[0.5, 0.5, 0.5] , ): a : Dict = size if size is not None else {"height": 18, "width": 18} a : Dict = parent a : Any = batch_size a : Dict = num_channels a : str = image_size a : str = min_resolution a : List[str] = max_resolution a : Optional[int] = do_resize a : Union[str, Any] = size a : Union[str, Any] = do_normalize a : str = image_mean a : List[Any] = image_std def __snake_case ( self : int): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class _A ( _a ,unittest.TestCase ): """simple docstring""" UpperCAmelCase : List[str] = ViTImageProcessor if is_vision_available() else None def __snake_case ( self : Optional[int]): a : Tuple = EfficientFormerImageProcessorTester(self) @property def __snake_case ( self : int): return self.image_proc_tester.prepare_image_processor_dict() def __snake_case ( self : Tuple): a : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(__UpperCAmelCase , "image_mean")) self.assertTrue(hasattr(__UpperCAmelCase , "image_std")) self.assertTrue(hasattr(__UpperCAmelCase , "do_normalize")) self.assertTrue(hasattr(__UpperCAmelCase , "do_resize")) self.assertTrue(hasattr(__UpperCAmelCase , "size")) def __snake_case ( self : str): pass def __snake_case ( self : Optional[int]): # Initialize image_processor a : int = self.image_processing_class(**self.image_processor_dict) # create random PIL images a : int = prepare_image_inputs(self.image_proc_tester , equal_resolution=__UpperCAmelCase) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , Image.Image) # Test not batched input a : Tuple = image_processor(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched a : str = image_processor(__UpperCAmelCase , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) def __snake_case ( self : List[str]): # Initialize image_processor a : Dict = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors a : Optional[int] = prepare_image_inputs(self.image_proc_tester , equal_resolution=__UpperCAmelCase , numpify=__UpperCAmelCase) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , np.ndarray) # Test not batched input a : Union[str, Any] = image_processor(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched a : Any = image_processor(__UpperCAmelCase , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) def __snake_case ( self : Dict): # Initialize image_processor a : Optional[int] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors a : Union[str, Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=__UpperCAmelCase , torchify=__UpperCAmelCase) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , torch.Tensor) # Test not batched input a : Any = image_processor(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched a : List[Any] = image_processor(__UpperCAmelCase , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , )
40
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool UpperCAmelCase : List[Any] = { 'Acehnese Arabic': 'ace_Arab', 'Acehnese Latin': 'ace_Latn', 'Mesopotamian Arabic': 'acm_Arab', 'Ta\'izzi-Adeni Arabic': 'acq_Arab', 'Tunisian Arabic': 'aeb_Arab', 'Afrikaans': 'afr_Latn', 'South Levantine Arabic': 'ajp_Arab', 'Akan': 'aka_Latn', 'Amharic': 'amh_Ethi', 'North Levantine Arabic': 'apc_Arab', 'Modern Standard Arabic': 'arb_Arab', 'Modern Standard Arabic Romanized': 'arb_Latn', 'Najdi Arabic': 'ars_Arab', 'Moroccan Arabic': 'ary_Arab', 'Egyptian Arabic': 'arz_Arab', 'Assamese': 'asm_Beng', 'Asturian': 'ast_Latn', 'Awadhi': 'awa_Deva', 'Central Aymara': 'ayr_Latn', 'South Azerbaijani': 'azb_Arab', 'North Azerbaijani': 'azj_Latn', 'Bashkir': 'bak_Cyrl', 'Bambara': 'bam_Latn', 'Balinese': 'ban_Latn', 'Belarusian': 'bel_Cyrl', 'Bemba': 'bem_Latn', 'Bengali': 'ben_Beng', 'Bhojpuri': 'bho_Deva', 'Banjar Arabic': 'bjn_Arab', 'Banjar Latin': 'bjn_Latn', 'Standard Tibetan': 'bod_Tibt', 'Bosnian': 'bos_Latn', 'Buginese': 'bug_Latn', 'Bulgarian': 'bul_Cyrl', 'Catalan': 'cat_Latn', 'Cebuano': 'ceb_Latn', 'Czech': 'ces_Latn', 'Chokwe': 'cjk_Latn', 'Central Kurdish': 'ckb_Arab', 'Crimean Tatar': 'crh_Latn', 'Welsh': 'cym_Latn', 'Danish': 'dan_Latn', 'German': 'deu_Latn', 'Southwestern Dinka': 'dik_Latn', 'Dyula': 'dyu_Latn', 'Dzongkha': 'dzo_Tibt', 'Greek': 'ell_Grek', 'English': 'eng_Latn', 'Esperanto': 'epo_Latn', 'Estonian': 'est_Latn', 'Basque': 'eus_Latn', 'Ewe': 'ewe_Latn', 'Faroese': 'fao_Latn', 'Fijian': 'fij_Latn', 'Finnish': 'fin_Latn', 'Fon': 'fon_Latn', 'French': 'fra_Latn', 'Friulian': 'fur_Latn', 'Nigerian Fulfulde': 'fuv_Latn', 'Scottish Gaelic': 'gla_Latn', 'Irish': 'gle_Latn', 'Galician': 'glg_Latn', 'Guarani': 'grn_Latn', 'Gujarati': 'guj_Gujr', 'Haitian Creole': 'hat_Latn', 'Hausa': 'hau_Latn', 'Hebrew': 'heb_Hebr', 'Hindi': 'hin_Deva', 'Chhattisgarhi': 'hne_Deva', 'Croatian': 'hrv_Latn', 'Hungarian': 'hun_Latn', 'Armenian': 'hye_Armn', 'Igbo': 'ibo_Latn', 'Ilocano': 'ilo_Latn', 'Indonesian': 'ind_Latn', 'Icelandic': 'isl_Latn', 'Italian': 'ita_Latn', 'Javanese': 'jav_Latn', 'Japanese': 'jpn_Jpan', 'Kabyle': 'kab_Latn', 'Jingpho': 'kac_Latn', 'Kamba': 'kam_Latn', 'Kannada': 'kan_Knda', 'Kashmiri Arabic': 'kas_Arab', 'Kashmiri Devanagari': 'kas_Deva', 'Georgian': 'kat_Geor', 'Central Kanuri Arabic': 'knc_Arab', 'Central Kanuri Latin': 'knc_Latn', 'Kazakh': 'kaz_Cyrl', 'Kabiyè': 'kbp_Latn', 'Kabuverdianu': 'kea_Latn', 'Khmer': 'khm_Khmr', 'Kikuyu': 'kik_Latn', 'Kinyarwanda': 'kin_Latn', 'Kyrgyz': 'kir_Cyrl', 'Kimbundu': 'kmb_Latn', 'Northern Kurdish': 'kmr_Latn', 'Kikongo': 'kon_Latn', 'Korean': 'kor_Hang', 'Lao': 'lao_Laoo', 'Ligurian': 'lij_Latn', 'Limburgish': 'lim_Latn', 'Lingala': 'lin_Latn', 'Lithuanian': 'lit_Latn', 'Lombard': 'lmo_Latn', 'Latgalian': 'ltg_Latn', 'Luxembourgish': 'ltz_Latn', 'Luba-Kasai': 'lua_Latn', 'Ganda': 'lug_Latn', 'Luo': 'luo_Latn', 'Mizo': 'lus_Latn', 'Standard Latvian': 'lvs_Latn', 'Magahi': 'mag_Deva', 'Maithili': 'mai_Deva', 'Malayalam': 'mal_Mlym', 'Marathi': 'mar_Deva', 'Minangkabau Arabic ': 'min_Arab', 'Minangkabau Latin': 'min_Latn', 'Macedonian': 'mkd_Cyrl', 'Plateau Malagasy': 'plt_Latn', 'Maltese': 'mlt_Latn', 'Meitei Bengali': 'mni_Beng', 'Halh Mongolian': 'khk_Cyrl', 'Mossi': 'mos_Latn', 'Maori': 'mri_Latn', 'Burmese': 'mya_Mymr', 'Dutch': 'nld_Latn', 'Norwegian Nynorsk': 'nno_Latn', 'Norwegian Bokmål': 'nob_Latn', 'Nepali': 'npi_Deva', 'Northern Sotho': 'nso_Latn', 'Nuer': 'nus_Latn', 'Nyanja': 'nya_Latn', 'Occitan': 'oci_Latn', 'West Central Oromo': 'gaz_Latn', 'Odia': 'ory_Orya', 'Pangasinan': 'pag_Latn', 'Eastern Panjabi': 'pan_Guru', 'Papiamento': 'pap_Latn', 'Western Persian': 'pes_Arab', 'Polish': 'pol_Latn', 'Portuguese': 'por_Latn', 'Dari': 'prs_Arab', 'Southern Pashto': 'pbt_Arab', 'Ayacucho Quechua': 'quy_Latn', 'Romanian': 'ron_Latn', 'Rundi': 'run_Latn', 'Russian': 'rus_Cyrl', 'Sango': 'sag_Latn', 'Sanskrit': 'san_Deva', 'Santali': 'sat_Olck', 'Sicilian': 'scn_Latn', 'Shan': 'shn_Mymr', 'Sinhala': 'sin_Sinh', 'Slovak': 'slk_Latn', 'Slovenian': 'slv_Latn', 'Samoan': 'smo_Latn', 'Shona': 'sna_Latn', 'Sindhi': 'snd_Arab', 'Somali': 'som_Latn', 'Southern Sotho': 'sot_Latn', 'Spanish': 'spa_Latn', 'Tosk Albanian': 'als_Latn', 'Sardinian': 'srd_Latn', 'Serbian': 'srp_Cyrl', 'Swati': 'ssw_Latn', 'Sundanese': 'sun_Latn', 'Swedish': 'swe_Latn', 'Swahili': 'swh_Latn', 'Silesian': 'szl_Latn', 'Tamil': 'tam_Taml', 'Tatar': 'tat_Cyrl', 'Telugu': 'tel_Telu', 'Tajik': 'tgk_Cyrl', 'Tagalog': 'tgl_Latn', 'Thai': 'tha_Thai', 'Tigrinya': 'tir_Ethi', 'Tamasheq Latin': 'taq_Latn', 'Tamasheq Tifinagh': 'taq_Tfng', 'Tok Pisin': 'tpi_Latn', 'Tswana': 'tsn_Latn', 'Tsonga': 'tso_Latn', 'Turkmen': 'tuk_Latn', 'Tumbuka': 'tum_Latn', 'Turkish': 'tur_Latn', 'Twi': 'twi_Latn', 'Central Atlas Tamazight': 'tzm_Tfng', 'Uyghur': 'uig_Arab', 'Ukrainian': 'ukr_Cyrl', 'Umbundu': 'umb_Latn', 'Urdu': 'urd_Arab', 'Northern Uzbek': 'uzn_Latn', 'Venetian': 'vec_Latn', 'Vietnamese': 'vie_Latn', 'Waray': 'war_Latn', 'Wolof': 'wol_Latn', 'Xhosa': 'xho_Latn', 'Eastern Yiddish': 'ydd_Hebr', 'Yoruba': 'yor_Latn', 'Yue Chinese': 'yue_Hant', 'Chinese Simplified': 'zho_Hans', 'Chinese Traditional': 'zho_Hant', 'Standard Malay': 'zsm_Latn', 'Zulu': 'zul_Latn', } class lowerCamelCase__ ( A ): """simple docstring""" __a = """facebook/nllb-200-distilled-600M""" __a = ( """This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """ """be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """ """which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """ """plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`.""" ) __a = """translator""" __a = AutoTokenizer __a = AutoModelForSeqaSeqLM __a = LANGUAGE_CODES __a = ["""text""", """text""", """text"""] __a = ["""text"""] def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase : Tuple , UpperCamelCase : int , UpperCamelCase : List[Any] ): '''simple docstring''' if src_lang not in self.lang_to_code: raise ValueError(f'''{src_lang} is not a supported language.''' ) if tgt_lang not in self.lang_to_code: raise ValueError(f'''{tgt_lang} is not a supported language.''' ) __UpperCAmelCase : Union[str, Any] = self.lang_to_code[src_lang] __UpperCAmelCase : Dict = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( UpperCamelCase , return_tensors="""pt""" , src_lang=UpperCamelCase , tgt_lang=UpperCamelCase ) def lowerCamelCase__ ( self : Tuple , UpperCamelCase : List[str] ): '''simple docstring''' return self.model.generate(**UpperCamelCase ) def lowerCamelCase__ ( self : Dict , UpperCamelCase : Optional[Any] ): '''simple docstring''' return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=UpperCamelCase )
115
0
"""simple docstring""" import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin SCREAMING_SNAKE_CASE : Union[str, Any] = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_=16 , a_=13 , a_=7 , a_=14 , a_=10 , a_=19 , a_=5 , a_=4 , a_=True , a_=16 , a_=2 , a_=4 , a_=4 , a_="gelu" , a_=0.1 , a_=0.1 , a_=[1, 2, 3, 4, 5] , a_=25 , a_=5 , ): '''simple docstring''' __snake_case : List[str] = d_model __snake_case : str = parent __snake_case : Union[str, Any] = batch_size __snake_case : List[Any] = prediction_length __snake_case : Tuple = context_length __snake_case : Optional[int] = cardinality __snake_case : Tuple = num_time_features __snake_case : Union[str, Any] = lags_sequence __snake_case : Tuple = embedding_dimension __snake_case : int = is_training __snake_case : List[str] = hidden_size __snake_case : Tuple = num_hidden_layers __snake_case : Optional[Any] = num_attention_heads __snake_case : int = intermediate_size __snake_case : Union[str, Any] = hidden_act __snake_case : Optional[Any] = hidden_dropout_prob __snake_case : Union[str, Any] = attention_probs_dropout_prob __snake_case : Union[str, Any] = context_length __snake_case : str = prediction_length + label_length __snake_case : Union[str, Any] = label_length __snake_case : Dict = moving_average __snake_case : Tuple = autocorrelation_factor def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Any = config.context_length + max(config.lags_sequence ) __snake_case : Any = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) __snake_case : Any = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) __snake_case : Union[str, Any] = floats_tensor([self.batch_size, _past_length] ) __snake_case : Optional[int] = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs __snake_case : Optional[Any] = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) __snake_case : Any = floats_tensor([self.batch_size, config.prediction_length] ) __snake_case : Dict = { '''past_values''': past_values, '''static_categorical_features''': static_categorical_features, '''past_time_features''': past_time_features, '''past_observed_mask''': past_observed_mask, '''future_time_features''': future_time_features, '''future_values''': future_values, } return inputs_dict def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = self.get_config() __snake_case : List[Any] = self.prepare_autoformer_inputs_dict(a_ ) return config, inputs_dict def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case : str = self.prepare_config_and_inputs() return config, inputs_dict def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' __snake_case : int = AutoformerModel(config=a_ ).to(a_ ).eval() __snake_case : Union[str, Any] = model(**a_ ) __snake_case : str = outputs.encoder_last_hidden_state __snake_case : int = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : int = model.get_encoder() encoder.save_pretrained(a_ ) __snake_case : Any = AutoformerEncoder.from_pretrained(a_ ).to(a_ ) __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : List[str] = model.create_network_inputs(**a_ ) __snake_case , __snake_case : Union[str, Any] = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) __snake_case : int = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) __snake_case : Optional[int] = encoder(inputs_embeds=a_ )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) __snake_case : List[Any] = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) __snake_case : int = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) __snake_case : Tuple = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) __snake_case : List[str] = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : Dict = model.get_decoder() decoder.save_pretrained(a_ ) __snake_case : List[str] = AutoformerDecoder.from_pretrained(a_ ).to(a_ ) __snake_case : Optional[int] = decoder( trend=a_ , inputs_embeds=a_ , encoder_hidden_states=a_ , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class _UpperCAmelCase ( __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =(AutoformerModel, AutoformerForPrediction) if is_torch_available() else () lowerCamelCase__ =(AutoformerForPrediction,) if is_torch_available() else () lowerCamelCase__ ={'feature-extraction': AutoformerModel} if is_torch_available() else {} lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = AutoformerModelTester(self ) __snake_case : Dict = ConfigTester(self , config_class=a_ , has_text_modality=a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case : Dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __snake_case : Dict = model_class(a_ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(a_ ) __snake_case , __snake_case : List[str] = model_class.from_pretrained(a_ , output_loading_info=a_ ) self.assertEqual(info['''missing_keys'''] , [] ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*a_ ) @unittest.skip(reason='''Model has no tokens embeddings''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = inspect.signature(getattr(a_ , '''forward''' ) ) # The main input is the name of the argument after `self` __snake_case : Optional[int] = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Dict = model_class(a_ ) __snake_case : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : str = [*signature.parameters.keys()] __snake_case : str = [ '''past_values''', '''past_time_features''', '''past_observed_mask''', '''static_categorical_features''', '''static_real_features''', '''future_values''', '''future_time_features''', ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append('''future_observed_mask''' ) expected_arg_names.extend( [ '''decoder_attention_mask''', '''head_mask''', '''decoder_head_mask''', '''cross_attn_head_mask''', '''encoder_outputs''', '''past_key_values''', '''output_hidden_states''', '''output_attentions''', '''use_cache''', '''return_dict''', ] ) self.assertListEqual(arg_names[: len(a_ )] , a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : List[str] = True __snake_case : Optional[int] = getattr(self.model_tester , '''seq_length''' , a_ ) __snake_case : Optional[int] = getattr(self.model_tester , '''decoder_seq_length''' , a_ ) __snake_case : List[Any] = getattr(self.model_tester , '''encoder_seq_length''' , a_ ) __snake_case : Any = getattr(self.model_tester , '''d_model''' , a_ ) __snake_case : int = getattr(self.model_tester , '''num_attention_heads''' , a_ ) __snake_case : Optional[int] = d_model // num_attention_heads for model_class in self.all_model_classes: __snake_case : List[str] = True __snake_case : List[str] = False __snake_case : Tuple = True __snake_case : List[Any] = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): __snake_case : List[str] = model(**self._prepare_for_class(a_ , a_ ) ) __snake_case : Optional[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(a_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __snake_case : Any = True __snake_case : List[Any] = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): __snake_case : Dict = model(**self._prepare_for_class(a_ , a_ ) ) __snake_case : Union[str, Any] = outputs.encoder_attentions self.assertEqual(len(a_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) __snake_case : List[str] = len(a_ ) __snake_case : Optional[int] = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(a_ , a_ ) # decoder attentions __snake_case : Optional[Any] = outputs.decoder_attentions self.assertIsInstance(a_ , (list, tuple) ) self.assertEqual(len(a_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions __snake_case : Optional[int] = outputs.cross_attentions self.assertIsInstance(a_ , (list, tuple) ) self.assertEqual(len(a_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine __snake_case : Any = True __snake_case : Optional[Any] = True __snake_case : Dict = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): __snake_case : List[Any] = model(**self._prepare_for_class(a_ , a_ ) ) self.assertEqual(out_len + 2 , len(a_ ) ) __snake_case : List[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(a_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' super().test_retain_grad_hidden_states_attentions() def lowercase ( _snake_case : Optional[Any]="train-batch.pt" ) ->Dict: """simple docstring""" __snake_case : Tuple = hf_hub_download(repo_id='''hf-internal-testing/tourism-monthly-batch''' , filename=_snake_case , repo_type='''dataset''' ) __snake_case : int = torch.load(_snake_case , map_location=_snake_case ) return batch @require_torch @slow class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = AutoformerModel.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(a_ ) __snake_case : Union[str, Any] = prepare_batch() with torch.no_grad(): __snake_case : int = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , future_values=batch['''future_values'''] , future_time_features=batch['''future_time_features'''] , )[0] __snake_case : Any = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , a_ ) __snake_case : Optional[Any] = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=a_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , a_ , atol=a_ ) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(a_ ) __snake_case : Tuple = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): __snake_case : Any = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , ).encoder_last_hidden_state __snake_case : List[Any] = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , a_ ) __snake_case : Union[str, Any] = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=a_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , a_ , atol=a_ ) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(a_ ) __snake_case : Optional[int] = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): __snake_case : List[str] = model.generate( static_categorical_features=batch['''static_categorical_features'''] , past_time_features=batch['''past_time_features'''] , past_values=batch['''past_values'''] , future_time_features=batch['''future_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , ) __snake_case : Optional[Any] = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , a_ ) __snake_case : Optional[int] = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=a_ ) __snake_case : List[str] = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , a_ , rtol=1E-1 ) )
24
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=True , a_=True , a_=99 , a_=24 , a_=2 , a_=6 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=16 , a_=2 , a_=0.02 , a_=3 , a_=None , a_=10_00 , ): '''simple docstring''' __snake_case : Any = parent __snake_case : int = batch_size __snake_case : Dict = seq_length __snake_case : List[str] = is_training __snake_case : List[Any] = use_input_mask __snake_case : int = use_token_type_ids __snake_case : Union[str, Any] = use_labels __snake_case : str = vocab_size __snake_case : int = hidden_size __snake_case : Optional[int] = num_hidden_layers __snake_case : int = num_attention_heads __snake_case : str = intermediate_size __snake_case : Union[str, Any] = hidden_act __snake_case : int = hidden_dropout_prob __snake_case : Union[str, Any] = attention_probs_dropout_prob __snake_case : List[Any] = max_position_embeddings __snake_case : Any = type_vocab_size __snake_case : Dict = type_sequence_label_size __snake_case : Optional[Any] = initializer_range __snake_case : Union[str, Any] = num_labels __snake_case : Any = scope __snake_case : Any = range_bbox def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : int = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __snake_case : List[str] = bbox[i, j, 3] __snake_case : Any = bbox[i, j, 1] __snake_case : Tuple = t if bbox[i, j, 2] < bbox[i, j, 0]: __snake_case : List[str] = bbox[i, j, 2] __snake_case : Union[str, Any] = bbox[i, j, 0] __snake_case : Dict = t __snake_case : Optional[int] = None if self.use_input_mask: __snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __snake_case : Dict = None if self.use_token_type_ids: __snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : List[str] = None __snake_case : Union[str, Any] = None if self.use_labels: __snake_case : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : List[Any] = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Union[str, Any] = LiltModel(config=a_ ) model.to(a_ ) model.eval() __snake_case : Any = model(a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ ) __snake_case : str = model(a_ , bbox=a_ , token_type_ids=a_ ) __snake_case : List[str] = model(a_ , bbox=a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Optional[int] = self.num_labels __snake_case : List[str] = LiltForTokenClassification(config=a_ ) model.to(a_ ) model.eval() __snake_case : Tuple = model( a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Optional[Any] = LiltForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() __snake_case : int = model( a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ , start_positions=a_ , end_positions=a_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Dict = config_and_inputs __snake_case : Any = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class _UpperCAmelCase ( __snake_case, __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase__ =( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =False lowerCamelCase__ =False def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' return True def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = LiltModelTester(self ) __snake_case : Optional[Any] = ConfigTester(self , config_class=a_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case : Dict = type self.model_tester.create_and_check_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Any = LiltModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @require_torch @slow class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(a_ ) __snake_case : Dict = torch.tensor([[1, 2]] , device=a_ ) __snake_case : str = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=a_ ) # forward pass with torch.no_grad(): __snake_case : Union[str, Any] = model(input_ids=a_ , bbox=a_ ) __snake_case : Union[str, Any] = torch.Size([1, 2, 7_68] ) __snake_case : str = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=a_ , ) self.assertTrue(outputs.last_hidden_state.shape , a_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , a_ , atol=1E-3 ) )
24
1
import sys import turtle def _A ( _lowercase , _lowercase ) -> Tuple: """simple docstring""" return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def _A ( _lowercase , _lowercase , _lowercase , _lowercase , ) -> Union[str, Any]: """simple docstring""" my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(A__ , get_mid(A__ , A__ ) , get_mid(A__ , A__ ) , depth - 1 ) triangle(A__ , get_mid(A__ , A__ ) , get_mid(A__ , A__ ) , depth - 1 ) triangle(A__ , get_mid(A__ , A__ ) , get_mid(A__ , A__ ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( '''Correct format for using this script: ''' '''python fractals.py <int:depth_for_fractal>''' ) __snake_case = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('''red''') __snake_case = [(-1_7_5, -1_2_5), (0, 1_7_5), (1_7_5, -1_2_5)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
310
'''simple docstring''' import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" lowercase = ['image_processor', 'tokenizer'] lowercase = 'AutoImageProcessor' lowercase = 'AutoTokenizer' def __init__( self : int , lowerCamelCase : List[str]=None , lowerCamelCase : Union[str, Any]=None , **lowerCamelCase : str ) -> Tuple: lowerCAmelCase_ : str = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowerCamelCase , ) lowerCAmelCase_ : Tuple = kwargs.pop("""feature_extractor""" ) lowerCAmelCase_ : Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowerCamelCase , lowerCamelCase ) lowerCAmelCase_ : Optional[int] = self.image_processor lowerCAmelCase_ : Any = False def __call__( self : List[Any] , *lowerCamelCase : str , **lowerCamelCase : Tuple ) -> Union[str, Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*lowerCamelCase , **lowerCamelCase ) lowerCAmelCase_ : Any = kwargs.pop("""images""" , lowerCamelCase ) lowerCAmelCase_ : Dict = kwargs.pop("""text""" , lowerCamelCase ) if len(lowerCamelCase ) > 0: lowerCAmelCase_ : str = args[0] lowerCAmelCase_ : Dict = args[1:] if images is None and text is None: raise ValueError("""You need to specify either an `images` or `text` input to process.""" ) if images is not None: lowerCAmelCase_ : Any = self.image_processor(lowerCamelCase , *lowerCamelCase , **lowerCamelCase ) if text is not None: lowerCAmelCase_ : str = self.tokenizer(lowerCamelCase , **lowerCamelCase ) if text is None: return inputs elif images is None: return encodings else: lowerCAmelCase_ : Dict = encodings["""input_ids"""] return inputs def __lowercase ( self : str , *lowerCamelCase : Union[str, Any] , **lowerCamelCase : Union[str, Any] ) -> List[str]: return self.tokenizer.batch_decode(*lowerCamelCase , **lowerCamelCase ) def __lowercase ( self : List[Any] , *lowerCamelCase : Any , **lowerCamelCase : Union[str, Any] ) -> List[str]: return self.tokenizer.decode(*lowerCamelCase , **lowerCamelCase ) @contextmanager def __lowercase ( self : str ) -> Union[str, Any]: warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your images inputs, or in a separate call.""" ) lowerCAmelCase_ : List[str] = True lowerCAmelCase_ : Optional[Any] = self.tokenizer yield lowerCAmelCase_ : List[Any] = self.image_processor lowerCAmelCase_ : List[str] = False def __lowercase ( self : Dict , lowerCamelCase : List[str] , lowerCamelCase : str=False , lowerCamelCase : List[Any]=None ) -> Optional[int]: if added_vocab is None: lowerCAmelCase_ : str = self.tokenizer.get_added_vocab() lowerCAmelCase_ : Union[str, Any] = {} while tokens: lowerCAmelCase_ : Dict = re.search(R"""<s_(.*?)>""" , lowerCamelCase , re.IGNORECASE ) if start_token is None: break lowerCAmelCase_ : Tuple = start_token.group(1 ) lowerCAmelCase_ : Tuple = re.search(RF'</s_{key}>' , lowerCamelCase , re.IGNORECASE ) lowerCAmelCase_ : Tuple = start_token.group() if end_token is None: lowerCAmelCase_ : str = tokens.replace(lowerCamelCase , """""" ) else: lowerCAmelCase_ : List[str] = end_token.group() lowerCAmelCase_ : Dict = re.escape(lowerCamelCase ) lowerCAmelCase_ : int = re.escape(lowerCamelCase ) lowerCAmelCase_ : Dict = re.search(F'{start_token_escaped}(.*?){end_token_escaped}' , lowerCamelCase , re.IGNORECASE ) if content is not None: lowerCAmelCase_ : str = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node lowerCAmelCase_ : str = self.tokenajson(lowerCamelCase , is_inner_value=lowerCamelCase , added_vocab=lowerCamelCase ) if value: if len(lowerCamelCase ) == 1: lowerCAmelCase_ : List[Any] = value[0] lowerCAmelCase_ : Optional[Any] = value else: # leaf nodes lowerCAmelCase_ : List[str] = [] for leaf in content.split(R"""<sep/>""" ): lowerCAmelCase_ : Union[str, Any] = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": lowerCAmelCase_ : Any = leaf[1:-2] # for categorical special tokens output[key].append(lowerCamelCase ) if len(output[key] ) == 1: lowerCAmelCase_ : Optional[Any] = output[key][0] lowerCAmelCase_ : List[Any] = tokens[tokens.find(lowerCamelCase ) + len(lowerCamelCase ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=lowerCamelCase , added_vocab=lowerCamelCase ) if len(lowerCamelCase ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def __lowercase ( self : Dict ) -> int: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , lowerCamelCase , ) return self.image_processor_class @property def __lowercase ( self : Dict ) -> Optional[Any]: warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , lowerCamelCase , ) return self.image_processor
120
0
def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def __lowerCamelCase ( ): """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
121
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class snake_case__(unittest.TestCase ): """simple docstring""" @slow def snake_case ( self : Optional[int] ): lowercase__ : Dict = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" ) lowercase__ : Dict = AutoTokenizer.from_pretrained("google/mt5-small" ) lowercase__ : Optional[Any] = tokenizer("Hello there" , return_tensors="np" ).input_ids lowercase__ : Optional[Any] = tokenizer("Hi I am" , return_tensors="np" ).input_ids lowercase__ : int = shift_tokens_right(SCREAMING_SNAKE_CASE , model.config.pad_token_id , model.config.decoder_start_token_id ) lowercase__ : Tuple = model(SCREAMING_SNAKE_CASE , decoder_input_ids=SCREAMING_SNAKE_CASE ).logits lowercase__ : Dict = optax.softmax_cross_entropy(SCREAMING_SNAKE_CASE , onehot(SCREAMING_SNAKE_CASE , logits.shape[-1] ) ).mean() lowercase__ : Union[str, Any] = -(labels.shape[-1] * loss.item()) lowercase__ : Union[str, Any] = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
121
1
import numpy as np def lowerCamelCase__ ( A__ : np.ndarray ): '''simple docstring''' return 1 / (1 + np.exp(-vector )) def lowerCamelCase__ ( A__ : np.ndarray ): '''simple docstring''' return vector * sigmoid(A__ ) if __name__ == "__main__": import doctest doctest.testmod()
12
"""simple docstring""" from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker _A : int = """CompVis/stable-diffusion-v1-1""" _A : Any = """CompVis/stable-diffusion-v1-2""" _A : Optional[int] = """CompVis/stable-diffusion-v1-3""" _A : Union[str, Any] = """CompVis/stable-diffusion-v1-4""" class a__ ( a_ ): def __init__( self , _a , _a , _a , _a , _a , _a , _a , _a = True , ): super()._init_() lowercase : Optional[Any] = StableDiffusionPipeline.from_pretrained(_a ) lowercase : str = StableDiffusionPipeline.from_pretrained(_a ) lowercase : Dict = StableDiffusionPipeline.from_pretrained(_a ) lowercase : Union[str, Any] = StableDiffusionPipeline( vae=_a , text_encoder=_a , tokenizer=_a , unet=_a , scheduler=_a , safety_checker=_a , feature_extractor=_a , requires_safety_checker=_a , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def __magic_name__ ( self ): return {k: getattr(self , _a ) for k in self.config.keys() if not k.startswith("_" )} def __magic_name__ ( self , _a = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowercase : str = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_a ) def __magic_name__ ( self ): self.enable_attention_slicing(_a ) @torch.no_grad() def __magic_name__ ( self , _a , _a = 512 , _a = 512 , _a = 50 , _a = 7.5 , _a = None , _a = 1 , _a = 0.0 , _a = None , _a = None , _a = "pil" , _a = True , _a = None , _a = 1 , **_a , ): return self.pipea( prompt=_a , height=_a , width=_a , num_inference_steps=_a , guidance_scale=_a , negative_prompt=_a , num_images_per_prompt=_a , eta=_a , generator=_a , latents=_a , output_type=_a , return_dict=_a , callback=_a , callback_steps=_a , **_a , ) @torch.no_grad() def __magic_name__ ( self , _a , _a = 512 , _a = 512 , _a = 50 , _a = 7.5 , _a = None , _a = 1 , _a = 0.0 , _a = None , _a = None , _a = "pil" , _a = True , _a = None , _a = 1 , **_a , ): return self.pipea( prompt=_a , height=_a , width=_a , num_inference_steps=_a , guidance_scale=_a , negative_prompt=_a , num_images_per_prompt=_a , eta=_a , generator=_a , latents=_a , output_type=_a , return_dict=_a , callback=_a , callback_steps=_a , **_a , ) @torch.no_grad() def __magic_name__ ( self , _a , _a = 512 , _a = 512 , _a = 50 , _a = 7.5 , _a = None , _a = 1 , _a = 0.0 , _a = None , _a = None , _a = "pil" , _a = True , _a = None , _a = 1 , **_a , ): return self.pipea( prompt=_a , height=_a , width=_a , num_inference_steps=_a , guidance_scale=_a , negative_prompt=_a , num_images_per_prompt=_a , eta=_a , generator=_a , latents=_a , output_type=_a , return_dict=_a , callback=_a , callback_steps=_a , **_a , ) @torch.no_grad() def __magic_name__ ( self , _a , _a = 512 , _a = 512 , _a = 50 , _a = 7.5 , _a = None , _a = 1 , _a = 0.0 , _a = None , _a = None , _a = "pil" , _a = True , _a = None , _a = 1 , **_a , ): return self.pipea( prompt=_a , height=_a , width=_a , num_inference_steps=_a , guidance_scale=_a , negative_prompt=_a , num_images_per_prompt=_a , eta=_a , generator=_a , latents=_a , output_type=_a , return_dict=_a , callback=_a , callback_steps=_a , **_a , ) @torch.no_grad() def __magic_name__ ( self , _a , _a = 512 , _a = 512 , _a = 50 , _a = 7.5 , _a = None , _a = 1 , _a = 0.0 , _a = None , _a = None , _a = "pil" , _a = True , _a = None , _a = 1 , **_a , ): lowercase : List[Any] = "cuda" if torch.cuda.is_available() else "cpu" self.to(_a ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" ) # Get first result from Stable Diffusion Checkpoint v1.1 lowercase : List[Any] = self.textaimg_sda_a( prompt=_a , height=_a , width=_a , num_inference_steps=_a , guidance_scale=_a , negative_prompt=_a , num_images_per_prompt=_a , eta=_a , generator=_a , latents=_a , output_type=_a , return_dict=_a , callback=_a , callback_steps=_a , **_a , ) # Get first result from Stable Diffusion Checkpoint v1.2 lowercase : Any = self.textaimg_sda_a( prompt=_a , height=_a , width=_a , num_inference_steps=_a , guidance_scale=_a , negative_prompt=_a , num_images_per_prompt=_a , eta=_a , generator=_a , latents=_a , output_type=_a , return_dict=_a , callback=_a , callback_steps=_a , **_a , ) # Get first result from Stable Diffusion Checkpoint v1.3 lowercase : str = self.textaimg_sda_a( prompt=_a , height=_a , width=_a , num_inference_steps=_a , guidance_scale=_a , negative_prompt=_a , num_images_per_prompt=_a , eta=_a , generator=_a , latents=_a , output_type=_a , return_dict=_a , callback=_a , callback_steps=_a , **_a , ) # Get first result from Stable Diffusion Checkpoint v1.4 lowercase : Optional[int] = self.textaimg_sda_a( prompt=_a , height=_a , width=_a , num_inference_steps=_a , guidance_scale=_a , negative_prompt=_a , num_images_per_prompt=_a , eta=_a , generator=_a , latents=_a , output_type=_a , return_dict=_a , callback=_a , callback_steps=_a , **_a , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
202
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase : Tuple = {"configuration_wavlm": ["WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "WavLMConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = [ "WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST", "WavLMForAudioFrameClassification", "WavLMForCTC", "WavLMForSequenceClassification", "WavLMForXVector", "WavLMModel", "WavLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
114
'''simple docstring''' from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def _lowerCAmelCase ( _UpperCamelCase : int ) -> bool: """simple docstring""" _SCREAMING_SNAKE_CASE =int(number**0.5 ) return number == sq * sq def _lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int ) -> tuple[int, int]: """simple docstring""" _SCREAMING_SNAKE_CASE =x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _SCREAMING_SNAKE_CASE =x_den * y_den * z_den _SCREAMING_SNAKE_CASE =gcd(_UpperCamelCase , _UpperCamelCase ) top //= hcf bottom //= hcf return top, bottom def _lowerCAmelCase ( _UpperCamelCase : int = 35 ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =set() _SCREAMING_SNAKE_CASE =42 _SCREAMING_SNAKE_CASE =Fraction(0 ) _SCREAMING_SNAKE_CASE =42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _SCREAMING_SNAKE_CASE =x_num * y_den + x_den * y_num _SCREAMING_SNAKE_CASE =x_den * y_den _SCREAMING_SNAKE_CASE =gcd(_UpperCamelCase , _UpperCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _SCREAMING_SNAKE_CASE =add_three( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) unique_s.add(_UpperCamelCase ) # n=2 _SCREAMING_SNAKE_CASE =( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _SCREAMING_SNAKE_CASE =x_den * x_den * y_den * y_den if is_sq(_UpperCamelCase ) and is_sq(_UpperCamelCase ): _SCREAMING_SNAKE_CASE =int(sqrt(_UpperCamelCase ) ) _SCREAMING_SNAKE_CASE =int(sqrt(_UpperCamelCase ) ) _SCREAMING_SNAKE_CASE =gcd(_UpperCamelCase , _UpperCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _SCREAMING_SNAKE_CASE =add_three( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) unique_s.add(_UpperCamelCase ) # n=-1 _SCREAMING_SNAKE_CASE =x_num * y_num _SCREAMING_SNAKE_CASE =x_den * y_num + x_num * y_den _SCREAMING_SNAKE_CASE =gcd(_UpperCamelCase , _UpperCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _SCREAMING_SNAKE_CASE =add_three( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) unique_s.add(_UpperCamelCase ) # n=2 _SCREAMING_SNAKE_CASE =x_num * x_num * y_num * y_num _SCREAMING_SNAKE_CASE =( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_UpperCamelCase ) and is_sq(_UpperCamelCase ): _SCREAMING_SNAKE_CASE =int(sqrt(_UpperCamelCase ) ) _SCREAMING_SNAKE_CASE =int(sqrt(_UpperCamelCase ) ) _SCREAMING_SNAKE_CASE =gcd(_UpperCamelCase , _UpperCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _SCREAMING_SNAKE_CASE =add_three( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) unique_s.add(_UpperCamelCase ) for num, den in unique_s: total += Fraction(_UpperCamelCase , _UpperCamelCase ) return total.denominator + total.numerator if __name__ == "__main__": print(f'''{solution() = }''')
114
1
"""simple docstring""" import random from .binary_exp_mod import bin_exp_mod def a__ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any]=1_0_0_0 ): '''simple docstring''' if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd lowerCAmelCase : Optional[Any] = n - 1 lowerCAmelCase : Optional[Any] = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) lowerCAmelCase : Optional[Any] = 0 while count < prec: lowerCAmelCase : Optional[int] = random.randint(2 , n - 1 ) lowerCAmelCase : str = bin_exp_mod(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if b != 1: lowerCAmelCase : Optional[int] = True for _ in range(_lowerCamelCase ): if b == n - 1: lowerCAmelCase : List[Any] = False break lowerCAmelCase : int = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": lowerCAmelCase__ = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
108
"""simple docstring""" from math import pow, sqrt def lowerCamelCase__ ( *_lowerCamelCase : float ) -> bool: lowerCamelCase_ = len(_lowerCamelCase ) > 0 and all(value > 0.0 for value in values ) return result def lowerCamelCase__ ( _lowerCamelCase : float , _lowerCamelCase : float ) -> float | ValueError: return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(_lowerCamelCase , _lowerCamelCase ) else ValueError('Input Error: Molar mass values must greater than 0.' ) ) def lowerCamelCase__ ( _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float ) -> float | ValueError: return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def lowerCamelCase__ ( _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float ) -> float | ValueError: return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def lowerCamelCase__ ( _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float ) -> float | ValueError: return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def lowerCamelCase__ ( _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float ) -> float | ValueError: return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) )
183
0
import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Optional[Any] = { 'facebook/encodec_24khz': 'https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json', 'facebook/encodec_48khz': 'https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json', } class lowercase_ ( __snake_case ): _lowerCamelCase = 'encodec' def __init__( self , lowercase_=[1.5, 3.0, 6.0, 12.0, 24.0] , lowercase_=24_000 , lowercase_=1 , lowercase_=False , lowercase_=None , lowercase_=None , lowercase_=128 , lowercase_=32 , lowercase_=1 , lowercase_=[8, 5, 4, 2] , lowercase_="weight_norm" , lowercase_=7 , lowercase_=7 , lowercase_=3 , lowercase_=2 , lowercase_=True , lowercase_="reflect" , lowercase_=2 , lowercase_=2 , lowercase_=1.0 , lowercase_=1_024 , lowercase_=None , lowercase_=True , **lowercase_ , ): _snake_case : int = target_bandwidths _snake_case : int = sampling_rate _snake_case : Union[str, Any] = audio_channels _snake_case : List[str] = normalize _snake_case : List[str] = chunk_length_s _snake_case : Union[str, Any] = overlap _snake_case : Tuple = hidden_size _snake_case : Optional[int] = num_filters _snake_case : str = num_residual_layers _snake_case : Tuple = upsampling_ratios _snake_case : Union[str, Any] = norm_type _snake_case : Union[str, Any] = kernel_size _snake_case : Tuple = last_kernel_size _snake_case : Optional[int] = residual_kernel_size _snake_case : List[Any] = dilation_growth_rate _snake_case : Any = use_causal_conv _snake_case : Tuple = pad_mode _snake_case : Tuple = compress _snake_case : Union[str, Any] = num_lstm_layers _snake_case : Any = trim_right_ratio _snake_case : str = codebook_size _snake_case : Dict = codebook_dim if codebook_dim is not None else hidden_size _snake_case : List[str] = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" ) super().__init__(**lowercase_ ) @property def UpperCamelCase ( self ): if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def UpperCamelCase ( self ): if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def UpperCamelCase ( self ): _snake_case : List[str] = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def UpperCamelCase ( self ): return int(1_000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
284
from __future__ import annotations def snake_case (__lowercase , __lowercase ) -> float: '''simple docstring''' _snake_case : Any = sorted(numsa + numsa ) _snake_case ,_snake_case : Any = divmod(len(__lowercase ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() __SCREAMING_SNAKE_CASE : Union[str, Any] = [float(x) for x in input('Enter the elements of first array: ').split()] __SCREAMING_SNAKE_CASE : List[Any] = [float(x) for x in input('Enter the elements of second array: ').split()] print(F'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
284
1
'''simple docstring''' import os from math import logaa def SCREAMING_SNAKE_CASE_ (UpperCamelCase = "base_exp.txt" ) -> int: lowerCamelCase__ : float = 0 lowerCamelCase__ : str = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(UpperCamelCase ) , UpperCamelCase ) ) ): lowerCamelCase__ , lowerCamelCase__ : Dict = list(map(UpperCamelCase , line.split(""",""" ) ) ) if x * logaa(UpperCamelCase ) > largest: lowerCamelCase__ : Tuple = x * logaa(UpperCamelCase ) lowerCamelCase__ : Union[str, Any] = i + 1 return result if __name__ == "__main__": print(solution())
41
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _A : List[str] =logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase=False , UpperCamelCase=False , UpperCamelCase=False ) -> Union[str, Any]: lowerCamelCase__ : str = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''transformer.blocks.{i}.norm1.weight''', f'''vilt.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.norm1.bias''', f'''vilt.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''transformer.blocks.{i}.attn.proj.weight''', f'''vilt.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''transformer.blocks.{i}.attn.proj.bias''', f'''vilt.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''transformer.blocks.{i}.norm2.weight''', f'''vilt.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.norm2.bias''', f'''vilt.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append( (f'''transformer.blocks.{i}.mlp.fc1.weight''', f'''vilt.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.mlp.fc1.bias''', f'''vilt.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''transformer.blocks.{i}.mlp.fc2.weight''', f'''vilt.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.mlp.fc2.bias''', f'''vilt.encoder.layer.{i}.output.dense.bias''') ) # embeddings rename_keys.extend( [ # text embeddings ("""text_embeddings.word_embeddings.weight""", """vilt.embeddings.text_embeddings.word_embeddings.weight"""), ( """text_embeddings.position_embeddings.weight""", """vilt.embeddings.text_embeddings.position_embeddings.weight""", ), ("""text_embeddings.position_ids""", """vilt.embeddings.text_embeddings.position_ids"""), ( """text_embeddings.token_type_embeddings.weight""", """vilt.embeddings.text_embeddings.token_type_embeddings.weight""", ), ("""text_embeddings.LayerNorm.weight""", """vilt.embeddings.text_embeddings.LayerNorm.weight"""), ("""text_embeddings.LayerNorm.bias""", """vilt.embeddings.text_embeddings.LayerNorm.bias"""), # patch embeddings ("""transformer.cls_token""", """vilt.embeddings.cls_token"""), ("""transformer.patch_embed.proj.weight""", """vilt.embeddings.patch_embeddings.projection.weight"""), ("""transformer.patch_embed.proj.bias""", """vilt.embeddings.patch_embeddings.projection.bias"""), ("""transformer.pos_embed""", """vilt.embeddings.position_embeddings"""), # token type embeddings ("""token_type_embeddings.weight""", """vilt.embeddings.token_type_embeddings.weight"""), ] ) # final layernorm + pooler rename_keys.extend( [ ("""transformer.norm.weight""", """vilt.layernorm.weight"""), ("""transformer.norm.bias""", """vilt.layernorm.bias"""), ("""pooler.dense.weight""", """vilt.pooler.dense.weight"""), ("""pooler.dense.bias""", """vilt.pooler.dense.bias"""), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ("""vqa_classifier.0.weight""", """classifier.0.weight"""), ("""vqa_classifier.0.bias""", """classifier.0.bias"""), ("""vqa_classifier.1.weight""", """classifier.1.weight"""), ("""vqa_classifier.1.bias""", """classifier.1.bias"""), ("""vqa_classifier.3.weight""", """classifier.3.weight"""), ("""vqa_classifier.3.bias""", """classifier.3.bias"""), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ("""nlvr2_classifier.0.weight""", """classifier.0.weight"""), ("""nlvr2_classifier.0.bias""", """classifier.0.bias"""), ("""nlvr2_classifier.1.weight""", """classifier.1.weight"""), ("""nlvr2_classifier.1.bias""", """classifier.1.bias"""), ("""nlvr2_classifier.3.weight""", """classifier.3.weight"""), ("""nlvr2_classifier.3.bias""", """classifier.3.bias"""), ] ) else: pass return rename_keys def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> Optional[Any]: for i in range(config.num_hidden_layers ): lowerCamelCase__ : str = """vilt.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase__ : List[str] = state_dict.pop(f'''transformer.blocks.{i}.attn.qkv.weight''' ) lowerCamelCase__ : str = state_dict.pop(f'''transformer.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__ : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] lowerCamelCase__ : Union[str, Any] = in_proj_bias[: config.hidden_size] lowerCamelCase__ : Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase__ : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase__ : Optional[int] = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase__ : List[str] = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Any: lowerCamelCase__ : Dict = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(UpperCamelCase , UpperCamelCase ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Dict: lowerCamelCase__ : int = dct.pop(UpperCamelCase ) lowerCamelCase__ : Optional[Any] = val @torch.no_grad() def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> Tuple: lowerCamelCase__ : List[str] = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=UpperCamelCase ) lowerCamelCase__ : Union[str, Any] = False lowerCamelCase__ : List[str] = False lowerCamelCase__ : Any = False lowerCamelCase__ : int = False if "vqa" in checkpoint_url: lowerCamelCase__ : List[Any] = True lowerCamelCase__ : Any = 3129 lowerCamelCase__ : Tuple = """huggingface/label-files""" lowerCamelCase__ : List[str] = """vqa2-id2label.json""" lowerCamelCase__ : str = json.load(open(hf_hub_download(UpperCamelCase , UpperCamelCase , repo_type="""dataset""" ) , """r""" ) ) lowerCamelCase__ : Any = {int(UpperCamelCase ): v for k, v in idalabel.items()} lowerCamelCase__ : Union[str, Any] = idalabel lowerCamelCase__ : int = {v: k for k, v in idalabel.items()} lowerCamelCase__ : Tuple = ViltForQuestionAnswering(UpperCamelCase ) elif "nlvr" in checkpoint_url: lowerCamelCase__ : Optional[Any] = True lowerCamelCase__ : List[Any] = 2 lowerCamelCase__ : Any = {0: """False""", 1: """True"""} lowerCamelCase__ : int = {v: k for k, v in config.idalabel.items()} lowerCamelCase__ : Any = 3 lowerCamelCase__ : List[str] = ViltForImagesAndTextClassification(UpperCamelCase ) elif "irtr" in checkpoint_url: lowerCamelCase__ : List[str] = True lowerCamelCase__ : Optional[int] = ViltForImageAndTextRetrieval(UpperCamelCase ) elif "mlm_itm" in checkpoint_url: lowerCamelCase__ : Optional[Any] = True lowerCamelCase__ : Optional[Any] = ViltForMaskedLM(UpperCamelCase ) else: raise ValueError("""Unknown model type""" ) # load state_dict of original model, remove and rename some keys lowerCamelCase__ : Dict = torch.hub.load_state_dict_from_url(UpperCamelCase , map_location="""cpu""" )["""state_dict"""] lowerCamelCase__ : List[Any] = create_rename_keys(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) for src, dest in rename_keys: rename_key(UpperCamelCase , UpperCamelCase , UpperCamelCase ) read_in_q_k_v(UpperCamelCase , UpperCamelCase ) if mlm_model or irtr_model: lowerCamelCase__ : List[str] = ["""itm_score.fc.weight""", """itm_score.fc.bias"""] for k in ignore_keys: state_dict.pop(UpperCamelCase , UpperCamelCase ) # load state dict into HuggingFace model model.eval() if mlm_model: lowerCamelCase__ , lowerCamelCase__ : List[Any] = model.load_state_dict(UpperCamelCase , strict=UpperCamelCase ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(UpperCamelCase ) # Define processor lowerCamelCase__ : Optional[int] = ViltImageProcessor(size=384 ) lowerCamelCase__ : List[str] = BertTokenizer.from_pretrained("""bert-base-uncased""" ) lowerCamelCase__ : Union[str, Any] = ViltProcessor(UpperCamelCase , UpperCamelCase ) # Forward pass on example inputs (image + text) if nlvr_model: lowerCamelCase__ : int = Image.open(requests.get("""https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg""" , stream=UpperCamelCase ).raw ) lowerCamelCase__ : int = Image.open(requests.get("""https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg""" , stream=UpperCamelCase ).raw ) lowerCamelCase__ : Dict = ( """The left image contains twice the number of dogs as the right image, and at least two dogs in total are""" """ standing.""" ) lowerCamelCase__ : Optional[int] = processor(UpperCamelCase , UpperCamelCase , return_tensors="""pt""" ) lowerCamelCase__ : Dict = processor(UpperCamelCase , UpperCamelCase , return_tensors="""pt""" ) lowerCamelCase__ : List[str] = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: lowerCamelCase__ : str = Image.open(requests.get("""http://images.cocodataset.org/val2017/000000039769.jpg""" , stream=UpperCamelCase ).raw ) if mlm_model: lowerCamelCase__ : str = """a bunch of [MASK] laying on a [MASK].""" else: lowerCamelCase__ : Optional[int] = """How many cats are there?""" lowerCamelCase__ : List[str] = processor(UpperCamelCase , UpperCamelCase , return_tensors="""pt""" ) lowerCamelCase__ : Union[str, Any] = model(**UpperCamelCase ) # Verify outputs if mlm_model: lowerCamelCase__ : Tuple = torch.Size([1, 11, 30522] ) lowerCamelCase__ : int = torch.tensor([-12.5061, -12.5123, -12.5174] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , UpperCamelCase , atol=1E-4 ) # verify masked token prediction equals "cats" lowerCamelCase__ : int = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: lowerCamelCase__ : str = torch.Size([1, 3129] ) lowerCamelCase__ : Any = torch.tensor([-15.9495, -18.1472, -10.3041] ) assert torch.allclose(outputs.logits[0, :3] , UpperCamelCase , atol=1E-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , UpperCamelCase , atol=1E-4 ) # verify vqa prediction equals "2" lowerCamelCase__ : Tuple = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: lowerCamelCase__ : str = torch.Size([1, 2] ) lowerCamelCase__ : Optional[Any] = torch.tensor([-2.8721, 2.1291] ) assert torch.allclose(outputs.logits[0, :3] , UpperCamelCase , atol=1E-4 ) assert outputs.logits.shape == expected_shape Path(UpperCamelCase ).mkdir(exist_ok=UpperCamelCase ) print(f'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCamelCase ) processor.save_pretrained(UpperCamelCase ) if __name__ == "__main__": _A : str =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _A : Tuple =parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
