code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from __future__ import annotations def A_ ( _UpperCAmelCase ): if len(_UpperCAmelCase ) == 0: return [] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = min(_UpperCAmelCase ), max(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Dict = int(max_value - min_value ) + 1 SCREAMING_SNAKE_CASE_: list[list] = [[] for _ in range(_UpperCAmelCase )] for i in my_list: buckets[int(i - min_value )].append(_UpperCAmelCase ) return [v for bucket in buckets for v in sorted(_UpperCAmelCase )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
13
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { "huggingface/informer-tourism-monthly": ( "https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json" ), # See all Informer models at https://huggingface.co/models?filter=informer } class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" __lowercase : Dict = '''informer''' __lowercase : Union[str, Any] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = "student_t" , lowerCAmelCase__ = "nll" , lowerCAmelCase__ = 1 , lowerCAmelCase__ = None , lowerCAmelCase__ = "mean" , lowerCAmelCase__ = 0 , lowerCAmelCase__ = 0 , lowerCAmelCase__ = 0 , lowerCAmelCase__ = 0 , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = 6_4 , lowerCAmelCase__ = 3_2 , lowerCAmelCase__ = 3_2 , lowerCAmelCase__ = 2 , lowerCAmelCase__ = 2 , lowerCAmelCase__ = 2 , lowerCAmelCase__ = 2 , lowerCAmelCase__ = True , lowerCAmelCase__ = "gelu" , lowerCAmelCase__ = 0.05 , lowerCAmelCase__ = 0.1 , lowerCAmelCase__ = 0.1 , lowerCAmelCase__ = 0.1 , lowerCAmelCase__ = 0.1 , lowerCAmelCase__ = 1_0_0 , lowerCAmelCase__ = 0.02 , lowerCAmelCase__=True , lowerCAmelCase__ = "prob" , lowerCAmelCase__ = 5 , lowerCAmelCase__ = True , **lowerCAmelCase__ , ): # time series specific configuration __SCREAMING_SNAKE_CASE = prediction_length __SCREAMING_SNAKE_CASE = context_length or prediction_length __SCREAMING_SNAKE_CASE = distribution_output __SCREAMING_SNAKE_CASE = loss __SCREAMING_SNAKE_CASE = input_size __SCREAMING_SNAKE_CASE = num_time_features __SCREAMING_SNAKE_CASE = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] __SCREAMING_SNAKE_CASE = scaling __SCREAMING_SNAKE_CASE = num_dynamic_real_features __SCREAMING_SNAKE_CASE = num_static_real_features __SCREAMING_SNAKE_CASE = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(lowerCAmelCase__) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""") __SCREAMING_SNAKE_CASE = cardinality else: __SCREAMING_SNAKE_CASE = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(lowerCAmelCase__) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""") __SCREAMING_SNAKE_CASE = embedding_dimension else: __SCREAMING_SNAKE_CASE = [min(5_0 , (cat + 1) // 2) for cat in self.cardinality] __SCREAMING_SNAKE_CASE = num_parallel_samples # Transformer architecture configuration __SCREAMING_SNAKE_CASE = input_size * len(self.lags_sequence) + self._number_of_features __SCREAMING_SNAKE_CASE = d_model __SCREAMING_SNAKE_CASE = encoder_attention_heads __SCREAMING_SNAKE_CASE = decoder_attention_heads __SCREAMING_SNAKE_CASE = encoder_ffn_dim __SCREAMING_SNAKE_CASE = decoder_ffn_dim __SCREAMING_SNAKE_CASE = encoder_layers __SCREAMING_SNAKE_CASE = decoder_layers __SCREAMING_SNAKE_CASE = dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = activation_dropout __SCREAMING_SNAKE_CASE = encoder_layerdrop __SCREAMING_SNAKE_CASE = decoder_layerdrop __SCREAMING_SNAKE_CASE = activation_function __SCREAMING_SNAKE_CASE = init_std __SCREAMING_SNAKE_CASE = use_cache # Informer __SCREAMING_SNAKE_CASE = attention_type __SCREAMING_SNAKE_CASE = sampling_factor __SCREAMING_SNAKE_CASE = distil super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__) @property def snake_case_ ( self): return ( sum(self.embedding_dimension) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
100
0
'''simple docstring''' import numpy as np def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 1e-12 , lowerCAmelCase = 1_00 , ): """simple docstring""" assert np.shape(lowerCAmelCase )[0] == np.shape(lowerCAmelCase )[1] # Ensure proper dimensionality. assert np.shape(lowerCAmelCase )[0] == np.shape(lowerCAmelCase )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(lowerCAmelCase ) == np.iscomplexobj(lowerCAmelCase ) _lowerCAmelCase = np.iscomplexobj(lowerCAmelCase ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(lowerCAmelCase , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. _lowerCAmelCase = False _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = 1e12 while not convergence: # Multiple matrix by the vector. _lowerCAmelCase = np.dot(lowerCAmelCase , lowerCAmelCase ) # Normalize the resulting output vector. _lowerCAmelCase = w / np.linalg.norm(lowerCAmelCase ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) _lowerCAmelCase = vector.conj().T if is_complex else vector.T _lowerCAmelCase = np.dot(lowerCAmelCase , np.dot(lowerCAmelCase , lowerCAmelCase ) ) # Check convergence. _lowerCAmelCase = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: _lowerCAmelCase = True _lowerCAmelCase = lambda_ if is_complex: _lowerCAmelCase = np.real(lambda_ ) return lambda_, vector def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) _lowerCAmelCase = np.array([41, 4, 20] ) _lowerCAmelCase = real_input_matrix.astype(np.complexaaa ) _lowerCAmelCase = np.triu(1j * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T _lowerCAmelCase = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": _lowerCAmelCase = real_input_matrix _lowerCAmelCase = real_vector elif problem_type == "complex": _lowerCAmelCase = complex_input_matrix _lowerCAmelCase = complex_vector # Our implementation. _lowerCAmelCase , _lowerCAmelCase = power_iteration(lowerCAmelCase , lowerCAmelCase ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). _lowerCAmelCase , _lowerCAmelCase = np.linalg.eigh(lowerCAmelCase ) # Last eigenvalue is the maximum one. _lowerCAmelCase = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. _lowerCAmelCase = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1e-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(lowerCAmelCase ) - np.abs(lowerCAmelCase ) ) <= 1e-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
366
'''simple docstring''' # Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar A__ : List[str] =TypeVar('''T''') class UpperCAmelCase ( Generic[T] ): def __init__( self : Tuple , __snake_case : bool = True ) -> None: _lowerCAmelCase = {} # dictionary of lists _lowerCAmelCase = directed def lowercase__ ( self : Union[str, Any] , __snake_case : T , __snake_case : T ) -> GraphAdjacencyList[T]: if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(__snake_case ) self.adj_list[destination_vertex].append(__snake_case ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(__snake_case ) _lowerCAmelCase = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(__snake_case ) _lowerCAmelCase = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: _lowerCAmelCase = [destination_vertex] _lowerCAmelCase = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(__snake_case ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(__snake_case ) _lowerCAmelCase = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: _lowerCAmelCase = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: _lowerCAmelCase = [destination_vertex] _lowerCAmelCase = [] return self def __repr__( self : int ) -> str: return pformat(self.adj_list )
220
0
'''simple docstring''' import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging _A : int = logging.get_logger(__name__) def UpperCamelCase_ ( snake_case_ : nn.ModuleList , snake_case_ : nn.ModuleList , snake_case_ : List[int] ) -> None: '''simple docstring''' __lowerCAmelCase = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(snake_case_ ) == len(snake_case_ ), f"""{len(snake_case_ )} != {len(snake_case_ )}""" dest_layers.load_state_dict(layers_to_copy.state_dict() ) _A : Tuple = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } _A : List[str] = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def UpperCamelCase_ ( snake_case_ : List[Any] , snake_case_ : str ) -> Optional[Any]: '''simple docstring''' try: __lowerCAmelCase = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( f"""no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first""" f""" {n_student}""" ) return list(range(snake_case_ ) ) def UpperCamelCase_ ( snake_case_ : Dict , snake_case_ : str ) -> List[int]: '''simple docstring''' if n_student > n_teacher: raise ValueError(f"""Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}""" ) elif n_teacher == n_student: return list(range(snake_case_ ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def UpperCamelCase_ ( snake_case_ : Union[str, PreTrainedModel] , snake_case_ : Union[str, Path] = "student" , snake_case_ : Union[int, None] = None , snake_case_ : Union[int, None] = None , snake_case_ : int=False , snake_case_ : Union[str, Any]=None , snake_case_ : Dict=None , **snake_case_ : Dict , ) -> Tuple[PreTrainedModel, List[int], List[int]]: '''simple docstring''' __lowerCAmelCase = """encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.""" assert (e is not None) or (d is not None), _msg if isinstance(snake_case_ , snake_case_ ): AutoTokenizer.from_pretrained(snake_case_ ).save_pretrained(snake_case_ ) # purely for convenience __lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(snake_case_ ).eval() else: assert isinstance(snake_case_ , snake_case_ ), f"""teacher must be a model or string got type {type(snake_case_ )}""" __lowerCAmelCase = teacher.config.to_diff_dict() try: __lowerCAmelCase , __lowerCAmelCase = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: __lowerCAmelCase = teacher_e if d is None: __lowerCAmelCase = teacher_d init_kwargs.update({"""encoder_layers""": e, """decoder_layers""": d} ) except AttributeError: # T5 if hasattr(teacher.config , """num_encoder_layers""" ): __lowerCAmelCase , __lowerCAmelCase = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: __lowerCAmelCase , __lowerCAmelCase = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: __lowerCAmelCase = teacher_e if d is None: __lowerCAmelCase = teacher_d if hasattr(teacher.config , """num_encoder_layers""" ): init_kwargs.update({"""num_encoder_layers""": e, """num_decoder_layers""": d} ) else: init_kwargs.update({"""num_layers""": e, """num_decoder_layers""": d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(snake_case_ ) # Copy weights __lowerCAmelCase = teacher.config_class(**snake_case_ ) __lowerCAmelCase = AutoModelForSeqaSeqLM.from_config(snake_case_ ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. __lowerCAmelCase = student.load_state_dict(teacher.state_dict() , strict=snake_case_ ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save __lowerCAmelCase , __lowerCAmelCase = list(range(snake_case_ ) ), list(range(snake_case_ ) ) logger.info( f"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to""" f""" {save_path}""" ) student.save_pretrained(snake_case_ ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: __lowerCAmelCase = pick_layers_to_copy(snake_case_ , snake_case_ ) if d_layers_to_copy is None: __lowerCAmelCase = pick_layers_to_copy(snake_case_ , snake_case_ ) try: if hasattr( snake_case_ , """prophetnet""" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , snake_case_ ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , snake_case_ ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , snake_case_ ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , snake_case_ ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , snake_case_ ) copy_layers(teacher.decoder.block , student.decoder.block , snake_case_ ) logger.info( f"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}""" ) __lowerCAmelCase = { """teacher_type""": teacher.config.model_type, """copied_encoder_layers""": e_layers_to_copy, """copied_decoder_layers""": d_layers_to_copy, } student.save_pretrained(snake_case_ ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
229
'''simple docstring''' from __future__ import annotations from dataclasses import dataclass @dataclass class _lowercase : '''simple docstring''' _SCREAMING_SNAKE_CASE : float _SCREAMING_SNAKE_CASE : TreeNode | None = None _SCREAMING_SNAKE_CASE : TreeNode | None = None def UpperCamelCase_ ( snake_case_ : TreeNode | None ) -> bool: '''simple docstring''' def is_valid_tree(snake_case_ : TreeNode | None ) -> bool: if node is None: return True if not isinstance(snake_case_ , snake_case_ ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(snake_case_ ): raise ValueError( """Each node should be type of TreeNode and data should be float.""" ) def is_binary_search_tree_recursive_check( snake_case_ : TreeNode | None , snake_case_ : float , snake_case_ : float ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , snake_case_ , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , snake_case_ ) ) return is_binary_search_tree_recursive_check(snake_case_ , -float("""inf""" ) , float("""inf""" ) ) if __name__ == "__main__": import doctest doctest.testmod()
229
1
"""simple docstring""" import argparse import json import subprocess def lowercase__(A , A ) ->int: """simple docstring""" lowercase__ : Optional[int]= [] lowercase__ : List[str]= ( f'''curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"''' " https://api.github.com/repos/huggingface/transformers/actions/runners" ) lowercase__ : Union[str, Any]= subprocess.run(A , shell=A , stdout=subprocess.PIPE ) lowercase__ : int= output.stdout.decode("utf-8" ) lowercase__ : str= json.loads(A ) lowercase__ : Tuple= status["runners"] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(A ) # save the result so we can report them on Slack with open("offline_runners.txt" , "w" ) as fp: fp.write(json.dumps(A ) ) if len(A ) > 0: lowercase__ : Tuple= "\n".join([x["name"] for x in offline_runners] ) raise ValueError(f'''The following runners are offline:\n{failed}''' ) if __name__ == "__main__": def lowercase__(A ) ->List[Any]: """simple docstring""" return values.split("," ) a : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--target_runners""", default=None, type=list_str, required=True, help="""Comma-separated list of runners to check status.""", ) parser.add_argument( """--token""", default=None, type=str, required=True, help="""A token that has actions:read permission.""" ) a : str = parser.parse_args() get_runner_status(args.target_runners, args.token)
352
"""simple docstring""" from pathlib import Path import fire from tqdm import tqdm def lowercase__(A="ro" , A="en" , A="wmt16" , A=None ) ->None: """simple docstring""" try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("run pip install datasets" ) lowercase__ : int= f'''{src_lang}-{tgt_lang}''' print(f'''Converting {dataset}-{pair}''' ) lowercase__ : List[Any]= datasets.load_dataset(A , A ) if save_dir is None: lowercase__ : Union[str, Any]= f'''{dataset}-{pair}''' lowercase__ : str= Path(A ) save_dir.mkdir(exist_ok=A ) for split in ds.keys(): print(f'''Splitting {split} with {ds[split].num_rows} records''' ) # to save to val.source, val.target like summary datasets lowercase__ : Any= "val" if split == "validation" else split lowercase__ : List[Any]= save_dir.joinpath(f'''{fn}.source''' ) lowercase__ : Optional[Any]= save_dir.joinpath(f'''{fn}.target''' ) lowercase__ : Optional[int]= src_path.open("w+" ) lowercase__ : Any= tgt_path.open("w+" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): lowercase__ : int= x["translation"] src_fp.write(ex[src_lang] + "\n" ) tgt_fp.write(ex[tgt_lang] + "\n" ) print(f'''Saved {dataset} dataset to {save_dir}''' ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
150
0
import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def lowerCAmelCase_ (lowerCAmelCase__: Optional[int] ): """simple docstring""" if "cls_token" in name: UpperCAmelCase_: Tuple = name.replace("""cls_token""" , """vit.embeddings.cls_token""" ) if "mask_token" in name: UpperCAmelCase_: int = name.replace("""mask_token""" , """decoder.mask_token""" ) if "decoder_pos_embed" in name: UpperCAmelCase_: Union[str, Any] = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: UpperCAmelCase_: Union[str, Any] = name.replace("""pos_embed""" , """vit.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: UpperCAmelCase_: Optional[Any] = name.replace("""patch_embed.proj""" , """vit.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: UpperCAmelCase_: List[str] = name.replace("""patch_embed.norm""" , """vit.embeddings.norm""" ) if "decoder_blocks" in name: UpperCAmelCase_: Optional[int] = name.replace("""decoder_blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: UpperCAmelCase_: Any = name.replace("""blocks""" , """vit.encoder.layer""" ) if "attn.proj" in name: UpperCAmelCase_: Any = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: UpperCAmelCase_: List[Any] = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: UpperCAmelCase_: List[Any] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: UpperCAmelCase_: Tuple = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: UpperCAmelCase_: Optional[Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: UpperCAmelCase_: List[str] = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: UpperCAmelCase_: str = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: UpperCAmelCase_: Optional[int] = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: UpperCAmelCase_: Any = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name: UpperCAmelCase_: Dict = name.replace("""norm.weight""" , """vit.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name: UpperCAmelCase_: Dict = name.replace("""norm.bias""" , """vit.layernorm.bias""" ) return name def lowerCAmelCase_ (lowerCAmelCase__: str , lowerCAmelCase__: Optional[Any] ): """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCAmelCase_: str = orig_state_dict.pop(lowerCAmelCase__ ) if "qkv" in key: UpperCAmelCase_: Tuple = key.split(""".""" ) UpperCAmelCase_: str = int(key_split[1] ) if "decoder_blocks" in key: UpperCAmelCase_: int = config.decoder_hidden_size UpperCAmelCase_: Union[str, Any] = """decoder.decoder_layers.""" if "weight" in key: UpperCAmelCase_: str = val[:dim, :] UpperCAmelCase_: Any = val[dim : dim * 2, :] UpperCAmelCase_: List[Any] = val[-dim:, :] elif "bias" in key: UpperCAmelCase_: Tuple = val[:dim] UpperCAmelCase_: Optional[int] = val[dim : dim * 2] UpperCAmelCase_: Tuple = val[-dim:] else: UpperCAmelCase_: Optional[Any] = config.hidden_size UpperCAmelCase_: Tuple = """vit.encoder.layer.""" if "weight" in key: UpperCAmelCase_: Tuple = val[:dim, :] UpperCAmelCase_: Optional[int] = val[dim : dim * 2, :] UpperCAmelCase_: int = val[-dim:, :] elif "bias" in key: UpperCAmelCase_: Optional[int] = val[:dim] UpperCAmelCase_: Tuple = val[dim : dim * 2] UpperCAmelCase_: Any = val[-dim:] else: UpperCAmelCase_: Union[str, Any] = val return orig_state_dict def lowerCAmelCase_ (lowerCAmelCase__: Optional[Any] , lowerCAmelCase__: Union[str, Any] ): """simple docstring""" UpperCAmelCase_: List[Any] = ViTMAEConfig() if "large" in checkpoint_url: UpperCAmelCase_: Optional[Any] = 1_0_2_4 UpperCAmelCase_: Union[str, Any] = 4_0_9_6 UpperCAmelCase_: List[str] = 2_4 UpperCAmelCase_: Dict = 1_6 elif "huge" in checkpoint_url: UpperCAmelCase_: Optional[int] = 1_4 UpperCAmelCase_: Optional[int] = 1_2_8_0 UpperCAmelCase_: List[Any] = 5_1_2_0 UpperCAmelCase_: Tuple = 3_2 UpperCAmelCase_: Any = 1_6 UpperCAmelCase_: str = ViTMAEForPreTraining(lowerCAmelCase__ ) UpperCAmelCase_: Optional[Any] = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location="""cpu""" )["""model"""] UpperCAmelCase_: Optional[Any] = ViTMAEImageProcessor(size=config.image_size ) UpperCAmelCase_: str = convert_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ ) model.eval() UpperCAmelCase_: int = """https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg""" UpperCAmelCase_: Any = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) UpperCAmelCase_: Optional[Any] = ViTMAEImageProcessor(size=config.image_size ) UpperCAmelCase_: Optional[int] = image_processor(images=lowerCAmelCase__ , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) UpperCAmelCase_: str = model(**lowerCAmelCase__ ) UpperCAmelCase_: Tuple = outputs.logits if "large" in checkpoint_url: UpperCAmelCase_: List[Any] = torch.tensor( [[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] ) elif "huge" in checkpoint_url: UpperCAmelCase_: Any = torch.tensor( [[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] ) else: UpperCAmelCase_: Union[str, Any] = torch.tensor( [[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": a : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) a : Union[str, Any] = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
147
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class _a : def __init__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=13, SCREAMING_SNAKE_CASE_=10, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=5, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=37, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=10, SCREAMING_SNAKE_CASE_=0.0_2, SCREAMING_SNAKE_CASE_="divided_space_time", SCREAMING_SNAKE_CASE_=None, ) -> int: UpperCAmelCase_: Union[str, Any] = parent UpperCAmelCase_: str = batch_size UpperCAmelCase_: str = image_size UpperCAmelCase_: Optional[Any] = num_channels UpperCAmelCase_: List[Any] = patch_size UpperCAmelCase_: Optional[Any] = num_frames UpperCAmelCase_: Any = is_training UpperCAmelCase_: Union[str, Any] = use_labels UpperCAmelCase_: Union[str, Any] = hidden_size UpperCAmelCase_: Tuple = num_hidden_layers UpperCAmelCase_: Optional[Any] = num_attention_heads UpperCAmelCase_: Optional[Any] = intermediate_size UpperCAmelCase_: Tuple = hidden_act UpperCAmelCase_: Optional[int] = hidden_dropout_prob UpperCAmelCase_: Tuple = attention_probs_dropout_prob UpperCAmelCase_: Dict = attention_type UpperCAmelCase_: List[Any] = initializer_range UpperCAmelCase_: Union[str, Any] = scope UpperCAmelCase_: List[Any] = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token UpperCAmelCase_: str = (image_size // patch_size) ** 2 UpperCAmelCase_: str = (num_frames) * self.num_patches_per_frame + 1 def __snake_case (self ) -> Union[str, Any]: UpperCAmelCase_: List[Any] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_: List[str] = None if self.use_labels: UpperCAmelCase_: Optional[int] = ids_tensor([self.batch_size], self.num_labels ) UpperCAmelCase_: Tuple = self.get_config() return config, pixel_values, labels def __snake_case (self ) -> Optional[int]: UpperCAmelCase_: int = TimesformerConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, num_frames=self.num_frames, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, initializer_range=self.initializer_range, attention_type=self.attention_type, ) UpperCAmelCase_: Tuple = self.num_labels return config def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> int: UpperCAmelCase_: Union[str, Any] = TimesformerModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase_: Tuple = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCAmelCase_: Tuple = TimesformerForVideoClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase_: Tuple = model(SCREAMING_SNAKE_CASE_ ) # verify the logits shape UpperCAmelCase_: Dict = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape, SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> int: UpperCAmelCase_: Tuple = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: Optional[Any] = config_and_inputs UpperCAmelCase_: Union[str, Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _a ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): A = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () A = ( {'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification} if is_torch_available() else {} ) A = False A = False A = False A = False def __snake_case (self ) -> Optional[int]: UpperCAmelCase_: str = TimesformerModelTester(self ) UpperCAmelCase_: Optional[Any] = ConfigTester( self, config_class=SCREAMING_SNAKE_CASE_, has_text_modality=SCREAMING_SNAKE_CASE_, hidden_size=37 ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=False ) -> Optional[Any]: UpperCAmelCase_: Optional[Any] = copy.deepcopy(SCREAMING_SNAKE_CASE_ ) if return_labels: if model_class in get_values(SCREAMING_SNAKE_CASE_ ): UpperCAmelCase_: List[str] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=SCREAMING_SNAKE_CASE_ ) return inputs_dict def __snake_case (self ) -> Optional[int]: self.config_tester.run_common_tests() @unittest.skip(reason="""TimeSformer does not use inputs_embeds""" ) def __snake_case (self ) -> Optional[int]: pass def __snake_case (self ) -> Union[str, Any]: UpperCAmelCase_ , UpperCAmelCase_: Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_: Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) UpperCAmelCase_: Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_, nn.Linear ) ) def __snake_case (self ) -> Optional[Any]: UpperCAmelCase_ , UpperCAmelCase_: int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_: Tuple = model_class(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_: int = [*signature.parameters.keys()] UpperCAmelCase_: Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1], SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> str: UpperCAmelCase_: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Any: UpperCAmelCase_: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*SCREAMING_SNAKE_CASE_ ) @slow def __snake_case (self ) -> Any: for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_: Optional[Any] = TimesformerModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Union[str, Any]: if not self.has_attentions: pass else: UpperCAmelCase_ , UpperCAmelCase_: Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_: List[Any] = True for model_class in self.all_model_classes: UpperCAmelCase_: str = self.model_tester.seq_length UpperCAmelCase_: Any = self.model_tester.num_frames UpperCAmelCase_: Optional[int] = True UpperCAmelCase_: int = False UpperCAmelCase_: Optional[int] = True UpperCAmelCase_: Any = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): UpperCAmelCase_: Any = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ) UpperCAmelCase_: str = outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE_ ), self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase_: Any = True UpperCAmelCase_: Tuple = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): UpperCAmelCase_: Tuple = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ) UpperCAmelCase_: Dict = outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE_ ), self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1], ) UpperCAmelCase_: Tuple = len(SCREAMING_SNAKE_CASE_ ) # Check attention is always last and order is fine UpperCAmelCase_: Optional[int] = True UpperCAmelCase_: str = True UpperCAmelCase_: Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): UpperCAmelCase_: Any = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(out_len + 1, len(SCREAMING_SNAKE_CASE_ ) ) UpperCAmelCase_: Optional[Any] = outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE_ ), self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1], ) def __snake_case (self ) -> Dict: def check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCAmelCase_: List[str] = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): UpperCAmelCase_: str = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ) UpperCAmelCase_: str = outputs.hidden_states UpperCAmelCase_: int = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[Any] = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ), [seq_length, self.model_tester.hidden_size], ) UpperCAmelCase_ , UpperCAmelCase_: int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_: List[str] = True check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_: Dict = True check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase_ (): """simple docstring""" UpperCAmelCase_: Tuple = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) UpperCAmelCase_: str = np.load(lowerCAmelCase__ ) return list(lowerCAmelCase__ ) @require_torch @require_vision class _a ( unittest.TestCase ): @cached_property def __snake_case (self ) -> Tuple: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def __snake_case (self ) -> List[Any]: UpperCAmelCase_: Optional[Any] = TimesformerForVideoClassification.from_pretrained("""facebook/timesformer-base-finetuned-k400""" ).to( SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[str] = self.default_image_processor UpperCAmelCase_: List[Any] = prepare_video() UpperCAmelCase_: Optional[Any] = image_processor(video[:8], return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCAmelCase_: Optional[int] = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits UpperCAmelCase_: Optional[int] = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape, SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[Any] = torch.tensor([-0.3_0_1_6, -0.7_7_1_3, -0.4_2_0_5] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3], SCREAMING_SNAKE_CASE_, atol=1E-4 ) )
147
1
"""simple docstring""" def __UpperCAmelCase ( UpperCAmelCase_ : int ) -> int: '''simple docstring''' if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise ValueError('multiplicative_persistence() only accepts integral values' ) if num < 0: raise ValueError('multiplicative_persistence() does not accept negative values' ) __snake_case : Any = 0 __snake_case : str = str(UpperCAmelCase_ ) while len(UpperCAmelCase_ ) != 1: __snake_case : Union[str, Any] = [int(UpperCAmelCase_ ) for i in num_string] __snake_case : str = 1 for i in range(0 , len(UpperCAmelCase_ ) ): total *= numbers[i] __snake_case : Optional[Any] = str(UpperCAmelCase_ ) steps += 1 return steps def __UpperCAmelCase ( UpperCAmelCase_ : int ) -> int: '''simple docstring''' if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise ValueError('additive_persistence() only accepts integral values' ) if num < 0: raise ValueError('additive_persistence() does not accept negative values' ) __snake_case : Dict = 0 __snake_case : Optional[int] = str(UpperCAmelCase_ ) while len(UpperCAmelCase_ ) != 1: __snake_case : List[Any] = [int(UpperCAmelCase_ ) for i in num_string] __snake_case : Union[str, Any] = 0 for i in range(0 , len(UpperCAmelCase_ ) ): total += numbers[i] __snake_case : Optional[int] = str(UpperCAmelCase_ ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
359
"""simple docstring""" def __UpperCAmelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: '''simple docstring''' while a != 0: __snake_case , __snake_case : Union[str, Any] = b % a, a return b def __UpperCAmelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: '''simple docstring''' if gcd(UpperCAmelCase_ , UpperCAmelCase_ ) != 1: __snake_case : Union[str, Any] = F"mod inverse of {a!r} and {m!r} does not exist" raise ValueError(UpperCAmelCase_ ) __snake_case , __snake_case , __snake_case : List[str] = 1, 0, a __snake_case , __snake_case , __snake_case : Dict = 0, 1, m while va != 0: __snake_case : List[str] = ua // va __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : List[str] = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
95
0
from __future__ import annotations def lowerCAmelCase_ ( __A = 4 ) -> list[list[int]]: '''simple docstring''' UpperCAmelCase__ = abs(__A ) or 4 return [[1 + x + y * row_size for x in range(__A )] for y in range(__A )] def lowerCAmelCase_ ( __A ) -> list[list[int]]: '''simple docstring''' return reverse_row(transpose(__A ) ) # OR.. transpose(reverse_column(matrix)) def lowerCAmelCase_ ( __A ) -> list[list[int]]: '''simple docstring''' return reverse_row(reverse_column(__A ) ) # OR.. reverse_column(reverse_row(matrix)) def lowerCAmelCase_ ( __A ) -> list[list[int]]: '''simple docstring''' return reverse_column(transpose(__A ) ) # OR.. transpose(reverse_row(matrix)) def lowerCAmelCase_ ( __A ) -> list[list[int]]: '''simple docstring''' UpperCAmelCase__ = [list(__A ) for x in zip(*__A )] return matrix def lowerCAmelCase_ ( __A ) -> list[list[int]]: '''simple docstring''' UpperCAmelCase__ = matrix[::-1] return matrix def lowerCAmelCase_ ( __A ) -> list[list[int]]: '''simple docstring''' UpperCAmelCase__ = [x[::-1] for x in matrix] return matrix def lowerCAmelCase_ ( __A ) -> None: '''simple docstring''' for i in matrix: print(*__A ) if __name__ == "__main__": UpperCamelCase__ = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 90 counterclockwise:\n') print_matrix(rotate_aa(matrix)) UpperCamelCase__ = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 180:\n') print_matrix(rotate_aaa(matrix)) UpperCamelCase__ = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 270 counterclockwise:\n') print_matrix(rotate_aaa(matrix))
65
def lowerCamelCase__ ( a ) -> bool: _A: Dict = [int(a ) for i in ip_va_address.split('''.''' ) if i.isdigit()] return len(a ) == 4 and all(0 <= int(a ) <= 2_54 for octet in octets ) if __name__ == "__main__": UpperCAmelCase__ : str = input().strip() UpperCAmelCase__ : Any = 'valid' if is_ip_va_address_valid(ip) else 'invalid' print(F"""{ip} is a {valid_or_invalid} IP v4 address.""")
121
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) A : Optional[Any] = { 'configuration_mega': ['MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegaConfig', 'MegaOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = [ 'MEGA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegaForCausalLM', 'MegaForMaskedLM', 'MegaForMultipleChoice', 'MegaForQuestionAnswering', 'MegaForSequenceClassification', 'MegaForTokenClassification', 'MegaModel', 'MegaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys A : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
33
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A : Optional[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys A : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
33
1
import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def lowerCAmelCase ( _lowerCAmelCase : str ): """simple docstring""" UpperCAmelCase__ = VideoMAEConfig() set_architecture_configs(A_ , A_ ) if "finetuned" not in model_name: UpperCAmelCase__ = False if "finetuned" in model_name: UpperCAmelCase__ = "huggingface/label-files" if "kinetics" in model_name: UpperCAmelCase__ = 400 UpperCAmelCase__ = "kinetics400-id2label.json" elif "ssv2" in model_name: UpperCAmelCase__ = 174 UpperCAmelCase__ = "something-something-v2-id2label.json" else: raise ValueError("Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned." ) UpperCAmelCase__ = json.load(open(hf_hub_download(A_ , A_ , repo_type="dataset" ) , "r" ) ) UpperCAmelCase__ = {int(A_ ): v for k, v in idalabel.items()} UpperCAmelCase__ = idalabel UpperCAmelCase__ = {v: k for k, v in idalabel.items()} return config def lowerCAmelCase ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict ): """simple docstring""" if "small" in model_name: UpperCAmelCase__ = 384 UpperCAmelCase__ = 1536 UpperCAmelCase__ = 12 UpperCAmelCase__ = 16 UpperCAmelCase__ = 12 UpperCAmelCase__ = 3 UpperCAmelCase__ = 192 UpperCAmelCase__ = 768 elif "large" in model_name: UpperCAmelCase__ = 1024 UpperCAmelCase__ = 4096 UpperCAmelCase__ = 24 UpperCAmelCase__ = 16 UpperCAmelCase__ = 12 UpperCAmelCase__ = 8 UpperCAmelCase__ = 512 UpperCAmelCase__ = 2048 elif "huge" in model_name: UpperCAmelCase__ = 1280 UpperCAmelCase__ = 5120 UpperCAmelCase__ = 32 UpperCAmelCase__ = 16 UpperCAmelCase__ = 12 UpperCAmelCase__ = 8 UpperCAmelCase__ = 640 UpperCAmelCase__ = 2560 elif "base" not in model_name: raise ValueError("Model name should include either \"small\", \"base\", \"large\", or \"huge\"" ) def lowerCAmelCase ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" if "encoder." in name: UpperCAmelCase__ = name.replace("encoder." , "" ) if "cls_token" in name: UpperCAmelCase__ = name.replace("cls_token" , "videomae.embeddings.cls_token" ) if "decoder_pos_embed" in name: UpperCAmelCase__ = name.replace("decoder_pos_embed" , "decoder.decoder_pos_embed" ) if "pos_embed" in name and "decoder" not in name: UpperCAmelCase__ = name.replace("pos_embed" , "videomae.embeddings.position_embeddings" ) if "patch_embed.proj" in name: UpperCAmelCase__ = name.replace("patch_embed.proj" , "videomae.embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: UpperCAmelCase__ = name.replace("patch_embed.norm" , "videomae.embeddings.norm" ) if "decoder.blocks" in name: UpperCAmelCase__ = name.replace("decoder.blocks" , "decoder.decoder_layers" ) if "blocks" in name: UpperCAmelCase__ = name.replace("blocks" , "videomae.encoder.layer" ) if "attn.proj" in name: UpperCAmelCase__ = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name and "bias" not in name: UpperCAmelCase__ = name.replace("attn" , "attention.self" ) if "attn" in name: UpperCAmelCase__ = name.replace("attn" , "attention.attention" ) if "norm1" in name: UpperCAmelCase__ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: UpperCAmelCase__ = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: UpperCAmelCase__ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: UpperCAmelCase__ = name.replace("mlp.fc2" , "output.dense" ) if "decoder_embed" in name: UpperCAmelCase__ = name.replace("decoder_embed" , "decoder.decoder_embed" ) if "decoder_norm" in name: UpperCAmelCase__ = name.replace("decoder_norm" , "decoder.decoder_norm" ) if "decoder_pred" in name: UpperCAmelCase__ = name.replace("decoder_pred" , "decoder.decoder_pred" ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: UpperCAmelCase__ = name.replace("norm.weight" , "videomae.layernorm.weight" ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: UpperCAmelCase__ = name.replace("norm.bias" , "videomae.layernorm.bias" ) if "head" in name and "decoder" not in name: UpperCAmelCase__ = name.replace("head" , "classifier" ) return name def lowerCAmelCase ( _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any] ): """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCAmelCase__ = orig_state_dict.pop(A_ ) if key.startswith("encoder." ): UpperCAmelCase__ = key.replace("encoder." , "" ) if "qkv" in key: UpperCAmelCase__ = key.split("." ) if key.startswith("decoder.blocks" ): UpperCAmelCase__ = config.decoder_hidden_size UpperCAmelCase__ = int(key_split[2] ) UpperCAmelCase__ = "decoder.decoder_layers." if "weight" in key: UpperCAmelCase__ = val[:dim, :] UpperCAmelCase__ = val[dim : dim * 2, :] UpperCAmelCase__ = val[-dim:, :] else: UpperCAmelCase__ = config.hidden_size UpperCAmelCase__ = int(key_split[1] ) UpperCAmelCase__ = "videomae.encoder.layer." if "weight" in key: UpperCAmelCase__ = val[:dim, :] UpperCAmelCase__ = val[dim : dim * 2, :] UpperCAmelCase__ = val[-dim:, :] else: UpperCAmelCase__ = val return orig_state_dict def lowerCAmelCase ( ): """simple docstring""" UpperCAmelCase__ = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) UpperCAmelCase__ = np.load(A_ ) return list(A_ ) def lowerCAmelCase ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] ): """simple docstring""" UpperCAmelCase__ = get_videomae_config(A_ ) if "finetuned" in model_name: UpperCAmelCase__ = VideoMAEForVideoClassification(A_ ) else: UpperCAmelCase__ = VideoMAEForPreTraining(A_ ) # download original checkpoint, hosted on Google Drive UpperCAmelCase__ = "pytorch_model.bin" gdown.cached_download(A_ , A_ , quiet=A_ ) UpperCAmelCase__ = torch.load(A_ , map_location="cpu" ) if "model" in files: UpperCAmelCase__ = files["model"] else: UpperCAmelCase__ = files["module"] UpperCAmelCase__ = convert_state_dict(A_ , A_ ) model.load_state_dict(A_ ) model.eval() # verify model on basic input UpperCAmelCase__ = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) UpperCAmelCase__ = prepare_video() UpperCAmelCase__ = image_processor(A_ , return_tensors="pt" ) if "finetuned" not in model_name: UpperCAmelCase__ = hf_hub_download(repo_id="hf-internal-testing/bool-masked-pos" , filename="bool_masked_pos.pt" ) UpperCAmelCase__ = torch.load(A_ ) UpperCAmelCase__ = model(**A_ ) UpperCAmelCase__ = outputs.logits UpperCAmelCase__ = [ "videomae-small-finetuned-kinetics", "videomae-small-finetuned-ssv2", # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) "videomae-base-short", "videomae-base-short-finetuned-kinetics", "videomae-base", "videomae-base-finetuned-kinetics", "videomae-large", "videomae-large-finetuned-kinetics", "videomae-huge-finetuned-kinetics", # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) "videomae-base-short-ssv2", "videomae-base-short-finetuned-ssv2", "videomae-base-ssv2", "videomae-base-finetuned-ssv2", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": UpperCAmelCase__ = torch.Size([1, 400] ) UpperCAmelCase__ = torch.tensor([-0.9_291, -0.4_061, -0.9_307] ) elif model_name == "videomae-small-finetuned-ssv2": UpperCAmelCase__ = torch.Size([1, 174] ) UpperCAmelCase__ = torch.tensor([0.2_671, -0.4_689, -0.8_235] ) elif model_name == "videomae-base": UpperCAmelCase__ = torch.Size([1, 1408, 1536] ) UpperCAmelCase__ = torch.tensor([[0.7_739, 0.7_968, 0.7_089], [0.6_701, 0.7_487, 0.6_209], [0.4_287, 0.5_158, 0.4_773]] ) elif model_name == "videomae-base-short": UpperCAmelCase__ = torch.Size([1, 1408, 1536] ) UpperCAmelCase__ = torch.tensor([[0.7_994, 0.9_612, 0.8_508], [0.7_401, 0.8_958, 0.8_302], [0.5_862, 0.7_468, 0.7_325]] ) # we verified the loss both for normalized and unnormalized targets for this one UpperCAmelCase__ = torch.tensor([0.5_142] ) if config.norm_pix_loss else torch.tensor([0.6_469] ) elif model_name == "videomae-large": UpperCAmelCase__ = torch.Size([1, 1408, 1536] ) UpperCAmelCase__ = torch.tensor([[0.7_149, 0.7_997, 0.6_966], [0.6_768, 0.7_869, 0.6_948], [0.5_139, 0.6_221, 0.5_605]] ) elif model_name == "videomae-large-finetuned-kinetics": UpperCAmelCase__ = torch.Size([1, 400] ) UpperCAmelCase__ = torch.tensor([0.0_771, 0.0_011, -0.3_625] ) elif model_name == "videomae-huge-finetuned-kinetics": UpperCAmelCase__ = torch.Size([1, 400] ) UpperCAmelCase__ = torch.tensor([0.2_433, 0.1_632, -0.4_894] ) elif model_name == "videomae-base-short-finetuned-kinetics": UpperCAmelCase__ = torch.Size([1, 400] ) UpperCAmelCase__ = torch.tensor([0.6_588, 0.0_990, -0.2_493] ) elif model_name == "videomae-base-finetuned-kinetics": UpperCAmelCase__ = torch.Size([1, 400] ) UpperCAmelCase__ = torch.tensor([0.3_669, -0.0_688, -0.2_421] ) elif model_name == "videomae-base-short-ssv2": UpperCAmelCase__ = torch.Size([1, 1408, 1536] ) UpperCAmelCase__ = torch.tensor([[0.4_712, 0.5_296, 0.5_786], [0.2_278, 0.2_729, 0.4_026], [0.0_352, 0.0_730, 0.2_506]] ) elif model_name == "videomae-base-short-finetuned-ssv2": UpperCAmelCase__ = torch.Size([1, 174] ) UpperCAmelCase__ = torch.tensor([-0.0_537, -0.1_539, -0.3_266] ) elif model_name == "videomae-base-ssv2": UpperCAmelCase__ = torch.Size([1, 1408, 1536] ) UpperCAmelCase__ = torch.tensor([[0.8_131, 0.8_727, 0.8_546], [0.7_366, 0.9_377, 0.8_870], [0.5_935, 0.8_874, 0.8_564]] ) elif model_name == "videomae-base-finetuned-ssv2": UpperCAmelCase__ = torch.Size([1, 174] ) UpperCAmelCase__ = torch.tensor([0.1_961, -0.8_337, -0.6_389] ) else: raise ValueError(F'''Model name not supported. Should be one of {model_names}''' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , A_ , atol=1E-4 ) else: print("Logits:" , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , A_ , atol=1E-4 ) print("Logits ok!" ) # verify loss, if applicable if model_name == "videomae-base-short": UpperCAmelCase__ = outputs.loss assert torch.allclose(A_ , A_ , atol=1E-4 ) print("Loss ok!" ) if pytorch_dump_folder_path is not None: print(F'''Saving model and image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(A_ ) model.save_pretrained(A_ ) if push_to_hub: print("Pushing to the hub..." ) model.push_to_hub(A_ , organization="nielsr" ) if __name__ == "__main__": _lowerCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4", type=str, help=( "URL of the original PyTorch checkpoint (on Google Drive) you\'d like to convert. Should be a direct" " download link." ), ) parser.add_argument( "--pytorch_dump_folder_path", default="/Users/nielsrogge/Documents/VideoMAE/Test", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--model_name", default="videomae-base", type=str, help="Name of the model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
169
import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __magic_name__ = torch.nn.Linear(10 , 10 ) __magic_name__ = torch.optim.SGD(model.parameters() , 0.1 ) __magic_name__ = Accelerator() __magic_name__ = accelerator.prepare(UpperCamelCase__ ) try: pickle.loads(pickle.dumps(UpperCamelCase__ ) ) except Exception as e: self.fail(F'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
88
0
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable UpperCamelCase_ = {"configuration_gpt_neox": ["GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXConfig"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["GPTNeoXTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoXForCausalLM", "GPTNeoXForQuestionAnswering", "GPTNeoXForSequenceClassification", "GPTNeoXForTokenClassification", "GPTNeoXLayer", "GPTNeoXModel", "GPTNeoXPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
369
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: UpperCamelCase_ = None UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} UpperCamelCase_ = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json" ), }, } UpperCamelCase_ = { "facebook/nllb-large-en-ro": 1_0_2_4, "facebook/nllb-200-distilled-600M": 1_0_2_4, } # fmt: off UpperCamelCase_ = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : Optional[Any] = VOCAB_FILES_NAMES A : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Dict = PRETRAINED_VOCAB_FILES_MAP A : Any = ['''input_ids''', '''attention_mask'''] A : Dict = NllbTokenizer A : List[int] = [] A : List[int] = [] def __init__( self, A=None, A=None, A="<s>", A="</s>", A="</s>", A="<s>", A="<unk>", A="<pad>", A="<mask>", A=None, A=None, A=None, A=False, **A, ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = AddedToken(A, lstrip=A, rstrip=A ) if isinstance(A, A ) else mask_token SCREAMING_SNAKE_CASE : Tuple = legacy_behaviour super().__init__( vocab_file=A, tokenizer_file=A, bos_token=A, eos_token=A, sep_token=A, cls_token=A, unk_token=A, pad_token=A, mask_token=A, src_lang=A, tgt_lang=A, additional_special_tokens=A, legacy_behaviour=A, **A, ) SCREAMING_SNAKE_CASE : Any = vocab_file SCREAMING_SNAKE_CASE : Optional[int] = False if not self.vocab_file else True SCREAMING_SNAKE_CASE : List[str] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) SCREAMING_SNAKE_CASE : Optional[Any] = { lang_code: self.convert_tokens_to_ids(A ) for lang_code in FAIRSEQ_LANGUAGE_CODES } SCREAMING_SNAKE_CASE : Dict = src_lang if src_lang is not None else 'eng_Latn' SCREAMING_SNAKE_CASE : Optional[Any] = self.convert_tokens_to_ids(self._src_lang ) SCREAMING_SNAKE_CASE : List[str] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def UpperCamelCase_ ( self ): '''simple docstring''' return self._src_lang @src_lang.setter def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCamelCase_ ( self, A, A = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase_ ( self, A, A = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase_ ( self, A, A, A, A, **A ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) SCREAMING_SNAKE_CASE : Union[str, Any] = src_lang SCREAMING_SNAKE_CASE : List[Any] = self(A, add_special_tokens=A, return_tensors=A, **A ) SCREAMING_SNAKE_CASE : Any = self.convert_tokens_to_ids(A ) SCREAMING_SNAKE_CASE : int = tgt_lang_id return inputs def UpperCamelCase_ ( self, A, A = "eng_Latn", A = None, A = "fra_Latn", **A, ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = src_lang SCREAMING_SNAKE_CASE : List[Any] = tgt_lang return super().prepare_seqaseq_batch(A, A, **A ) def UpperCamelCase_ ( self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase_ ( self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.convert_tokens_to_ids(A ) if self.legacy_behaviour: SCREAMING_SNAKE_CASE : str = [] SCREAMING_SNAKE_CASE : List[Any] = [self.eos_token_id, self.cur_lang_code] else: SCREAMING_SNAKE_CASE : Tuple = [self.cur_lang_code] SCREAMING_SNAKE_CASE : List[Any] = [self.eos_token_id] SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE : int = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE : Tuple = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str, pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str, special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens ) ), ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.convert_tokens_to_ids(A ) if self.legacy_behaviour: SCREAMING_SNAKE_CASE : List[Any] = [] SCREAMING_SNAKE_CASE : List[str] = [self.eos_token_id, self.cur_lang_code] else: SCREAMING_SNAKE_CASE : Dict = [self.cur_lang_code] SCREAMING_SNAKE_CASE : str = [self.eos_token_id] SCREAMING_SNAKE_CASE : Optional[int] = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE : List[str] = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE : Union[str, Any] = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str, pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str, special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens ) ), ) def UpperCamelCase_ ( self, A, A = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(A ): logger.error(F"Vocabulary path ({save_directory}) should be a directory." ) return SCREAMING_SNAKE_CASE : int = os.path.join( A, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file, A ) return (out_vocab_file,)
246
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input A : int = 'Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine' def UpperCamelCase ( ) -> Optional[int]: """simple docstring""" lowercase__ = _ask_options( """In which compute environment are you running?""" , ["""This machine""", """AWS (Amazon SageMaker)"""] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: lowercase__ = get_sagemaker_input() else: lowercase__ = get_cluster_input() return config def UpperCamelCase ( __magic_name__ : Optional[Any]=None ) -> int: """simple docstring""" if subparsers is not None: lowercase__ = subparsers.add_parser("""config""" , description=__magic_name__ ) else: lowercase__ = argparse.ArgumentParser("""Accelerate config command""" , description=__magic_name__ ) parser.add_argument( """--config_file""" , default=__magic_name__ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , ) if subparsers is not None: parser.set_defaults(func=__magic_name__ ) return parser def UpperCamelCase ( __magic_name__ : List[str] ) -> Dict: """simple docstring""" lowercase__ = get_user_input() if args.config_file is not None: lowercase__ = args.config_file else: if not os.path.isdir(__magic_name__ ): os.makedirs(__magic_name__ ) lowercase__ = default_yaml_config_file if config_file.endswith(""".json""" ): config.to_json_file(__magic_name__ ) else: config.to_yaml_file(__magic_name__ ) print(f'''accelerate configuration saved at {config_file}''' ) def UpperCamelCase ( ) -> List[Any]: """simple docstring""" lowercase__ = config_command_parser() lowercase__ = parser.parse_args() config_command(__magic_name__ ) if __name__ == "__main__": main()
305
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = np.array([[1, item, train_mtch[i]] for i, item in enumerate(__magic_name__ )] ) lowercase__ = np.array(__magic_name__ ) lowercase__ = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , __magic_name__ ) ) , x.transpose() ) , __magic_name__ ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = (1, 2, 1) lowercase__ = (1, 1, 0, 7) lowercase__ = SARIMAX( __magic_name__ , exog=__magic_name__ , order=__magic_name__ , seasonal_order=__magic_name__ ) lowercase__ = model.fit(disp=__magic_name__ , maxiter=600 , method="""nm""" ) lowercase__ = model_fit.predict(1 , len(__magic_name__ ) , exog=[test_match] ) return result[0] def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = SVR(kernel="""rbf""" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(__magic_name__ , __magic_name__ ) lowercase__ = regressor.predict(__magic_name__ ) return y_pred[0] def UpperCamelCase ( __magic_name__ : list ) -> float: """simple docstring""" train_user.sort() lowercase__ = np.percentile(__magic_name__ , 25 ) lowercase__ = np.percentile(__magic_name__ , 75 ) lowercase__ = qa - qa lowercase__ = qa - (iqr * 0.1) return low_lim def UpperCamelCase ( __magic_name__ : list , __magic_name__ : float ) -> bool: """simple docstring""" lowercase__ = 0 lowercase__ = 0 for i in list_vote: if i > actual_result: lowercase__ = not_safe + 1 else: if abs(abs(__magic_name__ ) - abs(__magic_name__ ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) A : Dict = [[1_8_2_3_1, 0.0, 1], [2_2_6_2_1, 1.0, 2], [1_5_6_7_5, 0.0, 3], [2_3_5_8_3, 1.0, 4]] A : str = pd.DataFrame( data_input, columns=['total_user', 'total_even', 'days'] ) A : Any = Normalizer().fit_transform(data_input_df.values) # split data A : Optional[int] = normalize_df[:, 2].tolist() A : Any = normalize_df[:, 0].tolist() A : str = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) A : int = normalize_df[:, [1, 2]].tolist() A : Any = x[: len(x) - 1] A : Tuple = x[len(x) - 1 :] # for linear regression & sarimax A : Optional[int] = total_date[: len(total_date) - 1] A : Optional[int] = total_user[: len(total_user) - 1] A : str = total_match[: len(total_match) - 1] A : Union[str, Any] = total_date[len(total_date) - 1 :] A : List[str] = total_user[len(total_user) - 1 :] A : str = total_match[len(total_match) - 1 :] # voting system with forecasting A : int = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data A : int = '' if data_safety_checker(res_vote, tst_user) else 'not ' print('Today\'s data is {not_str}safe.')