41
1
'''simple docstring''' import random def a_ ( _UpperCAmelCase : int ) -> bool: __snake_case : Tuple = num - 1 __snake_case : str = 0 while s % 2 == 0: __snake_case : Tuple = s // 2 t += 1 for _ in range(5 ): __snake_case : List[str] = random.randrange(2 ,num - 1 ) __snake_case : Union[str, Any] = pow(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) if v != 1: __snake_case : Union[str, Any] = 0 while v != (num - 1): if i == t - 1: return False else: __snake_case : Dict = i + 1 __snake_case : List[Any] = (v**2) % num return True def a_ ( _UpperCAmelCase : int ) -> bool: if num < 2: return False __snake_case : Optional[int] = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 1_01, 1_03, 1_07, 1_09, 1_13, 1_27, 1_31, 1_37, 1_39, 1_49, 1_51, 1_57, 1_63, 1_67, 1_73, 1_79, 1_81, 1_91, 1_93, 1_97, 1_99, 2_11, 2_23, 2_27, 2_29, 2_33, 2_39, 2_41, 2_51, 2_57, 2_63, 2_69, 2_71, 2_77, 2_81, 2_83, 2_93, 3_07, 3_11, 3_13, 3_17, 3_31, 3_37, 3_47, 3_49, 3_53, 3_59, 3_67, 3_73, 3_79, 3_83, 3_89, 3_97, 4_01, 4_09, 4_19, 4_21, 4_31, 4_33, 4_39, 4_43, 4_49, 4_57, 4_61, 4_63, 4_67, 4_79, 4_87, 4_91, 4_99, 5_03, 5_09, 5_21, 5_23, 5_41, 5_47, 5_57, 5_63, 5_69, 5_71, 5_77, 5_87, 5_93, 5_99, 6_01, 6_07, 6_13, 6_17, 6_19, 6_31, 6_41, 6_43, 6_47, 6_53, 6_59, 6_61, 6_73, 6_77, 6_83, 6_91, 7_01, 7_09, 7_19, 7_27, 7_33, 7_39, 7_43, 7_51, 7_57, 7_61, 7_69, 7_73, 7_87, 7_97, 8_09, 8_11, 8_21, 8_23, 8_27, 8_29, 8_39, 8_53, 8_57, 8_59, 8_63, 8_77, 8_81, 8_83, 8_87, 9_07, 9_11, 9_19, 9_29, 9_37, 9_41, 9_47, 9_53, 9_67, 9_71, 9_77, 9_83, 9_91, 9_97, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(_UpperCAmelCase ) def a_ ( _UpperCAmelCase : int = 10_24 ) -> int: while True: __snake_case : Optional[int] = random.randrange(2 ** (keysize - 1) ,2 ** (keysize) ) if is_prime_low_num(_UpperCAmelCase ): return num if __name__ == "__main__": A__ : Optional[int] = generate_large_prime() print(('''Prime number:''', num)) print(('''is_prime_low_num:''', is_prime_low_num(num)))
357
'''simple docstring''' def a_ ( _UpperCAmelCase : int ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError('The given input must be positive' ) # get the generated string sequence __snake_case : Optional[Any] = gray_code_sequence_string(_UpperCAmelCase ) # # convert them to integers for i in range(len(_UpperCAmelCase ) ): __snake_case : Optional[Any] = int(sequence[i] ,2 ) return sequence def a_ ( _UpperCAmelCase : int ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __snake_case : Dict = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __snake_case : Dict = gray_code_sequence_string(bit_count - 1 ) __snake_case : Any = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __snake_case : str = '0' + smaller_sequence[i] sequence.append(_UpperCAmelCase ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __snake_case : Any = '1' + smaller_sequence[i] sequence.append(_UpperCAmelCase ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
0
0
"""simple docstring""" def _lowerCAmelCase ( lowercase_ ): UpperCAmelCase = current_set.copy() for row_index, row in enumerate(lowercase_ ): UpperCAmelCase = row[0] for column_index, column in enumerate(lowercase_ ): if magnitude == 0: UpperCAmelCase = column continue UpperCAmelCase = column / magnitude # Subtract to cancel term UpperCAmelCase = current_set[0] UpperCAmelCase = [first_row] UpperCAmelCase = current_set[1::] for row in current_set: UpperCAmelCase = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(lowercase_ ) continue for column_index in range(len(lowercase_ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(lowercase_ ) # Create next recursion iteration set if len(final_set[0] ) != 3: UpperCAmelCase = final_set[0] UpperCAmelCase = [] UpperCAmelCase = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) UpperCAmelCase = simplify(lowercase_ ) for i in range(len(lowercase_ ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , lowercase_ ) UpperCAmelCase = resultant return final_set def _lowerCAmelCase ( lowercase_ ): if len(lowercase_ ) == 0: raise IndexError('solve_simultaneous() requires n lists of length n+1' ) UpperCAmelCase = len(lowercase_ ) + 1 if any(len(lowercase_ ) != _length for item in equations ): raise IndexError('solve_simultaneous() requires n lists of length n+1' ) for row in equations: if any(not isinstance(lowercase_ , (int, float) ) for column in row ): raise ValueError('solve_simultaneous() requires lists of integers' ) if len(lowercase_ ) == 1: return [equations[0][-1] / equations[0][0]] UpperCAmelCase = equations.copy() if any(0 in row for row in data_set ): UpperCAmelCase = data_set.copy() UpperCAmelCase = [] for row_index, row in enumerate(lowercase_ ): if 0 not in row: UpperCAmelCase = data_set.pop(lowercase_ ) break if not full_row: raise ValueError('solve_simultaneous() requires at least 1 full equation' ) data_set.insert(0 , lowercase_ ) UpperCAmelCase = data_set.copy() UpperCAmelCase = simplify(lowercase_ ) UpperCAmelCase = simplified[::-1] UpperCAmelCase = [] for row in simplified: UpperCAmelCase = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue UpperCAmelCase = row.copy()[: len(lowercase_ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(lowercase_ ) == 0: solutions.append(0 ) continue UpperCAmelCase = temp_row[1::] UpperCAmelCase = temp_row[::-1] for column_index, column in enumerate(lowercase_ ): current_solution -= column * solutions[column_index] solutions.append(lowercase_ ) UpperCAmelCase = [] for item in solutions: final.append(float(round(lowercase_ , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() snake_case_ = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
78
"""simple docstring""" import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def _lowerCAmelCase ( lowercase_ = 8 ): UpperCAmelCase = ascii_letters + digits + punctuation return "".join(secrets.choice(lowercase_ ) for _ in range(lowercase_ ) ) def _lowerCAmelCase ( lowercase_ , lowercase_ ): # Password Generator = full boot with random_number, random_letters, and # random_character FUNCTIONS # Put your code here... i -= len(lowercase_ ) UpperCAmelCase = i // 3 UpperCAmelCase = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) UpperCAmelCase = ( chars_incl + random(lowercase_ , quotient + remainder ) + random(lowercase_ , lowercase_ ) + random(lowercase_ , lowercase_ ) ) UpperCAmelCase = list(lowercase_ ) shuffle(lowercase_ ) return "".join(lowercase_ ) # random is a generalised function for letters, characters and numbers def _lowerCAmelCase ( lowercase_ , lowercase_ ): return "".join(secrets.choice(lowercase_ ) for _ in range(lowercase_ ) ) def _lowerCAmelCase ( lowercase_ , lowercase_ ): pass # Put your code here... def _lowerCAmelCase ( lowercase_ , lowercase_ ): pass # Put your code here... def _lowerCAmelCase ( lowercase_ , lowercase_ ): pass # Put your code here... def _lowerCAmelCase ( lowercase_ , lowercase_ = 8 ): if len(lowercase_ ) < min_length: # Your Password must be at least 8 characters long return False UpperCAmelCase = any(char in ascii_uppercase for char in password ) UpperCAmelCase = any(char in ascii_lowercase for char in password ) UpperCAmelCase = any(char in digits for char in password ) UpperCAmelCase = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def _lowerCAmelCase ( ): UpperCAmelCase = int(input('Please indicate the max length of your password: ' ).strip() ) UpperCAmelCase = input( 'Please indicate the characters that must be in your password: ' ).strip() print('Password generated:' , password_generator(lowercase_ ) ) print( 'Alternative Password generated:' , alternative_password_generator(lowercase_ , lowercase_ ) , ) print('[If you are thinking of using this passsword, You better save it.]' ) if __name__ == "__main__": main()
78
1
"""simple docstring""" import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class lowerCamelCase (_snake_case , unittest.TestCase ): '''simple docstring''' _snake_case : List[str] = WavaVecaPhonemeCTCTokenizer _snake_case : Dict = False def __UpperCAmelCase ( self ) -> str: super().setUp() UpperCAmelCase_ : List[str] = ( '<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː ' 'ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː ' 'ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 ' 'oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ ' 'pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ ' 'yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ ' 'əʊ S ɡʲ onɡ2 u" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ ' 'ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ ' 'ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ ' 'uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ ' 'ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ ' 'ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ ' 'ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4' ).split(' ' ) UpperCAmelCase_ : Optional[int] = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase ) ) ) ) UpperCAmelCase_ : int = {'pad_token': '<pad>', 'unk_token': '<unk>', 'bos_token': '<s>', 'eos_token': '</s>'} UpperCAmelCase_ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_UpperCamelCase ) + '\n' ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase=False , _UpperCamelCase=2_0 , _UpperCamelCase=5 ) -> Tuple[str, list]: UpperCAmelCase_ : Dict = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=_UpperCamelCase )) for i in range(len(_UpperCamelCase ) )] UpperCAmelCase_ : str = list(filter(lambda _UpperCamelCase : [t[0]] == tokenizer.encode(t[1] , do_phonemize=_UpperCamelCase ) , _UpperCamelCase ) ) if max_length is not None and len(_UpperCamelCase ) > max_length: UpperCAmelCase_ : List[str] = toks[:max_length] if min_length is not None and len(_UpperCamelCase ) < min_length and len(_UpperCamelCase ) > 0: while len(_UpperCamelCase ) < min_length: UpperCAmelCase_ : Any = toks + toks # toks_str = [t[1] for t in toks] UpperCAmelCase_ : Optional[Any] = [t[0] for t in toks] # Ensure consistency UpperCAmelCase_ : Optional[Any] = tokenizer.decode(_UpperCamelCase , clean_up_tokenization_spaces=_UpperCamelCase ) if " " not in output_txt and len(_UpperCamelCase ) > 1: UpperCAmelCase_ : Any = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_UpperCamelCase ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_UpperCamelCase ) ) if with_prefix_space: UpperCAmelCase_ : Tuple = ' ' + output_txt UpperCAmelCase_ : Optional[Any] = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) return output_txt, output_ids def __UpperCAmelCase ( self , **_UpperCamelCase ) -> List[str]: kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **_UpperCamelCase ) def __UpperCAmelCase ( self ) -> str: UpperCAmelCase_ : Any = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) # check adding a single token tokenizer.add_tokens('xxx' ) UpperCAmelCase_ : Union[str, Any] = tokenizer('m xxx ɪ' , do_phonemize=_UpperCamelCase ).input_ids self.assertEqual(_UpperCamelCase , [1_3, 3_9_2, 1_7] ) # xxx should be last token tokenizer.add_tokens(['aaa', 'bbb', 'ccc'] ) UpperCAmelCase_ : int = tokenizer('m aaa ɪ ccc' , do_phonemize=_UpperCamelCase ).input_ids self.assertEqual(_UpperCamelCase , [1_3, 3_9_3, 1_7, 3_9_5] ) # aaa and ccc should be after xxx and 2 after aaa UpperCAmelCase_ : List[str] = tokenizer('maɪ c' , do_phonemize=_UpperCamelCase ).input_ids self.assertEqual(_UpperCamelCase , [3, 2_0_0] ) # mai should be <unk> (=3) def __UpperCAmelCase ( self ) -> Dict: UpperCAmelCase_ : Dict = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) UpperCAmelCase_ : Tuple = 'Hello how are you' UpperCAmelCase_ : Any = tokenizer.phonemize(_UpperCamelCase , phonemizer_lang='en-us' ) self.assertEqual(_UpperCamelCase , 'h ə l oʊ h aʊ ɑːɹ j uː' ) def __UpperCAmelCase ( self ) -> Optional[int]: UpperCAmelCase_ : Any = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) UpperCAmelCase_ : Optional[int] = 'Hello how are you' UpperCAmelCase_ : Dict = tokenizer.phonemize(_UpperCamelCase , phonemizer_lang='en-us' ) self.assertEqual(tokenizer(_UpperCamelCase ).input_ids , tokenizer(_UpperCamelCase , do_phonemize=_UpperCamelCase ).input_ids ) def __UpperCAmelCase ( self ) -> List[Any]: UpperCAmelCase_ : List[Any] = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) UpperCAmelCase_ : int = 'Hello how are you' UpperCAmelCase_ : str = tokenizer.phonemize(_UpperCamelCase , phonemizer_lang='en-us' ) UpperCAmelCase_ : Union[str, Any] = tokenizer.decode(tokenizer(_UpperCamelCase ).input_ids ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> List[str]: UpperCAmelCase_ : Optional[int] = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) UpperCAmelCase_ : List[str] = [ [1_1, 5, 1_5, tokenizer.pad_token_id, 1_5, 8, 9_8], [2_4, 2_2, 5, 2_4, 2_2, 5, 7_7], ] UpperCAmelCase_ : List[Any] = tokenizer.decode(sample_ids[0] ) UpperCAmelCase_ : Optional[int] = tokenizer.batch_decode(_UpperCamelCase ) self.assertEqual(_UpperCamelCase , batch_tokens[0] ) self.assertEqual(_UpperCamelCase , ['k s ɾ ɾ l ɭʲ', 'j ð s j ð s oːɹ'] ) def __UpperCAmelCase ( self ) -> Optional[Any]: UpperCAmelCase_ : int = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) UpperCAmelCase_ : Any = 'Hello how are you' UpperCAmelCase_ : int = tokenizer.phonemize(_UpperCamelCase , phonemizer_lang='en-us' ) self.assertEqual(_UpperCamelCase , 'h ə l oʊ | h aʊ | ɑːɹ | j uː |' ) def __UpperCAmelCase ( self ) -> Dict: UpperCAmelCase_ : Dict = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) UpperCAmelCase_ : Dict = 'Hello how are you' UpperCAmelCase_ : Dict = tokenizer.phonemize(_UpperCamelCase , phonemizer_lang='en-us' ) self.assertEqual(tokenizer(_UpperCamelCase ).input_ids , tokenizer(_UpperCamelCase , do_phonemize=_UpperCamelCase ).input_ids ) def __UpperCAmelCase ( self ) -> List[Any]: UpperCAmelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) # fmt: off UpperCAmelCase_ : Any = [ [1_1, 5, 1_5, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 1_5, 8, tokenizer.word_delimiter_token_id, 9_8], [tokenizer.word_delimiter_token_id, 2_4, 2_2, tokenizer.word_delimiter_token_id, 5, 2_4, 2_2, 5, 7_7], ] # fmt: on # decode with word_del_token filter UpperCAmelCase_ : List[str] = tokenizer.decode(sample_ids[0] ) UpperCAmelCase_ : Dict = tokenizer.batch_decode(_UpperCamelCase ) self.assertEqual(_UpperCamelCase , batch_tokens[0] ) self.assertEqual(_UpperCamelCase , ['k s ɾ ɾ l ɭʲ', 'j ð s j ð s oːɹ'] ) # decode with no word_del_token filter UpperCAmelCase_ : List[Any] = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=_UpperCamelCase ) UpperCAmelCase_ : Any = tokenizer.batch_decode(_UpperCamelCase , filter_word_delimiter_token=_UpperCamelCase ) self.assertEqual(_UpperCamelCase , batch_tokens[0] ) self.assertEqual(_UpperCamelCase , ['k s ɾ | ɾ l | ɭʲ', '| j ð | s j ð s oːɹ'] ) def __UpperCAmelCase ( self ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) UpperCAmelCase_ : Any = 'Hello how are you' UpperCAmelCase_ : Optional[int] = tokenizer.phonemize(_UpperCamelCase , phonemizer_lang='en-us' ) UpperCAmelCase_ : Union[str, Any] = tokenizer.decode(tokenizer(_UpperCamelCase ).input_ids , filter_word_delimiter_token=_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> Optional[Any]: UpperCAmelCase_ : Tuple = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) UpperCAmelCase_ : int = 'Hello how are you' UpperCAmelCase_ : Union[str, Any] = tokenizer.phonemize(_UpperCamelCase , phonemizer_lang='en-us' ) UpperCAmelCase_ : int = tokenizer.decode(tokenizer(_UpperCamelCase ).input_ids , filter_word_delimiter_token=_UpperCamelCase ) self.assertEqual(' '.join([p.strip() for p in phonemes.split(' |' )] ).strip() , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token=_UpperCamelCase ) UpperCAmelCase_ : Optional[int] = 'Hello how are you' UpperCAmelCase_ : Any = tokenizer(_UpperCamelCase , phonemizer_lang='en-us' ).input_ids UpperCAmelCase_ : Optional[int] = tokenizer(_UpperCamelCase , phonemizer_lang='fr-fr' ).input_ids self.assertNotEqual(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = tokenizer.decode(_UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = tokenizer.decode(_UpperCamelCase ) self.assertEqual(_UpperCamelCase , 'h ə l oʊ h aʊ ɑːɹ j uː' ) self.assertEqual(_UpperCamelCase , 'ɛ l o h aʊ a ʁ j u' ) def __UpperCAmelCase ( self ) -> Any: UpperCAmelCase_ : Union[str, Any] = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) UpperCAmelCase_ : Any = 'Hello how Are you' UpperCAmelCase_ : Union[str, Any] = 'hello how are you' UpperCAmelCase_ : str = tokenizer(_UpperCamelCase ).input_ids UpperCAmelCase_ : List[str] = tokenizer(_UpperCamelCase ).input_ids self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> List[Any]: UpperCAmelCase_ : List[str] = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) tokenizer.add_tokens(['!', '?'] ) tokenizer.add_special_tokens({'cls_token': '$$$'} ) # fmt: off UpperCAmelCase_ : Any = [ [1_1, 5, 1_5, tokenizer.pad_token_id, 1_5, 8, 9_8, 3_9_2, 3_9_2, 3_9_3, 3_9_2, 3_9_2, 3_9_3, 3_9_4, 3_9_4], [2_4, 2_2, 5, 2_4, 2_2, 5, 7_7, tokenizer.pad_token_id, 3_9_4, 3_9_4], ] # fmt: on UpperCAmelCase_ : Optional[int] = tokenizer.batch_decode(_UpperCamelCase ) self.assertEqual(_UpperCamelCase , ['k s ɾ ɾ l ɭʲ!?!? $$$', 'j ð s j ð s oːɹ $$$'] ) @staticmethod def __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase ) -> List[Any]: UpperCAmelCase_ : int = [d[key] for d in offsets] return retrieved_list def __UpperCAmelCase ( self ) -> List[str]: UpperCAmelCase_ : Optional[int] = self.get_tokenizer(word_delimiter_token='|' ) tokenizer.add_tokens('|' ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" UpperCAmelCase_ : Optional[int] = [1_1, 5, 5, 5, 1_5, 1_5, tokenizer.pad_token_id, 1_5, 1_5, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 1_5, 8, 8, 8, tokenizer.word_delimiter_token_id, 9_8] # fmt: on UpperCAmelCase_ : Optional[int] = tokenizer.decode(_UpperCamelCase , output_char_offsets=_UpperCamelCase , filter_word_delimiter_token=_UpperCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ) , 2 ) self.assertTrue('text' in outputs ) self.assertTrue('char_offsets' in outputs ) self.assertTrue(isinstance(_UpperCamelCase , _UpperCamelCase ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(' '.join(self.get_from_offsets(outputs['char_offsets'] , 'char' ) ) , outputs.text ) self.assertListEqual( self.get_from_offsets(outputs['char_offsets'] , 'char' ) , ['k', 's', 'ɾ', 'ɾ', '|', 'ɾ', 'l', '|', 'ɭʲ'] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs['char_offsets'] , 'start_offset' ) , [0, 1, 4, 7, 9, 1_1, 1_2, 1_5, 1_6] ) self.assertListEqual( self.get_from_offsets(outputs['char_offsets'] , 'end_offset' ) , [1, 4, 6, 9, 1_0, 1_2, 1_5, 1_6, 1_7] ) def __UpperCAmelCase ( self ) -> Optional[int]: UpperCAmelCase_ : Optional[Any] = self.get_tokenizer(word_delimiter_token='|' ) def check_list_tuples_equal(_UpperCamelCase , _UpperCamelCase ): self.assertTrue(isinstance(_UpperCamelCase , _UpperCamelCase ) ) self.assertTrue(isinstance(outputs_list[0] , _UpperCamelCase ) ) # transform list to ModelOutput UpperCAmelCase_ : Optional[int] = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch['text'] , outputs_batch_a['text'] ) def recursive_check(_UpperCamelCase , _UpperCamelCase ): if isinstance(_UpperCamelCase , _UpperCamelCase ): [recursive_check(_UpperCamelCase , _UpperCamelCase ) for la, la in zip(_UpperCamelCase , _UpperCamelCase )] self.assertEqual(_UpperCamelCase , _UpperCamelCase ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch['char_offsets'] , outputs_batch_a['char_offsets'] ) # fmt: off UpperCAmelCase_ : int = [ [1_1, 5, 1_5, tokenizer.pad_token_id, 1_5, 4, 8, 9_8, 3_2, 3_2, 3_2, 3_2, 4, 3_3, tokenizer.word_delimiter_token_id, 3_2, 3_2, 3_3, 3_4, 3_4], [2_4, 2_2, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 2_4, 2_2, 2_2, 2_2, 4, 5, 7_7, tokenizer.pad_token_id, 2_2, 2_2, 4, 3_4, 3_4, 3_4, 3_4], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char UpperCAmelCase_ : int = tokenizer.batch_decode(_UpperCamelCase , output_char_offsets=_UpperCamelCase ) UpperCAmelCase_ : List[Any] = [tokenizer.decode(_UpperCamelCase , output_char_offsets=_UpperCamelCase ) for ids in sample_ids] check_list_tuples_equal(_UpperCamelCase , _UpperCamelCase ) @unittest.skip('Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes' ) def __UpperCAmelCase ( self ) -> str: pass @unittest.skip('Wav2Vec2PhonemeTokenizer always puts spaces between phonemes' ) def __UpperCAmelCase ( self ) -> Optional[Any]: pass @unittest.skip('encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency' ) def __UpperCAmelCase ( self ) -> Union[str, Any]: pass @unittest.skip('Wav2Vec2PhonemeModel has no max model length => no testing' ) def __UpperCAmelCase ( self ) -> Union[str, Any]: pass def __UpperCAmelCase ( self ) -> List[Any]: UpperCAmelCase_ : Tuple = self.get_tokenizers(do_lower_case=_UpperCamelCase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): UpperCAmelCase_ : Tuple = tokenizer.vocab_size UpperCAmelCase_ : Dict = len(_UpperCamelCase ) self.assertNotEqual(_UpperCamelCase , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) UpperCAmelCase_ : Optional[Any] = ['aaaaa bbbbbb', 'cccccccccdddddddd'] UpperCAmelCase_ : Optional[Any] = tokenizer.add_tokens(_UpperCamelCase ) UpperCAmelCase_ : str = tokenizer.vocab_size UpperCAmelCase_ : Optional[int] = len(_UpperCamelCase ) self.assertNotEqual(_UpperCamelCase , 0 ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , len(_UpperCamelCase ) ) self.assertEqual(_UpperCamelCase , all_size + len(_UpperCamelCase ) ) UpperCAmelCase_ : str = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=_UpperCamelCase ) self.assertGreaterEqual(len(_UpperCamelCase ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) UpperCAmelCase_ : Tuple = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'} UpperCAmelCase_ : Any = tokenizer.add_special_tokens(_UpperCamelCase ) UpperCAmelCase_ : List[str] = tokenizer.vocab_size UpperCAmelCase_ : Optional[Any] = len(_UpperCamelCase ) self.assertNotEqual(_UpperCamelCase , 0 ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , len(_UpperCamelCase ) ) self.assertEqual(_UpperCamelCase , all_size_a + len(_UpperCamelCase ) ) UpperCAmelCase_ : str = tokenizer.encode( '>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=_UpperCamelCase ) self.assertGreaterEqual(len(_UpperCamelCase ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) @unittest.skip('The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.' ) def __UpperCAmelCase ( self ) -> int: pass @unittest.skip('The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.' ) def __UpperCAmelCase ( self ) -> List[str]: pass def __UpperCAmelCase ( self ) -> List[Any]: # The default common tokenizer tests assumes that the output of `convert_tokens_to_string` is a string which # is not the case for Wav2Vec2PhonemeCTCTokenizer. UpperCAmelCase_ : Tuple = self.get_tokenizers(fast=_UpperCamelCase , do_lower_case=_UpperCamelCase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): UpperCAmelCase_ : List[str] = ['ð', 'ɪ', 's', 'ɪ', 'z', 'ɐ', 't', 'ɛ', 'k', 's', 't'] UpperCAmelCase_ : str = tokenizer.convert_tokens_to_string(_UpperCamelCase ) self.assertIsInstance(output['text'] , _UpperCamelCase )
359
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = '▁' __UpperCAmelCase = {'vocab_file': 'sentencepiece.bpe.model'} __UpperCAmelCase = { 'vocab_file': { 'facebook/mbart-large-en-ro': ( 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model' ), 'facebook/mbart-large-cc25': ( 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model' ), } } __UpperCAmelCase = { 'facebook/mbart-large-en-ro': 1024, 'facebook/mbart-large-cc25': 1024, } # fmt: off __UpperCAmelCase = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN'] class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : List[Any] = VOCAB_FILES_NAMES _snake_case : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Tuple = PRETRAINED_VOCAB_FILES_MAP _snake_case : Any = ['''input_ids''', '''attention_mask'''] _snake_case : List[int] = [] _snake_case : List[int] = [] def __init__( self , _UpperCamelCase , _UpperCamelCase="<s>" , _UpperCamelCase="</s>" , _UpperCamelCase="</s>" , _UpperCamelCase="<s>" , _UpperCamelCase="<unk>" , _UpperCamelCase="<pad>" , _UpperCamelCase="<mask>" , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase = None , _UpperCamelCase=None , **_UpperCamelCase , ) -> List[str]: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ : List[Any] = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else mask_token UpperCAmelCase_ : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , cls_token=_UpperCamelCase , pad_token=_UpperCamelCase , mask_token=_UpperCamelCase , tokenizer_file=_UpperCamelCase , src_lang=_UpperCamelCase , tgt_lang=_UpperCamelCase , additional_special_tokens=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCamelCase , ) UpperCAmelCase_ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_UpperCamelCase ) ) UpperCAmelCase_ : int = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase_ : List[str] = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase_ : str = 1 UpperCAmelCase_ : Optional[int] = len(self.sp_model ) UpperCAmelCase_ : str = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_UpperCamelCase ) } UpperCAmelCase_ : int = {v: k for k, v in self.lang_code_to_id.items()} UpperCAmelCase_ : List[Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) UpperCAmelCase_ : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCAmelCase_ : int = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) UpperCAmelCase_ : Any = src_lang if src_lang is not None else 'en_XX' UpperCAmelCase_ : Any = self.lang_code_to_id[self._src_lang] UpperCAmelCase_ : Dict = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ) -> Dict: UpperCAmelCase_ : Optional[int] = self.__dict__.copy() UpperCAmelCase_ : str = None UpperCAmelCase_ : str = self.sp_model.serialized_model_proto() return state def __setstate__( self , _UpperCamelCase ) -> Dict: UpperCAmelCase_ : Union[str, Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): UpperCAmelCase_ : Any = {} UpperCAmelCase_ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def __UpperCAmelCase ( self ) -> Tuple: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __UpperCAmelCase ( self ) -> str: return self._src_lang @src_lang.setter def __UpperCAmelCase ( self , _UpperCamelCase ) -> None: UpperCAmelCase_ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) UpperCAmelCase_ : Tuple = [1] * len(self.prefix_tokens ) UpperCAmelCase_ : Dict = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_UpperCamelCase )) + suffix_ones return prefix_ones + ([0] * len(_UpperCamelCase )) + ([0] * len(_UpperCamelCase )) + suffix_ones def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None ) -> List[int]: UpperCAmelCase_ : int = [self.sep_token_id] UpperCAmelCase_ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ) -> int: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) UpperCAmelCase_ : Optional[int] = src_lang UpperCAmelCase_ : Dict = self(_UpperCamelCase , add_special_tokens=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase ) UpperCAmelCase_ : int = self.convert_tokens_to_ids(_UpperCamelCase ) UpperCAmelCase_ : Any = tgt_lang_id return inputs def __UpperCAmelCase ( self ) -> str: UpperCAmelCase_ : str = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __UpperCAmelCase ( self , _UpperCamelCase ) -> List[str]: return self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> Tuple: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase_ : Dict = self.sp_model.PieceToId(_UpperCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __UpperCAmelCase ( self , _UpperCamelCase ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> Optional[int]: UpperCAmelCase_ : Optional[int] = ''.join(_UpperCamelCase ).replace(_UpperCamelCase , ' ' ).strip() return out_string def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None ) -> Tuple[str]: if not os.path.isdir(_UpperCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return UpperCAmelCase_ : List[Any] = os.path.join( _UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , 'wb' ) as fi: UpperCAmelCase_ : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = "en_XX" , _UpperCamelCase = None , _UpperCamelCase = "ro_RO" , **_UpperCamelCase , ) -> BatchEncoding: UpperCAmelCase_ : Union[str, Any] = src_lang UpperCAmelCase_ : Dict = tgt_lang return super().prepare_seqaseq_batch(_UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ) def __UpperCAmelCase ( self ) -> Union[str, Any]: return self.set_src_lang_special_tokens(self.src_lang ) def __UpperCAmelCase ( self ) -> Optional[Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> None: UpperCAmelCase_ : Any = self.lang_code_to_id[src_lang] UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : str = [self.eos_token_id, self.cur_lang_code] def __UpperCAmelCase ( self , _UpperCamelCase ) -> None: UpperCAmelCase_ : Any = self.lang_code_to_id[lang] UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : int = [self.eos_token_id, self.cur_lang_code]
145
0
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient UpperCAmelCase_ = WebClient(token=os.environ['CI_SLACK_BOT_TOKEN']) def lowerCamelCase__ ( A__ : Union[str, Any] ): '''simple docstring''' __lowerCamelCase = test_results.split(""" """ ) __lowerCamelCase = 0 __lowerCamelCase = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. __lowerCamelCase = expressions[-2] if """=""" in expressions[-1] else expressions[-1] for i, expression in enumerate(A__ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' __lowerCamelCase = {} __lowerCamelCase = None __lowerCamelCase = False for line in failures_short_lines.split("""\n""" ): if re.search(R"""_ \[doctest\]""" , A__ ): __lowerCamelCase = True __lowerCamelCase = line.split(""" """ )[2] elif in_error and not line.split(""" """ )[0].isdigit(): __lowerCamelCase = line __lowerCamelCase = False return failures class lowerCamelCase__: def __init__( self: int , UpperCamelCase_: str , UpperCamelCase_: Dict ): __lowerCamelCase = title __lowerCamelCase = doc_test_results["""time_spent"""].split(""",""" )[0] __lowerCamelCase = doc_test_results["""success"""] __lowerCamelCase = doc_test_results["""failures"""] __lowerCamelCase = self.n_success + self.n_failures # Failures and success of the modeling tests __lowerCamelCase = doc_test_results @property def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = [self._time_spent] __lowerCamelCase = 0 for time in time_spent: __lowerCamelCase = time.split(""":""" ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(UpperCamelCase_ ) == 1: __lowerCamelCase = [0, 0, time_parts[0]] __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 36_00 + minutes * 60 + seconds __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = total_secs // 36_00, (total_secs % 36_00) // 60, total_secs % 60 return F'{int(UpperCamelCase_ )}h{int(UpperCamelCase_ )}m{int(UpperCamelCase_ )}s' @property def lowerCAmelCase__ ( self: List[str] ): return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def lowerCAmelCase__ ( self: Union[str, Any] ): return { "type": "section", "text": { "type": "plain_text", "text": F'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def lowerCAmelCase__ ( self: Optional[int] ): return { "type": "section", "text": { "type": "plain_text", "text": ( F'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in' F' {self.time}.' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def lowerCAmelCase__ ( self: str ): __lowerCamelCase = 40 __lowerCamelCase = {k: v["""failed"""] for k, v in doc_test_results.items() if isinstance(UpperCamelCase_ , UpperCamelCase_ )} __lowerCamelCase = """""" for category, failures in category_failures.items(): if len(UpperCamelCase_ ) == 0: continue if report != "": report += "\n\n" report += F'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(UpperCamelCase_ ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F'The following examples had failures:\n\n\n{report}\n', }, } @property def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(UpperCamelCase_ ) @staticmethod def lowerCAmelCase__ ( ): __lowerCamelCase = [ { """type""": """section""", """text""": { """type""": """plain_text""", """text""": """There was an issue running the tests.""", }, """accessory""": { """type""": """button""", """text""": {"""type""": """plain_text""", """text""": """Check Action results""", """emoji""": True}, """url""": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } ] print("""Sending the following payload""" ) print(json.dumps({"""blocks""": json.loads(UpperCamelCase_ )} ) ) client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , text="""There was an issue running the tests.""" , blocks=UpperCamelCase_ , ) def lowerCAmelCase__ ( self: int ): print("""Sending the following payload""" ) print(json.dumps({"""blocks""": json.loads(self.payload )} ) ) __lowerCamelCase = F'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else """All tests passed.""" __lowerCamelCase = client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , blocks=self.payload , text=UpperCamelCase_ , ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: List[str] , UpperCamelCase_: Tuple , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Tuple ): __lowerCamelCase = """""" for key, value in failures.items(): __lowerCamelCase = value[:2_00] + """ [Truncated]""" if len(UpperCamelCase_ ) > 2_50 else value failures_text += F'*{key}*\n_{value}_\n\n' __lowerCamelCase = job_name __lowerCamelCase = {"""type""": """section""", """text""": {"""type""": """mrkdwn""", """text""": text}} if job_link is not None: __lowerCamelCase = { """type""": """button""", """text""": {"""type""": """plain_text""", """text""": """GitHub Action job""", """emoji""": True}, """url""": job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def lowerCAmelCase__ ( self: List[Any] ): if self.thread_ts is None: raise ValueError("""Can only post reply if a post has been made.""" ) __lowerCamelCase = self.doc_test_results.pop("""job_link""" ) self.doc_test_results.pop("""failures""" ) self.doc_test_results.pop("""success""" ) self.doc_test_results.pop("""time_spent""" ) __lowerCamelCase = sorted(self.doc_test_results.items() , key=lambda UpperCamelCase_ : t[0] ) for job, job_result in sorted_dict: if len(job_result["""failures"""] ): __lowerCamelCase = F'*Num failures* :{len(job_result["failed"] )} \n' __lowerCamelCase = job_result["""failures"""] __lowerCamelCase = self.get_reply_blocks(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , text=UpperCamelCase_ ) print("""Sending the following reply""" ) print(json.dumps({"""blocks""": blocks} ) ) client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , text=F'Results for {job}' , blocks=UpperCamelCase_ , thread_ts=self.thread_ts["""ts"""] , ) time.sleep(1 ) def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = os.environ["""GITHUB_RUN_ID"""] __lowerCamelCase = f'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100' __lowerCamelCase = requests.get(A__ ).json() __lowerCamelCase = {} try: jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) __lowerCamelCase = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(A__ ): __lowerCamelCase = requests.get(url + f'&page={i + 2}' ).json() jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return jobs except Exception as e: print("""Unknown error, could not fetch links.""" , A__ ) return {} def lowerCamelCase__ ( A__ : str ): '''simple docstring''' __lowerCamelCase = {} if os.path.exists(A__ ): __lowerCamelCase = os.listdir(A__ ) for file in files: try: with open(os.path.join(A__ , A__ ) , encoding="""utf-8""" ) as f: __lowerCamelCase = f.read() except UnicodeDecodeError as e: raise ValueError(f'Could not open {os.path.join(A__ , A__ )}.' ) from e return _artifact def lowerCamelCase__ ( ): '''simple docstring''' class lowerCamelCase__: def __init__( self: Optional[Any] , UpperCamelCase_: str ): __lowerCamelCase = name __lowerCamelCase = [] def __str__( self: List[str] ): return self.name def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: str ): self.paths.append({"""name""": self.name, """path""": path} ) __lowerCamelCase = {} __lowerCamelCase = filter(os.path.isdir , os.listdir() ) for directory in directories: __lowerCamelCase = directory if artifact_name not in _available_artifacts: __lowerCamelCase = Artifact(A__ ) _available_artifacts[artifact_name].add_path(A__ ) return _available_artifacts if __name__ == "__main__": UpperCAmelCase_ = get_job_links() UpperCAmelCase_ = retrieve_available_artifacts() UpperCAmelCase_ = collections.OrderedDict( [ ('*.py', 'API Examples'), ('*.md', 'MD Examples'), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' UpperCAmelCase_ = { v: { 'failed': [], 'failures': {}, } for v in docs.values() } # Link to the GitHub Action job UpperCAmelCase_ = github_actions_job_links.get('run_doctests') UpperCAmelCase_ = available_artifacts['doc_tests_gpu_test_reports'].paths[0] UpperCAmelCase_ = retrieve_artifact(artifact_path['name']) if "stats" in artifact: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = handle_test_results(artifact['stats']) UpperCAmelCase_ = failed UpperCAmelCase_ = success UpperCAmelCase_ = time_spent[1:-1] + ', ' UpperCAmelCase_ = extract_first_line_failure(artifact['failures_short']) for line in artifact["summary_short"].split('\n'): if re.search('FAILED', line): UpperCAmelCase_ = line.replace('FAILED ', '') UpperCAmelCase_ = line.split()[0].replace('\n', '') if "::" in line: UpperCAmelCase_ , UpperCAmelCase_ = line.split('::') else: UpperCAmelCase_ , UpperCAmelCase_ = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): UpperCAmelCase_ = docs[file_regex] doc_test_results[category]["failed"].append(test) UpperCAmelCase_ = all_failures[test] if test in all_failures else 'N/A' UpperCAmelCase_ = failure break UpperCAmelCase_ = Message('🤗 Results of the doc tests.', doc_test_results) message.post() message.post_reply()
12
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ = {"configuration_xglm": ["XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XGLMConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["XGLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["XGLMTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XGLMForCausalLM", "XGLMModel", "XGLMPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "FlaxXGLMForCausalLM", "FlaxXGLMModel", "FlaxXGLMPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXGLMForCausalLM", "TFXGLMModel", "TFXGLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
45
0
"""simple docstring""" import numpy as np class _A : """simple docstring""" def __init__( self : int): a : Optional[Any] = (0, 0) a : Any = None a : Union[str, Any] = 0 a : List[str] = 0 a : Optional[Any] = 0 def __eq__( self : int , __UpperCAmelCase : Optional[Any]): return self.position == cell.position def __snake_case ( self : int): print(self.position) class _A : """simple docstring""" def __init__( self : int , __UpperCAmelCase : Union[str, Any]=(5, 5)): a : str = np.zeros(__UpperCAmelCase) a : Tuple = world_size[0] a : str = world_size[1] def __snake_case ( self : Optional[Any]): print(self.w) def __snake_case ( self : str , __UpperCAmelCase : Dict): a : Any = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] a : Dict = cell.position[0] a : Optional[Any] = cell.position[1] a : List[Any] = [] for n in neughbour_cord: a : Union[str, Any] = current_x + n[0] a : int = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: a : Tuple = Cell() a : Tuple = (x, y) a : Any = cell neighbours.append(__UpperCAmelCase) return neighbours def lowercase ( A_ , A_ , A_ )-> int: '''simple docstring''' a : Tuple = [] a : str = [] _open.append(A_ ) while _open: a : Optional[int] = np.argmin([n.f for n in _open] ) a : Dict = _open[min_f] _closed.append(_open.pop(A_ ) ) if current == goal: break for n in world.get_neigbours(A_ ): for c in _closed: if c == n: continue a : List[str] = current.g + 1 a , a : List[str] = n.position a , a : Dict = goal.position a : Dict = (ya - ya) ** 2 + (xa - xa) ** 2 a : List[str] = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(A_ ) a : Optional[int] = [] while current.parent is not None: path.append(current.position ) a : Any = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": __lowercase = Gridworld() # Start position and goal __lowercase = Cell() __lowercase = (0, 0) __lowercase = Cell() __lowercase = (4, 4) print(f'''path from {start.position} to {goal.position}''') __lowercase = astar(world, start, goal) # Just for visual reasons. for i in s: __lowercase = 1 print(world.w)
226
"""simple docstring""" __lowercase = frozenset( [ """prompt""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", """cross_attention_kwargs""", ] ) __lowercase = frozenset(["""prompt""", """negative_prompt"""]) __lowercase = frozenset([]) __lowercase = frozenset(["""image"""]) __lowercase = frozenset( [ """image""", """height""", """width""", """guidance_scale""", ] ) __lowercase = frozenset(["""image"""]) __lowercase = frozenset( [ """prompt""", """image""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", ] ) __lowercase = frozenset(["""prompt""", """image""", """negative_prompt"""]) __lowercase = frozenset( [ # Text guided image variation with an image mask """prompt""", """image""", """mask_image""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", ] ) __lowercase = frozenset(["""prompt""", """image""", """mask_image""", """negative_prompt"""]) __lowercase = frozenset( [ # image variation with an image mask """image""", """mask_image""", """height""", """width""", """guidance_scale""", ] ) __lowercase = frozenset(["""image""", """mask_image"""]) __lowercase = frozenset( [ """example_image""", """image""", """mask_image""", """height""", """width""", """guidance_scale""", ] ) __lowercase = frozenset(["""example_image""", """image""", """mask_image"""]) __lowercase = frozenset(["""class_labels"""]) __lowercase = frozenset(["""class_labels"""]) __lowercase = frozenset(["""batch_size"""]) __lowercase = frozenset([]) __lowercase = frozenset(["""batch_size"""]) __lowercase = frozenset([]) __lowercase = frozenset( [ """prompt""", """audio_length_in_s""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", """cross_attention_kwargs""", ] ) __lowercase = frozenset(["""prompt""", """negative_prompt"""]) __lowercase = frozenset(["""input_tokens"""]) __lowercase = frozenset(["""input_tokens"""])
226
1
'''simple docstring''' from __future__ import annotations from typing import Any def lowerCamelCase (_SCREAMING_SNAKE_CASE : list ): if not postfix_notation: return 0 __a : Optional[Any] = {'+', '-', '*', '/'} __a : list[Any] = [] for token in postfix_notation: if token in operations: __a , __a : List[Any] = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(_SCREAMING_SNAKE_CASE ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
27
'''simple docstring''' import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def lowerCamelCase (_SCREAMING_SNAKE_CASE : Dict ): __a : Optional[Any] = tmp_path / 'file.csv' __a : Union[str, Any] = textwrap.dedent( '\\n header1,header2\n 1,2\n 10,20\n ' ) with open(_SCREAMING_SNAKE_CASE , 'w' ) as f: f.write(_SCREAMING_SNAKE_CASE ) return str(_SCREAMING_SNAKE_CASE ) @pytest.fixture def lowerCamelCase (_SCREAMING_SNAKE_CASE : Union[str, Any] ): __a : str = tmp_path / 'malformed_file.csv' __a : int = textwrap.dedent( '\\n header1,header2\n 1,2\n 10,20,\n ' ) with open(_SCREAMING_SNAKE_CASE , 'w' ) as f: f.write(_SCREAMING_SNAKE_CASE ) return str(_SCREAMING_SNAKE_CASE ) @pytest.fixture def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[str] ): __a : Optional[Any] = tmp_path / 'csv_with_image.csv' __a : Dict = textwrap.dedent( F"""\ image {image_file} """ ) with open(_SCREAMING_SNAKE_CASE , 'w' ) as f: f.write(_SCREAMING_SNAKE_CASE ) return str(_SCREAMING_SNAKE_CASE ) @pytest.fixture def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[Any] ): __a : Union[str, Any] = tmp_path / 'csv_with_label.csv' __a : Any = textwrap.dedent( '\\n label\n good\n bad\n good\n ' ) with open(_SCREAMING_SNAKE_CASE , 'w' ) as f: f.write(_SCREAMING_SNAKE_CASE ) return str(_SCREAMING_SNAKE_CASE ) @pytest.fixture def lowerCamelCase (_SCREAMING_SNAKE_CASE : List[Any] ): __a : Dict = tmp_path / 'csv_with_int_list.csv' __a : Tuple = textwrap.dedent( '\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n ' ) with open(_SCREAMING_SNAKE_CASE , 'w' ) as f: f.write(_SCREAMING_SNAKE_CASE ) return str(_SCREAMING_SNAKE_CASE ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[str] ): __a : int = Csv() __a : str = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(_SCREAMING_SNAKE_CASE , match='Error tokenizing data' ): for _ in generator: pass assert any( record.levelname == 'ERROR' and 'Failed to read file' in record.message and os.path.basename(_SCREAMING_SNAKE_CASE ) in record.message for record in caplog.records ) @require_pil def lowerCamelCase (_SCREAMING_SNAKE_CASE : List[str] ): with open(_SCREAMING_SNAKE_CASE , encoding='utf-8' ) as f: __a : Tuple = f.read().splitlines()[1] __a : Tuple = Csv(encoding='utf-8' , features=Features({'image': Image()} ) ) __a : Any = csv._generate_tables([[csv_file_with_image]] ) __a : int = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('image' ).type == Image()() __a : Any = pa_table.to_pydict()['image'] assert generated_content == [{"path": image_file, "bytes": None}] def lowerCamelCase (_SCREAMING_SNAKE_CASE : Union[str, Any] ): with open(_SCREAMING_SNAKE_CASE , encoding='utf-8' ) as f: __a : Tuple = f.read().splitlines()[1:] __a : Optional[int] = Csv(encoding='utf-8' , features=Features({'label': ClassLabel(names=['good', 'bad'] )} ) ) __a : List[str] = csv._generate_tables([[csv_file_with_label]] ) __a : Dict = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('label' ).type == ClassLabel(names=['good', 'bad'] )() __a : int = pa_table.to_pydict()['label'] assert generated_content == [ClassLabel(names=['good', 'bad'] ).straint(_SCREAMING_SNAKE_CASE ) for label in labels] def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[int] ): __a : str = Csv(encoding='utf-8' , sep=',' , converters={'int_list': lambda _SCREAMING_SNAKE_CASE : [int(_SCREAMING_SNAKE_CASE ) for i in x.split()]} ) __a : Any = csv._generate_tables([[csv_file_with_int_list]] ) __a : Any = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('int_list' ).type ) __a : Tuple = pa_table.to_pydict()['int_list'] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
27
1
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class SCREAMING_SNAKE_CASE__ ( snake_case__ ): """simple docstring""" @staticmethod @abstractmethod def lowerCamelCase_ ( UpperCAmelCase_ : ArgumentParser ): """simple docstring""" raise NotImplementedError() @abstractmethod def lowerCamelCase_ ( self : Dict ): """simple docstring""" raise NotImplementedError()
37
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ : Dict = logging.get_logger(__name__) lowerCAmelCase__ : int = { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/config.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/config.json" # See all FNet models at https://huggingface.co/models?filter=fnet } class SCREAMING_SNAKE_CASE__ ( snake_case__ ): """simple docstring""" SCREAMING_SNAKE_CASE = '''fnet''' def __init__( self : Tuple , UpperCAmelCase_ : str=32_000 , UpperCAmelCase_ : List[str]=768 , UpperCAmelCase_ : List[str]=12 , UpperCAmelCase_ : str=3_072 , UpperCAmelCase_ : List[str]="gelu_new" , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : Optional[Any]=512 , UpperCAmelCase_ : Any=4 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : List[Any]=1e-12 , UpperCAmelCase_ : int=False , UpperCAmelCase_ : Tuple=512 , UpperCAmelCase_ : int=3 , UpperCAmelCase_ : Dict=1 , UpperCAmelCase_ : List[Any]=2 , **UpperCAmelCase_ : Tuple , ): """simple docstring""" super().__init__(pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ ) __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : List[str] = max_position_embeddings __UpperCAmelCase : List[Any] = hidden_size __UpperCAmelCase : Optional[int] = num_hidden_layers __UpperCAmelCase : Optional[int] = intermediate_size __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : List[str] = hidden_dropout_prob __UpperCAmelCase : Tuple = initializer_range __UpperCAmelCase : Union[str, Any] = type_vocab_size __UpperCAmelCase : List[Any] = layer_norm_eps __UpperCAmelCase : Optional[Any] = use_tpu_fourier_optimizations __UpperCAmelCase : List[Any] = tpu_short_seq_length
37
1
'''simple docstring''' class UpperCAmelCase_ : """simple docstring""" def __init__( self : int , snake_case_ : int ): snake_case__ : Tuple = n snake_case__ : int = [None] * self.n snake_case__ : Optional[int] = 0 # index of the first element snake_case__ : List[Any] = 0 snake_case__ : str = 0 def __len__( self : Optional[Any] ): return self.size def lowerCamelCase ( self : Dict ): return self.size == 0 def lowerCamelCase ( self : Optional[int] ): return False if self.is_empty() else self.array[self.front] def lowerCamelCase ( self : Optional[int] , snake_case_ : str ): if self.size >= self.n: raise Exception("""QUEUE IS FULL""" ) snake_case__ : Optional[int] = data snake_case__ : Optional[int] = (self.rear + 1) % self.n self.size += 1 return self def lowerCamelCase ( self : List[Any] ): if self.size == 0: raise Exception("""UNDERFLOW""" ) snake_case__ : List[str] = self.array[self.front] snake_case__ : str = None snake_case__ : Any = (self.front + 1) % self.n self.size -= 1 return temp
35
'''simple docstring''' import argparse import os import re __a = "src/transformers" # Pattern that looks at the indentation in a line. __a = re.compile(R"^(\s*)\S") # Pattern that matches `"key":" and puts `key` in group 0. __a = re.compile(R"^\s*\"([^\"]+)\":") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. __a = re.compile(R"^\s*_import_structure\[\"([^\"]+)\"\]") # Pattern that matches `"key",` and puts `key` in group 0. __a = re.compile(R"^\s*\"([^\"]+)\",\s*$") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. __a = re.compile(R"\[([^\]]+)\]") def __snake_case( _lowerCAmelCase ) -> List[Any]: snake_case__ : int = _re_indent.search(_lowerCAmelCase ) return "" if search is None else search.groups()[0] def __snake_case( _lowerCAmelCase , _lowerCAmelCase="" , _lowerCAmelCase=None , _lowerCAmelCase=None ) -> List[str]: snake_case__ : str = 0 snake_case__ : Union[str, Any] = code.split("""\n""" ) if start_prompt is not None: while not lines[index].startswith(_lowerCAmelCase ): index += 1 snake_case__ : Tuple = ["""\n""".join(lines[:index] )] else: snake_case__ : List[str] = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). snake_case__ : Optional[int] = [lines[index]] index += 1 while index < len(_lowerCAmelCase ) and (end_prompt is None or not lines[index].startswith(_lowerCAmelCase )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_lowerCAmelCase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ): current_block.append(lines[index] ) blocks.append("""\n""".join(_lowerCAmelCase ) ) if index < len(_lowerCAmelCase ) - 1: snake_case__ : str = [lines[index + 1]] index += 1 else: snake_case__ : int = [] else: blocks.append("""\n""".join(_lowerCAmelCase ) ) snake_case__ : Optional[Any] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_lowerCAmelCase ) > 0: blocks.append("""\n""".join(_lowerCAmelCase ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_lowerCAmelCase ): blocks.append("""\n""".join(lines[index:] ) ) return blocks def __snake_case( _lowerCAmelCase ) -> Tuple: def _inner(_lowerCAmelCase ): return key(_lowerCAmelCase ).lower().replace("""_""" , """""" ) return _inner def __snake_case( _lowerCAmelCase , _lowerCAmelCase=None ) -> List[Any]: # If no key is provided, we use a noop. def noop(_lowerCAmelCase ): return x if key is None: snake_case__ : Optional[int] = noop # Constants are all uppercase, they go first. snake_case__ : Optional[int] = [obj for obj in objects if key(_lowerCAmelCase ).isupper()] # Classes are not all uppercase but start with a capital, they go second. snake_case__ : int = [obj for obj in objects if key(_lowerCAmelCase )[0].isupper() and not key(_lowerCAmelCase ).isupper()] # Functions begin with a lowercase, they go last. snake_case__ : str = [obj for obj in objects if not key(_lowerCAmelCase )[0].isupper()] snake_case__ : List[str] = ignore_underscore(_lowerCAmelCase ) return sorted(_lowerCAmelCase , key=_lowerCAmelCase ) + sorted(_lowerCAmelCase , key=_lowerCAmelCase ) + sorted(_lowerCAmelCase , key=_lowerCAmelCase ) def __snake_case( _lowerCAmelCase ) -> int: # This inner function sort imports between [ ]. def _replace(_lowerCAmelCase ): snake_case__ : Union[str, Any] = match.groups()[0] if "," not in imports: return f"[{imports}]" snake_case__ : int = [part.strip().replace("""\"""" , """""" ) for part in imports.split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: snake_case__ : List[str] = keys[:-1] return "[" + ", ".join([f"\"{k}\"" for k in sort_objects(_lowerCAmelCase )] ) + "]" snake_case__ : str = import_statement.split("""\n""" ) if len(_lowerCAmelCase ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. snake_case__ : Dict = 2 if lines[1].strip() == """[""" else 1 snake_case__ : str = [(i, _re_strip_line.search(_lowerCAmelCase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] snake_case__ : str = sort_objects(_lowerCAmelCase , key=lambda _lowerCAmelCase : x[1] ) snake_case__ : Union[str, Any] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_lowerCAmelCase ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: snake_case__ : Union[str, Any] = _re_bracket_content.sub(_replace , lines[1] ) else: snake_case__ : List[Any] = [part.strip().replace("""\"""" , """""" ) for part in lines[1].split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: snake_case__ : List[str] = keys[:-1] snake_case__ : int = get_indent(lines[1] ) + """, """.join([f"\"{k}\"" for k in sort_objects(_lowerCAmelCase )] ) return "\n".join(_lowerCAmelCase ) else: # Finally we have to deal with imports fitting on one line snake_case__ : Optional[Any] = _re_bracket_content.sub(_replace , _lowerCAmelCase ) return import_statement def __snake_case( _lowerCAmelCase , _lowerCAmelCase=True ) -> Dict: with open(_lowerCAmelCase , encoding="""utf-8""" ) as f: snake_case__ : Optional[int] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 snake_case__ : Optional[int] = split_code_in_indented_blocks( _lowerCAmelCase , start_prompt="""_import_structure = {""" , end_prompt="""if TYPE_CHECKING:""" ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_lowerCAmelCase ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. snake_case__ : Optional[Any] = main_blocks[block_idx] snake_case__ : Dict = block.split("""\n""" ) # Get to the start of the imports. snake_case__ : Dict = 0 while line_idx < len(_lowerCAmelCase ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: snake_case__ : Union[str, Any] = len(_lowerCAmelCase ) else: line_idx += 1 if line_idx >= len(_lowerCAmelCase ): continue # Ignore beginning and last line: they don't contain anything. snake_case__ : List[str] = """\n""".join(block_lines[line_idx:-1] ) snake_case__ : str = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. snake_case__ : Optional[int] = split_code_in_indented_blocks(_lowerCAmelCase , indent_level=_lowerCAmelCase ) # We have two categories of import key: list or _import_structure[key].append/extend snake_case__ : Tuple = _re_direct_key if """_import_structure = {""" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. snake_case__ : Optional[Any] = [(pattern.search(_lowerCAmelCase ).groups()[0] if pattern.search(_lowerCAmelCase ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. snake_case__ : Dict = [(i, key) for i, key in enumerate(_lowerCAmelCase ) if key is not None] snake_case__ : Union[str, Any] = [x[0] for x in sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. snake_case__ : List[Any] = 0 snake_case__ : Optional[Any] = [] for i in range(len(_lowerCAmelCase ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: snake_case__ : Optional[Any] = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(_lowerCAmelCase ) count += 1 # And we put our main block back together with its first and last line. snake_case__ : Dict = """\n""".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(_lowerCAmelCase ): if check_only: return True else: print(f"Overwriting {file}." ) with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write("""\n""".join(_lowerCAmelCase ) ) def __snake_case( _lowerCAmelCase=True ) -> Tuple: snake_case__ : str = [] for root, _, files in os.walk(_lowerCAmelCase ): if "__init__.py" in files: snake_case__ : Union[str, Any] = sort_imports(os.path.join(_lowerCAmelCase , """__init__.py""" ) , check_only=_lowerCAmelCase ) if result: snake_case__ : Union[str, Any] = [os.path.join(_lowerCAmelCase , """__init__.py""" )] if len(_lowerCAmelCase ) > 0: raise ValueError(f"Would overwrite {len(_lowerCAmelCase )} files, run `make style`." ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") __a = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
35
1
"""simple docstring""" import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ): return image elif isinstance(_SCREAMING_SNAKE_CASE , PIL.Image.Image ): UpperCamelCase = [image] if isinstance(image[0] , PIL.Image.Image ): UpperCamelCase = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) )[None, :] for i in image] UpperCamelCase = np.concatenate(_SCREAMING_SNAKE_CASE , axis=0 ) UpperCamelCase = np.array(_SCREAMING_SNAKE_CASE ).astype(np.floataa ) / 255.0 UpperCamelCase = image.transpose(0 , 3 , 1 , 2 ) UpperCamelCase = 2.0 * image - 1.0 UpperCamelCase = torch.from_numpy(_SCREAMING_SNAKE_CASE ) elif isinstance(image[0] , torch.Tensor ): UpperCamelCase = torch.cat(_SCREAMING_SNAKE_CASE , dim=0 ) return image def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0.99_95 ): """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ): UpperCamelCase = True UpperCamelCase = va.device UpperCamelCase = va.cpu().numpy() UpperCamelCase = va.cpu().numpy() UpperCamelCase = np.sum(va * va / (np.linalg.norm(_SCREAMING_SNAKE_CASE ) * np.linalg.norm(_SCREAMING_SNAKE_CASE )) ) if np.abs(_SCREAMING_SNAKE_CASE ) > DOT_THRESHOLD: UpperCamelCase = (1 - t) * va + t * va else: UpperCamelCase = np.arccos(_SCREAMING_SNAKE_CASE ) UpperCamelCase = np.sin(_SCREAMING_SNAKE_CASE ) UpperCamelCase = theta_a * t UpperCamelCase = np.sin(_SCREAMING_SNAKE_CASE ) UpperCamelCase = np.sin(theta_a - theta_t ) / sin_theta_a UpperCamelCase = sin_theta_t / sin_theta_a UpperCamelCase = sa * va + sa * va if inputs_are_torch: UpperCamelCase = torch.from_numpy(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) return va def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = F.normalize(_SCREAMING_SNAKE_CASE , dim=-1 ) UpperCamelCase = F.normalize(_SCREAMING_SNAKE_CASE , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" for param in model.parameters(): UpperCamelCase = value class _lowerCamelCase ( _lowercase ): def __init__(self , __a , __a , __a , __a , __a , __a , __a , __a=None , __a=None , __a=None , ) -> Tuple: super().__init__() self.register_modules( vae=__a , text_encoder=__a , clip_model=__a , tokenizer=__a , unet=__a , scheduler=__a , feature_extractor=__a , coca_model=__a , coca_tokenizer=__a , coca_transform=__a , ) UpperCamelCase = ( feature_extractor.size if isinstance(feature_extractor.size , __a ) else feature_extractor.size["shortest_edge"] ) UpperCamelCase = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , __a ) set_requires_grad(self.clip_model , __a ) def snake_case_ (self , __a = "auto" ) -> List[Any]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCamelCase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__a ) def snake_case_ (self ) -> Optional[int]: self.enable_attention_slicing(__a ) def snake_case_ (self ) -> int: set_requires_grad(self.vae , __a ) def snake_case_ (self ) -> Optional[Any]: set_requires_grad(self.vae , __a ) def snake_case_ (self ) -> Optional[int]: set_requires_grad(self.unet , __a ) def snake_case_ (self ) -> str: set_requires_grad(self.unet , __a ) def snake_case_ (self , __a , __a , __a ) -> str: # get the original timestep using init_timestep UpperCamelCase = min(int(num_inference_steps * strength ) , __a ) UpperCamelCase = max(num_inference_steps - init_timestep , 0 ) UpperCamelCase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def snake_case_ (self , __a , __a , __a , __a , __a , __a=None ) -> Tuple: if not isinstance(__a , torch.Tensor ): raise ValueError(F"`image` has to be of type `torch.Tensor` but is {type(__a )}" ) UpperCamelCase = image.to(device=__a , dtype=__a ) if isinstance(__a , __a ): UpperCamelCase = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__a ) ] UpperCamelCase = torch.cat(__a , dim=0 ) else: UpperCamelCase = self.vae.encode(__a ).latent_dist.sample(__a ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCamelCase = 0.18215 * init_latents UpperCamelCase = init_latents.repeat_interleave(__a , dim=0 ) UpperCamelCase = randn_tensor(init_latents.shape , generator=__a , device=__a , dtype=__a ) # get latents UpperCamelCase = self.scheduler.add_noise(__a , __a , __a ) UpperCamelCase = init_latents return latents def snake_case_ (self , __a ) -> Union[str, Any]: UpperCamelCase = self.coca_transform(__a ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): UpperCamelCase = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) UpperCamelCase = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("<end_of_text>" )[0].replace("<start_of_text>" , "" ).rstrip(" .," ) def snake_case_ (self , __a , __a ) -> Union[str, Any]: UpperCamelCase = self.feature_extractor.preprocess(__a ) UpperCamelCase = torch.from_numpy(clip_image_input["pixel_values"][0] ).unsqueeze(0 ).to(self.device ).half() UpperCamelCase = self.clip_model.get_image_features(__a ) UpperCamelCase = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=__a ) UpperCamelCase = image_embeddings_clip.repeat_interleave(__a , dim=0 ) return image_embeddings_clip @torch.enable_grad() def snake_case_ (self , __a , __a , __a , __a , __a , __a , __a , ) -> List[str]: UpperCamelCase = latents.detach().requires_grad_() UpperCamelCase = self.scheduler.scale_model_input(__a , __a ) # predict the noise residual UpperCamelCase = self.unet(__a , __a , encoder_hidden_states=__a ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): UpperCamelCase = self.scheduler.alphas_cumprod[timestep] UpperCamelCase = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCamelCase = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 UpperCamelCase = torch.sqrt(__a ) UpperCamelCase = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , __a ): UpperCamelCase = self.scheduler.sigmas[index] UpperCamelCase = latents - sigma * noise_pred else: raise ValueError(F"scheduler type {type(self.scheduler )} not supported" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCamelCase = 1 / 0.18215 * sample UpperCamelCase = self.vae.decode(__a ).sample UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase = transforms.Resize(self.feature_extractor_size )(__a ) UpperCamelCase = self.normalize(__a ).to(latents.dtype ) UpperCamelCase = self.clip_model.get_image_features(__a ) UpperCamelCase = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=__a ) UpperCamelCase = spherical_dist_loss(__a , __a ).mean() * clip_guidance_scale UpperCamelCase = -torch.autograd.grad(__a , __a )[0] if isinstance(self.scheduler , __a ): UpperCamelCase = latents.detach() + grads * (sigma**2) UpperCamelCase = noise_pred_original else: UpperCamelCase = noise_pred_original - torch.sqrt(__a ) * grads return noise_pred, latents @torch.no_grad() def __call__(self , __a , __a , __a = None , __a = None , __a = 5_12 , __a = 5_12 , __a = 0.6 , __a = 50 , __a = 7.5 , __a = 1 , __a = 0.0 , __a = 1_00 , __a = None , __a = "pil" , __a = True , __a = 0.8 , __a = 0.1 , __a = 0.1 , ) -> List[Any]: if isinstance(__a , __a ) and len(__a ) != batch_size: raise ValueError(F"You have passed {batch_size} batch_size, but only {len(__a )} generators." ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if isinstance(__a , torch.Generator ) and batch_size > 1: UpperCamelCase = [generator] + [None] * (batch_size - 1) UpperCamelCase = [ ("model", self.coca_model is None), ("tokenizer", self.coca_tokenizer is None), ("transform", self.coca_transform is None), ] UpperCamelCase = [x[0] for x in coca_is_none if x[1]] UpperCamelCase = ", ".join(__a ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(__a ): raise ValueError( F"Content prompt is None and CoCa [{coca_is_none_str}] is None." F"Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline." ) UpperCamelCase = self.get_image_description(__a ) if style_prompt is None: if len(__a ): raise ValueError( F"Style prompt is None and CoCa [{coca_is_none_str}] is None." F" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline." ) UpperCamelCase = self.get_image_description(__a ) # get prompt text embeddings for content and style UpperCamelCase = self.tokenizer( __a , padding="max_length" , max_length=self.tokenizer.model_max_length , truncation=__a , return_tensors="pt" , ) UpperCamelCase = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] UpperCamelCase = self.tokenizer( __a , padding="max_length" , max_length=self.tokenizer.model_max_length , truncation=__a , return_tensors="pt" , ) UpperCamelCase = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] UpperCamelCase = slerp(__a , __a , __a ) # duplicate text embeddings for each generation per prompt UpperCamelCase = text_embeddings.repeat_interleave(__a , dim=0 ) # set timesteps UpperCamelCase = "offset" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) UpperCamelCase = {} if accepts_offset: UpperCamelCase = 1 self.scheduler.set_timesteps(__a , **__a ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) UpperCamelCase , UpperCamelCase = self.get_timesteps(__a , __a , self.device ) UpperCamelCase = timesteps[:1].repeat(__a ) # Preprocess image UpperCamelCase = preprocess(__a , __a , __a ) UpperCamelCase = self.prepare_latents( __a , __a , __a , text_embeddings.dtype , self.device , __a ) UpperCamelCase = preprocess(__a , __a , __a ) UpperCamelCase = self.prepare_latents( __a , __a , __a , text_embeddings.dtype , self.device , __a ) UpperCamelCase = slerp(__a , __a , __a ) if clip_guidance_scale > 0: UpperCamelCase = self.get_clip_image_embeddings(__a , __a ) UpperCamelCase = self.get_clip_image_embeddings(__a , __a ) UpperCamelCase = slerp( __a , __a , __a ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCamelCase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCamelCase = content_text_input.input_ids.shape[-1] UpperCamelCase = self.tokenizer([""] , padding="max_length" , max_length=__a , return_tensors="pt" ) UpperCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt UpperCamelCase = uncond_embeddings.repeat_interleave(__a , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCamelCase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCamelCase = (batch_size, self.unet.config.in_channels, height // 8, width // 8) UpperCamelCase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps UpperCamelCase = torch.randn(__a , generator=__a , device="cpu" , dtype=__a ).to( self.device ) else: UpperCamelCase = torch.randn(__a , generator=__a , device=self.device , dtype=__a ) else: if latents.shape != latents_shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) UpperCamelCase = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCamelCase = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase = {} if accepts_eta: UpperCamelCase = eta # check if the scheduler accepts generator UpperCamelCase = "generator" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: UpperCamelCase = generator with self.progress_bar(total=__a ): for i, t in enumerate(__a ): # expand the latents if we are doing classifier free guidance UpperCamelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCamelCase = self.scheduler.scale_model_input(__a , __a ) # predict the noise residual UpperCamelCase = self.unet(__a , __a , encoder_hidden_states=__a ).sample # perform classifier free guidance if do_classifier_free_guidance: UpperCamelCase , UpperCamelCase = noise_pred.chunk(2 ) UpperCamelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: UpperCamelCase = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) UpperCamelCase , UpperCamelCase = self.cond_fn( __a , __a , __a , __a , __a , __a , __a , ) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase = self.scheduler.step(__a , __a , __a , **__a ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCamelCase = 1 / 0.18215 * latents UpperCamelCase = self.vae.decode(__a ).sample UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase = self.numpy_to_pil(__a ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=__a , nsfw_content_detected=__a )
358
"""simple docstring""" import doctest from collections import deque import numpy as np class _lowerCamelCase : def __init__(self ) -> None: UpperCamelCase = [2, 1, 2, -1] UpperCamelCase = [1, 2, 3, 4] def snake_case_ (self ) -> list[float]: UpperCamelCase = len(self.first_signal ) UpperCamelCase = len(self.second_signal ) UpperCamelCase = max(__a , __a ) # create a zero matrix of max_length x max_length UpperCamelCase = [[0] * max_length for i in range(__a )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(__a ): UpperCamelCase = deque(self.second_signal ) rotated_signal.rotate(__a ) for j, item in enumerate(__a ): matrix[i][j] += item # multiply the matrix with the first signal UpperCamelCase = np.matmul(np.transpose(__a ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(__a , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
244
0
"""simple docstring""" import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Any] ): print('Loading config file...' ) def flatten_yaml_as_dict(__SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Any="" , __SCREAMING_SNAKE_CASE : List[Any]="." ): lowercase_ : List[str] = [] for k, v in d.items(): lowercase_ : Dict = parent_key + sep + k if parent_key else k if isinstance(__SCREAMING_SNAKE_CASE , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , sep=__SCREAMING_SNAKE_CASE ).items() ) else: items.append((new_key, v) ) return dict(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = argparse.Namespace() with open(__SCREAMING_SNAKE_CASE , 'r' ) as yaml_file: try: lowercase_ : str = yaml.load(__SCREAMING_SNAKE_CASE , Loader=yaml.FullLoader ) lowercase_ : List[Any] = flatten_yaml_as_dict(__SCREAMING_SNAKE_CASE ) for k, v in flat_cfg.items(): setattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) except yaml.YAMLError as exc: logger.error('Error while loading config file: {}. Error message: {}'.format(__SCREAMING_SNAKE_CASE , str(__SCREAMING_SNAKE_CASE ) ) ) return config def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str] ): lowercase_ : int = MobileViTVaConfig() lowercase_ : List[str] = False # dataset if task_name.startswith('imagenet1k_' ): lowercase_ : List[Any] = 10_00 if int(task_name.strip().split('_' )[-1] ) == 3_84: lowercase_ : str = 3_84 else: lowercase_ : Dict = 2_56 lowercase_ : int = 'imagenet-1k-id2label.json' elif task_name.startswith('imagenet21k_to_1k_' ): lowercase_ : int = 2_10_00 if int(task_name.strip().split('_' )[-1] ) == 3_84: lowercase_ : Optional[Any] = 3_84 else: lowercase_ : Tuple = 2_56 lowercase_ : List[str] = 'imagenet-22k-id2label.json' elif task_name.startswith('ade20k_' ): lowercase_ : int = 1_51 lowercase_ : Optional[Any] = 5_12 lowercase_ : str = 'ade20k-id2label.json' lowercase_ : List[Any] = True elif task_name.startswith('voc_' ): lowercase_ : Union[str, Any] = 21 lowercase_ : Tuple = 5_12 lowercase_ : List[str] = 'pascal-voc-id2label.json' lowercase_ : str = True # orig_config lowercase_ : Optional[int] = load_orig_config_file(__SCREAMING_SNAKE_CASE ) assert getattr(__SCREAMING_SNAKE_CASE , 'model.classification.name' , -1 ) == "mobilevit_v2", "Invalid model" lowercase_ : Optional[Any] = getattr(__SCREAMING_SNAKE_CASE , 'model.classification.mitv2.width_multiplier' , 1.0 ) assert ( getattr(__SCREAMING_SNAKE_CASE , 'model.classification.mitv2.attn_norm_layer' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" lowercase_ : Any = getattr(__SCREAMING_SNAKE_CASE , 'model.classification.activation.name' , 'swish' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: lowercase_ : Any = getattr(__SCREAMING_SNAKE_CASE , 'model.segmentation.output_stride' , 16 ) if "_deeplabv3" in task_name: lowercase_ : Any = getattr(__SCREAMING_SNAKE_CASE , 'model.segmentation.deeplabv3.aspp_rates' , [12, 24, 36] ) lowercase_ : Union[str, Any] = getattr(__SCREAMING_SNAKE_CASE , 'model.segmentation.deeplabv3.aspp_out_channels' , 5_12 ) lowercase_ : Any = getattr(__SCREAMING_SNAKE_CASE , 'model.segmentation.deeplabv3.aspp_dropout' , 0.1 ) # id2label lowercase_ : Optional[Any] = 'huggingface/label-files' lowercase_ : List[Any] = json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) lowercase_ : List[str] = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase_ : int = idalabel lowercase_ : List[Any] = {v: k for k, v in idalabel.items()} return config def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : str ): lowercase_ : List[Any] = dct.pop(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = val def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any]=False ): if base_model: lowercase_ : int = '' else: lowercase_ : str = 'mobilevitv2.' lowercase_ : Dict = [] for k in state_dict.keys(): if k[:8] == "encoder.": lowercase_ : Dict = k[8:] else: lowercase_ : Union[str, Any] = k if ".block." in k: lowercase_ : List[str] = k_new.replace('.block.' , '.' ) if ".conv." in k: lowercase_ : List[Any] = k_new.replace('.conv.' , '.convolution.' ) if ".norm." in k: lowercase_ : str = k_new.replace('.norm.' , '.normalization.' ) if "conv_1." in k: lowercase_ : Dict = k_new.replace('conv_1.' , F'''{model_prefix}conv_stem.''' ) for i in [1, 2]: if F'''layer_{i}.''' in k: lowercase_ : Tuple = k_new.replace(F'''layer_{i}.''' , F'''{model_prefix}encoder.layer.{i-1}.layer.''' ) if ".exp_1x1." in k: lowercase_ : Any = k_new.replace('.exp_1x1.' , '.expand_1x1.' ) if ".red_1x1." in k: lowercase_ : str = k_new.replace('.red_1x1.' , '.reduce_1x1.' ) for i in [3, 4, 5]: if F'''layer_{i}.0.''' in k: lowercase_ : Tuple = k_new.replace(F'''layer_{i}.0.''' , F'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' ) if F'''layer_{i}.1.local_rep.0.''' in k: lowercase_ : Any = k_new.replace(F'''layer_{i}.1.local_rep.0.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' ) if F'''layer_{i}.1.local_rep.1.''' in k: lowercase_ : List[Any] = k_new.replace(F'''layer_{i}.1.local_rep.1.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' ) for i in [3, 4, 5]: if i == 3: lowercase_ : Dict = [0, 1] elif i == 4: lowercase_ : int = [0, 1, 2, 3] elif i == 5: lowercase_ : List[str] = [0, 1, 2] for j in j_in: if F'''layer_{i}.1.global_rep.{j}.''' in k: lowercase_ : List[str] = k_new.replace( F'''layer_{i}.1.global_rep.{j}.''' , F'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' ) if F'''layer_{i}.1.global_rep.{j+1}.''' in k: lowercase_ : int = k_new.replace( F'''layer_{i}.1.global_rep.{j+1}.''' , F'''{model_prefix}encoder.layer.{i-1}.layernorm.''' ) if F'''layer_{i}.1.conv_proj.''' in k: lowercase_ : str = k_new.replace(F'''layer_{i}.1.conv_proj.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' ) if "pre_norm_attn.0." in k: lowercase_ : Optional[Any] = k_new.replace('pre_norm_attn.0.' , 'layernorm_before.' ) if "pre_norm_attn.1." in k: lowercase_ : Any = k_new.replace('pre_norm_attn.1.' , 'attention.' ) if "pre_norm_ffn.0." in k: lowercase_ : List[str] = k_new.replace('pre_norm_ffn.0.' , 'layernorm_after.' ) if "pre_norm_ffn.1." in k: lowercase_ : int = k_new.replace('pre_norm_ffn.1.' , 'ffn.conv1.' ) if "pre_norm_ffn.3." in k: lowercase_ : str = k_new.replace('pre_norm_ffn.3.' , 'ffn.conv2.' ) if "classifier.1." in k: lowercase_ : Union[str, Any] = k_new.replace('classifier.1.' , 'classifier.' ) if "seg_head." in k: lowercase_ : Optional[int] = k_new.replace('seg_head.' , 'segmentation_head.' ) if ".aspp_layer." in k: lowercase_ : Dict = k_new.replace('.aspp_layer.' , '.' ) if ".aspp_pool." in k: lowercase_ : Dict = k_new.replace('.aspp_pool.' , '.' ) rename_keys.append((k, k_new) ) return rename_keys def lowercase__( __SCREAMING_SNAKE_CASE : Any ): lowercase_ : str = [] for k in state_dict.keys(): if k.startswith('seg_head.aux_head.' ): keys_to_ignore.append(__SCREAMING_SNAKE_CASE ) for k in keys_to_ignore: state_dict.pop(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def lowercase__( ): lowercase_ : Union[str, Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" lowercase_ : Any = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] ): lowercase_ : Tuple = get_mobilevitva_config(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # load original state_dict lowercase_ : Tuple = torch.load(__SCREAMING_SNAKE_CASE , map_location='cpu' ) # load huggingface model if task_name.startswith('ade20k_' ) or task_name.startswith('voc_' ): lowercase_ : Tuple = MobileViTVaForSemanticSegmentation(__SCREAMING_SNAKE_CASE ).eval() lowercase_ : Optional[int] = False else: lowercase_ : Any = MobileViTVaForImageClassification(__SCREAMING_SNAKE_CASE ).eval() lowercase_ : int = False # remove and rename some keys of load the original model lowercase_ : Any = checkpoint remove_unused_keys(__SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = create_rename_keys(__SCREAMING_SNAKE_CASE , base_model=__SCREAMING_SNAKE_CASE ) for rename_key_src, rename_key_dest in rename_keys: rename_key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # load modified state_dict model.load_state_dict(__SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by MobileViTImageProcessor lowercase_ : Union[str, Any] = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) lowercase_ : Any = image_processor(images=prepare_img() , return_tensors='pt' ) lowercase_ : Optional[int] = model(**__SCREAMING_SNAKE_CASE ) # verify classification model if task_name.startswith('imagenet' ): lowercase_ : List[str] = outputs.logits lowercase_ : int = logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('imagenet1k_256' ) and config.width_multiplier == 1.0: # expected_logits for base variant lowercase_ : Optional[int] = torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] ) assert torch.allclose(logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) print(F'''Saving model {task_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="imagenet1k_256", type=str, help=( "Name of the task for which the MobileViTV2 model you'd like to convert is trained on . " "\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n " ), choices=[ "imagenet1k_256", "imagenet1k_384", "imagenet21k_to_1k_256", "imagenet21k_to_1k_384", "ade20k_deeplabv3", "voc_deeplabv3", ], ) parser.add_argument( "--orig_checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)." ) parser.add_argument("--orig_config_path", required=True, type=str, help="Path to the original config file.") parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) __SCREAMING_SNAKE_CASE =parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
213
"""simple docstring""" def lowercase__( __SCREAMING_SNAKE_CASE : list ): if len(__SCREAMING_SNAKE_CASE ) < 2: return collection def circle_sort_util(__SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ) -> bool: lowercase_ : Any = False if low == high: return swapped lowercase_ : str = low lowercase_ : int = high while left < right: if collection[left] > collection[right]: lowercase_ , lowercase_ : Optional[Any] = ( collection[right], collection[left], ) lowercase_ : Tuple = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: lowercase_ , lowercase_ : Dict = ( collection[right + 1], collection[left], ) lowercase_ : str = True lowercase_ : Optional[Any] = low + int((high - low) / 2 ) lowercase_ : str = circle_sort_util(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : List[Any] = circle_sort_util(__SCREAMING_SNAKE_CASE , mid + 1 , __SCREAMING_SNAKE_CASE ) return swapped or left_swap or right_swap lowercase_ : Dict = True while is_not_sorted is True: lowercase_ : Optional[Any] = circle_sort_util(__SCREAMING_SNAKE_CASE , 0 , len(__SCREAMING_SNAKE_CASE ) - 1 ) return collection if __name__ == "__main__": __SCREAMING_SNAKE_CASE =input("Enter numbers separated by a comma:\n").strip() __SCREAMING_SNAKE_CASE =[int(item) for item in user_input.split(",")] print(circle_sort(unsorted))
213
1
"""simple docstring""" from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''huggingface/autoformer-tourism-monthly''': '''https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json''', } class _lowerCamelCase ( _lowercase ): UpperCAmelCase_ = "autoformer" UpperCAmelCase_ = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__(self , __a = None , __a = None , __a = "student_t" , __a = "nll" , __a = 1 , __a = [1, 2, 3, 4, 5, 6, 7] , __a = True , __a = 0 , __a = 0 , __a = 0 , __a = 0 , __a = None , __a = None , __a = 64 , __a = 2 , __a = 2 , __a = 2 , __a = 2 , __a = 32 , __a = 32 , __a = "gelu" , __a = 0.1 , __a = 0.1 , __a = 0.1 , __a = 0.1 , __a = 0.1 , __a = 1_00 , __a = 0.02 , __a = True , __a=True , __a = 10 , __a = 25 , __a = 3 , **__a , ) -> Union[str, Any]: # time series specific configuration UpperCamelCase = prediction_length UpperCamelCase = context_length if context_length is not None else prediction_length UpperCamelCase = distribution_output UpperCamelCase = loss UpperCamelCase = input_size UpperCamelCase = num_time_features UpperCamelCase = lags_sequence UpperCamelCase = scaling UpperCamelCase = num_dynamic_real_features UpperCamelCase = num_static_real_features UpperCamelCase = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(__a ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) UpperCamelCase = cardinality else: UpperCamelCase = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(__a ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) UpperCamelCase = embedding_dimension else: UpperCamelCase = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] UpperCamelCase = num_parallel_samples # Transformer architecture configuration UpperCamelCase = input_size * len(self.lags_sequence ) + self._number_of_features UpperCamelCase = d_model UpperCamelCase = encoder_attention_heads UpperCamelCase = decoder_attention_heads UpperCamelCase = encoder_ffn_dim UpperCamelCase = decoder_ffn_dim UpperCamelCase = encoder_layers UpperCamelCase = decoder_layers UpperCamelCase = dropout UpperCamelCase = attention_dropout UpperCamelCase = activation_dropout UpperCamelCase = encoder_layerdrop UpperCamelCase = decoder_layerdrop UpperCamelCase = activation_function UpperCamelCase = init_std UpperCamelCase = use_cache # Autoformer UpperCamelCase = label_length UpperCamelCase = moving_average UpperCamelCase = autocorrelation_factor super().__init__(is_encoder_decoder=__a , **__a ) @property def snake_case_ (self ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
244
"""simple docstring""" import math def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = len(_SCREAMING_SNAKE_CASE ) UpperCamelCase = int(math.floor(math.sqrt(_SCREAMING_SNAKE_CASE ) ) ) UpperCamelCase = 0 while arr[min(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) - 1] < x: UpperCamelCase = step step += int(math.floor(math.sqrt(_SCREAMING_SNAKE_CASE ) ) ) if prev >= n: return -1 while arr[prev] < x: UpperCamelCase = prev + 1 if prev == min(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": lowerCAmelCase__ = input('''Enter numbers separated by a comma:\n''').strip() lowerCAmelCase__ = [int(item) for item in user_input.split(''',''')] lowerCAmelCase__ = int(input('''Enter the number to be searched:\n''')) lowerCAmelCase__ = jump_search(arr, x) if res == -1: print('''Number not found!''') else: print(f'''Number {x} is at index {res}''')
244
1
"""simple docstring""" import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class _a : """simple docstring""" def __init__( self : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : str=3 , __UpperCamelCase : Optional[Any]=7 , __UpperCamelCase : str=True , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : str=False , __UpperCamelCase : str=True , __UpperCamelCase : Optional[int]=9_9 , __UpperCamelCase : List[str]=3_2 , __UpperCamelCase : List[Any]=5 , __UpperCamelCase : Optional[Any]=4 , __UpperCamelCase : Optional[int]=3_7 , __UpperCamelCase : Tuple="gelu" , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : Dict=0.1 , __UpperCamelCase : Dict=5_1_2 , __UpperCamelCase : Union[str, Any]=1_6 , __UpperCamelCase : Optional[int]=2 , __UpperCamelCase : Any=0.0_2 , __UpperCamelCase : int=3 , __UpperCamelCase : List[Any]=4 , __UpperCamelCase : List[Any]=None , )->List[str]: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope def lowercase__ ( self : List[str] )->Union[str, Any]: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Any )->Optional[int]: return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=__UpperCAmelCase , ) def lowercase__ ( self : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[int] , __UpperCamelCase : int , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : int )->List[str]: _UpperCAmelCase = FalconModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _UpperCAmelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) _UpperCAmelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Tuple , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : str , __UpperCamelCase : Any , __UpperCamelCase : int , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , )->str: _UpperCAmelCase = True _UpperCAmelCase = FalconModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _UpperCAmelCase = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) _UpperCAmelCase = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) _UpperCAmelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : Any , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : List[str] , )->Optional[Any]: _UpperCAmelCase = FalconForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _UpperCAmelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : str , __UpperCamelCase : Tuple , __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[int] , )->str: _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = FalconForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() # first forward pass _UpperCAmelCase = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase , ) _UpperCAmelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) _UpperCAmelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) _UpperCAmelCase = torch.cat([input_mask, next_mask] , dim=-1 ) _UpperCAmelCase = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )['''hidden_states'''][0] _UpperCAmelCase = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )['''hidden_states'''][0] # select random slice _UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() _UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() _UpperCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) ) def lowercase__ ( self : Any )->Tuple: _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _a ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) UpperCamelCase__ = (FalconForCausalLM,) if is_torch_available() else () UpperCamelCase__ = ( { """feature-extraction""": FalconModel, """text-classification""": FalconForSequenceClassification, """text-generation""": FalconForCausalLM, """question-answering""": FalconForQuestionAnswering, """token-classification""": FalconForTokenClassification, """zero-shot""": FalconForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False def lowercase__ ( self : Dict )->str: _UpperCAmelCase = FalconModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=3_7 ) def lowercase__ ( self : str )->Union[str, Any]: self.config_tester.run_common_tests() def lowercase__ ( self : List[str] )->Tuple: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] )->Any: _UpperCAmelCase , *_UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: _UpperCAmelCase = alibi self.model_tester.create_and_check_model(__UpperCAmelCase , *__UpperCAmelCase ) def lowercase__ ( self : Dict )->int: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = 3 _UpperCAmelCase = input_dict['''input_ids'''] _UpperCAmelCase = input_ids.ne(1 ).to(__UpperCAmelCase ) _UpperCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _UpperCAmelCase = FalconForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _UpperCAmelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowercase__ ( self : str )->Tuple: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = 3 _UpperCAmelCase = '''single_label_classification''' _UpperCAmelCase = input_dict['''input_ids'''] _UpperCAmelCase = input_ids.ne(1 ).to(__UpperCAmelCase ) _UpperCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _UpperCAmelCase = FalconForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _UpperCAmelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowercase__ ( self : List[str] )->str: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = input_dict['''input_ids'''] _UpperCAmelCase = FalconForCausalLM(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _UpperCAmelCase = model(__UpperCAmelCase , use_cache=__UpperCAmelCase ) _UpperCAmelCase = input_ids.shape[0] _UpperCAmelCase = model._convert_to_rw_cache(result.past_key_values ) _UpperCAmelCase = model._convert_cache_to_standard_format(__UpperCAmelCase , __UpperCAmelCase ) for layer in range(len(__UpperCAmelCase ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def lowercase__ ( self : List[str] )->str: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = 3 _UpperCAmelCase = '''multi_label_classification''' _UpperCAmelCase = input_dict['''input_ids'''] _UpperCAmelCase = input_ids.ne(1 ).to(__UpperCAmelCase ) _UpperCAmelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _UpperCAmelCase = FalconForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _UpperCAmelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowercase__ ( self : List[str] )->int: for model_class in self.all_generative_model_classes: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(__UpperCAmelCase , '''use_cache''' ): return _UpperCAmelCase = model_class(__UpperCAmelCase ).to(__UpperCAmelCase ) if "use_cache" not in inputs: _UpperCAmelCase = True _UpperCAmelCase = model(**__UpperCAmelCase ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return _UpperCAmelCase = ( getattr(__UpperCAmelCase , '''decoder_layers''' , __UpperCAmelCase ) or getattr(__UpperCAmelCase , '''num_decoder_layers''' , __UpperCAmelCase ) or config.num_hidden_layers ) _UpperCAmelCase = getattr(__UpperCAmelCase , '''num_kv_heads''' , config.num_attention_heads ) _UpperCAmelCase = getattr(__UpperCAmelCase , '''d_model''' , config.hidden_size ) _UpperCAmelCase = embed_dim // num_attention_heads _UpperCAmelCase = outputs['''past_key_values'''] self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) _UpperCAmelCase , _UpperCAmelCase = inputs['''input_ids'''].shape for i in range(__UpperCAmelCase ): if config.new_decoder_architecture: _UpperCAmelCase = config.num_attention_heads elif config.multi_query: _UpperCAmelCase = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class _a ( unittest.TestCase): """simple docstring""" @slow def lowercase__ ( self : Dict )->Tuple: _UpperCAmelCase = AutoTokenizer.from_pretrained('''Rocketknight1/falcon-rw-1b''' ) _UpperCAmelCase = FalconForCausalLM.from_pretrained('''Rocketknight1/falcon-rw-1b''' ) model.eval() model.to(__UpperCAmelCase ) _UpperCAmelCase = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(__UpperCAmelCase ) _UpperCAmelCase = ( '''My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.''' ) _UpperCAmelCase = model.generate(**__UpperCAmelCase , do_sample=__UpperCAmelCase , max_new_tokens=1_9 ) _UpperCAmelCase = tokenizer.batch_decode(__UpperCAmelCase )[0] self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) @slow def lowercase__ ( self : Union[str, Any] )->List[str]: for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: _UpperCAmelCase = AutoTokenizer.from_pretrained(__UpperCAmelCase ) _UpperCAmelCase = FalconForCausalLM.from_pretrained(__UpperCAmelCase ) model.eval() model.to(__UpperCAmelCase ) _UpperCAmelCase = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(__UpperCAmelCase ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**__UpperCAmelCase , do_sample=__UpperCAmelCase , max_new_tokens=4 ) model.generate(**__UpperCAmelCase , do_sample=__UpperCAmelCase , max_new_tokens=4 ) model.generate(**__UpperCAmelCase , num_beams=2 , max_new_tokens=4 ) @slow def lowercase__ ( self : Tuple )->Dict: with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: _UpperCAmelCase = AutoTokenizer.from_pretrained(__UpperCAmelCase ) _UpperCAmelCase = FalconForCausalLM.from_pretrained(__UpperCAmelCase ) model.eval() model.to(device=__UpperCAmelCase ) _UpperCAmelCase = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(__UpperCAmelCase ) # Test results are the same with and without cache _UpperCAmelCase = model.generate(**__UpperCAmelCase , do_sample=__UpperCAmelCase , max_new_tokens=2_0 , use_cache=__UpperCAmelCase ) _UpperCAmelCase = model.generate(**__UpperCAmelCase , do_sample=__UpperCAmelCase , max_new_tokens=2_0 , use_cache=__UpperCAmelCase ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
260
def _a ( a :int ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError('''The given input must be positive''' ) # get the generated string sequence a = gray_code_sequence_string(a ) # # convert them to integers for i in range(len(a ) ): a = int(sequence[i] , 2 ) return sequence def _a ( a :int ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] a = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits a = gray_code_sequence_string(bit_count - 1 ) a = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): a = '''0''' + smaller_sequence[i] sequence.append(a ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): a = '''1''' + smaller_sequence[i] sequence.append(a ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
0
0
'''simple docstring''' import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available snake_case_ : Optional[Any] = logging.getLogger(__name__) @dataclass class lowercase__ : lowercase__ = 42 lowercase__ = 42 lowercase__ = 42 @dataclass class lowercase__ : lowercase__ = 42 lowercase__ = 42 lowercase__ = None lowercase__ = None class lowercase__ ( lowercase ): lowercase__ = """train""" lowercase__ = """dev""" lowercase__ = """test""" class lowercase__ : @staticmethod def UpperCamelCase_ ( lowerCamelCase__ : Tuple ,lowerCamelCase__ : Union[Split, str] ): '''simple docstring''' raise NotImplementedError @staticmethod def UpperCamelCase_ ( lowerCamelCase__ : str ): '''simple docstring''' raise NotImplementedError @staticmethod def UpperCamelCase_ ( lowerCamelCase__ : List[InputExample] ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : int ,lowerCamelCase__ : PreTrainedTokenizer ,lowerCamelCase__ : str=False ,lowerCamelCase__ : Dict="[CLS]" ,lowerCamelCase__ : int=1 ,lowerCamelCase__ : List[str]="[SEP]" ,lowerCamelCase__ : Tuple=False ,lowerCamelCase__ : Tuple=False ,lowerCamelCase__ : int=0 ,lowerCamelCase__ : List[Any]=0 ,lowerCamelCase__ : int=-100 ,lowerCamelCase__ : List[str]=0 ,lowerCamelCase__ : Union[str, Any]=True ,): '''simple docstring''' _UpperCamelCase : str = {label: i for i, label in enumerate(lowerCamelCase__ )} _UpperCamelCase : int = [] for ex_index, example in enumerate(lowerCamelCase__ ): if ex_index % 10000 == 0: logger.info('Writing example %d of %d' ,lowerCamelCase__ ,len(lowerCamelCase__ ) ) _UpperCamelCase : Optional[int] = [] _UpperCamelCase : int = [] for word, label in zip(example.words ,example.labels ): _UpperCamelCase : Union[str, Any] = tokenizer.tokenize(lowerCamelCase__ ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(lowerCamelCase__ ) > 0: tokens.extend(lowerCamelCase__ ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(lowerCamelCase__ ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. _UpperCamelCase : Union[str, Any] = tokenizer.num_special_tokens_to_add() if len(lowerCamelCase__ ) > max_seq_length - special_tokens_count: _UpperCamelCase : List[str] = tokens[: (max_seq_length - special_tokens_count)] _UpperCamelCase : str = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] _UpperCamelCase : str = [sequence_a_segment_id] * len(lowerCamelCase__ ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: _UpperCamelCase : int = [cls_token] + tokens _UpperCamelCase : Optional[Any] = [pad_token_label_id] + label_ids _UpperCamelCase : Tuple = [cls_token_segment_id] + segment_ids _UpperCamelCase : int = tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. _UpperCamelCase : str = [1 if mask_padding_with_zero else 0] * len(lowerCamelCase__ ) # Zero-pad up to the sequence length. _UpperCamelCase : int = max_seq_length - len(lowerCamelCase__ ) if pad_on_left: _UpperCamelCase : Dict = ([pad_token] * padding_length) + input_ids _UpperCamelCase : Tuple = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask _UpperCamelCase : List[str] = ([pad_token_segment_id] * padding_length) + segment_ids _UpperCamelCase : List[Any] = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(lowerCamelCase__ ) == max_seq_length assert len(lowerCamelCase__ ) == max_seq_length assert len(lowerCamelCase__ ) == max_seq_length assert len(lowerCamelCase__ ) == max_seq_length if ex_index < 5: logger.info('*** Example ***' ) logger.info('guid: %s' ,example.guid ) logger.info('tokens: %s' ,' '.join([str(lowerCamelCase__ ) for x in tokens] ) ) logger.info('input_ids: %s' ,' '.join([str(lowerCamelCase__ ) for x in input_ids] ) ) logger.info('input_mask: %s' ,' '.join([str(lowerCamelCase__ ) for x in input_mask] ) ) logger.info('segment_ids: %s' ,' '.join([str(lowerCamelCase__ ) for x in segment_ids] ) ) logger.info('label_ids: %s' ,' '.join([str(lowerCamelCase__ ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: _UpperCamelCase : List[Any] = None features.append( InputFeatures( input_ids=lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,token_type_ids=lowerCamelCase__ ,label_ids=lowerCamelCase__ ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class lowercase__ ( lowercase ): lowercase__ = 42 lowercase__ = nn.CrossEntropyLoss().ignore_index def __init__( self : Union[str, Any] ,lowerCamelCase__ : TokenClassificationTask ,lowerCamelCase__ : str ,lowerCamelCase__ : PreTrainedTokenizer ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : str ,lowerCamelCase__ : Optional[int] = None ,lowerCamelCase__ : Dict=False ,lowerCamelCase__ : Split = Split.train ,): '''simple docstring''' # Load data features from cache or dataset file _UpperCamelCase : Tuple = os.path.join( lowerCamelCase__ ,'cached_{}_{}_{}'.format(mode.value ,tokenizer.__class__.__name__ ,str(lowerCamelCase__ ) ) ,) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _UpperCamelCase : Any = cached_features_file + '.lock' with FileLock(lowerCamelCase__ ): if os.path.exists(lowerCamelCase__ ) and not overwrite_cache: logger.info(F'Loading features from cached file {cached_features_file}' ) _UpperCamelCase : Union[str, Any] = torch.load(lowerCamelCase__ ) else: logger.info(F'Creating features from dataset file at {data_dir}' ) _UpperCamelCase : Optional[int] = token_classification_task.read_examples_from_file(lowerCamelCase__ ,lowerCamelCase__ ) # TODO clean up all this to leverage built-in features of tokenizers _UpperCamelCase : List[Any] = token_classification_task.convert_examples_to_features( lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,cls_token_at_end=bool(model_type in ['xlnet'] ) ,cls_token=tokenizer.cls_token ,cls_token_segment_id=2 if model_type in ['xlnet'] else 0 ,sep_token=tokenizer.sep_token ,sep_token_extra=lowerCamelCase__ ,pad_on_left=bool(tokenizer.padding_side == 'left' ) ,pad_token=tokenizer.pad_token_id ,pad_token_segment_id=tokenizer.pad_token_type_id ,pad_token_label_id=self.pad_token_label_id ,) logger.info(F'Saving features into cached file {cached_features_file}' ) torch.save(self.features ,lowerCamelCase__ ) def __len__( self : Optional[Any] ): '''simple docstring''' return len(self.features ) def __getitem__( self : Dict ,lowerCamelCase__ : Union[str, Any] ): '''simple docstring''' return self.features[i] if is_tf_available(): import tensorflow as tf class lowercase__ : lowercase__ = 42 lowercase__ = -1_00 def __init__( self : Tuple ,lowerCamelCase__ : TokenClassificationTask ,lowerCamelCase__ : str ,lowerCamelCase__ : PreTrainedTokenizer ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : str ,lowerCamelCase__ : Optional[int] = None ,lowerCamelCase__ : Optional[Any]=False ,lowerCamelCase__ : Split = Split.train ,): '''simple docstring''' _UpperCamelCase : Tuple = token_classification_task.read_examples_from_file(lowerCamelCase__ ,lowerCamelCase__ ) # TODO clean up all this to leverage built-in features of tokenizers _UpperCamelCase : Union[str, Any] = token_classification_task.convert_examples_to_features( lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,cls_token_at_end=bool(model_type in ['xlnet'] ) ,cls_token=tokenizer.cls_token ,cls_token_segment_id=2 if model_type in ['xlnet'] else 0 ,sep_token=tokenizer.sep_token ,sep_token_extra=lowerCamelCase__ ,pad_on_left=bool(tokenizer.padding_side == 'left' ) ,pad_token=tokenizer.pad_token_id ,pad_token_segment_id=tokenizer.pad_token_type_id ,pad_token_label_id=self.pad_token_label_id ,) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: _UpperCamelCase : Any = tf.data.Dataset.from_generator( lowerCamelCase__ ,({'input_ids': tf.intaa, 'attention_mask': tf.intaa}, tf.intaa) ,( {'input_ids': tf.TensorShape([None] ), 'attention_mask': tf.TensorShape([None] )}, tf.TensorShape([None] ), ) ,) else: _UpperCamelCase : List[Any] = tf.data.Dataset.from_generator( lowerCamelCase__ ,({'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa}, tf.intaa) ,( { 'input_ids': tf.TensorShape([None] ), 'attention_mask': tf.TensorShape([None] ), 'token_type_ids': tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) ,) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _UpperCamelCase : Tuple = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self : str ): '''simple docstring''' return len(self.features ) def __getitem__( self : int ,lowerCamelCase__ : List[str] ): '''simple docstring''' return self.features[i]
236