305
1
'''simple docstring''' from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class UpperCAmelCase ( _a ): _lowercase: "DiagonalGaussianDistribution" class UpperCAmelCase ( _a , _a ): _lowercase: List[str] = True @register_to_config def __init__( self : Optional[int] , __snake_case : int = 3 , __snake_case : int = 3 , __snake_case : Tuple[str] = ("DownEncoderBlock2D",) , __snake_case : Tuple[str] = ("UpDecoderBlock2D",) , __snake_case : Tuple[int] = (64,) , __snake_case : int = 1 , __snake_case : str = "silu" , __snake_case : int = 4 , __snake_case : int = 32 , __snake_case : int = 32 , __snake_case : float = 0.1_82_15 , ) -> List[Any]: super().__init__() # pass init params to Encoder _lowerCAmelCase = Encoder( in_channels=__lowerCamelCase , out_channels=__lowerCamelCase , down_block_types=__lowerCamelCase , block_out_channels=__lowerCamelCase , layers_per_block=__lowerCamelCase , act_fn=__lowerCamelCase , norm_num_groups=__lowerCamelCase , double_z=__lowerCamelCase , ) # pass init params to Decoder _lowerCAmelCase = Decoder( in_channels=__lowerCamelCase , out_channels=__lowerCamelCase , up_block_types=__lowerCamelCase , block_out_channels=__lowerCamelCase , layers_per_block=__lowerCamelCase , norm_num_groups=__lowerCamelCase , act_fn=__lowerCamelCase , ) _lowerCAmelCase = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) _lowerCAmelCase = nn.Convad(__lowerCamelCase , __lowerCamelCase , 1 ) _lowerCAmelCase = False _lowerCAmelCase = False # only relevant if vae tiling is enabled _lowerCAmelCase = self.config.sample_size _lowerCAmelCase = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) _lowerCAmelCase = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) _lowerCAmelCase = 0.25 def lowercase__ ( self : Dict , __snake_case : str , __snake_case : int=False ) -> Any: if isinstance(__lowerCamelCase , (Encoder, Decoder) ): _lowerCAmelCase = value def lowercase__ ( self : str , __snake_case : bool = True ) -> Optional[Any]: _lowerCAmelCase = use_tiling def lowercase__ ( self : Optional[int] ) -> str: self.enable_tiling(__lowerCamelCase ) def lowercase__ ( self : Union[str, Any] ) -> int: _lowerCAmelCase = True def lowercase__ ( self : Tuple ) -> List[str]: _lowerCAmelCase = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowercase__ ( self : Any ) -> List[str]: _lowerCAmelCase = {} def fn_recursive_add_processors(__snake_case : str , __snake_case : torch.nn.Module , __snake_case : Dict[str, AttentionProcessor] ): if hasattr(__lowerCamelCase , """set_processor""" ): _lowerCAmelCase = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}" , __lowerCamelCase , __lowerCamelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return processors def lowercase__ ( self : List[str] , __snake_case : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ) -> Any: _lowerCAmelCase = len(self.attn_processors.keys() ) if isinstance(__lowerCamelCase , __lowerCamelCase ) and len(__lowerCamelCase ) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(__lowerCamelCase )} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(__snake_case : str , __snake_case : torch.nn.Module , __snake_case : Tuple ): if hasattr(__lowerCamelCase , """set_processor""" ): if not isinstance(__lowerCamelCase , __lowerCamelCase ): module.set_processor(__lowerCamelCase ) else: module.set_processor(processor.pop(f"{name}.processor" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}" , __lowerCamelCase , __lowerCamelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def lowercase__ ( self : Dict ) -> Optional[int]: self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def lowercase__ ( self : List[str] , __snake_case : torch.FloatTensor , __snake_case : bool = True ) -> Optional[Any]: if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(__lowerCamelCase , return_dict=__lowerCamelCase ) if self.use_slicing and x.shape[0] > 1: _lowerCAmelCase = [self.encoder(__lowerCamelCase ) for x_slice in x.split(1 )] _lowerCAmelCase = torch.cat(__lowerCamelCase ) else: _lowerCAmelCase = self.encoder(__lowerCamelCase ) _lowerCAmelCase = self.quant_conv(__lowerCamelCase ) _lowerCAmelCase = DiagonalGaussianDistribution(__lowerCamelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=__lowerCamelCase ) def lowercase__ ( self : int , __snake_case : torch.FloatTensor , __snake_case : bool = True ) -> Tuple: if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(__lowerCamelCase , return_dict=__lowerCamelCase ) _lowerCAmelCase = self.post_quant_conv(__lowerCamelCase ) _lowerCAmelCase = self.decoder(__lowerCamelCase ) if not return_dict: return (dec,) return DecoderOutput(sample=__lowerCamelCase ) @apply_forward_hook def lowercase__ ( self : List[str] , __snake_case : torch.FloatTensor , __snake_case : bool = True ) -> List[str]: if self.use_slicing and z.shape[0] > 1: _lowerCAmelCase = [self._decode(__lowerCamelCase ).sample for z_slice in z.split(1 )] _lowerCAmelCase = torch.cat(__lowerCamelCase ) else: _lowerCAmelCase = self._decode(__lowerCamelCase ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=__lowerCamelCase ) def lowercase__ ( self : Optional[Any] , __snake_case : List[str] , __snake_case : Union[str, Any] , __snake_case : List[Any] ) -> str: _lowerCAmelCase = min(a.shape[2] , b.shape[2] , __lowerCamelCase ) for y in range(__lowerCamelCase ): _lowerCAmelCase = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def lowercase__ ( self : Union[str, Any] , __snake_case : List[Any] , __snake_case : Dict , __snake_case : Optional[Any] ) -> Any: _lowerCAmelCase = min(a.shape[3] , b.shape[3] , __lowerCamelCase ) for x in range(__lowerCamelCase ): _lowerCAmelCase = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def lowercase__ ( self : str , __snake_case : torch.FloatTensor , __snake_case : bool = True ) -> Optional[int]: _lowerCAmelCase = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) _lowerCAmelCase = int(self.tile_latent_min_size * self.tile_overlap_factor ) _lowerCAmelCase = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. _lowerCAmelCase = [] for i in range(0 , x.shape[2] , __lowerCamelCase ): _lowerCAmelCase = [] for j in range(0 , x.shape[3] , __lowerCamelCase ): _lowerCAmelCase = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] _lowerCAmelCase = self.encoder(__lowerCamelCase ) _lowerCAmelCase = self.quant_conv(__lowerCamelCase ) row.append(__lowerCamelCase ) rows.append(__lowerCamelCase ) _lowerCAmelCase = [] for i, row in enumerate(__lowerCamelCase ): _lowerCAmelCase = [] for j, tile in enumerate(__lowerCamelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: _lowerCAmelCase = self.blend_v(rows[i - 1][j] , __lowerCamelCase , __lowerCamelCase ) if j > 0: _lowerCAmelCase = self.blend_h(row[j - 1] , __lowerCamelCase , __lowerCamelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(__lowerCamelCase , dim=3 ) ) _lowerCAmelCase = torch.cat(__lowerCamelCase , dim=2 ) _lowerCAmelCase = DiagonalGaussianDistribution(__lowerCamelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=__lowerCamelCase ) def lowercase__ ( self : str , __snake_case : torch.FloatTensor , __snake_case : bool = True ) -> int: _lowerCAmelCase = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) _lowerCAmelCase = int(self.tile_sample_min_size * self.tile_overlap_factor ) _lowerCAmelCase = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. _lowerCAmelCase = [] for i in range(0 , z.shape[2] , __lowerCamelCase ): _lowerCAmelCase = [] for j in range(0 , z.shape[3] , __lowerCamelCase ): _lowerCAmelCase = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] _lowerCAmelCase = self.post_quant_conv(__lowerCamelCase ) _lowerCAmelCase = self.decoder(__lowerCamelCase ) row.append(__lowerCamelCase ) rows.append(__lowerCamelCase ) _lowerCAmelCase = [] for i, row in enumerate(__lowerCamelCase ): _lowerCAmelCase = [] for j, tile in enumerate(__lowerCamelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: _lowerCAmelCase = self.blend_v(rows[i - 1][j] , __lowerCamelCase , __lowerCamelCase ) if j > 0: _lowerCAmelCase = self.blend_h(row[j - 1] , __lowerCamelCase , __lowerCamelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(__lowerCamelCase , dim=3 ) ) _lowerCAmelCase = torch.cat(__lowerCamelCase , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=__lowerCamelCase ) def lowercase__ ( self : List[str] , __snake_case : torch.FloatTensor , __snake_case : bool = False , __snake_case : bool = True , __snake_case : Optional[torch.Generator] = None , ) -> Tuple: _lowerCAmelCase = sample _lowerCAmelCase = self.encode(__lowerCamelCase ).latent_dist if sample_posterior: _lowerCAmelCase = posterior.sample(generator=__lowerCamelCase ) else: _lowerCAmelCase = posterior.mode() _lowerCAmelCase = self.decode(__lowerCamelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=__lowerCamelCase )
368
'''simple docstring''' import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" def get_masked_lm_array(lowerCAmelCase ): _lowerCAmelCase = f"masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE" _lowerCAmelCase = tf.train.load_variable(lowerCAmelCase , lowerCAmelCase ) if "kernel" in name: _lowerCAmelCase = array.transpose() return torch.from_numpy(lowerCAmelCase ) def get_encoder_array(lowerCAmelCase ): _lowerCAmelCase = f"encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE" _lowerCAmelCase = tf.train.load_variable(lowerCAmelCase , lowerCAmelCase ) if "kernel" in name: _lowerCAmelCase = array.transpose() return torch.from_numpy(lowerCAmelCase ) def get_encoder_layer_array(lowerCAmelCase , lowerCAmelCase ): _lowerCAmelCase = f"encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE" _lowerCAmelCase = tf.train.load_variable(lowerCAmelCase , lowerCAmelCase ) if "kernel" in name: _lowerCAmelCase = array.transpose() return torch.from_numpy(lowerCAmelCase ) def get_encoder_attention_layer_array(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): _lowerCAmelCase = f"encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE" _lowerCAmelCase = tf.train.load_variable(lowerCAmelCase , lowerCAmelCase ) _lowerCAmelCase = array.reshape(lowerCAmelCase ) if "kernel" in name: _lowerCAmelCase = array.transpose() return torch.from_numpy(lowerCAmelCase ) print(f"Loading model based on config from {config_path}..." ) _lowerCAmelCase = BertConfig.from_json_file(lowerCAmelCase ) _lowerCAmelCase = BertForMaskedLM(lowerCAmelCase ) # Layers for layer_index in range(0 , config.num_hidden_layers ): _lowerCAmelCase = model.bert.encoder.layer[layer_index] # Self-attention _lowerCAmelCase = layer.attention.self _lowerCAmelCase = get_encoder_attention_layer_array( lowerCAmelCase , """_query_dense/kernel""" , self_attn.query.weight.data.shape ) _lowerCAmelCase = get_encoder_attention_layer_array( lowerCAmelCase , """_query_dense/bias""" , self_attn.query.bias.data.shape ) _lowerCAmelCase = get_encoder_attention_layer_array( lowerCAmelCase , """_key_dense/kernel""" , self_attn.key.weight.data.shape ) _lowerCAmelCase = get_encoder_attention_layer_array( lowerCAmelCase , """_key_dense/bias""" , self_attn.key.bias.data.shape ) _lowerCAmelCase = get_encoder_attention_layer_array( lowerCAmelCase , """_value_dense/kernel""" , self_attn.value.weight.data.shape ) _lowerCAmelCase = get_encoder_attention_layer_array( lowerCAmelCase , """_value_dense/bias""" , self_attn.value.bias.data.shape ) # Self-attention Output _lowerCAmelCase = layer.attention.output _lowerCAmelCase = get_encoder_attention_layer_array( lowerCAmelCase , """_output_dense/kernel""" , self_output.dense.weight.data.shape ) _lowerCAmelCase = get_encoder_attention_layer_array( lowerCAmelCase , """_output_dense/bias""" , self_output.dense.bias.data.shape ) _lowerCAmelCase = get_encoder_layer_array(lowerCAmelCase , """_attention_layer_norm/gamma""" ) _lowerCAmelCase = get_encoder_layer_array(lowerCAmelCase , """_attention_layer_norm/beta""" ) # Intermediate _lowerCAmelCase = layer.intermediate _lowerCAmelCase = get_encoder_layer_array(lowerCAmelCase , """_intermediate_dense/kernel""" ) _lowerCAmelCase = get_encoder_layer_array(lowerCAmelCase , """_intermediate_dense/bias""" ) # Output _lowerCAmelCase = layer.output _lowerCAmelCase = get_encoder_layer_array(lowerCAmelCase , """_output_dense/kernel""" ) _lowerCAmelCase = get_encoder_layer_array(lowerCAmelCase , """_output_dense/bias""" ) _lowerCAmelCase = get_encoder_layer_array(lowerCAmelCase , """_output_layer_norm/gamma""" ) _lowerCAmelCase = get_encoder_layer_array(lowerCAmelCase , """_output_layer_norm/beta""" ) # Embeddings _lowerCAmelCase = get_encoder_array("""_position_embedding_layer/embeddings""" ) _lowerCAmelCase = get_encoder_array("""_type_embedding_layer/embeddings""" ) _lowerCAmelCase = get_encoder_array("""_embedding_norm_layer/gamma""" ) _lowerCAmelCase = get_encoder_array("""_embedding_norm_layer/beta""" ) # LM Head _lowerCAmelCase = model.cls.predictions.transform _lowerCAmelCase = get_masked_lm_array("""dense/kernel""" ) _lowerCAmelCase = get_masked_lm_array("""dense/bias""" ) _lowerCAmelCase = get_masked_lm_array("""layer_norm/gamma""" ) _lowerCAmelCase = get_masked_lm_array("""layer_norm/beta""" ) _lowerCAmelCase = get_masked_lm_array("""embedding_table""" ) # Pooling _lowerCAmelCase = BertPooler(config=lowerCAmelCase ) _lowerCAmelCase = get_encoder_array("""_pooler_layer/kernel""" ) _lowerCAmelCase = get_encoder_array("""_pooler_layer/bias""" ) # Export final model model.save_pretrained(lowerCAmelCase ) # Integration test - should load without any errors ;) _lowerCAmelCase = BertForMaskedLM.from_pretrained(lowerCAmelCase ) print(new_model.eval() ) print("""Model conversion was done sucessfully!""" ) if __name__ == "__main__": A__ : str =argparse.ArgumentParser() parser.add_argument( '''--tf_checkpoint_path''', type=str, required=True, help='''Path to the TensorFlow Token Dropping checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', type=str, required=True, help='''The config json file corresponding to the BERT model. This specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', type=str, required=True, help='''Path to the output PyTorch model.''', ) A__ : Dict =parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
220
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = { """MIT/ast-finetuned-audioset-10-10-0.4593""": ( """https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json""" ), } class _A ( _a ): """simple docstring""" UpperCAmelCase : List[str] = """audio-spectrogram-transformer""" def __init__( self : List[Any] , __UpperCAmelCase : str=768 , __UpperCAmelCase : Dict=12 , __UpperCAmelCase : Optional[int]=12 , __UpperCAmelCase : Any=3072 , __UpperCAmelCase : List[Any]="gelu" , __UpperCAmelCase : Tuple=0.0 , __UpperCAmelCase : Any=0.0 , __UpperCAmelCase : List[str]=0.02 , __UpperCAmelCase : int=1e-12 , __UpperCAmelCase : str=16 , __UpperCAmelCase : Optional[Any]=True , __UpperCAmelCase : Any=10 , __UpperCAmelCase : List[Any]=10 , __UpperCAmelCase : List[str]=1024 , __UpperCAmelCase : str=128 , **__UpperCAmelCase : Dict , ): super().__init__(**__UpperCAmelCase) a : Any = hidden_size a : Tuple = num_hidden_layers a : Any = num_attention_heads a : Optional[Any] = intermediate_size a : str = hidden_act a : Tuple = hidden_dropout_prob a : Optional[int] = attention_probs_dropout_prob a : Optional[int] = initializer_range a : Any = layer_norm_eps a : Optional[int] = patch_size a : Optional[Any] = qkv_bias a : Optional[Any] = frequency_stride a : Optional[Any] = time_stride a : Tuple = max_length a : Optional[Any] = num_mel_bins
40
'''simple docstring''' import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device __A = False class A ( unittest.TestCase ): pass @slow @require_torch_gpu class A ( unittest.TestCase ): def A__ ( self ) -> Any: '''simple docstring''' lowercase__ = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowercase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) lowercase__ = torch.manual_seed(0 ) lowercase__ = pipe( image=lowerCamelCase__ , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images lowercase__ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.04_41, 0.04_69, 0.05_07, 0.05_75, 0.06_32, 0.06_50, 0.08_65, 0.09_09, 0.09_45] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
164
0
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE__ ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self : Dict ,**lowerCamelCase__ : Union[str, Any] ) -> Tuple: '''simple docstring''' super().__init__(**A__ ) requires_backends(self ,"""vision""" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : List[Any] ,lowerCamelCase__ : Optional[int] ,**lowerCamelCase__ : List[str] ) -> str: '''simple docstring''' return super().__call__(A__ ,**A__ ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ,**lowerCamelCase__ : Optional[int] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = {} if "candidate_labels" in kwargs: SCREAMING_SNAKE_CASE = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: SCREAMING_SNAKE_CASE = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def SCREAMING_SNAKE_CASE__ ( self : Any ,lowerCamelCase__ : str ,lowerCamelCase__ : str=None ,lowerCamelCase__ : Union[str, Any]="This is a photo of {}." ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = load_image(A__ ) SCREAMING_SNAKE_CASE = self.image_processor(images=[image] ,return_tensors=self.framework ) SCREAMING_SNAKE_CASE = candidate_labels SCREAMING_SNAKE_CASE = [hypothesis_template.format(A__ ) for x in candidate_labels] SCREAMING_SNAKE_CASE = self.tokenizer(A__ ,return_tensors=self.framework ,padding=A__ ) SCREAMING_SNAKE_CASE = [text_inputs] return inputs def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ,lowerCamelCase__ : Tuple ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = model_inputs.pop("""candidate_labels""" ) SCREAMING_SNAKE_CASE = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] ,A__ ): SCREAMING_SNAKE_CASE = text_inputs[0] else: # Batching case. SCREAMING_SNAKE_CASE = text_inputs[0][0] SCREAMING_SNAKE_CASE = self.model(**A__ ,**A__ ) SCREAMING_SNAKE_CASE = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_image, } return model_outputs def SCREAMING_SNAKE_CASE__ ( self : List[str] ,lowerCamelCase__ : List[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = model_outputs.pop("""candidate_labels""" ) SCREAMING_SNAKE_CASE = model_outputs["""logits"""][0] if self.framework == "pt": SCREAMING_SNAKE_CASE = logits.softmax(dim=-1 ).squeeze(-1 ) SCREAMING_SNAKE_CASE = probs.tolist() if not isinstance(A__ ,A__ ): SCREAMING_SNAKE_CASE = [scores] elif self.framework == "tf": SCREAMING_SNAKE_CASE = stable_softmax(A__ ,axis=-1 ) SCREAMING_SNAKE_CASE = probs.numpy().tolist() else: raise ValueError(F"""Unsupported framework: {self.framework}""" ) SCREAMING_SNAKE_CASE = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(A__ ,A__ ) ,key=lambda lowerCamelCase__ : -x[0] ) ] return result
359
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = TypeVar("""DatasetType""", Dataset, IterableDataset) def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "first_exhausted" , ) -> DatasetType: '''simple docstring''' from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError("""Unable to interleave an empty list of datasets.""" ) for i, dataset in enumerate(_SCREAMING_SNAKE_CASE ): if not isinstance(_SCREAMING_SNAKE_CASE , (Dataset, IterableDataset) ): if isinstance(_SCREAMING_SNAKE_CASE , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ """is an empty dataset dictionary.""" ) raise ValueError( F"""Dataset at position {i} has at least one split: {list(_SCREAMING_SNAKE_CASE )}\n""" F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_SCREAMING_SNAKE_CASE ) )}']""" ) raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_SCREAMING_SNAKE_CASE ).__name__}.""" ) if i == 0: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = ( (Dataset, IterableDataset) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else (IterableDataset, Dataset) ) elif not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError( F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F"""{stopping_strategy} is not supported. Please enter a valid stopping_strategy.""" ) if dataset_type is Dataset: return _interleave_map_style_datasets( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , info=_SCREAMING_SNAKE_CASE , split=_SCREAMING_SNAKE_CASE , stopping_strategy=_SCREAMING_SNAKE_CASE ) else: return _interleave_iterable_datasets( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , info=_SCREAMING_SNAKE_CASE , split=_SCREAMING_SNAKE_CASE , stopping_strategy=_SCREAMING_SNAKE_CASE ) def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 0 , ) -> DatasetType: '''simple docstring''' if not dsets: raise ValueError("""Unable to concatenate an empty list of datasets.""" ) for i, dataset in enumerate(_SCREAMING_SNAKE_CASE ): if not isinstance(_SCREAMING_SNAKE_CASE , (Dataset, IterableDataset) ): if isinstance(_SCREAMING_SNAKE_CASE , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ """is an empty dataset dictionary.""" ) raise ValueError( F"""Dataset at position {i} has at least one split: {list(_SCREAMING_SNAKE_CASE )}\n""" F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_SCREAMING_SNAKE_CASE ) )}']""" ) raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_SCREAMING_SNAKE_CASE ).__name__}.""" ) if i == 0: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = ( (Dataset, IterableDataset) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else (IterableDataset, Dataset) ) elif not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError( F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if dataset_type is Dataset: return _concatenate_map_style_datasets(_SCREAMING_SNAKE_CASE , info=_SCREAMING_SNAKE_CASE , split=_SCREAMING_SNAKE_CASE , axis=_SCREAMING_SNAKE_CASE ) else: return _concatenate_iterable_datasets(_SCREAMING_SNAKE_CASE , info=_SCREAMING_SNAKE_CASE , split=_SCREAMING_SNAKE_CASE , axis=_SCREAMING_SNAKE_CASE )
193
0
'''simple docstring''' from decimal import Decimal, getcontext from math import ceil, factorial def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): raise TypeError('''Undefined for non-integers''' ) elif precision < 1: raise ValueError('''Undefined for non-natural numbers''' ) A : Optional[int] = precision A : str = ceil(precision / 14 ) A : List[str] = 42_6880 * Decimal(1_0005 ).sqrt() A : List[str] = 1 A : Tuple = 1359_1409 A : List[Any] = Decimal(snake_case__ ) for k in range(1 , snake_case__ ): A : List[Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(snake_case__ ) ** 3) linear_term += 5_4514_0134 exponential_term *= -26_2537_4126_4076_8000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": lowercase : int = 50 print(f'''The first {n} digits of pi is: {pi(n)}''')
3
'''simple docstring''' def lowerCAmelCase (__A , __A): """simple docstring""" _a = int(__A) # Initialize Result _a = [] # Traverse through all denomination for denomination in reversed(__A): # Find denominations while int(__A) >= int(__A): total_value -= int(__A) answer.append(__A) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": lowercase_ = [] lowercase_ = "0" if ( input("Do you want to enter your denominations ? (yY/n): ").strip().lower() == "y" ): lowercase_ = int(input("Enter the number of denominations you want to add: ").strip()) for i in range(0, n): denominations.append(int(input(F"""Denomination {i}: """).strip())) lowercase_ = input("Enter the change you want to make in Indian Currency: ").strip() else: # All denominations of Indian Currency if user does not enter lowercase_ = [1, 2, 5, 10, 20, 50, 100, 500, 2_000] lowercase_ = input("Enter the change you want to make: ").strip() if int(value) == 0 or int(value) < 0: print("The total value cannot be zero or negative.") else: print(F"""Following is minimal change for {value}: """) lowercase_ = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=" ")
211
0
import datasets from .evaluate import evaluate a__ : Dict = '''\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } ''' a__ : List[str] = ''' This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. ''' a__ : List[Any] = ''' Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair as given in the references (see below) - \'prediction_text\': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair (see above), - \'answers\': a Dict in the CUAD dataset format { \'text\': list of possible texts for the answer, as a list of strings \'answer_start\': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: \'exact_match\': Exact match (the normalized answer exactly match the gold answer) \'f1\': The F-score of predicted tokens versus the gold answer \'aupr\': Area Under the Precision-Recall curve \'prec_at_80_recall\': Precision at 80% recall \'prec_at_90_recall\': Precision at 90% recall Examples: >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> cuad_metric = datasets.load_metric("cuad") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): """simple docstring""" def __lowerCAmelCase ( self ) ->Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': { '''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ), }, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ) , codebase_urls=['''https://www.atticusprojectai.org/cuad'''] , reference_urls=['''https://www.atticusprojectai.org/cuad'''] , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Tuple: SCREAMING_SNAKE_CASE : Any = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} SCREAMING_SNAKE_CASE : int = [ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] SCREAMING_SNAKE_CASE : Dict = evaluate(dataset=_lowerCamelCase , predictions=_lowerCamelCase ) return score
19
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : Any = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[Any] = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys a__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
19
1
from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract lowercase__ : Any = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> List[str]: return [ int(1_0_0_0 * (box[0] / width) ), int(1_0_0_0 * (box[1] / height) ), int(1_0_0_0 * (box[2] / width) ), int(1_0_0_0 * (box[3] / height) ), ] def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> Optional[Any]: lowerCAmelCase = to_pil_image(__A ) lowerCAmelCase , lowerCAmelCase = pil_image.size lowerCAmelCase = pytesseract.image_to_data(__A , lang=__A , output_type='''dict''' , config=__A ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates lowerCAmelCase = [idx for idx, word in enumerate(__A ) if not word.strip()] lowerCAmelCase = [word for idx, word in enumerate(__A ) if idx not in irrelevant_indices] lowerCAmelCase = [coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowerCAmelCase = [coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowerCAmelCase = [coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowerCAmelCase = [coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowerCAmelCase = [] for x, y, w, h in zip(__A , __A , __A , __A ): lowerCAmelCase = [x, y, x + w, y + h] actual_boxes.append(__A ) # finally, normalize the bounding boxes lowerCAmelCase = [] for box in actual_boxes: normalized_boxes.append(normalize_box(__A , __A , __A ) ) assert len(__A ) == len(__A ), "Not as many words as there are bounding boxes" return words, normalized_boxes class lowercase_ ( UpperCamelCase_ ): """simple docstring""" UpperCAmelCase_ : Tuple = ['pixel_values'] def __init__( self , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = PILImageResampling.BILINEAR , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = 1 / 255 , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "" , **__SCREAMING_SNAKE_CASE , ) ->None: super().__init__(**__SCREAMING_SNAKE_CASE ) lowerCAmelCase = size if size is not None else {'''height''': 224, '''width''': 224} lowerCAmelCase = get_size_dict(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = do_resize lowerCAmelCase = size lowerCAmelCase = resample lowerCAmelCase = do_rescale lowerCAmelCase = rescale_value lowerCAmelCase = do_normalize lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD lowerCAmelCase = apply_ocr lowerCAmelCase = ocr_lang lowerCAmelCase = tesseract_config def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = PILImageResampling.BILINEAR , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ) ->np.ndarray: lowerCAmelCase = get_size_dict(__SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(F"The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}" ) lowerCAmelCase = (size['''height'''], size['''width''']) return resize(__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE , resample=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ) ->np.ndarray: return rescale(__SCREAMING_SNAKE_CASE , scale=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ) ->np.ndarray: return normalize(__SCREAMING_SNAKE_CASE , mean=__SCREAMING_SNAKE_CASE , std=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **__SCREAMING_SNAKE_CASE , ) ->PIL.Image.Image: lowerCAmelCase = do_resize if do_resize is not None else self.do_resize lowerCAmelCase = size if size is not None else self.size lowerCAmelCase = get_size_dict(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = resample if resample is not None else self.resample lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase = image_mean if image_mean is not None else self.image_mean lowerCAmelCase = image_std if image_std is not None else self.image_std lowerCAmelCase = apply_ocr if apply_ocr is not None else self.apply_ocr lowerCAmelCase = ocr_lang if ocr_lang is not None else self.ocr_lang lowerCAmelCase = tesseract_config if tesseract_config is not None else self.tesseract_config lowerCAmelCase = make_list_of_images(__SCREAMING_SNAKE_CASE ) if not valid_images(__SCREAMING_SNAKE_CASE ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. lowerCAmelCase = [to_numpy_array(__SCREAMING_SNAKE_CASE ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) lowerCAmelCase = [] lowerCAmelCase = [] for image in images: lowerCAmelCase , lowerCAmelCase = apply_tesseract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) words_batch.append(__SCREAMING_SNAKE_CASE ) boxes_batch.append(__SCREAMING_SNAKE_CASE ) if do_resize: lowerCAmelCase = [self.resize(image=__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE , resample=__SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: lowerCAmelCase = [self.rescale(image=__SCREAMING_SNAKE_CASE , scale=__SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: lowerCAmelCase = [self.normalize(image=__SCREAMING_SNAKE_CASE , mean=__SCREAMING_SNAKE_CASE , std=__SCREAMING_SNAKE_CASE ) for image in images] lowerCAmelCase = [to_channel_dimension_format(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for image in images] lowerCAmelCase = BatchFeature(data={'''pixel_values''': images} , tensor_type=__SCREAMING_SNAKE_CASE ) if apply_ocr: lowerCAmelCase = words_batch lowerCAmelCase = boxes_batch return data
338
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "EleutherAI/gpt-j-6B": "https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class __A ( A ): '''simple docstring''' __lowerCamelCase : Any = 'gptj' __lowerCamelCase : List[str] = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__(self , A=50_400 , A=2_048 , A=4_096 , A=28 , A=16 , A=64 , A=None , A="gelu_new" , A=0.0 , A=0.0 , A=0.0 , A=1E-5 , A=0.02 , A=True , A=50_256 , A=50_256 , A=False , **A , ) -> Tuple: """simple docstring""" _a = vocab_size _a = n_positions _a = n_embd _a = n_layer _a = n_head _a = n_inner _a = rotary_dim _a = activation_function _a = resid_pdrop _a = embd_pdrop _a = attn_pdrop _a = layer_norm_epsilon _a = initializer_range _a = use_cache _a = bos_token_id _a = eos_token_id super().__init__( bos_token_id=A , eos_token_id=A , tie_word_embeddings=A , **A ) class __A ( A ): '''simple docstring''' def __init__(self , A , A = "default" , A = None , A = False , ) -> List[str]: """simple docstring""" super().__init__(A , task=A , patching_specs=A , use_past=A ) if not getattr(self._config , '''pad_token_id''' , A ): # TODO: how to do that better? _a = 0 @property def a__ (self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" _a = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(A , direction='''inputs''' ) _a = {0: '''batch''', 1: '''past_sequence + sequence'''} else: _a = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def a__ (self ) -> int: """simple docstring""" return self._config.n_layer @property def a__ (self ) -> int: """simple docstring""" return self._config.n_head def a__ (self , A , A = -1 , A = -1 , A = False , A = None , ) -> Mapping[str, Any]: """simple docstring""" _a = super(A , self ).generate_dummy_inputs( A , batch_size=A , seq_length=A , is_pair=A , framework=A ) # We need to order the input in the way they appears in the forward() _a = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _a , _a = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values _a = seqlen + 2 _a = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _a = [ (torch.zeros(A ), torch.zeros(A )) for _ in range(self.num_layers ) ] _a = common_inputs['''attention_mask'''] if self.use_past: _a = ordered_inputs['''attention_mask'''].dtype _a = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(A , A , dtype=A )] , dim=1 ) return ordered_inputs @property def a__ (self ) -> int: """simple docstring""" return 13
211
0
"""simple docstring""" def lowercase__ ( _UpperCAmelCase : Optional[Any] = 10 ) -> str: '''simple docstring''' if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or n < 0: raise ValueError('Invalid input' ) lowercase : List[Any] = 10**n lowercase : int = 2_84_33 * (pow(2 , 7_83_04_57 , _UpperCAmelCase )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(f'''{solution(1_0) = }''')
368
"""simple docstring""" from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING _UpperCamelCase: Tuple = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE__ ) class a__ ( SCREAMING_SNAKE_CASE__ ): def __init__( self : int, **lowerCAmelCase : str ) -> Any: super().__init__(**lowerCAmelCase ) requires_backends(self, 'vision' ) requires_backends(self, 'torch' ) if self.framework != "pt": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) self.check_model_type(lowerCAmelCase ) def lowercase ( self : Optional[int], **lowerCAmelCase : int ) -> Tuple: lowercase : List[Any] = {} lowercase : List[str] = {} lowercase : Optional[int] = {} # preprocess args if "points_per_batch" in kwargs: lowercase : List[Any] = kwargs['points_per_batch'] if "points_per_crop" in kwargs: lowercase : Tuple = kwargs['points_per_crop'] if "crops_n_layers" in kwargs: lowercase : Any = kwargs['crops_n_layers'] if "crop_overlap_ratio" in kwargs: lowercase : Dict = kwargs['crop_overlap_ratio'] if "crop_n_points_downscale_factor" in kwargs: lowercase : str = kwargs['crop_n_points_downscale_factor'] # postprocess args if "pred_iou_thresh" in kwargs: lowercase : List[str] = kwargs['pred_iou_thresh'] if "stability_score_offset" in kwargs: lowercase : List[str] = kwargs['stability_score_offset'] if "mask_threshold" in kwargs: lowercase : str = kwargs['mask_threshold'] if "stability_score_thresh" in kwargs: lowercase : Optional[int] = kwargs['stability_score_thresh'] if "crops_nms_thresh" in kwargs: lowercase : Dict = kwargs['crops_nms_thresh'] if "output_rle_mask" in kwargs: lowercase : int = kwargs['output_rle_mask'] if "output_bboxes_mask" in kwargs: lowercase : Union[str, Any] = kwargs['output_bboxes_mask'] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self : List[Any], lowerCAmelCase : List[str], *lowerCAmelCase : Optional[Any], lowerCAmelCase : Dict=None, lowerCAmelCase : Union[str, Any]=None, **lowerCAmelCase : int ) -> List[str]: return super().__call__(lowerCAmelCase, *lowerCAmelCase, num_workers=lowerCAmelCase, batch_size=lowerCAmelCase, **lowerCAmelCase ) def lowercase ( self : List[Any], lowerCAmelCase : Union[str, Any], lowerCAmelCase : Tuple=64, lowerCAmelCase : int = 0, lowerCAmelCase : float = 512 / 1500, lowerCAmelCase : Optional[int] = 32, lowerCAmelCase : Optional[int] = 1, ) -> Union[str, Any]: lowercase : List[Any] = load_image(lowerCAmelCase ) lowercase : str = self.image_processor.size['longest_edge'] lowercase , lowercase , lowercase , lowercase : List[Any] = self.image_processor.generate_crop_boxes( lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) lowercase : Any = self.image_processor(images=lowerCAmelCase, return_tensors='pt' ) with self.device_placement(): if self.framework == "pt": lowercase : Optional[int] = self.get_inference_context() with inference_context(): lowercase : List[str] = self._ensure_tensor_on_device(lowerCAmelCase, device=self.device ) lowercase : int = self.model.get_image_embeddings(model_inputs.pop('pixel_values' ) ) lowercase : List[Any] = image_embeddings lowercase : Dict = grid_points.shape[1] lowercase : Any = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( 'Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ' 'To return all points at once, set points_per_batch to None' ) for i in range(0, lowerCAmelCase, lowerCAmelCase ): lowercase : Optional[int] = grid_points[:, i : i + points_per_batch, :, :] lowercase : List[str] = input_labels[:, i : i + points_per_batch] lowercase : Optional[Any] = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def lowercase ( self : Any, lowerCAmelCase : List[str], lowerCAmelCase : str=0.88, lowerCAmelCase : Optional[int]=0.95, lowerCAmelCase : str=0, lowerCAmelCase : Optional[int]=1, ) -> Optional[int]: lowercase : Optional[int] = model_inputs.pop('input_boxes' ) lowercase : Any = model_inputs.pop('is_last' ) lowercase : Tuple = model_inputs.pop('original_sizes' ).tolist() lowercase : Union[str, Any] = model_inputs.pop('reshaped_input_sizes' ).tolist() lowercase : str = self.model(**lowerCAmelCase ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks lowercase : str = model_outputs['pred_masks'] lowercase : str = self.image_processor.post_process_masks( lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, binarize=lowerCAmelCase ) lowercase : Dict = model_outputs['iou_scores'] lowercase , lowercase , lowercase : int = self.image_processor.filter_masks( masks[0], iou_scores[0], original_sizes[0], input_boxes[0], lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def lowercase ( self : Optional[Any], lowerCAmelCase : str, lowerCAmelCase : Tuple=False, lowerCAmelCase : Any=False, lowerCAmelCase : Tuple=0.7, ) -> List[str]: lowercase : Any = [] lowercase : Optional[Any] = [] lowercase : Optional[Any] = [] for model_output in model_outputs: all_scores.append(model_output.pop('iou_scores' ) ) all_masks.extend(model_output.pop('masks' ) ) all_boxes.append(model_output.pop('boxes' ) ) lowercase : Optional[Any] = torch.cat(lowerCAmelCase ) lowercase : List[Any] = torch.cat(lowerCAmelCase ) lowercase , lowercase , lowercase , lowercase : str = self.image_processor.post_process_for_mask_generation( lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) lowercase : str = defaultdict(lowerCAmelCase ) for output in model_outputs: for k, v in output.items(): extra[k].append(lowerCAmelCase ) lowercase : Dict = {} if output_rle_mask: lowercase : Tuple = rle_mask if output_bboxes_mask: lowercase : Tuple = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
53
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer _lowerCamelCase : Optional[int] = logging.get_logger(__name__) _lowerCamelCase : Tuple = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCamelCase : Union[str, Any] = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } _lowerCamelCase : List[str] = { """google/realm-cc-news-pretrained-embedder""": 512, """google/realm-cc-news-pretrained-encoder""": 512, """google/realm-cc-news-pretrained-scorer""": 512, """google/realm-cc-news-pretrained-openqa""": 512, """google/realm-orqa-nq-openqa""": 512, """google/realm-orqa-nq-reader""": 512, """google/realm-orqa-wq-openqa""": 512, """google/realm-orqa-wq-reader""": 512, } _lowerCamelCase : Dict = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = RealmTokenizer def __init__( self : Union[str, Any] , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : Any="[UNK]" , UpperCAmelCase__ : List[str]="[SEP]" , UpperCAmelCase__ : Tuple="[PAD]" , UpperCAmelCase__ : str="[CLS]" , UpperCAmelCase__ : Dict="[MASK]" , UpperCAmelCase__ : str=True , UpperCAmelCase__ : Tuple=None , **UpperCAmelCase__ : List[str] , ) ->Union[str, Any]: '''simple docstring''' super().__init__( UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , do_lower_case=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , tokenize_chinese_chars=UpperCAmelCase__ , strip_accents=UpperCAmelCase__ , **UpperCAmelCase__ , ) A__ = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get('''lowercase''' , UpperCAmelCase__) != do_lower_case or normalizer_state.get('''strip_accents''' , UpperCAmelCase__) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , UpperCAmelCase__) != tokenize_chinese_chars ): A__ = getattr(UpperCAmelCase__ , normalizer_state.pop('''type''')) A__ = do_lower_case A__ = strip_accents A__ = tokenize_chinese_chars A__ = normalizer_class(**UpperCAmelCase__) A__ = do_lower_case def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : Dict , **UpperCAmelCase__ : int) ->str: '''simple docstring''' A__ = PaddingStrategy.MAX_LENGTH A__ = text A__ = kwargs.pop('''text_pair''' , UpperCAmelCase__) A__ = kwargs.pop('''return_tensors''' , UpperCAmelCase__) A__ = { '''input_ids''': [], '''attention_mask''': [], '''token_type_ids''': [], } for idx, candidate_text in enumerate(UpperCAmelCase__): if batch_text_pair is not None: A__ = batch_text_pair[idx] else: A__ = None A__ = super().__call__(UpperCAmelCase__ , UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , **UpperCAmelCase__) A__ = encoded_candidates.get('''input_ids''') A__ = encoded_candidates.get('''attention_mask''') A__ = encoded_candidates.get('''token_type_ids''') if encoded_input_ids is not None: output_data["input_ids"].append(UpperCAmelCase__) if encoded_attention_mask is not None: output_data["attention_mask"].append(UpperCAmelCase__) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(UpperCAmelCase__) A__ = {key: item for key, item in output_data.items() if len(UpperCAmelCase__) != 0} return BatchEncoding(UpperCAmelCase__ , tensor_type=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[Any]=None) ->str: '''simple docstring''' A__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' A__ = self._tokenizer.model.save(UpperCAmelCase__ , name=UpperCAmelCase__) return tuple(UpperCAmelCase__)
14
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class A__ ( __UpperCAmelCase , unittest.TestCase ): """simple docstring""" __A : Optional[int] = ShapEImgaImgPipeline __A : Tuple = ['''image'''] __A : Any = ['''image'''] __A : Optional[Any] = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] __A : Dict = False @property def __lowercase ( self) -> Any: '''simple docstring''' return 32 @property def __lowercase ( self) -> Optional[int]: '''simple docstring''' return 32 @property def __lowercase ( self) -> Optional[Any]: '''simple docstring''' return self.time_input_dim * 4 @property def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' return 8 @property def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0) a__ : Any = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) a__ : Dict = CLIPVisionModel(lowercase) return model @property def __lowercase ( self) -> List[Any]: '''simple docstring''' a__ : str = CLIPImageProcessor( crop_size=224 , do_center_crop=lowercase , do_normalize=lowercase , do_resize=lowercase , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor @property def __lowercase ( self) -> str: '''simple docstring''' torch.manual_seed(0) a__ : str = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'embedding_proj_norm_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } a__ : Any = PriorTransformer(**lowercase) return model @property def __lowercase ( self) -> Any: '''simple docstring''' torch.manual_seed(0) a__ : List[Any] = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } a__ : List[str] = ShapERenderer(**lowercase) return model def __lowercase ( self) -> str: '''simple docstring''' a__ : Dict = self.dummy_prior a__ : List[str] = self.dummy_image_encoder a__ : int = self.dummy_image_processor a__ : str = self.dummy_renderer a__ : Optional[int] = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1024 , prediction_type='sample' , use_karras_sigmas=lowercase , clip_sample=lowercase , clip_sample_range=1.0 , ) a__ : List[Any] = { 'prior': prior, 'image_encoder': image_encoder, 'image_processor': image_processor, 'renderer': renderer, 'scheduler': scheduler, } return components def __lowercase ( self , lowercase , lowercase=0) -> List[str]: '''simple docstring''' a__ : List[str] = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowercase)).to(lowercase) if str(lowercase).startswith('mps'): a__ : List[str] = torch.manual_seed(lowercase) else: a__ : str = torch.Generator(device=lowercase).manual_seed(lowercase) a__ : Tuple = { 'image': input_image, 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def __lowercase ( self) -> Any: '''simple docstring''' a__ : int = 'cpu' a__ : List[str] = self.get_dummy_components() a__ : Dict = self.pipeline_class(**lowercase) a__ : Optional[int] = pipe.to(lowercase) pipe.set_progress_bar_config(disable=lowercase) a__ : Tuple = pipe(**self.get_dummy_inputs(lowercase)) a__ : Any = output.images[0] a__ : Any = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) a__ : List[str] = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __lowercase ( self) -> Any: '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2]) def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' a__ : str = torch_device == 'cpu' a__ : Tuple = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowercase , relax_max_difference=lowercase , ) def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : List[str] = self.get_dummy_components() a__ : str = self.pipeline_class(**lowercase) a__ : List[str] = pipe.to(lowercase) pipe.set_progress_bar_config(disable=lowercase) a__ : Optional[Any] = 1 a__ : List[str] = 2 a__ : Optional[Any] = self.get_dummy_inputs(lowercase) for key in inputs.keys(): if key in self.batch_params: a__ : Any = batch_size * [inputs[key]] a__ : int = pipe(**lowercase , num_images_per_prompt=lowercase)[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class A__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self) -> Dict: '''simple docstring''' a__ : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/corgi.png') a__ : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_img2img_out.npy') a__ : List[str] = ShapEImgaImgPipeline.from_pretrained('openai/shap-e-img2img') a__ : Tuple = pipe.to(lowercase) pipe.set_progress_bar_config(disable=lowercase) a__ : List[Any] = torch.Generator(device=lowercase).manual_seed(0) a__ : Optional[int] = pipe( lowercase , generator=lowercase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowercase , lowercase)
99
0
def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = 0 for ch in input_str: SCREAMING_SNAKE_CASE__ = ord(_A ) SCREAMING_SNAKE_CASE__ = pow(2 , _A ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
218
import comet # From: unbabel-comet import torch import datasets _SCREAMING_SNAKE_CASE : List[str] = datasets.logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Any = '''\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = "{COMET}: A Neural Framework for {MT} Evaluation", author = "Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.213", pages = "2685--2702", } ''' _SCREAMING_SNAKE_CASE : Optional[Any] = '''\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. ''' _SCREAMING_SNAKE_CASE : str = ''' COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric(\'comet\') >>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use >>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."] >>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"] >>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results["scores"]]) [0.19, 0.92] ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__ ( datasets.Metric ): """simple docstring""" def lowercase_ ( self : List[Any] ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://unbabel.github.io/COMET/html/index.html''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''sources''': datasets.Value('''string''' , id='''sequence''' ), '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/Unbabel/COMET'''] , reference_urls=[ '''https://github.com/Unbabel/COMET''', '''https://www.aclweb.org/anthology/2020.emnlp-main.213/''', '''http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6''', ] , ) def lowercase_ ( self : List[Any] , __lowerCamelCase : Dict ) -> Tuple: if self.config_name == "default": SCREAMING_SNAKE_CASE__ = comet.load_from_checkpoint(comet.download_model('''wmt20-comet-da''' ) ) else: SCREAMING_SNAKE_CASE__ = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def lowercase_ ( self : int , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict=None , __lowerCamelCase : Optional[int]=False ) -> str: if gpus is None: SCREAMING_SNAKE_CASE__ = 1 if torch.cuda.is_available() else 0 SCREAMING_SNAKE_CASE__ = {'''src''': sources, '''mt''': predictions, '''ref''': references} SCREAMING_SNAKE_CASE__ = [dict(zip(__lowerCamelCase , __lowerCamelCase ) ) for t in zip(*data.values() )] SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.scorer.predict(__lowerCamelCase , gpus=__lowerCamelCase , progress_bar=__lowerCamelCase ) return {"mean_score": mean_score, "scores": scores}
218
1