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() snake_case_ : int = logging.get_logger(__name__) def A__ ( UpperCAmelCase_ ): _UpperCamelCase : str = DPTConfig(embedding_type='hybrid' ) if "large" in checkpoint_url: _UpperCamelCase : Any = 1_0_2_4 _UpperCamelCase : List[Any] = 4_0_9_6 _UpperCamelCase : List[str] = 2_4 _UpperCamelCase : Tuple = 1_6 _UpperCamelCase : Union[str, Any] = [5, 1_1, 1_7, 2_3] _UpperCamelCase : Any = [2_5_6, 5_1_2, 1_0_2_4, 1_0_2_4] _UpperCamelCase : Tuple = (1, 3_8_4, 3_8_4) if "nyu" or "midas" in checkpoint_url: _UpperCamelCase : Optional[int] = 7_6_8 _UpperCamelCase : Optional[Any] = [1, 1, 1, 0.5] _UpperCamelCase : List[Any] = [2_5_6, 5_1_2, 7_6_8, 7_6_8] _UpperCamelCase : Optional[int] = 1_5_0 _UpperCamelCase : Tuple = 1_6 _UpperCamelCase : Dict = (1, 3_8_4, 3_8_4) _UpperCamelCase : Optional[int] = False _UpperCamelCase : Optional[int] = 'project' if "ade" in checkpoint_url: _UpperCamelCase : Dict = True _UpperCamelCase : Dict = 7_6_8 _UpperCamelCase : Union[str, Any] = [1, 1, 1, 0.5] _UpperCamelCase : Union[str, Any] = 1_5_0 _UpperCamelCase : str = 1_6 _UpperCamelCase : Tuple = 'huggingface/label-files' _UpperCamelCase : Tuple = 'ade20k-id2label.json' _UpperCamelCase : Tuple = json.load(open(cached_download(hf_hub_url(UpperCAmelCase_ , UpperCAmelCase_ , repo_type='dataset' ) ) , 'r' ) ) _UpperCamelCase : str = {int(UpperCAmelCase_ ): v for k, v in idalabel.items()} _UpperCamelCase : List[str] = idalabel _UpperCamelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} _UpperCamelCase : int = [1, 1_5_0, 4_8_0, 4_8_0] return config, expected_shape def A__ ( UpperCAmelCase_ ): _UpperCamelCase : str = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(UpperCAmelCase_ , UpperCAmelCase_ ) def A__ ( UpperCAmelCase_ ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): _UpperCamelCase : List[str] = name.replace('pretrained.model' , 'dpt.encoder' ) if "pretrained.model" in name: _UpperCamelCase : int = name.replace('pretrained.model' , 'dpt.embeddings' ) if "patch_embed" in name: _UpperCamelCase : Any = name.replace('patch_embed' , '' ) if "pos_embed" in name: _UpperCamelCase : Tuple = name.replace('pos_embed' , 'position_embeddings' ) if "attn.proj" in name: _UpperCamelCase : List[str] = name.replace('attn.proj' , 'attention.output.dense' ) if "proj" in name and "project" not in name: _UpperCamelCase : int = name.replace('proj' , 'projection' ) if "blocks" in name: _UpperCamelCase : List[str] = name.replace('blocks' , 'layer' ) if "mlp.fc1" in name: _UpperCamelCase : Union[str, Any] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: _UpperCamelCase : str = name.replace('mlp.fc2' , 'output.dense' ) if "norm1" in name and "backbone" not in name: _UpperCamelCase : Tuple = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name and "backbone" not in name: _UpperCamelCase : str = name.replace('norm2' , 'layernorm_after' ) if "scratch.output_conv" in name: _UpperCamelCase : Dict = name.replace('scratch.output_conv' , 'head' ) if "scratch" in name: _UpperCamelCase : List[str] = name.replace('scratch' , 'neck' ) if "layer1_rn" in name: _UpperCamelCase : List[str] = name.replace('layer1_rn' , 'convs.0' ) if "layer2_rn" in name: _UpperCamelCase : Any = name.replace('layer2_rn' , 'convs.1' ) if "layer3_rn" in name: _UpperCamelCase : int = name.replace('layer3_rn' , 'convs.2' ) if "layer4_rn" in name: _UpperCamelCase : Dict = name.replace('layer4_rn' , 'convs.3' ) if "refinenet" in name: _UpperCamelCase : str = int(name[len('neck.refinenet' ) : len('neck.refinenet' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 _UpperCamelCase : str = name.replace(f'refinenet{layer_idx}' , f'fusion_stage.layers.{abs(layer_idx-4 )}' ) if "out_conv" in name: _UpperCamelCase : Dict = name.replace('out_conv' , 'projection' ) if "resConfUnit1" in name: _UpperCamelCase : Union[str, Any] = name.replace('resConfUnit1' , 'residual_layer1' ) if "resConfUnit2" in name: _UpperCamelCase : Union[str, Any] = name.replace('resConfUnit2' , 'residual_layer2' ) if "conv1" in name: _UpperCamelCase : int = name.replace('conv1' , 'convolution1' ) if "conv2" in name: _UpperCamelCase : Dict = name.replace('conv2' , 'convolution2' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: _UpperCamelCase : str = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0' ) if "pretrained.act_postprocess2.0.project.0" in name: _UpperCamelCase : Union[str, Any] = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0' ) if "pretrained.act_postprocess3.0.project.0" in name: _UpperCamelCase : Optional[int] = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0' ) if "pretrained.act_postprocess4.0.project.0" in name: _UpperCamelCase : Optional[int] = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0' ) # resize blocks if "pretrained.act_postprocess1.3" in name: _UpperCamelCase : Union[str, Any] = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection' ) if "pretrained.act_postprocess1.4" in name: _UpperCamelCase : List[str] = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize' ) if "pretrained.act_postprocess2.3" in name: _UpperCamelCase : List[Any] = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection' ) if "pretrained.act_postprocess2.4" in name: _UpperCamelCase : List[Any] = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize' ) if "pretrained.act_postprocess3.3" in name: _UpperCamelCase : Dict = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection' ) if "pretrained.act_postprocess4.3" in name: _UpperCamelCase : Union[str, Any] = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection' ) if "pretrained.act_postprocess4.4" in name: _UpperCamelCase : List[str] = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize' ) if "pretrained" in name: _UpperCamelCase : int = name.replace('pretrained' , 'dpt' ) if "bn" in name: _UpperCamelCase : Union[str, Any] = name.replace('bn' , 'batch_norm' ) if "head" in name: _UpperCamelCase : Dict = name.replace('head' , 'head.head' ) if "encoder.norm" in name: _UpperCamelCase : str = name.replace('encoder.norm' , 'layernorm' ) if "auxlayer" in name: _UpperCamelCase : Any = name.replace('auxlayer' , 'auxiliary_head.head' ) if "backbone" in name: _UpperCamelCase : List[Any] = name.replace('backbone' , 'backbone.bit.encoder' ) if ".." in name: _UpperCamelCase : Dict = name.replace('..' , '.' ) if "stem.conv" in name: _UpperCamelCase : Tuple = name.replace('stem.conv' , 'bit.embedder.convolution' ) if "blocks" in name: _UpperCamelCase : Optional[int] = name.replace('blocks' , 'layers' ) if "convolution" in name and "backbone" in name: _UpperCamelCase : List[str] = name.replace('convolution' , 'conv' ) if "layer" in name and "backbone" in name: _UpperCamelCase : Union[str, Any] = name.replace('layer' , 'layers' ) if "backbone.bit.encoder.bit" in name: _UpperCamelCase : Dict = name.replace('backbone.bit.encoder.bit' , 'backbone.bit' ) if "embedder.conv" in name: _UpperCamelCase : str = name.replace('embedder.conv' , 'embedder.convolution' ) if "backbone.bit.encoder.stem.norm" in name: _UpperCamelCase : Tuple = name.replace('backbone.bit.encoder.stem.norm' , 'backbone.bit.embedder.norm' ) return name def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCamelCase : List[str] = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight' ) _UpperCamelCase : List[str] = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _UpperCamelCase : List[str] = in_proj_weight[: config.hidden_size, :] _UpperCamelCase : int = in_proj_bias[: config.hidden_size] _UpperCamelCase : str = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCamelCase : Union[str, Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCamelCase : List[Any] = in_proj_weight[ -config.hidden_size :, : ] _UpperCamelCase : Union[str, Any] = in_proj_bias[-config.hidden_size :] def A__ ( ): _UpperCamelCase : Optional[int] = 'http://images.cocodataset.org/val2017/000000039769.jpg' _UpperCamelCase : List[Any] = Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_ ).raw ) return im @torch.no_grad() def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase , _UpperCamelCase : int = get_dpt_config(UpperCAmelCase_ ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") _UpperCamelCase : List[str] = torch.load(UpperCAmelCase_ , map_location='cpu' ) # remove certain keys remove_ignore_keys_(UpperCAmelCase_ ) # rename keys for key in state_dict.copy().keys(): _UpperCamelCase : Any = state_dict.pop(UpperCAmelCase_ ) _UpperCamelCase : int = val # read in qkv matrices read_in_q_k_v(UpperCAmelCase_ , UpperCAmelCase_ ) # load HuggingFace model _UpperCamelCase : Union[str, Any] = DPTForSemanticSegmentation(UpperCAmelCase_ ) if 'ade' in checkpoint_url else DPTForDepthEstimation(UpperCAmelCase_ ) model.load_state_dict(UpperCAmelCase_ ) model.eval() # Check outputs on an image _UpperCamelCase : Tuple = 4_8_0 if 'ade' in checkpoint_url else 3_8_4 _UpperCamelCase : Any = DPTImageProcessor(size=UpperCAmelCase_ ) _UpperCamelCase : Union[str, Any] = prepare_img() _UpperCamelCase : Optional[int] = image_processor(UpperCAmelCase_ , return_tensors='pt' ) # forward pass _UpperCamelCase : Optional[Any] = model(**UpperCAmelCase_ ).logits if 'ade' in checkpoint_url else model(**UpperCAmelCase_ ).predicted_depth if show_prediction: _UpperCamelCase : List[str] = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='bicubic' , align_corners=UpperCAmelCase_ , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 2_5_5 ).show() if pytorch_dump_folder_path is not None: Path(UpperCAmelCase_ ).mkdir(exist_ok=UpperCAmelCase_ ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(UpperCAmelCase_ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(UpperCAmelCase_ ) if push_to_hub: model.push_to_hub('ybelkada/dpt-hybrid-midas' ) image_processor.push_to_hub('ybelkada/dpt-hybrid-midas' ) if __name__ == "__main__": snake_case_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) parser.add_argument( '--show_prediction', action='store_true', ) snake_case_ : Tuple = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
236
1
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process __magic_name__: List[Any] = logging.getLogger(__name__) __magic_name__: Optional[int] = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) __magic_name__: List[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class snake_case__ : lowercase__ : Optional[str] = field( default=lowerCamelCase__ , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) lowercase__ : Optional[str] = field( default=lowerCamelCase__ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(lowerCamelCase__ )} , ) lowercase__ : Optional[str] = field( default=lowerCamelCase__ , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) lowercase__ : Optional[str] = field( default=lowerCamelCase__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) lowercase__ : Optional[str] = field( default=lowerCamelCase__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) lowercase__ : Optional[str] = field( default=lowerCamelCase__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) lowercase__ : bool = field( default=lowerCamelCase__ , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) lowercase__ : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) lowercase__ : bool = field( default=lowerCamelCase__ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) def __magic_name__ ( self ) -> Dict: if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( """--config_overrides can\'t be used in combination with --config_name or --model_name_or_path""" ) @dataclass class snake_case__ : lowercase__ : Optional[str] = field( default=lowerCamelCase__ , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) lowercase__ : Optional[str] = field( default=lowerCamelCase__ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) lowercase__ : Optional[str] = field(default=lowerCamelCase__ , metadata={'''help''': '''The input training data file (a text file).'''} ) lowercase__ : Optional[str] = field( default=lowerCamelCase__ , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) lowercase__ : Optional[str] = field( default=lowerCamelCase__ , metadata={'''help''': '''An optional input train ref data file for whole word masking in Chinese.'''} , ) lowercase__ : Optional[str] = field( default=lowerCamelCase__ , metadata={'''help''': '''An optional input validation ref data file for whole word masking in Chinese.'''} , ) lowercase__ : bool = field( default=lowerCamelCase__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) lowercase__ : Optional[int] = field( default=5 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) lowercase__ : Optional[int] = field( default=lowerCamelCase__ , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated. Default to the max input length of the model.''' ) } , ) lowercase__ : Optional[int] = field( default=lowerCamelCase__ , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) lowercase__ : float = field( default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) lowercase__ : bool = field( default=lowerCamelCase__ , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) def __magic_name__ ( self ) -> Optional[int]: if self.train_file is not None: __magic_name__ : List[Any] = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: __magic_name__ : Any = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def UpperCamelCase ( _A, _A ): """simple docstring""" with open(__lowerCAmelCase, """r""", encoding="""utf-8""" ) as f: __magic_name__ : str = [json.loads(__lowerCAmelCase ) for line in f.read().splitlines() if (len(__lowerCAmelCase ) > 0 and not line.isspace())] assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) __magic_name__ : List[Any] = {c: dataset[c] for c in dataset.column_names} __magic_name__ : Any = refs return Dataset.from_dict(__lowerCAmelCase ) def UpperCamelCase ( ): """simple docstring""" __magic_name__ : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __magic_name__ : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __magic_name__ : Any = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __magic_name__ : Dict = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __magic_name__ : Optional[int] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", handlers=[logging.StreamHandler(sys.stdout )], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""", __lowerCAmelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __magic_name__ : Tuple = load_dataset(data_args.dataset_name, data_args.dataset_config_name ) if "validation" not in datasets.keys(): __magic_name__ : Tuple = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=f'train[:{data_args.validation_split_percentage}%]', ) __magic_name__ : Optional[int] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=f'train[{data_args.validation_split_percentage}%:]', ) else: __magic_name__ : List[str] = {} if data_args.train_file is not None: __magic_name__ : List[str] = data_args.train_file if data_args.validation_file is not None: __magic_name__ : Tuple = data_args.validation_file __magic_name__ : int = data_args.train_file.split(""".""" )[-1] if extension == "txt": __magic_name__ : int = '''text''' __magic_name__ : int = load_dataset(__lowerCAmelCase, data_files=__lowerCAmelCase ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __magic_name__ : List[str] = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name: __magic_name__ : str = AutoConfig.from_pretrained(model_args.config_name, **__lowerCAmelCase ) elif model_args.model_name_or_path: __magic_name__ : Dict = AutoConfig.from_pretrained(model_args.model_name_or_path, **__lowerCAmelCase ) else: __magic_name__ : int = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(f'Overriding config: {model_args.config_overrides}' ) config.update_from_string(model_args.config_overrides ) logger.info(f'New config: {config}' ) __magic_name__ : Any = { '''cache_dir''': model_args.cache_dir, '''use_fast''': model_args.use_fast_tokenizer, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: __magic_name__ : Any = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **__lowerCAmelCase ) elif model_args.model_name_or_path: __magic_name__ : str = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **__lowerCAmelCase ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported by this script.""" """You can do it from another script, save it, and load it from here, using --tokenizer_name.""" ) if model_args.model_name_or_path: __magic_name__ : Dict = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path, from_tf=bool(""".ckpt""" in model_args.model_name_or_path ), config=__lowerCAmelCase, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) else: logger.info("""Training new model from scratch""" ) __magic_name__ : Optional[Any] = AutoModelForMaskedLM.from_config(__lowerCAmelCase ) model.resize_token_embeddings(len(__lowerCAmelCase ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: __magic_name__ : str = datasets['''train'''].column_names else: __magic_name__ : Any = datasets['''validation'''].column_names __magic_name__ : Optional[Any] = '''text''' if '''text''' in column_names else column_names[0] __magic_name__ : Optional[Any] = '''max_length''' if data_args.pad_to_max_length else False def tokenize_function(_A ): # Remove empty lines __magic_name__ : Dict = [line for line in examples['''text'''] if len(__lowerCAmelCase ) > 0 and not line.isspace()] return tokenizer(examples["""text"""], padding=__lowerCAmelCase, truncation=__lowerCAmelCase, max_length=data_args.max_seq_length ) __magic_name__ : Optional[int] = datasets.map( __lowerCAmelCase, batched=__lowerCAmelCase, num_proc=data_args.preprocessing_num_workers, remove_columns=[text_column_name], load_from_cache_file=not data_args.overwrite_cache, ) # Add the chinese references if provided if data_args.train_ref_file is not None: __magic_name__ : Tuple = add_chinese_references(tokenized_datasets["""train"""], data_args.train_ref_file ) if data_args.validation_ref_file is not None: __magic_name__ : int = add_chinese_references( tokenized_datasets["""validation"""], data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer __magic_name__ : Optional[Any] = data_args.train_ref_file or data_args.validation_ref_file if has_ref: __magic_name__ : Tuple = False # Data collator # This one will take care of randomly masking the tokens. __magic_name__ : List[Any] = DataCollatorForWholeWordMask(tokenizer=__lowerCAmelCase, mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __magic_name__ : List[Any] = Trainer( model=__lowerCAmelCase, args=__lowerCAmelCase, train_dataset=tokenized_datasets["""train"""] if training_args.do_train else None, eval_dataset=tokenized_datasets["""validation"""] if training_args.do_eval else None, tokenizer=__lowerCAmelCase, data_collator=__lowerCAmelCase, ) # Training if training_args.do_train: if last_checkpoint is not None: __magic_name__ : Union[str, Any] = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): __magic_name__ : List[str] = model_args.model_name_or_path else: __magic_name__ : Dict = None __magic_name__ : List[str] = trainer.train(resume_from_checkpoint=__lowerCAmelCase ) trainer.save_model() # Saves the tokenizer too for easy upload __magic_name__ : List[Any] = os.path.join(training_args.output_dir, """train_results.txt""" ) if trainer.is_world_process_zero(): with open(__lowerCAmelCase, """w""" ) as writer: logger.info("""***** Train results *****""" ) for key, value in sorted(train_result.metrics.items() ): logger.info(f' {key} = {value}' ) writer.write(f'{key} = {value}\n' ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir, """trainer_state.json""" ) ) # Evaluation __magic_name__ : str = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __magic_name__ : Optional[int] = trainer.evaluate() __magic_name__ : Optional[Any] = math.exp(eval_output["""eval_loss"""] ) __magic_name__ : List[Any] = perplexity __magic_name__ : Optional[Any] = os.path.join(training_args.output_dir, """eval_results_mlm_wwm.txt""" ) if trainer.is_world_process_zero(): with open(__lowerCAmelCase, """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in sorted(results.items() ): logger.info(f' {key} = {value}' ) writer.write(f'{key} = {value}\n' ) return results def UpperCamelCase ( _A ): """simple docstring""" main() if __name__ == "__main__": main()
342
import os from typing import Dict, List, Tuple, TypeVar, Union __snake_case = TypeVar('''T''') __snake_case = Union[List[T], Tuple[T, ...]] __snake_case = Union[T, List[T], Dict[str, T]] __snake_case = Union[str, bytes, os.PathLike]
348
0
'''simple docstring''' import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase ( _lowerCamelCase : List[str] , _lowerCamelCase : int , _lowerCamelCase : List[Any] ): # Initialise PyTorch model A__ = TaConfig.from_json_file(_lowerCamelCase ) print(F"Building PyTorch model from configuration: {config}" ) A__ = TaForConditionalGeneration(_lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __lowerCAmelCase : Any =argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : Optional[Any] =parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
123
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : Tuple =logging.get_logger(__name__) def UpperCamelCase ( _lowerCamelCase : Tuple ): A__ = DPTConfig(embedding_type="hybrid" ) if "large" in checkpoint_url: A__ = 10_24 A__ = 40_96 A__ = 24 A__ = 16 A__ = [5, 11, 17, 23] A__ = [2_56, 5_12, 10_24, 10_24] A__ = (1, 3_84, 3_84) if "nyu" or "midas" in checkpoint_url: A__ = 7_68 A__ = [1, 1, 1, 0.5] A__ = [2_56, 5_12, 7_68, 7_68] A__ = 1_50 A__ = 16 A__ = (1, 3_84, 3_84) A__ = False A__ = "project" if "ade" in checkpoint_url: A__ = True A__ = 7_68 A__ = [1, 1, 1, 0.5] A__ = 1_50 A__ = 16 A__ = "huggingface/label-files" A__ = "ade20k-id2label.json" A__ = json.load(open(cached_download(hf_hub_url(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) ) , "r" ) ) A__ = {int(_lowerCamelCase ): v for k, v in idalabel.items()} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} A__ = [1, 1_50, 4_80, 4_80] return config, expected_shape def UpperCamelCase ( _lowerCamelCase : Optional[Any] ): A__ = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def UpperCamelCase ( _lowerCamelCase : int ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): A__ = name.replace("pretrained.model" , "dpt.encoder" ) if "pretrained.model" in name: A__ = name.replace("pretrained.model" , "dpt.embeddings" ) if "patch_embed" in name: A__ = name.replace("patch_embed" , "" ) if "pos_embed" in name: A__ = name.replace("pos_embed" , "position_embeddings" ) if "attn.proj" in name: A__ = name.replace("attn.proj" , "attention.output.dense" ) if "proj" in name and "project" not in name: A__ = name.replace("proj" , "projection" ) if "blocks" in name: A__ = name.replace("blocks" , "layer" ) if "mlp.fc1" in name: A__ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: A__ = name.replace("mlp.fc2" , "output.dense" ) if "norm1" in name and "backbone" not in name: A__ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name and "backbone" not in name: A__ = name.replace("norm2" , "layernorm_after" ) if "scratch.output_conv" in name: A__ = name.replace("scratch.output_conv" , "head" ) if "scratch" in name: A__ = name.replace("scratch" , "neck" ) if "layer1_rn" in name: A__ = name.replace("layer1_rn" , "convs.0" ) if "layer2_rn" in name: A__ = name.replace("layer2_rn" , "convs.1" ) if "layer3_rn" in name: A__ = name.replace("layer3_rn" , "convs.2" ) if "layer4_rn" in name: A__ = name.replace("layer4_rn" , "convs.3" ) if "refinenet" in name: A__ = int(name[len("neck.refinenet" ) : len("neck.refinenet" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 A__ = name.replace(F"refinenet{layer_idx}" , F"fusion_stage.layers.{abs(layer_idx-4 )}" ) if "out_conv" in name: A__ = name.replace("out_conv" , "projection" ) if "resConfUnit1" in name: A__ = name.replace("resConfUnit1" , "residual_layer1" ) if "resConfUnit2" in name: A__ = name.replace("resConfUnit2" , "residual_layer2" ) if "conv1" in name: A__ = name.replace("conv1" , "convolution1" ) if "conv2" in name: A__ = name.replace("conv2" , "convolution2" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: A__ = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0" ) if "pretrained.act_postprocess2.0.project.0" in name: A__ = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0" ) if "pretrained.act_postprocess3.0.project.0" in name: A__ = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0" ) if "pretrained.act_postprocess4.0.project.0" in name: A__ = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0" ) # resize blocks if "pretrained.act_postprocess1.3" in name: A__ = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection" ) if "pretrained.act_postprocess1.4" in name: A__ = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize" ) if "pretrained.act_postprocess2.3" in name: A__ = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection" ) if "pretrained.act_postprocess2.4" in name: A__ = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize" ) if "pretrained.act_postprocess3.3" in name: A__ = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection" ) if "pretrained.act_postprocess4.3" in name: A__ = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection" ) if "pretrained.act_postprocess4.4" in name: A__ = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize" ) if "pretrained" in name: A__ = name.replace("pretrained" , "dpt" ) if "bn" in name: A__ = name.replace("bn" , "batch_norm" ) if "head" in name: A__ = name.replace("head" , "head.head" ) if "encoder.norm" in name: A__ = name.replace("encoder.norm" , "layernorm" ) if "auxlayer" in name: A__ = name.replace("auxlayer" , "auxiliary_head.head" ) if "backbone" in name: A__ = name.replace("backbone" , "backbone.bit.encoder" ) if ".." in name: A__ = name.replace(".." , "." ) if "stem.conv" in name: A__ = name.replace("stem.conv" , "bit.embedder.convolution" ) if "blocks" in name: A__ = name.replace("blocks" , "layers" ) if "convolution" in name and "backbone" in name: A__ = name.replace("convolution" , "conv" ) if "layer" in name and "backbone" in name: A__ = name.replace("layer" , "layers" ) if "backbone.bit.encoder.bit" in name: A__ = name.replace("backbone.bit.encoder.bit" , "backbone.bit" ) if "embedder.conv" in name: A__ = name.replace("embedder.conv" , "embedder.convolution" ) if "backbone.bit.encoder.stem.norm" in name: A__ = name.replace("backbone.bit.encoder.stem.norm" , "backbone.bit.embedder.norm" ) return name def UpperCamelCase ( _lowerCamelCase : Dict , _lowerCamelCase : int ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ = state_dict.pop(F"dpt.encoder.layer.{i}.attn.qkv.weight" ) A__ = state_dict.pop(F"dpt.encoder.layer.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict A__ = in_proj_weight[: config.hidden_size, :] A__ = in_proj_bias[: config.hidden_size] A__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ = in_proj_weight[ -config.hidden_size :, : ] A__ = in_proj_bias[-config.hidden_size :] def UpperCamelCase ( ): A__ = "http://images.cocodataset.org/val2017/000000039769.jpg" A__ = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def UpperCamelCase ( _lowerCamelCase : List[str] , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[int] , _lowerCamelCase : Any , _lowerCamelCase : str ): A__, A__ = get_dpt_config(_lowerCamelCase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") A__ = torch.load(_lowerCamelCase , map_location="cpu" ) # remove certain keys remove_ignore_keys_(_lowerCamelCase ) # rename keys for key in state_dict.copy().keys(): A__ = state_dict.pop(_lowerCamelCase ) A__ = val # read in qkv matrices read_in_q_k_v(_lowerCamelCase , _lowerCamelCase ) # load HuggingFace model A__ = DPTForSemanticSegmentation(_lowerCamelCase ) if "ade" in checkpoint_url else DPTForDepthEstimation(_lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) model.eval() # Check outputs on an image A__ = 4_80 if "ade" in checkpoint_url else 3_84 A__ = DPTImageProcessor(size=_lowerCamelCase ) A__ = prepare_img() A__ = image_processor(_lowerCamelCase , return_tensors="pt" ) # forward pass A__ = model(**_lowerCamelCase ).logits if "ade" in checkpoint_url else model(**_lowerCamelCase ).predicted_depth if show_prediction: A__ = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode="bicubic" , align_corners=_lowerCamelCase , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 2_55 ).show() if pytorch_dump_folder_path is not None: Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_lowerCamelCase ) if push_to_hub: model.push_to_hub("ybelkada/dpt-hybrid-midas" ) image_processor.push_to_hub("ybelkada/dpt-hybrid-midas" ) if __name__ == "__main__": __lowerCAmelCase : Tuple =argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you're pushing to the hub.", ) parser.add_argument( "--show_prediction", action="store_true", ) __lowerCAmelCase : List[Any] =parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
123
1
"""simple docstring""" import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class lowercase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Any ): debug_launcher(test_script.main ) def lowerCAmelCase_ ( self : str ): debug_launcher(test_ops.main )
315
import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def __init__( self : List[Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int]=13 , lowerCamelCase_ : Union[str, Any]=30 , lowerCamelCase_ : str=2 , lowerCamelCase_ : Optional[int]=3 , lowerCamelCase_ : Union[str, Any]=True , lowerCamelCase_ : List[str]=True , lowerCamelCase_ : List[str]=32 , lowerCamelCase_ : Union[str, Any]=5 , lowerCamelCase_ : Optional[Any]=4 , lowerCamelCase_ : Any=37 , lowerCamelCase_ : Optional[Any]="gelu" , lowerCamelCase_ : Optional[int]=0.1 , lowerCamelCase_ : str=0.1 , lowerCamelCase_ : Union[str, Any]=10 , lowerCamelCase_ : Optional[Any]=0.0_2 , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCamelCase = (image_size // patch_size) ** 2 UpperCamelCase = num_patches + 1 def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , ) return config, pixel_values def lowerCamelCase_ ( self : str , lowerCamelCase_ : List[str] , lowerCamelCase_ : Tuple ): """simple docstring""" UpperCamelCase = FlaxViTModel(config=lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) UpperCamelCase = (self.image_size, self.image_size) UpperCamelCase = (self.patch_size, self.patch_size) UpperCamelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] ): """simple docstring""" UpperCamelCase = self.type_sequence_label_size UpperCamelCase = FlaxViTForImageClassification(config=lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase = 1 UpperCamelCase = FlaxViTForImageClassification(lowerCamelCase_ ) UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase = model(lowerCamelCase_ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ) = config_and_inputs UpperCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = FlaxViTModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ , hidden_size=37 ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = model_class(lowerCamelCase_ ) @jax.jit def model_jitted(lowerCamelCase_ : Any , **lowerCamelCase_ : Any ): return model(pixel_values=lowerCamelCase_ , **lowerCamelCase_ ) with self.subTest("""JIT Enabled""" ): UpperCamelCase = model_jitted(**lowerCamelCase_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): UpperCamelCase = model_jitted(**lowerCamelCase_ ).to_tuple() self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) ) for jitted_output, output in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" for model_class_name in self.all_model_classes: UpperCamelCase = model_class_name.from_pretrained("""google/vit-base-patch16-224""" ) UpperCamelCase = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(lowerCamelCase_ )
343
0
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase_ : def __init__( self : str , A__ : Union[str, Any] , A__ : Dict=13 , A__ : Optional[int]=7 , A__ : Tuple=True , A__ : Optional[Any]=True , A__ : Optional[Any]=False , A__ : List[str]=True , A__ : Union[str, Any]=99 , A__ : str=32 , A__ : int=5 , A__ : Union[str, Any]=4 , A__ : Optional[int]=37 , A__ : List[str]="gelu" , A__ : List[Any]=0.1 , A__ : Any=0.1 , A__ : Tuple=512 , A__ : Any=16 , A__ : int=2 , A__ : Tuple=0.02 , A__ : Optional[int]=3 , A__ : Union[str, Any]=4 , A__ : Union[str, Any]=None , ) -> Tuple: _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_input_mask _snake_case = use_token_type_ids _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = num_labels _snake_case = num_choices _snake_case = scope def UpperCamelCase_ ( self : Optional[Any] ) -> Tuple: _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = None if self.use_input_mask: _snake_case = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case = None if self.use_token_type_ids: _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _snake_case = None _snake_case = None _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _snake_case = ids_tensor([self.batch_size] , self.num_choices ) _snake_case = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self : List[str] ) -> int: return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) def UpperCamelCase_ ( self : List[Any] , A__ : Any , A__ : str , A__ : Any , A__ : int , A__ : int , A__ : Tuple , A__ : List[str] ) -> Optional[int]: _snake_case = BioGptModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() _snake_case = model(snake_case__ , attention_mask=snake_case__ ) _snake_case = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Dict , A__ : Optional[int] , A__ : Optional[int] , A__ : List[str] , A__ : Optional[Any] , A__ : Union[str, Any] , A__ : Tuple , A__ : Optional[Any] , A__ : int , A__ : Dict , ) -> Optional[Any]: _snake_case = BioGptForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() _snake_case = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self : Optional[int] , A__ : Union[str, Any] , A__ : int , A__ : Any , A__ : Tuple , A__ : Any , *A__ : List[Any] ) -> str: _snake_case = BioGptModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() # create attention mask _snake_case = torch.ones(input_ids.shape , dtype=torch.long , device=snake_case__ ) _snake_case = self.seq_length // 2 _snake_case = 0 # first forward pass _snake_case = model(snake_case__ , attention_mask=snake_case__ ).to_tuple() # create hypothetical next token and extent to next_input_ids _snake_case = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids _snake_case = ids_tensor((1,) , snake_case__ ).item() + 1 _snake_case = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) _snake_case = random_other_next_tokens # append to next input_ids and attn_mask _snake_case = torch.cat([input_ids, next_tokens] , dim=-1 ) _snake_case = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=snake_case__ )] , dim=1 , ) # get two different outputs _snake_case = model(snake_case__ , attention_mask=snake_case__ )['''last_hidden_state'''] _snake_case = model(snake_case__ , past_key_values=snake_case__ , attention_mask=snake_case__ )['''last_hidden_state'''] # select random slice _snake_case = ids_tensor((1,) , output_from_past.shape[-1] ).item() _snake_case = output_from_no_past[:, -1, random_slice_idx].detach() _snake_case = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) ) def UpperCamelCase_ ( self : List[Any] , A__ : Optional[Any] , A__ : str , A__ : List[Any] , A__ : Any , A__ : List[str] , *A__ : List[Any] ) -> int: _snake_case = BioGptModel(config=snake_case__ ).to(snake_case__ ).eval() _snake_case = torch.ones(input_ids.shape , dtype=torch.long , device=snake_case__ ) # first forward pass _snake_case = model(snake_case__ , attention_mask=snake_case__ , use_cache=snake_case__ ) _snake_case = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids _snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size ) _snake_case = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and _snake_case = torch.cat([input_ids, next_tokens] , dim=-1 ) _snake_case = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) _snake_case = model(snake_case__ , attention_mask=snake_case__ )['''last_hidden_state'''] _snake_case = model(snake_case__ , attention_mask=snake_case__ , past_key_values=snake_case__ )[ '''last_hidden_state''' ] # select random slice _snake_case = ids_tensor((1,) , output_from_past.shape[-1] ).item() _snake_case = output_from_no_past[:, -3:, random_slice_idx].detach() _snake_case = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) ) def UpperCamelCase_ ( self : Tuple , A__ : Optional[int] , A__ : Tuple , A__ : List[Any] , A__ : Union[str, Any] , A__ : Union[str, Any] , *A__ : Any , A__ : Dict=False ) -> Dict: _snake_case = BioGptForCausalLM(snake_case__ ) model.to(snake_case__ ) if gradient_checkpointing: model.gradient_checkpointing_enable() _snake_case = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def UpperCamelCase_ ( self : Optional[Any] , A__ : int , *A__ : str ) -> Union[str, Any]: _snake_case = BioGptModel(snake_case__ ) _snake_case = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def UpperCamelCase_ ( self : int , A__ : Dict , A__ : List[Any] , A__ : Dict , A__ : Tuple , A__ : Tuple , *A__ : Optional[Any] ) -> Optional[Any]: _snake_case = self.num_labels _snake_case = BioGptForTokenClassification(snake_case__ ) model.to(snake_case__ ) model.eval() _snake_case = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self : Tuple ) -> Optional[Any]: _snake_case = self.prepare_config_and_inputs() ( _snake_case ) = config_and_inputs _snake_case = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowercase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): UpperCamelCase_ : Union[str, Any] = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) UpperCamelCase_ : Optional[Any] = (BioGptForCausalLM,) if is_torch_available() else () UpperCamelCase_ : int = ( { """feature-extraction""": BioGptModel, """text-classification""": BioGptForSequenceClassification, """text-generation""": BioGptForCausalLM, """token-classification""": BioGptForTokenClassification, """zero-shot""": BioGptForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase_ : Optional[int] = False def UpperCamelCase_ ( self : int ) -> Union[str, Any]: _snake_case = BioGptModelTester(self ) _snake_case = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def UpperCamelCase_ ( self : str ) -> Union[str, Any]: self.config_tester.run_common_tests() def UpperCamelCase_ ( self : Any ) -> Dict: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase_ ( self : Dict ) -> int: _snake_case = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _snake_case = type self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase_ ( self : Optional[Any] ) -> List[str]: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*snake_case__ ) def UpperCamelCase_ ( self : Tuple ) -> str: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*snake_case__ , gradient_checkpointing=snake_case__ ) def UpperCamelCase_ ( self : int ) -> str: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*snake_case__ ) def UpperCamelCase_ ( self : Any ) -> int: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*snake_case__ ) def UpperCamelCase_ ( self : Any ) -> Dict: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*snake_case__ ) @slow def UpperCamelCase_ ( self : Any ) -> Union[str, Any]: _snake_case = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(snake_case__ ) _snake_case = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) _snake_case = '''left''' # Define PAD Token = EOS Token = 50256 _snake_case = tokenizer.eos_token _snake_case = model.config.eos_token_id # use different length sentences to test batching _snake_case = [ '''Hello, my dog is a little''', '''Today, I''', ] _snake_case = tokenizer(snake_case__ , return_tensors='''pt''' , padding=snake_case__ ) _snake_case = inputs['''input_ids'''].to(snake_case__ ) _snake_case = model.generate( input_ids=snake_case__ , attention_mask=inputs['''attention_mask'''].to(snake_case__ ) , ) _snake_case = tokenizer(sentences[0] , return_tensors='''pt''' ).input_ids.to(snake_case__ ) _snake_case = model.generate(input_ids=snake_case__ ) _snake_case = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() _snake_case = tokenizer(sentences[1] , return_tensors='''pt''' ).input_ids.to(snake_case__ ) _snake_case = model.generate(input_ids=snake_case__ , max_length=model.config.max_length - num_paddings ) _snake_case = tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ ) _snake_case = tokenizer.decode(output_non_padded[0] , skip_special_tokens=snake_case__ ) _snake_case = tokenizer.decode(output_padded[0] , skip_special_tokens=snake_case__ ) _snake_case = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(snake_case__ , snake_case__ ) self.assertListEqual(snake_case__ , [non_padded_sentence, padded_sentence] ) @slow def UpperCamelCase_ ( self : List[Any] ) -> int: for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = BioGptModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def UpperCamelCase_ ( self : Union[str, Any] ) -> List[Any]: _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = 3 _snake_case = input_dict['''input_ids'''] _snake_case = input_ids.ne(1 ).to(snake_case__ ) _snake_case = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _snake_case = BioGptForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() _snake_case = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase_ ( self : Optional[int] ) -> int: _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = 3 _snake_case = '''multi_label_classification''' _snake_case = input_dict['''input_ids'''] _snake_case = input_ids.ne(1 ).to(snake_case__ ) _snake_case = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _snake_case = BioGptForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() _snake_case = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class lowercase_ ( unittest.TestCase ): @slow def UpperCamelCase_ ( self : str ) -> List[Any]: _snake_case = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) _snake_case = torch.tensor([[2, 4805, 9, 656, 21]] ) _snake_case = model(snake_case__ )[0] _snake_case = 42384 _snake_case = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , snake_case__ ) _snake_case = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case__ , atol=1e-4 ) ) @slow def UpperCamelCase_ ( self : Optional[Any] ) -> Dict: _snake_case = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) _snake_case = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(snake_case__ ) torch.manual_seed(0 ) _snake_case = tokenizer('''COVID-19 is''' , return_tensors='''pt''' ).to(snake_case__ ) _snake_case = model.generate( **snake_case__ , min_length=100 , max_length=1024 , num_beams=5 , early_stopping=snake_case__ , ) _snake_case = tokenizer.decode(output_ids[0] , skip_special_tokens=snake_case__ ) _snake_case = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(snake_case__ , snake_case__ )
362
import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def snake_case_(_UpperCamelCase ) -> Optional[int]: """simple docstring""" _snake_case = checkpoints.load_tax_checkpoint(_UpperCamelCase ) _snake_case = flatten_dict(_UpperCamelCase ) return flax_params def snake_case_(_UpperCamelCase ) -> List[str]: """simple docstring""" _snake_case = {} _snake_case = { '''token_embedder''': '''embeddings''', '''encoder_norm''': '''layernorm''', '''kernel''': '''weight''', '''.out''': '''.output''', '''scale''': '''weight''', '''embedders_0.pos_embedding''': '''row_embedder.weight''', '''embedders_1.pos_embedding''': '''column_embedder.weight''', } _snake_case = { '''query''': '''attention.query''', '''key''': '''attention.key''', '''value''': '''attention.value''', '''output.dense''': '''output''', '''encoder_decoder_attention.o''': '''encoder_decoder_attention.attention.o''', '''pre_self_attention_layer_norm''': '''self_attention.layer_norm''', '''pre_cross_attention_layer_norm''': '''encoder_decoder_attention.layer_norm''', '''mlp.''': '''mlp.DenseReluDense.''', '''pre_mlp_layer_norm''': '''mlp.layer_norm''', '''self_attention.o''': '''self_attention.attention.o''', '''decoder.embeddings.embedding''': '''decoder.embed_tokens.weight''', '''decoder.relpos_bias.rel_embedding''': '''decoder.layer.0.self_attention.attention.relative_attention_bias.weight''', '''decoder.decoder_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.logits_dense.weight''': '''decoder.lm_head.weight''', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key _snake_case = '''.'''.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): _snake_case = new_key.replace(_UpperCamelCase , _UpperCamelCase ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): _snake_case = new_key.replace(_UpperCamelCase , _UpperCamelCase ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number _snake_case = re.sub(R'''layers_(\d+)''' , R'''layer.\1''' , _UpperCamelCase ) _snake_case = new_key.replace('''encoder''' , '''encoder.encoder''' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number _snake_case = re.sub(R'''layers_(\d+)''' , R'''layer.\1''' , _UpperCamelCase ) _snake_case = flax_dict[key] _snake_case = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): _snake_case = torch.from_numpy(converted_dict[key].T ) else: _snake_case = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase=False , _UpperCamelCase=False ) -> List[Any]: """simple docstring""" _snake_case = get_flax_param(_UpperCamelCase ) if not use_large: _snake_case = PixaStructVisionConfig() _snake_case = PixaStructTextConfig() else: _snake_case = PixaStructVisionConfig( hidden_size=1_536 , d_ff=3_968 , num_attention_heads=24 , num_hidden_layers=18 ) _snake_case = PixaStructTextConfig(hidden_size=1_536 , d_ff=3_968 , num_heads=24 , num_layers=18 ) _snake_case = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=_UpperCamelCase ) _snake_case = PixaStructForConditionalGeneration(_UpperCamelCase ) _snake_case = rename_and_convert_flax_params(_UpperCamelCase ) model.load_state_dict(_UpperCamelCase ) _snake_case = AutoTokenizer.from_pretrained('''ybelkada/test-pix2struct-tokenizer''' ) _snake_case = PixaStructImageProcessor() _snake_case = PixaStructProcessor(image_processor=_UpperCamelCase , tokenizer=_UpperCamelCase ) if use_large: _snake_case = 4_096 _snake_case = True # mkdir if needed os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) model.save_pretrained(_UpperCamelCase ) processor.save_pretrained(_UpperCamelCase ) print('''Model saved in {}'''.format(_UpperCamelCase ) ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument('''--t5x_checkpoint_path''', default=None, type=str, help='''Path to the original T5x checkpoint.''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--use_large''', action='''store_true''', help='''Use large model.''') parser.add_argument('''--is_vqa''', action='''store_true''', help='''Use large model.''') __A = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
278
0
class _A: """simple docstring""" def __init__( self , _A , _A , _A ): __A : Optional[int] = None __A : List[Any] = None __A : Tuple = graph self._normalize_graph(_A , _A ) __A : str = len(_A ) __A : str = None def UpperCAmelCase_ ( self , _A , _A ): if sources is int: __A : int = [sources] if sinks is int: __A : Any = [sinks] if len(_A ) == 0 or len(_A ) == 0: return __A : List[Any] = sources[0] __A : Tuple = sinks[0] # make fake vertex if there are more # than one source or sink if len(_A ) > 1 or len(_A ) > 1: __A : Optional[int] = 0 for i in sources: max_input_flow += sum(self.graph[i] ) __A : List[str] = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: __A : Any = max_input_flow __A : Union[str, Any] = 0 __A : Optional[int] = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: __A : Dict = max_input_flow __A : Optional[Any] = size - 1 def UpperCAmelCase_ ( self ): if self.maximum_flow_algorithm is None: raise Exception('You need to set maximum flow algorithm before.' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def UpperCAmelCase_ ( self , _A ): __A : Any = algorithm(self ) class _A: """simple docstring""" def __init__( self , _A ): __A : str = flow_network __A : int = flow_network.verticesCount __A : Any = flow_network.sourceIndex __A : Tuple = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that __A : Tuple = flow_network.graph __A : List[str] = False def UpperCAmelCase_ ( self ): if not self.executed: self._algorithm() __A : Any = True def UpperCAmelCase_ ( self ): pass class _A( snake_case__ ): """simple docstring""" def __init__( self , _A ): super().__init__(_A ) # use this to save your result __A : List[Any] = -1 def UpperCAmelCase_ ( self ): if not self.executed: raise Exception('You should execute algorithm before using its result!' ) return self.maximum_flow class _A( snake_case__ ): """simple docstring""" def __init__( self , _A ): super().__init__(_A ) __A : Any = [[0] * self.verticies_count for i in range(self.verticies_count )] __A : str = [0] * self.verticies_count __A : List[str] = [0] * self.verticies_count def UpperCAmelCase_ ( self ): __A : Any = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule __A : Optional[Any] = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list __A : Union[str, Any] = 0 while i < len(_A ): __A : int = vertices_list[i] __A : Dict = self.heights[vertex_index] self.process_vertex(_A ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(_A ) ) __A : int = 0 else: i += 1 __A : Optional[Any] = sum(self.preflow[self.source_index] ) def UpperCAmelCase_ ( self , _A ): while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(_A , _A ) self.relabel(_A ) def UpperCAmelCase_ ( self , _A , _A ): __A : Union[str, Any] = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def UpperCAmelCase_ ( self , _A ): __A : List[Any] = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): __A : Union[str, Any] = self.heights[to_index] if min_height is not None: __A : List[str] = min_height + 1 if __name__ == "__main__": UpperCAmelCase : int = [0] UpperCAmelCase : Any = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] UpperCAmelCase : List[str] = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network UpperCAmelCase : int = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate UpperCAmelCase : Optional[Any] = flow_network.find_maximum_flow() print(F"""maximum flow is {maximum_flow}""")
280
import argparse import json from tqdm import tqdm def _SCREAMING_SNAKE_CASE ( ) -> List[Any]: __A : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--src_path' , type=a , default='biencoder-nq-dev.json' , help='Path to raw DPR training data' , ) parser.add_argument( '--evaluation_set' , type=a , help='where to store parsed evaluation_set file' , ) parser.add_argument( '--gold_data_path' , type=a , help='where to store parsed gold_data_path file' , ) __A : Optional[int] = parser.parse_args() with open(args.src_path , 'r' ) as src_file, open(args.evaluation_set , 'w' ) as eval_file, open( args.gold_data_path , 'w' ) as gold_file: __A : List[Any] = json.load(a ) for dpr_record in tqdm(a ): __A : Dict = dpr_record['question'] __A : Any = [context['title'] for context in dpr_record['positive_ctxs']] eval_file.write(question + '\n' ) gold_file.write('\t'.join(a ) + '\n' ) if __name__ == "__main__": main()
280
1
"""simple docstring""" import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home A: int = HUGGINGFACE_HUB_CACHE A: Optional[Any] = "config.json" A: Union[str, Any] = "diffusion_pytorch_model.bin" A: List[str] = "diffusion_flax_model.msgpack" A: List[Any] = "model.onnx" A: int = "diffusion_pytorch_model.safetensors" A: List[str] = "weights.pb" A: List[str] = "https://huggingface.co" A: str = default_cache_path A: List[str] = "diffusers_modules" A: Any = os.getenv("HF_MODULES_CACHE", os.path.join(hf_cache_home, "modules")) A: Dict = ["fp16", "non-ema"] A: Any = ".self_attn"
76
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __lowerCAmelCase : Dict = 'naver-clova-ix/donut-base-finetuned-docvqa' __lowerCAmelCase : Dict = ( 'This is a tool that answers a question about an document (pdf). It takes an input named `document` which ' 'should be the document containing the information, as well as a `question` that is the question about the ' 'document. It returns a text that contains the answer to the question.' ) __lowerCAmelCase : Union[str, Any] = 'document_qa' __lowerCAmelCase : Optional[Any] = AutoProcessor __lowerCAmelCase : List[Any] = VisionEncoderDecoderModel __lowerCAmelCase : Union[str, Any] = ['image', 'text'] __lowerCAmelCase : str = ['text'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' if not is_vision_available(): raise ValueError("""Pillow must be installed to use the DocumentQuestionAnsweringTool.""" ) super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' UpperCAmelCase : Union[str, Any] = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" UpperCAmelCase : Any = task_prompt.replace("""{user_input}""" , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Dict = self.pre_processor.tokenizer( _SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).input_ids UpperCAmelCase : Optional[Any] = self.pre_processor(_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' return self.model.generate( inputs["""pixel_values"""].to(self.device ) , decoder_input_ids=inputs["""decoder_input_ids"""].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=_SCREAMING_SNAKE_CASE , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=_SCREAMING_SNAKE_CASE , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=_SCREAMING_SNAKE_CASE , ).sequences def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' UpperCAmelCase : Tuple = self.pre_processor.batch_decode(_SCREAMING_SNAKE_CASE )[0] UpperCAmelCase : int = sequence.replace(self.pre_processor.tokenizer.eos_token , """""" ) UpperCAmelCase : Optional[int] = sequence.replace(self.pre_processor.tokenizer.pad_token , """""" ) UpperCAmelCase : Union[str, Any] = re.sub(r"""<.*?>""" , """""" , _SCREAMING_SNAKE_CASE , count=1 ).strip() # remove first task start token UpperCAmelCase : Tuple = self.pre_processor.tokenajson(_SCREAMING_SNAKE_CASE ) return sequence["answer"]
76
1
"""simple docstring""" from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def _A (__a , __a , __a , __a ) -> Union[str, Any]: """simple docstring""" for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f'Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f'Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})' def _A (__a , __a , __a , __a , __a=True ) -> Any: """simple docstring""" model.train() SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : Dict = F.mse_loss(UpperCamelCase__ , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(UpperCamelCase__ ) def _A (__a , __a=False ) -> Any: """simple docstring""" set_seed(42 ) SCREAMING_SNAKE_CASE_ : Any = RegressionModel() SCREAMING_SNAKE_CASE_ : List[str] = deepcopy(UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = RegressionDataset(length=80 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = DataLoader(UpperCamelCase__ , batch_size=16 ) model.to(accelerator.device ) if sched: SCREAMING_SNAKE_CASE_ : Optional[Any] = AdamW(params=model.parameters() , lr=1e-3 ) SCREAMING_SNAKE_CASE_ : Optional[int] = AdamW(params=ddp_model.parameters() , lr=1e-3 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = LambdaLR(UpperCamelCase__ , lr_lambda=lambda __a : epoch**0.65 ) SCREAMING_SNAKE_CASE_ : Any = LambdaLR(UpperCamelCase__ , lr_lambda=lambda __a : epoch**0.65 ) # Make a copy of `model` if sched: SCREAMING_SNAKE_CASE_ : int = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: SCREAMING_SNAKE_CASE_ : Dict = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def _A (__a ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = get_training_setup(UpperCamelCase__ ) # Use a single batch SCREAMING_SNAKE_CASE_ : str = next(iter(UpperCamelCase__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE_ : int = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE_ : List[str] = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(UpperCamelCase__ ): step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: # Sync grads step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f'Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})' # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ddp_input[torch.randperm(len(UpperCamelCase__ ) )] def _A (__a ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_training_setup(UpperCamelCase__ ) # Use a single batch SCREAMING_SNAKE_CASE_ : Optional[int] = next(iter(UpperCamelCase__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE_ : Tuple = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE_ : Any = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(UpperCamelCase__ ): step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: # Sync grads step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})' # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) SCREAMING_SNAKE_CASE_ : Tuple = ddp_input[torch.randperm(len(UpperCamelCase__ ) )] def _A (__a=False , __a=False ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = Accelerator( split_batches=UpperCamelCase__ , dispatch_batches=UpperCamelCase__ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly SCREAMING_SNAKE_CASE_ : Dict = get_training_setup(UpperCamelCase__ ) for iteration, batch in enumerate(UpperCamelCase__ ): SCREAMING_SNAKE_CASE_ : Dict = batch.values() # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE_ : Union[str, Any] = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE_ : Dict = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Do "gradient accumulation" (noop) with accelerator.accumulate(UpperCamelCase__ ): step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(UpperCamelCase__ ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})' # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) SCREAMING_SNAKE_CASE_ : str = ddp_input[torch.randperm(len(UpperCamelCase__ ) )] GradientState._reset_state() def _A (__a=False , __a=False ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = Accelerator( split_batches=UpperCamelCase__ , dispatch_batches=UpperCamelCase__ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly SCREAMING_SNAKE_CASE_ : Tuple = get_training_setup(UpperCamelCase__ , UpperCamelCase__ ) for iteration, batch in enumerate(UpperCamelCase__ ): SCREAMING_SNAKE_CASE_ : str = batch.values() # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE_ : List[str] = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE_ : List[str] = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(UpperCamelCase__ )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(UpperCamelCase__ ): step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n' SCREAMING_SNAKE_CASE_ : List[Any] = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(UpperCamelCase__ )) if accelerator.num_processes > 1: check_model_parameters(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) GradientState._reset_state() def _A () -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = Accelerator() SCREAMING_SNAKE_CASE_ : Union[str, Any] = RegressionDataset(length=80 ) SCREAMING_SNAKE_CASE_ : Any = DataLoader(UpperCamelCase__ , batch_size=16 ) SCREAMING_SNAKE_CASE_ : List[Any] = RegressionDataset(length=96 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = DataLoader(UpperCamelCase__ , batch_size=16 ) SCREAMING_SNAKE_CASE_ : List[str] = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(UpperCamelCase__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(UpperCamelCase__ ) if iteration < len(UpperCamelCase__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(UpperCamelCase__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(UpperCamelCase__ ) if batch_num < len(UpperCamelCase__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def _A () -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = Accelerator() SCREAMING_SNAKE_CASE_ : str = accelerator.state if state.local_process_index == 0: print('''**Test `accumulate` gradient accumulation with dataloader break**''' ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print('''**Test NOOP `no_sync` context manager**''' ) test_noop_sync(UpperCamelCase__ ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print('''**Test Distributed `no_sync` context manager**''' ) test_distributed_sync(UpperCamelCase__ ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation, ''' , f'`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**' , ) test_gradient_accumulation(UpperCamelCase__ , UpperCamelCase__ ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version('''<''' , '''2.0''' ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , '''`split_batches=False`, `dispatch_batches=False`**''' , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , f'`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**' , ) test_gradient_accumulation_with_opt_and_scheduler(UpperCamelCase__ , UpperCamelCase__ ) def _A (__a ) -> Dict: """simple docstring""" main() if __name__ == "__main__": main()
91
"""simple docstring""" from __future__ import annotations import math def lowerCamelCase_ (UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : bool , UpperCamelCase__ : list[int] , UpperCamelCase__ : float ): if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if len(UpperCamelCase__ ) == 0: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) , ) return min( minimax(depth + 1 , node_index * 2 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) , ) def lowerCamelCase_ (): _UpperCAmelCase : Any = [90, 23, 6, 33, 21, 65, 123, 3_4423] _UpperCAmelCase : Any = math.log(len(UpperCamelCase__ ) , 2 ) print('''Optimal value : ''' , end='''''' ) print(minimax(0 , 0 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
263
0
"""simple docstring""" def _lowerCamelCase( a , a ): print("\nThe shortest path matrix using Floyd Warshall algorithm\n" ) for i in range(a ): for j in range(a ): if dist[i][j] != float("inf" ): print(int(dist[i][j] ) , end="\t" ) else: print("INF" , end="\t" ) print() def _lowerCamelCase( a , a ): __a = [[float("inf" ) for _ in range(a )] for _ in range(a )] for i in range(a ): for j in range(a ): __a = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(a ): # looping through rows of graph array for i in range(a ): # looping through columns of graph array for j in range(a ): if ( dist[i][k] != float("inf" ) and dist[k][j] != float("inf" ) and dist[i][k] + dist[k][j] < dist[i][j] ): __a = dist[i][k] + dist[k][j] _print_dist(a , a ) return dist, v if __name__ == "__main__": SCREAMING_SNAKE_CASE__:Dict = int(input("""Enter number of vertices: """)) SCREAMING_SNAKE_CASE__:Union[str, Any] = int(input("""Enter number of edges: """)) SCREAMING_SNAKE_CASE__:int = [[float("""inf""") for i in range(v)] for j in range(v)] for i in range(v): SCREAMING_SNAKE_CASE__:int = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print("""\nEdge """, i + 1) SCREAMING_SNAKE_CASE__:Optional[int] = int(input("""Enter source:""")) SCREAMING_SNAKE_CASE__:str = int(input("""Enter destination:""")) SCREAMING_SNAKE_CASE__:List[str] = float(input("""Enter weight:""")) SCREAMING_SNAKE_CASE__:Dict = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
268
"""simple docstring""" import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency SCREAMING_SNAKE_CASE__:Any = { """E""": 12.70, """T""": 9.06, """A""": 8.17, """O""": 7.51, """I""": 6.97, """N""": 6.75, """S""": 6.33, """H""": 6.09, """R""": 5.99, """D""": 4.25, """L""": 4.03, """C""": 2.78, """U""": 2.76, """M""": 2.41, """W""": 2.36, """F""": 2.23, """G""": 2.02, """Y""": 1.97, """P""": 1.93, """B""": 1.29, """V""": 0.98, """K""": 0.77, """J""": 0.15, """X""": 0.15, """Q""": 0.10, """Z""": 0.07, } SCREAMING_SNAKE_CASE__:Optional[int] = """ETAOINSHRDLCUMWFGYPBVKJXQZ""" SCREAMING_SNAKE_CASE__:Tuple = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def _lowerCamelCase( a ): __a = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def _lowerCamelCase( a ): return x[0] def _lowerCamelCase( a ): __a = get_letter_count(a ) __a = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(a ) __a = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=a ) __a = "".join(freq_to_letter[freq] ) __a = list(freq_to_letter_str.items() ) freq_pairs.sort(key=a , reverse=a ) __a = [freq_pair[1] for freq_pair in freq_pairs] return "".join(a ) def _lowerCamelCase( a ): __a = get_frequency_order(a ) __a = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
268
1
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all BART models at https://huggingface.co/models?filter=bart __lowerCAmelCase = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, } __lowerCAmelCase = { "facebook/bart-base": 10_24, "facebook/bart-large": 10_24, "facebook/bart-large-mnli": 10_24, "facebook/bart-large-cnn": 10_24, "facebook/bart-large-xsum": 10_24, "yjernite/bart_eli5": 10_24, } @lru_cache() def snake_case_ ( ) -> Any: lowercase__: Optional[Any] = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) lowercase__: Optional[int] = bs[:] lowercase__: Dict = 0 for b in range(2**8 ): if b not in bs: bs.append(_snake_case ) cs.append(2**8 + n ) n += 1 lowercase__: List[Any] = [chr(_snake_case ) for n in cs] return dict(zip(_snake_case , _snake_case ) ) def snake_case_ ( snake_case ) -> Union[str, Any]: lowercase__: Optional[Any] = set() lowercase__: str = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase__: Tuple = char return pairs class __a ( lowerCAmelCase_ ): __lowercase : List[str] = VOCAB_FILES_NAMES __lowercase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __lowercase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : List[str] = ['input_ids', 'attention_mask'] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="replace" , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> Union[str, Any]: '''simple docstring''' lowercase__: Dict = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else bos_token lowercase__: str = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else eos_token lowercase__: List[str] = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else sep_token lowercase__: Union[str, Any] = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else cls_token lowercase__: List[Any] = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else unk_token lowercase__: Optional[int] = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase__: Union[str, Any] = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token super().__init__( errors=__snake_case , bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , add_prefix_space=__snake_case , **__snake_case , ) with open(__snake_case , encoding='utf-8' ) as vocab_handle: lowercase__: Dict = json.load(__snake_case ) lowercase__: List[str] = {v: k for k, v in self.encoder.items()} lowercase__: Any = errors # how to handle errors in decoding lowercase__: Union[str, Any] = bytes_to_unicode() lowercase__: Any = {v: k for k, v in self.byte_encoder.items()} with open(__snake_case , encoding='utf-8' ) as merges_handle: lowercase__: int = merges_handle.read().split('\n' )[1:-1] lowercase__: List[Any] = [tuple(merge.split() ) for merge in bpe_merges] lowercase__: int = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) lowercase__: Dict = {} lowercase__: int = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase__: Any = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' return len(self.encoder ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Tuple: '''simple docstring''' if token in self.cache: return self.cache[token] lowercase__: Optional[Any] = tuple(__snake_case ) lowercase__: Union[str, Any] = get_pairs(__snake_case ) if not pairs: return token while True: lowercase__: Optional[Any] = min(__snake_case , key=lambda lowerCAmelCase__ : self.bpe_ranks.get(__snake_case , float('inf' ) ) ) if bigram not in self.bpe_ranks: break lowercase__ , lowercase__: str = bigram lowercase__: Optional[Any] = [] lowercase__: Dict = 0 while i < len(__snake_case ): try: lowercase__: Dict = word.index(__snake_case , __snake_case ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase__: List[Any] = j if word[i] == first and i < len(__snake_case ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase__: List[str] = tuple(__snake_case ) lowercase__: Tuple = new_word if len(__snake_case ) == 1: break else: lowercase__: str = get_pairs(__snake_case ) lowercase__: Tuple = ' '.join(__snake_case ) lowercase__: Optional[int] = word return word def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> int: '''simple docstring''' lowercase__: List[Any] = [] for token in re.findall(self.pat , __snake_case ): lowercase__: Tuple = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__snake_case ).split(' ' ) ) return bpe_tokens def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Any: '''simple docstring''' return self.encoder.get(__snake_case , self.encoder.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> int: '''simple docstring''' return self.decoder.get(__snake_case ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> int: '''simple docstring''' lowercase__: List[str] = ''.join(__snake_case ) lowercase__: str = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(__snake_case ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowercase__: Union[str, Any] = os.path.join( __snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowercase__: Optional[int] = os.path.join( __snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(__snake_case , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__snake_case , ensure_ascii=__snake_case ) + '\n' ) lowercase__: Tuple = 0 with open(__snake_case , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!' ) lowercase__: List[Any] = token_index writer.write(' '.join(__snake_case ) + '\n' ) index += 1 return vocab_file, merge_file def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__: Union[str, Any] = [self.cls_token_id] lowercase__: int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) if token_ids_a is None: return [1] + ([0] * len(__snake_case )) + [1] return [1] + ([0] * len(__snake_case )) + [1, 1] + ([0] * len(__snake_case )) + [1] def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: '''simple docstring''' lowercase__: str = [self.sep_token_id] lowercase__: List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False , **lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' lowercase__: Tuple = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__snake_case ) > 0 and not text[0].isspace()): lowercase__: Union[str, Any] = ' ' + text return (text, kwargs)
196
_lowerCAmelCase : Optional[int] = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" _lowerCAmelCase : Tuple = [{"type": "code", "content": INSTALL_CONTENT}] _lowerCAmelCase : Optional[int] = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
218
0
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): def __init__( self : Dict , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[Any] ): """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM UpperCamelCase = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=lowerCamelCase_ , scheduler=lowerCamelCase_ ) @torch.no_grad() def __call__( self : Union[str, Any] , lowerCamelCase_ : int = 1 , lowerCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : int = 50 , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : Optional[str] = "pil" , lowerCamelCase_ : bool = True , ): """simple docstring""" if isinstance(self.unet.config.sample_size , lowerCamelCase_ ): UpperCamelCase = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: UpperCamelCase = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) and len(lowerCamelCase_ ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(lowerCamelCase_ )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) UpperCamelCase = randn_tensor(lowerCamelCase_ , generator=lowerCamelCase_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(lowerCamelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output UpperCamelCase = self.unet(lowerCamelCase_ , lowerCamelCase_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 UpperCamelCase = self.scheduler.step( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , eta=lowerCamelCase_ , use_clipped_model_output=lowerCamelCase_ , generator=lowerCamelCase_ ).prev_sample UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase = self.numpy_to_pil(lowerCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase_ )
165
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) @add_end_docstrings( __lowerCAmelCase , r""" top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). """ , ) class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : GenericTensor ): """simple docstring""" if self.framework == "tf": UpperCamelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": UpperCamelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=lowerCamelCase_ ) else: raise ValueError("""Unsupported framework""" ) return masked_index def lowerCamelCase_ ( self : Any , lowerCamelCase_ : GenericTensor ): """simple docstring""" UpperCamelCase = self.get_masked_index(lowerCamelCase_ ) UpperCamelCase = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( """fill-mask""" , self.model.base_model_prefix , f"""No mask_token ({self.tokenizer.mask_token}) found on the input""" , ) def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : GenericTensor ): """simple docstring""" if isinstance(lowerCamelCase_ , lowerCamelCase_ ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["""input_ids"""][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(lowerCamelCase_ ) def lowerCamelCase_ ( self : Any , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[Any]=None , **lowerCamelCase_ : List[str] ): """simple docstring""" if return_tensors is None: UpperCamelCase = self.framework UpperCamelCase = self.tokenizer(lowerCamelCase_ , return_tensors=lowerCamelCase_ ) self.ensure_exactly_one_mask_token(lowerCamelCase_ ) return model_inputs def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : str ): """simple docstring""" UpperCamelCase = self.model(**lowerCamelCase_ ) UpperCamelCase = model_inputs["""input_ids"""] return model_outputs def lowerCamelCase_ ( self : str , lowerCamelCase_ : Dict , lowerCamelCase_ : str=5 , lowerCamelCase_ : Optional[int]=None ): """simple docstring""" if target_ids is not None and target_ids.shape[0] < top_k: UpperCamelCase = target_ids.shape[0] UpperCamelCase = model_outputs["""input_ids"""][0] UpperCamelCase = model_outputs["""logits"""] if self.framework == "tf": UpperCamelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] UpperCamelCase = outputs.numpy() UpperCamelCase = outputs[0, masked_index, :] UpperCamelCase = stable_softmax(lowerCamelCase_ , axis=-1 ) if target_ids is not None: UpperCamelCase = tf.gather_nd(tf.squeeze(lowerCamelCase_ , 0 ) , target_ids.reshape(-1 , 1 ) ) UpperCamelCase = tf.expand_dims(lowerCamelCase_ , 0 ) UpperCamelCase = tf.math.top_k(lowerCamelCase_ , k=lowerCamelCase_ ) UpperCamelCase , UpperCamelCase = topk.values.numpy(), topk.indices.numpy() else: UpperCamelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=lowerCamelCase_ ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample UpperCamelCase = outputs[0, masked_index, :] UpperCamelCase = logits.softmax(dim=-1 ) if target_ids is not None: UpperCamelCase = probs[..., target_ids] UpperCamelCase , UpperCamelCase = probs.topk(lowerCamelCase_ ) UpperCamelCase = [] UpperCamelCase = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): UpperCamelCase = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place UpperCamelCase = input_ids.numpy().copy() if target_ids is not None: UpperCamelCase = target_ids[p].tolist() UpperCamelCase = p # Filter padding out: UpperCamelCase = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back UpperCamelCase = self.tokenizer.decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) UpperCamelCase = {"""score""": v, """token""": p, """token_str""": self.tokenizer.decode([p] ), """sequence""": sequence} row.append(lowerCamelCase_ ) result.append(lowerCamelCase_ ) if single_mask: return result[0] return result def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[Any]=None ): """simple docstring""" if isinstance(lowerCamelCase_ , lowerCamelCase_ ): UpperCamelCase = [targets] try: UpperCamelCase = self.tokenizer.get_vocab() except Exception: UpperCamelCase = {} UpperCamelCase = [] for target in targets: UpperCamelCase = vocab.get(lowerCamelCase_ , lowerCamelCase_ ) if id_ is None: UpperCamelCase = self.tokenizer( lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ , max_length=1 , truncation=lowerCamelCase_ , )["""input_ids"""] if len(lowerCamelCase_ ) == 0: logger.warning( f"""The specified target token `{target}` does not exist in the model vocabulary. """ """We cannot replace it with anything meaningful, ignoring it""" ) continue UpperCamelCase = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f"""The specified target token `{target}` does not exist in the model vocabulary. """ f"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.""" ) target_ids.append(id_ ) UpperCamelCase = list(set(lowerCamelCase_ ) ) if len(lowerCamelCase_ ) == 0: raise ValueError("""At least one target must be provided when passed.""" ) UpperCamelCase = np.array(lowerCamelCase_ ) return target_ids def lowerCamelCase_ ( self : Any , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : Any=None ): """simple docstring""" UpperCamelCase = {} if targets is not None: UpperCamelCase = self.get_target_ids(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = target_ids if top_k is not None: UpperCamelCase = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( """fill-mask""" , self.model.base_model_prefix , """The tokenizer does not define a `mask_token`.""" ) return {}, {}, postprocess_params def __call__( self : Tuple , lowerCamelCase_ : str , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : List[Any] ): """simple docstring""" UpperCamelCase = super().__call__(lowerCamelCase_ , **lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) and len(lowerCamelCase_ ) == 1: return outputs[0] return outputs
165
1
"""simple docstring""" import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) __snake_case = """hf-internal-testing/tiny-random-bert""" __snake_case = os.path.join(TRANSFORMERS_CACHE, """models--hf-internal-testing--tiny-random-bert""") __snake_case = """9b8c223d42b2188cb49d29af482996f9d0f3e5a6""" class _lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ) -> str: '''simple docstring''' snake_case : int = cached_file(UpperCamelCase__ , UpperCamelCase__ ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(UpperCamelCase__ ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) ) ) with open(os.path.join(UpperCamelCase__ , "refs" , "main" ) ) as f: snake_case : Dict = f.read() self.assertEqual(UpperCamelCase__ , os.path.join(UpperCamelCase__ , "snapshots" , UpperCamelCase__ , UpperCamelCase__ ) ) self.assertTrue(os.path.isfile(UpperCamelCase__ ) ) # File is cached at the same place the second time. snake_case : List[str] = cached_file(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) # Using a specific revision to test the full commit hash. snake_case : Any = cached_file(UpperCamelCase__ , UpperCamelCase__ , revision="9b8c223" ) self.assertEqual(UpperCamelCase__ , os.path.join(UpperCamelCase__ , "snapshots" , UpperCamelCase__ , UpperCamelCase__ ) ) def lowerCamelCase ( self ) -> Any: '''simple docstring''' with self.assertRaisesRegex(UpperCamelCase__ , "is not a valid model identifier" ): snake_case : Optional[Any] = cached_file("tiny-random-bert" , UpperCamelCase__ ) with self.assertRaisesRegex(UpperCamelCase__ , "is not a valid git identifier" ): snake_case : Optional[Any] = cached_file(UpperCamelCase__ , UpperCamelCase__ , revision="aaaa" ) with self.assertRaisesRegex(UpperCamelCase__ , "does not appear to have a file named" ): snake_case : List[Any] = cached_file(UpperCamelCase__ , "conf" ) def lowerCamelCase ( self ) -> Tuple: '''simple docstring''' with self.assertRaisesRegex(UpperCamelCase__ , "does not appear to have a file named" ): snake_case : Tuple = cached_file(UpperCamelCase__ , "conf" ) with open(os.path.join(UpperCamelCase__ , "refs" , "main" ) ) as f: snake_case : Any = f.read() self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , ".no_exist" , UpperCamelCase__ , "conf" ) ) ) snake_case : Optional[Any] = cached_file(UpperCamelCase__ , "conf" , _raise_exceptions_for_missing_entries=UpperCamelCase__ ) self.assertIsNone(UpperCamelCase__ ) snake_case : Any = cached_file(UpperCamelCase__ , "conf" , local_files_only=UpperCamelCase__ , _raise_exceptions_for_missing_entries=UpperCamelCase__ ) self.assertIsNone(UpperCamelCase__ ) snake_case : Any = mock.Mock() snake_case : List[Any] = 500 snake_case : int = {} snake_case : Optional[int] = HTTPError snake_case : Tuple = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=UpperCamelCase__ ) as mock_head: snake_case : Tuple = cached_file(UpperCamelCase__ , "conf" , _raise_exceptions_for_connection_errors=UpperCamelCase__ ) self.assertIsNone(UpperCamelCase__ ) # This check we did call the fake head request mock_head.assert_called() def lowerCamelCase ( self ) -> Any: '''simple docstring''' self.assertTrue(has_file("hf-internal-testing/tiny-bert-pt-only" , UpperCamelCase__ ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , UpperCamelCase__ ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , UpperCamelCase__ ) ) def lowerCamelCase ( self ) -> str: '''simple docstring''' self.assertIsNone(get_file_from_repo("bert-base-cased" , "ahah.txt" ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(UpperCamelCase__ , "is not a valid model identifier" ): get_file_from_repo("bert-base-case" , UpperCamelCase__ ) # The function raises if the revision does not exist. with self.assertRaisesRegex(UpperCamelCase__ , "is not a valid git identifier" ): get_file_from_repo("bert-base-cased" , UpperCamelCase__ , revision="ahaha" ) snake_case : int = get_file_from_repo("bert-base-cased" , UpperCamelCase__ ) # The name is the cached name which is not very easy to test, so instead we load the content. snake_case : str = json.loads(open(UpperCamelCase__ , "r" ).read() ) self.assertEqual(config["hidden_size"] , 768 ) def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: snake_case : int = Path(UpperCamelCase__ ) / "a.txt" filename.touch() self.assertEqual(get_file_from_repo(UpperCamelCase__ , "a.txt" ) , str(UpperCamelCase__ ) ) self.assertIsNone(get_file_from_repo(UpperCamelCase__ , "b.txt" ) )
203
"""simple docstring""" from typing import List import numpy as np def __lowerCAmelCase ( lowercase : dict ) -> int: """simple docstring""" snake_case : Union[str, Any] = {key: len(lowercase ) for key, value in gen_kwargs.items() if isinstance(lowercase , lowercase )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( "Sharding is ambiguous for this dataset: " + "we found several data sources lists of different lengths, and we don't know over which list we should parallelize:\n" + "\n".join(F'\t- key {key} has length {length}' for key, length in lists_lengths.items() ) + "\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, " + "and use tuples otherwise. In the end there should only be one single list, or several lists with the same length." ) ) snake_case : int = max(lists_lengths.values() , default=0 ) return max(1 , lowercase ) def __lowerCAmelCase ( lowercase : int , lowercase : int ) -> List[range]: """simple docstring""" snake_case : Union[str, Any] = [] for group_idx in range(lowercase ): snake_case : Union[str, Any] = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break snake_case : int = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 snake_case : Dict = range(lowercase , start + num_shards_to_add ) shards_indices_per_group.append(lowercase ) return shards_indices_per_group def __lowerCAmelCase ( lowercase : dict , lowercase : int ) -> List[dict]: """simple docstring""" snake_case : int = _number_of_shards_in_gen_kwargs(lowercase ) if num_shards == 1: return [dict(lowercase )] else: snake_case : Optional[int] = _distribute_shards(num_shards=lowercase , max_num_jobs=lowercase ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(lowercase , lowercase ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(lowercase ) ) ] def __lowerCAmelCase ( lowercase : List[dict] ) -> dict: """simple docstring""" return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , lowercase ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def __lowerCAmelCase ( lowercase : np.random.Generator , lowercase : dict ) -> dict: """simple docstring""" snake_case : Tuple = {len(lowercase ) for value in gen_kwargs.values() if isinstance(lowercase , lowercase )} snake_case : str = {} for size in list_sizes: snake_case : Optional[int] = list(range(lowercase ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes snake_case : Dict = dict(lowercase ) for key, value in shuffled_kwargs.items(): if isinstance(lowercase , lowercase ): snake_case : Dict = [value[i] for i in indices_per_size[len(lowercase )]] return shuffled_kwargs
203
1
import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def snake_case_ (__A : Optional[int] , __A : Any ) -> Any: __lowerCAmelCase : Union[str, Any] = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'''encoder.deit.blocks.{i}.norm1.weight''', f'''encoder.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''encoder.deit.blocks.{i}.norm1.bias''', f'''encoder.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''encoder.deit.blocks.{i}.attn.proj.weight''', f'''encoder.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''encoder.deit.blocks.{i}.attn.proj.bias''', f'''encoder.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append( (f'''encoder.deit.blocks.{i}.norm2.weight''', f'''encoder.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''encoder.deit.blocks.{i}.norm2.bias''', f'''encoder.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append( (f'''encoder.deit.blocks.{i}.mlp.fc1.weight''', f'''encoder.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append( (f'''encoder.deit.blocks.{i}.mlp.fc1.bias''', f'''encoder.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append( (f'''encoder.deit.blocks.{i}.mlp.fc2.weight''', f'''encoder.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''encoder.deit.blocks.{i}.mlp.fc2.bias''', f'''encoder.encoder.layer.{i}.output.dense.bias''') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("""encoder.deit.cls_token""", """encoder.embeddings.cls_token"""), ("""encoder.deit.pos_embed""", """encoder.embeddings.position_embeddings"""), ("""encoder.deit.patch_embed.proj.weight""", """encoder.embeddings.patch_embeddings.projection.weight"""), ("""encoder.deit.patch_embed.proj.bias""", """encoder.embeddings.patch_embeddings.projection.bias"""), ("""encoder.deit.norm.weight""", """encoder.layernorm.weight"""), ("""encoder.deit.norm.bias""", """encoder.layernorm.bias"""), ] ) return rename_keys def snake_case_ (__A : List[str] , __A : str ) -> Optional[Any]: for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) __lowerCAmelCase : Optional[Any] = state_dict.pop(f'''encoder.deit.blocks.{i}.attn.qkv.weight''' ) __lowerCAmelCase : Tuple = in_proj_weight[ : encoder_config.hidden_size, : ] __lowerCAmelCase : str = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] __lowerCAmelCase : str = in_proj_weight[ -encoder_config.hidden_size :, : ] def snake_case_ (__A : Union[str, Any] , __A : str , __A : Optional[Any] ) -> Optional[Any]: __lowerCAmelCase : Any = dct.pop(__A ) __lowerCAmelCase : str = val def snake_case_ (__A : int ) -> Tuple: if "handwritten" in checkpoint_url: __lowerCAmelCase : Tuple = """https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg""" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: __lowerCAmelCase : Optional[Any] = """https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg""" __lowerCAmelCase : Dict = Image.open(requests.get(__A , stream=__A ).raw ).convert("""RGB""" ) return im @torch.no_grad() def snake_case_ (__A : Any , __A : Union[str, Any] ) -> Optional[int]: __lowerCAmelCase : List[Any] = ViTConfig(image_size=3_8_4 , qkv_bias=__A ) __lowerCAmelCase : List[Any] = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: __lowerCAmelCase : Union[str, Any] = 7_6_8 elif "large" in checkpoint_url: # use ViT-large encoder __lowerCAmelCase : Any = 1_0_2_4 __lowerCAmelCase : Any = 4_0_9_6 __lowerCAmelCase : Optional[int] = 2_4 __lowerCAmelCase : str = 1_6 __lowerCAmelCase : List[Any] = 1_0_2_4 else: raise ValueError("""Should either find 'base' or 'large' in checkpoint URL""" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: __lowerCAmelCase : Tuple = False __lowerCAmelCase : Union[str, Any] = """relu""" __lowerCAmelCase : List[Any] = 1_0_2_4 __lowerCAmelCase : Any = True __lowerCAmelCase : List[Any] = False __lowerCAmelCase : Dict = False # load HuggingFace model __lowerCAmelCase : Dict = ViTModel(__A , add_pooling_layer=__A ) __lowerCAmelCase : Union[str, Any] = TrOCRForCausalLM(__A ) __lowerCAmelCase : Any = VisionEncoderDecoderModel(encoder=__A , decoder=__A ) model.eval() # load state_dict of original model, rename some keys __lowerCAmelCase : Union[str, Any] = torch.hub.load_state_dict_from_url(__A , map_location="""cpu""" , check_hash=__A )["""model"""] __lowerCAmelCase : Any = create_rename_keys(__A , __A ) for src, dest in rename_keys: rename_key(__A , __A , __A ) read_in_q_k_v(__A , __A ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): __lowerCAmelCase : Tuple = state_dict.pop(__A ) if key.startswith("""decoder""" ) and "output_projection" not in key: __lowerCAmelCase : str = val else: __lowerCAmelCase : Tuple = val # load state dict model.load_state_dict(__A ) # Check outputs on an image __lowerCAmelCase : List[Any] = ViTImageProcessor(size=encoder_config.image_size ) __lowerCAmelCase : List[str] = RobertaTokenizer.from_pretrained("""roberta-large""" ) __lowerCAmelCase : List[Any] = TrOCRProcessor(__A , __A ) __lowerCAmelCase : List[str] = processor(images=prepare_img(__A ) , return_tensors="""pt""" ).pixel_values # verify logits __lowerCAmelCase : List[str] = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) __lowerCAmelCase : List[str] = model(pixel_values=__A , decoder_input_ids=__A ) __lowerCAmelCase : Optional[Any] = outputs.logits __lowerCAmelCase : Union[str, Any] = torch.Size([1, 1, 5_0_2_6_5] ) if "trocr-base-handwritten" in checkpoint_url: __lowerCAmelCase : Dict = torch.tensor( [-1.4502, -4.6683, -0.5347, -2.9291, 9.1435, -3.0571, 8.9764, 1.7560, 8.7358, -1.5311] ) elif "trocr-large-handwritten" in checkpoint_url: __lowerCAmelCase : List[Any] = torch.tensor( [-2.6437, -1.3129, -2.2596, -5.3455, 6.3539, 1.7604, 5.4991, 1.4702, 5.6113, 2.0170] ) elif "trocr-base-printed" in checkpoint_url: __lowerCAmelCase : Tuple = torch.tensor( [-5.6816, -5.8388, 1.1398, -6.9034, 6.8505, -2.4393, 1.2284, -1.0232, -1.9661, -3.9210] ) elif "trocr-large-printed" in checkpoint_url: __lowerCAmelCase : List[Any] = torch.tensor( [-6.0162, -7.0959, 4.4155, -5.1063, 7.0468, -3.1631, 2.6466, -0.3081, -0.8106, -1.7535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :1_0] , __A , atol=1e-3 ), "First elements of logits not as expected" Path(__A ).mkdir(exist_ok=__A ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__A ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(__A ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) __UpperCAmelCase = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
139
import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Union[str, Any] , lowerCAmelCase : Dict , lowerCAmelCase : Dict=13 , lowerCAmelCase : int=7 , lowerCAmelCase : Any=True , lowerCAmelCase : str=True , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : str=True , lowerCAmelCase : Tuple=99 , lowerCAmelCase : int=64 , lowerCAmelCase : Any=32 , lowerCAmelCase : str=5 , lowerCAmelCase : List[str]=4 , lowerCAmelCase : str=37 , lowerCAmelCase : Union[str, Any]="gelu" , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Optional[int]=5_12 , lowerCAmelCase : List[str]=16 , lowerCAmelCase : str=2 , lowerCAmelCase : Union[str, Any]=0.02 , lowerCAmelCase : Dict=3 , lowerCAmelCase : int=4 , lowerCAmelCase : Union[str, Any]=None , ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : List[Any] = parent __lowerCAmelCase : Tuple = batch_size __lowerCAmelCase : Dict = seq_length __lowerCAmelCase : List[str] = is_training __lowerCAmelCase : Dict = use_input_mask __lowerCAmelCase : Optional[int] = use_token_type_ids __lowerCAmelCase : List[str] = use_labels __lowerCAmelCase : Dict = vocab_size __lowerCAmelCase : List[str] = hidden_size __lowerCAmelCase : Optional[int] = embedding_size __lowerCAmelCase : Optional[int] = num_hidden_layers __lowerCAmelCase : Optional[Any] = num_attention_heads __lowerCAmelCase : Optional[Any] = intermediate_size __lowerCAmelCase : Optional[int] = hidden_act __lowerCAmelCase : Any = hidden_dropout_prob __lowerCAmelCase : Optional[int] = attention_probs_dropout_prob __lowerCAmelCase : List[str] = max_position_embeddings __lowerCAmelCase : Optional[Any] = type_vocab_size __lowerCAmelCase : Optional[Any] = type_sequence_label_size __lowerCAmelCase : Optional[Any] = initializer_range __lowerCAmelCase : Optional[Any] = num_labels __lowerCAmelCase : Union[str, Any] = num_choices __lowerCAmelCase : Union[str, Any] = scope def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase : Dict = None if self.use_input_mask: __lowerCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase : List[str] = None if self.use_token_type_ids: __lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase : List[Any] = None __lowerCAmelCase : Tuple = None __lowerCAmelCase : int = None if self.use_labels: __lowerCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase : str = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : Tuple , lowerCAmelCase : List[Any] ) -> Tuple: """simple docstring""" __lowerCAmelCase : Any = MobileBertModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : Union[str, Any] = model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase ) __lowerCAmelCase : List[Any] = model(lowerCAmelCase , token_type_ids=lowerCAmelCase ) __lowerCAmelCase : Tuple = model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : str , lowerCAmelCase : List[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Any = MobileBertForMaskedLM(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : List[Any] = model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" __lowerCAmelCase : Tuple = MobileBertForNextSentencePrediction(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : List[Any] = model( lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : List[Any] , lowerCAmelCase : List[Any] ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Any = MobileBertForPreTraining(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : Optional[int] = model( lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase , next_sentence_label=lowerCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any ) -> Any: """simple docstring""" __lowerCAmelCase : Optional[int] = MobileBertForQuestionAnswering(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : int = model( lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : List[str] , lowerCAmelCase : int , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Union[str, Any] ) -> Tuple: """simple docstring""" __lowerCAmelCase : List[str] = self.num_labels __lowerCAmelCase : int = MobileBertForSequenceClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : Optional[int] = model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : List[Any] = self.num_labels __lowerCAmelCase : Dict = MobileBertForTokenClassification(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : Tuple = model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase : List[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : List[Any] ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Any = self.num_choices __lowerCAmelCase : List[Any] = MobileBertForMultipleChoice(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase : Optional[int] = model( lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: """simple docstring""" __lowerCAmelCase : Tuple = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) ,( __lowerCAmelCase ) ,( __lowerCAmelCase ) ,( __lowerCAmelCase ) ,( __lowerCAmelCase ) ,( __lowerCAmelCase ) ,( __lowerCAmelCase ) , ) : List[Any] = config_and_inputs __lowerCAmelCase : List[str] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( a_ , a_ , unittest.TestCase ): """simple docstring""" lowerCamelCase : str =( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase : Optional[int] =( { "feature-extraction": MobileBertModel, "fill-mask": MobileBertForMaskedLM, "question-answering": MobileBertForQuestionAnswering, "text-classification": MobileBertForSequenceClassification, "token-classification": MobileBertForTokenClassification, "zero-shot": MobileBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase : Union[str, Any] =True def SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase : str , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any]=False ) -> List[str]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = super()._prepare_for_class(lowerCAmelCase , lowerCAmelCase , return_labels=lowerCAmelCase ) if return_labels: if model_class in get_values(lowerCAmelCase ): __lowerCAmelCase : Tuple = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase ) return inputs_dict def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : int = MobileBertModelTester(self ) __lowerCAmelCase : Optional[Any] = ConfigTester(self , config_class=lowerCAmelCase , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: """simple docstring""" __lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: """simple docstring""" __lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: """simple docstring""" __lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: """simple docstring""" __lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: """simple docstring""" __lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: """simple docstring""" __lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCAmelCase ) def snake_case_ (__A : Any ) -> Optional[Any]: return torch.tensor( __A , dtype=torch.long , device=__A , ) __UpperCAmelCase = 1e-3 @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Optional[Any] = MobileBertModel.from_pretrained("""google/mobilebert-uncased""" ).to(lowerCAmelCase ) __lowerCAmelCase : int = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]] ) with torch.no_grad(): __lowerCAmelCase : List[str] = model(lowerCAmelCase )[0] __lowerCAmelCase : List[Any] = torch.Size((1, 9, 5_12) ) self.assertEqual(output.shape , lowerCAmelCase ) __lowerCAmelCase : int = torch.tensor( [ [ [-2.473_6526e07, 8.269_1656e04, 1.652_1838e05], [-5.754_1704e-01, 3.905_6022e00, 4.401_1507e00], [2.604_7359e00, 1.567_7652e00, -1.732_4188e-01], ] ] , device=lowerCAmelCase , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE __lowerCAmelCase : Union[str, Any] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) __lowerCAmelCase : Union[str, Any] = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
139
1
"""simple docstring""" import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class UpperCamelCase ( lowercase_ ): def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : Optional[Any] = tempfile.mkdtemp() lowercase_ : Any = 8 # DPR tok lowercase_ : Dict = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] lowercase_ : Any = os.path.join(self.tmpdirname ,'dpr_tokenizer' ) os.makedirs(UpperCAmelCase__ ,exist_ok=UpperCAmelCase__ ) lowercase_ : Tuple = os.path.join(UpperCAmelCase__ ,DPR_VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) # BART tok lowercase_ : Union[str, Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] lowercase_ : int = dict(zip(UpperCAmelCase__ ,range(len(UpperCAmelCase__ ) ) ) ) lowercase_ : Dict = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] lowercase_ : Optional[Any] = {'unk_token': '<unk>'} lowercase_ : List[Any] = os.path.join(self.tmpdirname ,'bart_tokenizer' ) os.makedirs(UpperCAmelCase__ ,exist_ok=UpperCAmelCase__ ) lowercase_ : Optional[Any] = os.path.join(UpperCAmelCase__ ,BART_VOCAB_FILES_NAMES['vocab_file'] ) lowercase_ : Tuple = os.path.join(UpperCAmelCase__ ,BART_VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(UpperCAmelCase__ ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCAmelCase__ ) ) def _UpperCAmelCase ( self ) -> DPRQuestionEncoderTokenizer: '''simple docstring''' return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname ,'dpr_tokenizer' ) ) def _UpperCAmelCase ( self ) -> DPRContextEncoderTokenizer: '''simple docstring''' return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname ,'dpr_tokenizer' ) ) def _UpperCAmelCase ( self ) -> BartTokenizer: '''simple docstring''' return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname ,'bart_tokenizer' ) ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : Dict = Dataset.from_dict( { 'id': ['0', '1'], 'text': ['foo', 'bar'], 'title': ['Foo', 'Bar'], 'embeddings': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('embeddings' ,string_factory='Flat' ,metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Tuple = self.get_dummy_dataset() lowercase_ : List[Any] = RagConfig( retrieval_vector_size=self.retrieval_vector_size ,question_encoder=DPRConfig().to_dict() ,generator=BartConfig().to_dict() ,) with patch('transformers.models.rag.retrieval_rag.load_dataset' ) as mock_load_dataset: lowercase_ : List[str] = dataset lowercase_ : Dict = RagRetriever( UpperCAmelCase__ ,question_encoder_tokenizer=self.get_dpr_tokenizer() ,generator_tokenizer=self.get_bart_tokenizer() ,) return retriever def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' lowercase_ : int = self.get_dummy_dataset() lowercase_ : Any = RagConfig( retrieval_vector_size=self.retrieval_vector_size ,question_encoder=DPRConfig().to_dict() ,generator=BartConfig().to_dict() ,index_name='custom' ,) if from_disk: lowercase_ : Any = os.path.join(self.tmpdirname ,'dataset' ) lowercase_ : Any = os.path.join(self.tmpdirname ,'index.faiss' ) dataset.get_index('embeddings' ).save(os.path.join(self.tmpdirname ,'index.faiss' ) ) dataset.drop_index('embeddings' ) dataset.save_to_disk(os.path.join(self.tmpdirname ,'dataset' ) ) del dataset lowercase_ : str = RagRetriever( UpperCAmelCase__ ,question_encoder_tokenizer=self.get_dpr_tokenizer() ,generator_tokenizer=self.get_bart_tokenizer() ,) else: lowercase_ : List[Any] = RagRetriever( UpperCAmelCase__ ,question_encoder_tokenizer=self.get_dpr_tokenizer() ,generator_tokenizer=self.get_bart_tokenizer() ,index=CustomHFIndex(config.retrieval_vector_size ,UpperCAmelCase__ ) ,) return retriever def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : List[str] = Dataset.from_dict( { 'id': ['0', '1'], 'text': ['foo', 'bar'], 'title': ['Foo', 'Bar'], 'embeddings': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('embeddings' ,string_factory='Flat' ,metric_type=faiss.METRIC_INNER_PRODUCT ) lowercase_ : int = os.path.join(self.tmpdirname ,'hf_bert_base.hnswSQ8_correct_phi_128.c_index' ) dataset.save_faiss_index('embeddings' ,index_file_name + '.index.dpr' ) pickle.dump(dataset['id'] ,open(index_file_name + '.index_meta.dpr' ,'wb' ) ) lowercase_ : str = os.path.join(self.tmpdirname ,'psgs_w100.tsv.pkl' ) lowercase_ : Union[str, Any] = {sample['id']: [sample['text'], sample['title']] for sample in dataset} pickle.dump(UpperCAmelCase__ ,open(UpperCAmelCase__ ,'wb' ) ) lowercase_ : List[str] = RagConfig( retrieval_vector_size=self.retrieval_vector_size ,question_encoder=DPRConfig().to_dict() ,generator=BartConfig().to_dict() ,index_name='legacy' ,index_path=self.tmpdirname ,) lowercase_ : Tuple = RagRetriever( UpperCAmelCase__ ,question_encoder_tokenizer=self.get_dpr_tokenizer() ,generator_tokenizer=self.get_bart_tokenizer() ) return retriever def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : str = 1 lowercase_ : List[Any] = self.get_dummy_canonical_hf_index_retriever() lowercase_ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) lowercase_ , lowercase_ , lowercase_ : Dict = retriever.retrieve(UpperCAmelCase__ ,n_docs=UpperCAmelCase__ ) self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(UpperCAmelCase__ ) ,2 ) self.assertEqual(sorted(doc_dicts[0] ) ,['embeddings', 'id', 'text', 'title'] ) self.assertEqual(len(doc_dicts[0]['id'] ) ,UpperCAmelCase__ ) self.assertEqual(doc_dicts[0]['id'][0] ,'1' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0] ,'0' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() ,[[1], [0]] ) def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : str = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('transformers.models.rag.retrieval_rag.load_dataset' ) as mock_load_dataset: lowercase_ : Dict = self.get_dummy_dataset() retriever.save_pretrained(UpperCAmelCase__ ) lowercase_ : Dict = RagRetriever.from_pretrained(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ ,UpperCAmelCase__ ) lowercase_ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) lowercase_ : int = retriever.retrieve(UpperCAmelCase__ ,n_docs=1 ) self.assertTrue(out is not None ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Optional[int] = 1 lowercase_ : Any = self.get_dummy_custom_hf_index_retriever(from_disk=UpperCAmelCase__ ) lowercase_ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) lowercase_ , lowercase_ , lowercase_ : str = retriever.retrieve(UpperCAmelCase__ ,n_docs=UpperCAmelCase__ ) self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(UpperCAmelCase__ ) ,2 ) self.assertEqual(sorted(doc_dicts[0] ) ,['embeddings', 'id', 'text', 'title'] ) self.assertEqual(len(doc_dicts[0]['id'] ) ,UpperCAmelCase__ ) self.assertEqual(doc_dicts[0]['id'][0] ,'1' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0] ,'0' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() ,[[1], [0]] ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : Any = self.get_dummy_custom_hf_index_retriever(from_disk=UpperCAmelCase__ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(UpperCAmelCase__ ) lowercase_ : List[Any] = RagRetriever.from_pretrained(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ ,UpperCAmelCase__ ) lowercase_ : Optional[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) lowercase_ : Optional[Any] = retriever.retrieve(UpperCAmelCase__ ,n_docs=1 ) self.assertTrue(out is not None ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : int = 1 lowercase_ : str = self.get_dummy_custom_hf_index_retriever(from_disk=UpperCAmelCase__ ) lowercase_ : Any = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) lowercase_ , lowercase_ , lowercase_ : List[Any] = retriever.retrieve(UpperCAmelCase__ ,n_docs=UpperCAmelCase__ ) self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(UpperCAmelCase__ ) ,2 ) self.assertEqual(sorted(doc_dicts[0] ) ,['embeddings', 'id', 'text', 'title'] ) self.assertEqual(len(doc_dicts[0]['id'] ) ,UpperCAmelCase__ ) self.assertEqual(doc_dicts[0]['id'][0] ,'1' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0] ,'0' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() ,[[1], [0]] ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : str = self.get_dummy_custom_hf_index_retriever(from_disk=UpperCAmelCase__ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(UpperCAmelCase__ ) lowercase_ : Union[str, Any] = RagRetriever.from_pretrained(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ ,UpperCAmelCase__ ) lowercase_ : int = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) lowercase_ : Tuple = retriever.retrieve(UpperCAmelCase__ ,n_docs=1 ) self.assertTrue(out is not None ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : Union[str, Any] = 1 lowercase_ : Optional[int] = self.get_dummy_legacy_index_retriever() lowercase_ : int = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = retriever.retrieve(UpperCAmelCase__ ,n_docs=UpperCAmelCase__ ) self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(UpperCAmelCase__ ) ,2 ) self.assertEqual(sorted(doc_dicts[0] ) ,['text', 'title'] ) self.assertEqual(len(doc_dicts[0]['text'] ) ,UpperCAmelCase__ ) self.assertEqual(doc_dicts[0]['text'][0] ,'bar' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['text'][0] ,'foo' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() ,[[1], [0]] ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Dict = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(UpperCAmelCase__ ) lowercase_ : Optional[Any] = RagRetriever.from_pretrained(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ ,UpperCAmelCase__ ) lowercase_ : Dict = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) lowercase_ : List[Any] = retriever.retrieve(UpperCAmelCase__ ,n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def _UpperCAmelCase ( self ) -> int: '''simple docstring''' import torch lowercase_ : List[Any] = 1 lowercase_ : List[Any] = self.get_dummy_canonical_hf_index_retriever() lowercase_ : List[Any] = [[5, 7], [10, 11]] lowercase_ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) lowercase_ : Tuple = retriever(UpperCAmelCase__ ,UpperCAmelCase__ ,prefix=retriever.config.generator.prefix ,n_docs=UpperCAmelCase__ ) lowercase_ , lowercase_ , lowercase_ : Tuple = ( out['context_input_ids'], out['context_attention_mask'], out['retrieved_doc_embeds'], ) self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(UpperCAmelCase__ ,UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ ,UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ ,np.ndarray ) lowercase_ : str = retriever( UpperCAmelCase__ ,UpperCAmelCase__ ,prefix=retriever.config.generator.prefix ,n_docs=UpperCAmelCase__ ,return_tensors='pt' ,) lowercase_ , lowercase_ , lowercase_ , lowercase_ : int = ( # noqa: F841 out['context_input_ids'], out['context_attention_mask'], out['retrieved_doc_embeds'], out['doc_ids'], ) self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(UpperCAmelCase__ ,torch.Tensor ) self.assertIsInstance(UpperCAmelCase__ ,torch.Tensor ) self.assertIsInstance(UpperCAmelCase__ ,torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : Optional[int] = self.get_dpr_ctx_encoder_tokenizer() lowercase_ : Tuple = 1 lowercase_ : List[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=UpperCAmelCase__ ) retriever.set_ctx_encoder_tokenizer(UpperCAmelCase__ ) lowercase_ : int = [[5, 7], [10, 11]] lowercase_ : Dict = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) lowercase_ : str = retriever(UpperCAmelCase__ ,UpperCAmelCase__ ,prefix=retriever.config.generator.prefix ,n_docs=UpperCAmelCase__ ) self.assertEqual( len(UpperCAmelCase__ ) ,6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('tokenized_doc_ids', 'tokenized_doc_attention_mask') ) ,UpperCAmelCase__ ) # check for doc token related keys in dictionary.