import functools def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' if not isinstance(_UpperCAmelCase, _UpperCAmelCase ) or not all(isinstance(_UpperCAmelCase, _UpperCAmelCase ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(_UpperCAmelCase ) != 3 or not all(isinstance(_UpperCAmelCase, _UpperCAmelCase ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(_UpperCAmelCase ) == 0: return 0 if min(_UpperCAmelCase ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(_UpperCAmelCase ) >= 366: raise ValueError('All days elements should be less than 366' ) lowerCAmelCase : List[str] = set(_UpperCAmelCase ) @functools.cache def dynamic_programming(_UpperCAmelCase ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ), costs[1] + dynamic_programming(index + 7 ), costs[2] + dynamic_programming(index + 30 ), ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
138
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' __UpperCAmelCase = [[] for _ in range(SCREAMING_SNAKE_CASE )] __UpperCAmelCase = key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1 or len(SCREAMING_SNAKE_CASE ) <= key: return input_string for position, character in enumerate(SCREAMING_SNAKE_CASE ): __UpperCAmelCase = position % (lowest * 2) # puts it in bounds __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = [''''''.join(SCREAMING_SNAKE_CASE ) for row in temp_grid] __UpperCAmelCase = ''''''.join(SCREAMING_SNAKE_CASE ) return output_string def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' __UpperCAmelCase = [] __UpperCAmelCase = key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1: return input_string __UpperCAmelCase = [[] for _ in range(SCREAMING_SNAKE_CASE )] # generates template for position in range(len(SCREAMING_SNAKE_CASE ) ): __UpperCAmelCase = position % (lowest * 2) # puts it in bounds __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append('''*''' ) __UpperCAmelCase = 0 for row in temp_grid: # fills in the characters __UpperCAmelCase = input_string[counter : counter + len(SCREAMING_SNAKE_CASE )] grid.append(list(SCREAMING_SNAKE_CASE ) ) counter += len(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = '''''' # reads as zigzag for position in range(len(SCREAMING_SNAKE_CASE ) ): __UpperCAmelCase = position % (lowest * 2) # puts it in bounds __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def __a ( SCREAMING_SNAKE_CASE ) -> dict[int, str]: '''simple docstring''' __UpperCAmelCase = {} for key_guess in range(1 , len(SCREAMING_SNAKE_CASE ) ): # tries every key __UpperCAmelCase = decrypt(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return results if __name__ == "__main__": import doctest doctest.testmod()
333
0
A_ : dict[str, float] = { "km/h": 1.0, "m/s": 3.6, "mph": 1.609344, "knot": 1.852, } A_ : dict[str, float] = { "km/h": 1.0, "m/s": 0.277777778, "mph": 0.621371192, "knot": 0.539956803, } def UpperCamelCase (lowercase_: float , lowercase_: str , lowercase_: str ) -> float: if unit_to not in speed_chart or unit_from not in speed_chart_inverse: A__ : List[str] = ( f"""Incorrect 'from_type' or 'to_type' value: {unit_from!r}, {unit_to!r}\n""" f"""Valid values are: {', '.join(lowercase_ )}""" ) raise ValueError(lowercase_ ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
352
from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class _a : '''simple docstring''' def __init__( self , A__ , ): A__ : Any = parent A__ : Any = 13 A__ : Optional[Any] = 7 A__ : Union[str, Any] = 30 A__ : str = self.seq_length + self.mem_len A__ : Dict = 15 A__ : int = True A__ : Tuple = True A__ : Union[str, Any] = 99 A__ : Optional[Any] = [10, 50, 80] A__ : str = 32 A__ : Tuple = 32 A__ : Union[str, Any] = 4 A__ : Optional[Any] = 8 A__ : int = 128 A__ : List[Any] = 2 A__ : List[str] = 2 A__ : int = None A__ : List[str] = 1 A__ : Union[str, Any] = 0 A__ : List[str] = 3 A__ : int = self.vocab_size - 1 A__ : Optional[Any] = 0.0_1 def __A ( self ): A__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Optional[Any] = None if self.use_labels: A__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Any = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def __A ( self ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def __A ( self , A__ , A__ , A__ , A__ ): A__ : Dict = TFTransfoXLModel(A__ ) A__ , A__ : Tuple = model(A__ ).to_tuple() A__ : List[str] = {"""input_ids""": input_ids_a, """mems""": mems_a} A__ , A__ : str = model(A__ ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __A ( self , A__ , A__ , A__ , A__ ): A__ : Optional[int] = TFTransfoXLLMHeadModel(A__ ) A__ , A__ : int = model(A__ ).to_tuple() A__ : int = {"""input_ids""": input_ids_a, """labels""": lm_labels} A__ , A__ : Optional[Any] = model(A__ ).to_tuple() A__ , A__ : Union[str, Any] = model([input_ids_a, mems_a] ).to_tuple() A__ : Any = {"""input_ids""": input_ids_a, """mems""": mems_a, """labels""": lm_labels} A__ , A__ : Tuple = model(A__ ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __A ( self , A__ , A__ , A__ , A__ ): A__ : Any = TFTransfoXLForSequenceClassification(A__ ) A__ : Optional[Any] = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self ): A__ : Optional[Any] = self.prepare_config_and_inputs() ((A__) , (A__) , (A__) , (A__)) : List[Any] = config_and_inputs A__ : int = {"""input_ids""": input_ids_a} return config, inputs_dict @require_tf class _a (__magic_name__ , __magic_name__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__: List[Any] = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) UpperCAmelCase__: Optional[Any] = () if is_tf_available() else () UpperCAmelCase__: int = ( { '''feature-extraction''': TFTransfoXLModel, '''text-classification''': TFTransfoXLForSequenceClassification, '''text-generation''': TFTransfoXLLMHeadModel, '''zero-shot''': TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented UpperCAmelCase__: Optional[int] = False UpperCAmelCase__: Optional[int] = False UpperCAmelCase__: Tuple = False UpperCAmelCase__: List[str] = False def __A ( self , A__ , A__ , A__ , A__ , A__ ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def __A ( self ): A__ : Tuple = TFTransfoXLModelTester(self ) A__ : List[Any] = ConfigTester(self , config_class=A__ , d_embed=37 ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): self.model_tester.set_seed() A__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*A__ ) def __A ( self ): self.model_tester.set_seed() A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*A__ ) def __A ( self ): A__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*A__ ) def __A ( self ): A__ , A__ : int = self.model_tester.prepare_config_and_inputs_for_common() A__ : Union[str, Any] = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: A__ : Any = model_class(A__ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: A__ : Optional[Any] = model.get_output_embeddings() assert isinstance(A__ , tf.keras.layers.Layer ) A__ : Tuple = model.get_bias() assert name is None else: A__ : Dict = model.get_output_embeddings() assert x is None A__ : int = model.get_bias() assert name is None def __A ( self ): # TODO JP: Make TransfoXL XLA compliant pass @slow def __A ( self ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : List[Any] = TFTransfoXLModel.from_pretrained(A__ ) self.assertIsNotNone(A__ ) @unittest.skip(reason="""This model doesn't play well with fit() due to not returning a single loss.""" ) def __A ( self ): pass @require_tf class _a (unittest.TestCase ): '''simple docstring''' @unittest.skip("""Skip test until #12651 is resolved.""" ) @slow def __A ( self ): A__ : List[Any] = TFTransfoXLLMHeadModel.from_pretrained("""transfo-xl-wt103""" ) # fmt: off A__ : Tuple = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off A__ : Dict = [33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0,33,1,1857,2,1,1009,4,1109,1_1739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> A__ : Any = model.generate(A__ , max_length=200 , do_sample=A__ ) self.assertListEqual(output_ids[0].numpy().tolist() , A__ )
141
0
"""simple docstring""" from __future__ import annotations import math def a_ ( lowerCamelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a_ ( lowerCamelCase ): UpperCAmelCase__ = str(lowerCamelCase ) UpperCAmelCase__ = [n] for i in range(1 , len(lowerCamelCase ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def a_ ( lowerCamelCase ): if len(str(lowerCamelCase ) ) > 3: if not is_prime(int(str(lowerCamelCase )[-3:] ) ) or not is_prime(int(str(lowerCamelCase )[:3] ) ): return False return True def a_ ( lowerCamelCase = 1_1 ): UpperCAmelCase__ = [] UpperCAmelCase__ = 1_3 while len(lowerCamelCase ) != count: if validate(lowerCamelCase ): UpperCAmelCase__ = list_truncated_nums(lowerCamelCase ) if all(is_prime(lowerCamelCase ) for i in list_nums ): list_truncated_primes.append(lowerCamelCase ) num += 2 return list_truncated_primes def a_ ( ): return sum(compute_truncated_primes(1_1 ) ) if __name__ == "__main__": print(F"""{sum(compute_truncated_primes(11)) = }""")
98
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class __magic_name__ ( _UpperCAmelCase): def __init__( self : Optional[Any] , lowercase_ : str ): lowercase_ : int = data def __iter__( self : int ): for element in self.data: yield element def lowerCamelCase ( UpperCAmelCase__ : Any=True ) -> Any: lowercase_ : Optional[int] = Accelerator(even_batches=UpperCAmelCase__ ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def lowerCamelCase ( UpperCAmelCase__ : Accelerator , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : bool = False ) -> Optional[Any]: if iterable: lowercase_ : Dict = DummyIterableDataset(torch.as_tensor(range(UpperCAmelCase__ ) ) ) else: lowercase_ : Union[str, Any] = TensorDataset(torch.as_tensor(range(UpperCAmelCase__ ) ) ) lowercase_ : Any = DataLoader(UpperCAmelCase__ , batch_size=UpperCAmelCase__ ) lowercase_ : Any = accelerator.prepare(UpperCAmelCase__ ) return dl def lowerCamelCase ( UpperCAmelCase__ : Accelerator , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : List[int] , ) -> int: lowercase_ : List[str] = create_dataloader(accelerator=UpperCAmelCase__ , dataset_size=UpperCAmelCase__ , batch_size=UpperCAmelCase__ ) lowercase_ : Tuple = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def lowerCamelCase ( ) -> int: lowercase_ : Tuple = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( UpperCAmelCase__ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( UpperCAmelCase__ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def lowerCamelCase ( ) -> Optional[int]: lowercase_ : Optional[int] = create_accelerator(even_batches=UpperCAmelCase__ ) verify_dataloader_batch_sizes( UpperCAmelCase__ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( UpperCAmelCase__ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def lowerCamelCase ( ) -> List[str]: lowercase_ : str = create_accelerator(even_batches=UpperCAmelCase__ ) lowercase_ : Dict = torch.nn.Linear(1 , 1 ) lowercase_ : Optional[Any] = accelerator.prepare(UpperCAmelCase__ ) lowercase_ : List[Any] = create_dataloader(UpperCAmelCase__ , dataset_size=3 , batch_size=1 ) lowercase_ : Optional[Any] = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(UpperCAmelCase__ ): lowercase_ : Any = ddp_model(batch[0].float() ) lowercase_ : List[str] = output.sum() loss.backward() batch_idxs.append(UpperCAmelCase__ ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def lowerCamelCase ( UpperCAmelCase__ : List[str] ) -> List[str]: with warnings.catch_warnings(record=UpperCAmelCase__ ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , UpperCAmelCase__ ) assert "only supported for multi-GPU" in str(w[-1].message ) def lowerCamelCase ( ) -> Any: lowercase_ : str = True lowercase_ : Tuple = False lowercase_ : str = create_accelerator(even_batches=UpperCAmelCase__ ) lowercase_ : Union[str, Any] = torch.nn.Linear(1 , 1 ) lowercase_ : Any = accelerator.prepare(UpperCAmelCase__ ) lowercase_ : Optional[int] = create_dataloader(UpperCAmelCase__ , dataset_size=3 , batch_size=1 ) lowercase_ : List[Any] = create_dataloader(UpperCAmelCase__ , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=UpperCAmelCase__ ): lowercase_ : Union[str, Any] = train_dl.batch_sampler.even_batches lowercase_ : List[str] = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def lowerCamelCase ( ) -> Dict: lowercase_ : str = True lowercase_ : Optional[Any] = False lowercase_ : Union[str, Any] = create_accelerator(even_batches=UpperCAmelCase__ ) lowercase_ : Optional[int] = torch.nn.Linear(1 , 1 ) lowercase_ : Optional[int] = accelerator.prepare(UpperCAmelCase__ ) create_dataloader(UpperCAmelCase__ , dataset_size=3 , batch_size=1 , iterable=UpperCAmelCase__ ) lowercase_ : List[str] = create_dataloader(UpperCAmelCase__ , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings("""ignore""" ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=UpperCAmelCase__ ): lowercase_ : Optional[Any] = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def lowerCamelCase ( ) -> List[Any]: lowercase_ : Optional[Any] = create_accelerator() lowercase_ : Optional[int] = torch.nn.Linear(1 , 1 ) lowercase_ : List[Any] = accelerator.prepare(UpperCAmelCase__ ) create_dataloader(UpperCAmelCase__ , dataset_size=3 , batch_size=1 , iterable=UpperCAmelCase__ ) with warnings.catch_warnings(record=UpperCAmelCase__ ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=UpperCAmelCase__ ): pass assert issubclass(w[-1].category , UpperCAmelCase__ ) assert "only supported for map-style datasets" in str(w[-1].message ) def lowerCamelCase ( ) -> List[str]: lowercase_ : List[Any] = create_accelerator() accelerator.print("""Test that even_batches variable ensures uniform batches across processes""" ) test_default_ensures_even_batch_sizes() accelerator.print("""Run tests with even_batches disabled""" ) test_can_disable_even_batches() accelerator.print("""Test joining uneven inputs""" ) test_can_join_uneven_inputs() accelerator.print("""Test overriding even_batches when joining uneven inputs""" ) test_join_can_override_even_batches() accelerator.print("""Test overriding even_batches for mixed dataloader types""" ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print("""Test overriding even_batches raises a warning for iterable dataloaders""" ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print("""Test join with non DDP distributed raises warning""" ) lowercase_ : List[Any] = accelerator.state.distributed_type lowercase_ : Union[str, Any] = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(UpperCAmelCase__ ) lowercase_ : str = original_state if __name__ == "__main__": main()
239
0
'''simple docstring''' import itertools import math def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Optional[int] = 2 while True: if is_prime(lowerCAmelCase ): yield num num += 1 def lowerCamelCase ( lowerCAmelCase : int = 1_0001 ): """simple docstring""" return next(itertools.islice(prime_generator() , nth - 1 , lowerCAmelCase ) ) if __name__ == "__main__": print(F'{solution() = }')
275
'''simple docstring''' from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP lowerCAmelCase :str = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase :int = ''' Examples: ```py >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline >>> import torch >>> pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/Kandinsky-2-1-prior") >>> pipe_prior.to("cuda") >>> prompt = "red cat, 4k photo" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> negative_image_emb = out.negative_image_embeds >>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1") >>> pipe.to("cuda") >>> image = pipe( ... prompt, ... image_embeds=image_emb, ... negative_image_embeds=negative_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... ).images >>> image[0].save("cat.png") ``` ''' def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any]=8 ): """simple docstring""" __magic_name__ : List[str] = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 __magic_name__ : str = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : Union[str, Any] , _A : MultilingualCLIP , _A : XLMRobertaTokenizer , _A : UNetaDConditionModel , _A : Union[DDIMScheduler, DDPMScheduler] , _A : VQModel , ) -> int: super().__init__() self.register_modules( text_encoder=_A , tokenizer=_A , unet=_A , scheduler=_A , movq=_A , ) __magic_name__ : List[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __lowerCAmelCase ( self : List[Any] , _A : Tuple , _A : Optional[Any] , _A : Optional[int] , _A : Dict , _A : str , _A : List[str] ) -> str: if latents is None: __magic_name__ : Any = randn_tensor(_A , generator=_A , device=_A , dtype=_A ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) __magic_name__ : int = latents.to(_A ) __magic_name__ : Union[str, Any] = latents * scheduler.init_noise_sigma return latents def __lowerCAmelCase ( self : List[Any] , _A : List[str] , _A : List[str] , _A : List[str] , _A : List[Any] , _A : str=None , ) -> Dict: __magic_name__ : Optional[Any] = len(_A ) if isinstance(_A , _A ) else 1 # get prompt text embeddings __magic_name__ : str = self.tokenizer( _A , padding='max_length' , truncation=_A , max_length=77 , return_attention_mask=_A , add_special_tokens=_A , return_tensors='pt' , ) __magic_name__ : Optional[Any] = text_inputs.input_ids __magic_name__ : Optional[Any] = self.tokenizer(_A , padding='longest' , return_tensors='pt' ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(_A , _A ): __magic_name__ : str = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F' {self.tokenizer.model_max_length} tokens: {removed_text}' ) __magic_name__ : Union[str, Any] = text_input_ids.to(_A ) __magic_name__ : Dict = text_inputs.attention_mask.to(_A ) __magic_name__ , __magic_name__ : str = self.text_encoder( input_ids=_A , attention_mask=_A ) __magic_name__ : Tuple = prompt_embeds.repeat_interleave(_A , dim=0 ) __magic_name__ : int = text_encoder_hidden_states.repeat_interleave(_A , dim=0 ) __magic_name__ : Union[str, Any] = text_mask.repeat_interleave(_A , dim=0 ) if do_classifier_free_guidance: __magic_name__ : List[str] if negative_prompt is None: __magic_name__ : Optional[Any] = [''] * batch_size elif type(_A ) is not type(_A ): raise TypeError( F'`negative_prompt` should be the same type to `prompt`, but got {type(_A )} !=' F' {type(_A )}.' ) elif isinstance(_A , _A ): __magic_name__ : int = [negative_prompt] elif batch_size != len(_A ): raise ValueError( F'`negative_prompt`: {negative_prompt} has batch size {len(_A )}, but `prompt`:' F' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' ' the batch size of `prompt`.' ) else: __magic_name__ : Dict = negative_prompt __magic_name__ : List[str] = self.tokenizer( _A , padding='max_length' , max_length=77 , truncation=_A , return_attention_mask=_A , add_special_tokens=_A , return_tensors='pt' , ) __magic_name__ : Optional[int] = uncond_input.input_ids.to(_A ) __magic_name__ : Optional[Any] = uncond_input.attention_mask.to(_A ) __magic_name__ , __magic_name__ : int = self.text_encoder( input_ids=_A , attention_mask=_A ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __magic_name__ : List[str] = negative_prompt_embeds.shape[1] __magic_name__ : str = negative_prompt_embeds.repeat(1 , _A ) __magic_name__ : Dict = negative_prompt_embeds.view(batch_size * num_images_per_prompt , _A ) __magic_name__ : Any = uncond_text_encoder_hidden_states.shape[1] __magic_name__ : Optional[int] = uncond_text_encoder_hidden_states.repeat(1 , _A , 1 ) __magic_name__ : Tuple = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , _A , -1 ) __magic_name__ : List[Any] = uncond_text_mask.repeat_interleave(_A , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __magic_name__ : Tuple = torch.cat([negative_prompt_embeds, prompt_embeds] ) __magic_name__ : str = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) __magic_name__ : str = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def __lowerCAmelCase ( self : Dict , _A : List[Any]=0 ) -> Tuple: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) __magic_name__ : List[Any] = torch.device(F'cuda:{gpu_id}' ) __magic_name__ : Dict = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_A , _A ) def __lowerCAmelCase ( self : List[Any] , _A : List[str]=0 ) -> str: if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) __magic_name__ : int = torch.device(F'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=_A ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __magic_name__ : Optional[int] = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: __magic_name__ , __magic_name__ : Union[str, Any] = cpu_offload_with_hook(_A , _A , prev_module_hook=_A ) if self.safety_checker is not None: __magic_name__ , __magic_name__ : List[str] = cpu_offload_with_hook(self.safety_checker , _A , prev_module_hook=_A ) # We'll offload the last model manually. __magic_name__ : Any = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __lowerCAmelCase ( self : int ) -> List[str]: if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_A , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_A ) def __call__( self : int , _A : Union[str, List[str]] , _A : Union[torch.FloatTensor, List[torch.FloatTensor]] , _A : Union[torch.FloatTensor, List[torch.FloatTensor]] , _A : Optional[Union[str, List[str]]] = None , _A : int = 512 , _A : int = 512 , _A : int = 100 , _A : float = 4.0 , _A : int = 1 , _A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _A : Optional[torch.FloatTensor] = None , _A : Optional[str] = "pil" , _A : bool = True , ) -> Optional[int]: if isinstance(_A , _A ): __magic_name__ : Optional[int] = 1 elif isinstance(_A , _A ): __magic_name__ : Union[str, Any] = len(_A ) else: raise ValueError(F'`prompt` has to be of type `str` or `list` but is {type(_A )}' ) __magic_name__ : Tuple = self._execution_device __magic_name__ : Any = batch_size * num_images_per_prompt __magic_name__ : int = guidance_scale > 1.0 __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] = self._encode_prompt( _A , _A , _A , _A , _A ) if isinstance(_A , _A ): __magic_name__ : Union[str, Any] = torch.cat(_A , dim=0 ) if isinstance(_A , _A ): __magic_name__ : Dict = torch.cat(_A , dim=0 ) if do_classifier_free_guidance: __magic_name__ : Dict = image_embeds.repeat_interleave(_A , dim=0 ) __magic_name__ : Optional[int] = negative_image_embeds.repeat_interleave(_A , dim=0 ) __magic_name__ : Optional[int] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=_A ) self.scheduler.set_timesteps(_A , device=_A ) __magic_name__ : Tuple = self.scheduler.timesteps __magic_name__ : Optional[int] = self.unet.config.in_channels __magic_name__ , __magic_name__ : Dict = get_new_h_w(_A , _A , self.movq_scale_factor ) # create initial latent __magic_name__ : Union[str, Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , _A , _A , _A , self.scheduler , ) for i, t in enumerate(self.progress_bar(_A ) ): # expand the latents if we are doing classifier free guidance __magic_name__ : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __magic_name__ : Tuple = {'text_embeds': prompt_embeds, 'image_embeds': image_embeds} __magic_name__ : Union[str, Any] = self.unet( sample=_A , timestep=_A , encoder_hidden_states=_A , added_cond_kwargs=_A , return_dict=_A , )[0] if do_classifier_free_guidance: __magic_name__ , __magic_name__ : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) __magic_name__ , __magic_name__ : Dict = noise_pred.chunk(2 ) __magic_name__ , __magic_name__ : List[str] = variance_pred.chunk(2 ) __magic_name__ : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __magic_name__ : Any = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __magic_name__ , __magic_name__ : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __magic_name__ : List[Any] = self.scheduler.step( _A , _A , _A , generator=_A , ).prev_sample # post-processing __magic_name__ : int = self.movq.decode(_A , force_not_quantize=_A )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: __magic_name__ : Dict = image * 0.5 + 0.5 __magic_name__ : str = image.clamp(0 , 1 ) __magic_name__ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __magic_name__ : str = self.numpy_to_pil(_A ) if not return_dict: return (image,) return ImagePipelineOutput(images=_A )
275
1
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def __lowerCamelCase ( __a :str , __a :List[str] , __a :List[str] ) -> Optional[Any]: """simple docstring""" if isinstance(__a , torch.Tensor ): return image elif isinstance(__a , PIL.Image.Image ): A__ = [image] if isinstance(image[0] , PIL.Image.Image ): A__ = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image] A__ = np.concatenate(__a , axis=0 ) A__ = np.array(__a ).astype(np.floataa ) / 255.0 A__ = image.transpose(0 , 3 , 1 , 2 ) A__ = 2.0 * image - 1.0 A__ = torch.from_numpy(__a ) elif isinstance(image[0] , torch.Tensor ): A__ = torch.cat(__a , dim=0 ) return image def __lowerCamelCase ( __a :Union[str, Any] , __a :Optional[int] , __a :Optional[Any] , __a :Optional[Any]=0.9995 ) -> int: """simple docstring""" if not isinstance(__a , np.ndarray ): A__ = True A__ = va.device A__ = va.cpu().numpy() A__ = va.cpu().numpy() A__ = np.sum(va * va / (np.linalg.norm(__a ) * np.linalg.norm(__a )) ) if np.abs(__a ) > DOT_THRESHOLD: A__ = (1 - t) * va + t * va else: A__ = np.arccos(__a ) A__ = np.sin(__a ) A__ = theta_a * t A__ = np.sin(__a ) A__ = np.sin(theta_a - theta_t ) / sin_theta_a A__ = sin_theta_t / sin_theta_a A__ = sa * va + sa * va if inputs_are_torch: A__ = torch.from_numpy(__a ).to(__a ) return va def __lowerCamelCase ( __a :int , __a :Union[str, Any] ) -> Union[str, Any]: """simple docstring""" A__ = F.normalize(__a , dim=-1 ) A__ = F.normalize(__a , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def __lowerCamelCase ( __a :Any , __a :Optional[int] ) -> int: """simple docstring""" for param in model.parameters(): A__ = value class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Union[str, Any] , __lowerCAmelCase : AutoencoderKL , __lowerCAmelCase : CLIPTextModel , __lowerCAmelCase : CLIPModel , __lowerCAmelCase : CLIPTokenizer , __lowerCAmelCase : UNetaDConditionModel , __lowerCAmelCase : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , __lowerCAmelCase : CLIPFeatureExtractor , __lowerCAmelCase : Dict=None , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : List[str]=None , ) -> str: """simple docstring""" super().__init__() self.register_modules( vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , clip_model=__lowerCAmelCase , tokenizer=__lowerCAmelCase , unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , feature_extractor=__lowerCAmelCase , coca_model=__lowerCAmelCase , coca_tokenizer=__lowerCAmelCase , coca_transform=__lowerCAmelCase , ) A__ = ( feature_extractor.size if isinstance(feature_extractor.size , __lowerCAmelCase ) else feature_extractor.size["""shortest_edge"""] ) A__ = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , __lowerCAmelCase ) set_requires_grad(self.clip_model , __lowerCAmelCase ) def a_ ( self : int , __lowerCAmelCase : Optional[Union[str, int]] = "auto" ) -> Tuple: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory A__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__lowerCAmelCase ) def a_ ( self : int ) -> str: """simple docstring""" self.enable_attention_slicing(__lowerCAmelCase ) def a_ ( self : int ) -> Tuple: """simple docstring""" set_requires_grad(self.vae , __lowerCAmelCase ) def a_ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" set_requires_grad(self.vae , __lowerCAmelCase ) def a_ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" set_requires_grad(self.unet , __lowerCAmelCase ) def a_ ( self : Any ) -> Optional[Any]: """simple docstring""" set_requires_grad(self.unet , __lowerCAmelCase ) def a_ ( self : Dict , __lowerCAmelCase : int , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple ) -> Dict: """simple docstring""" A__ = min(int(num_inference_steps * strength ) , __lowerCAmelCase ) A__ = max(num_inference_steps - init_timestep , 0 ) A__ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def a_ ( self : Any , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any]=None ) -> Optional[int]: """simple docstring""" if not isinstance(__lowerCAmelCase , torch.Tensor ): raise ValueError(f'`image` has to be of type `torch.Tensor` but is {type(__lowerCAmelCase )}' ) A__ = image.to(device=__lowerCAmelCase , dtype=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): A__ = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__lowerCAmelCase ) ] A__ = torch.cat(__lowerCAmelCase , dim=0 ) else: A__ = self.vae.encode(__lowerCAmelCase ).latent_dist.sample(__lowerCAmelCase ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor A__ = 0.1_8_2_1_5 * init_latents A__ = init_latents.repeat_interleave(__lowerCAmelCase , dim=0 ) A__ = randn_tensor(init_latents.shape , generator=__lowerCAmelCase , device=__lowerCAmelCase , dtype=__lowerCAmelCase ) # get latents A__ = self.scheduler.add_noise(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) A__ = init_latents return latents def a_ ( self : Tuple , __lowerCAmelCase : Union[str, Any] ) -> List[str]: """simple docstring""" A__ = self.coca_transform(__lowerCAmelCase ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): A__ = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) A__ = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("""<end_of_text>""" )[0].replace("""<start_of_text>""" , """""" ).rstrip(""" .,""" ) def a_ ( self : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" A__ = self.feature_extractor.preprocess(__lowerCAmelCase ) A__ = torch.from_numpy(clip_image_input["""pixel_values"""][0] ).unsqueeze(0 ).to(self.device ).half() A__ = self.clip_model.get_image_features(__lowerCAmelCase ) A__ = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=__lowerCAmelCase ) A__ = image_embeddings_clip.repeat_interleave(__lowerCAmelCase , dim=0 ) return image_embeddings_clip @torch.enable_grad() def a_ ( self : Union[str, Any] , __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : int , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int , ) -> Tuple: """simple docstring""" A__ = latents.detach().requires_grad_() A__ = self.scheduler.scale_model_input(__lowerCAmelCase , __lowerCAmelCase ) # predict the noise residual A__ = self.unet(__lowerCAmelCase , __lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): A__ = self.scheduler.alphas_cumprod[timestep] A__ = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf A__ = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 A__ = torch.sqrt(__lowerCAmelCase ) A__ = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , __lowerCAmelCase ): A__ = self.scheduler.sigmas[index] A__ = latents - sigma * noise_pred else: raise ValueError(f'scheduler type {type(self.scheduler )} not supported' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor A__ = 1 / 0.1_8_2_1_5 * sample A__ = self.vae.decode(__lowerCAmelCase ).sample A__ = (image / 2 + 0.5).clamp(0 , 1 ) A__ = transforms.Resize(self.feature_extractor_size )(__lowerCAmelCase ) A__ = self.normalize(__lowerCAmelCase ).to(latents.dtype ) A__ = self.clip_model.get_image_features(__lowerCAmelCase ) A__ = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=__lowerCAmelCase ) A__ = spherical_dist_loss(__lowerCAmelCase , __lowerCAmelCase ).mean() * clip_guidance_scale A__ = -torch.autograd.grad(__lowerCAmelCase , __lowerCAmelCase )[0] if isinstance(self.scheduler , __lowerCAmelCase ): A__ = latents.detach() + grads * (sigma**2) A__ = noise_pred_original else: A__ = noise_pred_original - torch.sqrt(__lowerCAmelCase ) * grads return noise_pred, latents @torch.no_grad() def __call__( self : List[Any] , __lowerCAmelCase : Union[torch.FloatTensor, PIL.Image.Image] , __lowerCAmelCase : Union[torch.FloatTensor, PIL.Image.Image] , __lowerCAmelCase : Optional[str] = None , __lowerCAmelCase : Optional[str] = None , __lowerCAmelCase : Optional[int] = 5_12 , __lowerCAmelCase : Optional[int] = 5_12 , __lowerCAmelCase : float = 0.6 , __lowerCAmelCase : Optional[int] = 50 , __lowerCAmelCase : Optional[float] = 7.5 , __lowerCAmelCase : Optional[int] = 1 , __lowerCAmelCase : float = 0.0 , __lowerCAmelCase : Optional[float] = 1_00 , __lowerCAmelCase : Optional[torch.Generator] = None , __lowerCAmelCase : Optional[str] = "pil" , __lowerCAmelCase : bool = True , __lowerCAmelCase : float = 0.8 , __lowerCAmelCase : float = 0.1 , __lowerCAmelCase : float = 0.1 , ) -> Dict: """simple docstring""" if isinstance(__lowerCAmelCase , __lowerCAmelCase ) and len(__lowerCAmelCase ) != batch_size: raise ValueError(f'You have passed {batch_size} batch_size, but only {len(__lowerCAmelCase )} generators.' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if isinstance(__lowerCAmelCase , torch.Generator ) and batch_size > 1: A__ = [generator] + [None] * (batch_size - 1) A__ = [ ("""model""", self.coca_model is None), ("""tokenizer""", self.coca_tokenizer is None), ("""transform""", self.coca_transform is None), ] A__ = [x[0] for x in coca_is_none if x[1]] A__ = """, """.join(__lowerCAmelCase ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(__lowerCAmelCase ): raise ValueError( f'Content prompt is None and CoCa [{coca_is_none_str}] is None.' f'Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.' ) A__ = self.get_image_description(__lowerCAmelCase ) if style_prompt is None: if len(__lowerCAmelCase ): raise ValueError( f'Style prompt is None and CoCa [{coca_is_none_str}] is None.' f' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.' ) A__ = self.get_image_description(__lowerCAmelCase ) # get prompt text embeddings for content and style A__ = self.tokenizer( __lowerCAmelCase , padding="""max_length""" , max_length=self.tokenizer.model_max_length , truncation=__lowerCAmelCase , return_tensors="""pt""" , ) A__ = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] A__ = self.tokenizer( __lowerCAmelCase , padding="""max_length""" , max_length=self.tokenizer.model_max_length , truncation=__lowerCAmelCase , return_tensors="""pt""" , ) A__ = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] A__ = slerp(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # duplicate text embeddings for each generation per prompt A__ = text_embeddings.repeat_interleave(__lowerCAmelCase , dim=0 ) # set timesteps A__ = """offset""" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) A__ = {} if accepts_offset: A__ = 1 self.scheduler.set_timesteps(__lowerCAmelCase , **__lowerCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) A__ , A__ = self.get_timesteps(__lowerCAmelCase , __lowerCAmelCase , self.device ) A__ = timesteps[:1].repeat(__lowerCAmelCase ) # Preprocess image A__ = preprocess(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) A__ = self.prepare_latents( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , text_embeddings.dtype , self.device , __lowerCAmelCase ) A__ = preprocess(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) A__ = self.prepare_latents( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , text_embeddings.dtype , self.device , __lowerCAmelCase ) A__ = slerp(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if clip_guidance_scale > 0: A__ = self.get_clip_image_embeddings(__lowerCAmelCase , __lowerCAmelCase ) A__ = self.get_clip_image_embeddings(__lowerCAmelCase , __lowerCAmelCase ) A__ = slerp( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. A__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: A__ = content_text_input.input_ids.shape[-1] A__ = self.tokenizer([""""""] , padding="""max_length""" , max_length=__lowerCAmelCase , return_tensors="""pt""" ) A__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt A__ = uncond_embeddings.repeat_interleave(__lowerCAmelCase , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes A__ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. A__ = (batch_size, self.unet.config.in_channels, height // 8, width // 8) A__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps A__ = torch.randn(__lowerCAmelCase , generator=__lowerCAmelCase , device="""cpu""" , dtype=__lowerCAmelCase ).to( self.device ) else: A__ = torch.randn(__lowerCAmelCase , generator=__lowerCAmelCase , device=self.device , dtype=__lowerCAmelCase ) else: if latents.shape != latents_shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) A__ = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler A__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] A__ = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) A__ = {} if accepts_eta: A__ = eta # check if the scheduler accepts generator A__ = """generator""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: A__ = generator with self.progress_bar(total=__lowerCAmelCase ): for i, t in enumerate(__lowerCAmelCase ): # expand the latents if we are doing classifier free guidance A__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A__ = self.scheduler.scale_model_input(__lowerCAmelCase , __lowerCAmelCase ) # predict the noise residual A__ = self.unet(__lowerCAmelCase , __lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase ).sample # perform classifier free guidance if do_classifier_free_guidance: A__ , A__ = noise_pred.chunk(2 ) A__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: A__ = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) A__ , A__ = self.cond_fn( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) # compute the previous noisy sample x_t -> x_t-1 A__ = self.scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor A__ = 1 / 0.1_8_2_1_5 * latents A__ = self.vae.decode(__lowerCAmelCase ).sample A__ = (image / 2 + 0.5).clamp(0 , 1 ) A__ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": A__ = self.numpy_to_pil(__lowerCAmelCase ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=__lowerCAmelCase , nsfw_content_detected=__lowerCAmelCase )
274
import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class A (unittest.TestCase ): '''simple docstring''' def a_ ( self : Any ) -> Union[str, Any]: """simple docstring""" A__ = ["""a""", """b""", """c"""] # Defaults to last layer if both are None A__ , A__ = get_aligned_output_features_output_indices(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , ["""c"""] ) self.assertEqual(__lowerCAmelCase , [2] ) # Out indices set to match out features A__ , A__ = get_aligned_output_features_output_indices(["""a""", """c"""] , __lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , ["""a""", """c"""] ) self.assertEqual(__lowerCAmelCase , [0, 2] ) # Out features set to match out indices A__ , A__ = get_aligned_output_features_output_indices(__lowerCAmelCase , [0, 2] , __lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , ["""a""", """c"""] ) self.assertEqual(__lowerCAmelCase , [0, 2] ) # Out features selected from negative indices A__ , A__ = get_aligned_output_features_output_indices(__lowerCAmelCase , [-3, -1] , __lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , ["""a""", """c"""] ) self.assertEqual(__lowerCAmelCase , [-3, -1] ) def a_ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" with self.assertRaises(__lowerCAmelCase ): verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , __lowerCAmelCase ) # Out features must be a list with self.assertRaises(__lowerCAmelCase ): verify_out_features_out_indices(("""a""", """b""") , (0, 1) , ["""a""", """b"""] ) # Out features must be a subset of stage names with self.assertRaises(__lowerCAmelCase ): verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , ["""a"""] ) # Out indices must be a list or tuple with self.assertRaises(__lowerCAmelCase ): verify_out_features_out_indices(__lowerCAmelCase , 0 , ["""a""", """b"""] ) # Out indices must be a subset of stage names with self.assertRaises(__lowerCAmelCase ): verify_out_features_out_indices(__lowerCAmelCase , (0, 1) , ["""a"""] ) # Out features and out indices must be the same length with self.assertRaises(__lowerCAmelCase ): verify_out_features_out_indices(["""a""", """b"""] , (0,) , ["""a""", """b""", """c"""] ) # Out features should match out indices with self.assertRaises(__lowerCAmelCase ): verify_out_features_out_indices(["""a""", """b"""] , (0, 2) , ["""a""", """b""", """c"""] ) # Out features and out indices should be in order with self.assertRaises(__lowerCAmelCase ): verify_out_features_out_indices(["""b""", """a"""] , (0, 1) , ["""a""", """b"""] ) # Check passes with valid inputs verify_out_features_out_indices(["""a""", """b""", """d"""] , (0, 1, -1) , ["""a""", """b""", """c""", """d"""] ) def a_ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" A__ = BackboneMixin() A__ = ["""a""", """b""", """c"""] A__ = ["""a""", """c"""] A__ = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ["""a""", """c"""] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly A__ = ["""a""", """b"""] self.assertEqual(backbone.out_features , ["""a""", """b"""] ) self.assertEqual(backbone.out_indices , [0, 1] ) A__ = [-3, -1] self.assertEqual(backbone.out_features , ["""a""", """c"""] ) self.assertEqual(backbone.out_indices , [-3, -1] )
274
1
"""simple docstring""" import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ : Tuple = { 'bart': ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'bert': ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-base-cased-finetuned-mrpc': ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'dpr': ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'gpt2': ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlnet': ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlm': ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlm-roberta': ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'transfo-xl': ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'openai-gpt': ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'roberta': ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'layoutlm': ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'roberta-large-mnli': ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'camembert': ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'flaubert': ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'distilbert': ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'distilbert-base-distilled-squad': ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'lxmert': ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'lxmert-visual-feature-encoder': ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'ctrl': ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'albert': ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 't5': ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'electra': ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'wav2vec2': ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def _snake_case ( UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Dict=True ): if model_type not in MODEL_CLASSES: raise ValueError(F"""Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.""" ) A__ , A__ , A__ , A__ = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: A__ = cached_file(UpperCAmelCase_ , UpperCAmelCase_ , force_download=not use_cached_models ) A__ = config_class.from_json_file(UpperCAmelCase_ ) A__ = True A__ = True print(F"""Building TensorFlow model from configuration: {config}""" ) A__ = model_class(UpperCAmelCase_ ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): A__ = cached_file( UpperCAmelCase_ , UpperCAmelCase_ , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: A__ = load_pytorch_checkpoint_in_tfa_model(UpperCAmelCase_ , UpperCAmelCase_ ) if compare_with_pt_model: A__ = tf_model(tf_model.dummy_inputs , training=UpperCAmelCase_ ) # build the network A__ = torch.load(UpperCAmelCase_ , map_location="""cpu""" ) A__ = pt_model_class.from_pretrained( pretrained_model_name_or_path=UpperCAmelCase_ , config=UpperCAmelCase_ , state_dict=UpperCAmelCase_ ) with torch.no_grad(): A__ = pt_model(**pt_model.dummy_inputs ) A__ = pto[0].numpy() A__ = tfo[0].numpy() A__ = np.amax(np.abs(np_pt - np_tf ) ) print(F"""Max absolute difference between models outputs {diff}""" ) assert diff <= 2e-2, F"""Error, model absolute difference is >2e-2: {diff}""" # Save pytorch-model print(F"""Save TensorFlow model to {tf_dump_path}""" ) tf_model.save_weights(UpperCAmelCase_ , save_format="""h5""" ) def _snake_case ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Dict=False , ): if args_model_type is None: A__ = list(MODEL_CLASSES.keys() ) else: A__ = [args_model_type] for j, model_type in enumerate(UpperCAmelCase_ , start=1 ): print("""=""" * 100 ) print(F""" Converting model type {j}/{len(UpperCAmelCase_ )}: {model_type}""" ) print("""=""" * 100 ) if model_type not in MODEL_CLASSES: raise ValueError(F"""Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.""" ) A__ , A__ , A__ , A__ , A__ = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: A__ = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: A__ = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(UpperCAmelCase_ , UpperCAmelCase_ ) , start=1 ): print("""-""" * 100 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(F""" Skipping finetuned checkpoint {model_shortcut_name}""" ) continue A__ = model_shortcut_name elif only_convert_finetuned_models: print(F""" Skipping not finetuned checkpoint {model_shortcut_name}""" ) continue print( F""" Converting checkpoint {i}/{len(UpperCAmelCase_ )}: {model_shortcut_name} - model_type {model_type}""" ) print("""-""" * 100 ) if config_shortcut_name in aws_config_map: A__ = cached_file(UpperCAmelCase_ , UpperCAmelCase_ , force_download=not use_cached_models ) else: A__ = config_shortcut_name if model_shortcut_name in aws_model_maps: A__ = cached_file(UpperCAmelCase_ , UpperCAmelCase_ , force_download=not use_cached_models ) else: A__ = model_shortcut_name if os.path.isfile(UpperCAmelCase_ ): A__ = """converted_model""" convert_pt_checkpoint_to_tf( model_type=UpperCAmelCase_ , pytorch_checkpoint_path=UpperCAmelCase_ , config_file=UpperCAmelCase_ , tf_dump_path=os.path.join(UpperCAmelCase_ , model_shortcut_name + """-tf_model.h5""" ) , compare_with_pt_model=UpperCAmelCase_ , ) if remove_cached_files: os.remove(UpperCAmelCase_ ) os.remove(UpperCAmelCase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_dump_path', default=None, type=str, required=True, help='Path to the output Tensorflow dump file.' ) parser.add_argument( '--model_type', default=None, type=str, help=( f"""Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and """ 'convert all the models from AWS.' ), ) parser.add_argument( '--pytorch_checkpoint_path', default=None, type=str, help=( 'Path to the PyTorch checkpoint path or shortcut name to download from AWS. ' 'If not given, will download and convert all the checkpoints from AWS.' ), ) parser.add_argument( '--config_file', default=None, type=str, help=( 'The config json file corresponding to the pre-trained model. \n' 'This specifies the model architecture. If not given and ' '--pytorch_checkpoint_path is not given or is a shortcut name ' 'use the configuration associated to the shortcut name on the AWS' ), ) parser.add_argument( '--compare_with_pt_model', action='store_true', help='Compare Tensorflow and PyTorch model predictions.' ) parser.add_argument( '--use_cached_models', action='store_true', help='Use cached models if possible instead of updating to latest checkpoint versions.', ) parser.add_argument( '--remove_cached_files', action='store_true', help='Remove pytorch models after conversion (save memory when converting in batches).', ) parser.add_argument('--only_convert_finetuned_models', action='store_true', help='Only convert finetuned models.') SCREAMING_SNAKE_CASE_ : Optional[int] = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
69