213
"""simple docstring""" def UpperCAmelCase__ (lowerCAmelCase_ = 100_0000 ): '''simple docstring''' __SCREAMING_SNAKE_CASE = set(range(3 , lowerCAmelCase_ , 2 ) ) primes.add(2 ) for p in range(3 , lowerCAmelCase_ , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , lowerCAmelCase_ , lowerCAmelCase_ ) ) ) __SCREAMING_SNAKE_CASE = [float(lowerCAmelCase_ ) for n in range(limit + 1 )] for p in primes: for n in range(lowerCAmelCase_ , limit + 1 , lowerCAmelCase_ ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F"{solution() = }")
54
0
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger UpperCAmelCase__ = get_logger(__name__) class __lowerCAmelCase ( enum.Enum ): UpperCamelCase = '''all_checks''' UpperCamelCase = '''basic_checks''' UpperCamelCase = '''no_checks''' class __lowerCAmelCase ( _a ): pass class __lowerCAmelCase ( _a ): pass class __lowerCAmelCase ( _a ): pass class __lowerCAmelCase ( _a ): pass def A ( _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int=None ) -> Any: '''simple docstring''' if expected_checksums is None: logger.info('Unable to verify checksums.' ) return if len(set(_lowerCAmelCase ) - set(_lowerCAmelCase ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(_lowerCAmelCase ) - set(_lowerCAmelCase ) ) ) if len(set(_lowerCAmelCase ) - set(_lowerCAmelCase ) ) > 0: raise UnexpectedDownloadedFile(str(set(_lowerCAmelCase ) - set(_lowerCAmelCase ) ) ) _UpperCAmelCase = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] _UpperCAmelCase = """ for """ + verification_name if verification_name is not None else """""" if len(_lowerCAmelCase ) > 0: raise NonMatchingChecksumError( F"Checksums didn't match{for_verification_name}:\n" F"{bad_urls}\n" 'Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error' ) logger.info('All the checksums matched successfully' + for_verification_name ) class __lowerCAmelCase ( _a ): pass class __lowerCAmelCase ( _a ): pass class __lowerCAmelCase ( _a ): pass class __lowerCAmelCase ( _a ): pass def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : List[Any] ) -> Any: '''simple docstring''' if expected_splits is None: logger.info('Unable to verify splits sizes.' ) return if len(set(_lowerCAmelCase ) - set(_lowerCAmelCase ) ) > 0: raise ExpectedMoreSplits(str(set(_lowerCAmelCase ) - set(_lowerCAmelCase ) ) ) if len(set(_lowerCAmelCase ) - set(_lowerCAmelCase ) ) > 0: raise UnexpectedSplits(str(set(_lowerCAmelCase ) - set(_lowerCAmelCase ) ) ) _UpperCAmelCase = [ {"""expected""": expected_splits[name], """recorded""": recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(_lowerCAmelCase ) > 0: raise NonMatchingSplitsSizesError(str(_lowerCAmelCase ) ) logger.info('All the splits matched successfully.' ) def A ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] = True ) -> dict: '''simple docstring''' if record_checksum: _UpperCAmelCase = shaaaa() with open(_lowerCAmelCase , 'rb' ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , B'' ): m.update(_lowerCAmelCase ) _UpperCAmelCase = m.hexdigest() else: _UpperCAmelCase = None return {"num_bytes": os.path.getsize(_lowerCAmelCase ), "checksum": checksum} def A ( _UpperCAmelCase : str ) -> int: '''simple docstring''' if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
371
import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __lowerCAmelCase ( A , unittest.TestCase ): UpperCamelCase = KandinskyVaaPipeline UpperCamelCase = [ '''image_embeds''', '''negative_image_embeds''', ] UpperCamelCase = ['''image_embeds''', '''negative_image_embeds'''] UpperCamelCase = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] UpperCamelCase = False @property def _lowerCamelCase ( self : Tuple) -> List[str]: """simple docstring""" return 32 @property def _lowerCamelCase ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" return 32 @property def _lowerCamelCase ( self : Any) -> List[Any]: """simple docstring""" return self.time_input_dim @property def _lowerCamelCase ( self : Optional[int]) -> Union[str, Any]: """simple docstring""" return self.time_input_dim * 4 @property def _lowerCamelCase ( self : List[Any]) -> Union[str, Any]: """simple docstring""" return 1_00 @property def _lowerCamelCase ( self : Dict) -> Dict: """simple docstring""" torch.manual_seed(0) _UpperCAmelCase = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } _UpperCAmelCase = UNetaDConditionModel(**A) return model @property def _lowerCamelCase ( self : Dict) -> List[Any]: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _lowerCamelCase ( self : Optional[Any]) -> Optional[Any]: """simple docstring""" torch.manual_seed(0) _UpperCAmelCase = VQModel(**self.dummy_movq_kwargs) return model def _lowerCamelCase ( self : Optional[int]) -> List[str]: """simple docstring""" _UpperCAmelCase = self.dummy_unet _UpperCAmelCase = self.dummy_movq _UpperCAmelCase = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule='linear' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=A , set_alpha_to_one=A , steps_offset=1 , prediction_type='epsilon' , thresholding=A , ) _UpperCAmelCase = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def _lowerCamelCase ( self : List[str] , A : str , A : Tuple=0) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(A)).to(A) _UpperCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1)).to( A) if str(A).startswith('mps'): _UpperCAmelCase = torch.manual_seed(A) else: _UpperCAmelCase = torch.Generator(device=A).manual_seed(A) _UpperCAmelCase = { 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def _lowerCamelCase ( self : str) -> str: """simple docstring""" _UpperCAmelCase = 'cpu' _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**A) _UpperCAmelCase = pipe.to(A) pipe.set_progress_bar_config(disable=A) _UpperCAmelCase = pipe(**self.get_dummy_inputs(A)) _UpperCAmelCase = output.images _UpperCAmelCase = pipe( **self.get_dummy_inputs(A) , return_dict=A , )[0] _UpperCAmelCase = image[0, -3:, -3:, -1] _UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase = np.array( [0.6_2_3_7_9_7_6, 1.0, 0.3_6_4_4_1_3_3_2, 1.0, 0.7_0_6_3_9_6_3_4, 0.2_9_8_7_7_1_8_6, 0.8_5_6_5_2_1_2_5, 0.5_2_1_6_8_4_3, 0.5_4_4_5_4_0_4_6]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : Optional[int]) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Tuple) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy') _UpperCAmelCase = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa) pipe_prior.to(A) _UpperCAmelCase = KandinskyVaaPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder' , torch_dtype=torch.floataa) _UpperCAmelCase = pipeline.to(A) pipeline.set_progress_bar_config(disable=A) _UpperCAmelCase = 'red cat, 4k photo' _UpperCAmelCase = torch.Generator(device='cuda').manual_seed(0) _UpperCAmelCase , _UpperCAmelCase = pipe_prior( A , generator=A , num_inference_steps=5 , negative_prompt='' , ).to_tuple() _UpperCAmelCase = torch.Generator(device='cuda').manual_seed(0) _UpperCAmelCase = pipeline( image_embeds=A , negative_image_embeds=A , generator=A , num_inference_steps=1_00 , output_type='np' , ) _UpperCAmelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(A , A)
290
0
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class lowerCAmelCase__ ( unittest.TestCase ): def _snake_case ( self ): """simple docstring""" lowercase_ : str = torch.tensor([-1_00, -1, -0.1, 0, 0.1, 1.0, 1_00] ) lowercase_ : Union[str, Any] = get_activation('''gelu''' ) self.assertTrue(torch.allclose(gelu_python(__SCREAMING_SNAKE_CASE ) , torch_builtin(__SCREAMING_SNAKE_CASE ) ) ) self.assertFalse(torch.allclose(gelu_python(__SCREAMING_SNAKE_CASE ) , gelu_new(__SCREAMING_SNAKE_CASE ) ) ) def _snake_case ( self ): """simple docstring""" lowercase_ : Optional[Any] = torch.tensor([-1_00, -1, -0.1, 0, 0.1, 1.0, 1_00] ) lowercase_ : Tuple = get_activation('''gelu''' ) lowercase_ : Any = get_activation('''gelu_10''' ) lowercase_ : List[str] = torch_builtin(__SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = geluaa(__SCREAMING_SNAKE_CASE ) lowercase_ : Dict = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(__SCREAMING_SNAKE_CASE ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def _snake_case ( self ): """simple docstring""" get_activation('''gelu''' ) get_activation('''gelu_10''' ) get_activation('''gelu_fast''' ) get_activation('''gelu_new''' ) get_activation('''gelu_python''' ) get_activation('''gelu_pytorch_tanh''' ) get_activation('''linear''' ) get_activation('''mish''' ) get_activation('''quick_gelu''' ) get_activation('''relu''' ) get_activation('''sigmoid''' ) get_activation('''silu''' ) get_activation('''swish''' ) get_activation('''tanh''' ) with self.assertRaises(__SCREAMING_SNAKE_CASE ): get_activation('''bogus''' ) with self.assertRaises(__SCREAMING_SNAKE_CASE ): get_activation(__SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" lowercase_ : int = get_activation('''gelu''' ) lowercase_ : Any = 1 lowercase_ : str = get_activation('''gelu''' ) self.assertEqual(acta.a , 1 ) with self.assertRaises(__SCREAMING_SNAKE_CASE ): lowercase_ : Dict = acta.a
93
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class a_ ( a__ , a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = StableUnCLIPImgaImgPipeline __SCREAMING_SNAKE_CASE : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS __SCREAMING_SNAKE_CASE : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __SCREAMING_SNAKE_CASE : Any = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __SCREAMING_SNAKE_CASE : Tuple = frozenset([] ) def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[Any] = 32 SCREAMING_SNAKE_CASE : Tuple = embedder_hidden_size # image encoding components SCREAMING_SNAKE_CASE : int = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=_lowerCamelCase , projection_dim=_lowerCamelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = StableUnCLIPImageNormalizer(embedding_dim=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_lowerCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_lowerCamelCase , layers_per_block=1 , upcast_attention=_lowerCamelCase , use_linear_projection=_lowerCamelCase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , prediction_type='''v_prediction''' , set_alpha_to_one=_lowerCamelCase , steps_offset=1 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = AutoencoderKL() SCREAMING_SNAKE_CASE : Optional[Any] = { # image encoding components '''feature_extractor''': feature_extractor, '''image_encoder''': image_encoder.eval(), # image noising components '''image_normalizer''': image_normalizer.eval(), '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder.eval(), '''unet''': unet.eval(), '''scheduler''': scheduler, '''vae''': vae.eval(), } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 , _lowerCamelCase=True ) ->Optional[int]: if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : Optional[int] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) if pil_image: SCREAMING_SNAKE_CASE : Any = input_image * 0.5 + 0.5 SCREAMING_SNAKE_CASE : int = input_image.clamp(0 , 1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() SCREAMING_SNAKE_CASE : List[str] = DiffusionPipeline.numpy_to_pil(_lowerCamelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Tuple = StableUnCLIPImgaImgPipeline(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = self.get_dummy_inputs(_lowerCamelCase ) inputs.update({'''image_embeds''': None} ) SCREAMING_SNAKE_CASE : Optional[int] = sd_pipe(**_lowerCamelCase ).images SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : Tuple = np.array([0.3_8_7_2, 0.7_2_2_4, 0.5_6_0_1, 0.4_7_4_1, 0.6_8_7_2, 0.5_8_1_4, 0.4_6_3_6, 0.3_8_6_7, 0.5_0_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : str = torch_device in ['''cpu''', '''mps'''] self._test_attention_slicing_forward_pass(test_max_difference=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Tuple = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_lowerCamelCase ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __lowerCAmelCase ( self ) ->Optional[int]: self._test_xformers_attention_forwardGenerator_pass(test_max_difference=_lowerCamelCase ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) SCREAMING_SNAKE_CASE : Optional[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy''' ) SCREAMING_SNAKE_CASE : List[Any] = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-l-img2img''' , torch_dtype=torch.floataa ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = pipe(_lowerCamelCase , '''anime turle''' , generator=_lowerCamelCase , output_type='''np''' ) SCREAMING_SNAKE_CASE : List[str] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : List[str] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) SCREAMING_SNAKE_CASE : Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy''' ) SCREAMING_SNAKE_CASE : List[str] = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE : Any = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = pipe(_lowerCamelCase , '''anime turle''' , generator=_lowerCamelCase , output_type='''np''' ) SCREAMING_SNAKE_CASE : List[str] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE : str = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : Dict = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE : Dict = pipe( _lowerCamelCase , '''anime turtle''' , num_inference_steps=2 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : Any = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
313
0
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = (UniPCMultistepScheduler,) lowerCamelCase__ : int = (('num_inference_steps', 25),) def a__ (self, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = { 'num_train_timesteps': 1_0_0_0, 'beta_start': 0.0_001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, 'solver_type': 'bh2', } config.update(**lowerCamelCase_ ) return config def a__ (self, lowerCamelCase_=0, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = dict(self.forward_default_kwargs ) lowerCamelCase__ : List[Any] = kwargs.pop('num_inference_steps', lowerCamelCase_ ) lowerCamelCase__ : Tuple = self.dummy_sample lowerCamelCase__ : Union[str, Any] = 0.1 * sample lowerCamelCase__ : List[str] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowerCamelCase__ : Any = self.get_scheduler_config(**lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = scheduler_class(**lowerCamelCase_ ) scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residuals lowerCamelCase__ : List[Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = scheduler_class.from_pretrained(lowerCamelCase_ ) new_scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residuals lowerCamelCase__ : Any = dummy_past_residuals[: new_scheduler.config.solver_order] lowerCamelCase__ , lowerCamelCase__ : Optional[int] = sample, sample for t in range(lowerCamelCase_, time_step + scheduler.config.solver_order + 1 ): lowerCamelCase__ : Any = scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ).prev_sample lowerCamelCase__ : Any = new_scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def a__ (self, lowerCamelCase_=0, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = dict(self.forward_default_kwargs ) lowerCamelCase__ : Union[str, Any] = kwargs.pop('num_inference_steps', lowerCamelCase_ ) lowerCamelCase__ : List[Any] = self.dummy_sample lowerCamelCase__ : Dict = 0.1 * sample lowerCamelCase__ : Dict = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowerCamelCase__ : List[Any] = self.get_scheduler_config() lowerCamelCase__ : int = scheduler_class(**lowerCamelCase_ ) scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residuals (must be after setting timesteps) lowerCamelCase__ : int = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase_ ) lowerCamelCase__ : List[str] = scheduler_class.from_pretrained(lowerCamelCase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residual (must be after setting timesteps) lowerCamelCase__ : Dict = dummy_past_residuals[: new_scheduler.config.solver_order] lowerCamelCase__ : Dict = scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ).prev_sample lowerCamelCase__ : str = new_scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def a__ (self, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' if scheduler is None: lowerCamelCase__ : List[Any] = self.scheduler_classes[0] lowerCamelCase__ : str = self.get_scheduler_config(**lowerCamelCase_ ) lowerCamelCase__ : List[Any] = scheduler_class(**lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = self.scheduler_classes[0] lowerCamelCase__ : Tuple = self.get_scheduler_config(**lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = scheduler_class(**lowerCamelCase_ ) lowerCamelCase__ : Tuple = 1_0 lowerCamelCase__ : Optional[int] = self.dummy_model() lowerCamelCase__ : str = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase_ ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase__ : Tuple = model(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ).prev_sample return sample def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = dict(self.forward_default_kwargs ) lowerCamelCase__ : Optional[Any] = kwargs.pop('num_inference_steps', lowerCamelCase_ ) for scheduler_class in self.scheduler_classes: lowerCamelCase__ : Dict = self.get_scheduler_config() lowerCamelCase__ : List[str] = scheduler_class(**lowerCamelCase_ ) lowerCamelCase__ : Any = self.dummy_sample lowerCamelCase__ : Optional[int] = 0.1 * sample if num_inference_steps is not None and hasattr(lowerCamelCase_, 'set_timesteps' ): scheduler.set_timesteps(lowerCamelCase_ ) elif num_inference_steps is not None and not hasattr(lowerCamelCase_, 'set_timesteps' ): lowerCamelCase__ : List[str] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowerCamelCase__ : List[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] lowerCamelCase__ : Any = dummy_past_residuals[: scheduler.config.solver_order] lowerCamelCase__ : List[Any] = scheduler.timesteps[5] lowerCamelCase__ : Union[str, Any] = scheduler.timesteps[6] lowerCamelCase__ : List[Any] = scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ).prev_sample lowerCamelCase__ : Dict = scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = UniPCMultistepScheduler(**self.get_scheduler_config() ) lowerCamelCase__ : str = self.full_loop(scheduler=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.2_464 ) < 1e-3 lowerCamelCase__ : List[Any] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) lowerCamelCase__ : Tuple = DEISMultistepScheduler.from_config(scheduler.config ) lowerCamelCase__ : List[Any] = DPMSolverMultistepScheduler.from_config(scheduler.config ) lowerCamelCase__ : Optional[Any] = UniPCMultistepScheduler.from_config(scheduler.config ) lowerCamelCase__ : int = self.full_loop(scheduler=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.2_464 ) < 1e-3 def a__ (self ): '''simple docstring''' for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCamelCase_ ) def a__ (self ): '''simple docstring''' self.check_over_configs(thresholding=lowerCamelCase_ ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowerCamelCase_, prediction_type=lowerCamelCase_, sample_max_value=lowerCamelCase_, solver_order=lowerCamelCase_, solver_type=lowerCamelCase_, ) def a__ (self ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase_ ) def a__ (self ): '''simple docstring''' for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowerCamelCase_, solver_type=lowerCamelCase_, prediction_type=lowerCamelCase_, ) lowerCamelCase__ : str = self.full_loop( solver_order=lowerCamelCase_, solver_type=lowerCamelCase_, prediction_type=lowerCamelCase_, ) assert not torch.isnan(lowerCamelCase_ ).any(), "Samples have nan numbers" def a__ (self ): '''simple docstring''' self.check_over_configs(lower_order_final=lowerCamelCase_ ) self.check_over_configs(lower_order_final=lowerCamelCase_ ) def a__ (self ): '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=lowerCamelCase_, time_step=0 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.full_loop() lowerCamelCase__ : int = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.2_464 ) < 1e-3 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = self.full_loop(prediction_type='v_prediction' ) lowerCamelCase__ : Union[str, Any] = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.1_014 ) < 1e-3 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.scheduler_classes[0] lowerCamelCase__ : Optional[int] = self.get_scheduler_config(thresholding=lowerCamelCase_, dynamic_thresholding_ratio=0 ) lowerCamelCase__ : Optional[Any] = scheduler_class(**lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = 1_0 lowerCamelCase__ : List[str] = self.dummy_model() lowerCamelCase__ : int = self.dummy_sample_deter.half() scheduler.set_timesteps(lowerCamelCase_ ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase__ : Optional[int] = model(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : List[str] = scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ).prev_sample assert sample.dtype == torch.floataa def a__ (self, **lowerCamelCase_ ): '''simple docstring''' for scheduler_class in self.scheduler_classes: lowerCamelCase__ : Tuple = self.get_scheduler_config(**lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = scheduler_class(**lowerCamelCase_ ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
316
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Dict = ['image_processor', 'tokenizer'] lowerCamelCase__ : Optional[int] = 'CLIPImageProcessor' lowerCamelCase__ : List[str] = ('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__(self, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.', lowerCamelCase_, ) lowerCamelCase__ : int = kwargs.pop('feature_extractor' ) lowerCamelCase__ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowerCamelCase_, lowerCamelCase_ ) def __call__(self, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: lowerCamelCase__ : Any = self.tokenizer(lowerCamelCase_, return_tensors=lowerCamelCase_, **lowerCamelCase_ ) if images is not None: lowerCamelCase__ : List[Any] = self.image_processor(lowerCamelCase_, return_tensors=lowerCamelCase_, **lowerCamelCase_ ) if text is not None and images is not None: lowerCamelCase__ : str = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase_ ), tensor_type=lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase_, **lowerCamelCase_ ) @property def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.tokenizer.model_input_names lowerCamelCase__ : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
316
1
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class UpperCAmelCase__ : """simple docstring""" def __init__( self : int , __lowerCamelCase : List[Any] , __lowerCamelCase : int=13 , __lowerCamelCase : Optional[Any]=7 , __lowerCamelCase : List[str]=False , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Dict=False , __lowerCamelCase : Tuple=True , __lowerCamelCase : Tuple=33 , __lowerCamelCase : int=32 , __lowerCamelCase : List[Any]=5 , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : int=37 , __lowerCamelCase : Any="gelu" , __lowerCamelCase : int=0.1 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : str=512 , __lowerCamelCase : Dict=16 , __lowerCamelCase : Tuple=2 , __lowerCamelCase : List[str]=0.02 , __lowerCamelCase : Optional[Any]=3 , __lowerCamelCase : Any=4 , __lowerCamelCase : List[Any]=None , ) -> int: SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = seq_length SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_input_mask SCREAMING_SNAKE_CASE__ = use_token_type_ids SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = type_sequence_label_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = num_labels SCREAMING_SNAKE_CASE__ = num_choices SCREAMING_SNAKE_CASE__ = scope def lowercase_ ( self : Optional[int] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = None if self.use_input_mask: SCREAMING_SNAKE_CASE__ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ ( self : Dict ) -> int: return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def lowercase_ ( self : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = EsmModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , attention_mask=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase_ ( self : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : int , __lowerCamelCase : List[Any] , __lowerCamelCase : Any ) -> str: SCREAMING_SNAKE_CASE__ = EsmForMaskedLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self : List[str] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = EsmForTokenClassification(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase_ ( self : int ) -> List[Any]: SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ), ) = config_and_inputs SCREAMING_SNAKE_CASE__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A__ , A__ , unittest.TestCase ): """simple docstring""" a = False a = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) a = () a = ( { "feature-extraction": EsmModel, "fill-mask": EsmForMaskedLM, "text-classification": EsmForSequenceClassification, "token-classification": EsmForTokenClassification, "zero-shot": EsmForSequenceClassification, } if is_torch_available() else {} ) a = True def lowercase_ ( self : Any ) -> List[str]: SCREAMING_SNAKE_CASE__ = EsmModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def lowercase_ ( self : Optional[int] ) -> Union[str, Any]: self.config_tester.run_common_tests() def lowercase_ ( self : Tuple ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def lowercase_ ( self : List[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE__ = type self.model_tester.create_and_check_model(*__lowerCamelCase ) def lowercase_ ( self : List[str] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase ) def lowercase_ ( self : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCamelCase ) @slow def lowercase_ ( self : List[str] ) -> Optional[int]: for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ = EsmModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def lowercase_ ( self : Dict ) -> int: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()[0] SCREAMING_SNAKE_CASE__ = EsmEmbeddings(config=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) SCREAMING_SNAKE_CASE__ = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) SCREAMING_SNAKE_CASE__ = create_position_ids_from_input_ids(__lowerCamelCase , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__lowerCamelCase , __lowerCamelCase ) ) ) def lowercase_ ( self : Union[str, Any] ) -> Dict: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()[0] SCREAMING_SNAKE_CASE__ = EsmEmbeddings(config=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.empty(2 , 4 , 30 ) SCREAMING_SNAKE_CASE__ = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] SCREAMING_SNAKE_CASE__ = torch.as_tensor([expected_single_positions, expected_single_positions] ) SCREAMING_SNAKE_CASE__ = embeddings.create_position_ids_from_inputs_embeds(__lowerCamelCase ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__lowerCamelCase , __lowerCamelCase ) ) ) @unittest.skip('''Esm does not support embedding resizing''' ) def lowercase_ ( self : Optional[Any] ) -> Dict: pass @unittest.skip('''Esm does not support embedding resizing''' ) def lowercase_ ( self : int ) -> List[Any]: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowercase_ ( self : Any ) -> List[str]: pass @require_torch class UpperCAmelCase__ ( A__ ): """simple docstring""" @slow def lowercase_ ( self : Any ) -> Tuple: with torch.no_grad(): SCREAMING_SNAKE_CASE__ = EsmForMaskedLM.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) model.eval() SCREAMING_SNAKE_CASE__ = torch.tensor([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase )[0] SCREAMING_SNAKE_CASE__ = 33 SCREAMING_SNAKE_CASE__ = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor( [[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowerCamelCase , atol=1e-4 ) ) @slow def lowercase_ ( self : Any ) -> Dict: with torch.no_grad(): SCREAMING_SNAKE_CASE__ = EsmModel.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) model.eval() SCREAMING_SNAKE_CASE__ = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase )[0] # compare the actual values for a slice. SCREAMING_SNAKE_CASE__ = torch.tensor( [[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowerCamelCase , atol=1e-4 ) )
314
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer _SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : int = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _SCREAMING_SNAKE_CASE : Dict = { '''vocab_file''': { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt''' ), } } _SCREAMING_SNAKE_CASE : List[str] = { '''junnyu/roformer_chinese_small''': 1536, '''junnyu/roformer_chinese_base''': 1536, '''junnyu/roformer_chinese_char_small''': 512, '''junnyu/roformer_chinese_char_base''': 512, '''junnyu/roformer_small_discriminator''': 128, '''junnyu/roformer_small_generator''': 128, } _SCREAMING_SNAKE_CASE : List[str] = { '''junnyu/roformer_chinese_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_base''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_base''': {'''do_lower_case''': True}, '''junnyu/roformer_small_discriminator''': {'''do_lower_case''': True}, '''junnyu/roformer_small_generator''': {'''do_lower_case''': True}, } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = VOCAB_FILES_NAMES a = PRETRAINED_VOCAB_FILES_MAP a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a = PRETRAINED_INIT_CONFIGURATION a = RoFormerTokenizer def __init__( self : Tuple , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Any=None , __lowerCamelCase : str=True , __lowerCamelCase : Tuple="[UNK]" , __lowerCamelCase : int="[SEP]" , __lowerCamelCase : Union[str, Any]="[PAD]" , __lowerCamelCase : Optional[int]="[CLS]" , __lowerCamelCase : int="[MASK]" , __lowerCamelCase : int=True , __lowerCamelCase : Optional[int]=None , **__lowerCamelCase : Dict , ) -> Dict: super().__init__( __lowerCamelCase , tokenizer_file=__lowerCamelCase , do_lower_case=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , tokenize_chinese_chars=__lowerCamelCase , strip_accents=__lowerCamelCase , **__lowerCamelCase , ) SCREAMING_SNAKE_CASE__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('''lowercase''' , __lowerCamelCase ) != do_lower_case or pre_tok_state.get('''strip_accents''' , __lowerCamelCase ) != strip_accents ): SCREAMING_SNAKE_CASE__ = getattr(__lowerCamelCase , pre_tok_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE__ = do_lower_case SCREAMING_SNAKE_CASE__ = strip_accents SCREAMING_SNAKE_CASE__ = pre_tok_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = do_lower_case def __getstate__( self : Optional[Any] ) -> Any: SCREAMING_SNAKE_CASE__ = self.__dict__.copy() SCREAMING_SNAKE_CASE__ = BertPreTokenizer() return state def __setstate__( self : int , __lowerCamelCase : Any ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = d SCREAMING_SNAKE_CASE__ = self.__dict__['''_tokenizer'''].get_vocab() SCREAMING_SNAKE_CASE__ = PreTokenizer.custom(JiebaPreTokenizer(__lowerCamelCase ) ) def lowercase_ ( self : int , __lowerCamelCase : Any , __lowerCamelCase : List[Any]=None ) -> List[Any]: SCREAMING_SNAKE_CASE__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase_ ( self : List[str] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase_ ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ) -> Tuple[str]: SCREAMING_SNAKE_CASE__ = self._tokenizer.model.save(__lowerCamelCase , name=__lowerCamelCase ) return tuple(__lowerCamelCase ) def lowercase_ ( self : str , __lowerCamelCase : int , __lowerCamelCase : Any=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : int=False , **__lowerCamelCase : Tuple , ) -> int: SCREAMING_SNAKE_CASE__ = BertPreTokenizer() return super().save_pretrained(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase )
314
1
"""simple docstring""" import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 __A = sys.version_info >= (3, 10) def __A (_SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) ->Optional[Any]: """simple docstring""" return field(default_factory=lambda: default , metadata=_SCREAMING_SNAKE_CASE ) @dataclass class _lowerCAmelCase : """simple docstring""" __magic_name__ :int __magic_name__ :float __magic_name__ :str __magic_name__ :bool @dataclass class _lowerCAmelCase : """simple docstring""" __magic_name__ :int = 42 __magic_name__ :str = field(default="""toto""" , metadata={"""help""": """help message"""} ) @dataclass class _lowerCAmelCase : """simple docstring""" __magic_name__ :bool = False __magic_name__ :bool = True __magic_name__ :Optional[bool] = None class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :Tuple = """titi""" __magic_name__ :Any = """toto""" class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :Union[str, Any] = """titi""" __magic_name__ :Tuple = """toto""" __magic_name__ :Optional[Any] = 42 @dataclass class _lowerCAmelCase : """simple docstring""" __magic_name__ :BasicEnum = "toto" def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = BasicEnum(self.foo ) @dataclass class _lowerCAmelCase : """simple docstring""" __magic_name__ :MixedTypeEnum = "toto" def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = MixedTypeEnum(self.foo ) @dataclass class _lowerCAmelCase : """simple docstring""" __magic_name__ :Optional[int] = None __magic_name__ :Optional[float] = field(default=a , metadata={"""help""": """help message"""} ) __magic_name__ :Optional[str] = None __magic_name__ :Optional[List[str]] = list_field(default=[] ) __magic_name__ :Optional[List[int]] = list_field(default=[] ) @dataclass class _lowerCAmelCase : """simple docstring""" __magic_name__ :List[int] = list_field(default=[] ) __magic_name__ :List[int] = list_field(default=[1, 2, 3] ) __magic_name__ :List[str] = list_field(default=["""Hallo""", """Bonjour""", """Hello"""] ) __magic_name__ :List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class _lowerCAmelCase : """simple docstring""" __magic_name__ :List[int] = field() __magic_name__ :str = field() __magic_name__ :BasicEnum = field() def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = BasicEnum(self.required_enum ) @dataclass class _lowerCAmelCase : """simple docstring""" __magic_name__ :int __magic_name__ :"BasicEnum" = field() __magic_name__ :"Optional[bool]" = None __magic_name__ :"str" = field(default="""toto""" , metadata={"""help""": """help message"""} ) __magic_name__ :"List[str]" = list_field(default=["""Hallo""", """Bonjour""", """Hello"""] ) if is_python_no_less_than_3_10: @dataclass class _lowerCAmelCase : """simple docstring""" __magic_name__ :bool = False __magic_name__ :bool = True __magic_name__ :bool | None = None @dataclass class _lowerCAmelCase : """simple docstring""" __magic_name__ :int | None = None __magic_name__ :float | None = field(default=a , metadata={"""help""": """help message"""} ) __magic_name__ :str | None = None __magic_name__ :list[str] | None = list_field(default=[] ) __magic_name__ :list[int] | None = list_field(default=[] ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): lowerCAmelCase__ :Dict = {k: v for k, v in vars(__UpperCAmelCase ).items() if k != 'container'} lowerCAmelCase__ :Optional[Any] = {k: v for k, v in vars(__UpperCAmelCase ).items() if k != 'container'} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('choices' , __UpperCAmelCase ) and yy.get('choices' , __UpperCAmelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['type'](__UpperCAmelCase ) , yy['type'](__UpperCAmelCase ) ) del xx["type"], yy["type"] self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Any = HfArgumentParser(__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = argparse.ArgumentParser() expected.add_argument('--foo' , type=__UpperCAmelCase , required=__UpperCAmelCase ) expected.add_argument('--bar' , type=__UpperCAmelCase , required=__UpperCAmelCase ) expected.add_argument('--baz' , type=__UpperCAmelCase , required=__UpperCAmelCase ) expected.add_argument('--flag' , type=__UpperCAmelCase , default=__UpperCAmelCase , const=__UpperCAmelCase , nargs='?' ) self.argparsersEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Tuple = ['--foo', '1', '--baz', 'quux', '--bar', '0.5'] (lowerCAmelCase__ ) :List[str] = parser.parse_args_into_dataclasses(__UpperCAmelCase , look_for_args_file=__UpperCAmelCase ) self.assertFalse(example.flag ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[str] = HfArgumentParser(__UpperCAmelCase ) lowerCAmelCase__ :int = argparse.ArgumentParser() expected.add_argument('--foo' , default=4_2 , type=__UpperCAmelCase ) expected.add_argument('--baz' , default='toto' , type=__UpperCAmelCase , help='help message' ) self.argparsersEqual(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Any = argparse.ArgumentParser() expected.add_argument('--foo' , type=__UpperCAmelCase , default=__UpperCAmelCase , const=__UpperCAmelCase , nargs='?' ) expected.add_argument('--baz' , type=__UpperCAmelCase , default=__UpperCAmelCase , const=__UpperCAmelCase , nargs='?' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('--no_baz' , action='store_false' , default=__UpperCAmelCase , dest='baz' ) expected.add_argument('--opt' , type=__UpperCAmelCase , default=__UpperCAmelCase ) lowerCAmelCase__ :List[str] = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(__UpperCAmelCase ) for dataclass_type in dataclass_types: lowerCAmelCase__ :Dict = HfArgumentParser(__UpperCAmelCase ) self.argparsersEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Tuple = parser.parse_args([] ) self.assertEqual(__UpperCAmelCase , Namespace(foo=__UpperCAmelCase , baz=__UpperCAmelCase , opt=__UpperCAmelCase ) ) lowerCAmelCase__ :List[Any] = parser.parse_args(['--foo', '--no_baz'] ) self.assertEqual(__UpperCAmelCase , Namespace(foo=__UpperCAmelCase , baz=__UpperCAmelCase , opt=__UpperCAmelCase ) ) lowerCAmelCase__ :List[Any] = parser.parse_args(['--foo', '--baz'] ) self.assertEqual(__UpperCAmelCase , Namespace(foo=__UpperCAmelCase , baz=__UpperCAmelCase , opt=__UpperCAmelCase ) ) lowerCAmelCase__ :Tuple = parser.parse_args(['--foo', 'True', '--baz', 'True', '--opt', 'True'] ) self.assertEqual(__UpperCAmelCase , Namespace(foo=__UpperCAmelCase , baz=__UpperCAmelCase , opt=__UpperCAmelCase ) ) lowerCAmelCase__ :Dict = parser.parse_args(['--foo', 'False', '--baz', 'False', '--opt', 'False'] ) self.assertEqual(__UpperCAmelCase , Namespace(foo=__UpperCAmelCase , baz=__UpperCAmelCase , opt=__UpperCAmelCase ) ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Dict = HfArgumentParser(__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=['titi', 'toto', 4_2] , type=make_choice_type_function(['titi', 'toto', 4_2] ) , ) self.argparsersEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Any = parser.parse_args([] ) self.assertEqual(args.foo , 'toto' ) lowerCAmelCase__ :Dict = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) lowerCAmelCase__ :Any = parser.parse_args(['--foo', 'titi'] ) self.assertEqual(args.foo , 'titi' ) lowerCAmelCase__ :List[Any] = parser.parse_args_into_dataclasses(['--foo', 'titi'] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) lowerCAmelCase__ :Optional[Any] = parser.parse_args(['--foo', '42'] ) self.assertEqual(args.foo , 4_2 ) lowerCAmelCase__ :Tuple = parser.parse_args_into_dataclasses(['--foo', '42'] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def snake_case ( self ): '''simple docstring''' @dataclass class _lowerCAmelCase : """simple docstring""" __magic_name__ :Literal["titi", "toto", 42] = "toto" lowerCAmelCase__ :Dict = HfArgumentParser(__UpperCAmelCase ) lowerCAmelCase__ :Dict = argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=('titi', 'toto', 4_2) , type=make_choice_type_function(['titi', 'toto', 4_2] ) , ) self.argparsersEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :int = parser.parse_args([] ) self.assertEqual(args.foo , 'toto' ) lowerCAmelCase__ :Optional[Any] = parser.parse_args(['--foo', 'titi'] ) self.assertEqual(args.foo , 'titi' ) lowerCAmelCase__ :Tuple = parser.parse_args(['--foo', '42'] ) self.assertEqual(args.foo , 4_2 ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = HfArgumentParser(__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = argparse.ArgumentParser() expected.add_argument('--foo_int' , nargs='+' , default=[] , type=__UpperCAmelCase ) expected.add_argument('--bar_int' , nargs='+' , default=[1, 2, 3] , type=__UpperCAmelCase ) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=__UpperCAmelCase ) expected.add_argument('--foo_float' , nargs='+' , default=[0.1, 0.2, 0.3] , type=__UpperCAmelCase ) self.argparsersEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :List[str] = parser.parse_args([] ) self.assertEqual( __UpperCAmelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['Hallo', 'Bonjour', 'Hello'] , foo_float=[0.1, 0.2, 0.3] ) , ) lowerCAmelCase__ :List[str] = parser.parse_args('--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'.split() ) self.assertEqual(__UpperCAmelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['a', 'b', 'c'] , foo_float=[0.1, 0.7] ) ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[str] = argparse.ArgumentParser() expected.add_argument('--foo' , default=__UpperCAmelCase , type=__UpperCAmelCase ) expected.add_argument('--bar' , default=__UpperCAmelCase , type=__UpperCAmelCase , help='help message' ) expected.add_argument('--baz' , default=__UpperCAmelCase , type=__UpperCAmelCase ) expected.add_argument('--ces' , nargs='+' , default=[] , type=__UpperCAmelCase ) expected.add_argument('--des' , nargs='+' , default=[] , type=__UpperCAmelCase ) lowerCAmelCase__ :Tuple = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(__UpperCAmelCase ) for dataclass_type in dataclass_types: lowerCAmelCase__ :str = HfArgumentParser(__UpperCAmelCase ) self.argparsersEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Dict = parser.parse_args([] ) self.assertEqual(__UpperCAmelCase , Namespace(foo=__UpperCAmelCase , bar=__UpperCAmelCase , baz=__UpperCAmelCase , ces=[] , des=[] ) ) lowerCAmelCase__ :Tuple = parser.parse_args('--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'.split() ) self.assertEqual(__UpperCAmelCase , Namespace(foo=1_2 , bar=3.14 , baz='42' , ces=['a', 'b', 'c'] , des=[1, 2, 3] ) ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Any = HfArgumentParser(__UpperCAmelCase ) lowerCAmelCase__ :Tuple = argparse.ArgumentParser() expected.add_argument('--required_list' , nargs='+' , type=__UpperCAmelCase , required=__UpperCAmelCase ) expected.add_argument('--required_str' , type=__UpperCAmelCase , required=__UpperCAmelCase ) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto'] ) , choices=['titi', 'toto'] , required=__UpperCAmelCase , ) self.argparsersEqual(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = HfArgumentParser(__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = argparse.ArgumentParser() expected.add_argument('--foo' , type=__UpperCAmelCase , required=__UpperCAmelCase ) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto'] ) , choices=['titi', 'toto'] , required=__UpperCAmelCase , ) expected.add_argument('--opt' , type=__UpperCAmelCase , default=__UpperCAmelCase ) expected.add_argument('--baz' , default='toto' , type=__UpperCAmelCase , help='help message' ) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=__UpperCAmelCase ) self.argparsersEqual(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = HfArgumentParser(__UpperCAmelCase ) lowerCAmelCase__ :List[str] = { 'foo': 1_2, 'bar': 3.14, 'baz': '42', 'flag': True, } lowerCAmelCase__ :List[str] = parser.parse_dict(__UpperCAmelCase )[0] lowerCAmelCase__ :Any = BasicExample(**__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = HfArgumentParser(__UpperCAmelCase ) lowerCAmelCase__ :str = { 'foo': 1_2, 'bar': 3.14, 'baz': '42', 'flag': True, 'extra': 4_2, } self.assertRaises(__UpperCAmelCase , parser.parse_dict , __UpperCAmelCase , allow_extra_keys=__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = HfArgumentParser(__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = { 'foo': 1_2, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase__ :List[Any] = os.path.join(__UpperCAmelCase , 'temp_json' ) os.mkdir(__UpperCAmelCase ) with open(temp_local_path + '.json' , 'w+' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = parser.parse_yaml_file(Path(temp_local_path + '.json' ) )[0] lowerCAmelCase__ :Union[str, Any] = BasicExample(**__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = HfArgumentParser(__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = { 'foo': 1_2, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase__ :Optional[int] = os.path.join(__UpperCAmelCase , 'temp_yaml' ) os.mkdir(__UpperCAmelCase ) with open(temp_local_path + '.yaml' , 'w+' ) as f: yaml.dump(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Dict = parser.parse_yaml_file(Path(temp_local_path + '.yaml' ) )[0] lowerCAmelCase__ :Any = BasicExample(**__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = HfArgumentParser(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase )
353
"""simple docstring""" import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class _lowerCAmelCase ( a ): """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=1_3 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=9_9 , __UpperCAmelCase=3_2 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=3_7 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_1_2 , __UpperCAmelCase=1_6 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase="None" , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = parent lowerCAmelCase__ :int = batch_size lowerCAmelCase__ :List[str] = seq_length lowerCAmelCase__ :Tuple = is_training lowerCAmelCase__ :Tuple = use_input_mask lowerCAmelCase__ :Dict = use_token_type_ids lowerCAmelCase__ :Union[str, Any] = use_labels lowerCAmelCase__ :Tuple = vocab_size lowerCAmelCase__ :List[Any] = hidden_size lowerCAmelCase__ :Tuple = num_hidden_layers lowerCAmelCase__ :str = num_attention_heads lowerCAmelCase__ :List[str] = intermediate_size lowerCAmelCase__ :Optional[Any] = hidden_act lowerCAmelCase__ :Union[str, Any] = hidden_dropout_prob lowerCAmelCase__ :Any = attention_probs_dropout_prob lowerCAmelCase__ :Dict = max_position_embeddings lowerCAmelCase__ :Tuple = type_vocab_size lowerCAmelCase__ :List[str] = type_sequence_label_size lowerCAmelCase__ :Tuple = initializer_range lowerCAmelCase__ :Optional[Any] = num_labels lowerCAmelCase__ :int = num_choices lowerCAmelCase__ :Union[str, Any] = relative_attention lowerCAmelCase__ :int = position_biased_input lowerCAmelCase__ :Optional[int] = pos_att_type lowerCAmelCase__ :Dict = scope def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ :int = None if self.use_input_mask: lowerCAmelCase__ :int = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) lowerCAmelCase__ :Optional[Any] = None if self.use_token_type_ids: lowerCAmelCase__ :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase__ :Dict = None lowerCAmelCase__ :Union[str, Any] = None lowerCAmelCase__ :Dict = None if self.use_labels: lowerCAmelCase__ :Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ :List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ :Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase__ :Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case ( self ): '''simple docstring''' return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = self.get_config() lowerCAmelCase__ :Optional[Any] = 3_0_0 return config def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' self.parent.assertListEqual(list(result.loss.size() ) , [] ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Dict = DebertaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ :Any = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase )[0] lowerCAmelCase__ :List[Any] = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase )[0] lowerCAmelCase__ :Dict = model(__UpperCAmelCase )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :str = DebertaForMaskedLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ :List[str] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Tuple = self.num_labels lowerCAmelCase__ :int = DebertaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ :Optional[int] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = self.num_labels lowerCAmelCase__ :Any = DebertaForTokenClassification(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ :List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :int = DebertaForQuestionAnswering(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ :str = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) :Tuple = config_and_inputs lowerCAmelCase__ :int = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _lowerCAmelCase ( a , a , unittest.TestCase ): """simple docstring""" __magic_name__ :List[str] = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) __magic_name__ :Optional[Any] = ( { """feature-extraction""": DebertaModel, """fill-mask""": DebertaForMaskedLM, """question-answering""": DebertaForQuestionAnswering, """text-classification""": DebertaForSequenceClassification, """token-classification""": DebertaForTokenClassification, """zero-shot""": DebertaForSequenceClassification, } if is_torch_available() else {} ) __magic_name__ :Tuple = True __magic_name__ :List[Any] = False __magic_name__ :Optional[Any] = False __magic_name__ :str = False __magic_name__ :int = False def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[str] = DebertaModelTester(self ) lowerCAmelCase__ :List[Any] = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=3_7 ) def snake_case ( self ): '''simple docstring''' self.config_tester.run_common_tests() def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__UpperCAmelCase ) @slow def snake_case ( self ): '''simple docstring''' for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ :int = DebertaModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @require_torch @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason='Model not available yet' ) def snake_case ( self ): '''simple docstring''' pass @slow def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = DebertaModel.from_pretrained('microsoft/deberta-base' ) lowerCAmelCase__ :str = torch.tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) lowerCAmelCase__ :Tuple = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCAmelCase__ :int = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )[0] # compare the actual values for a slice. lowerCAmelCase__ :str = torch.tensor( [[[-0.59_86, -0.80_55, -0.84_62], [1.44_84, -0.93_48, -0.80_59], [0.31_23, 0.00_32, -1.41_31]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __UpperCAmelCase , atol=1E-4 ) , F"{output[:, 1:4, 1:4]}" )
254
0
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any) ->str: '''simple docstring''' lowerCamelCase__: Tuple =dataset lowerCamelCase__: List[str] =process lowerCamelCase__: Any =params def __len__(self : Optional[int]) ->Any: '''simple docstring''' return len(self.dataset) def __getitem__(self : Any , UpperCAmelCase_ : Dict) ->Any: '''simple docstring''' lowerCamelCase__: Optional[int] =self.dataset[i] lowerCamelCase__: int =self.process(UpperCAmelCase_ , **self.params) return processed class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : Optional[int] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str]=None) ->Dict: '''simple docstring''' lowerCamelCase__: int =loader lowerCamelCase__: int =infer lowerCamelCase__: List[str] =params if loader_batch_size == 1: # Let's spare some time by deactivating altogether lowerCamelCase__: List[Any] =None lowerCamelCase__: Tuple =loader_batch_size # Internal bookkeeping lowerCamelCase__: Optional[int] =None lowerCamelCase__: List[Any] =None def __len__(self : Dict) ->Any: '''simple docstring''' return len(self.loader) def __iter__(self : Optional[Any]) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Dict =iter(self.loader) return self def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' if isinstance(self._loader_batch_data , torch.Tensor): # Batch data is simple tensor, just fetch the slice lowerCamelCase__: Any =self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) lowerCamelCase__: Optional[int] ={} for k, element in self._loader_batch_data.items(): if isinstance(UpperCAmelCase_ , UpperCAmelCase_): # Convert ModelOutput to tuple first lowerCamelCase__: int =element.to_tuple() if isinstance(element[0] , torch.Tensor): lowerCamelCase__: Dict =tuple(el[self._loader_batch_index].unsqueeze(0) for el in element) elif isinstance(element[0] , np.ndarray): lowerCamelCase__: Union[str, Any] =tuple(np.expand_dims(el[self._loader_batch_index] , 0) for el in element) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(UpperCAmelCase_ , UpperCAmelCase_): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor): lowerCamelCase__: Any =tuple(el[self._loader_batch_index].unsqueeze(0) for el in element) elif isinstance(element[0] , np.ndarray): lowerCamelCase__: Union[str, Any] =tuple(np.expand_dims(el[self._loader_batch_index] , 0) for el in element) continue if element is None: # This can happen for optional data that get passed around lowerCamelCase__: List[str] =None elif isinstance(element[self._loader_batch_index] , torch.Tensor): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers lowerCamelCase__: Optional[int] =element[self._loader_batch_index].unsqueeze(0) elif isinstance(element[self._loader_batch_index] , np.ndarray): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers lowerCamelCase__: Dict =np.expand_dims(element[self._loader_batch_index] , 0) else: # This is typically a list, so no need to `unsqueeze`. lowerCamelCase__: List[str] =element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 lowerCamelCase__: Optional[int] =self._loader_batch_data.__class__(UpperCAmelCase_) self._loader_batch_index += 1 return result def SCREAMING_SNAKE_CASE_ (self : Dict) ->Dict: '''simple docstring''' if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch lowerCamelCase__: int =next(self.iterator) lowerCamelCase__: List[str] =self.infer(UpperCAmelCase_ , **self.params) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(UpperCAmelCase_ , torch.Tensor): lowerCamelCase__: List[Any] =processed else: lowerCamelCase__: Optional[int] =list(processed.keys())[0] lowerCamelCase__: Dict =processed[key] if isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: Optional[int] =len(UpperCAmelCase_) else: lowerCamelCase__: str =first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. lowerCamelCase__: str =observed_batch_size # Setting internal index to unwrap the batch lowerCamelCase__: List[Any] =processed lowerCamelCase__: List[Any] =0 return self.loader_batch_item() else: # We're not unrolling batches return processed class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any]=None) ->Dict: '''simple docstring''' super().__init__(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def __iter__(self : Any) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Optional[int] =iter(self.loader) lowerCamelCase__: int =None return self def SCREAMING_SNAKE_CASE_ (self : Dict) ->List[Any]: '''simple docstring''' if self.subiterator is None: lowerCamelCase__: Dict =self.infer(next(self.iterator) , **self.params) try: # Try to return next item lowerCamelCase__: Any =next(self.subiterator) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators lowerCamelCase__: Optional[int] =self.infer(next(self.iterator) , **self.params) lowerCamelCase__: int =next(self.subiterator) return processed class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __iter__(self : Dict) ->Dict: '''simple docstring''' lowerCamelCase__: Optional[int] =iter(self.loader) return self def SCREAMING_SNAKE_CASE_ (self : int) ->List[Any]: '''simple docstring''' lowerCamelCase__: str =False lowerCamelCase__: str =[] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: lowerCamelCase__: List[str] =self.loader_batch_item() lowerCamelCase__: Union[str, Any] =item.pop("is_last") accumulator.append(UpperCAmelCase_) if is_last: return accumulator while not is_last: lowerCamelCase__: Optional[Any] =self.infer(next(self.iterator) , **self.params) if self.loader_batch_size is not None: if isinstance(UpperCAmelCase_ , torch.Tensor): lowerCamelCase__: Optional[int] =processed else: lowerCamelCase__: List[str] =list(processed.keys())[0] lowerCamelCase__: Union[str, Any] =processed[key] if isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: Union[str, Any] =len(UpperCAmelCase_) else: lowerCamelCase__: Any =first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. lowerCamelCase__: int =observed_batch_size lowerCamelCase__: Union[str, Any] =processed lowerCamelCase__: Dict =0 while self._loader_batch_index < self.loader_batch_size: lowerCamelCase__: Dict =self.loader_batch_item() lowerCamelCase__: Tuple =item.pop("is_last") accumulator.append(UpperCAmelCase_) if is_last: return accumulator else: lowerCamelCase__: int =processed lowerCamelCase__: int =item.pop("is_last") accumulator.append(UpperCAmelCase_) return accumulator class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : str , UpperCAmelCase_ : Dataset , UpperCAmelCase_ : str) ->Optional[int]: '''simple docstring''' lowerCamelCase__: int =dataset lowerCamelCase__: int =key def __len__(self : List[Any]) ->List[str]: '''simple docstring''' return len(self.dataset) def __getitem__(self : Dict , UpperCAmelCase_ : str) ->Union[str, Any]: '''simple docstring''' return self.dataset[i][self.key] class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : Any , UpperCAmelCase_ : Dataset , UpperCAmelCase_ : str , UpperCAmelCase_ : str) ->Tuple: '''simple docstring''' lowerCamelCase__: List[Any] =dataset lowerCamelCase__: Union[str, Any] =keya lowerCamelCase__: str =keya def __len__(self : List[str]) ->int: '''simple docstring''' return len(self.dataset) def __getitem__(self : Optional[Any] , UpperCAmelCase_ : Dict) ->List[Any]: '''simple docstring''' return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
10
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py __A = "." if __name__ == "__main__": __A = os.path.join(REPO_PATH, "utils/documentation_tests.txt") __A = [] __A = [] with open(doctest_file_path) as fp: for line in fp: __A = line.strip() __A = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: __A = "\n".join(non_existent_paths) raise ValueError(f'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}') if all_paths != sorted(all_paths): raise ValueError("Files in `utils/documentation_tests.txt` are not in alphabetical order.")
10
1
'''simple docstring''' import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model _lowerCamelCase : List[Any] = "0.12" # assumed parallelism: 8 if is_torch_available(): import torch def __lowerCamelCase ( A__ , A__ , A__=None ) -> Tuple: """simple docstring""" if rng is None: UpperCamelCase = random.Random() UpperCamelCase = 1 for dim in shape: total_dims *= dim UpperCamelCase = [] for _ in range(_a ): values.append(rng.randint(0 , vocab_size - 1 ) ) UpperCamelCase = np.array(_a , dtype=jnp.intaa ).reshape(_a ) return output def __lowerCamelCase ( A__ , A__=None ) -> int: """simple docstring""" UpperCamelCase = ids_tensor(_a , vocab_size=2 , rng=_a ) # make sure that at least one token is attended to for each batch UpperCamelCase = 1 return attn_mask @require_flax class SCREAMING_SNAKE_CASE : """simple docstring""" _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = () def A ( self : str ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 UpperCamelCase = 2 UpperCamelCase = inputs["""input_ids"""].shape[-1] // 2 UpperCamelCase = inputs["""input_ids"""][:max_batch_size, :sequence_length] UpperCamelCase = jnp.ones_like(lowerCamelCase_ ) UpperCamelCase = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens UpperCamelCase = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` UpperCamelCase = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def A ( self : str ): """simple docstring""" UpperCamelCase = self._get_input_ids_and_config() UpperCamelCase = False UpperCamelCase = max_length UpperCamelCase = 0 for model_class in self.all_generative_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning UpperCamelCase = getattr(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = pt_model_class(lowerCamelCase_ ).eval() UpperCamelCase = load_flax_weights_in_pytorch_model(lowerCamelCase_ , flax_model.params ) UpperCamelCase = flax_model.generate(lowerCamelCase_ ).sequences UpperCamelCase = pt_model.generate(torch.tensor(lowerCamelCase_ , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: UpperCamelCase = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def A ( self : Any ): """simple docstring""" UpperCamelCase = self._get_input_ids_and_config() UpperCamelCase = False UpperCamelCase = max_length for model_class in self.all_generative_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = model.generate(lowerCamelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCamelCase_ ) UpperCamelCase = jit(model.generate ) UpperCamelCase = jit_generate(lowerCamelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def A ( self : Dict ): """simple docstring""" UpperCamelCase = self._get_input_ids_and_config() UpperCamelCase = True UpperCamelCase = max_length for model_class in self.all_generative_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = model.generate(lowerCamelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCamelCase_ ) UpperCamelCase = jit(model.generate ) UpperCamelCase = jit_generate(lowerCamelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def A ( self : Any ): """simple docstring""" UpperCamelCase = self._get_input_ids_and_config() UpperCamelCase = False UpperCamelCase = max_length UpperCamelCase = 2 for model_class in self.all_generative_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = model.generate(lowerCamelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCamelCase_ ) UpperCamelCase = jit(model.generate ) UpperCamelCase = jit_generate(lowerCamelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def A ( self : Dict ): """simple docstring""" UpperCamelCase = self._get_input_ids_and_config() UpperCamelCase = False UpperCamelCase = max_length UpperCamelCase = 2 UpperCamelCase = 2 for model_class in self.all_generative_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = model.generate(lowerCamelCase_ ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def A ( self : Tuple ): """simple docstring""" UpperCamelCase = self._get_input_ids_and_config() UpperCamelCase = True UpperCamelCase = max_length UpperCamelCase = 0.8 UpperCamelCase = 1_0 UpperCamelCase = 0.3 UpperCamelCase = 1 UpperCamelCase = 8 UpperCamelCase = 9 for model_class in self.all_generative_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = model.generate(lowerCamelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCamelCase_ ) UpperCamelCase = jit(model.generate ) UpperCamelCase = jit_generate(lowerCamelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = self._get_input_ids_and_config() UpperCamelCase = max_length UpperCamelCase = 1 UpperCamelCase = 8 UpperCamelCase = 9 for model_class in self.all_generative_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = model.generate(lowerCamelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCamelCase_ ) UpperCamelCase = jit(model.generate ) UpperCamelCase = jit_generate(lowerCamelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def A ( self : Dict ): """simple docstring""" UpperCamelCase = self._get_input_ids_and_config() UpperCamelCase = max_length UpperCamelCase = 2 UpperCamelCase = 1 UpperCamelCase = 8 UpperCamelCase = 9 for model_class in self.all_generative_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = model.generate(lowerCamelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCamelCase_ ) UpperCamelCase = jit(model.generate ) UpperCamelCase = jit_generate(lowerCamelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def A ( self : Dict ): """simple docstring""" UpperCamelCase = self._get_input_ids_and_config() # pad attention mask on the left UpperCamelCase = attention_mask.at[(0, 0)].set(0 ) UpperCamelCase = False UpperCamelCase = max_length for model_class in self.all_generative_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = model.generate(lowerCamelCase_ , attention_mask=lowerCamelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCamelCase_ ) UpperCamelCase = jit(model.generate ) UpperCamelCase = jit_generate(lowerCamelCase_ , attention_mask=lowerCamelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def A ( self : Dict ): """simple docstring""" UpperCamelCase = self._get_input_ids_and_config() # pad attention mask on the left UpperCamelCase = attention_mask.at[(0, 0)].set(0 ) UpperCamelCase = True UpperCamelCase = max_length for model_class in self.all_generative_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = model.generate(lowerCamelCase_ , attention_mask=lowerCamelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCamelCase_ ) UpperCamelCase = jit(model.generate ) UpperCamelCase = jit_generate(lowerCamelCase_ , attention_mask=lowerCamelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def A ( self : int ): """simple docstring""" UpperCamelCase = self._get_input_ids_and_config() # pad attention mask on the left UpperCamelCase = attention_mask.at[(0, 0)].set(0 ) UpperCamelCase = 2 UpperCamelCase = max_length for model_class in self.all_generative_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = model.generate(lowerCamelCase_ , attention_mask=lowerCamelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCamelCase_ ) UpperCamelCase = jit(model.generate ) UpperCamelCase = jit_generate(lowerCamelCase_ , attention_mask=lowerCamelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def A ( self : str ): """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-bert' ) UpperCamelCase = FlaxAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-bert-flax-only' ) UpperCamelCase = """Hello world""" UpperCamelCase = tokenizer(lowerCamelCase_ , return_tensors='np' ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(lowerCamelCase_ , 'do_samples' ): model.generate(lowerCamelCase_ , do_samples=lowerCamelCase_ ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(lowerCamelCase_ , 'foo' ): UpperCamelCase = {"""foo""": """bar"""} model.generate(lowerCamelCase_ , **lowerCamelCase_ )
365
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = 0 def A ( self : Dict ): """simple docstring""" UpperCamelCase = AutoImageProcessor.from_pretrained('openai/clip-vit-base-patch32' ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def A ( self : Union[str, Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = Path(UpperCamelCase__ ) / 'preprocessor_config.json' UpperCamelCase = Path(UpperCamelCase__ ) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(UpperCamelCase__ , 'w' ) , ) json.dump({'model_type': 'clip'} , open(UpperCamelCase__ , 'w' ) ) UpperCamelCase = AutoImageProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def A ( self : Any ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = Path(UpperCamelCase__ ) / 'preprocessor_config.json' UpperCamelCase = Path(UpperCamelCase__ ) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(UpperCamelCase__ , 'w' ) , ) json.dump({'model_type': 'clip'} , open(UpperCamelCase__ , 'w' ) ) UpperCamelCase = AutoImageProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def A ( self : Tuple ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = CLIPConfig() # Create a dummy config file with image_proceesor_type UpperCamelCase = Path(UpperCamelCase__ ) / 'preprocessor_config.json' UpperCamelCase = Path(UpperCamelCase__ ) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(UpperCamelCase__ , 'w' ) , ) json.dump({'model_type': 'clip'} , open(UpperCamelCase__ , 'w' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally UpperCamelCase = AutoImageProcessor.from_pretrained(UpperCamelCase__ ).to_dict() config_dict.pop('image_processor_type' ) UpperCamelCase = CLIPImageProcessor(**UpperCamelCase__ ) # save in new folder model_config.save_pretrained(UpperCamelCase__ ) config.save_pretrained(UpperCamelCase__ ) UpperCamelCase = AutoImageProcessor.from_pretrained(UpperCamelCase__ ) # make sure private variable is not incorrectly saved UpperCamelCase = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def A ( self : List[str] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = Path(UpperCamelCase__ ) / 'preprocessor_config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(UpperCamelCase__ , 'w' ) , ) UpperCamelCase = AutoImageProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def A ( self : Any ): """simple docstring""" with self.assertRaisesRegex( UpperCamelCase__ , 'clip-base is not a local folder and is not a valid model identifier' ): UpperCamelCase = AutoImageProcessor.from_pretrained('clip-base' ) def A ( self : List[Any] ): """simple docstring""" with self.assertRaisesRegex( UpperCamelCase__ , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): UpperCamelCase = AutoImageProcessor.from_pretrained(UpperCamelCase__ , revision='aaaaaa' ) def A ( self : List[str] ): """simple docstring""" with self.assertRaisesRegex( UpperCamelCase__ , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): UpperCamelCase = AutoImageProcessor.from_pretrained('hf-internal-testing/config-no-model' ) def A ( self : Tuple ): """simple docstring""" with self.assertRaises(UpperCamelCase__ ): UpperCamelCase = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase__ ): UpperCamelCase = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=UpperCamelCase__ ) UpperCamelCase = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=UpperCamelCase__ ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCamelCase__ ) UpperCamelCase = AutoImageProcessor.from_pretrained(UpperCamelCase__ , trust_remote_code=UpperCamelCase__ ) self.assertEqual(reloaded_image_processor.__class__.__name__ , 'NewImageProcessor' ) def A ( self : Optional[Any] ): """simple docstring""" try: AutoConfig.register('custom' , UpperCamelCase__ ) AutoImageProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase__ ): AutoImageProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = Path(UpperCamelCase__ ) / 'preprocessor_config.json' UpperCamelCase = Path(UpperCamelCase__ ) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(UpperCamelCase__ , 'w' ) , ) json.dump({'model_type': 'clip'} , open(UpperCamelCase__ , 'w' ) ) UpperCamelCase = CustomImageProcessor.from_pretrained(UpperCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCamelCase__ ) UpperCamelCase = AutoImageProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def A ( self : Optional[int] ): """simple docstring""" class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" _SCREAMING_SNAKE_CASE = True try: AutoConfig.register('custom' , UpperCamelCase__ ) AutoImageProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # If remote code is not set, the default is to use local UpperCamelCase = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor' ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. UpperCamelCase = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=UpperCamelCase__ ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub UpperCamelCase = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=UpperCamelCase__ ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(not hasattr(UpperCamelCase__ , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
249
0
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time SCREAMING_SNAKE_CASE__ = Lock() def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Optional[int]: global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(__UpperCamelCase ) process_lock.release() # receive your right neighbor's value process_lock.acquire() UpperCamelCase = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left UpperCamelCase = min(__UpperCamelCase , __UpperCamelCase ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(__UpperCamelCase ) process_lock.release() # receive your left neighbor's value process_lock.acquire() UpperCamelCase = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right UpperCamelCase = max(__UpperCamelCase , __UpperCamelCase ) # after all swaps are performed, send the values back to main result_pipe[1].send(__UpperCamelCase ) def lowercase__ ( __UpperCamelCase )-> Tuple: UpperCamelCase = [] UpperCamelCase = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop UpperCamelCase = Pipe() UpperCamelCase = Pipe() process_array_.append( Process( target=__UpperCamelCase , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) UpperCamelCase = temp_rs UpperCamelCase = temp_rr for i in range(1 , len(__UpperCamelCase ) - 1 ): UpperCamelCase = Pipe() UpperCamelCase = Pipe() process_array_.append( Process( target=__UpperCamelCase , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) UpperCamelCase = temp_rs UpperCamelCase = temp_rr process_array_.append( Process( target=__UpperCamelCase , args=( len(__UpperCamelCase ) - 1, arr[len(__UpperCamelCase ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(__UpperCamelCase ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(__UpperCamelCase ) ): UpperCamelCase = result_pipe[p][0].recv() process_array_[p].join() return arr def lowercase__ ( )-> Any: UpperCamelCase = list(range(10 , 0 , -1 ) ) print("""Initial List""" ) print(*__UpperCamelCase ) UpperCamelCase = odd_even_transposition(__UpperCamelCase ) print("""Sorted List\n""" ) print(*__UpperCamelCase ) if __name__ == "__main__": main()
321
'''simple docstring''' import argparse from collections import defaultdict import yaml SCREAMING_SNAKE_CASE__ = 'docs/source/en/_toctree.yml' def lowercase__ ( __UpperCamelCase )-> Optional[Any]: UpperCamelCase = defaultdict(__UpperCamelCase ) UpperCamelCase = [] UpperCamelCase = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({"""local""": doc["""local"""], """title""": doc["""title"""]} ) else: new_doc_list.append(__UpperCamelCase ) UpperCamelCase = new_doc_list UpperCamelCase = [key for key, value in counts.items() if value > 1] UpperCamelCase = [] for duplicate_key in duplicates: UpperCamelCase = list({doc["""title"""] for doc in doc_list if doc["""local"""] == duplicate_key} ) if len(__UpperCamelCase ) > 1: raise ValueError( F"{duplicate_key} is present several times in the documentation table of content at " """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if """local""" not in counts or counts[doc["""local"""]] == 1] ) UpperCamelCase = sorted(__UpperCamelCase , key=lambda __UpperCamelCase : s["title"].lower() ) # "overview" gets special treatment and is always first if len(__UpperCamelCase ) > 1: raise ValueError("""{doc_list} has two 'overview' docs which is not allowed.""" ) overview_doc.extend(__UpperCamelCase ) # Sort return overview_doc def lowercase__ ( __UpperCamelCase=False )-> List[str]: with open(__UpperCamelCase , encoding="""utf-8""" ) as f: UpperCamelCase = yaml.safe_load(f.read() ) # Get to the API doc UpperCamelCase = 0 while content[api_idx]["title"] != "API": api_idx += 1 UpperCamelCase = content[api_idx]["""sections"""] # Then to the model doc UpperCamelCase = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 UpperCamelCase = api_doc[scheduler_idx]["""sections"""] UpperCamelCase = clean_doc_toc(__UpperCamelCase ) UpperCamelCase = False if new_scheduler_doc != scheduler_doc: UpperCamelCase = True if overwrite: UpperCamelCase = new_scheduler_doc if diff: if overwrite: UpperCamelCase = api_doc with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(__UpperCamelCase , allow_unicode=__UpperCamelCase ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) def lowercase__ ( __UpperCamelCase=False )-> Tuple: with open(__UpperCamelCase , encoding="""utf-8""" ) as f: UpperCamelCase = yaml.safe_load(f.read() ) # Get to the API doc UpperCamelCase = 0 while content[api_idx]["title"] != "API": api_idx += 1 UpperCamelCase = content[api_idx]["""sections"""] # Then to the model doc UpperCamelCase = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 UpperCamelCase = False UpperCamelCase = api_doc[pipeline_idx]["""sections"""] UpperCamelCase = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: UpperCamelCase = pipeline_doc["""section"""] UpperCamelCase = clean_doc_toc(__UpperCamelCase ) if overwrite: UpperCamelCase = new_sub_pipeline_doc new_pipeline_docs.append(__UpperCamelCase ) # sort overall pipeline doc UpperCamelCase = clean_doc_toc(__UpperCamelCase ) if new_pipeline_docs != pipeline_docs: UpperCamelCase = True if overwrite: UpperCamelCase = new_pipeline_docs if diff: if overwrite: UpperCamelCase = api_doc with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(__UpperCamelCase , allow_unicode=__UpperCamelCase ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') SCREAMING_SNAKE_CASE__ = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
321
1
class __a : def __init__( self , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _UpperCAmelCase = n _UpperCAmelCase = [None] * self.n _UpperCAmelCase = 0 # index of the first element _UpperCAmelCase = 0 _UpperCAmelCase = 0 def __len__( self ) -> int: """simple docstring""" return self.size def UpperCAmelCase__ ( self ) -> bool: """simple docstring""" return self.size == 0 def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" return False if self.is_empty() else self.array[self.front] def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" if self.size >= self.n: raise Exception('QUEUE IS FULL' ) _UpperCAmelCase = data _UpperCAmelCase = (self.rear + 1) % self.n self.size += 1 return self def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" if self.size == 0: raise Exception('UNDERFLOW' ) _UpperCAmelCase = self.array[self.front] _UpperCAmelCase = None _UpperCAmelCase = (self.front + 1) % self.n self.size -= 1 return temp
363
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class __a ( pl.LightningModule ): def __init__( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" super().__init__() _UpperCAmelCase = model _UpperCAmelCase = 2 _UpperCAmelCase = nn.Linear(self.model.config.hidden_size , self.num_labels ) def UpperCAmelCase__ ( self ) -> str: """simple docstring""" pass def lowerCAmelCase__ ( a__: str , a__: str , a__: str ) -> Tuple: '''simple docstring''' _UpperCAmelCase = LongformerModel.from_pretrained(a__ ) _UpperCAmelCase = LightningModel(a__ ) _UpperCAmelCase = torch.load(a__ , map_location=torch.device('cpu' ) ) lightning_model.load_state_dict(ckpt['state_dict'] ) # init longformer question answering model _UpperCAmelCase = LongformerForQuestionAnswering.from_pretrained(a__ ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(a__ ) print(F'''Conversion successful. Model saved under {pytorch_dump_folder_path}''' ) if __name__ == "__main__": lowerCAmelCase__ :Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--longformer_model''', default=None, type=str, required=True, help='''model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.''', ) parser.add_argument( '''--longformer_question_answering_ckpt_path''', default=None, type=str, required=True, help='''Path the official PyTorch Lightning Checkpoint.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCAmelCase__ :Dict = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
185
0
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class _lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ) -> Dict: '''simple docstring''' snake_case : List[Any] = tempfile.mkdtemp() snake_case : int = BlipImageProcessor() snake_case : List[str] = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) snake_case : List[str] = BertTokenizerFast.from_pretrained("hf-internal-testing/tiny-random-bert" ) snake_case : List[Any] = InstructBlipProcessor(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) processor.save_pretrained(self.tmpdirname ) def lowerCamelCase ( self , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ).tokenizer def lowerCamelCase ( self , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ).image_processor def lowerCamelCase ( self , **UpperCamelCase__ ) -> Dict: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ).qformer_tokenizer def lowerCamelCase ( self ) -> Dict: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' snake_case : List[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] snake_case : Optional[int] = [Image.fromarray(np.moveaxis(UpperCamelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase ( self ) -> Any: '''simple docstring''' snake_case : int = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) snake_case : Dict = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) snake_case : List[Any] = self.get_image_processor(do_normalize=UpperCamelCase__ , padding_value=1.0 ) snake_case : Any = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=UpperCamelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase__ ) self.assertIsInstance(processor.qformer_tokenizer , UpperCamelCase__ ) def lowerCamelCase ( self ) -> Dict: '''simple docstring''' snake_case : Optional[int] = self.get_image_processor() snake_case : str = self.get_tokenizer() snake_case : Dict = self.get_qformer_tokenizer() snake_case : Optional[int] = InstructBlipProcessor( tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ ) snake_case : Union[str, Any] = self.prepare_image_inputs() snake_case : Dict = image_processor(UpperCamelCase__ , return_tensors="np" ) snake_case : Any = processor(images=UpperCamelCase__ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' snake_case : int = self.get_image_processor() snake_case : Tuple = self.get_tokenizer() snake_case : Tuple = self.get_qformer_tokenizer() snake_case : List[str] = InstructBlipProcessor( tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ ) snake_case : Dict = "lower newer" snake_case : Union[str, Any] = processor(text=UpperCamelCase__ ) snake_case : Dict = tokenizer(UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ ) snake_case : Optional[Any] = qformer_tokenizer(UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["qformer_" + key] ) def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' snake_case : Union[str, Any] = self.get_image_processor() snake_case : Tuple = self.get_tokenizer() snake_case : Optional[int] = self.get_qformer_tokenizer() snake_case : Any = InstructBlipProcessor( tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ ) snake_case : Optional[int] = "lower newer" snake_case : Any = self.prepare_image_inputs() snake_case : str = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual( list(inputs.keys() ) , ["input_ids", "attention_mask", "qformer_input_ids", "qformer_attention_mask", "pixel_values"] , ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase__ ): processor() def lowerCamelCase ( self ) -> Dict: '''simple docstring''' snake_case : List[str] = self.get_image_processor() snake_case : List[Any] = self.get_tokenizer() snake_case : List[str] = self.get_qformer_tokenizer() snake_case : Any = InstructBlipProcessor( tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ ) snake_case : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case : str = processor.batch_decode(UpperCamelCase__ ) snake_case : int = tokenizer.batch_decode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase ( self ) -> str: '''simple docstring''' snake_case : Union[str, Any] = self.get_image_processor() snake_case : Union[str, Any] = self.get_tokenizer() snake_case : str = self.get_qformer_tokenizer() snake_case : List[Any] = InstructBlipProcessor( tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ ) snake_case : int = "lower newer" snake_case : Union[str, Any] = self.prepare_image_inputs() snake_case : Tuple = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual( list(inputs.keys() ) , ["input_ids", "attention_mask", "qformer_input_ids", "qformer_attention_mask", "pixel_values"] , )
203
"""simple docstring""" def __lowerCAmelCase ( lowercase : int ) -> bool: """simple docstring""" if p < 2: raise ValueError("p should not be less than 2!" ) elif p == 2: return True snake_case : Dict = 4 snake_case : str = (1 << p) - 1 for _ in range(p - 2 ): snake_case : Any = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
203
1
'''simple docstring''' from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class __lowerCamelCase ( _lowerCAmelCase ): """simple docstring""" a = "EncodecFeatureExtractor" a = ("T5Tokenizer", "T5TokenizerFast") def __init__( self : Tuple , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Tuple): super().__init__(_lowercase , _lowercase) _A : Dict = self.feature_extractor _A : int = False def A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : int=None , SCREAMING_SNAKE_CASE : Union[str, Any]=None , SCREAMING_SNAKE_CASE : int=True): return self.tokenizer.get_decoder_prompt_ids(task=_lowercase , language=_lowercase , no_timestamps=_lowercase) def __call__( self : Any , *SCREAMING_SNAKE_CASE : Optional[int] , **SCREAMING_SNAKE_CASE : int): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_lowercase , **_lowercase) _A : List[Any] = kwargs.pop('audio' , _lowercase) _A : List[str] = kwargs.pop('sampling_rate' , _lowercase) _A : Dict = kwargs.pop('text' , _lowercase) if len(_lowercase) > 0: _A : Optional[Any] = args[0] _A : Optional[Any] = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.') if text is not None: _A : str = self.tokenizer(_lowercase , **_lowercase) if audio is not None: _A : str = self.feature_extractor(_lowercase , *_lowercase , sampling_rate=_lowercase , **_lowercase) if audio is None: return inputs elif text is None: return audio_inputs else: _A : Tuple = audio_inputs['input_values'] if "padding_mask" in audio_inputs: _A : Optional[int] = audio_inputs['padding_mask'] return inputs def A ( self : str , *SCREAMING_SNAKE_CASE : Optional[int] , **SCREAMING_SNAKE_CASE : Union[str, Any]): _A : Union[str, Any] = kwargs.pop('audio' , _lowercase) _A : str = kwargs.pop('padding_mask' , _lowercase) if len(_lowercase) > 0: _A : Union[str, Any] = args[0] _A : Tuple = args[1:] if audio_values is not None: return self._decode_audio(_lowercase , padding_mask=_lowercase) else: return self.tokenizer.batch_decode(*_lowercase , **_lowercase) def A ( self : Dict , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : Union[str, Any]): return self.tokenizer.decode(*_lowercase , **_lowercase) def A ( self : Optional[int] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional = None): _A : int = to_numpy(_lowercase) _A , _A , _A : Any = audio_values.shape if padding_mask is None: return list(_lowercase) _A : Any = to_numpy(_lowercase) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) _A : List[str] = seq_len - padding_mask.shape[-1] _A : List[str] = 1 - self.feature_extractor.padding_value _A : List[str] = np.pad(_lowercase , ((0, 0), (0, difference)) , 'constant' , constant_values=_lowercase) _A : Optional[Any] = audio_values.tolist() for i in range(_lowercase): _A : List[str] = np.asarray(audio_values[i])[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] _A : Dict = sliced_audio.reshape(_lowercase , -1) return audio_values
370
'''simple docstring''' def lowerCAmelCase__ ( lowerCamelCase : int = 10 ): if not isinstance(lowerCamelCase ,lowerCamelCase ) or n < 0: raise ValueError('Invalid input' ) _A : Optional[Any] = 10**n _A : List[str] = 28433 * (pow(2 ,7830457 ,lowerCamelCase )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(f"""{solution(10) = }""")
227
0
"""simple docstring""" import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class lowercase( __a ): '''simple docstring''' lowercase__ = ["image_processor", "tokenizer"] lowercase__ = "AutoImageProcessor" lowercase__ = "AutoTokenizer" def __init__( self: List[str], a_: List[str]=None, a_: Tuple=None, **a_: Tuple ): '''simple docstring''' _snake_case : str = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""", a_, ) _snake_case : str = kwargs.pop("""feature_extractor""" ) _snake_case : Union[str, Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(a_, a_ ) _snake_case : Dict = self.image_processor _snake_case : Any = False def __call__( self: Any, *a_: Any, **a_: Tuple ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*a_, **a_ ) _snake_case : Dict = kwargs.pop("""images""", a_ ) _snake_case : Optional[Any] = kwargs.pop("""text""", a_ ) if len(a_ ) > 0: _snake_case : Optional[int] = args[0] _snake_case : Tuple = args[1:] if images is None and text is None: raise ValueError("""You need to specify either an `images` or `text` input to process.""" ) if images is not None: _snake_case : Tuple = self.image_processor(a_, *a_, **a_ ) if text is not None: _snake_case : Tuple = self.tokenizer(a_, **a_ ) if text is None: return inputs elif images is None: return encodings else: _snake_case : List[str] = encodings["""input_ids"""] return inputs def UpperCamelCase_ ( self: Optional[int], *a_: Tuple, **a_: List[str] ): '''simple docstring''' return self.tokenizer.batch_decode(*a_, **a_ ) def UpperCamelCase_ ( self: int, *a_: List[str], **a_: int ): '''simple docstring''' return self.tokenizer.decode(*a_, **a_ ) @contextmanager def UpperCamelCase_ ( self: Dict ): '''simple docstring''' warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your images inputs, or in a separate call.""" ) _snake_case : Any = True _snake_case : Optional[int] = self.tokenizer yield _snake_case : int = self.image_processor _snake_case : Optional[int] = False def UpperCamelCase_ ( self: Dict, a_: Optional[Any], a_: str=False, a_: Optional[Any]=None ): '''simple docstring''' if added_vocab is None: _snake_case : Dict = self.tokenizer.get_added_vocab() _snake_case : str = {} while tokens: _snake_case : Union[str, Any] = re.search(r"""<s_(.*?)>""", a_, re.IGNORECASE ) if start_token is None: break _snake_case : List[Any] = start_token.group(1 ) _snake_case : str = re.search(rf"</s_{key}>", a_, re.IGNORECASE ) _snake_case : Dict = start_token.group() if end_token is None: _snake_case : List[Any] = tokens.replace(a_, """""" ) else: _snake_case : List[str] = end_token.group() _snake_case : str = re.escape(a_ ) _snake_case : str = re.escape(a_ ) _snake_case : Union[str, Any] = re.search(f"{start_token_escaped}(.*?){end_token_escaped}", a_, re.IGNORECASE ) if content is not None: _snake_case : int = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node _snake_case : List[Any] = self.tokenajson(a_, is_inner_value=a_, added_vocab=a_ ) if value: if len(a_ ) == 1: _snake_case : List[str] = value[0] _snake_case : List[str] = value else: # leaf nodes _snake_case : Tuple = [] for leaf in content.split(r"""<sep/>""" ): _snake_case : Tuple = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": _snake_case : int = leaf[1:-2] # for categorical special tokens output[key].append(a_ ) if len(output[key] ) == 1: _snake_case : int = output[key][0] _snake_case : Any = tokens[tokens.find(a_ ) + len(a_ ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:], is_inner_value=a_, added_vocab=a_ ) if len(a_ ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""", a_, ) return self.image_processor_class @property def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""", a_, ) return self.image_processor
64
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() A_ = logging.get_logger(__name__) def UpperCAmelCase__ (snake_case__ : str ): """simple docstring""" _snake_case : List[Any] = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: _snake_case : Tuple = 1_92 _snake_case : Any = 7_68 _snake_case : Any = 12 _snake_case : List[Any] = 3 _snake_case : int = [8_00, 13_33] _snake_case : Tuple = False elif yolos_name == "yolos_s_dWr": _snake_case : Tuple = 3_30 _snake_case : List[str] = 14 _snake_case : List[str] = 6 _snake_case : Union[str, Any] = 13_20 elif "yolos_s" in yolos_name: _snake_case : Union[str, Any] = 3_84 _snake_case : List[str] = 15_36 _snake_case : Any = 12 _snake_case : Optional[int] = 6 elif "yolos_b" in yolos_name: _snake_case : Dict = [8_00, 13_44] _snake_case : str = 91 _snake_case : Optional[Any] = """huggingface/label-files""" _snake_case : str = """coco-detection-id2label.json""" _snake_case : str = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type="""dataset""" ) , """r""" ) ) _snake_case : Union[str, Any] = {int(snake_case__ ): v for k, v in idalabel.items()} _snake_case : List[str] = idalabel _snake_case : List[str] = {v: k for k, v in idalabel.items()} return config def UpperCAmelCase__ (snake_case__ : dict , snake_case__ : YolosConfig , snake_case__ : bool = False ): """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _snake_case : int = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) _snake_case : Union[str, Any] = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict _snake_case : Any = in_proj_weight[: config.hidden_size, :] _snake_case : Optional[Any] = in_proj_bias[: config.hidden_size] _snake_case : Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _snake_case : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _snake_case : Tuple = in_proj_weight[-config.hidden_size :, :] _snake_case : List[Any] = in_proj_bias[-config.hidden_size :] def UpperCAmelCase__ (snake_case__ : str ): """simple docstring""" if "backbone" in name: _snake_case : str = name.replace("""backbone""" , """vit""" ) if "cls_token" in name: _snake_case : Union[str, Any] = name.replace("""cls_token""" , """embeddings.cls_token""" ) if "det_token" in name: _snake_case : str = name.replace("""det_token""" , """embeddings.detection_tokens""" ) if "mid_pos_embed" in name: _snake_case : str = name.replace("""mid_pos_embed""" , """encoder.mid_position_embeddings""" ) if "pos_embed" in name: _snake_case : Tuple = name.replace("""pos_embed""" , """embeddings.position_embeddings""" ) if "patch_embed.proj" in name: _snake_case : str = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "blocks" in name: _snake_case : str = name.replace("""blocks""" , """encoder.layer""" ) if "attn.proj" in name: _snake_case : Any = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: _snake_case : str = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: _snake_case : List[str] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: _snake_case : str = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: _snake_case : List[str] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: _snake_case : int = name.replace("""mlp.fc2""" , """output.dense""" ) if "class_embed" in name: _snake_case : Union[str, Any] = name.replace("""class_embed""" , """class_labels_classifier""" ) if "bbox_embed" in name: _snake_case : str = name.replace("""bbox_embed""" , """bbox_predictor""" ) if "vit.norm" in name: _snake_case : Union[str, Any] = name.replace("""vit.norm""" , """vit.layernorm""" ) return name def UpperCAmelCase__ (snake_case__ : dict , snake_case__ : YolosForObjectDetection ): """simple docstring""" for key in orig_state_dict.copy().keys(): _snake_case : List[str] = orig_state_dict.pop(snake_case__ ) if "qkv" in key: _snake_case : Optional[Any] = key.split(""".""" ) _snake_case : Optional[Any] = int(key_split[2] ) _snake_case : Optional[int] = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: _snake_case : str = val[:dim, :] _snake_case : Optional[Any] = val[ dim : dim * 2, : ] _snake_case : Optional[Any] = val[-dim:, :] else: _snake_case : Dict = val[:dim] _snake_case : Any = val[dim : dim * 2] _snake_case : Dict = val[-dim:] else: _snake_case : Tuple = val return orig_state_dict def UpperCAmelCase__ (): """simple docstring""" _snake_case : str = """http://images.cocodataset.org/val2017/000000039769.jpg""" _snake_case : Union[str, Any] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) return im @torch.no_grad() def UpperCAmelCase__ (snake_case__ : str , snake_case__ : str , snake_case__ : str , snake_case__ : bool = False ): """simple docstring""" _snake_case : Optional[Any] = get_yolos_config(snake_case__ ) # load original state_dict _snake_case : Optional[int] = torch.load(snake_case__ , map_location="""cpu""" )["""model"""] # load 🤗 model _snake_case : Optional[Any] = YolosForObjectDetection(snake_case__ ) model.eval() _snake_case : Optional[Any] = convert_state_dict(snake_case__ , snake_case__ ) model.load_state_dict(snake_case__ ) # Check outputs on an image, prepared by YolosImageProcessor _snake_case : List[str] = 8_00 if yolos_name != """yolos_ti""" else 5_12 _snake_case : Optional[int] = YolosImageProcessor(format="""coco_detection""" , size=snake_case__ ) _snake_case : Optional[Any] = image_processor(images=prepare_img() , return_tensors="""pt""" ) _snake_case : Optional[Any] = model(**snake_case__ ) _snake_case , _snake_case : Optional[int] = outputs.logits, outputs.pred_boxes _snake_case , _snake_case : Dict = None, None if yolos_name == "yolos_ti": _snake_case : Optional[Any] = torch.tensor( [[-39.50_22, -11.98_20, -17.68_88], [-29.95_74, -9.97_69, -17.76_91], [-42.32_81, -20.72_00, -30.62_94]] ) _snake_case : Tuple = torch.tensor( [[0.40_21, 0.08_36, 0.79_79], [0.01_84, 0.26_09, 0.03_64], [0.17_81, 0.20_04, 0.20_95]] ) elif yolos_name == "yolos_s_200_pre": _snake_case : List[str] = torch.tensor( [[-24.02_48, -10.30_24, -14.82_90], [-42.03_92, -16.82_00, -27.43_34], [-27.27_43, -11.81_54, -18.71_48]] ) _snake_case : List[str] = torch.tensor( [[0.25_59, 0.54_55, 0.47_06], [0.29_89, 0.72_79, 0.18_75], [0.77_32, 0.40_17, 0.44_62]] ) elif yolos_name == "yolos_s_300_pre": _snake_case : Dict = torch.tensor( [[-36.22_20, -14.43_85, -23.54_57], [-35.69_70, -14.75_83, -21.39_35], [-31.59_39, -13.60_42, -16.80_49]] ) _snake_case : Union[str, Any] = torch.tensor( [[0.76_14, 0.23_16, 0.47_28], [0.71_68, 0.44_95, 0.38_55], [0.49_96, 0.14_66, 0.99_96]] ) elif yolos_name == "yolos_s_dWr": _snake_case : Tuple = torch.tensor( [[-42.86_68, -24.10_49, -41.16_90], [-34.74_56, -14.12_74, -24.91_94], [-33.78_98, -12.19_46, -25.64_95]] ) _snake_case : Optional[Any] = torch.tensor( [[0.55_87, 0.27_73, 0.06_05], [0.50_04, 0.30_14, 0.99_94], [0.49_99, 0.15_48, 0.99_94]] ) elif yolos_name == "yolos_base": _snake_case : int = torch.tensor( [[-40.60_64, -24.30_84, -32.64_47], [-55.19_90, -30.77_19, -35.58_77], [-51.43_11, -33.35_07, -35.64_62]] ) _snake_case : Optional[int] = torch.tensor( [[0.55_55, 0.27_94, 0.06_55], [0.90_49, 0.26_64, 0.18_94], [0.91_83, 0.19_84, 0.16_35]] ) else: raise ValueError(F"Unknown yolos_name: {yolos_name}" ) assert torch.allclose(logits[0, :3, :3] , snake_case__ , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , snake_case__ , atol=1e-4 ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(F"Saving model {yolos_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case__ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(snake_case__ ) if push_to_hub: _snake_case : Dict = { """yolos_ti""": """yolos-tiny""", """yolos_s_200_pre""": """yolos-small""", """yolos_s_300_pre""": """yolos-small-300""", """yolos_s_dWr""": """yolos-small-dwr""", """yolos_base""": """yolos-base""", } print("""Pushing to the hub...""" ) _snake_case : str = model_mapping[yolos_name] image_processor.push_to_hub(snake_case__ , organization="""hustvl""" ) model.push_to_hub(snake_case__ , organization="""hustvl""" ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--yolos_name''', default='''yolos_s_200_pre''', type=str, help=( '''Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',''' ''' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.''' ), ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original state dict (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) A_ = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
64
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ = { 'configuration_instructblip': [ 'INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InstructBlipConfig', 'InstructBlipQFormerConfig', 'InstructBlipVisionConfig', ], 'processing_instructblip': ['InstructBlipProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ 'INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'InstructBlipQFormerModel', 'InstructBlipPreTrainedModel', 'InstructBlipForConditionalGeneration', 'InstructBlipVisionModel', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
322
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') lowerCamelCase__ = int(input('Enter number: ').strip()) print(F'''{number} is {"" if perfect(number) else "not "}a Perfect Number.''')