"""simple docstring""" import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class a ( _lowerCamelCase ): """simple docstring""" def __init__( self: int , UpperCamelCase: int , UpperCamelCase: Union[str, Any]=13 , UpperCamelCase: List[Any]=7 , UpperCamelCase: Any=True , UpperCamelCase: Optional[Any]=True , UpperCamelCase: Optional[Any]=True , UpperCamelCase: str=True , UpperCamelCase: Optional[int]=99 , UpperCamelCase: Optional[Any]=32 , UpperCamelCase: Tuple=5 , UpperCamelCase: Optional[int]=4 , UpperCamelCase: int=37 , UpperCamelCase: str="gelu" , UpperCamelCase: Optional[Any]=0.1 , UpperCamelCase: List[Any]=0.1 , UpperCamelCase: Tuple=5_12 , UpperCamelCase: List[str]=16 , UpperCamelCase: List[str]=2 , UpperCamelCase: List[Any]=0.02 , UpperCamelCase: List[str]=False , UpperCamelCase: int=True , UpperCamelCase: Union[str, Any]="None" , UpperCamelCase: Optional[int]=3 , UpperCamelCase: List[str]=4 , UpperCamelCase: List[str]=None , ): """simple docstring""" A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = num_choices A__ = relative_attention A__ = position_biased_input A__ = pos_att_type A__ = scope def UpperCamelCase ( self: Tuple ): """simple docstring""" A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_input_mask: A__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) A__ = None if self.use_token_type_ids: A__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ = None A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ = ids_tensor([self.batch_size] , self.num_choices ) A__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self: str ): """simple docstring""" return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def UpperCamelCase ( self: Optional[int] ): """simple docstring""" A__ = self.get_config() A__ = 3_00 return config def UpperCamelCase ( self: List[Any] , UpperCamelCase: str ): """simple docstring""" self.parent.assertListEqual(list(result.loss.size() ) , [] ) def UpperCamelCase ( self: Tuple , UpperCamelCase: List[Any] , UpperCamelCase: List[str] , UpperCamelCase: List[Any] , UpperCamelCase: List[str] , UpperCamelCase: List[str] , UpperCamelCase: Optional[Any] , UpperCamelCase: Tuple ): """simple docstring""" A__ = DebertaModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() A__ = model(UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase )[0] A__ = model(UpperCamelCase , token_type_ids=UpperCamelCase )[0] A__ = model(UpperCamelCase )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def UpperCamelCase ( self: List[str] , UpperCamelCase: Optional[int] , UpperCamelCase: Optional[Any] , UpperCamelCase: Union[str, Any] , UpperCamelCase: Tuple , UpperCamelCase: Tuple , UpperCamelCase: str , UpperCamelCase: Any ): """simple docstring""" A__ = DebertaForMaskedLM(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() A__ = model(UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self: Union[str, Any] , UpperCamelCase: Union[str, Any] , UpperCamelCase: List[Any] , UpperCamelCase: int , UpperCamelCase: Dict , UpperCamelCase: Dict , UpperCamelCase: Tuple , UpperCamelCase: str ): """simple docstring""" A__ = self.num_labels A__ = DebertaForSequenceClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() A__ = model(UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase , labels=UpperCamelCase ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(UpperCamelCase ) def UpperCamelCase ( self: Optional[int] , UpperCamelCase: List[Any] , UpperCamelCase: Any , UpperCamelCase: Dict , UpperCamelCase: int , UpperCamelCase: Optional[Any] , UpperCamelCase: str , UpperCamelCase: int ): """simple docstring""" A__ = self.num_labels A__ = DebertaForTokenClassification(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() A__ = model(UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self: Tuple , UpperCamelCase: Tuple , UpperCamelCase: Optional[int] , UpperCamelCase: Tuple , UpperCamelCase: int , UpperCamelCase: int , UpperCamelCase: Tuple , UpperCamelCase: Any ): """simple docstring""" A__ = DebertaForQuestionAnswering(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() A__ = model( UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase , start_positions=UpperCamelCase , end_positions=UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self: str ): """simple docstring""" A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class a ( _lowerCamelCase, _lowerCamelCase, unittest.TestCase ): """simple docstring""" UpperCAmelCase = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) UpperCAmelCase = ( { "feature-extraction": DebertaModel, "fill-mask": DebertaForMaskedLM, "question-answering": DebertaForQuestionAnswering, "text-classification": DebertaForSequenceClassification, "token-classification": DebertaForTokenClassification, "zero-shot": DebertaForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" A__ = DebertaModelTester(self ) A__ = ConfigTester(self , config_class=UpperCamelCase , hidden_size=37 ) def UpperCamelCase ( self: int ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self: List[str] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*UpperCamelCase ) def UpperCamelCase ( self: str ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*UpperCamelCase ) def UpperCamelCase ( self: List[Any] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*UpperCamelCase ) def UpperCamelCase ( self: Optional[int] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*UpperCamelCase ) def UpperCamelCase ( self: Tuple ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*UpperCamelCase ) @slow def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = DebertaModel.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) @require_torch @require_sentencepiece @require_tokenizers class a ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason="""Model not available yet""" ) def UpperCamelCase ( self: Any ): """simple docstring""" pass @slow def UpperCamelCase ( self: Optional[Any] ): """simple docstring""" A__ = DebertaModel.from_pretrained("""microsoft/deberta-base""" ) A__ = torch.tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) A__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): A__ = model(UpperCamelCase , attention_mask=UpperCamelCase )[0] # compare the actual values for a slice. A__ = torch.tensor( [[[-0.5_986, -0.8_055, -0.8_462], [1.4_484, -0.9_348, -0.8_059], [0.3_123, 0.0_032, -1.4_131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCamelCase , atol=1e-4 ) , f"""{output[:, 1:4, 1:4]}""" )
69
1
'''simple docstring''' def A_ ( snake_case ): return credit_card_number.startswith(("34", "35", "37", "4", "5", "6") ) def A_ ( snake_case ): SCREAMING_SNAKE_CASE:int = credit_card_number SCREAMING_SNAKE_CASE:List[Any] = 0 SCREAMING_SNAKE_CASE:Optional[Any] = len(snake_case ) - 2 for i in range(snake_case , -1 , -2 ): # double the value of every second digit SCREAMING_SNAKE_CASE:int = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 SCREAMING_SNAKE_CASE:List[str] = cc_number[:i] + str(snake_case ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(snake_case ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def A_ ( snake_case ): SCREAMING_SNAKE_CASE:str = F'''{credit_card_number} is an invalid credit card number because''' if not credit_card_number.isdigit(): print(F'''{error_message} it has nonnumerical characters.''' ) return False if not 13 <= len(snake_case ) <= 16: print(F'''{error_message} of its length.''' ) return False if not validate_initial_digits(snake_case ): print(F'''{error_message} of its first two digits.''' ) return False if not luhn_validation(snake_case ): print(F'''{error_message} it fails the Luhn check.''' ) return False print(F'''{credit_card_number} is a valid credit card number.''' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("4111111111111111") validate_credit_card_number("32323")
139
'''simple docstring''' import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class _snake_case ( _a ): _A : int = ComputeEnvironment.AMAZON_SAGEMAKER _A : List[Any] = True _A : Dict = '''ml.p3.2xlarge''' _A : Any = '''accelerate_sagemaker_execution_role''' _A : Union[str, Any] = '''hf-sm''' _A : Dict = '''us-east-1''' _A : List[Any] = 1 _A : Union[str, Any] = '''accelerate-sagemaker-1''' _A : List[Any] = '''1.6''' _A : Optional[Any] = '''4.4''' _A : Any = '''train.py''' _A : int = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''False''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] _A : Optional[Any] = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''--do_test''', '''False''', '''--do_predict''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] class _snake_case ( unittest.TestCase ): def __UpperCamelCase ( self : List[str] ): # If no defaults are changed, `to_kwargs` returns an empty dict. SCREAMING_SNAKE_CASE:str = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args["model_name_or_path"] ,SCREAMING_SNAKE_CASE__ ) assert isinstance(converted_args["do_train"] ,SCREAMING_SNAKE_CASE__ ) assert isinstance(converted_args["epochs"] ,SCREAMING_SNAKE_CASE__ ) assert isinstance(converted_args["learning_rate"] ,SCREAMING_SNAKE_CASE__ ) assert isinstance(converted_args["max_steps"] ,SCREAMING_SNAKE_CASE__ ) with pytest.raises(SCREAMING_SNAKE_CASE__ ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
139
1
"""simple docstring""" import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal lowerCAmelCase_ = datasets.utils.logging.get_logger(__name__) lowerCAmelCase_ = ['names', 'prefix'] lowerCAmelCase_ = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] lowerCAmelCase_ = ['encoding_errors', 'on_bad_lines'] lowerCAmelCase_ = ['date_format'] @dataclass class __A ( datasets.BuilderConfig ): '''simple docstring''' lowerCAmelCase : Tuple = "," lowerCAmelCase : List[str] = None lowerCAmelCase : List[str] = "infer" lowerCAmelCase : str = None lowerCAmelCase : int = None lowerCAmelCase : Tuple = None lowerCAmelCase : Any = None lowerCAmelCase : Dict = None lowerCAmelCase : Optional[int] = True lowerCAmelCase : Any = None lowerCAmelCase : List[Any] = None lowerCAmelCase : Dict = None lowerCAmelCase : Dict = None lowerCAmelCase : List[Any] = False lowerCAmelCase : Union[str, Any] = None lowerCAmelCase : List[str] = None lowerCAmelCase : int = None lowerCAmelCase : List[Any] = True lowerCAmelCase : Any = True lowerCAmelCase : str = False lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : Union[str, Any] = None lowerCAmelCase : Any = "." lowerCAmelCase : List[Any] = None lowerCAmelCase : Optional[Any] = "\"" lowerCAmelCase : Dict = 0 lowerCAmelCase : Tuple = None lowerCAmelCase : Any = None lowerCAmelCase : List[Any] = None lowerCAmelCase : Union[str, Any] = None lowerCAmelCase : Tuple = True lowerCAmelCase : List[str] = True lowerCAmelCase : int = 0 lowerCAmelCase : Optional[Any] = True lowerCAmelCase : Dict = False lowerCAmelCase : str = None lowerCAmelCase : str = 1_0_0_0_0 lowerCAmelCase : str = None lowerCAmelCase : List[str] = "strict" lowerCAmelCase : str = "error" lowerCAmelCase : Union[str, Any] = None def UpperCAmelCase ( self : str ) -> List[str]: """simple docstring""" if self.delimiter is not None: lowercase__ : Dict = self.delimiter if self.column_names is not None: lowercase__ : int = self.column_names @property def UpperCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ : List[Any] = { '''sep''': self.sep, '''header''': self.header, '''names''': self.names, '''index_col''': self.index_col, '''usecols''': self.usecols, '''prefix''': self.prefix, '''mangle_dupe_cols''': self.mangle_dupe_cols, '''engine''': self.engine, '''converters''': self.converters, '''true_values''': self.true_values, '''false_values''': self.false_values, '''skipinitialspace''': self.skipinitialspace, '''skiprows''': self.skiprows, '''nrows''': self.nrows, '''na_values''': self.na_values, '''keep_default_na''': self.keep_default_na, '''na_filter''': self.na_filter, '''verbose''': self.verbose, '''skip_blank_lines''': self.skip_blank_lines, '''thousands''': self.thousands, '''decimal''': self.decimal, '''lineterminator''': self.lineterminator, '''quotechar''': self.quotechar, '''quoting''': self.quoting, '''escapechar''': self.escapechar, '''comment''': self.comment, '''encoding''': self.encoding, '''dialect''': self.dialect, '''error_bad_lines''': self.error_bad_lines, '''warn_bad_lines''': self.warn_bad_lines, '''skipfooter''': self.skipfooter, '''doublequote''': self.doublequote, '''memory_map''': self.memory_map, '''float_precision''': self.float_precision, '''chunksize''': self.chunksize, '''encoding_errors''': self.encoding_errors, '''on_bad_lines''': self.on_bad_lines, '''date_format''': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() ,UpperCamelCase__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class __A ( datasets.ArrowBasedBuilder ): '''simple docstring''' lowerCAmelCase : Tuple = CsvConfig def UpperCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def UpperCAmelCase ( self : List[str] ,_snake_case : Optional[Any] ) -> List[str]: """simple docstring""" if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) lowercase__ : Union[str, Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(UpperCamelCase__ ,(str, list, tuple) ): lowercase__ : Any = data_files if isinstance(UpperCamelCase__ ,UpperCamelCase__ ): lowercase__ : List[str] = [files] lowercase__ : Tuple = [dl_manager.iter_files(UpperCamelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN ,gen_kwargs={'''files''': files} )] lowercase__ : Dict = [] for split_name, files in data_files.items(): if isinstance(UpperCamelCase__ ,UpperCamelCase__ ): lowercase__ : Dict = [files] lowercase__ : List[Any] = [dl_manager.iter_files(UpperCamelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=UpperCamelCase__ ,gen_kwargs={'''files''': files} ) ) return splits def UpperCAmelCase ( self : str ,_snake_case : Any ) -> pa.Table: """simple docstring""" if self.config.features is not None: lowercase__ : Any = self.config.features.arrow_schema if all(not require_storage_cast(UpperCamelCase__ ) for feature in self.config.features.values() ): # cheaper cast lowercase__ : Tuple = pa.Table.from_arrays([pa_table[field.name] for field in schema] ,schema=UpperCamelCase__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example lowercase__ : Any = table_cast(UpperCamelCase__ ,UpperCamelCase__ ) return pa_table def UpperCAmelCase ( self : Dict ,_snake_case : str ) -> Tuple: """simple docstring""" lowercase__ : List[Any] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str lowercase__ : Union[str, Any] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(UpperCamelCase__ ) else object for name, dtype, feature in zip(schema.names ,schema.types ,self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCamelCase__ ) ): lowercase__ : Optional[int] = pd.read_csv(UpperCamelCase__ ,iterator=UpperCamelCase__ ,dtype=UpperCamelCase__ ,**self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(UpperCamelCase__ ): lowercase__ : int = pa.Table.from_pandas(UpperCamelCase__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(UpperCamelCase__ ) except ValueError as e: logger.error(f"""Failed to read file \'{file}\' with error {type(UpperCamelCase__ )}: {e}""" ) raise
363
"""simple docstring""" from __future__ import annotations lowerCAmelCase_ = 1.6021E-19 # units = C def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> tuple[str, float]: if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif conductivity < 0: raise ValueError('''Conductivity cannot be negative''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative''' ) elif mobility < 0: raise ValueError('''mobility cannot be negative''' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
302
0
'''simple docstring''' import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class _a : def __init__( self : Optional[Any] , lowercase : int , lowercase : str=13 , lowercase : Any=7 , lowercase : str=True , lowercase : int=True , lowercase : int=True , lowercase : Any=True , lowercase : Any=99 , lowercase : Any=32 , lowercase : Dict=5 , lowercase : Optional[int]=4 , lowercase : Dict=37 , lowercase : int="gelu" , lowercase : Union[str, Any]=0.1 , lowercase : Union[str, Any]=0.1 , lowercase : str=512 , lowercase : Tuple=16 , lowercase : List[str]=2 , lowercase : str=0.02 , lowercase : str=3 , lowercase : Dict=4 , lowercase : int=None , ): '''simple docstring''' UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_input_mask UpperCAmelCase = use_token_type_ids UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = num_labels UpperCAmelCase = num_choices UpperCAmelCase = scope def A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = None if self.use_input_mask: UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase = None if self.use_token_type_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : Tuple ): '''simple docstring''' return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase , initializer_range=self.initializer_range , ) def A ( self : Optional[Any] , lowercase : Union[str, Any] , lowercase : Optional[Any] , lowercase : Tuple , lowercase : Optional[int] , lowercase : Optional[int] , lowercase : List[Any] , lowercase : Optional[Any] ): '''simple docstring''' UpperCAmelCase = NystromformerModel(config=lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase ) UpperCAmelCase = model(lowercase , token_type_ids=lowercase ) UpperCAmelCase = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Union[str, Any] , lowercase : Optional[int] , lowercase : Any , lowercase : str , lowercase : int , lowercase : int , lowercase : Dict , lowercase : int ): '''simple docstring''' UpperCAmelCase = NystromformerForMaskedLM(config=lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : Union[str, Any] , lowercase : Optional[Any] , lowercase : Dict , lowercase : Tuple , lowercase : int , lowercase : Optional[Any] , lowercase : List[Any] , lowercase : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = NystromformerForQuestionAnswering(config=lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , start_positions=lowercase , end_positions=lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : List[str] , lowercase : Optional[Any] , lowercase : List[str] , lowercase : Optional[Any] , lowercase : str , lowercase : Optional[int] , lowercase : Tuple , lowercase : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = self.num_labels UpperCAmelCase = NystromformerForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Any , lowercase : str , lowercase : List[Any] , lowercase : str , lowercase : Optional[int] , lowercase : Optional[int] , lowercase : Tuple , lowercase : Optional[Any] ): '''simple docstring''' UpperCAmelCase = self.num_labels UpperCAmelCase = NystromformerForTokenClassification(config=lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : Optional[int] , lowercase : int , lowercase : Optional[int] , lowercase : Optional[int] , lowercase : Any , lowercase : Optional[Any] , lowercase : List[str] , lowercase : Dict ): '''simple docstring''' UpperCAmelCase = self.num_choices UpperCAmelCase = NystromformerForMultipleChoice(config=lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self : Dict ): '''simple docstring''' UpperCAmelCase = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) = config_and_inputs UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _a ( __a , __a , unittest.TestCase ): __a : Optional[int] = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) __a : List[Any] = ( { """feature-extraction""": NystromformerModel, """fill-mask""": NystromformerForMaskedLM, """question-answering""": NystromformerForQuestionAnswering, """text-classification""": NystromformerForSequenceClassification, """token-classification""": NystromformerForTokenClassification, """zero-shot""": NystromformerForSequenceClassification, } if is_torch_available() else {} ) __a : Optional[int] = False __a : int = False def A ( self : int ): '''simple docstring''' UpperCAmelCase = NystromformerModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowercase , hidden_size=37 ) def A ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase = type self.model_tester.create_and_check_model(*lowercase ) def A ( self : Dict ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase ) def A ( self : Dict ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase ) def A ( self : int ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase ) def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase ) def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase ) @slow def A ( self : List[Any] ): '''simple docstring''' for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = NystromformerModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @require_torch class _a ( unittest.TestCase ): @slow def A ( self : Dict ): '''simple docstring''' UpperCAmelCase = NystromformerModel.from_pretrained('''uw-madison/nystromformer-512''' ) UpperCAmelCase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): UpperCAmelCase = model(lowercase )[0] UpperCAmelCase = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , lowercase ) UpperCAmelCase = torch.tensor( [[[-0.4532, -0.0936, 0.5137], [-0.2676, 0.0628, 0.6186], [-0.3629, -0.1726, 0.4716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase , atol=1E-4 ) ) @slow def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = '''the [MASK] of Belgium is Brussels''' UpperCAmelCase = AutoTokenizer.from_pretrained('''uw-madison/nystromformer-512''' ) UpperCAmelCase = NystromformerForMaskedLM.from_pretrained('''uw-madison/nystromformer-512''' ) UpperCAmelCase = tokenizer(lowercase , return_tensors='''pt''' ) with torch.no_grad(): UpperCAmelCase = model(encoding.input_ids ).logits UpperCAmelCase = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(lowercase ) , '''capital''' )
34
'''simple docstring''' from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": A =input('Enter image url: ').strip() print(f"""Downloading image from {url} ...""") A =BeautifulSoup(requests.get(url).content, 'html.parser') # The image URL is in the content field of the first meta tag with property og:image A =soup.find('meta', {'property': 'og:image'})['content'] A =requests.get(image_url).content A =f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg""" with open(file_name, 'wb') as fp: fp.write(image_data) print(f"""Done. Image saved to disk as {file_name}.""")
34
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase = { """configuration_convbert""": ["""CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvBertConfig""", """ConvBertOnnxConfig"""], """tokenization_convbert""": ["""ConvBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["""ConvBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConvBertForMaskedLM""", """ConvBertForMultipleChoice""", """ConvBertForQuestionAnswering""", """ConvBertForSequenceClassification""", """ConvBertForTokenClassification""", """ConvBertLayer""", """ConvBertModel""", """ConvBertPreTrainedModel""", """load_tf_weights_in_convbert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFConvBertForMaskedLM""", """TFConvBertForMultipleChoice""", """TFConvBertForQuestionAnswering""", """TFConvBertForSequenceClassification""", """TFConvBertForTokenClassification""", """TFConvBertLayer""", """TFConvBertModel""", """TFConvBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
371
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = """▁""" __lowerCamelCase = {"""vocab_file""": """prophetnet.tokenizer"""} __lowerCamelCase = { """vocab_file""": { """microsoft/xprophetnet-large-wiki100-cased""": ( """https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer""" ), } } __lowerCamelCase = { """microsoft/xprophetnet-large-wiki100-cased""": {"""do_lower_case""": False}, } __lowerCamelCase = { """microsoft/xprophetnet-large-wiki100-cased""": 5_12, } def UpperCamelCase ( __lowerCamelCase : Dict ): snake_case : Dict = collections.OrderedDict() with open(__lowerCamelCase , "r" , encoding="utf-8" ) as reader: snake_case : Any = reader.readlines() for index, token in enumerate(__lowerCamelCase ): snake_case : List[Any] = token.rstrip("\n" ) snake_case : int = index return vocab class UpperCAmelCase ( A_ ): A__ : Tuple = VOCAB_FILES_NAMES A__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP A__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : int = ["input_ids", "attention_mask"] def __init__(self : Any , snake_case__ : Dict , snake_case__ : List[Any]="[SEP]" , snake_case__ : Optional[int]="[SEP]" , snake_case__ : Union[str, Any]="[SEP]" , snake_case__ : List[Any]="[UNK]" , snake_case__ : List[str]="[PAD]" , snake_case__ : List[str]="[CLS]" , snake_case__ : List[Any]="[MASK]" , snake_case__ : Optional[Dict[str, Any]] = None , **snake_case__ : List[str] , ) -> None: '''simple docstring''' snake_case : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise snake_case : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case__ ) ) snake_case : Dict = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab snake_case : List[Any] = {"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4} for i in range(10 ): snake_case : Dict = f"""[unused{i}]""" snake_case : List[str] = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab snake_case : Dict = 12 snake_case : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(snake_case__ ) def __getstate__(self : str ) -> Union[str, Any]: '''simple docstring''' snake_case : str = self.__dict__.copy() snake_case : Tuple = None return state def __setstate__(self : str , snake_case__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case : Union[str, Any] = d try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): snake_case : Dict = {} snake_case : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return ([0] * len(snake_case__ )) + [1] return ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' snake_case : List[str] = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _SCREAMING_SNAKE_CASE (self : Any ) -> int: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset def _SCREAMING_SNAKE_CASE (self : int ) -> Any: '''simple docstring''' snake_case : List[str] = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : str ) -> str: '''simple docstring''' return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : Optional[int] ) -> Any: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case : Optional[Any] = self.sp_model.PieceToId(snake_case__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : Optional[int] ) -> int: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Dict ) -> List[Any]: '''simple docstring''' snake_case : Dict = "".join(snake_case__ ).replace(snake_case__ , " " ).strip() return out_string def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : str , snake_case__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Dict = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , "wb" ) as fi: snake_case : Tuple = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,) def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.sep_token_id] snake_case : str = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
10
0
"""simple docstring""" _UpperCamelCase : Tuple = [0, 2, 4, 6, 8] _UpperCamelCase : Any = [1, 3, 5, 7, 9] def a_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : list[int] , _lowerCAmelCase : int ): '''simple docstring''' if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 lowercase__ : Any = 0 for digit in range(10 ): lowercase__ : Any = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , _lowerCAmelCase , _lowerCAmelCase ) return result lowercase__ : Dict = 0 for digita in range(10 ): lowercase__ : Union[str, Any] = digita if (remainder + digita) % 2 == 0: lowercase__ : List[str] = ODD_DIGITS else: lowercase__ : Dict = EVEN_DIGITS for digita in other_parity_digits: lowercase__ : Optional[int] = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , _lowerCAmelCase , _lowerCAmelCase , ) return result def a_ ( _lowerCAmelCase : int = 9 ): '''simple docstring''' lowercase__ : Union[str, Any] = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(_lowerCAmelCase , 0 , [0] * length , _lowerCAmelCase ) return result if __name__ == "__main__": print(f'''{solution() = }''')
77
'''simple docstring''' from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig lowercase__ : Union[str, Any] = logging.get_logger(__name__) # General docstring lowercase__ : Dict = 'ResNetConfig' # Base docstring lowercase__ : str = 'microsoft/resnet-50' lowercase__ : Tuple = [1, 20_48, 7, 7] # Image classification docstring lowercase__ : Optional[Any] = 'microsoft/resnet-50' lowercase__ : List[str] = 'tiger cat' lowercase__ : List[Any] = [ 'microsoft/resnet-50', # See all resnet models at https://huggingface.co/models?filter=resnet ] class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 3 , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : str = "relu" ) -> Union[str, Any]: '''simple docstring''' super().__init__() _UpperCamelCase = nn.Convad( lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=lowerCAmelCase__ , stride=lowerCAmelCase__ , padding=kernel_size // 2 , bias=lowerCAmelCase__ ) _UpperCamelCase = nn.BatchNormad(lowerCAmelCase__ ) _UpperCamelCase = ACTaFN[activation] if activation is not None else nn.Identity() def snake_case__ ( self : Any , lowerCAmelCase__ : Tensor ) -> Tensor: '''simple docstring''' _UpperCamelCase = self.convolution(lowerCAmelCase__ ) _UpperCamelCase = self.normalization(lowerCAmelCase__ ) _UpperCamelCase = self.activation(lowerCAmelCase__ ) return hidden_state class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : List[str] , lowerCAmelCase__ : ResNetConfig ) -> Tuple: '''simple docstring''' super().__init__() _UpperCamelCase = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) _UpperCamelCase = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) _UpperCamelCase = config.num_channels def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : Tensor ) -> Tensor: '''simple docstring''' _UpperCamelCase = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) _UpperCamelCase = self.embedder(lowerCAmelCase__ ) _UpperCamelCase = self.pooler(lowerCAmelCase__ ) return embedding class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 2 ) -> Optional[Any]: '''simple docstring''' super().__init__() _UpperCamelCase = nn.Convad(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 , stride=lowerCAmelCase__ , bias=lowerCAmelCase__ ) _UpperCamelCase = nn.BatchNormad(lowerCAmelCase__ ) def snake_case__ ( self : Any , lowerCAmelCase__ : Tensor ) -> Tensor: '''simple docstring''' _UpperCamelCase = self.convolution(lowerCAmelCase__ ) _UpperCamelCase = self.normalization(lowerCAmelCase__ ) return hidden_state class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : str = "relu" ) -> str: '''simple docstring''' super().__init__() _UpperCamelCase = in_channels != out_channels or stride != 1 _UpperCamelCase = ( ResNetShortCut(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) if should_apply_shortcut else nn.Identity() ) _UpperCamelCase = nn.Sequential( ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) , ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , activation=lowerCAmelCase__ ) , ) _UpperCamelCase = ACTaFN[activation] def snake_case__ ( self : Tuple , lowerCAmelCase__ : Tuple ) -> List[str]: '''simple docstring''' _UpperCamelCase = hidden_state _UpperCamelCase = self.layer(lowerCAmelCase__ ) _UpperCamelCase = self.shortcut(lowerCAmelCase__ ) hidden_state += residual _UpperCamelCase = self.activation(lowerCAmelCase__ ) return hidden_state class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : str = "relu" , lowerCAmelCase__ : int = 4 ) -> Optional[Any]: '''simple docstring''' super().__init__() _UpperCamelCase = in_channels != out_channels or stride != 1 _UpperCamelCase = out_channels // reduction _UpperCamelCase = ( ResNetShortCut(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) if should_apply_shortcut else nn.Identity() ) _UpperCamelCase = nn.Sequential( ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 ) , ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) , ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 , activation=lowerCAmelCase__ ) , ) _UpperCamelCase = ACTaFN[activation] def snake_case__ ( self : int , lowerCAmelCase__ : List[Any] ) -> List[str]: '''simple docstring''' _UpperCamelCase = hidden_state _UpperCamelCase = self.layer(lowerCAmelCase__ ) _UpperCamelCase = self.shortcut(lowerCAmelCase__ ) hidden_state += residual _UpperCamelCase = self.activation(lowerCAmelCase__ ) return hidden_state class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] , lowerCAmelCase__ : ResNetConfig , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , ) -> int: '''simple docstring''' super().__init__() _UpperCamelCase = ResNetBottleNeckLayer if config.layer_type == '''bottleneck''' else ResNetBasicLayer _UpperCamelCase = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ , activation=config.hidden_act ) , *[layer(lowerCAmelCase__ , lowerCAmelCase__ , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def snake_case__ ( self : List[Any] , lowerCAmelCase__ : Tensor ) -> Tensor: '''simple docstring''' _UpperCamelCase = input for layer in self.layers: _UpperCamelCase = layer(lowerCAmelCase__ ) return hidden_state class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : ResNetConfig ) -> List[Any]: '''simple docstring''' super().__init__() _UpperCamelCase = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( lowerCAmelCase__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _UpperCamelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowerCAmelCase__ , config.depths[1:] ): self.stages.append(ResNetStage(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , depth=lowerCAmelCase__ ) ) def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Tensor , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = True ) -> BaseModelOutputWithNoAttention: '''simple docstring''' _UpperCamelCase = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _UpperCamelCase = hidden_states + (hidden_state,) _UpperCamelCase = stage_module(lowerCAmelCase__ ) if output_hidden_states: _UpperCamelCase = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=lowerCAmelCase__ , hidden_states=lowerCAmelCase__ , ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : Optional[int] = ResNetConfig _snake_case : Union[str, Any] = 'resnet' _snake_case : Optional[int] = 'pixel_values' _snake_case : int = True def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : List[str] ) -> Union[str, Any]: '''simple docstring''' if isinstance(lowerCAmelCase__ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''' ) elif isinstance(lowerCAmelCase__ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def snake_case__ ( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple=False ) -> List[str]: '''simple docstring''' if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase = value lowercase__ : Optional[int] = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowercase__ : Any = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( 'The bare ResNet model outputting raw features without any specific head on top.' , __magic_name__ , ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Union[str, Any] ) -> str: '''simple docstring''' super().__init__(lowerCAmelCase__ ) _UpperCamelCase = config _UpperCamelCase = ResNetEmbeddings(lowerCAmelCase__ ) _UpperCamelCase = ResNetEncoder(lowerCAmelCase__ ) _UpperCamelCase = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Tensor , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' _UpperCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict _UpperCamelCase = self.embedder(lowerCAmelCase__ ) _UpperCamelCase = self.encoder( lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ ) _UpperCamelCase = encoder_outputs[0] _UpperCamelCase = self.pooler(lowerCAmelCase__ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase__ , pooler_output=lowerCAmelCase__ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( '\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , __magic_name__ , ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : Optional[int] ) -> Any: '''simple docstring''' super().__init__(lowerCAmelCase__ ) _UpperCamelCase = config.num_labels _UpperCamelCase = ResNetModel(lowerCAmelCase__ ) # classification head _UpperCamelCase = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def snake_case__ ( self : int , lowerCAmelCase__ : Optional[torch.FloatTensor] = None , lowerCAmelCase__ : Optional[torch.LongTensor] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: '''simple docstring''' _UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict _UpperCamelCase = self.resnet(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ ) _UpperCamelCase = outputs.pooler_output if return_dict else outputs[1] _UpperCamelCase = self.classifier(lowerCAmelCase__ ) _UpperCamelCase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _UpperCamelCase = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _UpperCamelCase = '''single_label_classification''' else: _UpperCamelCase = '''multi_label_classification''' if self.config.problem_type == "regression": _UpperCamelCase = MSELoss() if self.num_labels == 1: _UpperCamelCase = loss_fct(logits.squeeze() , labels.squeeze() ) else: _UpperCamelCase = loss_fct(lowerCAmelCase__ , lowerCAmelCase__ ) elif self.config.problem_type == "single_label_classification": _UpperCamelCase = CrossEntropyLoss() _UpperCamelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _UpperCamelCase = BCEWithLogitsLoss() _UpperCamelCase = loss_fct(lowerCAmelCase__ , lowerCAmelCase__ ) if not return_dict: _UpperCamelCase = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase__ , logits=lowerCAmelCase__ , hidden_states=outputs.hidden_states ) @add_start_docstrings( '\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n ' , __magic_name__ , ) class __lowerCAmelCase ( __magic_name__ , __magic_name__ ): """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Any ) -> Dict: '''simple docstring''' super().__init__(lowerCAmelCase__ ) super()._init_backbone(lowerCAmelCase__ ) _UpperCamelCase = [config.embedding_size] + config.hidden_sizes _UpperCamelCase = ResNetEmbeddings(lowerCAmelCase__ ) _UpperCamelCase = ResNetEncoder(lowerCAmelCase__ ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase__ ) @replace_return_docstrings(output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC ) def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Tensor , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None ) -> BackboneOutput: '''simple docstring''' _UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict _UpperCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCamelCase = self.embedder(lowerCAmelCase__ ) _UpperCamelCase = self.encoder(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ ) _UpperCamelCase = outputs.hidden_states _UpperCamelCase = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: _UpperCamelCase = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=lowerCAmelCase__ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowerCAmelCase__ , )
324
0
def __snake_case ( __UpperCamelCase : list[int] ,__UpperCamelCase : list[int] ,__UpperCamelCase : int ): """simple docstring""" return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(__UpperCamelCase ) ) def __snake_case ( __UpperCamelCase : list[list[int]] ,__UpperCamelCase : int ,__UpperCamelCase : list[int] ,__UpperCamelCase : int ): """simple docstring""" if index == len(__UpperCamelCase ): return True # Recursive Step for i in range(__UpperCamelCase ): if valid_coloring(graph[index] ,__UpperCamelCase ,__UpperCamelCase ): # Color current vertex A_ = i # Validate coloring if util_color(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,index + 1 ): return True # Backtrack A_ = -1 return False def __snake_case ( __UpperCamelCase : list[list[int]] ,__UpperCamelCase : int ): """simple docstring""" A_ = [-1] * len(__UpperCamelCase ) if util_color(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,0 ): return colored_vertices return []
356
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer __a :Optional[Any] = logging.get_logger(__name__) __a :Any = {'vocab_file': 'vocab.txt'} __a :Any = { 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } __a :List[str] = { 'YituTech/conv-bert-base': 512, 'YituTech/conv-bert-medium-small': 512, 'YituTech/conv-bert-small': 512, } __a :List[str] = { 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Tuple = VOCAB_FILES_NAMES _lowerCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : int = PRETRAINED_INIT_CONFIGURATION _lowerCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : Union[str, Any] = ConvBertTokenizer def __init__( self : Optional[int] , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : int="[UNK]" , UpperCAmelCase : str="[SEP]" , UpperCAmelCase : Union[str, Any]="[PAD]" , UpperCAmelCase : Tuple="[CLS]" , UpperCAmelCase : Tuple="[MASK]" , UpperCAmelCase : Any=True , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : List[str] , ): super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) A_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , UpperCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , UpperCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase ) != tokenize_chinese_chars ): A_ = getattr(UpperCAmelCase , normalizer_state.pop("type" ) ) A_ = do_lower_case A_ = strip_accents A_ = tokenize_chinese_chars A_ = normalizer_class(**UpperCAmelCase ) A_ = do_lower_case def __A ( self : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Dict=None ): A_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): A_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
329
0
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : List[str] = { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json''', } class UpperCamelCase__ (A__ ): '''simple docstring''' lowerCamelCase_ : int = '''gpt_neox_japanese''' def __init__( self , UpperCamelCase__=3_2000 , UpperCamelCase__=2560 , UpperCamelCase__=32 , UpperCamelCase__=32 , UpperCamelCase__=4 , UpperCamelCase__="gelu" , UpperCamelCase__=1.00 , UpperCamelCase__=1_0000 , UpperCamelCase__=2048 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-5 , UpperCamelCase__=True , UpperCamelCase__=3_1996 , UpperCamelCase__=3_1999 , UpperCamelCase__=0.1 , UpperCamelCase__=0.0 , **UpperCamelCase__ , ) -> str: super().__init__(bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) lowerCamelCase : str = vocab_size lowerCamelCase : List[str] = max_position_embeddings lowerCamelCase : Optional[Any] = hidden_size lowerCamelCase : List[str] = num_hidden_layers lowerCamelCase : List[str] = num_attention_heads lowerCamelCase : Optional[Any] = intermediate_multiple_size lowerCamelCase : Dict = hidden_act lowerCamelCase : Tuple = rotary_pct lowerCamelCase : Any = rotary_emb_base lowerCamelCase : Optional[Any] = initializer_range lowerCamelCase : List[Any] = layer_norm_eps lowerCamelCase : List[Any] = use_cache lowerCamelCase : Tuple = attention_dropout lowerCamelCase : Optional[Any] = hidden_dropout
48
from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) lowerCamelCase : Tuple =_symbol_database.Default() lowerCamelCase : List[str] =_descriptor_pool.Default().AddSerializedFile( b'''\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03''' ) lowerCamelCase : str =globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, '''sentencepiece_model_pb2''', _globals) if _descriptor._USE_C_DESCRIPTORS is False: lowerCamelCase : Optional[int] =None lowerCamelCase : Tuple =b'''H\003''' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" lowerCamelCase : List[str] =45 lowerCamelCase : List[Any] =1581 lowerCamelCase : Optional[int] =1517 lowerCamelCase : Tuple =1570 lowerCamelCase : Dict =1584 lowerCamelCase : Optional[Any] =1793 lowerCamelCase : Dict =1795 lowerCamelCase : Any =1916 lowerCamelCase : Dict =1864 lowerCamelCase : Dict =1905 lowerCamelCase : Dict =1919 lowerCamelCase : Union[str, Any] =2429 lowerCamelCase : List[Any] =2208 lowerCamelCase : List[Any] =2418 lowerCamelCase : List[str] =2323 lowerCamelCase : Dict =2407 # @@protoc_insertion_point(module_scope)
189
0
"""simple docstring""" import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging _UpperCamelCase = logging.get_logger(__name__) def _a ( _snake_case , _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(_snake_case ) == len(_snake_case ), F'''{len(_snake_case )} != {len(_snake_case )}''' dest_layers.load_state_dict(layers_to_copy.state_dict() ) _UpperCamelCase = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } _UpperCamelCase = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def _a ( _snake_case , _snake_case ): """simple docstring""" try: UpperCAmelCase = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F'''no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first''' F''' {n_student}''' ) return list(range(_snake_case ) ) def _a ( _snake_case , _snake_case ): """simple docstring""" if n_student > n_teacher: raise ValueError(F'''Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}''' ) elif n_teacher == n_student: return list(range(_snake_case ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def _a ( _snake_case , _snake_case = "student" , _snake_case = None , _snake_case = None , _snake_case=False , _snake_case=None , _snake_case=None , **_snake_case , ): """simple docstring""" UpperCAmelCase = """encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.""" assert (e is not None) or (d is not None), _msg if isinstance(_snake_case , _snake_case ): AutoTokenizer.from_pretrained(_snake_case ).save_pretrained(_snake_case ) # purely for convenience UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ).eval() else: assert isinstance(_snake_case , _snake_case ), F'''teacher must be a model or string got type {type(_snake_case )}''' UpperCAmelCase = teacher.config.to_diff_dict() try: UpperCAmelCase , UpperCAmelCase = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: UpperCAmelCase = teacher_e if d is None: UpperCAmelCase = teacher_d init_kwargs.update({"""encoder_layers""": e, """decoder_layers""": d} ) except AttributeError: # T5 if hasattr(teacher.config , """num_encoder_layers""" ): UpperCAmelCase , UpperCAmelCase = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: UpperCAmelCase , UpperCAmelCase = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: UpperCAmelCase = teacher_e if d is None: UpperCAmelCase = teacher_d if hasattr(teacher.config , """num_encoder_layers""" ): init_kwargs.update({"""num_encoder_layers""": e, """num_decoder_layers""": d} ) else: init_kwargs.update({"""num_layers""": e, """num_decoder_layers""": d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(_snake_case ) # Copy weights UpperCAmelCase = teacher.config_class(**_snake_case ) UpperCAmelCase = AutoModelForSeqaSeqLM.from_config(_snake_case ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. UpperCAmelCase = student.load_state_dict(teacher.state_dict() , strict=_snake_case ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save UpperCAmelCase , UpperCAmelCase = list(range(_snake_case ) ), list(range(_snake_case ) ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to''' F''' {save_path}''' ) student.save_pretrained(_snake_case ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: UpperCAmelCase = pick_layers_to_copy(_snake_case , _snake_case ) if d_layers_to_copy is None: UpperCAmelCase = pick_layers_to_copy(_snake_case , _snake_case ) try: if hasattr( _snake_case , """prophetnet""" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , _snake_case ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , _snake_case ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , _snake_case ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , _snake_case ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , _snake_case ) copy_layers(teacher.decoder.block , student.decoder.block , _snake_case ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}''' ) UpperCAmelCase = { """teacher_type""": teacher.config.model_type, """copied_encoder_layers""": e_layers_to_copy, """copied_decoder_layers""": d_layers_to_copy, } student.save_pretrained(_snake_case ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
234
"""simple docstring""" from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image _UpperCamelCase = ["""text""", """image""", """audio"""] def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = [] for input_type in input_types: if input_type == "text": inputs.append("""Text input""" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(_snake_case , _snake_case ): inputs.append(create_inputs(_snake_case ) ) else: raise ValueError(F'''Invalid type requested: {input_type}''' ) return inputs def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = [] for output in outputs: if isinstance(_snake_case , (str, AgentText) ): output_types.append("""text""" ) elif isinstance(_snake_case , (Image.Image, AgentImage) ): output_types.append("""image""" ) elif isinstance(_snake_case , (torch.Tensor, AgentAudio) ): output_types.append("""audio""" ) else: raise ValueError(F'''Invalid output: {output}''' ) return output_types @is_tool_test class lowerCamelCase__ : def _UpperCamelCase ( self ): self.assertTrue(hasattr(self.tool ,"""inputs""" ) ) self.assertTrue(hasattr(self.tool ,"""outputs""" ) ) UpperCAmelCase = self.tool.inputs for _input in inputs: if isinstance(_input ,A ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) UpperCAmelCase = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def _UpperCamelCase ( self ): UpperCAmelCase = create_inputs(self.tool.inputs ) UpperCAmelCase = self.tool(*A ) # There is a single output if len(self.tool.outputs ) == 1: UpperCAmelCase = [outputs] self.assertListEqual(output_types(A ) ,self.tool.outputs ) def _UpperCamelCase ( self ): self.assertTrue(hasattr(self.tool ,"""description""" ) ) self.assertTrue(hasattr(self.tool ,"""default_checkpoint""" ) ) self.assertTrue(self.tool.description.startswith("""This is a tool that""" ) ) def _UpperCamelCase ( self ): UpperCAmelCase = create_inputs(self.tool.inputs ) UpperCAmelCase = self.tool(*A ) if not isinstance(A ,A ): UpperCAmelCase = [outputs] self.assertEqual(len(A ) ,len(self.tool.outputs ) ) for output, output_type in zip(A ,self.tool.outputs ): UpperCAmelCase = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(A ,A ) ) def _UpperCamelCase ( self ): UpperCAmelCase = create_inputs(self.tool.inputs ) UpperCAmelCase = [] for _input, input_type in zip(A ,self.tool.inputs ): if isinstance(A ,A ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error UpperCAmelCase = self.tool(*A ) if not isinstance(A ,A ): UpperCAmelCase = [outputs] self.assertEqual(len(A ) ,len(self.tool.outputs ) )
234
1
'''simple docstring''' from graphs.minimum_spanning_tree_kruskal import kruskal def _UpperCAmelCase ( ) -> Union[str, Any]: _lowerCAmelCase : int = 9 _lowerCAmelCase : Dict = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _lowerCAmelCase : Tuple = kruskal(UpperCamelCase__ , UpperCamelCase__ ) _lowerCAmelCase : Dict = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(UpperCamelCase__ ) == sorted(UpperCamelCase__ )
309
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer a__: Optional[int] = logging.get_logger(__name__) a__: int = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a__: Optional[Any] = { 'vocab_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt' ), 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt' ), 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt', 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json' ), 'bert-base-multilingual-cased': ( 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json' ), 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-cased': ( 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json' ), }, } a__: List[str] = { 'bert-base-uncased': 512, 'bert-large-uncased': 512, 'bert-base-cased': 512, 'bert-large-cased': 512, 'bert-base-multilingual-uncased': 512, 'bert-base-multilingual-cased': 512, 'bert-base-chinese': 512, 'bert-base-german-cased': 512, 'bert-large-uncased-whole-word-masking': 512, 'bert-large-cased-whole-word-masking': 512, 'bert-large-uncased-whole-word-masking-finetuned-squad': 512, 'bert-large-cased-whole-word-masking-finetuned-squad': 512, 'bert-base-cased-finetuned-mrpc': 512, 'bert-base-german-dbmdz-cased': 512, 'bert-base-german-dbmdz-uncased': 512, 'TurkuNLP/bert-base-finnish-cased-v1': 512, 'TurkuNLP/bert-base-finnish-uncased-v1': 512, 'wietsedv/bert-base-dutch-cased': 512, } a__: Optional[Any] = { 'bert-base-uncased': {'do_lower_case': True}, 'bert-large-uncased': {'do_lower_case': True}, 'bert-base-cased': {'do_lower_case': False}, 'bert-large-cased': {'do_lower_case': False}, 'bert-base-multilingual-uncased': {'do_lower_case': True}, 'bert-base-multilingual-cased': {'do_lower_case': False}, 'bert-base-chinese': {'do_lower_case': False}, 'bert-base-german-cased': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False}, 'bert-base-cased-finetuned-mrpc': {'do_lower_case': False}, 'bert-base-german-dbmdz-cased': {'do_lower_case': False}, 'bert-base-german-dbmdz-uncased': {'do_lower_case': True}, 'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False}, 'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True}, 'wietsedv/bert-base-dutch-cased': {'do_lower_case': False}, } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = BertTokenizer def __init__( self,__lowerCamelCase=None,__lowerCamelCase=None,__lowerCamelCase=True,__lowerCamelCase="[UNK]",__lowerCamelCase="[SEP]",__lowerCamelCase="[PAD]",__lowerCamelCase="[CLS]",__lowerCamelCase="[MASK]",__lowerCamelCase=True,__lowerCamelCase=None,**__lowerCamelCase,): super().__init__( __lowerCamelCase,tokenizer_file=__lowerCamelCase,do_lower_case=__lowerCamelCase,unk_token=__lowerCamelCase,sep_token=__lowerCamelCase,pad_token=__lowerCamelCase,cls_token=__lowerCamelCase,mask_token=__lowerCamelCase,tokenize_chinese_chars=__lowerCamelCase,strip_accents=__lowerCamelCase,**__lowerCamelCase,) A__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''',__lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''',__lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''',__lowerCamelCase ) != tokenize_chinese_chars ): A__ = getattr(__lowerCamelCase,normalizer_state.pop('''type''' ) ) A__ = do_lower_case A__ = strip_accents A__ = tokenize_chinese_chars A__ = normalizer_class(**__lowerCamelCase ) A__ = do_lower_case def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase=None ): A__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None ): A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None ): A__ = self._tokenizer.model.save(__lowerCamelCase,name=__lowerCamelCase ) return tuple(__lowerCamelCase )
193
0
def UpperCAmelCase ( a_ ) -> str: """simple docstring""" if isinstance(a_ , a_ ): raise TypeError("'float' object cannot be interpreted as an integer" ) if isinstance(a_ , a_ ): raise TypeError("'str' object cannot be interpreted as an integer" ) if num == 0: return "0b0" __A = False if num < 0: __A = True __A = -num __A = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(a_ ) for e in binary ) return "0b" + "".join(str(a_ ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
359
import copy import re class UpperCAmelCase : '''simple docstring''' snake_case_ = "hp" snake_case_ = {} snake_case_ = None @classmethod def UpperCamelCase_ ( cls : Dict ,A : Dict ,A : Any ): __A = prefix __A = defaults cls.build_naming_info() @staticmethod def UpperCamelCase_ ( A : Dict ,A : int ): if len(A ) == 0: return "" __A = None if any(char.isdigit() for char in word ): raise Exception(f'''Parameters should not contain numbers: \'{word}\' contains a number''' ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 ,len(A ) + 1 ): __A = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: __A = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(A : str ): __A = "" while integer != 0: __A = chr(ord("A" ) + integer % 10 ) + s integer //= 10 return s __A = 0 while True: __A = word + "#" + int_to_alphabetic(A ) if sword in info["reverse_short_word"]: continue else: __A = sword break __A = short_word __A = word return short_word @staticmethod def UpperCamelCase_ ( A : int ,A : Tuple ): __A = param_name.split("_" ) __A = [TrialShortNamer.shortname_for_word(A ,A ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name __A = ["", "_"] for separator in separators: __A = separator.join(A ) if shortname not in info["reverse_short_param"]: __A = shortname __A = param_name return shortname return param_name @staticmethod def UpperCamelCase_ ( A : Optional[Any] ,A : Tuple ): __A = TrialShortNamer.shortname_for_key(A ,A ) __A = short_name __A = param_name @classmethod def UpperCamelCase_ ( cls : Dict ): if cls.NAMING_INFO is not None: return __A = { "short_word": {}, "reverse_short_word": {}, "short_param": {}, "reverse_short_param": {}, } __A = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(A ,A ) __A = info @classmethod def UpperCamelCase_ ( cls : Dict ,A : List[str] ): cls.build_naming_info() assert cls.PREFIX is not None __A = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(f'''You should provide a default value for the param name {k} with value {v}''' ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue __A = cls.NAMING_INFO["short_param"][k] if isinstance(A ,A ): __A = 1 if v else 0 __A = "" if isinstance(A ,(int, float) ) else "-" __A = f'''{key}{sep}{v}''' name.append(A ) return "_".join(A ) @classmethod def UpperCamelCase_ ( cls : Tuple ,A : Tuple ): __A = repr[len(cls.PREFIX ) + 1 :] if repr == "": __A = [] else: __A = repr.split("_" ) __A = {} for value in values: if "-" in value: __A , __A = value.split("-" ) else: __A = re.sub("[0-9.]" ,"" ,A ) __A = float(re.sub("[^0-9.]" ,"" ,A ) ) __A = cls.NAMING_INFO["reverse_short_param"][p_k] __A = p_v for k in cls.DEFAULTS: if k not in parameters: __A = cls.DEFAULTS[k] return parameters
124
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A : str = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
274
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging A : Dict = logging.get_logger(__name__) def __lowerCamelCase ( __a :int=None , __a :Optional[Any]=None ) -> int: """simple docstring""" return field(default_factory=lambda: default , metadata=__a ) @dataclass class A : '''simple docstring''' __lowerCamelCase : List[str] = list_field( default=[] , metadata={ '''help''': ( '''Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version''' ''' of all available models''' ) } , ) __lowerCamelCase : List[int] = list_field( default=[8] , metadata={'''help''': '''List of batch sizes for which memory and time performance will be evaluated'''} ) __lowerCamelCase : List[int] = list_field( default=[8, 32, 128, 512] , metadata={'''help''': '''List of sequence lengths for which memory and time performance will be evaluated'''} , ) __lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Whether to benchmark inference of model. Inference can be disabled via --no-inference.'''} , ) __lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Whether to run on available cuda devices. Cuda can be disabled via --no-cuda.'''} , ) __lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Whether to run on available tpu devices. TPU can be disabled via --no-tpu.'''} ) __lowerCamelCase : bool = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Use FP16 to accelerate inference.'''} ) __lowerCamelCase : bool = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Benchmark training of model'''} ) __lowerCamelCase : bool = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Verbose memory tracing'''} ) __lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Whether to perform speed measurements. Speed measurements can be disabled via --no-speed.'''} , ) __lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE , metadata={ '''help''': '''Whether to perform memory measurements. Memory measurements can be disabled via --no-memory''' } , ) __lowerCamelCase : bool = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Trace memory line by line'''} ) __lowerCamelCase : bool = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Save result to a CSV file'''} ) __lowerCamelCase : bool = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Save all print statements in a log file'''} ) __lowerCamelCase : bool = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Whether to print environment information'''} ) __lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE , metadata={ '''help''': ( '''Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use''' ''' multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled''' ''' for debugging / testing and on TPU.''' ) } , ) __lowerCamelCase : str = field( default=F'''inference_time_{round(time() )}.csv''' , metadata={'''help''': '''CSV filename used if saving time results to csv.'''} , ) __lowerCamelCase : str = field( default=F'''inference_memory_{round(time() )}.csv''' , metadata={'''help''': '''CSV filename used if saving memory results to csv.'''} , ) __lowerCamelCase : str = field( default=F'''train_time_{round(time() )}.csv''' , metadata={'''help''': '''CSV filename used if saving time results to csv for training.'''} , ) __lowerCamelCase : str = field( default=F'''train_memory_{round(time() )}.csv''' , metadata={'''help''': '''CSV filename used if saving memory results to csv for training.'''} , ) __lowerCamelCase : str = field( default=F'''env_info_{round(time() )}.csv''' , metadata={'''help''': '''CSV filename used if saving environment information.'''} , ) __lowerCamelCase : str = field( default=F'''log_{round(time() )}.csv''' , metadata={'''help''': '''Log filename used if print statements are saved in log.'''} , ) __lowerCamelCase : int = field(default=3 , metadata={'''help''': '''Times an experiment will be run.'''} ) __lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE , metadata={ '''help''': ( '''Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain''' ''' model weights.''' ) } , ) def a_ ( self : Dict ) -> Union[str, Any]: """simple docstring""" warnings.warn( f'The class {self.__class__} is deprecated. Hugging Face Benchmarking utils' """ are deprecated in general and it is advised to use external Benchmarking libraries """ """ to benchmark Transformer models.""" , __lowerCAmelCase , ) def a_ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def a_ ( self : Tuple ) -> List[str]: """simple docstring""" if len(self.models ) <= 0: raise ValueError( """Please make sure you provide at least one model name / model identifier, *e.g.* `--models""" """ bert-base-cased` or `args.models = ['bert-base-cased'].""" ) return self.models @property def a_ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" if not self.multi_process: return False elif self.is_tpu: logger.info("""Multiprocessing is currently not possible on TPU.""" ) return False else: return True
274
1
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class lowerCamelCase_ ( _A ): '''simple docstring''' def __init__( self : Any , __lowerCamelCase : Union[str, "sqlalchemy.sql.Selectable"] , __lowerCamelCase : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , __lowerCamelCase : Optional[Features] = None , __lowerCamelCase : str = None , __lowerCamelCase : bool = False , **__lowerCamelCase : int , ) -> Dict: super().__init__(features=__lowerCamelCase , cache_dir=__lowerCamelCase , keep_in_memory=__lowerCamelCase , **__lowerCamelCase ) A : Union[str, Any] = Sql( cache_dir=__lowerCamelCase , features=__lowerCamelCase , sql=__lowerCamelCase , con=__lowerCamelCase , **__lowerCamelCase , ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> List[Any]: A : str = None A : List[Any] = None A : Union[str, Any] = None A : str = None self.builder.download_and_prepare( download_config=__lowerCamelCase , download_mode=__lowerCamelCase , verification_mode=__lowerCamelCase , base_path=__lowerCamelCase , ) # Build dataset for splits A : str = self.builder.as_dataset( split="train" , verification_mode=__lowerCamelCase , in_memory=self.keep_in_memory ) return dataset class lowerCamelCase_ : '''simple docstring''' def __init__( self : List[str] , __lowerCamelCase : Dataset , __lowerCamelCase : str , __lowerCamelCase : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[int] = None , **__lowerCamelCase : Optional[Any] , ) -> Union[str, Any]: if num_proc is not None and num_proc <= 0: raise ValueError(F"""num_proc {num_proc} must be an integer > 0.""" ) A : Union[str, Any] = dataset A : Union[str, Any] = name A : List[Any] = con A : Any = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE A : str = num_proc A : int = to_sql_kwargs def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> int: A : List[Any] = self.to_sql_kwargs.pop("sql" , __lowerCamelCase ) A : Union[str, Any] = self.to_sql_kwargs.pop("con" , __lowerCamelCase ) A : Optional[int] = self.to_sql_kwargs.pop("index" , __lowerCamelCase ) A : Union[str, Any] = self._write(index=__lowerCamelCase , **self.to_sql_kwargs ) return written def SCREAMING_SNAKE_CASE__ ( self : List[str] , __lowerCamelCase : Dict ) -> Tuple: A : Optional[int] = args A : List[str] = {**to_sql_kwargs, "if_exists": "append"} if offset > 0 else to_sql_kwargs A : List[str] = query_table( table=self.dataset.data , key=slice(__lowerCamelCase , offset + self.batch_size ) , indices=self.dataset._indices , ) A : List[Any] = batch.to_pandas() A : List[str] = df.to_sql(self.name , self.con , index=__lowerCamelCase , **__lowerCamelCase ) return num_rows or len(__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : int , __lowerCamelCase : int , **__lowerCamelCase : List[str] ) -> int: A : List[Any] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: A : List[str] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , __lowerCamelCase , __lowerCamelCase )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += num_rows return written
370
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def UpperCAmelCase ( _lowerCamelCase ): A : List[Any] = R"\w+[.]\d+" A : Optional[Any] = re.findall(_lowerCamelCase , _lowerCamelCase ) for pat in pats: A : int = key.replace(_lowerCamelCase , "_".join(pat.split("." ) ) ) return key def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): A : Union[str, Any] = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): A : List[Any] = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: A : int = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: A : List[Any] = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer A : Optional[int] = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: A : Union[str, Any] = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer A : List[Any] = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": A : int = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight A : List[str] = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias A : Optional[Any] = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=42 ): # Step 1: Convert pytorch tensor to numpy A : Union[str, Any] = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params A : Dict = flax_model.init_weights(PRNGKey(_lowerCamelCase ) ) A : Dict = flatten_dict(_lowerCamelCase ) A : Dict = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): A : Tuple = rename_key(_lowerCamelCase ) A : List[str] = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters A , A : str = rename_key_and_reshape_tensor(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # also add unexpected weight so that warning is thrown A : Union[str, Any] = jnp.asarray(_lowerCamelCase ) return unflatten_dict(_lowerCamelCase )
256
0
"""simple docstring""" import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList _snake_case = ['\nclass', '\ndef', '\n#', '\n@', '\nprint', '\nif'] class UpperCamelCase ( __lowerCamelCase ): def __init__( self : str , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str , UpperCAmelCase__ : Any=None , UpperCAmelCase__ : Union[str, Any]=1 ) -> Optional[Any]: _a : Optional[int] = tokenizer _a : List[Any] = dataset _a : Any = len(__lowercase ) if n_tasks is None else n_tasks _a : List[Any] = n_copies def __iter__( self : Tuple ) -> Optional[Any]: _a : Union[str, Any] = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]["""prompt"""].strip() ) _a : Optional[int] = self.tokenizer(__lowercase , padding=__lowercase , return_tensors="""pt""" ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class UpperCamelCase ( __lowerCamelCase ): def __init__( self : Union[str, Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : List[str] ) -> Tuple: _a : List[str] = start_length _a : Any = eof_strings _a : Optional[Any] = tokenizer def __call__( self : str , UpperCAmelCase__ : str , UpperCAmelCase__ : Any , **UpperCAmelCase__ : Optional[int] ) -> Dict: _a : Tuple = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) _a : Union[str, Any] = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(__lowercase ) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : List[Any] = re.split("""(%s)""" % """|""".join(__lowerCAmelCase ) , __lowerCAmelCase ) # last string should be "" return "".join(string_list[:-2] ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=2_0 , **UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = defaultdict(__lowerCAmelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(__lowerCAmelCase ) ): with torch.no_grad(): _a : List[Any] = batch['''ids'''].shape[-1] _a : str = accelerator.unwrap_model(__lowerCAmelCase ).generate( input_ids=batch["""ids"""][:, : batch["""input_len"""]] , num_return_sequences=__lowerCAmelCase , **__lowerCAmelCase ) # each task is generated batch_size times _a : str = batch['''task_id'''].repeat(__lowerCAmelCase ) _a : Optional[int] = accelerator.pad_across_processes( __lowerCAmelCase , dim=1 , pad_index=tokenizer.pad_token_id ) _a : Any = accelerator.gather((generated_tokens, generated_tasks) ) _a : Union[str, Any] = generated_tokens.cpu().numpy() _a : Optional[Any] = generated_tasks.cpu().numpy() for task, generated_tokens in zip(__lowerCAmelCase , __lowerCAmelCase ): gen_token_dict[task].append(__lowerCAmelCase ) _a : List[Any] = [[] for _ in range(__lowerCAmelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: _a : int = tokenizer.decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase ) code_gens[task].append(remove_last_block(__lowerCAmelCase ) ) return code_gens def lowerCAmelCase__ ( ): '''simple docstring''' _a : List[str] = HfArgumentParser(__lowerCAmelCase ) _a : Optional[Any] = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric _a : Union[str, Any] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing _a : Union[str, Any] = '''false''' if args.num_workers is None: _a : Union[str, Any] = multiprocessing.cpu_count() # Use dataset load to feed to accelerate _a : Dict = Accelerator() set_seed(args.seed , device_specific=__lowerCAmelCase ) # Load model and tokenizer _a : str = AutoTokenizer.from_pretrained(args.model_ckpt ) _a : List[str] = tokenizer.eos_token _a : Optional[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings _a : List[Any] = { '''do_sample''': args.do_sample, '''temperature''': args.temperature, '''max_new_tokens''': args.max_new_tokens, '''top_p''': args.top_p, '''top_k''': args.top_k, '''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0 , __lowerCAmelCase , __lowerCAmelCase )] ), } # Load evaluation dataset and metric _a : List[str] = load_dataset("""openai_humaneval""" ) _a : str = load_metric("""code_eval""" ) _a : List[Any] = args.num_tasks if args.num_tasks is not None else len(human_eval["""test"""] ) _a : str = args.n_samples // args.batch_size _a : Tuple = TokenizedDataset(__lowerCAmelCase , human_eval["""test"""] , n_copies=__lowerCAmelCase , n_tasks=__lowerCAmelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences _a : Tuple = DataLoader(__lowerCAmelCase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: _a : Optional[Any] = code_eval_metric.compute(references=[""""""] , predictions=[[""""""]] ) except ValueError as exception: print( """Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`""" """ flag to enable code evaluation.""" ) raise exception _a : Optional[Any] = accelerator.prepare(__lowerCAmelCase , __lowerCAmelCase ) _a : Dict = complete_code( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , n_tasks=__lowerCAmelCase , batch_size=args.batch_size , **__lowerCAmelCase , ) if accelerator.is_main_process: _a : Optional[Any] = [] for task in tqdm(range(__lowerCAmelCase ) ): _a : str = human_eval['''test'''][task]['''test'''] _a : int = F"""check({human_eval['test'][task]['entry_point']})""" references.append("""\n""" + test_func + """\n""" + entry_point ) # Evaluate completions with "code_eval" metric _a : Any = code_eval_metric.compute( references=__lowerCAmelCase , predictions=__lowerCAmelCase , num_workers=args.num_workers ) print(F"""Results: {pass_at_k}""" ) # Save results to json file with open(args.output_file , """w""" ) as fp: json.dump(__lowerCAmelCase , __lowerCAmelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
294
import math import sys def _lowerCAmelCase ( __lowerCAmelCase ) -> str: """simple docstring""" snake_case__ : Optional[Any] = '''''' try: with open(__lowerCAmelCase , '''rb''' ) as binary_file: snake_case__ : int = binary_file.read() for dat in data: snake_case__ : Any = f"""{dat:08b}""" result += curr_byte return result except OSError: print('''File not accessible''' ) sys.exit() def _lowerCAmelCase ( __lowerCAmelCase ) -> str: """simple docstring""" snake_case__ : List[str] = {'''0''': '''0''', '''1''': '''1'''} snake_case__ , snake_case__ : List[Any] = '''''', '''''' snake_case__ : Tuple = len(__lowerCAmelCase ) for i in range(len(__lowerCAmelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue snake_case__ : Tuple = lexicon[curr_string] result += last_match_id snake_case__ : Any = last_match_id + '''0''' if math.loga(__lowerCAmelCase ).is_integer(): snake_case__ : Tuple = {} for curr_key in list(__lowerCAmelCase ): snake_case__ : Union[str, Any] = lexicon.pop(__lowerCAmelCase ) snake_case__ : Optional[Any] = new_lex snake_case__ : Tuple = last_match_id + '''1''' index += 1 snake_case__ : Dict = '''''' return result def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> None: """simple docstring""" snake_case__ : Dict = 8 try: with open(__lowerCAmelCase , '''wb''' ) as opened_file: snake_case__ : Union[str, Any] = [ to_write[i : i + byte_length] for i in range(0 , len(__lowerCAmelCase ) , __lowerCAmelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('''10000000''' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(__lowerCAmelCase , 2 ).to_bytes(1 , byteorder='''big''' ) ) except OSError: print('''File not accessible''' ) sys.exit() def _lowerCAmelCase ( __lowerCAmelCase ) -> str: """simple docstring""" snake_case__ : Any = 0 for letter in data_bits: if letter == "1": break counter += 1 snake_case__ : Optional[int] = data_bits[counter:] snake_case__ : int = data_bits[counter + 1 :] return data_bits def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> None: """simple docstring""" snake_case__ : Union[str, Any] = read_file_binary(__lowerCAmelCase ) snake_case__ : List[str] = remove_prefix(__lowerCAmelCase ) snake_case__ : Any = decompress_data(__lowerCAmelCase ) write_file_binary(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
230
0
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification _snake_case = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co _snake_case = '''main''' # Default branch name _snake_case = '''f2c752cfc5c0ab6f4bdec59acea69eefbee381c2''' # One particular commit (not the top of `main`) _snake_case = '''aaaaaaa''' # This commit does not exist, so we should 404. _snake_case = '''d9e9f15bc825e4b2c9249e9578f884bbcb5e3684''' # Sha-1 of config.json on the top of `main`, for checking purposes _snake_case = '''4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3''' @contextlib.contextmanager def _UpperCamelCase ( ) -> Union[str, Any]: print("Welcome!" ) yield print("Bye!" ) @contextlib.contextmanager def _UpperCamelCase ( ) -> List[str]: print("Bonjour!" ) yield print("Au revoir!" ) class _snake_case ( unittest.TestCase ): def _lowerCamelCase ( self: Union[str, Any] ) -> str: # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec("transformers" ) is not None class _snake_case ( unittest.TestCase ): @unittest.mock.patch("sys.stdout" , new_callable=io.StringIO ) def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: List[str] ) -> Tuple: with ContextManagers([] ): print("Transformers are awesome!" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , "Transformers are awesome!\n" ) @unittest.mock.patch("sys.stdout" , new_callable=io.StringIO ) def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: Union[str, Any] ) -> Optional[Any]: with ContextManagers([context_en()] ): print("Transformers are awesome!" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , "Welcome!\nTransformers are awesome!\nBye!\n" ) @unittest.mock.patch("sys.stdout" , new_callable=io.StringIO ) def _lowerCamelCase ( self: Dict , __lowerCamelCase: List[Any] ) -> Union[str, Any]: with ContextManagers([context_fr(), context_en()] ): print("Transformers are awesome!" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , "Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n" ) @require_torch def _lowerCamelCase ( self: List[str] ) -> Optional[int]: self.assertEqual(find_labels(__lowerCamelCase ) , ["labels"] ) self.assertEqual(find_labels(__lowerCamelCase ) , ["labels", "next_sentence_label"] ) self.assertEqual(find_labels(__lowerCamelCase ) , ["start_positions", "end_positions"] ) class _snake_case ( _lowercase ): pass self.assertEqual(find_labels(__lowerCamelCase ) , ["labels"] ) @require_tf def _lowerCamelCase ( self: List[Any] ) -> Union[str, Any]: self.assertEqual(find_labels(__lowerCamelCase ) , ["labels"] ) self.assertEqual(find_labels(__lowerCamelCase ) , ["labels", "next_sentence_label"] ) self.assertEqual(find_labels(__lowerCamelCase ) , ["start_positions", "end_positions"] ) class _snake_case ( _lowercase ): pass self.assertEqual(find_labels(__lowerCamelCase ) , ["labels"] ) @require_flax def _lowerCamelCase ( self: Dict ) -> int: # Flax models don't have labels self.assertEqual(find_labels(__lowerCamelCase ) , [] ) self.assertEqual(find_labels(__lowerCamelCase ) , [] ) self.assertEqual(find_labels(__lowerCamelCase ) , [] ) class _snake_case ( _lowercase ): pass self.assertEqual(find_labels(__lowerCamelCase ) , [] )
342
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration _snake_case = [ # tf -> hf ('''/''', '''.'''), ('''layer_''', '''layers.'''), ('''kernel''', '''weight'''), ('''beta''', '''bias'''), ('''gamma''', '''weight'''), ('''pegasus''', '''model'''), ] _snake_case = [ ('''.output.dense''', '''.fc2'''), ('''intermediate.LayerNorm''', '''final_layer_norm'''), ('''intermediate.dense''', '''fc1'''), ] _snake_case = ( INIT_COMMON + [ ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.out_proj'''), ('''attention.self''', '''self_attn'''), ('''attention.encdec.LayerNorm''', '''encoder_attn_layer_norm'''), ('''attention.encdec_output.dense''', '''encoder_attn.out_proj'''), ('''attention.encdec''', '''encoder_attn'''), ('''key''', '''k_proj'''), ('''value''', '''v_proj'''), ('''query''', '''q_proj'''), ('''decoder.LayerNorm''', '''decoder.layernorm_embedding'''), ] + END_COMMON ) _snake_case = ( INIT_COMMON + [ ('''embeddings.word_embeddings''', '''shared.weight'''), ('''embeddings.position_embeddings''', '''embed_positions.weight'''), ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.output'''), ('''attention.self''', '''self_attn.self'''), ('''encoder.LayerNorm''', '''encoder.layernorm_embedding'''), ] + END_COMMON ) _snake_case = [ '''encdec/key/bias''', '''encdec/query/bias''', '''encdec/value/bias''', '''self/key/bias''', '''self/query/bias''', '''self/value/bias''', '''encdec_output/dense/bias''', '''attention/output/dense/bias''', ] def _UpperCamelCase ( snake_case__, snake_case__ ) -> Any: for tf_name, hf_name in patterns: __UpperCAmelCase : Optional[int] = k.replace(snake_case__, snake_case__ ) return k def _UpperCamelCase ( snake_case__, snake_case__ ) -> BigBirdPegasusForConditionalGeneration: __UpperCAmelCase : Dict = BigBirdPegasusConfig(**snake_case__ ) __UpperCAmelCase : Dict = BigBirdPegasusForConditionalGeneration(snake_case__ ) __UpperCAmelCase : Optional[Any] = torch_model.state_dict() __UpperCAmelCase : Optional[int] = {} # separating decoder weights __UpperCAmelCase : List[Any] = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )} __UpperCAmelCase : str = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )} for k, v in tqdm(decoder_weights.items(), "tf -> hf conversion" ): __UpperCAmelCase : Optional[int] = [k.endswith(snake_case__ ) for ending in KEYS_TO_IGNORE] if any(snake_case__ ): continue __UpperCAmelCase : List[str] = DECODER_PATTERNS __UpperCAmelCase : str = rename_state_dict_key(snake_case__, snake_case__ ) if new_k not in state_dict: raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): __UpperCAmelCase : Optional[int] = v.T __UpperCAmelCase : str = torch.from_numpy(snake_case__ ) assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' for k, v in tqdm(remaining_weights.items(), "tf -> hf conversion" ): __UpperCAmelCase : int = [k.endswith(snake_case__ ) for ending in KEYS_TO_IGNORE] if any(snake_case__ ): continue __UpperCAmelCase : Optional[Any] = REMAINING_PATTERNS __UpperCAmelCase : Optional[int] = rename_state_dict_key(snake_case__, snake_case__ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): __UpperCAmelCase : List[Any] = v.T __UpperCAmelCase : List[str] = torch.from_numpy(snake_case__ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' __UpperCAmelCase : List[Any] = mapping["model.embed_positions.weight"] __UpperCAmelCase : Optional[Any] = mapping.pop("model.embed_positions.weight" ) __UpperCAmelCase , __UpperCAmelCase : Any = torch_model.load_state_dict(snake_case__, strict=snake_case__ ) __UpperCAmelCase : str = [ k for k in missing if k not in [ "final_logits_bias", "model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight", ] ] assert unexpected_missing == [], f'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], f'''no matches found for the following tf keys {extra}''' return torch_model def _UpperCamelCase ( snake_case__ ) -> Dict: __UpperCAmelCase : Tuple = tf.train.list_variables(snake_case__ ) __UpperCAmelCase : List[str] = {} __UpperCAmelCase : str = ["global_step"] for name, shape in tqdm(snake_case__, desc="converting tf checkpoint to dict" ): __UpperCAmelCase : Tuple = any(pat in name for pat in ignore_name ) if skip_key: continue __UpperCAmelCase : Optional[Any] = tf.train.load_variable(snake_case__, snake_case__ ) __UpperCAmelCase : Tuple = array return tf_weights def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Dict: __UpperCAmelCase : str = get_tf_weights_as_numpy(snake_case__ ) __UpperCAmelCase : List[Any] = convert_bigbird_pegasus(snake_case__, snake_case__ ) torch_model.save_pretrained(snake_case__ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('''--tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''--save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') _snake_case = parser.parse_args() _snake_case = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
342
1
'''simple docstring''' import math def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(_UpperCAmelCase ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 10001 ) -> int: try: _a : List[str] =int(_UpperCAmelCase ) except (TypeError, ValueError): raise TypeError("""Parameter nth must be int or castable to int.""" ) from None if nth <= 0: raise ValueError("""Parameter nth must be greater than or equal to one.""" ) _a : list[int] =[] _a : Any =2 while len(_UpperCAmelCase ) < nth: if is_prime(_UpperCAmelCase ): primes.append(_UpperCAmelCase ) num += 1 else: num += 1 return primes[len(_UpperCAmelCase ) - 1] if __name__ == "__main__": print(F"{solution() = }")
276
'''simple docstring''' import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( """kwargs, expected""" ,[ ({"""num_shards""": 0, """max_num_jobs""": 1}, []), ({"""num_shards""": 10, """max_num_jobs""": 1}, [range(10 )]), ({"""num_shards""": 10, """max_num_jobs""": 10}, [range(_UpperCAmelCase ,i + 1 ) for i in range(10 )]), ({"""num_shards""": 1, """max_num_jobs""": 10}, [range(1 )]), ({"""num_shards""": 10, """max_num_jobs""": 3}, [range(0 ,4 ), range(4 ,7 ), range(7 ,10 )]), ({"""num_shards""": 3, """max_num_jobs""": 10}, [range(0 ,1 ), range(1 ,2 ), range(2 ,3 )]), ] ,) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : Dict ) -> Optional[Any]: _a : Tuple =_distribute_shards(**_UpperCAmelCase ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, max_num_jobs, expected""" ,[ ({"""foo""": 0}, 10, [{"""foo""": 0}]), ({"""shards""": [0, 1, 2, 3]}, 1, [{"""shards""": [0, 1, 2, 3]}]), ({"""shards""": [0, 1, 2, 3]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}, {"""shards""": [2]}, {"""shards""": [3]}]), ({"""shards""": [0, 1]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}]), ({"""shards""": [0, 1, 2, 3]}, 2, [{"""shards""": [0, 1]}, {"""shards""": [2, 3]}]), ] ,) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Tuple ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : Union[str, Any] ) -> List[str]: _a : List[str] =_split_gen_kwargs(_UpperCAmelCase ,_UpperCAmelCase ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, expected""" ,[ ({"""foo""": 0}, 1), ({"""shards""": [0]}, 1), ({"""shards""": [0, 1, 2, 3]}, 4), ({"""shards""": [0, 1, 2, 3], """foo""": 0}, 4), ({"""shards""": [0, 1, 2, 3], """other""": (0, 1)}, 4), ({"""shards""": [0, 1, 2, 3], """shards2""": [0, 1]}, RuntimeError), ] ,) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : List[Any] ) -> Union[str, Any]: if expected is RuntimeError: with pytest.raises(_UpperCAmelCase ): _number_of_shards_in_gen_kwargs(_UpperCAmelCase ) else: _a : Dict =_number_of_shards_in_gen_kwargs(_UpperCAmelCase ) assert out == expected
276
1
import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home snake_case_ = HUGGINGFACE_HUB_CACHE snake_case_ = '''config.json''' snake_case_ = '''diffusion_pytorch_model.bin''' snake_case_ = '''diffusion_flax_model.msgpack''' snake_case_ = '''model.onnx''' snake_case_ = '''diffusion_pytorch_model.safetensors''' snake_case_ = '''weights.pb''' snake_case_ = '''https://huggingface.co''' snake_case_ = default_cache_path snake_case_ = '''diffusers_modules''' snake_case_ = os.getenv('''HF_MODULES_CACHE''', os.path.join(hf_cache_home, '''modules''')) snake_case_ = ['''fp16''', '''non-ema'''] snake_case_ = '''.self_attn'''
356
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation snake_case_ = logging.get_logger(__name__) snake_case_ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} snake_case_ = { '''vocab_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/vocab.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/vocab.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/vocab.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/vocab.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/vocab.json''', }, '''merges_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/merges.txt''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/merges.txt''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/merges.txt''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/merges.txt''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/tokenizer.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/tokenizer.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/tokenizer.json''', }, } snake_case_ = { '''gpt2''': 1_024, '''gpt2-medium''': 1_024, '''gpt2-large''': 1_024, '''gpt2-xl''': 1_024, '''distilgpt2''': 1_024, } class SCREAMING_SNAKE_CASE__ (__snake_case ): __lowerCamelCase : List[str] = VOCAB_FILES_NAMES __lowerCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : int = ["""input_ids""", """attention_mask"""] __lowerCamelCase : str = GPTaTokenizer def __init__( self , a=None , a=None , a=None , a="<|endoftext|>" , a="<|endoftext|>" , a="<|endoftext|>" , a=False , **a , ): super().__init__( a , a , tokenizer_file=a , unk_token=a , bos_token=a , eos_token=a , add_prefix_space=a , **a , ) lowercase__ : int = kwargs.pop('add_bos_token' , a) lowercase__ : List[str] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('add_prefix_space' , a) != add_prefix_space: lowercase__ : Optional[Any] = getattr(a , pre_tok_state.pop('type')) lowercase__ : List[Any] = add_prefix_space lowercase__ : str = pre_tok_class(**a) lowercase__ : Tuple = add_prefix_space def snake_case_ ( self , *a , **a): lowercase__ : Tuple = kwargs.get('is_split_into_words' , a) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*a , **a) def snake_case_ ( self , *a , **a): lowercase__ : Optional[Any] = kwargs.get('is_split_into_words' , a) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*a , **a) def snake_case_ ( self , a , a = None): lowercase__ : Any = self._tokenizer.model.save(a , name=a) return tuple(a) def snake_case_ ( self , a): lowercase__ : Union[str, Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(a , add_special_tokens=a) + [self.eos_token_id]) if len(a) > self.model_max_length: lowercase__ : Union[str, Any] = input_ids[-self.model_max_length :] return input_ids
216
0
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return 1 if input_a == input_a else 0 def a__ ( ): '''simple docstring''' assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
108
from numpy import exp, pi, sqrt def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 ) -> int: """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
219
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A ( _a ,unittest.TestCase ): lowercase_ = KandinskyVaaInpaintPipeline lowercase_ = ['image_embeds', 'negative_image_embeds', 'image', 'mask_image'] lowercase_ = [ 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] lowercase_ = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] lowercase_ = False @property def __lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" return 32 @property def __lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" return 32 @property def __lowerCAmelCase ( self : Any ) -> str: """simple docstring""" return self.time_input_dim @property def __lowerCAmelCase ( self : Any ) -> str: """simple docstring""" return self.time_input_dim * 4 @property def __lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" return 1_00 @property def __lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" torch.manual_seed(0 ) _a = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } _a = UNetaDConditionModel(**lowerCAmelCase_ ) return model @property def __lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) _a = VQModel(**self.dummy_movq_kwargs ) return model def __lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" _a = self.dummy_unet _a = self.dummy_movq _a = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule='''linear''' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=lowerCAmelCase_ , set_alpha_to_one=lowerCAmelCase_ , steps_offset=1 , prediction_type='''epsilon''' , thresholding=lowerCAmelCase_ , ) _a = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any]=0 ) -> str: """simple docstring""" _a = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) _a = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowerCAmelCase_ ) # create init_image _a = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) _a = image.cpu().permute(0 , 2 , 3 , 1 )[0] _a = Image.fromarray(np.uinta(lowerCAmelCase_ ) ).convert('''RGB''' ).resize((2_56, 2_56) ) # create mask _a = np.ones((64, 64) , dtype=np.floataa ) _a = 0 if str(lowerCAmelCase_ ).startswith('''mps''' ): _a = torch.manual_seed(lowerCAmelCase_ ) else: _a = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) _a = { '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def __lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" _a = '''cpu''' _a = self.get_dummy_components() _a = self.pipeline_class(**lowerCAmelCase_ ) _a = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _a = pipe(**self.get_dummy_inputs(lowerCAmelCase_ ) ) _a = output.images _a = pipe( **self.get_dummy_inputs(lowerCAmelCase_ ) , return_dict=lowerCAmelCase_ , )[0] _a = image[0, -3:, -3:, -1] _a = image_from_tuple[0, -3:, -3:, -1] print(F'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) _a = np.array( [0.5_0_7_7_5_9_0_3, 0.4_9_5_2_7_1_9_5, 0.4_8_8_2_4_5_4_3, 0.5_0_1_9_2_2_3_7, 0.4_8_6_4_4_9_0_6, 0.4_9_3_7_3_8_1_4, 0.4_7_8_0_5_9_8, 0.4_7_2_3_4_8_2_7, 0.4_8_3_2_7_8_4_8] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def __lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class A ( unittest.TestCase ): def __lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" _a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy''' ) _a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) _a = np.ones((7_68, 7_68) , dtype=np.floataa ) _a = 0 _a = '''a hat''' _a = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(lowerCAmelCase_ ) _a = KandinskyVaaInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder-inpaint''' , torch_dtype=torch.floataa ) _a = pipeline.to(lowerCAmelCase_ ) pipeline.set_progress_bar_config(disable=lowerCAmelCase_ ) _a = torch.Generator(device='''cpu''' ).manual_seed(0 ) _a , _a = pipe_prior( lowerCAmelCase_ , generator=lowerCAmelCase_ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() _a = pipeline( image=lowerCAmelCase_ , mask_image=lowerCAmelCase_ , image_embeds=lowerCAmelCase_ , negative_image_embeds=lowerCAmelCase_ , generator=lowerCAmelCase_ , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type='''np''' , ) _a = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(lowerCAmelCase_ , lowerCAmelCase_ )
179
'''simple docstring''' import argparse from collections import defaultdict import yaml _snake_case : int = 'docs/source/en/_toctree.yml' def snake_case_ (UpperCamelCase : Optional[int] ): '''simple docstring''' _a = defaultdict(UpperCamelCase ) for doc in model_doc: counts[doc["local"]] += 1 _a = [key for key, value in counts.items() if value > 1] _a = [] for duplicate_key in duplicates: _a = list({doc['''title'''] for doc in model_doc if doc['''local'''] == duplicate_key} ) if len(UpperCamelCase ) > 1: raise ValueError( f'{duplicate_key} is present several times in the documentation table of content at ' '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['''local''']] == 1] ) # Sort return sorted(UpperCamelCase , key=lambda UpperCamelCase : s["title"].lower() ) def snake_case_ (UpperCamelCase : str=False ): '''simple docstring''' with open(UpperCamelCase , encoding='''utf-8''' ) as f: _a = yaml.safe_load(f.read() ) # Get to the API doc _a = 0 while content[api_idx]["title"] != "API": api_idx += 1 _a = content[api_idx]['''sections'''] # Then to the model doc _a = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 _a = api_doc[model_idx]['''sections'''] _a = [(idx, section) for idx, section in enumerate(UpperCamelCase ) if '''sections''' in section] _a = False for idx, modality_doc in modalities_docs: _a = modality_doc['''sections'''] _a = clean_model_doc_toc(UpperCamelCase ) if old_modality_doc != new_modality_doc: _a = True if overwrite: _a = new_modality_doc if diff: if overwrite: _a = model_doc _a = api_doc with open(UpperCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(UpperCamelCase , allow_unicode=UpperCamelCase ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": _snake_case : List[str] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') _snake_case : List[Any] = parser.parse_args() check_model_doc(args.fix_and_overwrite)
179
1
from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class __a ( unittest.TestCase ): @slow def __lowercase ( self : Optional[Any] ): '''simple docstring''' for model_name in ["bert-base-uncased"]: UpperCamelCase__ : Optional[Any] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = TFAutoModel.from_pretrained(SCREAMING_SNAKE_CASE , from_pt=SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : int = AutoModel.from_pretrained(SCREAMING_SNAKE_CASE , from_tf=SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @slow def __lowercase ( self : List[str] ): '''simple docstring''' for model_name in ["bert-base-uncased"]: UpperCamelCase__ : str = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = TFAutoModelForPreTraining.from_pretrained(SCREAMING_SNAKE_CASE , from_pt=SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = AutoModelForPreTraining.from_pretrained(SCREAMING_SNAKE_CASE , from_tf=SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @slow def __lowercase ( self : str ): '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : Union[str, Any] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = TFAutoModelForCausalLM.from_pretrained(SCREAMING_SNAKE_CASE , from_pt=SCREAMING_SNAKE_CASE ) UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] = TFAutoModelForCausalLM.from_pretrained( SCREAMING_SNAKE_CASE , output_loading_info=SCREAMING_SNAKE_CASE , from_pt=SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = AutoModelForCausalLM.from_pretrained(SCREAMING_SNAKE_CASE , from_tf=SCREAMING_SNAKE_CASE ) UpperCamelCase__ , UpperCamelCase__ : int = AutoModelForCausalLM.from_pretrained( SCREAMING_SNAKE_CASE , output_loading_info=SCREAMING_SNAKE_CASE , from_tf=SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @slow def __lowercase ( self : Dict ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : Tuple = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = TFAutoModelWithLMHead.from_pretrained(SCREAMING_SNAKE_CASE , from_pt=SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = AutoModelWithLMHead.from_pretrained(SCREAMING_SNAKE_CASE , from_tf=SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @slow def __lowercase ( self : int ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : List[Any] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = TFAutoModelForMaskedLM.from_pretrained(SCREAMING_SNAKE_CASE , from_pt=SCREAMING_SNAKE_CASE ) UpperCamelCase__ , UpperCamelCase__ : Tuple = TFAutoModelForMaskedLM.from_pretrained( SCREAMING_SNAKE_CASE , output_loading_info=SCREAMING_SNAKE_CASE , from_pt=SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : int = AutoModelForMaskedLM.from_pretrained(SCREAMING_SNAKE_CASE , from_tf=SCREAMING_SNAKE_CASE ) UpperCamelCase__ , UpperCamelCase__ : Optional[int] = AutoModelForMaskedLM.from_pretrained( SCREAMING_SNAKE_CASE , output_loading_info=SCREAMING_SNAKE_CASE , from_tf=SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @slow def __lowercase ( self : Any ): '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : List[Any] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = TFAutoModelForSeqaSeqLM.from_pretrained(SCREAMING_SNAKE_CASE , from_pt=SCREAMING_SNAKE_CASE ) UpperCamelCase__ , UpperCamelCase__ : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained( SCREAMING_SNAKE_CASE , output_loading_info=SCREAMING_SNAKE_CASE , from_pt=SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = AutoModelForSeqaSeqLM.from_pretrained(SCREAMING_SNAKE_CASE , from_tf=SCREAMING_SNAKE_CASE ) UpperCamelCase__ , UpperCamelCase__ : List[str] = AutoModelForSeqaSeqLM.from_pretrained( SCREAMING_SNAKE_CASE , output_loading_info=SCREAMING_SNAKE_CASE , from_tf=SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @slow def __lowercase ( self : List[str] ): '''simple docstring''' for model_name in ["bert-base-uncased"]: UpperCamelCase__ : Optional[int] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = TFAutoModelForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE , from_pt=SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = AutoModelForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE , from_tf=SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @slow def __lowercase ( self : Tuple ): '''simple docstring''' for model_name in ["bert-base-uncased"]: UpperCamelCase__ : List[str] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = TFAutoModelForQuestionAnswering.from_pretrained(SCREAMING_SNAKE_CASE , from_pt=SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = AutoModelForQuestionAnswering.from_pretrained(SCREAMING_SNAKE_CASE , from_tf=SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCamelCase__ : int = TFAutoModelWithLMHead.from_pretrained(SCREAMING_SNAKE_CASE , from_pt=SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=SCREAMING_SNAKE_CASE ) , 1_44_10 ) UpperCamelCase__ : Any = AutoModelWithLMHead.from_pretrained(SCREAMING_SNAKE_CASE , from_tf=SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=SCREAMING_SNAKE_CASE ) , 1_44_10 ) def __lowercase ( self : str ): '''simple docstring''' UpperCamelCase__ : List[Any] = TFAutoModelWithLMHead.from_pretrained(SCREAMING_SNAKE_CASE , from_pt=SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=SCREAMING_SNAKE_CASE ) , 1_44_10 ) UpperCamelCase__ : Optional[int] = AutoModelWithLMHead.from_pretrained(SCREAMING_SNAKE_CASE , from_tf=SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=SCREAMING_SNAKE_CASE ) , 1_44_10 )
189