322
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: lowercase = None lowercase = logging.get_logger(__name__) lowercase = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} lowercase = { "vocab_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model", }, "tokenizer_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/tokenizer.json", }, } lowercase = { "camembert-base": 512, } lowercase = "▁" class UpperCamelCase_ ( snake_case_ ): '''simple docstring''' lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = ['''input_ids''', '''attention_mask'''] lowerCAmelCase = CamembertTokenizer def __init__( self , a=None , a=None , a="<s>" , a="</s>" , a="</s>" , a="<s>" , a="<unk>" , a="<pad>" , a="<mask>" , a=["<s>NOTUSED", "</s>NOTUSED"] , **a , ) -> Optional[int]: # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else mask_token super().__init__( a , tokenizer_file=a , bos_token=a , eos_token=a , sep_token=a , cls_token=a , unk_token=a , pad_token=a , mask_token=a , additional_special_tokens=a , **a , ) snake_case_ = vocab_file snake_case_ = False if not self.vocab_file else True def _UpperCamelCase ( self , a , a = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ = [self.cls_token_id] snake_case_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _UpperCamelCase ( self , a , a = None ) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCamelCase ( self , a , a = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(a ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case_ = os.path.join( a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a ): copyfile(self.vocab_file , a ) return (out_vocab_file,)
178
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor lowercase = logging.get_logger(__name__) class UpperCamelCase_ ( snake_case_ ): '''simple docstring''' def __init__( self , *a , **a ) -> None: warnings.warn( 'The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PerceiverImageProcessor instead.' , a , ) super().__init__(*a , **a )
178
1
"""simple docstring""" import math import random from typing import Any from .hill_climbing import SearchProblem def _lowercase ( __snake_case ,__snake_case = True ,__snake_case = math.inf ,__snake_case = -math.inf ,__snake_case = math.inf ,__snake_case = -math.inf ,__snake_case = False ,__snake_case = 100 ,__snake_case = 0.01 ,__snake_case = 1 ,) -> Any: __lowerCAmelCase : Optional[int] = False __lowerCAmelCase : List[Any] = search_prob __lowerCAmelCase : str = start_temperate __lowerCAmelCase : Dict = [] __lowerCAmelCase : str = 0 __lowerCAmelCase : str = None while not search_end: __lowerCAmelCase : List[Any] = current_state.score() if best_state is None or current_score > best_state.score(): __lowerCAmelCase : Union[str, Any] = current_state scores.append(__snake_case ) iterations += 1 __lowerCAmelCase : str = None __lowerCAmelCase : Union[str, Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to __lowerCAmelCase : Any = random.randint(0 ,len(__snake_case ) - 1 ) # picking a random neighbor __lowerCAmelCase : Union[str, Any] = neighbors.pop(__snake_case ) __lowerCAmelCase : Optional[int] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: __lowerCAmelCase : Dict = change * -1 # in case we are finding minimum if change > 0: # improves the solution __lowerCAmelCase : Any = picked_neighbor else: __lowerCAmelCase : Tuple = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability __lowerCAmelCase : Optional[int] = picked_neighbor __lowerCAmelCase : Tuple = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor __lowerCAmelCase : Union[str, Any] = True else: __lowerCAmelCase : Any = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(__snake_case ) ,__snake_case ) plt.xlabel("Iterations" ) plt.ylabel("Function values" ) plt.show() return best_state if __name__ == "__main__": def _lowercase ( __snake_case ,__snake_case ) -> Dict: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) __snake_case : int = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) __snake_case : Tuple = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) __snake_case : Optional[int] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) __snake_case : Tuple = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def _lowercase ( __snake_case ,__snake_case ) -> Tuple: return (3 * x**2) - (6 * y) __snake_case : int = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) __snake_case : Tuple = simulated_annealing(prob, find_max=False, visualization=True) print( 'The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' F"""{local_min.score()}""" ) __snake_case : str = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) __snake_case : Optional[int] = simulated_annealing(prob, find_max=True, visualization=True) print( 'The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' F"""{local_min.score()}""" )
58
"""simple docstring""" __snake_case : Any = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] __snake_case : Union[str, Any] = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] __snake_case : int = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] __snake_case : Dict = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] __snake_case : Dict = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] __snake_case : Any = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] __snake_case : Tuple = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] __snake_case : str = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
58
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase_ = { 'configuration_chinese_clip': [ 'CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ChineseCLIPConfig', 'ChineseCLIPOnnxConfig', 'ChineseCLIPTextConfig', 'ChineseCLIPVisionConfig', ], 'processing_chinese_clip': ['ChineseCLIPProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ['ChineseCLIPFeatureExtractor'] UpperCamelCase_ = ['ChineseCLIPImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'ChineseCLIPModel', 'ChineseCLIPPreTrainedModel', 'ChineseCLIPTextModel', 'ChineseCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
243
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: lowerCAmelCase__ : Optional[Any] = args.log_outputs lowerCAmelCase__ : Union[str, Any] = '_'.join(args.dataset.split('/' ) + [args.config, args.split] ) # load metric lowerCAmelCase__ : Dict = load_metric('wer' ) lowerCAmelCase__ : Tuple = load_metric('cer' ) # compute metrics lowerCAmelCase__ : Dict = wer.compute(references=result['target'] , predictions=result['prediction'] ) lowerCAmelCase__ : int = cer.compute(references=result['target'] , predictions=result['prediction'] ) # print & log results lowerCAmelCase__ : Optional[int] = F'''WER: {wer_result}\nCER: {cer_result}''' print(SCREAMING_SNAKE_CASE_ ) with open(F'''{dataset_id}_eval_results.txt''' , 'w' ) as f: f.write(SCREAMING_SNAKE_CASE_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: lowerCAmelCase__ : List[str] = F'''log_{dataset_id}_predictions.txt''' lowerCAmelCase__ : Union[str, Any] = F'''log_{dataset_id}_targets.txt''' with open(SCREAMING_SNAKE_CASE_ , 'w' ) as p, open(SCREAMING_SNAKE_CASE_ , 'w' ) as t: # mapping function to write output def write_to_file(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): p.write(F'''{i}''' + '\n' ) p.write(batch['prediction'] + '\n' ) t.write(F'''{i}''' + '\n' ) t.write(batch['target'] + '\n' ) result.map(SCREAMING_SNAKE_CASE_ , with_indices=SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> str: lowerCAmelCase__ : List[str] = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training lowerCAmelCase__ : Union[str, Any] = re.sub(SCREAMING_SNAKE_CASE_ , '' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! lowerCAmelCase__ : List[Any] = ['\n\n', '\n', ' ', ' '] for t in token_sequences_to_ignore: lowerCAmelCase__ : Optional[int] = ' '.join(text.split(SCREAMING_SNAKE_CASE_ ) ) return text def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> List[Any]: # load dataset lowerCAmelCase__ : Tuple = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=SCREAMING_SNAKE_CASE_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor lowerCAmelCase__ : List[Any] = AutoFeatureExtractor.from_pretrained(args.model_id ) lowerCAmelCase__ : Union[str, Any] = feature_extractor.sampling_rate # resample audio lowerCAmelCase__ : Union[str, Any] = dataset.cast_column('audio' , Audio(sampling_rate=SCREAMING_SNAKE_CASE_ ) ) # load eval pipeline if args.device is None: lowerCAmelCase__ : List[Any] = 0 if torch.cuda.is_available() else -1 lowerCAmelCase__ : List[Any] = pipeline('automatic-speech-recognition' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : Optional[int] = asr( batch['audio']['array'] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) lowerCAmelCase__ : int = prediction['text'] lowerCAmelCase__ : Optional[int] = normalize_text(batch['sentence'] ) return batch # run inference on all examples lowerCAmelCase__ : Dict = dataset.map(SCREAMING_SNAKE_CASE_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) lowerCamelCase__ = parser.parse_args() main(args)
212
0
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _UpperCAmelCase ( lowerCAmelCase__): _lowerCAmelCase : Any = ["""image_processor""", """tokenizer"""] _lowerCAmelCase : Any = """CLIPImageProcessor""" _lowerCAmelCase : str = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self : Optional[int] , lowercase_ : Dict=None , lowercase_ : Dict=None , **lowercase_ : Any ): snake_case_ : str = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowercase_ , ) snake_case_ : Any = kwargs.pop('''feature_extractor''' ) snake_case_ : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowercase_ , lowercase_ ) def __call__( self : Optional[int] , lowercase_ : Any=None , lowercase_ : List[Any]=None , lowercase_ : Dict=None , **lowercase_ : Any ): if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: snake_case_ : str = self.tokenizer(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if images is not None: snake_case_ : List[str] = self.image_processor(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if text is not None and images is not None: snake_case_ : List[str] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase_ ) , tensor_type=lowercase_ ) def _snake_case ( self : str , *lowercase_ : Any , **lowercase_ : Optional[Any] ): return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def _snake_case ( self : Union[str, Any] , *lowercase_ : Union[str, Any] , **lowercase_ : Any ): return self.tokenizer.decode(*lowercase_ , **lowercase_ ) @property def _snake_case ( self : List[Any] ): snake_case_ : Optional[Any] = self.tokenizer.model_input_names snake_case_ : Optional[int] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _snake_case ( self : int ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowercase_ , ) return self.image_processor_class @property def _snake_case ( self : Tuple ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowercase_ , ) return self.image_processor
155
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowercase__ : List[str] = logging.get_logger(__name__) lowercase__ : List[Any] = { '''microsoft/table-transformer-detection''': ( '''https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json''' ), } class _UpperCAmelCase ( lowerCAmelCase__): _lowerCAmelCase : Optional[Any] = """table-transformer""" _lowerCAmelCase : Any = ["""past_key_values"""] _lowerCAmelCase : Union[str, Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : Any , lowercase_ : Any=True , lowercase_ : Dict=None , lowercase_ : Optional[int]=3 , lowercase_ : Any=100 , lowercase_ : List[str]=6 , lowercase_ : Any=2048 , lowercase_ : Any=8 , lowercase_ : Tuple=6 , lowercase_ : List[Any]=2048 , lowercase_ : List[str]=8 , lowercase_ : List[Any]=0.0 , lowercase_ : str=0.0 , lowercase_ : Dict=True , lowercase_ : Optional[int]="relu" , lowercase_ : Dict=256 , lowercase_ : Optional[int]=0.1 , lowercase_ : List[Any]=0.0 , lowercase_ : List[str]=0.0 , lowercase_ : Dict=0.02 , lowercase_ : int=1.0 , lowercase_ : Tuple=False , lowercase_ : Optional[Any]="sine" , lowercase_ : Union[str, Any]="resnet50" , lowercase_ : List[Any]=True , lowercase_ : List[Any]=False , lowercase_ : Optional[Any]=1 , lowercase_ : Dict=5 , lowercase_ : List[Any]=2 , lowercase_ : Tuple=1 , lowercase_ : List[Any]=1 , lowercase_ : Dict=5 , lowercase_ : Union[str, Any]=2 , lowercase_ : Union[str, Any]=0.1 , **lowercase_ : int , ): if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) snake_case_ : Dict = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(lowercase_ , lowercase_ ): snake_case_ : List[Any] = backbone_config.get('''model_type''' ) snake_case_ : int = CONFIG_MAPPING[backbone_model_type] snake_case_ : List[str] = config_class.from_dict(lowercase_ ) # set timm attributes to None snake_case_, snake_case_, snake_case_ : List[str] = None, None, None snake_case_ : Tuple = use_timm_backbone snake_case_ : int = backbone_config snake_case_ : str = num_channels snake_case_ : List[str] = num_queries snake_case_ : int = d_model snake_case_ : List[str] = encoder_ffn_dim snake_case_ : Any = encoder_layers snake_case_ : List[Any] = encoder_attention_heads snake_case_ : Optional[int] = decoder_ffn_dim snake_case_ : Tuple = decoder_layers snake_case_ : List[str] = decoder_attention_heads snake_case_ : Tuple = dropout snake_case_ : Union[str, Any] = attention_dropout snake_case_ : Dict = activation_dropout snake_case_ : Optional[Any] = activation_function snake_case_ : Optional[Any] = init_std snake_case_ : str = init_xavier_std snake_case_ : Any = encoder_layerdrop snake_case_ : Optional[Any] = decoder_layerdrop snake_case_ : List[str] = encoder_layers snake_case_ : Optional[int] = auxiliary_loss snake_case_ : List[Any] = position_embedding_type snake_case_ : List[Any] = backbone snake_case_ : Union[str, Any] = use_pretrained_backbone snake_case_ : Optional[Any] = dilation # Hungarian matcher snake_case_ : Tuple = class_cost snake_case_ : Any = bbox_cost snake_case_ : Dict = giou_cost # Loss coefficients snake_case_ : Optional[Any] = mask_loss_coefficient snake_case_ : str = dice_loss_coefficient snake_case_ : List[str] = bbox_loss_coefficient snake_case_ : int = giou_loss_coefficient snake_case_ : Optional[Any] = eos_coefficient super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def _snake_case ( self : Optional[int] ): return self.encoder_attention_heads @property def _snake_case ( self : Any ): return self.d_model class _UpperCAmelCase ( lowerCAmelCase__): _lowerCAmelCase : List[Any] = version.parse("""1.11""") @property def _snake_case ( self : List[Any] ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def _snake_case ( self : int ): return 1E-5 @property def _snake_case ( self : Optional[int] ): return 12
155
1
'''simple docstring''' from PIL import Image def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Image: def brightness(_lowerCAmelCase ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" ) return img.point(_lowerCAmelCase ) if __name__ == "__main__": # Load image with Image.open("image_data/lena.jpg") as img: # Change brightness to 100 __a = change_brightness(img, 100) brigt_img.save("image_data/lena_brightness.png", format="png")
35
'''simple docstring''' def lowercase__ ( __UpperCamelCase = 1000 )-> int: UpperCamelCase = -1 UpperCamelCase = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c UpperCamelCase = (n * n - 2 * a * n) // (2 * n - 2 * a) UpperCamelCase = n - a - b if c * c == (a * a + b * b): UpperCamelCase = a * b * c if candidate >= product: UpperCamelCase = candidate return product if __name__ == "__main__": print(f'{solution() = }')
321
0
import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _A ( unittest.TestCase ): _UpperCamelCase : Optional[int] = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING _UpperCamelCase : Union[str, Any] = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def __a ( self : List[Any] , _A : str , _A : Optional[Any] , _A : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase : Optional[int] = AudioClassificationPipeline(model=_A , feature_extractor=_A ) # test with a raw waveform lowercase : Tuple = np.zeros((34_000,) ) lowercase : Dict = np.zeros((14_000,) ) return audio_classifier, [audioa, audio] def __a ( self : List[Any] , _A : List[Any] , _A : List[str] ) -> List[str]: """simple docstring""" lowercase , lowercase : List[str] = examples lowercase : int = audio_classifier(_A ) # by default a model is initialized with num_labels=2 self.assertEqual( _A , [ {'''score''': ANY(_A ), '''label''': ANY(_A )}, {'''score''': ANY(_A ), '''label''': ANY(_A )}, ] , ) lowercase : Dict = audio_classifier(_A , top_k=1 ) self.assertEqual( _A , [ {'''score''': ANY(_A ), '''label''': ANY(_A )}, ] , ) self.run_torchaudio(_A ) @require_torchaudio def __a ( self : List[str] , _A : Optional[Any] ) -> int: """simple docstring""" import datasets # test with a local file lowercase : Union[str, Any] = datasets.load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) lowercase : Optional[Any] = dataset[0]['''audio''']['''array'''] lowercase : Any = audio_classifier(_A ) self.assertEqual( _A , [ {'''score''': ANY(_A ), '''label''': ANY(_A )}, {'''score''': ANY(_A ), '''label''': ANY(_A )}, ] , ) @require_torch def __a ( self : str ) -> Union[str, Any]: """simple docstring""" lowercase : Any = '''anton-l/wav2vec2-random-tiny-classifier''' lowercase : str = pipeline('''audio-classification''' , model=_A ) lowercase : Optional[Any] = np.ones((8_000,) ) lowercase : Tuple = audio_classifier(_A , top_k=4 ) lowercase : Dict = [ {'''score''': 0.0_842, '''label''': '''no'''}, {'''score''': 0.0_838, '''label''': '''up'''}, {'''score''': 0.0_837, '''label''': '''go'''}, {'''score''': 0.0_834, '''label''': '''right'''}, ] lowercase : int = [ {'''score''': 0.0_845, '''label''': '''stop'''}, {'''score''': 0.0_844, '''label''': '''on'''}, {'''score''': 0.0_841, '''label''': '''right'''}, {'''score''': 0.0_834, '''label''': '''left'''}, ] self.assertIn(nested_simplify(_A , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) lowercase : Optional[int] = {'''array''': np.ones((8_000,) ), '''sampling_rate''': audio_classifier.feature_extractor.sampling_rate} lowercase : Any = audio_classifier(_A , top_k=4 ) self.assertIn(nested_simplify(_A , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def __a ( self : str ) -> str: """simple docstring""" import datasets lowercase : Tuple = '''superb/wav2vec2-base-superb-ks''' lowercase : List[str] = pipeline('''audio-classification''' , model=_A ) lowercase : Optional[int] = datasets.load_dataset('''anton-l/superb_dummy''' , '''ks''' , split='''test''' ) lowercase : int = np.array(dataset[3]['''speech'''] , dtype=np.floataa ) lowercase : Any = audio_classifier(_A , top_k=4 ) self.assertEqual( nested_simplify(_A , decimals=3 ) , [ {'''score''': 0.981, '''label''': '''go'''}, {'''score''': 0.007, '''label''': '''up'''}, {'''score''': 0.006, '''label''': '''_unknown_'''}, {'''score''': 0.001, '''label''': '''down'''}, ] , ) @require_tf @unittest.skip('''Audio classification is not implemented for TF''' ) def __a ( self : int ) -> Any: """simple docstring""" pass
116
class _A : # Public class to implement a graph def __init__( self : List[Any] , _A : int , _A : int , _A : list[list[bool]] ) -> None: """simple docstring""" lowercase : Tuple = row lowercase : Union[str, Any] = col lowercase : int = graph def __a ( self : List[Any] , _A : int , _A : int , _A : list[list[bool]] ) -> bool: """simple docstring""" return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def __a ( self : int , _A : int , _A : int , _A : list[list[bool]] ) -> None: """simple docstring""" lowercase : List[str] = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order lowercase : Dict = [-1, 0, 1, -1, 1, -1, 0, 1] lowercase : Dict = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , _A ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , _A ) def __a ( self : List[str] ) -> int: # And finally, count all islands. """simple docstring""" lowercase : List[str] = [[False for j in range(self.COL )] for i in range(self.ROW )] lowercase : Optional[Any] = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(_A , _A , _A ) count += 1 return count
116
1
_SCREAMING_SNAKE_CASE = """ # Transformers 설치 방법 ! pip install transformers datasets # 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요. # ! pip install git+https://github.com/huggingface/transformers.git """ _SCREAMING_SNAKE_CASE = [{"""type""": """code""", """content""": INSTALL_CONTENT}] _SCREAMING_SNAKE_CASE = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
327
from typing import Dict from .base import GenericTensor, Pipeline class SCREAMING_SNAKE_CASE_ ( snake_case_ ): def UpperCAmelCase_ ( self : str , _A : Optional[Any]=None , _A : List[str]=None , _A : Optional[Any]=None , **_A : List[str] ) -> Any: """simple docstring""" if tokenize_kwargs is None: snake_case_ : Optional[Any] = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( 'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' ) snake_case_ : int = truncation snake_case_ : Optional[int] = tokenize_kwargs snake_case_ : Dict = {} if return_tensors is not None: snake_case_ : Union[str, Any] = return_tensors return preprocess_params, {}, postprocess_params def UpperCAmelCase_ ( self : Optional[int] , _A : int , **_A : Any ) -> Dict[str, GenericTensor]: """simple docstring""" snake_case_ : Dict = self.framework snake_case_ : Any = self.tokenizer(_A , return_tensors=_A , **_A ) return model_inputs def UpperCAmelCase_ ( self : Optional[Any] , _A : List[str] ) -> int: """simple docstring""" snake_case_ : Tuple = self.model(**_A ) return model_outputs def UpperCAmelCase_ ( self : Union[str, Any] , _A : str , _A : str=False ) -> Any: """simple docstring""" if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self : List[str] , *_A : Union[str, Any] , **_A : Tuple ) -> List[str]: """simple docstring""" return super().__call__(*_A , **_A )
327
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A_ ={ '''configuration_llama''': ['''LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LlamaConfig'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ =['''LlamaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ =['''LlamaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ =[ '''LlamaForCausalLM''', '''LlamaModel''', '''LlamaPreTrainedModel''', '''LlamaForSequenceClassification''', ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys A_ =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
361
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() A_ = logging.get_logger(__name__) def _lowerCAmelCase ( UpperCAmelCase__ : List[Any] ) ->List[str]: A__ : Union[str, Any] = DPTConfig() if "large" in checkpoint_url: A__ : int = 1_0_2_4 A__ : Union[str, Any] = 4_0_9_6 A__ : Optional[int] = 2_4 A__ : int = 1_6 A__ : Union[str, Any] = [5, 1_1, 1_7, 2_3] A__ : Tuple = [2_5_6, 5_1_2, 1_0_2_4, 1_0_2_4] A__ : Tuple = (1, 3_8_4, 3_8_4) if "ade" in checkpoint_url: A__ : Optional[int] = True A__ : int = 1_5_0 A__ : Union[str, Any] = """huggingface/label-files""" A__ : List[Any] = """ade20k-id2label.json""" A__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(UpperCAmelCase__, UpperCAmelCase__, repo_type="""dataset""" ) ), """r""" ) ) A__ : List[Any] = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()} A__ : Dict = idalabel A__ : List[Any] = {v: k for k, v in idalabel.items()} A__ : Optional[Any] = [1, 1_5_0, 4_8_0, 4_8_0] return config, expected_shape def _lowerCAmelCase ( UpperCAmelCase__ : int ) ->Any: A__ : List[Any] = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(UpperCAmelCase__, UpperCAmelCase__ ) def _lowerCAmelCase ( UpperCAmelCase__ : Union[str, Any] ) ->List[str]: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): A__ : str = name.replace("""pretrained.model""", """dpt.encoder""" ) if "pretrained.model" in name: A__ : Dict = name.replace("""pretrained.model""", """dpt.embeddings""" ) if "patch_embed" in name: A__ : List[Any] = name.replace("""patch_embed""", """patch_embeddings""" ) if "pos_embed" in name: A__ : int = name.replace("""pos_embed""", """position_embeddings""" ) if "attn.proj" in name: A__ : Tuple = name.replace("""attn.proj""", """attention.output.dense""" ) if "proj" in name and "project" not in name: A__ : List[Any] = name.replace("""proj""", """projection""" ) if "blocks" in name: A__ : Optional[Any] = name.replace("""blocks""", """layer""" ) if "mlp.fc1" in name: A__ : int = name.replace("""mlp.fc1""", """intermediate.dense""" ) if "mlp.fc2" in name: A__ : List[str] = name.replace("""mlp.fc2""", """output.dense""" ) if "norm1" in name: A__ : Any = name.replace("""norm1""", """layernorm_before""" ) if "norm2" in name: A__ : List[str] = name.replace("""norm2""", """layernorm_after""" ) if "scratch.output_conv" in name: A__ : Optional[int] = name.replace("""scratch.output_conv""", """head""" ) if "scratch" in name: A__ : List[str] = name.replace("""scratch""", """neck""" ) if "layer1_rn" in name: A__ : List[str] = name.replace("""layer1_rn""", """convs.0""" ) if "layer2_rn" in name: A__ : Optional[int] = name.replace("""layer2_rn""", """convs.1""" ) if "layer3_rn" in name: A__ : Any = name.replace("""layer3_rn""", """convs.2""" ) if "layer4_rn" in name: A__ : Any = name.replace("""layer4_rn""", """convs.3""" ) if "refinenet" in name: A__ : Union[str, Any] = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 A__ : str = name.replace(f'refinenet{layer_idx}', f'fusion_stage.layers.{abs(layer_idx-4 )}' ) if "out_conv" in name: A__ : Optional[Any] = name.replace("""out_conv""", """projection""" ) if "resConfUnit1" in name: A__ : List[Any] = name.replace("""resConfUnit1""", """residual_layer1""" ) if "resConfUnit2" in name: A__ : Tuple = name.replace("""resConfUnit2""", """residual_layer2""" ) if "conv1" in name: A__ : Tuple = name.replace("""conv1""", """convolution1""" ) if "conv2" in name: A__ : List[Any] = name.replace("""conv2""", """convolution2""" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: A__ : Union[str, Any] = name.replace("""pretrained.act_postprocess1.0.project.0""", """neck.reassemble_stage.readout_projects.0.0""" ) if "pretrained.act_postprocess2.0.project.0" in name: A__ : Tuple = name.replace("""pretrained.act_postprocess2.0.project.0""", """neck.reassemble_stage.readout_projects.1.0""" ) if "pretrained.act_postprocess3.0.project.0" in name: A__ : Optional[Any] = name.replace("""pretrained.act_postprocess3.0.project.0""", """neck.reassemble_stage.readout_projects.2.0""" ) if "pretrained.act_postprocess4.0.project.0" in name: A__ : Optional[Any] = name.replace("""pretrained.act_postprocess4.0.project.0""", """neck.reassemble_stage.readout_projects.3.0""" ) # resize blocks if "pretrained.act_postprocess1.3" in name: A__ : Any = name.replace("""pretrained.act_postprocess1.3""", """neck.reassemble_stage.layers.0.projection""" ) if "pretrained.act_postprocess1.4" in name: A__ : List[Any] = name.replace("""pretrained.act_postprocess1.4""", """neck.reassemble_stage.layers.0.resize""" ) if "pretrained.act_postprocess2.3" in name: A__ : Dict = name.replace("""pretrained.act_postprocess2.3""", """neck.reassemble_stage.layers.1.projection""" ) if "pretrained.act_postprocess2.4" in name: A__ : Optional[Any] = name.replace("""pretrained.act_postprocess2.4""", """neck.reassemble_stage.layers.1.resize""" ) if "pretrained.act_postprocess3.3" in name: A__ : Union[str, Any] = name.replace("""pretrained.act_postprocess3.3""", """neck.reassemble_stage.layers.2.projection""" ) if "pretrained.act_postprocess4.3" in name: A__ : Optional[int] = name.replace("""pretrained.act_postprocess4.3""", """neck.reassemble_stage.layers.3.projection""" ) if "pretrained.act_postprocess4.4" in name: A__ : Dict = name.replace("""pretrained.act_postprocess4.4""", """neck.reassemble_stage.layers.3.resize""" ) if "pretrained" in name: A__ : Union[str, Any] = name.replace("""pretrained""", """dpt""" ) if "bn" in name: A__ : Union[str, Any] = name.replace("""bn""", """batch_norm""" ) if "head" in name: A__ : Dict = name.replace("""head""", """head.head""" ) if "encoder.norm" in name: A__ : Optional[int] = name.replace("""encoder.norm""", """layernorm""" ) if "auxlayer" in name: A__ : List[str] = name.replace("""auxlayer""", """auxiliary_head.head""" ) return name def _lowerCAmelCase ( UpperCAmelCase__ : int, UpperCAmelCase__ : Dict ) ->str: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ : Any = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight' ) A__ : Tuple = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict A__ : List[str] = in_proj_weight[: config.hidden_size, :] A__ : int = in_proj_bias[: config.hidden_size] A__ : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ : Any = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ : str = in_proj_weight[ -config.hidden_size :, : ] A__ : Optional[Any] = in_proj_bias[-config.hidden_size :] def _lowerCAmelCase ( ) ->List[str]: A__ : int = """http://images.cocodataset.org/val2017/000000039769.jpg""" A__ : int = Image.open(requests.get(UpperCAmelCase__, stream=UpperCAmelCase__ ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( UpperCAmelCase__ : int, UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : str, UpperCAmelCase__ : int ) ->str: A__ , A__ : Dict = get_dpt_config(UpperCAmelCase__ ) # load original state_dict from URL A__ : Any = torch.hub.load_state_dict_from_url(UpperCAmelCase__, map_location="""cpu""" ) # remove certain keys remove_ignore_keys_(UpperCAmelCase__ ) # rename keys for key in state_dict.copy().keys(): A__ : int = state_dict.pop(UpperCAmelCase__ ) A__ : str = val # read in qkv matrices read_in_q_k_v(UpperCAmelCase__, UpperCAmelCase__ ) # load HuggingFace model A__ : Optional[Any] = DPTForSemanticSegmentation(UpperCAmelCase__ ) if """ade""" in checkpoint_url else DPTForDepthEstimation(UpperCAmelCase__ ) model.load_state_dict(UpperCAmelCase__ ) model.eval() # Check outputs on an image A__ : Optional[Any] = 4_8_0 if """ade""" in checkpoint_url else 3_8_4 A__ : Dict = DPTImageProcessor(size=UpperCAmelCase__ ) A__ : Optional[int] = prepare_img() A__ : Any = image_processor(UpperCAmelCase__, return_tensors="""pt""" ) # forward pass A__ : List[str] = model(**UpperCAmelCase__ ).logits if """ade""" in checkpoint_url else model(**UpperCAmelCase__ ).predicted_depth # Assert logits A__ : Optional[Any] = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]] ) if "ade" in checkpoint_url: A__ : Optional[int] = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]] ) assert outputs.shape == torch.Size(UpperCAmelCase__ ) assert ( torch.allclose(outputs[0, 0, :3, :3], UpperCAmelCase__, atol=1e-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3], UpperCAmelCase__ ) ) Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(UpperCAmelCase__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(UpperCAmelCase__ ) if push_to_hub: print("""Pushing model to hub...""" ) model.push_to_hub( repo_path_or_name=Path(UpperCAmelCase__, UpperCAmelCase__ ), organization="""nielsr""", commit_message="""Add model""", use_temp_dir=UpperCAmelCase__, ) image_processor.push_to_hub( repo_path_or_name=Path(UpperCAmelCase__, UpperCAmelCase__ ), organization="""nielsr""", commit_message="""Add image processor""", use_temp_dir=UpperCAmelCase__, ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) A_ = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
296
0
from __future__ import annotations UpperCamelCase = '''#''' class __UpperCAmelCase : def __init__( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = {} def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self._trie for char in text: if char not in trie: _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = trie[char] _SCREAMING_SNAKE_CASE = True def UpperCamelCase ( self: str , UpperCAmelCase_: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self._trie for char in prefix: if char in trie: _SCREAMING_SNAKE_CASE = trie[char] else: return [] return self._elements(UpperCAmelCase_ ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [] for c, v in d.items(): _SCREAMING_SNAKE_CASE = [""" """] if c == END else [(c + s) for s in self._elements(UpperCAmelCase_ )] result.extend(UpperCAmelCase_ ) return tuple(UpperCAmelCase_ ) UpperCamelCase = Trie() UpperCamelCase = ('''depart''', '''detergent''', '''daring''', '''dog''', '''deer''', '''deal''') for word in words: trie.insert_word(word) def __lowerCamelCase ( snake_case__ ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = trie.find_word(a_ ) return tuple(string + word for word in suffixes ) def __lowerCamelCase ( ) -> Optional[Any]: """simple docstring""" print(autocomplete_using_trie("""de""" ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
306
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class UpperCamelCase_ : '''simple docstring''' def __init__( self , a , a=13 , a=7 , a=True , a=True , a=True , a=True , a=99 , a=32 , a=5 , a=4 , a=4 , a="gelu" , a=0.0 , a=0.1 , a=True , a=5_12 , a=16 , a=2 , a=0.02 , a=3 , a=4 , a=None , ) -> Optional[Any]: snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_multiple_size snake_case_ = hidden_act snake_case_ = hidden_dropout snake_case_ = attention_dropout snake_case_ = weight_tying snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope def _UpperCamelCase ( self ) -> List[Any]: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = self.get_config() return config, input_ids, input_mask, token_labels def _UpperCamelCase ( self ) -> Dict: return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , ) def _UpperCamelCase ( self ) -> int: snake_case_ , snake_case_ , snake_case_ , snake_case_ = self.prepare_config_and_inputs() snake_case_ = True return config, input_ids, input_mask, token_labels def _UpperCamelCase ( self , a , a , a ) -> Any: snake_case_ = GPTNeoXJapaneseModel(config=a ) model.to(a ) model.eval() snake_case_ = model(a , attention_mask=a ) snake_case_ = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self , a , a , a ) -> Union[str, Any]: snake_case_ = True snake_case_ = GPTNeoXJapaneseModel(a ) model.to(a ) model.eval() snake_case_ = model(a , attention_mask=a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self , a , a , a , a ) -> int: snake_case_ = GPTNeoXJapaneseForCausalLM(config=a ) model.to(a ) model.eval() snake_case_ = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self , a , a , a ) -> Tuple: snake_case_ = True snake_case_ = GPTNeoXJapaneseForCausalLM(config=a ) model.to(a ) model.eval() # first forward pass snake_case_ = model(a , attention_mask=a , use_cache=a ) snake_case_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ = torch.cat([input_mask, next_mask] , dim=-1 ) snake_case_ = model(a , attention_mask=a , output_hidden_states=a ) snake_case_ = output_from_no_past['hidden_states'][0] snake_case_ = model( a , attention_mask=a , past_key_values=a , output_hidden_states=a , )['hidden_states'][0] # select random slice snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a , a , atol=1E-3 ) ) def _UpperCamelCase ( self ) -> Dict: snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () lowerCAmelCase = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () lowerCAmelCase = ( {'''feature-extraction''': GPTNeoXJapaneseModel, '''text-generation''': GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def _UpperCamelCase ( self ) -> List[Any]: snake_case_ = GPTNeoXJapaneseModelTester(self ) snake_case_ = ConfigTester(self , config_class=a , hidden_size=37 ) def _UpperCamelCase ( self ) -> str: self.config_tester.run_common_tests() def _UpperCamelCase ( self ) -> Optional[Any]: snake_case_ , snake_case_ , snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(a , a , a ) def _UpperCamelCase ( self ) -> Union[str, Any]: snake_case_ , snake_case_ , snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(a , a , a ) def _UpperCamelCase ( self ) -> Optional[int]: # This regression test was failing with PyTorch < 1.3 snake_case_ , snake_case_ , snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_decoder() snake_case_ = None self.model_tester.create_and_check_model_as_decoder(a , a , a ) def _UpperCamelCase ( self ) -> Dict: snake_case_ , snake_case_ , snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(a , a , a ) def _UpperCamelCase ( self ) -> List[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*a ) @slow def _UpperCamelCase ( self ) -> Any: snake_case_ = 'abeja/gpt-neox-japanese-2.7b' snake_case_ = ['データサイエンティストとは、', '100年後に必要とされる会社は、', 'フルリモートの環境で働くために必要なことは、', '国境の長いトンネルを抜けると', '美味しい日本食といえば、'] snake_case_ = [ 'データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。', '100年後に必要とされる会社は、「人」が中心の会社です。', 'フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。', '国境の長いトンネルを抜けると、そこは雪国だった。', '美味しい日本食といえば、やっぱりお寿司ですよね。', ] snake_case_ = GPTNeoXJapaneseTokenizer.from_pretrained(a ) snake_case_ = GPTNeoXJapaneseForCausalLM.from_pretrained(a ) snake_case_ = [] for prompt in prompts: snake_case_ = tokenizer(a , return_tensors='pt' ).input_ids snake_case_ = model.generate(a , max_length=50 ) snake_case_ = tokenizer.batch_decode(a , skip_special_tokens=a ) predicted_outputs += generated_string self.assertListEqual(a , a )
178
0
"""simple docstring""" from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def _snake_case ( ) -> int: '''simple docstring''' _A = { 'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'], 'path': ['test_1.py', 'test_2.py', 'unit_test.py'], 'content': ['a ' * 20, 'a ' * 30, 'b ' * 7], } _A = Dataset.from_dict(_snake_case ) return dataset class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Union[str, Any] ): _A = get_dataset() _A = make_duplicate_clusters(_UpperCAmelCase , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def lowerCAmelCase_ ( self : str ): _A = get_dataset() _A , _A = deduplicate_dataset(_UpperCAmelCase ) self.assertEqual(len(_UpperCAmelCase ) , 2 ) print(_UpperCAmelCase ) self.assertEqual(duplicate_clusters[0][0]['copies'] , 2 ) self.assertEqual(duplicate_clusters[0][0]['is_extreme'] , _UpperCAmelCase )
271
"""simple docstring""" import argparse from collections import defaultdict import yaml a = '''docs/source/en/_toctree.yml''' def _snake_case ( _snake_case : List[Any] ) -> Optional[Any]: '''simple docstring''' _A = defaultdict(_snake_case ) _A = [] _A = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'local': doc['local'], 'title': doc['title']} ) else: new_doc_list.append(_snake_case ) _A = new_doc_list _A = [key for key, value in counts.items() if value > 1] _A = [] for duplicate_key in duplicates: _A = list({doc['title'] for doc in doc_list if doc['local'] == duplicate_key} ) if len(_snake_case ) > 1: raise ValueError( F'''{duplicate_key} is present several times in the documentation table of content at ''' '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if 'local' not in counts or counts[doc['local']] == 1] ) _A = sorted(_snake_case , key=lambda _snake_case : s["title"].lower() ) # "overview" gets special treatment and is always first if len(_snake_case ) > 1: raise ValueError('{doc_list} has two \'overview\' docs which is not allowed.' ) overview_doc.extend(_snake_case ) # Sort return overview_doc def _snake_case ( _snake_case : Tuple=False ) -> List[Any]: '''simple docstring''' with open(_snake_case , encoding='utf-8' ) as f: _A = yaml.safe_load(f.read() ) # Get to the API doc _A = 0 while content[api_idx]["title"] != "API": api_idx += 1 _A = content[api_idx]['sections'] # Then to the model doc _A = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 _A = api_doc[scheduler_idx]['sections'] _A = clean_doc_toc(_snake_case ) _A = False if new_scheduler_doc != scheduler_doc: _A = True if overwrite: _A = new_scheduler_doc if diff: if overwrite: _A = api_doc with open(_snake_case , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(_snake_case , allow_unicode=_snake_case ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) def _snake_case ( _snake_case : str=False ) -> Union[str, Any]: '''simple docstring''' with open(_snake_case , encoding='utf-8' ) as f: _A = yaml.safe_load(f.read() ) # Get to the API doc _A = 0 while content[api_idx]["title"] != "API": api_idx += 1 _A = content[api_idx]['sections'] # Then to the model doc _A = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 _A = False _A = api_doc[pipeline_idx]['sections'] _A = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: _A = pipeline_doc['section'] _A = clean_doc_toc(_snake_case ) if overwrite: _A = new_sub_pipeline_doc new_pipeline_docs.append(_snake_case ) # sort overall pipeline doc _A = clean_doc_toc(_snake_case ) if new_pipeline_docs != pipeline_docs: _A = True if overwrite: _A = new_pipeline_docs if diff: if overwrite: _A = api_doc with open(_snake_case , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(_snake_case , allow_unicode=_snake_case ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') a = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
271
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class _snake_case ( snake_case ): UpperCamelCase__ = 'microsoft/speecht5_tts' UpperCamelCase__ = ( 'This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ' 'text to read (in English) and returns a waveform object containing the sound.' ) UpperCamelCase__ = 'text_reader' UpperCamelCase__ = SpeechTaProcessor UpperCamelCase__ = SpeechTaForTextToSpeech UpperCamelCase__ = SpeechTaHifiGan UpperCamelCase__ = ['text'] UpperCamelCase__ = ['audio'] def SCREAMING_SNAKE_CASE ( self ): if self.post_processor is None: __magic_name__ : Union[str, Any] = "microsoft/speecht5_hifigan" super().setup() def SCREAMING_SNAKE_CASE ( self , _a , _a=None ): __magic_name__ : Tuple = self.pre_processor(text=_a , return_tensors="pt" , truncation=_a ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("Datasets needs to be installed if not passing speaker embeddings." ) __magic_name__ : int = load_dataset("Matthijs/cmu-arctic-xvectors" , split="validation" ) __magic_name__ : Dict = torch.tensor(embeddings_dataset[7_305]["xvector"] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def SCREAMING_SNAKE_CASE ( self , _a ): with torch.no_grad(): return self.model.generate_speech(**_a ) def SCREAMING_SNAKE_CASE ( self , _a ): with torch.no_grad(): return self.post_processor(_a ).cpu().detach()
281
from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
281
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _snake_case = { 'configuration_conditional_detr': [ 'CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConditionalDetrConfig', 'ConditionalDetrOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['ConditionalDetrFeatureExtractor'] _snake_case = ['ConditionalDetrImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ 'CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConditionalDetrForObjectDetection', 'ConditionalDetrForSegmentation', 'ConditionalDetrModel', 'ConditionalDetrPreTrainedModel', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
369
'''simple docstring''' def _A ( snake_case , snake_case ) -> int: return int((input_a, input_a).count(0 ) != 0 ) def _A ( ) -> None: assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
199
0
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class _lowerCAmelCase ( unittest.TestCase ): def _a (self ): A_ : Dict = inspect.getfile(accelerate.test_utils ) A_ : List[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_script.py"""] ) A_ : Optional[int] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_distributed_data_loop.py"""] ) A_ : Tuple = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_ops.py"""] ) @require_multi_gpu def _a (self ): print(F'Found {torch.cuda.device_count()} devices.' ) A_ : Tuple = ["""torchrun""", F'--nproc_per_node={torch.cuda.device_count()}', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowercase , env=os.environ.copy() ) @require_multi_gpu def _a (self ): print(F'Found {torch.cuda.device_count()} devices.' ) A_ : int = ["""torchrun""", F'--nproc_per_node={torch.cuda.device_count()}', self.operation_file_path] print(F'Command: {cmd}' ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowercase , env=os.environ.copy() ) @require_multi_gpu def _a (self ): A_ : Dict = ["""torchrun""", F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowercase , env=os.environ.copy() ) @require_multi_gpu def _a (self ): print(F'Found {torch.cuda.device_count()} devices, using 2 devices only' ) A_ : Any = ["""torchrun""", F'--nproc_per_node={torch.cuda.device_count()}', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices="""0,1""" ): execute_subprocess_async(lowercase , env=os.environ.copy() ) if __name__ == "__main__": lowerCamelCase :Any = Accelerator() lowerCamelCase :Dict = (accelerator.state.process_index + 2, 1_0) lowerCamelCase :str = torch.randint(0, 1_0, shape).to(accelerator.device) lowerCamelCase :Any = '''''' lowerCamelCase :List[Any] = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." lowerCamelCase :str = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." lowerCamelCase :Any = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
206
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline lowerCamelCase :Tuple = logging.get_logger(__name__) class _lowerCAmelCase ( __UpperCAmelCase ): def _a (self , lowercase ): if isinstance(lowercase , lowercase ): A_ : Tuple = [label.strip() for label in labels.split(""",""" ) if label.strip()] return labels def __call__(self , lowercase , lowercase , lowercase ): if len(lowercase ) == 0 or len(lowercase ) == 0: raise ValueError("""You must include at least one label and at least one sequence.""" ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( """The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. """ """Make sure the passed template includes formatting syntax such as {{}} where the label should go.""" ).format(lowercase ) ) if isinstance(lowercase , lowercase ): A_ : Optional[Any] = [sequences] A_ : List[Any] = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(lowercase )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(__UpperCAmelCase ) class _lowerCAmelCase ( __UpperCAmelCase ): def __init__(self , lowercase=ZeroShotClassificationArgumentHandler() , *lowercase , **lowercase ): A_ : str = args_parser super().__init__(*lowercase , **lowercase ) if self.entailment_id == -1: logger.warning( """Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to """ """-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.""" ) @property def _a (self ): for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("""entail""" ): return ind return -1 def _a (self , lowercase , lowercase=True , lowercase=True , lowercase=TruncationStrategy.ONLY_FIRST , **lowercase ): A_ : Optional[int] = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( """Tokenizer was not supporting padding necessary for zero-shot, attempting to use """ """ `pad_token=eos_token`""" ) A_ : Any = self.tokenizer.eos_token try: A_ : Optional[Any] = self.tokenizer( lowercase , add_special_tokens=lowercase , return_tensors=lowercase , padding=lowercase , truncation=lowercase , ) except Exception as e: if "too short" in str(lowercase ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. A_ : str = self.tokenizer( lowercase , add_special_tokens=lowercase , return_tensors=lowercase , padding=lowercase , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def _a (self , **lowercase ): if kwargs.get("""multi_class""" , lowercase ) is not None: A_ : Union[str, Any] = kwargs["""multi_class"""] logger.warning( """The `multi_class` argument has been deprecated and renamed to `multi_label`. """ """`multi_class` will be removed in a future version of Transformers.""" ) A_ : Tuple = {} if "candidate_labels" in kwargs: A_ : Optional[int] = self._args_parser._parse_labels(kwargs["""candidate_labels"""] ) if "hypothesis_template" in kwargs: A_ : List[str] = kwargs["""hypothesis_template"""] A_ : Union[str, Any] = {} if "multi_label" in kwargs: A_ : Optional[int] = kwargs["""multi_label"""] return preprocess_params, {}, postprocess_params def __call__(self , lowercase , *lowercase , **lowercase , ): if len(lowercase ) == 0: pass elif len(lowercase ) == 1 and "candidate_labels" not in kwargs: A_ : Any = args[0] else: raise ValueError(F'Unable to understand extra arguments {args}' ) return super().__call__(lowercase , **lowercase ) def _a (self , lowercase , lowercase=None , lowercase="This example is {}." ): A_, A_ : Any = self._args_parser(lowercase , lowercase , lowercase ) for i, (candidate_label, sequence_pair) in enumerate(zip(lowercase , lowercase ) ): A_ : List[Any] = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(lowercase ) - 1, **model_input, } def _a (self , lowercase ): A_ : Dict = inputs["""candidate_label"""] A_ : Any = inputs["""sequence"""] A_ : List[Any] = {k: inputs[k] for k in self.tokenizer.model_input_names} A_ : Optional[int] = self.model(**lowercase ) A_ : Optional[Any] = { """candidate_label""": candidate_label, """sequence""": sequence, """is_last""": inputs["""is_last"""], **outputs, } return model_outputs def _a (self , lowercase , lowercase=False ): A_ : Tuple = [outputs["""candidate_label"""] for outputs in model_outputs] A_ : Optional[int] = [outputs["""sequence"""] for outputs in model_outputs] A_ : Union[str, Any] = np.concatenate([output["""logits"""].numpy() for output in model_outputs] ) A_ : List[str] = logits.shape[0] A_ : Optional[int] = len(lowercase ) A_ : int = N // n A_ : int = logits.reshape((num_sequences, n, -1) ) if multi_label or len(lowercase ) == 1: # softmax over the entailment vs. contradiction dim for each label independently A_ : Dict = self.entailment_id A_ : Dict = -1 if entailment_id == 0 else 0 A_ : str = reshaped_outputs[..., [contradiction_id, entailment_id]] A_ : Optional[Any] = np.exp(lowercase ) / np.exp(lowercase ).sum(-1 , keepdims=lowercase ) A_ : Tuple = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels A_ : Optional[int] = reshaped_outputs[..., self.entailment_id] A_ : Any = np.exp(lowercase ) / np.exp(lowercase ).sum(-1 , keepdims=lowercase ) A_ : List[str] = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
206
1
'''simple docstring''' UpperCamelCase_ : List[str] = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } def __a ( _UpperCamelCase: dict , _UpperCamelCase: Union[str, Any] , _UpperCamelCase: int ) -> list[str]: """simple docstring""" _snake_case = set() # keep track of all the paths to be checked _snake_case = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue _snake_case = queue.pop(0 ) # get the last node from the path _snake_case = path[-1] if node not in explored: _snake_case = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: _snake_case = list(_UpperCamelCase ) new_path.append(_UpperCamelCase ) queue.append(_UpperCamelCase ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(_UpperCamelCase ) # in case there's no path between the 2 nodes return [] def __a ( _UpperCamelCase: dict , _UpperCamelCase: int , _UpperCamelCase: List[Any] ) -> int: """simple docstring""" if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 _snake_case = [start] _snake_case = set(_UpperCamelCase ) # Keep tab on distances from `start` node. _snake_case = {start: 0, target: -1} while queue: _snake_case = queue.pop(0 ) if node == target: _snake_case = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(_UpperCamelCase ) queue.append(_UpperCamelCase ) _snake_case = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, '''G''', '''D''')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, '''G''', '''D''')) # returns 4
350
'''simple docstring''' from __future__ import annotations from typing import Any def __a ( _UpperCamelCase: list[Any] ) -> None: """simple docstring""" create_state_space_tree(_UpperCamelCase , [] , 0 ) def __a ( _UpperCamelCase: list[Any] , _UpperCamelCase: list[Any] , _UpperCamelCase: int ) -> None: """simple docstring""" if index == len(_UpperCamelCase ): print(_UpperCamelCase ) return create_state_space_tree(_UpperCamelCase , _UpperCamelCase , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(_UpperCamelCase , _UpperCamelCase , index + 1 ) current_subsequence.pop() if __name__ == "__main__": UpperCamelCase_ : list[Any] = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(['''A''', '''B''', '''C''']) generate_all_subsequences(seq)
142
0