from math import factorial class __a : def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' UpperCamelCase__ : Tuple = real if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase__ : Union[str, Any] = [1] * rank else: UpperCamelCase__ : int = rank def __repr__( self : Tuple ): '''simple docstring''' return ( F'{self.real}+' F'{"+".join(str(SCREAMING_SNAKE_CASE )+"E"+str(n+1 )for n,dual in enumerate(self.duals ) )}' ) def __lowercase ( self : Tuple ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , SCREAMING_SNAKE_CASE ) def __add__( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return Dual(self.real + other , self.duals ) UpperCamelCase__ : Optional[int] = self.duals.copy() UpperCamelCase__ : Any = other.duals.copy() if len(SCREAMING_SNAKE_CASE ) > len(SCREAMING_SNAKE_CASE ): o_dual.extend([1] * (len(SCREAMING_SNAKE_CASE ) - len(SCREAMING_SNAKE_CASE )) ) elif len(SCREAMING_SNAKE_CASE ) < len(SCREAMING_SNAKE_CASE ): s_dual.extend([1] * (len(SCREAMING_SNAKE_CASE ) - len(SCREAMING_SNAKE_CASE )) ) UpperCamelCase__ : Optional[int] = [] for i in range(len(SCREAMING_SNAKE_CASE ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , SCREAMING_SNAKE_CASE ) _lowerCAmelCase : Dict = __add__ def __sub__( self : Tuple , SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' return self + other * -1 def __mul__( self : int , SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase__ : str = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , SCREAMING_SNAKE_CASE ) _lowerCAmelCase : Union[str, Any] = __mul__ def __truediv__( self : List[Any] , SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase__ : str = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , SCREAMING_SNAKE_CASE ) raise ValueError def __floordiv__( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase__ : Dict = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , SCREAMING_SNAKE_CASE ) raise ValueError def __pow__( self : str , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if n < 0 or isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise ValueError("power must be a positive integer" ) if n == 0: return 1 if n == 1: return self UpperCamelCase__ : str = self for _ in range(n - 1 ): x *= self return x def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str: if not callable(__lowerCAmelCase ): raise ValueError("differentiate() requires a function as input for func" ) if not isinstance(__lowerCAmelCase , (float, int) ): raise ValueError("differentiate() requires a float as input for position" ) if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError("differentiate() requires an int as input for order" ) UpperCamelCase__ : Optional[Any] = Dual(__lowerCAmelCase , 1 ) UpperCamelCase__ : Any = func(__lowerCAmelCase ) if order == 0: return result.real return result.duals[order - 1] * factorial(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> List[Any]: return y**2 * y**4 print(differentiate(f, 9, 2))
189
1
"""simple docstring""" import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCamelCase_ ( a_ ): def __init__( self , snake_case__ , snake_case__ , snake_case__ ) -> Optional[int]: """simple docstring""" super().__init__() self.register_modules(vqvae=snake_case__ , unet=snake_case__ , scheduler=snake_case__ ) @torch.no_grad() def __call__( self , snake_case__ = 1 , snake_case__ = None , snake_case__ = 0.0 , snake_case__ = 50 , snake_case__ = "pil" , snake_case__ = True , **snake_case__ , ) -> Union[Tuple, ImagePipelineOutput]: """simple docstring""" UpperCAmelCase = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=snake_case__ , ) UpperCAmelCase = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCAmelCase = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(snake_case__ ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature UpperCAmelCase = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCAmelCase = {} if accepts_eta: UpperCAmelCase = eta for t in self.progress_bar(self.scheduler.timesteps ): UpperCAmelCase = self.scheduler.scale_model_input(snake_case__ , snake_case__ ) # predict the noise residual UpperCAmelCase = self.unet(snake_case__ , snake_case__ ).sample # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase = self.scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample # decode the image latents with the VAE UpperCAmelCase = self.vqvae.decode(snake_case__ ).sample UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase = self.numpy_to_pil(snake_case__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case__ )
248
"""simple docstring""" def _lowerCAmelCase ( ): '''simple docstring''' return [ a * b * (1000 - a - b) for a in range(1 , 999 ) for b in range(lowerCAmelCase , 999 ) if (a * a + b * b == (1000 - a - b) ** 2) ][0] if __name__ == "__main__": print(F'{solution() = }')
248
1
'''simple docstring''' from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> Optional[int]: try: with open(__UpperCamelCase , """rb""" ) as flax_state_f: UpperCamelCase = from_bytes(__UpperCamelCase , flax_state_f.read() ) except UnpicklingError as e: try: with open(__UpperCamelCase ) as f: if f.read().startswith("""version""" ): raise OSError( """You seem to have cloned a repository without having git-lfs installed. Please""" """ install git-lfs and run `git lfs install` followed by `git lfs pull` in the""" """ folder you cloned.""" ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F"Unable to convert {model_file} to Flax deserializable object. " ) return load_flax_weights_in_pytorch_model(__UpperCamelCase , __UpperCamelCase ) def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> Tuple: try: import torch # noqa: F401 except ImportError: logger.error( """Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights UpperCamelCase = flatten_dict(jax.tree_util.tree_map(lambda __UpperCamelCase : x.dtype == jnp.bfloataa , __UpperCamelCase ) ).values() if any(__UpperCamelCase ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) UpperCamelCase = jax.tree_util.tree_map( lambda __UpperCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , __UpperCamelCase ) UpperCamelCase = """""" UpperCamelCase = flatten_dict(__UpperCamelCase , sep=""".""" ) UpperCamelCase = pt_model.state_dict() # keep track of unexpected & missing keys UpperCamelCase = [] UpperCamelCase = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): UpperCamelCase = flax_key_tuple.split(""".""" ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: UpperCamelCase = flax_key_tuple_array[:-1] + ["""weight"""] UpperCamelCase = jnp.transpose(__UpperCamelCase , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": UpperCamelCase = flax_key_tuple_array[:-1] + ["""weight"""] UpperCamelCase = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": UpperCamelCase = flax_key_tuple_array[:-1] + ["""weight"""] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(__UpperCamelCase ): UpperCamelCase = ( flax_key_tuple_string.replace("""_0""" , """.0""" ) .replace("""_1""" , """.1""" ) .replace("""_2""" , """.2""" ) .replace("""_3""" , """.3""" ) .replace("""_4""" , """.4""" ) .replace("""_5""" , """.5""" ) .replace("""_6""" , """.6""" ) .replace("""_7""" , """.7""" ) .replace("""_8""" , """.8""" ) .replace("""_9""" , """.9""" ) ) UpperCamelCase = """.""".join(__UpperCamelCase ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected " F"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}." ) else: # add weight to pytorch dict UpperCamelCase = np.asarray(__UpperCamelCase ) if not isinstance(__UpperCamelCase , np.ndarray ) else flax_tensor UpperCamelCase = torch.from_numpy(__UpperCamelCase ) # remove from missing keys missing_keys.remove(__UpperCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(__UpperCamelCase ) pt_model.load_state_dict(__UpperCamelCase ) # re-transform missing_keys to list UpperCamelCase = list(__UpperCamelCase ) if len(__UpperCamelCase ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" F" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing" F" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture" """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" F" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect" """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) if len(__UpperCamelCase ) > 0: logger.warning( F"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly" F" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to" """ use it for predictions and inference.""" ) return pt_model
321
'''simple docstring''' def lowercase__ ( __UpperCamelCase )-> int: if divisor % 5 == 0 or divisor % 2 == 0: return 0 UpperCamelCase = 1 UpperCamelCase = 1 while repunit: UpperCamelCase = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def lowercase__ ( __UpperCamelCase = 1000000 )-> int: UpperCamelCase = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(__UpperCamelCase ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(f'{solution() = }')
321
1
"""simple docstring""" import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def UpperCamelCase ( UpperCAmelCase ) ->str: """simple docstring""" a_ = [] for line in lines: a_ = re.sub(r"#.*" , "" , UpperCAmelCase ) # remove comments if line: filtered_lines.append(UpperCAmelCase ) a_ = "\n".join(UpperCAmelCase ) # Make a hash from all this code a_ = full_str.encode("utf-8" ) return shaaaa(UpperCAmelCase ).hexdigest() # get importable module names and hash for caching UpperCamelCase_ = { 'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), 'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), 'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), 'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), 'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), 'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), 'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), 'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions UpperCamelCase_ = { '.csv': ('csv', {}), '.tsv': ('csv', {'sep': '\t'}), '.json': ('json', {}), '.jsonl': ('json', {}), '.parquet': ('parquet', {}), '.arrow': ('arrow', {}), '.txt': ('text', {}), } _EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) UpperCamelCase_ = {'imagefolder', 'audiofolder'} # Used to filter data files based on extensions given a module name UpperCamelCase_ = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('.zip') _MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
362
"""simple docstring""" import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class snake_case ( SCREAMING_SNAKE_CASE_ ): def __init__( self , __UpperCAmelCase = "▁" , __UpperCAmelCase = True , __UpperCAmelCase = "<unk>" , __UpperCAmelCase = "</s>" , __UpperCAmelCase = "<pad>" , ) ->str: a_ = { "pad": {"id": 0, "token": pad_token}, "eos": {"id": 1, "token": eos_token}, "unk": {"id": 2, "token": unk_token}, } a_ = [None] * len(self.special_tokens) for token_dict in self.special_tokens.values(): a_ = token_dict["token"] a_ = Tokenizer(Unigram()) a_ = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(" {2,}") , " "), normalizers.Lowercase(), ]) a_ = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase), pre_tokenizers.Digits(individual_digits=__UpperCAmelCase), pre_tokenizers.Punctuation(), ]) a_ = decoders.Metaspace(replacement=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase) a_ = TemplateProcessing( single=F'''$A {self.special_tokens["eos"]["token"]}''' , special_tokens=[(self.special_tokens["eos"]["token"], self.special_tokens["eos"]["id"])] , ) a_ = { "model": "SentencePieceUnigram", "replacement": replacement, "add_prefix_space": add_prefix_space, } super().__init__(__UpperCAmelCase , __UpperCAmelCase) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = 80_00 , __UpperCAmelCase = True , ) ->Optional[Any]: a_ = trainers.UnigramTrainer( vocab_size=__UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=__UpperCAmelCase , ) if isinstance(__UpperCAmelCase , __UpperCAmelCase): a_ = [files] self._tokenizer.train(__UpperCAmelCase , trainer=__UpperCAmelCase) self.add_unk_id() def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = 80_00 , __UpperCAmelCase = True , ) ->int: a_ = trainers.UnigramTrainer( vocab_size=__UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=__UpperCAmelCase , ) self._tokenizer.train_from_iterator(__UpperCAmelCase , trainer=__UpperCAmelCase) self.add_unk_id() def UpperCAmelCase__ ( self) ->Union[str, Any]: a_ = json.loads(self._tokenizer.to_str()) a_ = self.special_tokens["unk"]["id"] a_ = Tokenizer.from_str(json.dumps(__UpperCAmelCase))
303
0
'''simple docstring''' from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
55
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : int ="dpr" def __init__( self , snake_case__=30_522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3_072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=0 , snake_case__="absolute" , snake_case__ = 0 , **snake_case__ , ): """simple docstring""" super().__init__(pad_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : Union[str, Any] = vocab_size lowerCAmelCase : str = hidden_size lowerCAmelCase : Any = num_hidden_layers lowerCAmelCase : Optional[int] = num_attention_heads lowerCAmelCase : Union[str, Any] = hidden_act lowerCAmelCase : Dict = intermediate_size lowerCAmelCase : Union[str, Any] = hidden_dropout_prob lowerCAmelCase : Dict = attention_probs_dropout_prob lowerCAmelCase : Dict = max_position_embeddings lowerCAmelCase : Tuple = type_vocab_size lowerCAmelCase : Any = initializer_range lowerCAmelCase : Any = layer_norm_eps lowerCAmelCase : Dict = projection_dim lowerCAmelCase : Dict = position_embedding_type
108
0
def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int ) -> bool: """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
348
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "asapp/sew-d-tiny-100k": "https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''sew-d''' def __init__( self , lowerCamelCase__=32 , lowerCamelCase__=768 , lowerCamelCase__=12 , lowerCamelCase__=12 , lowerCamelCase__=3_072 , lowerCamelCase__=2 , lowerCamelCase__=512 , lowerCamelCase__=256 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=("p2c", "c2p") , lowerCamelCase__="layer_norm" , lowerCamelCase__="gelu_python" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=0.0 , lowerCamelCase__=0.1 , lowerCamelCase__=0.02 , lowerCamelCase__=1e-7 , lowerCamelCase__=1e-5 , lowerCamelCase__="group" , lowerCamelCase__="gelu" , lowerCamelCase__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , lowerCamelCase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowerCamelCase__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowerCamelCase__=False , lowerCamelCase__=128 , lowerCamelCase__=16 , lowerCamelCase__=True , lowerCamelCase__=0.05 , lowerCamelCase__=10 , lowerCamelCase__=2 , lowerCamelCase__=0.0 , lowerCamelCase__=10 , lowerCamelCase__=0 , lowerCamelCase__="mean" , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=256 , lowerCamelCase__=0 , lowerCamelCase__=1 , lowerCamelCase__=2 , **lowerCamelCase__ , ) -> Any: '''simple docstring''' super().__init__(**lowerCamelCase__ , pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ ) __lowerCamelCase = hidden_size __lowerCamelCase = feat_extract_norm __lowerCamelCase = feat_extract_activation __lowerCamelCase = list(lowerCamelCase__ ) __lowerCamelCase = list(lowerCamelCase__ ) __lowerCamelCase = list(lowerCamelCase__ ) __lowerCamelCase = conv_bias __lowerCamelCase = num_conv_pos_embeddings __lowerCamelCase = num_conv_pos_embedding_groups __lowerCamelCase = len(self.conv_dim ) __lowerCamelCase = num_hidden_layers __lowerCamelCase = intermediate_size __lowerCamelCase = squeeze_factor __lowerCamelCase = max_position_embeddings __lowerCamelCase = position_buckets __lowerCamelCase = share_att_key __lowerCamelCase = relative_attention __lowerCamelCase = norm_rel_ebd __lowerCamelCase = list(lowerCamelCase__ ) __lowerCamelCase = hidden_act __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_dropout __lowerCamelCase = attention_dropout __lowerCamelCase = activation_dropout __lowerCamelCase = feat_proj_dropout __lowerCamelCase = final_dropout __lowerCamelCase = layer_norm_eps __lowerCamelCase = feature_layer_norm_eps __lowerCamelCase = initializer_range __lowerCamelCase = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowerCamelCase = apply_spec_augment __lowerCamelCase = mask_time_prob __lowerCamelCase = mask_time_length __lowerCamelCase = mask_time_min_masks __lowerCamelCase = mask_feature_prob __lowerCamelCase = mask_feature_length __lowerCamelCase = mask_feature_min_masks # ctc loss __lowerCamelCase = ctc_loss_reduction __lowerCamelCase = ctc_zero_infinity # sequence classification __lowerCamelCase = use_weighted_layer_sum __lowerCamelCase = classifier_proj_size @property def lowercase_ ( self ) -> Any: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
348
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ : List[str] = logging.get_logger(__name__) lowercase__ : Dict = { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/config.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/config.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/config.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/config.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json''', '''roberta-large-openai-detector''': '''https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''roberta''' def __init__( self , _UpperCAmelCase=5_0265 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=2 , _UpperCAmelCase="absolute" , _UpperCAmelCase=True , _UpperCAmelCase=None , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase) __A : Optional[int] = vocab_size __A : int = hidden_size __A : Union[str, Any] = num_hidden_layers __A : List[str] = num_attention_heads __A : Optional[int] = hidden_act __A : str = intermediate_size __A : Union[str, Any] = hidden_dropout_prob __A : Dict = attention_probs_dropout_prob __A : int = max_position_embeddings __A : str = type_vocab_size __A : Any = initializer_range __A : int = layer_norm_eps __A : Optional[int] = position_embedding_type __A : int = use_cache __A : Union[str, Any] = classifier_dropout class SCREAMING_SNAKE_CASE (a__ ): @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' if self.task == "multiple-choice": __A : str = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __A : List[str] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ])
190
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ : int = logging.get_logger(__name__) lowercase__ : int = { '''andreasmadsen/efficient_mlm_m0.40''': ( '''https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''roberta-prelayernorm''' def __init__( self , _UpperCAmelCase=5_0265 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=2 , _UpperCAmelCase="absolute" , _UpperCAmelCase=True , _UpperCAmelCase=None , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase) __A : Optional[int] = vocab_size __A : List[Any] = hidden_size __A : Optional[int] = num_hidden_layers __A : Optional[Any] = num_attention_heads __A : List[str] = hidden_act __A : Dict = intermediate_size __A : Optional[int] = hidden_dropout_prob __A : Optional[Any] = attention_probs_dropout_prob __A : Tuple = max_position_embeddings __A : Union[str, Any] = type_vocab_size __A : Any = initializer_range __A : str = layer_norm_eps __A : int = position_embedding_type __A : Optional[Any] = use_cache __A : Any = classifier_dropout class SCREAMING_SNAKE_CASE (a__ ): @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' if self.task == "multiple-choice": __A : Dict = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __A : Union[str, Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ])
190
1
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch _lowerCamelCase = logging.get_logger(__name__) class _snake_case (__SCREAMING_SNAKE_CASE): __A : Optional[Any] =["pixel_values"] def __init__( self ,_snake_case = True ,_snake_case = None ,_snake_case = PILImageResampling.BILINEAR ,_snake_case = True ,_snake_case = None ,_snake_case = True ,_snake_case = 1 / 2_55 ,_snake_case = True ,_snake_case = None ,_snake_case = None ,**_snake_case ,): super().__init__(**_snake_case ) UpperCAmelCase_ : Optional[Any] = size if size is not None else {"shortest_edge": 2_56} UpperCAmelCase_ : Optional[Any] = get_size_dict(_snake_case ,default_to_square=_snake_case ) UpperCAmelCase_ : Optional[Any] = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24} UpperCAmelCase_ : Dict = get_size_dict(_snake_case ,param_name="crop_size" ) UpperCAmelCase_ : str = do_resize UpperCAmelCase_ : Tuple = size UpperCAmelCase_ : Optional[Any] = resample UpperCAmelCase_ : Tuple = do_center_crop UpperCAmelCase_ : List[str] = crop_size UpperCAmelCase_ : List[str] = do_rescale UpperCAmelCase_ : List[str] = rescale_factor UpperCAmelCase_ : Tuple = do_normalize UpperCAmelCase_ : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ : List[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case = PILImageResampling.BICUBIC ,_snake_case = None ,**_snake_case ,): UpperCAmelCase_ : int = get_size_dict(_snake_case ,default_to_square=_snake_case ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) UpperCAmelCase_ : Optional[int] = get_resize_output_image_size(_snake_case ,size=size["shortest_edge"] ,default_to_square=_snake_case ) return resize(_snake_case ,size=_snake_case ,resample=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case = None ,**_snake_case ,): UpperCAmelCase_ : Optional[Any] = get_size_dict(_snake_case ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}''' ) return center_crop(_snake_case ,size=(size["height"], size["width"]) ,data_format=_snake_case ,**_snake_case ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case = None ,**_snake_case ): return rescale(_snake_case ,scale=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ,_snake_case = None ,**_snake_case ,): return normalize(_snake_case ,mean=_snake_case ,std=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = ChannelDimension.FIRST ,**_snake_case ,): UpperCAmelCase_ : Tuple = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ : str = size if size is not None else self.size UpperCAmelCase_ : List[Any] = get_size_dict(_snake_case ,default_to_square=_snake_case ) UpperCAmelCase_ : List[str] = resample if resample is not None else self.resample UpperCAmelCase_ : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ : List[Any] = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ : Optional[int] = get_size_dict(_snake_case ,param_name="crop_size" ) UpperCAmelCase_ : Tuple = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ : Dict = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ : List[Any] = image_std if image_std is not None else self.image_std UpperCAmelCase_ : Optional[Any] = make_list_of_images(_snake_case ) if not valid_images(_snake_case ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ : Any = [to_numpy_array(_snake_case ) for image in images] if do_resize: UpperCAmelCase_ : List[Any] = [self.resize(image=_snake_case ,size=_snake_case ,resample=_snake_case ) for image in images] if do_center_crop: UpperCAmelCase_ : List[Any] = [self.center_crop(image=_snake_case ,size=_snake_case ) for image in images] if do_rescale: UpperCAmelCase_ : str = [self.rescale(image=_snake_case ,scale=_snake_case ) for image in images] if do_normalize: UpperCAmelCase_ : Optional[Any] = [self.normalize(image=_snake_case ,mean=_snake_case ,std=_snake_case ) for image in images] UpperCAmelCase_ : Union[str, Any] = [to_channel_dimension_format(_snake_case ,_snake_case ) for image in images] UpperCAmelCase_ : List[Any] = {"pixel_values": images} return BatchFeature(data=_snake_case ,tensor_type=_snake_case ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case = None ): UpperCAmelCase_ : str = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_snake_case ) != len(_snake_case ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(_snake_case ): UpperCAmelCase_ : int = target_sizes.numpy() UpperCAmelCase_ : Dict = [] for idx in range(len(_snake_case ) ): UpperCAmelCase_ : Union[str, Any] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) ,size=target_sizes[idx] ,mode="bilinear" ,align_corners=_snake_case ) UpperCAmelCase_ : int = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_snake_case ) else: UpperCAmelCase_ : Optional[int] = logits.argmax(dim=1 ) UpperCAmelCase_ : Optional[int] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
67
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _lowerCamelCase = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", f"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", f"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm1.weight""", f"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.bias""", f"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.weight""", f"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", f"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", f"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm1.weight""", f"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.bias""", f"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.weight""", f"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.bias""", f"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.weight""", f"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""decoder.layers.{i}.final_layer_norm.bias""")) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.encoder.norm.weight""", """encoder.layernorm.weight"""), ("""transformer.encoder.norm.bias""", """encoder.layernorm.bias"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) def a__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[int] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : Tuple = state_dict.pop(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = val def a__ ( _SCREAMING_SNAKE_CASE : int ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Dict = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCAmelCase_ : Optional[int] = key.replace("backbone.0.body" , "backbone.conv_encoder.model" ) UpperCAmelCase_ : Union[str, Any] = value else: UpperCAmelCase_ : int = value return new_state_dict def a__ ( _SCREAMING_SNAKE_CASE : List[str] ) -> Dict: """simple docstring""" UpperCAmelCase_ : Dict = "" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase_ : str = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCAmelCase_ : Optional[int] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : List[Any] = in_proj_weight[:2_56, :] UpperCAmelCase_ : Optional[int] = in_proj_bias[:2_56] UpperCAmelCase_ : Dict = in_proj_weight[2_56:5_12, :] UpperCAmelCase_ : Dict = in_proj_bias[2_56:5_12] UpperCAmelCase_ : int = in_proj_weight[-2_56:, :] UpperCAmelCase_ : Dict = in_proj_bias[-2_56:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention UpperCAmelCase_ : Optional[int] = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCAmelCase_ : str = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : Union[str, Any] = in_proj_weight[:2_56, :] UpperCAmelCase_ : Optional[int] = in_proj_bias[:2_56] UpperCAmelCase_ : Optional[Any] = in_proj_weight[2_56:5_12, :] UpperCAmelCase_ : List[str] = in_proj_bias[2_56:5_12] UpperCAmelCase_ : Optional[int] = in_proj_weight[-2_56:, :] UpperCAmelCase_ : List[Any] = in_proj_bias[-2_56:] # read in weights + bias of input projection layer of cross-attention UpperCAmelCase_ : int = state_dict.pop( F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) UpperCAmelCase_ : Union[str, Any] = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict UpperCAmelCase_ : List[str] = in_proj_weight_cross_attn[:2_56, :] UpperCAmelCase_ : Dict = in_proj_bias_cross_attn[:2_56] UpperCAmelCase_ : List[Any] = in_proj_weight_cross_attn[2_56:5_12, :] UpperCAmelCase_ : int = in_proj_bias_cross_attn[2_56:5_12] UpperCAmelCase_ : int = in_proj_weight_cross_attn[-2_56:, :] UpperCAmelCase_ : str = in_proj_bias_cross_attn[-2_56:] def a__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Tuple ) -> Any: """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = image.size UpperCAmelCase_ : int = max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = 8_00 if "detection" in checkpoint_url else 10_00 UpperCAmelCase_ : str = target_max_size / current_max_size UpperCAmelCase_ : Tuple = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def a__ ( _SCREAMING_SNAKE_CASE : Any ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Any = F.to_tensor(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = F.normalize(_SCREAMING_SNAKE_CASE , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str ) -> Any: """simple docstring""" logger.info("Converting model..." ) # load original state dict UpperCAmelCase_ : Union[str, Any] = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE , map_location="cpu" ) # rename keys for src, dest in rename_keys: rename_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = rename_backbone_keys(_SCREAMING_SNAKE_CASE ) # query, key and value matrices need special treatment read_in_q_k_v(_SCREAMING_SNAKE_CASE ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase_ : Any = "model." for key in state_dict.copy().keys(): if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): UpperCAmelCase_ : Optional[Any] = state_dict.pop(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = val # create HuggingFace model and load state dict UpperCAmelCase_ : str = TableTransformerConfig( backbone="resnet18" , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: UpperCAmelCase_ : str = 15 UpperCAmelCase_ : str = 2 UpperCAmelCase_ : Union[str, Any] = {0: "table", 1: "table rotated"} UpperCAmelCase_ : Tuple = idalabel UpperCAmelCase_ : List[str] = {v: k for k, v in idalabel.items()} else: UpperCAmelCase_ : Tuple = 1_25 UpperCAmelCase_ : Tuple = 6 UpperCAmelCase_ : Union[str, Any] = { 0: "table", 1: "table column", 2: "table row", 3: "table column header", 4: "table projected row header", 5: "table spanning cell", } UpperCAmelCase_ : str = idalabel UpperCAmelCase_ : Any = {v: k for k, v in idalabel.items()} UpperCAmelCase_ : List[Any] = DetrImageProcessor( format="coco_detection" , max_size=8_00 if "detection" in checkpoint_url else 10_00 ) UpperCAmelCase_ : Optional[int] = TableTransformerForObjectDetection(_SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) model.eval() # verify our conversion UpperCAmelCase_ : Optional[Any] = "example_pdf.png" if "detection" in checkpoint_url else "example_table.png" UpperCAmelCase_ : Dict = hf_hub_download(repo_id="nielsr/example-pdf" , repo_type="dataset" , filename=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = Image.open(_SCREAMING_SNAKE_CASE ).convert("RGB" ) UpperCAmelCase_ : int = normalize(resize(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ).unsqueeze(0 ) UpperCAmelCase_ : Optional[int] = model(_SCREAMING_SNAKE_CASE ) if "detection" in checkpoint_url: UpperCAmelCase_ : Any = (1, 15, 3) UpperCAmelCase_ : Optional[int] = torch.tensor( [[-6.7_897, -16.9_985, 6.7_937], [-8.0_186, -22.2_192, 6.9_677], [-7.3_117, -21.0_708, 7.4_055]] ) UpperCAmelCase_ : Dict = torch.tensor([[0.4_867, 0.1_767, 0.6_732], [0.6_718, 0.4_479, 0.3_830], [0.4_716, 0.1_760, 0.6_364]] ) else: UpperCAmelCase_ : Union[str, Any] = (1, 1_25, 7) UpperCAmelCase_ : List[str] = torch.tensor( [[-18.1_430, -8.3_214, 4.8_274], [-18.4_685, -7.1_361, -4.2_667], [-26.3_693, -9.3_429, -4.9_962]] ) UpperCAmelCase_ : Any = torch.tensor([[0.4_983, 0.5_595, 0.9_440], [0.4_916, 0.6_315, 0.5_954], [0.6_108, 0.8_637, 0.1_135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: # Push model to HF hub logger.info("Pushing model to the hub..." ) UpperCAmelCase_ : List[str] = ( "microsoft/table-transformer-detection" if "detection" in checkpoint_url else "microsoft/table-transformer-structure-recognition" ) model.push_to_hub(_SCREAMING_SNAKE_CASE ) image_processor.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", type=str, choices=[ """https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", """https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth""", ], help="""URL of the Table Transformer checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _lowerCamelCase = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
67
1
'''simple docstring''' import argparse from collections import defaultdict import yaml _UpperCamelCase = '''docs/source/en/_toctree.yml''' def lowercase_ ( lowerCAmelCase__ : Tuple ): """simple docstring""" __UpperCAmelCase : Tuple = defaultdict(lowerCAmelCase__ ) __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : Any = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({"""local""": doc["""local"""], """title""": doc["""title"""]} ) else: new_doc_list.append(lowerCAmelCase__ ) __UpperCAmelCase : List[str] = new_doc_list __UpperCAmelCase : int = [key for key, value in counts.items() if value > 1] __UpperCAmelCase : Dict = [] for duplicate_key in duplicates: __UpperCAmelCase : List[Any] = list({doc["""title"""] for doc in doc_list if doc["""local"""] == duplicate_key} ) if len(lowerCAmelCase__ ) > 1: raise ValueError( f'{duplicate_key} is present several times in the documentation table of content at ' """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if """local""" not in counts or counts[doc["""local"""]] == 1] ) __UpperCAmelCase : List[str] = sorted(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : s["title"].lower() ) # "overview" gets special treatment and is always first if len(lowerCAmelCase__ ) > 1: raise ValueError("""{doc_list} has two 'overview' docs which is not allowed.""" ) overview_doc.extend(lowerCAmelCase__ ) # Sort return overview_doc def lowercase_ ( lowerCAmelCase__ : Optional[int]=False ): """simple docstring""" with open(lowerCAmelCase__ , encoding="""utf-8""" ) as f: __UpperCAmelCase : List[str] = yaml.safe_load(f.read() ) # Get to the API doc __UpperCAmelCase : Optional[Any] = 0 while content[api_idx]["title"] != "API": api_idx += 1 __UpperCAmelCase : Any = content[api_idx]["""sections"""] # Then to the model doc __UpperCAmelCase : int = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 __UpperCAmelCase : int = api_doc[scheduler_idx]["""sections"""] __UpperCAmelCase : str = clean_doc_toc(lowerCAmelCase__ ) __UpperCAmelCase : Tuple = False if new_scheduler_doc != scheduler_doc: __UpperCAmelCase : Optional[int] = True if overwrite: __UpperCAmelCase : Dict = new_scheduler_doc if diff: if overwrite: __UpperCAmelCase : Union[str, Any] = api_doc with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(lowerCAmelCase__ , allow_unicode=lowerCAmelCase__ ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) def lowercase_ ( lowerCAmelCase__ : Any=False ): """simple docstring""" with open(lowerCAmelCase__ , encoding="""utf-8""" ) as f: __UpperCAmelCase : Tuple = yaml.safe_load(f.read() ) # Get to the API doc __UpperCAmelCase : str = 0 while content[api_idx]["title"] != "API": api_idx += 1 __UpperCAmelCase : Optional[Any] = content[api_idx]["""sections"""] # Then to the model doc __UpperCAmelCase : int = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : List[str] = api_doc[pipeline_idx]["""sections"""] __UpperCAmelCase : int = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: __UpperCAmelCase : Optional[Any] = pipeline_doc["""section"""] __UpperCAmelCase : Optional[Any] = clean_doc_toc(lowerCAmelCase__ ) if overwrite: __UpperCAmelCase : Optional[Any] = new_sub_pipeline_doc new_pipeline_docs.append(lowerCAmelCase__ ) # sort overall pipeline doc __UpperCAmelCase : List[Any] = clean_doc_toc(lowerCAmelCase__ ) if new_pipeline_docs != pipeline_docs: __UpperCAmelCase : int = True if overwrite: __UpperCAmelCase : str = new_pipeline_docs if diff: if overwrite: __UpperCAmelCase : Any = api_doc with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(lowerCAmelCase__ , allow_unicode=lowerCAmelCase__ ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') _UpperCamelCase = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
254
'''simple docstring''' import qiskit def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = qiskit.Aer.get_backend("""aer_simulator""" ) # Create a Quantum Circuit acting on the q register __UpperCAmelCase : Any = qiskit.QuantumCircuit(lowerCAmelCase__ , lowerCAmelCase__ ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator __UpperCAmelCase : int = qiskit.execute(lowerCAmelCase__ , lowerCAmelCase__ , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowerCAmelCase__ ) if __name__ == "__main__": print(F'Total count for various states are: {single_qubit_measure(1, 1)}')
254
1
'''simple docstring''' def lowerCAmelCase_ ( snake_case__ , snake_case__ = False ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): A : List[Any] = F'Expected string as input, found {type(snake_case__ )}' raise ValueError(snake_case__ ) if not isinstance(snake_case__ , snake_case__ ): A : List[Any] = F'Expected boolean as use_pascal parameter, found {type(snake_case__ )}' raise ValueError(snake_case__ ) A : List[Any] = input_str.split('''_''' ) A : Optional[Any] = 0 if use_pascal else 1 A : List[str] = words[start_index:] A : int = [word[0].upper() + word[1:] for word in words_to_capitalize] A : Any = '''''' if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
311
'''simple docstring''' import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : Dict = SwinConfig() A : List[Any] = swin_name.split('''_''' ) A : Tuple = name_split[1] A : Union[str, Any] = int(name_split[4] ) A : str = int(name_split[3][-1] ) if model_size == "tiny": A : Optional[int] = 96 A : Optional[Any] = (2, 2, 6, 2) A : Any = (3, 6, 12, 24) elif model_size == "small": A : Optional[int] = 96 A : str = (2, 2, 18, 2) A : Tuple = (3, 6, 12, 24) elif model_size == "base": A : int = 128 A : Optional[Any] = (2, 2, 18, 2) A : List[str] = (4, 8, 16, 32) else: A : Dict = 192 A : Optional[Any] = (2, 2, 18, 2) A : Optional[Any] = (6, 12, 24, 48) if "in22k" in swin_name: A : Dict = 2_1841 else: A : str = 1000 A : List[str] = '''huggingface/label-files''' A : Any = '''imagenet-1k-id2label.json''' A : Any = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='''dataset''' ) , '''r''' ) ) A : str = {int(snake_case__ ): v for k, v in idalabel.items()} A : Tuple = idalabel A : Tuple = {v: k for k, v in idalabel.items()} A : Tuple = img_size A : Dict = num_classes A : Optional[Any] = embed_dim A : str = depths A : str = num_heads A : Optional[int] = window_size return config def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' if "patch_embed.proj" in name: A : Any = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: A : Tuple = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: A : Optional[int] = '''encoder.''' + name if "attn.proj" in name: A : List[str] = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: A : List[str] = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: A : Any = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: A : Tuple = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: A : Dict = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: A : str = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "norm.weight": A : Tuple = '''layernorm.weight''' if name == "norm.bias": A : Tuple = '''layernorm.bias''' if "head" in name: A : Any = name.replace('''head''' , '''classifier''' ) else: A : List[Any] = '''swin.''' + name return name def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' for key in orig_state_dict.copy().keys(): A : Dict = orig_state_dict.pop(snake_case__ ) if "mask" in key: continue elif "qkv" in key: A : Dict = key.split('''.''' ) A : Optional[int] = int(key_split[1] ) A : List[str] = int(key_split[3] ) A : Optional[int] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: A : Any = val[:dim, :] A : Dict = val[ dim : dim * 2, : ] A : List[str] = val[-dim:, :] else: A : Any = val[ :dim ] A : Optional[int] = val[ dim : dim * 2 ] A : Any = val[ -dim: ] else: A : str = val return orig_state_dict def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : Tuple = timm.create_model(snake_case__ , pretrained=snake_case__ ) timm_model.eval() A : Optional[Any] = get_swin_config(snake_case__ ) A : Optional[int] = SwinForImageClassification(snake_case__ ) model.eval() A : List[str] = convert_state_dict(timm_model.state_dict() , snake_case__ ) model.load_state_dict(snake_case__ ) A : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' A : Any = AutoImageProcessor.from_pretrained('''microsoft/{}'''.format(swin_name.replace('''_''' , '''-''' ) ) ) A : List[Any] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) A : List[Any] = image_processor(images=snake_case__ , return_tensors='''pt''' ) A : Any = timm_model(inputs['''pixel_values'''] ) A : Optional[Any] = model(**snake_case__ ).logits assert torch.allclose(snake_case__ , snake_case__ , atol=1E-3 ) print(F'Saving model {swin_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(snake_case__ ) if __name__ == "__main__": lowercase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swin_name', default='swin_tiny_patch4_window7_224', type=str, help='Name of the Swin timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowercase : int = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
311
1
def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' if len(lowerCamelCase_ ) != len(lowerCamelCase_ ): raise ValueError('''The length of profit and weight must be same.''' ) if max_weight <= 0: raise ValueError('''max_weight must greater than zero.''' ) if any(p < 0 for p in profit ): raise ValueError('''Profit can not be negative.''' ) if any(w < 0 for w in weight ): raise ValueError('''Weight can not be negative.''' ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. lowercase__ = [p / w for p, w in zip(lowerCamelCase_ , lowerCamelCase_ )] # Creating a copy of the list and sorting profit/weight in ascending order lowercase__ = sorted(lowerCamelCase_ ) # declaring useful variables lowercase__ = len(lowerCamelCase_ ) lowercase__ = 0 lowercase__ = 0 lowercase__ = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight lowercase__ = sorted_profit_by_weight[length - i - 1] lowercase__ = profit_by_weight.index(lowerCamelCase_ ) lowercase__ = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( 'Input profits, weights, and then max_weight (all positive ints) separated by ' 'spaces.' ) A__ : Optional[int] = [int(x) for x in input('Input profits separated by spaces: ').split()] A__ : Dict = [int(x) for x in input('Input weights separated by spaces: ').split()] A__ : Optional[Any] = int(input('Max weight allowed: ')) # Function Call calc_profit(profit, weight, max_weight)
207
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer A__ : List[Any] = logging.get_logger(__name__) A__ : str = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A__ : int = { 'vocab_file': { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json' ), 'distilbert-base-german-cased': ( 'https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json' ), 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json' ), }, } A__ : Optional[Any] = { 'distilbert-base-uncased': 5_12, 'distilbert-base-uncased-distilled-squad': 5_12, 'distilbert-base-cased': 5_12, 'distilbert-base-cased-distilled-squad': 5_12, 'distilbert-base-german-cased': 5_12, 'distilbert-base-multilingual-cased': 5_12, } A__ : List[str] = { 'distilbert-base-uncased': {'do_lower_case': True}, 'distilbert-base-uncased-distilled-squad': {'do_lower_case': True}, 'distilbert-base-cased': {'do_lower_case': False}, 'distilbert-base-cased-distilled-squad': {'do_lower_case': False}, 'distilbert-base-german-cased': {'do_lower_case': False}, 'distilbert-base-multilingual-cased': {'do_lower_case': False}, } class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = PRETRAINED_INIT_CONFIGURATION lowercase__ = ["""input_ids""", """attention_mask"""] lowercase__ = DistilBertTokenizer def __init__( self : List[Any], lowerCamelCase : List[Any]=None, lowerCamelCase : Dict=None, lowerCamelCase : str=True, lowerCamelCase : Optional[int]="[UNK]", lowerCamelCase : Optional[Any]="[SEP]", lowerCamelCase : List[Any]="[PAD]", lowerCamelCase : Any="[CLS]", lowerCamelCase : Union[str, Any]="[MASK]", lowerCamelCase : str=True, lowerCamelCase : int=None, **lowerCamelCase : Union[str, Any], ): '''simple docstring''' super().__init__( lowerCamelCase, tokenizer_file=lowerCamelCase, do_lower_case=lowerCamelCase, unk_token=lowerCamelCase, sep_token=lowerCamelCase, pad_token=lowerCamelCase, cls_token=lowerCamelCase, mask_token=lowerCamelCase, tokenize_chinese_chars=lowerCamelCase, strip_accents=lowerCamelCase, **lowerCamelCase, ) lowercase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''', lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''', lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''', lowerCamelCase ) != tokenize_chinese_chars ): lowercase__ = getattr(lowerCamelCase, normalizer_state.pop('''type''' ) ) lowercase__ = do_lower_case lowercase__ = strip_accents lowercase__ = tokenize_chinese_chars lowercase__ = normalizer_class(**lowerCamelCase ) lowercase__ = do_lower_case def lowercase__ ( self : str, lowerCamelCase : Optional[Any], lowerCamelCase : List[Any]=None ): '''simple docstring''' lowercase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase__ ( self : Union[str, Any], lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self : str, lowerCamelCase : str, lowerCamelCase : Optional[str] = None ): '''simple docstring''' lowercase__ = self._tokenizer.model.save(lowerCamelCase, name=lowerCamelCase ) return tuple(lowerCamelCase )
207
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase : int = logging.get_logger(__name__) UpperCAmelCase : List[Any] = { 'microsoft/focalnet-tiny': 'https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json', } class lowerCamelCase__ ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __a = """focalnet""" def __init__( self : Tuple , UpperCamelCase : str=224 , UpperCamelCase : Dict=4 , UpperCamelCase : str=3 , UpperCamelCase : Union[str, Any]=96 , UpperCamelCase : List[str]=False , UpperCamelCase : int=[192, 384, 768, 768] , UpperCamelCase : List[str]=[2, 2, 6, 2] , UpperCamelCase : int=[2, 2, 2, 2] , UpperCamelCase : Tuple=[3, 3, 3, 3] , UpperCamelCase : List[str]="gelu" , UpperCamelCase : List[Any]=4.0 , UpperCamelCase : Optional[Any]=0.0 , UpperCamelCase : Optional[int]=0.1 , UpperCamelCase : List[Any]=False , UpperCamelCase : Any=1e-4 , UpperCamelCase : Optional[Any]=False , UpperCamelCase : int=False , UpperCamelCase : Dict=False , UpperCamelCase : str=0.02 , UpperCamelCase : int=1e-5 , UpperCamelCase : Optional[Any]=32 , UpperCamelCase : Dict=None , UpperCamelCase : Dict=None , **UpperCamelCase : List[str] , ): '''simple docstring''' super().__init__(**__snake_case ) __UpperCAmelCase : Optional[int] = image_size __UpperCAmelCase : Union[str, Any] = patch_size __UpperCAmelCase : int = num_channels __UpperCAmelCase : List[str] = embed_dim __UpperCAmelCase : Union[str, Any] = use_conv_embed __UpperCAmelCase : Any = hidden_sizes __UpperCAmelCase : List[Any] = depths __UpperCAmelCase : Any = focal_levels __UpperCAmelCase : Any = focal_windows __UpperCAmelCase : Optional[int] = hidden_act __UpperCAmelCase : List[Any] = mlp_ratio __UpperCAmelCase : Optional[Any] = hidden_dropout_prob __UpperCAmelCase : Dict = drop_path_rate __UpperCAmelCase : Optional[int] = use_layerscale __UpperCAmelCase : Tuple = layerscale_value __UpperCAmelCase : Optional[Any] = use_post_layernorm __UpperCAmelCase : List[str] = use_post_layernorm_in_modulation __UpperCAmelCase : Optional[int] = normalize_modulator __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : Optional[Any] = layer_norm_eps __UpperCAmelCase : Optional[Any] = encoder_stride __UpperCAmelCase : str = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(self.depths ) + 1 )] __UpperCAmelCase : Optional[int] = get_aligned_output_features_output_indices( out_features=__snake_case , out_indices=__snake_case , stage_names=self.stage_names )
358
"""simple docstring""" import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class lowerCamelCase__ : """simple docstring""" @staticmethod def lowerCamelCase__ ( *UpperCamelCase : Optional[Any] , **UpperCamelCase : Dict ): '''simple docstring''' pass def lowerCamelCase ( _UpperCamelCase : Image ) -> str: '''simple docstring''' __UpperCAmelCase : Tuple = hashlib.mda(image.tobytes() ) return m.hexdigest()[:1_0] def lowerCamelCase ( _UpperCamelCase : Image ) -> Dict: '''simple docstring''' __UpperCAmelCase : Tuple = np.array(_UpperCamelCase ) __UpperCAmelCase : List[Any] = npimg.shape return {"hash": hashimage(_UpperCamelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" __a = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) __a = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def lowerCamelCase__ ( self : Tuple , UpperCamelCase : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Tuple ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = MaskGenerationPipeline(model=UpperCamelCase , image_processor=UpperCamelCase ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : Dict , UpperCamelCase : List[Any] ): '''simple docstring''' pass @require_tf @unittest.skip("""Image segmentation not implemented in TF""" ) def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' pass @slow @require_torch def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : Tuple = pipeline("""mask-generation""" , model="""facebook/sam-vit-huge""" ) __UpperCAmelCase : Any = image_segmenter("""http://images.cocodataset.org/val2017/000000039769.jpg""" , points_per_batch=256 ) # Shortening by hashing __UpperCAmelCase : int = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(UpperCamelCase ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0444}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.021}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0167}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0132}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0053}, {"""mask""": {"""hash""": """e2d0b7a0b7""", """shape""": (480, 640)}, """scores""": 0.9967}, {"""mask""": {"""hash""": """453c7844bd""", """shape""": (480, 640)}, """scores""": 0.993}, {"""mask""": {"""hash""": """3d44f2926d""", """shape""": (480, 640)}, """scores""": 0.9909}, {"""mask""": {"""hash""": """64033ddc3f""", """shape""": (480, 640)}, """scores""": 0.9879}, {"""mask""": {"""hash""": """801064ff79""", """shape""": (480, 640)}, """scores""": 0.9834}, {"""mask""": {"""hash""": """6172f276ef""", """shape""": (480, 640)}, """scores""": 0.9716}, {"""mask""": {"""hash""": """b49e60e084""", """shape""": (480, 640)}, """scores""": 0.9612}, {"""mask""": {"""hash""": """a811e775fd""", """shape""": (480, 640)}, """scores""": 0.9599}, {"""mask""": {"""hash""": """a6a8ebcf4b""", """shape""": (480, 640)}, """scores""": 0.9552}, {"""mask""": {"""hash""": """9d8257e080""", """shape""": (480, 640)}, """scores""": 0.9532}, {"""mask""": {"""hash""": """32de6454a8""", """shape""": (480, 640)}, """scores""": 0.9516}, {"""mask""": {"""hash""": """af3d4af2c8""", """shape""": (480, 640)}, """scores""": 0.9499}, {"""mask""": {"""hash""": """3c6db475fb""", """shape""": (480, 640)}, """scores""": 0.9483}, {"""mask""": {"""hash""": """c290813fb9""", """shape""": (480, 640)}, """scores""": 0.9464}, {"""mask""": {"""hash""": """b6f0b8f606""", """shape""": (480, 640)}, """scores""": 0.943}, {"""mask""": {"""hash""": """92ce16bfdf""", """shape""": (480, 640)}, """scores""": 0.943}, {"""mask""": {"""hash""": """c749b25868""", """shape""": (480, 640)}, """scores""": 0.9408}, {"""mask""": {"""hash""": """efb6cab859""", """shape""": (480, 640)}, """scores""": 0.9335}, {"""mask""": {"""hash""": """1ff2eafb30""", """shape""": (480, 640)}, """scores""": 0.9326}, {"""mask""": {"""hash""": """788b798e24""", """shape""": (480, 640)}, """scores""": 0.9262}, {"""mask""": {"""hash""": """abea804f0e""", """shape""": (480, 640)}, """scores""": 0.8999}, {"""mask""": {"""hash""": """7b9e8ddb73""", """shape""": (480, 640)}, """scores""": 0.8986}, {"""mask""": {"""hash""": """cd24047c8a""", """shape""": (480, 640)}, """scores""": 0.8984}, {"""mask""": {"""hash""": """6943e6bcbd""", """shape""": (480, 640)}, """scores""": 0.8873}, {"""mask""": {"""hash""": """b5f47c9191""", """shape""": (480, 640)}, """scores""": 0.8871} ] , ) # fmt: on @require_torch @slow def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Any = """facebook/sam-vit-huge""" __UpperCAmelCase : str = pipeline("""mask-generation""" , model=UpperCamelCase ) __UpperCAmelCase : int = image_segmenter( """http://images.cocodataset.org/val2017/000000039769.jpg""" , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing __UpperCAmelCase : Dict = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(UpperCamelCase ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0444}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.0210}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0167}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0132}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0053}, ] , )
320
0
"""simple docstring""" import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCAmelCase__ = """src/diffusers""" UpperCAmelCase__ = """.""" # This is to make sure the diffusers module imported is the one in the repo. UpperCAmelCase__ = importlib.util.spec_from_file_location( """diffusers""", os.path.join(DIFFUSERS_PATH, """__init__.py"""), submodule_search_locations=[DIFFUSERS_PATH], ) UpperCAmelCase__ = spec.loader.load_module() def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" return line.startswith(lowercase ) or len(lowercase ) <= 1 or re.search(R"""^\s*\)(\s*->.*:|:)\s*$""" ,lowercase ) is not None def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = object_name.split(""".""" ) _UpperCAmelCase = 0 # First let's find the module where our object lives. _UpperCAmelCase = parts[i] while i < len(lowercase ) and not os.path.isfile(os.path.join(lowercase ,f'''{module}.py''' ) ): i += 1 if i < len(lowercase ): _UpperCAmelCase = os.path.join(lowercase ,parts[i] ) if i >= len(lowercase ): raise ValueError(f'''`object_name` should begin with the name of a module of diffusers but got {object_name}.''' ) with open(os.path.join(lowercase ,f'''{module}.py''' ) ,"""r""" ,encoding="""utf-8""" ,newline="""\n""" ) as f: _UpperCAmelCase = f.readlines() # Now let's find the class / func in the code! _UpperCAmelCase = """""" _UpperCAmelCase = 0 for name in parts[i + 1 :]: while ( line_index < len(lowercase ) and re.search(Rf'''^{indent}(class|def)\s+{name}(\(|\:)''' ,lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(lowercase ): raise ValueError(f''' {object_name} does not match any function or class in {module}.''' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). _UpperCAmelCase = line_index while line_index < len(lowercase ) and _should_continue(lines[line_index] ,lowercase ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _UpperCAmelCase = lines[start_index:line_index] return "".join(lowercase ) UpperCAmelCase__ = re.compile(r"""^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)""") UpperCAmelCase__ = re.compile(r"""^\s*(\S+)->(\S+)(\s+.*|$)""") UpperCAmelCase__ = re.compile(r"""<FILL\s+[^>]*>""") def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = code.split("""\n""" ) _UpperCAmelCase = 0 while idx < len(lowercase ) and len(lines[idx] ) == 0: idx += 1 if idx < len(lowercase ): return re.search(R"""^(\s*)\S""" ,lines[idx] ).groups()[0] return "" def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = len(get_indent(lowercase ) ) > 0 if has_indent: _UpperCAmelCase = f'''class Bla:\n{code}''' _UpperCAmelCase = black.Mode(target_versions={black.TargetVersion.PYaa} ,line_length=1_19 ,preview=lowercase ) _UpperCAmelCase = black.format_str(lowercase ,mode=lowercase ) _UpperCAmelCase , _UpperCAmelCase = style_docstrings_in_code(lowercase ) return result[len("""class Bla:\n""" ) :] if has_indent else result def __UpperCAmelCase ( lowercase ,lowercase=False ): """simple docstring""" with open(lowercase ,"""r""" ,encoding="""utf-8""" ,newline="""\n""" ) as f: _UpperCAmelCase = f.readlines() _UpperCAmelCase = [] _UpperCAmelCase = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(lowercase ): _UpperCAmelCase = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = search.groups() _UpperCAmelCase = find_code_in_diffusers(lowercase ) _UpperCAmelCase = get_indent(lowercase ) _UpperCAmelCase = line_index + 1 if indent == theoretical_indent else line_index + 2 _UpperCAmelCase = theoretical_indent _UpperCAmelCase = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. _UpperCAmelCase = True while line_index < len(lowercase ) and should_continue: line_index += 1 if line_index >= len(lowercase ): break _UpperCAmelCase = lines[line_index] _UpperCAmelCase = _should_continue(lowercase ,lowercase ) and re.search(f'''^{indent}# End copy''' ,lowercase ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _UpperCAmelCase = lines[start_index:line_index] _UpperCAmelCase = """""".join(lowercase ) # Remove any nested `Copied from` comments to avoid circular copies _UpperCAmelCase = [line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(lowercase ) is None] _UpperCAmelCase = """\n""".join(lowercase ) # Before comparing, use the `replace_pattern` on the original code. if len(lowercase ) > 0: _UpperCAmelCase = replace_pattern.replace("""with""" ,"""""" ).split(""",""" ) _UpperCAmelCase = [_re_replace_pattern.search(lowercase ) for p in patterns] for pattern in patterns: if pattern is None: continue _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = pattern.groups() _UpperCAmelCase = re.sub(lowercase ,lowercase ,lowercase ) if option.strip() == "all-casing": _UpperCAmelCase = re.sub(obja.lower() ,obja.lower() ,lowercase ) _UpperCAmelCase = re.sub(obja.upper() ,obja.upper() ,lowercase ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line _UpperCAmelCase = blackify(lines[start_index - 1] + theoretical_code ) _UpperCAmelCase = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: _UpperCAmelCase = lines[:start_index] + [theoretical_code] + lines[line_index:] _UpperCAmelCase = start_index + 1 if overwrite and len(lowercase ) > 0: # Warn the user a file has been modified. print(f'''Detected changes, rewriting {filename}.''' ) with open(lowercase ,"""w""" ,encoding="""utf-8""" ,newline="""\n""" ) as f: f.writelines(lowercase ) return diffs def __UpperCAmelCase ( lowercase = False ): """simple docstring""" _UpperCAmelCase = glob.glob(os.path.join(lowercase ,"""**/*.py""" ) ,recursive=lowercase ) _UpperCAmelCase = [] for filename in all_files: _UpperCAmelCase = is_copy_consistent(lowercase ,lowercase ) diffs += [f'''- {filename}: copy does not match {d[0]} at line {d[1]}''' for d in new_diffs] if not overwrite and len(lowercase ) > 0: _UpperCAmelCase = """\n""".join(lowercase ) raise Exception( """Found the following copy inconsistencies:\n""" + diff + """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") UpperCAmelCase__ = parser.parse_args() check_copies(args.fix_and_overwrite)
289
"""simple docstring""" from math import pow def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ,): """simple docstring""" if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count _UpperCAmelCase = int(pow(lowercase ,lowercase ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n _UpperCAmelCase , _UpperCAmelCase = backtrack( lowercase ,lowercase ,current_number + 1 ,lowercase ,lowercase ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. _UpperCAmelCase , _UpperCAmelCase = backtrack( lowercase ,lowercase ,current_number + 1 ,lowercase ,lowercase ) return current_sum, solutions_count def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" if not (1 <= needed_sum <= 10_00 and 2 <= power <= 10): raise ValueError( """Invalid input\n""" """needed_sum must be between 1 and 1000, power between 2 and 10.""" ) return backtrack(lowercase ,lowercase ,1 ,0 ,0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
289
1
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 __A : Union[str, Any] = { '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 128, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 50, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 10, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 10, '''exponential_decay_length_penalty''': (5, 1.01), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class lowerCamelCase ( unittest.TestCase ): @classmethod def a_ ( cls ): UpperCamelCase : List[Any] = TOKEN HfFolder.save_token(SCREAMING_SNAKE_CASE_ ) @classmethod def a_ ( cls ): try: delete_repo(token=cls._token , repo_id="""test-config""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-config-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-config""" ) except HTTPError: pass def a_ ( self ): UpperCamelCase : Any = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("""test-config""" , use_auth_token=self._token ) UpperCamelCase : str = BertConfig.from_pretrained(f'{USER}/test-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(SCREAMING_SNAKE_CASE_ , getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-config""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(SCREAMING_SNAKE_CASE_ , repo_id="""test-config""" , push_to_hub=SCREAMING_SNAKE_CASE_ , use_auth_token=self._token ) UpperCamelCase : Optional[int] = BertConfig.from_pretrained(f'{USER}/test-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(SCREAMING_SNAKE_CASE_ , getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) def a_ ( self ): UpperCamelCase : int = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("""valid_org/test-config-org""" , use_auth_token=self._token ) UpperCamelCase : Optional[int] = BertConfig.from_pretrained("""valid_org/test-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(SCREAMING_SNAKE_CASE_ , getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-config-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( SCREAMING_SNAKE_CASE_ , repo_id="""valid_org/test-config-org""" , push_to_hub=SCREAMING_SNAKE_CASE_ , use_auth_token=self._token ) UpperCamelCase : Union[str, Any] = BertConfig.from_pretrained("""valid_org/test-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(SCREAMING_SNAKE_CASE_ , getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) def a_ ( self ): CustomConfig.register_for_auto_class() UpperCamelCase : Any = CustomConfig(attribute=42 ) config.push_to_hub("""test-dynamic-config""" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"""AutoConfig""": """custom_configuration.CustomConfig"""} ) UpperCamelCase : Dict = AutoConfig.from_pretrained(f'{USER}/test-dynamic-config' , trust_remote_code=SCREAMING_SNAKE_CASE_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , """CustomConfig""" ) self.assertEqual(new_config.attribute , 42 ) class lowerCamelCase ( unittest.TestCase ): def a_ ( self ): UpperCamelCase : str = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated UpperCamelCase : Dict = c.n_embd + 1 # int UpperCamelCase : Dict = c.resid_pdrop + 1.0 # float UpperCamelCase : Union[str, Any] = not c.scale_attn_weights # bool UpperCamelCase : Tuple = c.summary_type + """foo""" # str c.update_from_string( f'n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , c.n_embd , """mismatch for key: n_embd""" ) self.assertEqual(SCREAMING_SNAKE_CASE_ , c.resid_pdrop , """mismatch for key: resid_pdrop""" ) self.assertEqual(SCREAMING_SNAKE_CASE_ , c.scale_attn_weights , """mismatch for key: scale_attn_weights""" ) self.assertEqual(SCREAMING_SNAKE_CASE_ , c.summary_type , """mismatch for key: summary_type""" ) def a_ ( self ): UpperCamelCase : Union[str, Any] = PretrainedConfig() UpperCamelCase : int = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( SCREAMING_SNAKE_CASE_ , ["""is_encoder_decoder""", """_name_or_path""", """_commit_hash""", """transformers_version"""] ) UpperCamelCase : Tuple = [key for key, value in config_common_kwargs.items() if value == getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] if len(SCREAMING_SNAKE_CASE_ ) > 0: raise ValueError( """The following keys are set with the default values in""" """ `test_configuration_common.config_common_kwargs` pick another value for them:""" f' {", ".join(SCREAMING_SNAKE_CASE_ )}.' ) def a_ ( self ): with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # config is in subfolder, the following should not work without specifying the subfolder UpperCamelCase : List[Any] = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert-subfolder""" ) UpperCamelCase : Dict = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert-subfolder""" , subfolder="""bert""" ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def a_ ( self ): # A mock response for an HTTP head request to emulate server down UpperCamelCase : str = mock.Mock() UpperCamelCase : Union[str, Any] = 500 UpperCamelCase : Optional[int] = {} UpperCamelCase : List[Any] = HTTPError UpperCamelCase : Union[str, Any] = {} # Download this model to make sure it's in the cache. UpperCamelCase : Optional[Any] = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""" , return_value=SCREAMING_SNAKE_CASE_ ) as mock_head: UpperCamelCase : Tuple = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # This check we did call the fake head request mock_head.assert_called() def a_ ( self ): # This test is for deprecated behavior and can be removed in v5 UpperCamelCase : int = BertConfig.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json""" ) def a_ ( self ): UpperCamelCase : Union[str, Any] = AutoConfig.from_pretrained("""bert-base-cased""" ) UpperCamelCase : Optional[Any] = ["""config.4.0.0.json"""] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = 2 json.dump(configuration.to_dict() , open(os.path.join(SCREAMING_SNAKE_CASE_ , """config.4.0.0.json""" ) , """w""" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 UpperCamelCase : Union[str, Any] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 UpperCamelCase : List[Any] = ["""config.42.0.0.json"""] UpperCamelCase : Optional[int] = 768 configuration.save_pretrained(SCREAMING_SNAKE_CASE_ ) shutil.move(os.path.join(SCREAMING_SNAKE_CASE_ , """config.4.0.0.json""" ) , os.path.join(SCREAMING_SNAKE_CASE_ , """config.42.0.0.json""" ) ) UpperCamelCase : List[str] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertEqual(new_configuration.hidden_size , 768 ) def a_ ( self ): # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. UpperCamelCase : List[Any] = """hf-internal-testing/test-two-configs""" import transformers as new_transformers UpperCamelCase : Optional[Any] = """v4.0.0""" UpperCamelCase : Union[str, Any] = new_transformers.models.auto.AutoConfig.from_pretrained( SCREAMING_SNAKE_CASE_ , return_unused_kwargs=SCREAMING_SNAKE_CASE_ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(SCREAMING_SNAKE_CASE_ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers UpperCamelCase : Dict = """v3.0.0""" UpperCamelCase : int = old_transformers.models.auto.AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertEqual(old_configuration.hidden_size , 768 )
362
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __A : Optional[Any] = 16 __A : str = 32 def A_ ( snake_case_ : Accelerator ,snake_case_ : int = 1_6 ): '''simple docstring''' UpperCamelCase : Tuple = AutoTokenizer.from_pretrained("""bert-base-cased""" ) UpperCamelCase : Optional[int] = load_dataset("""glue""" ,"""mrpc""" ) def tokenize_function(snake_case_ : List[Any] ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase : Union[str, Any] = tokenizer(examples["""sentence1"""] ,examples["""sentence2"""] ,truncation=snake_case_ ,max_length=snake_case_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCamelCase : Optional[Any] = datasets.map( snake_case_ ,batched=snake_case_ ,remove_columns=["""idx""", """sentence1""", """sentence2"""] ,) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase : str = tokenized_datasets.rename_column("""label""" ,"""labels""" ) def collate_fn(snake_case_ : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCamelCase : Union[str, Any] = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCamelCase : Optional[Any] = 1_6 elif accelerator.mixed_precision != "no": UpperCamelCase : Any = 8 else: UpperCamelCase : Optional[Any] = None return tokenizer.pad( snake_case_ ,padding="""longest""" ,max_length=snake_case_ ,pad_to_multiple_of=snake_case_ ,return_tensors="""pt""" ,) # Instantiate dataloaders. UpperCamelCase : str = DataLoader( tokenized_datasets["""train"""] ,shuffle=snake_case_ ,collate_fn=snake_case_ ,batch_size=snake_case_ ) UpperCamelCase : Dict = DataLoader( tokenized_datasets["""validation"""] ,shuffle=snake_case_ ,collate_fn=snake_case_ ,batch_size=snake_case_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders __A : int = mocked_dataloaders # noqa: F811 def A_ ( snake_case_ : Tuple ,snake_case_ : Dict ): '''simple docstring''' # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" ,snake_case_ ) == "1": UpperCamelCase : Union[str, Any] = 2 # New Code # UpperCamelCase : Dict = int(args.gradient_accumulation_steps ) UpperCamelCase : List[Any] = int(args.local_sgd_steps ) # Initialize accelerator UpperCamelCase : str = Accelerator( cpu=args.cpu ,mixed_precision=args.mixed_precision ,gradient_accumulation_steps=snake_case_ ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError("""LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase : Union[str, Any] = config["""lr"""] UpperCamelCase : int = int(config["""num_epochs"""] ) UpperCamelCase : int = int(config["""seed"""] ) UpperCamelCase : List[Any] = int(config["""batch_size"""] ) UpperCamelCase : Optional[int] = evaluate.load("""glue""" ,"""mrpc""" ) set_seed(snake_case_ ) UpperCamelCase , UpperCamelCase : Dict = get_dataloaders(snake_case_ ,snake_case_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase : Optional[int] = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" ,return_dict=snake_case_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCamelCase : Tuple = model.to(accelerator.device ) # Instantiate optimizer UpperCamelCase : List[Any] = AdamW(params=model.parameters() ,lr=snake_case_ ) # Instantiate scheduler UpperCamelCase : str = get_linear_schedule_with_warmup( optimizer=snake_case_ ,num_warmup_steps=1_0_0 ,num_training_steps=(len(snake_case_ ) * num_epochs) ,) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : Any = accelerator.prepare( snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ) # Now we train the model for epoch in range(snake_case_ ): model.train() with LocalSGD( accelerator=snake_case_ ,model=snake_case_ ,local_sgd_steps=snake_case_ ,enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(snake_case_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(snake_case_ ): UpperCamelCase : Optional[Any] = model(**snake_case_ ) UpperCamelCase : Optional[int] = output.loss accelerator.backward(snake_case_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(snake_case_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase : Any = model(**snake_case_ ) UpperCamelCase : Tuple = outputs.logits.argmax(dim=-1 ) UpperCamelCase , UpperCamelCase : int = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=snake_case_ ,references=snake_case_ ,) UpperCamelCase : str = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' ,snake_case_ ) def A_ ( ): '''simple docstring''' UpperCamelCase : str = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" ,type=snake_case_ ,default=snake_case_ ,choices=["""no""", """fp16""", """bf16""", """fp8"""] ,help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" ,) # New Code # parser.add_argument( """--gradient_accumulation_steps""" ,type=snake_case_ ,default=1 ,help="""The number of minibatches to be ran before gradients are accumulated.""" ,) parser.add_argument( """--local_sgd_steps""" ,type=snake_case_ ,default=8 ,help="""Number of local SGD steps or None to disable local SGD""" ) parser.add_argument("""--cpu""" ,action="""store_true""" ,help="""If passed, will train on the CPU.""" ) UpperCamelCase : Dict = parser.parse_args() UpperCamelCase : List[Any] = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 1_6} training_function(snake_case_ ,snake_case_ ) if __name__ == "__main__": main()
27
0
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline lowercase__ =argparse.ArgumentParser('Stable Diffusion script with intel optimization', add_help=False) parser.add_argument('--dpm', action='store_true', help='Enable DPMSolver or not') parser.add_argument('--steps', default=None, type=int, help='Num inference steps') lowercase__ =parser.parse_args() lowercase__ ='cpu' lowercase__ ='a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings' lowercase__ ='path-to-your-trained-model' lowercase__ =StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: lowercase__ =DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) lowercase__ =pipe.to(device) # to channels last lowercase__ =pipe.unet.to(memory_format=torch.channels_last) lowercase__ =pipe.vae.to(memory_format=torch.channels_last) lowercase__ =pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: lowercase__ =pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex lowercase__ =torch.randn(2, 4, 64, 64) lowercase__ =torch.rand(1) * 999 lowercase__ =torch.randn(2, 77, 768) lowercase__ =(sample, timestep, encoder_hidden_status) try: lowercase__ =ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: lowercase__ =ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) lowercase__ =ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) lowercase__ =ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: lowercase__ =ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute lowercase__ =666 lowercase__ =torch.Generator(device).manual_seed(seed) lowercase__ ={'generator': generator} if args.steps is not None: lowercase__ =args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): lowercase__ =pipe(prompt, **generate_kwargs).images[0] # save image image.save('generated.png')
216
def __UpperCamelCase ( lowerCAmelCase__ : int = 5_0_0_0_0_0_0_0 ): __a : int = set() __a : str = int((limit - 2_4) ** (1 / 2) ) __a : int = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , lowerCAmelCase__ ) ) ) for primea in primes: __a : Union[str, Any] = primea * primea for primea in primes: __a : Union[str, Any] = primea * primea * primea if square + cube >= limit - 1_6: break for primea in primes: __a : int = primea * primea * primea * primea __a : Union[str, Any] = square + cube + tetr if total >= limit: break ret.add(lowerCAmelCase__ ) return len(lowerCAmelCase__ ) if __name__ == "__main__": print(F"""{solution() = }""")
216
1
'''simple docstring''' import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline lowerCamelCase__ = datasets.utils.logging.get_logger(__name__) @dataclass class lowerCAmelCase__ ( datasets.BuilderConfig ): lowerCAmelCase : Optional[datasets.Features] = None lowerCAmelCase : str = "utf-8" lowerCAmelCase : Optional[str] = None lowerCAmelCase : Optional[str] = None lowerCAmelCase : bool = True # deprecated lowerCAmelCase : Optional[int] = None # deprecated lowerCAmelCase : int = 10 << 20 # 10MB lowerCAmelCase : Optional[bool] = None class lowerCAmelCase__ ( datasets.ArrowBasedBuilder ): lowerCAmelCase : List[str] = JsonConfig def lowerCAmelCase__ ( self : Any ) ->Union[str, Any]: '''simple docstring''' if self.config.block_size is not None: logger.warning("The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead" ) _UpperCAmelCase : Optional[Any] = self.config.block_size if self.config.use_threads is not True: logger.warning( "The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore." ) if self.config.newlines_in_values is not None: raise ValueError("The JSON loader parameter `newlines_in_values` is no longer supported" ) return datasets.DatasetInfo(features=self.config.features ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : Any ) ->List[Any]: '''simple docstring''' if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _UpperCAmelCase : Optional[int] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCamelCase__ , (str, list, tuple) ): _UpperCAmelCase : List[str] = data_files if isinstance(lowerCamelCase__ , lowerCamelCase__ ): _UpperCAmelCase : str = [files] _UpperCAmelCase : List[str] = [dl_manager.iter_files(lowerCamelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] _UpperCAmelCase : int = [] for split_name, files in data_files.items(): if isinstance(lowerCamelCase__ , lowerCamelCase__ ): _UpperCAmelCase : List[str] = [files] _UpperCAmelCase : Tuple = [dl_manager.iter_files(lowerCamelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCamelCase__ , gen_kwargs={"files": files} ) ) return splits def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : pa.Table ) ->pa.Table: '''simple docstring''' if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): _UpperCAmelCase : List[str] = self.config.features.arrow_schema.field(lowerCamelCase__ ).type _UpperCAmelCase : Optional[int] = pa_table.append_column(lowerCamelCase__ , pa.array([None] * len(lowerCamelCase__ ) , type=lowerCamelCase__ ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example _UpperCAmelCase : List[str] = table_cast(lowerCamelCase__ , self.config.features.arrow_schema ) return pa_table def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : Union[str, Any] ) ->str: '''simple docstring''' for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCamelCase__ ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(lowerCamelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: _UpperCAmelCase : int = json.load(lowerCamelCase__ ) # We keep only the field we are interested in _UpperCAmelCase : Optional[Any] = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(lowerCamelCase__ , (list, tuple) ): _UpperCAmelCase : Union[str, Any] = set().union(*[row.keys() for row in dataset] ) _UpperCAmelCase : int = {col: [row.get(lowerCamelCase__ ) for row in dataset] for col in keys} else: _UpperCAmelCase : List[Any] = dataset _UpperCAmelCase : str = pa.Table.from_pydict(lowerCamelCase__ ) yield file_idx, self._cast_table(lowerCamelCase__ ) # If the file has one json object per line else: with open(lowerCamelCase__ , "rb" ) as f: _UpperCAmelCase : Union[str, Any] = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small _UpperCAmelCase : int = max(self.config.chunksize // 32 , 16 << 10 ) _UpperCAmelCase : Dict = ( self.config.encoding_errors if self.config.encoding_errors is not None else "strict" ) while True: _UpperCAmelCase : Tuple = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(lowerCamelCase__ ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": _UpperCAmelCase : Optional[Any] = batch.decode(self.config.encoding , errors=lowerCamelCase__ ).encode("utf-8" ) try: while True: try: _UpperCAmelCase : Union[str, Any] = paj.read_json( io.BytesIO(lowerCamelCase__ ) , read_options=paj.ReadOptions(block_size=lowerCamelCase__ ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(lowerCamelCase__ , pa.ArrowInvalid ) and "straddling" not in str(lowerCamelCase__ ) or block_size > len(lowerCamelCase__ ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F"""Batch of {len(lowerCamelCase__ )} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""" ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( lowerCamelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: _UpperCAmelCase : List[str] = json.load(lowerCamelCase__ ) except json.JSONDecodeError: logger.error(F"""Failed to read file '{file}' with error {type(lowerCamelCase__ )}: {e}""" ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(lowerCamelCase__ , lowerCamelCase__ ): # list is the only sequence type supported in JSON try: _UpperCAmelCase : int = set().union(*[row.keys() for row in dataset] ) _UpperCAmelCase : Tuple = {col: [row.get(lowerCamelCase__ ) for row in dataset] for col in keys} _UpperCAmelCase : Optional[int] = pa.Table.from_pydict(lowerCamelCase__ ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F"""Failed to read file '{file}' with error {type(lowerCamelCase__ )}: {e}""" ) raise ValueError(F"""Not able to read records in the JSON file at {file}.""" ) from None yield file_idx, self._cast_table(lowerCamelCase__ ) break else: logger.error(F"""Failed to read file '{file}' with error {type(lowerCamelCase__ )}: {e}""" ) raise ValueError( F"""Not able to read records in the JSON file at {file}. """ F"""You should probably indicate the field of the JSON file containing your records. """ F"""This JSON file contain the following fields: {str(list(dataset.keys() ) )}. """ F"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """ ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCamelCase__ ) batch_idx += 1
322
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : List[Any] = len(__lowerCAmelCase ) _UpperCAmelCase : Tuple = sum(__lowerCAmelCase ) _UpperCAmelCase : List[Any] = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): _UpperCAmelCase : Any = True for i in range(1 , s + 1 ): _UpperCAmelCase : List[Any] = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): _UpperCAmelCase : Optional[int] = dp[i][j - 1] if arr[i - 1] <= j: _UpperCAmelCase : Any = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: _UpperCAmelCase : List[Any] = s - 2 * j break return diff
322
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu UpperCAmelCase : Any = False class __lowerCAmelCase ( unittest.TestCase): def _lowercase ( self ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowercase ( self ) -> Optional[int]: '''simple docstring''' return 1_2 @property def _lowercase ( self ) -> str: '''simple docstring''' return 1_2 @property def _lowercase ( self ) -> List[Any]: '''simple docstring''' return 3_2 @property def _lowercase ( self ) -> Any: '''simple docstring''' torch.manual_seed(0 ) a__ : Dict =VQModel( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' a__ : List[Any] =CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def _lowercase ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) a__ : Union[str, Any] =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(lowerCAmelCase__ ) @property def _lowercase ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) a__ : str =1_2 a__ : List[str] =1_2 a__ : List[Any] ={ "attention_bias": True, "cross_attention_dim": 3_2, "attention_head_dim": height * width, "num_attention_heads": 1, "num_vector_embeds": self.num_embed, "num_embeds_ada_norm": self.num_embeds_ada_norm, "norm_num_groups": 3_2, "sample_size": width, "activation_fn": "geglu-approximate", } a__ : List[str] =TransformeraDModel(**lowerCAmelCase__ ) return model def _lowercase ( self ) -> Tuple: '''simple docstring''' a__ : Optional[int] ="cpu" a__ : int =self.dummy_vqvae a__ : Union[str, Any] =self.dummy_text_encoder a__ : List[Any] =self.dummy_tokenizer a__ : Optional[int] =self.dummy_transformer a__ : Tuple =VQDiffusionScheduler(self.num_embed ) a__ : int =LearnedClassifierFreeSamplingEmbeddings(learnable=lowerCAmelCase__ ) a__ : Any =VQDiffusionPipeline( vqvae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , transformer=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , learned_classifier_free_sampling_embeddings=lowerCAmelCase__ , ) a__ : str =pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) a__ : int ="teddy bear playing in the pool" a__ : int =torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) a__ : Union[str, Any] =pipe([prompt] , generator=lowerCAmelCase__ , num_inference_steps=2 , output_type="np" ) a__ : Union[str, Any] =output.images a__ : List[str] =torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) a__ : Optional[Any] =pipe( [prompt] , generator=lowerCAmelCase__ , output_type="np" , return_dict=lowerCAmelCase__ , num_inference_steps=2 )[0] a__ : Dict =image[0, -3:, -3:, -1] a__ : Tuple =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) a__ : Dict =np.array([0.65_51, 0.61_68, 0.50_08, 0.56_76, 0.56_59, 0.42_95, 0.60_73, 0.55_99, 0.49_92] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' a__ : Any ="cpu" a__ : str =self.dummy_vqvae a__ : str =self.dummy_text_encoder a__ : Any =self.dummy_tokenizer a__ : Union[str, Any] =self.dummy_transformer a__ : str =VQDiffusionScheduler(self.num_embed ) a__ : Tuple =LearnedClassifierFreeSamplingEmbeddings( learnable=lowerCAmelCase__ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) a__ : List[str] =VQDiffusionPipeline( vqvae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , transformer=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , learned_classifier_free_sampling_embeddings=lowerCAmelCase__ , ) a__ : str =pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) a__ : Optional[Any] ="teddy bear playing in the pool" a__ : Tuple =torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) a__ : int =pipe([prompt] , generator=lowerCAmelCase__ , num_inference_steps=2 , output_type="np" ) a__ : Any =output.images a__ : str =torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) a__ : List[str] =pipe( [prompt] , generator=lowerCAmelCase__ , output_type="np" , return_dict=lowerCAmelCase__ , num_inference_steps=2 )[0] a__ : List[str] =image[0, -3:, -3:, -1] a__ : Optional[Any] =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) a__ : Any =np.array([0.66_93, 0.60_75, 0.49_59, 0.57_01, 0.55_83, 0.43_33, 0.61_71, 0.56_84, 0.49_88] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase): def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self ) -> Dict: '''simple docstring''' a__ : Union[str, Any] =load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy" ) a__ : Tuple =VQDiffusionPipeline.from_pretrained("microsoft/vq-diffusion-ithq" ) a__ : Optional[int] =pipeline.to(lowerCAmelCase__ ) pipeline.set_progress_bar_config(disable=lowerCAmelCase__ ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though a__ : Tuple =torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) a__ : List[str] =pipeline( "teddy bear playing in the pool" , num_images_per_prompt=1 , generator=lowerCAmelCase__ , output_type="np" , ) a__ : int =output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) assert np.abs(expected_image - image ).max() < 2.0
95
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : Dict = logging.get_logger(__name__) UpperCAmelCase : Tuple = { """caidas/swin2sr-classicalsr-x2-64""": ( """https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json""" ), } class __lowerCAmelCase ( UpperCamelCase__): _lowercase : Any = """swin2sr""" _lowercase : Tuple = { """hidden_size""": """embed_dim""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , lowerCAmelCase__=6_4 , lowerCAmelCase__=1 , lowerCAmelCase__=3 , lowerCAmelCase__=1_8_0 , lowerCAmelCase__=[6, 6, 6, 6, 6, 6] , lowerCAmelCase__=[6, 6, 6, 6, 6, 6] , lowerCAmelCase__=8 , lowerCAmelCase__=2.0 , lowerCAmelCase__=True , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__="gelu" , lowerCAmelCase__=False , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-5 , lowerCAmelCase__=2 , lowerCAmelCase__=1.0 , lowerCAmelCase__="1conv" , lowerCAmelCase__="pixelshuffle" , **lowerCAmelCase__ , ) -> int: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) a__ : Optional[Any] =image_size a__ : Dict =patch_size a__ : Tuple =num_channels a__ : Union[str, Any] =embed_dim a__ : Optional[Any] =depths a__ : List[str] =len(lowerCAmelCase__ ) a__ : Any =num_heads a__ : Any =window_size a__ : str =mlp_ratio a__ : List[str] =qkv_bias a__ : Dict =hidden_dropout_prob a__ : List[str] =attention_probs_dropout_prob a__ : Dict =drop_path_rate a__ : Optional[Any] =hidden_act a__ : Union[str, Any] =use_absolute_embeddings a__ : Optional[Any] =layer_norm_eps a__ : List[Any] =initializer_range a__ : int =upscale a__ : Optional[int] =img_range a__ : Any =resi_connection a__ : Optional[Any] =upsampler
95
1
'''simple docstring''' import math def __UpperCamelCase ( UpperCAmelCase ): lowercase__ : int = [] lowercase__ : Optional[int] = 2 lowercase__ : Dict = int(math.sqrt(UpperCAmelCase ) ) # Size of every segment lowercase__ : Optional[Any] = [True] * (end + 1) lowercase__ : List[Any] = [] while start <= end: if temp[start] is True: in_prime.append(UpperCAmelCase ) for i in range(start * start , end + 1 , UpperCAmelCase ): lowercase__ : Dict = False start += 1 prime += in_prime lowercase__ : List[Any] = end + 1 lowercase__ : str = min(2 * end , UpperCAmelCase ) while low <= n: lowercase__ : Optional[int] = [True] * (high - low + 1) for each in in_prime: lowercase__ : Tuple = math.floor(low / each ) * each if t < low: t += each for j in range(UpperCAmelCase , high + 1 , UpperCAmelCase ): lowercase__ : List[Any] = False for j in range(len(UpperCAmelCase ) ): if temp[j] is True: prime.append(j + low ) lowercase__ : str = high + 1 lowercase__ : Optional[int] = min(high + end , UpperCAmelCase ) return prime print(sieve(10**6))
214
'''simple docstring''' import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline __a: Tuple = datasets.utils.logging.get_logger(__name__) @dataclass class UpperCAmelCase ( datasets.BuilderConfig ): '''simple docstring''' SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = "utf-8" SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = True # deprecated SCREAMING_SNAKE_CASE = None # deprecated SCREAMING_SNAKE_CASE = 1_0 << 2_0 # 10MB SCREAMING_SNAKE_CASE = None class UpperCAmelCase ( datasets.ArrowBasedBuilder ): '''simple docstring''' SCREAMING_SNAKE_CASE = JsonConfig def _lowerCAmelCase( self ) -> Any: if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''' ) lowercase__ : Tuple = self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''' ) if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''' ) return datasets.DatasetInfo(features=self.config.features ) def _lowerCAmelCase( self , __lowerCAmelCase ) -> Optional[Any]: if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) lowercase__ : List[str] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__lowerCAmelCase , (str, list, tuple) ): lowercase__ : List[str] = data_files if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowercase__ : Union[str, Any] = [files] lowercase__ : Dict = [dl_manager.iter_files(__lowerCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] lowercase__ : str = [] for split_name, files in data_files.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowercase__ : List[str] = [files] lowercase__ : Optional[Any] = [dl_manager.iter_files(__lowerCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=__lowerCAmelCase , gen_kwargs={'''files''': files} ) ) return splits def _lowerCAmelCase( self , __lowerCAmelCase ) -> pa.Table: if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): lowercase__ : Optional[int] = self.config.features.arrow_schema.field(__lowerCAmelCase ).type lowercase__ : Union[str, Any] = pa_table.append_column(__lowerCAmelCase , pa.array([None] * len(__lowerCAmelCase ) , type=__lowerCAmelCase ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example lowercase__ : Dict = table_cast(__lowerCAmelCase , self.config.features.arrow_schema ) return pa_table def _lowerCAmelCase( self , __lowerCAmelCase ) -> Optional[int]: for file_idx, file in enumerate(itertools.chain.from_iterable(__lowerCAmelCase ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(__lowerCAmelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: lowercase__ : Dict = json.load(__lowerCAmelCase ) # We keep only the field we are interested in lowercase__ : Any = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(__lowerCAmelCase , (list, tuple) ): lowercase__ : List[Any] = set().union(*[row.keys() for row in dataset] ) lowercase__ : List[Any] = {col: [row.get(__lowerCAmelCase ) for row in dataset] for col in keys} else: lowercase__ : Union[str, Any] = dataset lowercase__ : Optional[int] = pa.Table.from_pydict(__lowerCAmelCase ) yield file_idx, self._cast_table(__lowerCAmelCase ) # If the file has one json object per line else: with open(__lowerCAmelCase , '''rb''' ) as f: lowercase__ : Optional[int] = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small lowercase__ : List[str] = max(self.config.chunksize // 32 , 16 << 10 ) lowercase__ : Union[str, Any] = ( self.config.encoding_errors if self.config.encoding_errors is not None else '''strict''' ) while True: lowercase__ : Tuple = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(__lowerCAmelCase ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": lowercase__ : Dict = batch.decode(self.config.encoding , errors=__lowerCAmelCase ).encode('''utf-8''' ) try: while True: try: lowercase__ : str = paj.read_json( io.BytesIO(__lowerCAmelCase ) , read_options=paj.ReadOptions(block_size=__lowerCAmelCase ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(__lowerCAmelCase , pa.ArrowInvalid ) and "straddling" not in str(__lowerCAmelCase ) or block_size > len(__lowerCAmelCase ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F"""Batch of {len(__lowerCAmelCase )} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""" ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( __lowerCAmelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: lowercase__ : Optional[int] = json.load(__lowerCAmelCase ) except json.JSONDecodeError: logger.error(F"""Failed to read file '{file}' with error {type(__lowerCAmelCase )}: {e}""" ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(__lowerCAmelCase , __lowerCAmelCase ): # list is the only sequence type supported in JSON try: lowercase__ : List[Any] = set().union(*[row.keys() for row in dataset] ) lowercase__ : str = {col: [row.get(__lowerCAmelCase ) for row in dataset] for col in keys} lowercase__ : Optional[int] = pa.Table.from_pydict(__lowerCAmelCase ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F"""Failed to read file '{file}' with error {type(__lowerCAmelCase )}: {e}""" ) raise ValueError(F"""Not able to read records in the JSON file at {file}.""" ) from None yield file_idx, self._cast_table(__lowerCAmelCase ) break else: logger.error(F"""Failed to read file '{file}' with error {type(__lowerCAmelCase )}: {e}""" ) raise ValueError( F"""Not able to read records in the JSON file at {file}. """ F"""You should probably indicate the field of the JSON file containing your records. """ F"""This JSON file contain the following fields: {str(list(dataset.keys() ) )}. """ F"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """ ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__lowerCAmelCase ) batch_idx += 1
214
1
"""simple docstring""" import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib lowerCAmelCase__ = { '''debug''': logging.DEBUG, '''info''': logging.INFO, '''warning''': logging.WARNING, '''error''': logging.ERROR, '''critical''': logging.CRITICAL, } lowerCAmelCase__ = logging.WARNING def a__ ( ): '''simple docstring''' lowerCAmelCase : Optional[int] = os.getenv("DATASETS_VERBOSITY" , A_ ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"""Unknown option DATASETS_VERBOSITY={env_level_str}, """ f"""has to be one of: { ", ".join(log_levels.keys() ) }""" ) return _default_log_level def a__ ( ): '''simple docstring''' return __name__.split("." )[0] def a__ ( ): '''simple docstring''' return logging.getLogger(_get_library_name() ) def a__ ( ): '''simple docstring''' lowerCAmelCase : Tuple = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def a__ ( ): '''simple docstring''' lowerCAmelCase : Tuple = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] = None ): '''simple docstring''' if name is None: lowerCAmelCase : Optional[Any] = _get_library_name() return logging.getLogger(A_ ) def a__ ( ): '''simple docstring''' return _get_library_root_logger().getEffectiveLevel() def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _get_library_root_logger().setLevel(A_ ) def a__ ( ): '''simple docstring''' return set_verbosity(A_ ) def a__ ( ): '''simple docstring''' return set_verbosity(A_ ) def a__ ( ): '''simple docstring''' return set_verbosity(A_ ) def a__ ( ): '''simple docstring''' return set_verbosity(A_ ) def a__ ( ): '''simple docstring''' lowerCAmelCase : List[Any] = False def a__ ( ): '''simple docstring''' lowerCAmelCase : List[str] = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , *snake_case__ , **snake_case__ ): # pylint: disable=unused-argument """simple docstring""" lowerCAmelCase : int = args[0] if args else None def __iter__( self ): """simple docstring""" return iter(self._iterator ) def __getattr__( self , snake_case__ ): """simple docstring""" def empty_fn(*snake_case__ , **snake_case__ ): # pylint: disable=unused-argument return return empty_fn def __enter__( self ): """simple docstring""" return self def __exit__( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" return lowerCAmelCase__ = True class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __call__( self , *snake_case__ , snake_case__=False , **snake_case__ ): """simple docstring""" if _tqdm_active and not disable: return tqdm_lib.tqdm(*__lowerCamelCase , **__lowerCamelCase ) else: return EmptyTqdm(*__lowerCamelCase , **__lowerCamelCase ) def lowercase__ ( self , *snake_case__ , **snake_case__ ): """simple docstring""" lowerCAmelCase : Optional[int] = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*__lowerCamelCase , **__lowerCamelCase ) def lowercase__ ( self ): """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm.get_lock() lowerCAmelCase__ = _tqdm_cls() def a__ ( ): '''simple docstring''' global _tqdm_active return bool(_tqdm_active ) def a__ ( ): '''simple docstring''' global _tqdm_active lowerCAmelCase : int = True def a__ ( ): '''simple docstring''' global _tqdm_active lowerCAmelCase : str = False
108
from ..utils import DummyObject, requires_backends class _a ( metaclass=UpperCamelCase__): """simple docstring""" UpperCamelCase__ = ["""flax""", """transformers"""] def __init__( self: Optional[int] , *__lowerCamelCase: Union[str, Any] , **__lowerCamelCase: List[str] ): '''simple docstring''' requires_backends(self , ["flax", "transformers"] ) @classmethod def UpperCAmelCase_ ( cls: Optional[int] , *__lowerCamelCase: str , **__lowerCamelCase: Any ): '''simple docstring''' requires_backends(cls , ["flax", "transformers"] ) @classmethod def UpperCAmelCase_ ( cls: Any , *__lowerCamelCase: List[str] , **__lowerCamelCase: Any ): '''simple docstring''' requires_backends(cls , ["flax", "transformers"] ) class _a ( metaclass=UpperCamelCase__): """simple docstring""" UpperCamelCase__ = ["""flax""", """transformers"""] def __init__( self: List[str] , *__lowerCamelCase: str , **__lowerCamelCase: int ): '''simple docstring''' requires_backends(self , ["flax", "transformers"] ) @classmethod def UpperCAmelCase_ ( cls: Any , *__lowerCamelCase: Union[str, Any] , **__lowerCamelCase: Optional[int] ): '''simple docstring''' requires_backends(cls , ["flax", "transformers"] ) @classmethod def UpperCAmelCase_ ( cls: str , *__lowerCamelCase: List[str] , **__lowerCamelCase: str ): '''simple docstring''' requires_backends(cls , ["flax", "transformers"] ) class _a ( metaclass=UpperCamelCase__): """simple docstring""" UpperCamelCase__ = ["""flax""", """transformers"""] def __init__( self: List[Any] , *__lowerCamelCase: Optional[int] , **__lowerCamelCase: Union[str, Any] ): '''simple docstring''' requires_backends(self , ["flax", "transformers"] ) @classmethod def UpperCAmelCase_ ( cls: Optional[Any] , *__lowerCamelCase: Dict , **__lowerCamelCase: Union[str, Any] ): '''simple docstring''' requires_backends(cls , ["flax", "transformers"] ) @classmethod def UpperCAmelCase_ ( cls: Any , *__lowerCamelCase: Dict , **__lowerCamelCase: str ): '''simple docstring''' requires_backends(cls , ["flax", "transformers"] ) class _a ( metaclass=UpperCamelCase__): """simple docstring""" UpperCamelCase__ = ["""flax""", """transformers"""] def __init__( self: Any , *__lowerCamelCase: Any , **__lowerCamelCase: List[Any] ): '''simple docstring''' requires_backends(self , ["flax", "transformers"] ) @classmethod def UpperCAmelCase_ ( cls: List[Any] , *__lowerCamelCase: Optional[int] , **__lowerCamelCase: Any ): '''simple docstring''' requires_backends(cls , ["flax", "transformers"] ) @classmethod def UpperCAmelCase_ ( cls: Tuple , *__lowerCamelCase: int , **__lowerCamelCase: Any ): '''simple docstring''' requires_backends(cls , ["flax", "transformers"] )
149
0
"""simple docstring""" import numpy as np from transformers import Pipeline def lowerCamelCase_ (UpperCamelCase__ : Union[str, Any] ): _UpperCAmelCase : List[str] = np.max(UpperCamelCase__ , axis=-1 , keepdims=UpperCamelCase__ ) _UpperCAmelCase : int = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=UpperCamelCase__ ) class _UpperCAmelCase ( a ): '''simple docstring''' def __lowerCAmelCase ( self , **A ) -> Union[str, Any]: _UpperCAmelCase : int = {} if "second_text" in kwargs: _UpperCAmelCase : Any = kwargs['''second_text'''] return preprocess_kwargs, {}, {} def __lowerCAmelCase ( self , A , A=None ) -> List[Any]: return self.tokenizer(A , text_pair=A , return_tensors=self.framework ) def __lowerCAmelCase ( self , A ) -> List[Any]: return self.model(**A ) def __lowerCAmelCase ( self , A ) -> Tuple: _UpperCAmelCase : int = model_outputs.logits[0].numpy() _UpperCAmelCase : Optional[Any] = softmax(A ) _UpperCAmelCase : str = np.argmax(A ) _UpperCAmelCase : int = self.model.config.idalabel[best_class] _UpperCAmelCase : List[str] = probabilities[best_class].item() _UpperCAmelCase : Dict = logits.tolist() return {"label": label, "score": score, "logits": logits}
68
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self ) -> Any: _UpperCAmelCase : List[str] = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) _UpperCAmelCase : Optional[Any] = get_activation('''gelu''' ) self.assertTrue(torch.allclose(gelu_python(A ) , torch_builtin(A ) ) ) self.assertFalse(torch.allclose(gelu_python(A ) , gelu_new(A ) ) ) def __lowerCAmelCase ( self ) -> str: _UpperCAmelCase : Union[str, Any] = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) _UpperCAmelCase : Tuple = get_activation('''gelu''' ) _UpperCAmelCase : int = get_activation('''gelu_10''' ) _UpperCAmelCase : Optional[int] = torch_builtin(A ) _UpperCAmelCase : Optional[int] = geluaa(A ) _UpperCAmelCase : Optional[Any] = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(A ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def __lowerCAmelCase ( self ) -> Optional[Any]: get_activation('''gelu''' ) get_activation('''gelu_10''' ) get_activation('''gelu_fast''' ) get_activation('''gelu_new''' ) get_activation('''gelu_python''' ) get_activation('''gelu_pytorch_tanh''' ) get_activation('''linear''' ) get_activation('''mish''' ) get_activation('''quick_gelu''' ) get_activation('''relu''' ) get_activation('''sigmoid''' ) get_activation('''silu''' ) get_activation('''swish''' ) get_activation('''tanh''' ) with self.assertRaises(A ): get_activation('''bogus''' ) with self.assertRaises(A ): get_activation(A ) def __lowerCAmelCase ( self ) -> Tuple: _UpperCAmelCase : Dict = get_activation('''gelu''' ) _UpperCAmelCase : List[Any] = 1 _UpperCAmelCase : int = get_activation('''gelu''' ) self.assertEqual(acta.a , 1 ) with self.assertRaises(A ): _UpperCAmelCase : Any = acta.a
68
1
def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int ) -> Any: """simple docstring""" return int(input_a == input_a == 0 ) def lowerCamelCase_ ( ) -> Tuple: """simple docstring""" print('Truth Table of NOR Gate:' ) print('| Input 1 | Input 2 | Output |' ) print(F"""| 0 | 0 | {nor_gate(0 , 0 )} |""" ) print(F"""| 0 | 1 | {nor_gate(0 , 1 )} |""" ) print(F"""| 1 | 0 | {nor_gate(1 , 0 )} |""" ) print(F"""| 1 | 1 | {nor_gate(1 , 1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
90
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = { '''configuration_autoformer''': [ '''AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AutoformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AutoformerForPrediction''', '''AutoformerModel''', '''AutoformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
72
0
"""simple docstring""" def A_ ( _lowerCAmelCase : int ): """simple docstring""" if p < 2: raise ValueError('''p should not be less than 2!''' ) elif p == 2: return True _a = 4 _a = (1 << p) - 1 for _ in range(p - 2 ): _a = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
153
"""simple docstring""" import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def A_ ( _lowerCAmelCase : Dict, _lowerCAmelCase : List[str], _lowerCAmelCase : List[str] ): """simple docstring""" _a = BertConfig.from_json_file(_lowerCAmelCase ) print(f'Building PyTorch model from configuration: {config}' ) _a = BertForPreTraining(_lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_bert(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict(), _lowerCAmelCase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __snake_case = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
153
1
'''simple docstring''' from __future__ import annotations from math import ceil, floor, sqrt def UpperCamelCase ( _lowerCamelCase : int = 2_00_00_00 ): A__ = [0] A__ = 42 for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target A__ = 0 # the area corresponding to the grid that gives the product closest to target A__ = 0 # an estimate of b, using the quadratic formula A__ = 42 # the largest integer less than b_estimate A__ = 42 # the largest integer less than b_estimate A__ = 42 # the triangle number corresponding to b_floor A__ = 42 # the triangle number corresponding to b_ceil A__ = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): A__ = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 A__ = floor(lowerCAmelCase__ ) A__ = ceil(lowerCAmelCase__ ) A__ = triangle_numbers[b_floor] A__ = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): A__ = triangle_b_first_guess * triangle_a A__ = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): A__ = triangle_b_second_guess * triangle_a A__ = idx_a * b_ceil return area if __name__ == "__main__": print(f"""{solution() = }""")
237
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def UpperCamelCase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : str = "cpu" , lowerCAmelCase__ : Union[str, None] = None ) -> None: """simple docstring""" lowerCAmelCase_ : Any = torch.load(lowerCAmelCase__ , map_location=lowerCAmelCase__ ) for k, v in tqdm(state_dict.items() ): if not isinstance(lowerCAmelCase__ , torch.Tensor ): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin' ) lowerCAmelCase_ : str = v.half() if save_path is None: # overwrite src_path lowerCAmelCase_ : Dict = src_path torch.save(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": fire.Fire(convert)
224
0
'''simple docstring''' import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer _lowercase : List[Any] = logging.get_logger(__name__) class __magic_name__ ( __lowercase): UpperCamelCase__ = "AutoTokenizer" UpperCamelCase__ = ["tokenizer"] UpperCamelCase__ = { "semantic_prompt": 1, "coarse_prompt": 2, "fine_prompt": 2, } def __init__( self : Union[str, Any] , lowercase_ : Tuple , lowercase_ : List[Any]=None ): super().__init__(_a ) lowercase_ : List[Any] = speaker_embeddings @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Tuple , lowercase_ : Optional[Any] , lowercase_ : Dict="speaker_embeddings_path.json" , **lowercase_ : Optional[Any] ): if speaker_embeddings_dict_path is not None: lowercase_ : List[Any] = get_file_from_repo( _a , _a , subfolder=kwargs.pop("""subfolder""" , _a ) , cache_dir=kwargs.pop("""cache_dir""" , _a ) , force_download=kwargs.pop("""force_download""" , _a ) , proxies=kwargs.pop("""proxies""" , _a ) , resume_download=kwargs.pop("""resume_download""" , _a ) , local_files_only=kwargs.pop("""local_files_only""" , _a ) , use_auth_token=kwargs.pop("""use_auth_token""" , _a ) , revision=kwargs.pop("""revision""" , _a ) , ) if speaker_embeddings_path is None: logger.warning( f'''`{os.path.join(_a , _a )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' ) lowercase_ : Optional[int] = None else: with open(_a ) as speaker_embeddings_json: lowercase_ : Tuple = json.load(_a ) else: lowercase_ : Dict = None lowercase_ : List[Any] = AutoTokenizer.from_pretrained(_a , **_a ) return cls(tokenizer=_a , speaker_embeddings=_a ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : Tuple , lowercase_ : Optional[Any]="speaker_embeddings_path.json" , lowercase_ : Dict="speaker_embeddings" , lowercase_ : Tuple = False , **lowercase_ : Dict , ): if self.speaker_embeddings is not None: os.makedirs(os.path.join(_a , _a , """v2""" ) , exist_ok=_a ) lowercase_ : Any = {} lowercase_ : Tuple = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": lowercase_ : Union[str, Any] = self._load_voice_preset(_a ) lowercase_ : List[Any] = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict["""repo_or_path"""] , _a , f'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=_a , ) lowercase_ : int = os.path.join(_a , f'''{prompt_key}_{key}.npy''' ) lowercase_ : Any = tmp_dict with open(os.path.join(_a , _a ) , """w""" ) as fp: json.dump(_a , _a ) super().save_pretrained(_a , _a , **_a ) def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : List[str] = None , **lowercase_ : Dict ): lowercase_ : Any = self.speaker_embeddings[voice_preset] lowercase_ : int = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( f'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' ) lowercase_ : Optional[int] = get_file_from_repo( self.speaker_embeddings.get("""repo_or_path""" , """/""" ) , voice_preset_paths[key] , subfolder=kwargs.pop("""subfolder""" , _a ) , cache_dir=kwargs.pop("""cache_dir""" , _a ) , force_download=kwargs.pop("""force_download""" , _a ) , proxies=kwargs.pop("""proxies""" , _a ) , resume_download=kwargs.pop("""resume_download""" , _a ) , local_files_only=kwargs.pop("""local_files_only""" , _a ) , use_auth_token=kwargs.pop("""use_auth_token""" , _a ) , revision=kwargs.pop("""revision""" , _a ) , ) if path is None: raise ValueError( f'''`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.''' ) lowercase_ : int = np.load(_a ) return voice_preset_dict def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Union[str, Any] = None ): for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(f'''Voice preset unrecognized, missing {key} as a key.''' ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) def __call__( self : Optional[int] , lowercase_ : Optional[int]=None , lowercase_ : Union[str, Any]=None , lowercase_ : Optional[Any]="pt" , lowercase_ : List[Any]=256 , lowercase_ : List[str]=False , lowercase_ : int=True , lowercase_ : List[str]=False , **lowercase_ : Tuple , ): if voice_preset is not None and not isinstance(_a , _a ): if ( isinstance(_a , _a ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): lowercase_ : Optional[Any] = self._load_voice_preset(_a ) else: if isinstance(_a , _a ) and not voice_preset.endswith(""".npz""" ): lowercase_ : List[Any] = voice_preset + '''.npz''' lowercase_ : Union[str, Any] = np.load(_a ) if voice_preset is not None: self._validate_voice_preset_dict(_a , **_a ) lowercase_ : Dict = BatchFeature(data=_a , tensor_type=_a ) lowercase_ : List[str] = self.tokenizer( _a , return_tensors=_a , padding="""max_length""" , max_length=_a , return_attention_mask=_a , return_token_type_ids=_a , add_special_tokens=_a , **_a , ) if voice_preset is not None: lowercase_ : Optional[Any] = voice_preset return encoded_text
365
'''simple docstring''' import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class __magic_name__ ( ctypes.Structure): # _fields is a specific attr expected by ctypes UpperCamelCase__ = [('''size''', ctypes.c_int), ('''visible''', ctypes.c_byte)] def lowerCamelCase ( ) -> List[Any]: if os.name == "nt": lowercase_ : List[Any] = CursorInfo() lowercase_ : int = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) lowercase_ : List[str] = False ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25l""" ) sys.stdout.flush() def lowerCamelCase ( ) -> str: if os.name == "nt": lowercase_ : int = CursorInfo() lowercase_ : Optional[Any] = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) lowercase_ : Optional[int] = True ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25h""" ) sys.stdout.flush() @contextmanager def lowerCamelCase ( ) -> Any: try: hide_cursor() yield finally: show_cursor()
21
0
'''simple docstring''' from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowercase__ : def __init__( self : Dict ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : List[Any]=13 ,lowerCamelCase__ : str=30 ,lowerCamelCase__ : int=2 ,lowerCamelCase__ : List[Any]=3 ,lowerCamelCase__ : List[Any]=True ,lowerCamelCase__ : List[Any]=True ,lowerCamelCase__ : Any=32 ,lowerCamelCase__ : int=2 ,lowerCamelCase__ : List[str]=4 ,lowerCamelCase__ : List[Any]=37 ,lowerCamelCase__ : Any="gelu" ,lowerCamelCase__ : List[str]=0.1 ,lowerCamelCase__ : int=0.1 ,lowerCamelCase__ : Optional[int]=10 ,lowerCamelCase__ : List[str]=0.0_2 ,lowerCamelCase__ : str=3 ,lowerCamelCase__ : str=None ,): '''simple docstring''' _UpperCamelCase : Tuple = parent _UpperCamelCase : int = batch_size _UpperCamelCase : Tuple = image_size _UpperCamelCase : str = patch_size _UpperCamelCase : List[Any] = num_channels _UpperCamelCase : int = is_training _UpperCamelCase : Union[str, Any] = use_labels _UpperCamelCase : int = hidden_size _UpperCamelCase : List[Any] = num_hidden_layers _UpperCamelCase : Optional[int] = num_attention_heads _UpperCamelCase : Dict = intermediate_size _UpperCamelCase : List[str] = hidden_act _UpperCamelCase : int = hidden_dropout_prob _UpperCamelCase : Optional[Any] = attention_probs_dropout_prob _UpperCamelCase : Optional[int] = type_sequence_label_size _UpperCamelCase : int = initializer_range _UpperCamelCase : int = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCamelCase : str = (image_size // patch_size) ** 2 _UpperCamelCase : Optional[int] = num_patches + 1 def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _UpperCamelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase : Union[str, Any] = None if self.use_labels: _UpperCamelCase : List[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _UpperCamelCase : Tuple = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' return ViTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=_A ,initializer_range=self.initializer_range ,) def UpperCamelCase_ ( self : Any ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : Union[str, Any] ): '''simple docstring''' _UpperCamelCase : List[str] = TFViTModel(config=_A ) _UpperCamelCase : Dict = model(_A ,training=_A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. _UpperCamelCase : Optional[int] = self.image_size // 2 _UpperCamelCase : List[str] = pixel_values[:, :, :image_size, :image_size] _UpperCamelCase : Optional[Any] = model(_A ,interpolate_pos_encoding=_A ,training=_A ) _UpperCamelCase : Optional[int] = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Union[str, Any] ,lowerCamelCase__ : str ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : List[str] ): '''simple docstring''' _UpperCamelCase : Optional[int] = self.type_sequence_label_size _UpperCamelCase : Dict = TFViTForImageClassification(_A ) _UpperCamelCase : Tuple = model(_A ,labels=_A ,training=_A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. _UpperCamelCase : List[str] = self.image_size // 2 _UpperCamelCase : List[str] = pixel_values[:, :, :image_size, :image_size] _UpperCamelCase : List[Any] = model(_A ,interpolate_pos_encoding=_A ,training=_A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images _UpperCamelCase : Dict = 1 _UpperCamelCase : List[Any] = TFViTForImageClassification(_A ) _UpperCamelCase : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCamelCase : Any = model(_A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _UpperCamelCase : str = self.prepare_config_and_inputs() _UpperCamelCase : Dict = config_and_inputs _UpperCamelCase : Optional[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class lowercase__ ( lowercase , lowercase , unittest.TestCase ): lowercase__ = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () lowercase__ = ( {"""feature-extraction""": TFViTModel, """image-classification""": TFViTForImageClassification} if is_tf_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _UpperCamelCase : Optional[int] = TFViTModelTester(self ) _UpperCamelCase : Union[str, Any] = ConfigTester(self ,config_class=_A ,has_text_modality=_A ,hidden_size=37 ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def UpperCamelCase_ ( self : str ): '''simple docstring''' pass @unittest.skip(reason='ViT does not use inputs_embeds' ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : List[str] = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) ) _UpperCamelCase : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A ,tf.keras.layers.Layer ) ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Optional[Any] = model_class(_A ) _UpperCamelCase : Union[str, Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : Union[str, Any] = [*signature.parameters.keys()] _UpperCamelCase : Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,_A ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @slow def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _UpperCamelCase : str = TFViTModel.from_pretrained('google/vit-base-patch16-224' ) self.assertIsNotNone(_A ) def A__ ( ): _UpperCamelCase : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class lowercase__ ( unittest.TestCase ): @cached_property def UpperCamelCase_ ( self : int ): '''simple docstring''' return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224' ) if is_vision_available() else None @slow def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _UpperCamelCase : Tuple = TFViTForImageClassification.from_pretrained('google/vit-base-patch16-224' ) _UpperCamelCase : Union[str, Any] = self.default_image_processor _UpperCamelCase : Dict = prepare_img() _UpperCamelCase : List[Any] = image_processor(images=_A ,return_tensors='tf' ) # forward pass _UpperCamelCase : Optional[int] = model(**_A ) # verify the logits _UpperCamelCase : Any = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape ,_A ) _UpperCamelCase : Tuple = tf.constant([-0.2_7_4_4, 0.8_2_1_5, -0.0_8_3_6] ) tf.debugging.assert_near(outputs.logits[0, :3] ,_A ,atol=1E-4 )
83
'''simple docstring''' import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class snake_case__ ( enum.Enum): a_ = 0 a_ = 1 a_ = 2 @add_end_docstrings(UpperCamelCase) class snake_case__ ( UpperCamelCase): a_ = "\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n " def __init__( self : List[str] , *_A : Dict , **_A : int ) -> Optional[int]: super().__init__(*_A , **_A ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. UpperCAmelCase_ : Dict = None if self.model.config.prefix is not None: UpperCAmelCase_ : Tuple = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. UpperCAmelCase_ : Optional[Any] = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self._sanitize_parameters(prefix=_A , **self._forward_params ) UpperCAmelCase_ : int = {**self._preprocess_params, **preprocess_params} UpperCAmelCase_ : List[str] = {**self._forward_params, **forward_params} def A ( self : Union[str, Any] , _A : int=None , _A : str=None , _A : Union[str, Any]=None , _A : List[Any]=None , _A : List[Any]=None , _A : int=None , _A : Optional[int]=None , _A : List[Any]=None , **_A : List[Any] , ) -> Dict: UpperCAmelCase_ : Union[str, Any] = {} if prefix is not None: UpperCAmelCase_ : List[Any] = prefix if prefix: UpperCAmelCase_ : Tuple = self.tokenizer( _A , padding=_A , add_special_tokens=_A , return_tensors=self.framework ) UpperCAmelCase_ : List[Any] = prefix_inputs['''input_ids'''].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F"{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected" ''' [None, \'hole\']''' ) UpperCAmelCase_ : Union[str, Any] = handle_long_generation preprocess_params.update(_A ) UpperCAmelCase_ : Optional[int] = generate_kwargs UpperCAmelCase_ : Tuple = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' ) if return_tensors is not None: raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' ) UpperCAmelCase_ : int = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' ) UpperCAmelCase_ : List[Any] = ReturnType.TENSORS if return_type is not None: UpperCAmelCase_ : List[Any] = return_type if clean_up_tokenization_spaces is not None: UpperCAmelCase_ : List[Any] = clean_up_tokenization_spaces if stop_sequence is not None: UpperCAmelCase_ : Any = self.tokenizer.encode(_A , add_special_tokens=_A ) if len(_A ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) UpperCAmelCase_ : str = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def A ( self : Dict , *_A : Optional[Any] , **_A : Any ) -> Any: # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'''add_space_before_punct_symbol''': True} ) return super()._parse_and_tokenize(*_A , **_A ) def __call__( self : List[Any] , _A : Union[str, Any] , **_A : List[str] ) -> Dict: return super().__call__(_A , **_A ) def A ( self : List[Any] , _A : List[Any] , _A : Any="" , _A : Dict=None , **_A : Dict ) -> Optional[Any]: UpperCAmelCase_ : Tuple = self.tokenizer( prefix + prompt_text , padding=_A , add_special_tokens=_A , return_tensors=self.framework ) UpperCAmelCase_ : str = prompt_text if handle_long_generation == "hole": UpperCAmelCase_ : List[str] = inputs['''input_ids'''].shape[-1] if "max_new_tokens" in generate_kwargs: UpperCAmelCase_ : Optional[int] = generate_kwargs['''max_new_tokens'''] else: UpperCAmelCase_ : Union[str, Any] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('''We cannot infer how many new tokens are expected''' ) if cur_len + new_tokens > self.tokenizer.model_max_length: UpperCAmelCase_ : Dict = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( '''We cannot use `hole` to handle this generation the number of desired tokens exceeds the''' ''' models max length''' ) UpperCAmelCase_ : List[str] = inputs['''input_ids'''][:, -keep_length:] if "attention_mask" in inputs: UpperCAmelCase_ : Optional[int] = inputs['''attention_mask'''][:, -keep_length:] return inputs def A ( self : List[str] , _A : Optional[Any] , **_A : str ) -> Optional[int]: UpperCAmelCase_ : Any = model_inputs['''input_ids'''] UpperCAmelCase_ : Dict = model_inputs.get('''attention_mask''' , _A ) # Allow empty prompts if input_ids.shape[1] == 0: UpperCAmelCase_ : Any = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Union[str, Any] = 1 else: UpperCAmelCase_ : Optional[int] = input_ids.shape[0] UpperCAmelCase_ : Dict = model_inputs.pop('''prompt_text''' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. UpperCAmelCase_ : List[str] = generate_kwargs.pop('''prefix_length''' , 0 ) if prefix_length > 0: UpperCAmelCase_ : str = '''max_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].max_new_tokens is not None ) if not has_max_new_tokens: UpperCAmelCase_ : Any = generate_kwargs.get('''max_length''' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length UpperCAmelCase_ : Optional[Any] = '''min_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL UpperCAmelCase_ : Union[str, Any] = self.model.generate(input_ids=_A , attention_mask=_A , **_A ) UpperCAmelCase_ : Any = generated_sequence.shape[0] if self.framework == "pt": UpperCAmelCase_ : List[str] = generated_sequence.reshape(_A , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": UpperCAmelCase_ : int = tf.reshape(_A , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def A ( self : int , _A : List[Any] , _A : Dict=ReturnType.FULL_TEXT , _A : Dict=True ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = model_outputs['''generated_sequence'''][0] UpperCAmelCase_ : int = model_outputs['''input_ids'''] UpperCAmelCase_ : str = model_outputs['''prompt_text'''] UpperCAmelCase_ : Any = generated_sequence.numpy().tolist() UpperCAmelCase_ : int = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: UpperCAmelCase_ : Optional[Any] = {'''generated_token_ids''': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text UpperCAmelCase_ : Any = self.tokenizer.decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: UpperCAmelCase_ : List[str] = 0 else: UpperCAmelCase_ : str = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) ) if return_type == ReturnType.FULL_TEXT: UpperCAmelCase_ : Dict = prompt_text + text[prompt_length:] else: UpperCAmelCase_ : Dict = text[prompt_length:] UpperCAmelCase_ : List[str] = {'''generated_text''': all_text} records.append(_A ) return records
304
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase : Any = logging.get_logger(__name__) class __lowerCAmelCase ( lowercase__): _a = 'encoder-decoder' _a = True def __init__( self: Optional[Any] , **_lowerCAmelCase: Optional[Any] ): super().__init__(**_UpperCamelCase ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" lowercase :Optional[Any] = kwargs.pop("encoder" ) lowercase :str = encoder_config.pop("model_type" ) lowercase :Optional[Any] = kwargs.pop("decoder" ) lowercase :Dict = decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig lowercase :Tuple = AutoConfig.for_model(_UpperCamelCase , **_UpperCamelCase ) lowercase :Union[str, Any] = AutoConfig.for_model(_UpperCamelCase , **_UpperCamelCase ) lowercase :int = True @classmethod def SCREAMING_SNAKE_CASE ( cls: Optional[Any] , _lowerCAmelCase: PretrainedConfig , _lowerCAmelCase: PretrainedConfig , **_lowerCAmelCase: List[str] ): logger.info("Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config" ) lowercase :Optional[Any] = True lowercase :Optional[int] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_UpperCamelCase ) def SCREAMING_SNAKE_CASE ( self: str ): lowercase :List[str] = copy.deepcopy(self.__dict__ ) lowercase :int = self.encoder.to_dict() lowercase :List[str] = self.decoder.to_dict() lowercase :int = self.__class__.model_type return output
358
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class __lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase): _a = StableDiffusionPanoramaPipeline _a = TEXT_TO_IMAGE_PARAMS _a = TEXT_TO_IMAGE_BATCH_PARAMS _a = TEXT_TO_IMAGE_IMAGE_PARAMS _a = TEXT_TO_IMAGE_IMAGE_PARAMS def SCREAMING_SNAKE_CASE ( self: int ): torch.manual_seed(0 ) lowercase :List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) lowercase :Any = DDIMScheduler() torch.manual_seed(0 ) lowercase :Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase :Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) lowercase :Any = CLIPTextModel(_lowerCAmelCase ) lowercase :str = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowercase :Union[str, Any] = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def SCREAMING_SNAKE_CASE ( self: int , _lowerCAmelCase: List[Any] , _lowerCAmelCase: Dict=0 ): lowercase :Any = torch.manual_seed(_lowerCAmelCase ) lowercase :Any = { "prompt": "a photo of the dolomites", "generator": generator, # Setting height and width to None to prevent OOMs on CPU. "height": None, "width": None, "num_inference_steps": 1, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def SCREAMING_SNAKE_CASE ( self: List[Any] ): lowercase :List[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase :int = self.get_dummy_components() lowercase :int = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase :Tuple = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase :List[str] = self.get_dummy_inputs(_lowerCAmelCase ) lowercase :List[Any] = sd_pipe(**_lowerCAmelCase ).images lowercase :List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase :List[str] = np.array([0.61_86, 0.53_74, 0.49_15, 0.41_35, 0.41_14, 0.45_63, 0.51_28, 0.49_77, 0.47_57] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def SCREAMING_SNAKE_CASE ( self: int ): super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.2_5e-3 ) def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): lowercase :Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase :List[str] = self.get_dummy_components() lowercase :Optional[Any] = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase :Any = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase :Optional[int] = self.get_dummy_inputs(_lowerCAmelCase ) lowercase :List[Any] = "french fries" lowercase :int = sd_pipe(**_lowerCAmelCase , negative_prompt=_lowerCAmelCase ) lowercase :int = output.images lowercase :List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase :Optional[Any] = np.array([0.61_87, 0.53_75, 0.49_15, 0.41_36, 0.41_14, 0.45_63, 0.51_28, 0.49_76, 0.47_57] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self: List[str] ): lowercase :Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase :int = self.get_dummy_components() lowercase :List[str] = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase :int = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase :Dict = self.get_dummy_inputs(_lowerCAmelCase ) lowercase :Any = sd_pipe(**_lowerCAmelCase , view_batch_size=2 ) lowercase :Union[str, Any] = output.images lowercase :List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase :Optional[int] = np.array([0.61_87, 0.53_75, 0.49_15, 0.41_36, 0.41_14, 0.45_63, 0.51_28, 0.49_76, 0.47_57] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self: str ): lowercase :int = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase :List[Any] = self.get_dummy_components() lowercase :Tuple = EulerAncestralDiscreteScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" ) lowercase :Tuple = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase :Any = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase :Optional[Any] = self.get_dummy_inputs(_lowerCAmelCase ) lowercase :List[Any] = sd_pipe(**_lowerCAmelCase ).images lowercase :Any = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase :Optional[Any] = np.array([0.40_24, 0.65_10, 0.49_01, 0.53_78, 0.58_13, 0.56_22, 0.47_95, 0.44_67, 0.49_52] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self: Optional[Any] ): lowercase :Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase :List[Any] = self.get_dummy_components() lowercase :int = PNDMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , skip_prk_steps=_lowerCAmelCase ) lowercase :List[str] = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase :int = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase :Union[str, Any] = self.get_dummy_inputs(_lowerCAmelCase ) lowercase :Any = sd_pipe(**_lowerCAmelCase ).images lowercase :Any = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase :Tuple = np.array([0.63_91, 0.62_91, 0.48_61, 0.51_34, 0.55_52, 0.45_78, 0.50_32, 0.50_23, 0.45_39] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self: str ): super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self: Any , _lowerCAmelCase: Union[str, Any]=0 ): lowercase :Any = torch.manual_seed(_lowerCAmelCase ) lowercase :Optional[int] = { "prompt": "a photo of the dolomites", "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def SCREAMING_SNAKE_CASE ( self: Tuple ): lowercase :Dict = "stabilityai/stable-diffusion-2-base" lowercase :Optional[Any] = DDIMScheduler.from_pretrained(_lowerCAmelCase , subfolder="scheduler" ) lowercase :List[str] = StableDiffusionPanoramaPipeline.from_pretrained(_lowerCAmelCase , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() lowercase :Any = self.get_inputs() lowercase :Optional[int] = pipe(**_lowerCAmelCase ).images lowercase :int = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 20_48, 3) lowercase :Tuple = np.array( [ 0.36_96_83_92, 0.27_02_53_72, 0.32_44_67_66, 0.28_37_93_87, 0.36_36_32_74, 0.30_73_33_47, 0.27_10_00_27, 0.27_05_41_25, 0.25_53_60_96, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): lowercase :Union[str, Any] = StableDiffusionPanoramaPipeline.from_pretrained( "stabilityai/stable-diffusion-2-base" , safety_checker=_lowerCAmelCase ) lowercase :int = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() lowercase :int = self.get_inputs() lowercase :Optional[int] = pipe(**_lowerCAmelCase ).images lowercase :List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 20_48, 3) lowercase :Union[str, Any] = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def SCREAMING_SNAKE_CASE ( self: List[str] ): lowercase :Dict = 0 def callback_fn(_lowerCAmelCase: int , _lowerCAmelCase: int , _lowerCAmelCase: torch.FloatTensor ) -> None: lowercase :Any = True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowercase :Union[str, Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 2_56) lowercase :Optional[int] = latents[0, -3:, -3:, -1] lowercase :Any = np.array( [ 0.18_68_18_69, 0.33_90_78_16, 0.5_36_12_76, 0.14_43_28_65, -0.02_85_66_11, -0.73_94_11_23, 0.23_39_79_87, 0.47_32_26_82, -0.37_82_31_64, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: lowercase :str = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 2_56) lowercase :Optional[int] = latents[0, -3:, -3:, -1] lowercase :Optional[Any] = np.array( [ 0.18_53_96_45, 0.33_98_72_48, 0.5_37_85_59, 0.14_43_71_42, -0.02_45_52_61, -0.7_33_83_17, 0.23_99_07_55, 0.47_35_62_72, -0.3_78_65_05, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 lowercase :int = False lowercase :Tuple = "stabilityai/stable-diffusion-2-base" lowercase :Optional[Any] = DDIMScheduler.from_pretrained(_lowerCAmelCase , subfolder="scheduler" ) lowercase :Optional[int] = StableDiffusionPanoramaPipeline.from_pretrained(_lowerCAmelCase , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase ) lowercase :Optional[int] = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() lowercase :int = self.get_inputs() pipe(**_lowerCAmelCase , callback=_lowerCAmelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def SCREAMING_SNAKE_CASE ( self: str ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase :Optional[Any] = "stabilityai/stable-diffusion-2-base" lowercase :Dict = DDIMScheduler.from_pretrained(_lowerCAmelCase , subfolder="scheduler" ) lowercase :Optional[int] = StableDiffusionPanoramaPipeline.from_pretrained(_lowerCAmelCase , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase ) lowercase :Union[str, Any] = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowercase :Optional[int] = self.get_inputs() lowercase :Union[str, Any] = pipe(**_lowerCAmelCase ) lowercase :List[Any] = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
158
0
'''simple docstring''' import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class a ( _lowerCAmelCase , unittest.TestCase ): _lowerCAmelCase = RoFormerTokenizer _lowerCAmelCase = RoFormerTokenizerFast _lowerCAmelCase = True _lowerCAmelCase = True def __UpperCAmelCase ( self ) -> Dict: super().setUp() def __UpperCAmelCase ( self , **__magic_name__ ) -> Optional[Any]: return self.tokenizer_class.from_pretrained('junnyu/roformer_chinese_base' , **__magic_name__ ) def __UpperCAmelCase ( self , **__magic_name__ ) -> Optional[int]: return self.rust_tokenizer_class.from_pretrained('junnyu/roformer_chinese_base' , **__magic_name__ ) def __UpperCAmelCase ( self ) -> Any: _a = "永和服装饰品有限公司,今天天气非常好" _a = "永和 服装 饰品 有限公司 , 今 天 天 气 非常 好" return input_text, output_text def __UpperCAmelCase ( self ) -> List[str]: _a = self.get_tokenizer() _a = self.get_chinese_input_output_texts() _a = tokenizer.tokenize(__magic_name__ ) self.assertListEqual(__magic_name__ , output_text.split() ) _a = tokens + [tokenizer.unk_token] _a = [2_29_43, 2_13_32, 3_44_31, 4_59_04, 1_17, 3_06, 12_31, 12_31, 26_53, 3_39_94, 12_66, 1_00] self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ ) def __UpperCAmelCase ( self ) -> Any: _a = self.get_rust_tokenizer() _a = self.get_chinese_input_output_texts() _a = tokenizer.tokenize(__magic_name__ ) self.assertListEqual(__magic_name__ , output_text.split() ) _a = tokens + [tokenizer.unk_token] _a = [2_29_43, 2_13_32, 3_44_31, 4_59_04, 1_17, 3_06, 12_31, 12_31, 26_53, 3_39_94, 12_66, 1_00] self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ ) def __UpperCAmelCase ( self ) -> str: pass def __UpperCAmelCase ( self ) -> Union[str, Any]: pass def __UpperCAmelCase ( self ) -> Dict: pass
168
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Optional[Any] ={ '''configuration_x_clip''': [ '''XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XCLIPConfig''', '''XCLIPTextConfig''', '''XCLIPVisionConfig''', ], '''processing_x_clip''': ['''XCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple =[ '''XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XCLIPModel''', '''XCLIPPreTrainedModel''', '''XCLIPTextModel''', '''XCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys lowerCAmelCase : str =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
223
0
from string import ascii_lowercase, ascii_uppercase def lowercase( UpperCamelCase_ ) -> str: '''simple docstring''' if not sentence: return "" UpperCamelCase = dict(zip(UpperCamelCase_ , UpperCamelCase_ ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
165
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def lowercase( UpperCamelCase_ ) -> Optional[int]: '''simple docstring''' UpperCamelCase = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: UpperCamelCase = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: UpperCamelCase = 4 UpperCamelCase = 48 UpperCamelCase = """pixelshuffle_aux""" elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: UpperCamelCase = [6, 6, 6, 6] UpperCamelCase = 60 UpperCamelCase = [6, 6, 6, 6] UpperCamelCase = """pixelshuffledirect""" elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: UpperCamelCase = 4 UpperCamelCase = """nearest+conv""" elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: UpperCamelCase = 1 UpperCamelCase = 1 UpperCamelCase = 126 UpperCamelCase = 7 UpperCamelCase = 2_5_5.0 UpperCamelCase = """""" return config def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Dict: '''simple docstring''' if "patch_embed.proj" in name and "layers" not in name: UpperCamelCase = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: UpperCamelCase = name.replace("""patch_embed.norm""" , """embeddings.patch_embeddings.layernorm""" ) if "layers" in name: UpperCamelCase = name.replace("""layers""" , """encoder.stages""" ) if "residual_group.blocks" in name: UpperCamelCase = name.replace("""residual_group.blocks""" , """layers""" ) if "attn.proj" in name: UpperCamelCase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: UpperCamelCase = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: UpperCamelCase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: UpperCamelCase = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: UpperCamelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: UpperCamelCase = name.replace("""mlp.fc2""" , """output.dense""" ) if "q_bias" in name: UpperCamelCase = name.replace("""q_bias""" , """query.bias""" ) if "k_bias" in name: UpperCamelCase = name.replace("""k_bias""" , """key.bias""" ) if "v_bias" in name: UpperCamelCase = name.replace("""v_bias""" , """value.bias""" ) if "cpb_mlp" in name: UpperCamelCase = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" ) if "patch_embed.proj" in name: UpperCamelCase = name.replace("""patch_embed.proj""" , """patch_embed.projection""" ) if name == "norm.weight": UpperCamelCase = """layernorm.weight""" if name == "norm.bias": UpperCamelCase = """layernorm.bias""" if "conv_first" in name: UpperCamelCase = name.replace("""conv_first""" , """first_convolution""" ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: UpperCamelCase = name.replace("""conv_last""" , """final_convolution""" ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: UpperCamelCase = name.replace("""conv_before_upsample.0""" , """conv_before_upsample""" ) if "upsample.0" in name: UpperCamelCase = name.replace("""upsample.0""" , """upsample.convolution_0""" ) if "upsample.2" in name: UpperCamelCase = name.replace("""upsample.2""" , """upsample.convolution_1""" ) UpperCamelCase = """upsample.""" + name elif config.upsampler == "pixelshuffledirect": UpperCamelCase = name.replace("""upsample.0.weight""" , """upsample.conv.weight""" ) UpperCamelCase = name.replace("""upsample.0.bias""" , """upsample.conv.bias""" ) else: pass else: UpperCamelCase = """swin2sr.""" + name return name def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Union[str, Any]: '''simple docstring''' for key in orig_state_dict.copy().keys(): UpperCamelCase = orig_state_dict.pop(UpperCamelCase_ ) if "qkv" in key: UpperCamelCase = key.split(""".""" ) UpperCamelCase = int(key_split[1] ) UpperCamelCase = int(key_split[4] ) UpperCamelCase = config.embed_dim if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[dim : dim * 2, :] UpperCamelCase = val[-dim:, :] else: UpperCamelCase = val[:dim] UpperCamelCase = val[dim : dim * 2] UpperCamelCase = val[-dim:] pass else: UpperCamelCase = val return orig_state_dict def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: '''simple docstring''' UpperCamelCase = get_config(UpperCamelCase_ ) UpperCamelCase = SwinaSRForImageSuperResolution(UpperCamelCase_ ) model.eval() UpperCamelCase = torch.hub.load_state_dict_from_url(UpperCamelCase_ , map_location="""cpu""" ) UpperCamelCase = convert_state_dict(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase , UpperCamelCase = model.load_state_dict(UpperCamelCase_ , strict=UpperCamelCase_ ) if len(UpperCamelCase_ ) > 0: raise ValueError("""Missing keys when converting: {}""".format(UpperCamelCase_ ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(f"""Unexpected key {key} in state_dict""" ) # verify values UpperCamelCase = """https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true""" UpperCamelCase = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ).convert("""RGB""" ) UpperCamelCase = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values UpperCamelCase = 126 if """Jpeg""" in checkpoint_url else 256 UpperCamelCase = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) UpperCamelCase = transforms(UpperCamelCase_ ).unsqueeze(0 ) if config.num_channels == 1: UpperCamelCase = pixel_values[:, 0, :, :].unsqueeze(1 ) UpperCamelCase = model(UpperCamelCase_ ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: UpperCamelCase = torch.Size([1, 3, 512, 512] ) UpperCamelCase = torch.tensor( [[-0.7_0_8_7, -0.7_1_3_8, -0.6_7_2_1], [-0.8_3_4_0, -0.8_0_9_5, -0.7_2_9_8], [-0.9_1_4_9, -0.8_4_1_4, -0.7_9_4_0]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: UpperCamelCase = torch.Size([1, 3, 1024, 1024] ) UpperCamelCase = torch.tensor( [[-0.7_7_7_5, -0.8_1_0_5, -0.8_9_3_3], [-0.7_7_6_4, -0.8_3_5_6, -0.9_2_2_5], [-0.7_9_7_6, -0.8_6_8_6, -0.9_5_7_9]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here UpperCamelCase = torch.Size([1, 3, 1024, 1024] ) UpperCamelCase = torch.tensor( [[-0.8_0_3_5, -0.7_5_0_4, -0.7_4_9_1], [-0.8_5_3_8, -0.8_1_2_4, -0.7_7_8_2], [-0.8_8_0_4, -0.8_6_5_1, -0.8_4_9_3]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: UpperCamelCase = torch.Size([1, 3, 512, 512] ) UpperCamelCase = torch.tensor( [[-0.7_6_6_9, -0.8_6_6_2, -0.8_7_6_7], [-0.8_8_1_0, -0.9_9_6_2, -0.9_8_2_0], [-0.9_3_4_0, -1.0_3_2_2, -1.1_1_4_9]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: UpperCamelCase = torch.Size([1, 3, 1024, 1024] ) UpperCamelCase = torch.tensor( [[-0.5_2_3_8, -0.5_5_5_7, -0.6_3_2_1], [-0.6_0_1_6, -0.5_9_0_3, -0.6_3_9_1], [-0.6_2_4_4, -0.6_3_3_4, -0.6_8_8_9]] ) assert ( outputs.reconstruction.shape == expected_shape ), f"""Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}""" assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , UpperCamelCase_ , atol=1E-3 ) print("""Looks ok!""" ) UpperCamelCase = { """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""": ( """swin2SR-classical-sr-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth""": ( """swin2SR-classical-sr-x4-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth""": ( """swin2SR-compressed-sr-x4-48""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth""": ( """swin2SR-lightweight-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth""": ( """swin2SR-realworld-sr-x4-64-bsrgan-psnr""" ), } UpperCamelCase = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase_ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(UpperCamelCase_ ) if push_to_hub: model.push_to_hub(f"""caidas/{model_name}""" ) processor.push_to_hub(f"""caidas/{model_name}""" ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""", type=str, help="""URL of the original Swin2SR checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the converted model to the hub.""") _SCREAMING_SNAKE_CASE = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
165
1
"""simple docstring""" import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowercase = '''▁''' _lowercase = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class lowerCAmelCase_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Any = BertGenerationTokenizer _lowerCamelCase: Dict = False _lowerCamelCase: Any = True def _SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: super().setUp() A = BertGenerationTokenizer(A_ ,keep_accents=A_ ) tokenizer.save_pretrained(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: A = '<s>' A = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A_ ) ,A_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A_ ) ,A_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: A = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'<unk>' ) self.assertEqual(vocab_keys[1] ,'<s>' ) self.assertEqual(vocab_keys[-1] ,'<pad>' ) self.assertEqual(len(A_ ) ,1002 ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: self.assertEqual(self.get_tokenizer().vocab_size ,1000 ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: A = BertGenerationTokenizer(A_ ,keep_accents=A_ ) A = tokenizer.tokenize('This is a test' ) self.assertListEqual(A_ ,['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A_ ) ,[285, 46, 10, 170, 382] ,) A = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( A_ ,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] ,) A = tokenizer.convert_tokens_to_ids(A_ ) self.assertListEqual( A_ ,[8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] ,) A = tokenizer.convert_ids_to_tokens(A_ ) self.assertListEqual( A_ ,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] ,) @cached_property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: return BertGenerationTokenizer.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: A = 'Hello World!' A = [1_8536, 2260, 101] self.assertListEqual(A_ ,self.big_tokenizer.encode(A_ ) ) @slow def _SCREAMING_SNAKE_CASE ( self : int ) -> Any: A = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) A = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, ] self.assertListEqual(A_ ,self.big_tokenizer.encode(A_ ) ) @require_torch @slow def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence A = list(self.big_tokenizer.get_vocab().keys() )[:10] A = ' '.join(A_ ) A = self.big_tokenizer.encode_plus(A_ ,return_tensors='pt' ,return_token_type_ids=A_ ) A = self.big_tokenizer.batch_encode_plus( [sequence + ' ' + sequence] ,return_tensors='pt' ,return_token_type_ids=A_ ) A = BertGenerationConfig() A = BertGenerationEncoder(A_ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**A_ ) model(**A_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: # fmt: off A = {'input_ids': [[3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114], [448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A_ ,model_name='google/bert_for_seq_generation_L-24_bbc_encoder' ,revision='c817d1fd1be2ffa69431227a1fe320544943d4db' ,)
74
from collections import deque def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = len(lowerCamelCase__ ) lowerCamelCase_ = deque() lowerCamelCase_ = [False for _ in range(lowerCamelCase__ )] lowerCamelCase_ = [-1 for _ in range(lowerCamelCase__ )] lowerCamelCase_ = index_of[:] def strong_connect(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = index # the number when this node is seen lowerCamelCase_ = index # lowest rank node reachable from here index += 1 stack.append(lowerCamelCase__ ) lowerCamelCase_ = True for w in g[v]: if index_of[w] == -1: lowerCamelCase_ = strong_connect(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: lowerCamelCase_ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: lowerCamelCase_ = [] lowerCamelCase_ = stack.pop() lowerCamelCase_ = False component.append(lowerCamelCase__ ) while w != v: lowerCamelCase_ = stack.pop() lowerCamelCase_ = False component.append(lowerCamelCase__ ) components.append(lowerCamelCase__ ) return index lowerCamelCase_ = [] for v in range(lowerCamelCase__ ): if index_of[v] == -1: strong_connect(lowerCamelCase__ , 0 , lowerCamelCase__ ) return components def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = [[] for _ in range(lowerCamelCase__ )] for u, v in edges: g[u].append(lowerCamelCase__ ) return g if __name__ == "__main__": # Test __A =7 __A =[0, 0, 1, 2, 3, 3, 4, 4, 6] __A =[1, 3, 2, 0, 1, 4, 5, 6, 5] __A =[(u, v) for u, v in zip(source, target)] __A =create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
19
0
"""simple docstring""" from __future__ import annotations __A : Union[str, Any] = list[list[int]] # assigning initial values to the grid __A : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution __A : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def lowercase ( _SCREAMING_SNAKE_CASE : Matrix , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def lowercase ( _SCREAMING_SNAKE_CASE : Matrix ): '''simple docstring''' for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def lowercase ( _SCREAMING_SNAKE_CASE : Matrix ): '''simple docstring''' if location := find_empty_location(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase , _UpperCAmelCase = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = digit if sudoku(_SCREAMING_SNAKE_CASE ) is not None: return grid _UpperCAmelCase = 0 return None def lowercase ( _SCREAMING_SNAKE_CASE : Matrix ): '''simple docstring''' for row in grid: for cell in row: print(_SCREAMING_SNAKE_CASE , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("\nExample grid:\n" + "=" * 20) print_solution(example_grid) print("\nExample grid solution:") __A : Optional[int] = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("Cannot find a solution.")
350
"""simple docstring""" from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _a : """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = None UpperCamelCase__ = None __A : Union[str, Any] = namedtuple("CoinsDistribResult", "moves excess") def lowercase ( _SCREAMING_SNAKE_CASE : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_SCREAMING_SNAKE_CASE ) != count_coins(_SCREAMING_SNAKE_CASE ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) _UpperCAmelCase , _UpperCAmelCase = get_distrib(node.left ) _UpperCAmelCase , _UpperCAmelCase = get_distrib(node.right ) _UpperCAmelCase = 1 - left_distrib_excess _UpperCAmelCase = 1 - right_distrib_excess _UpperCAmelCase = ( left_distrib_moves + right_distrib_moves + abs(_SCREAMING_SNAKE_CASE ) + abs(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return get_distrib(_SCREAMING_SNAKE_CASE )[0] if __name__ == "__main__": import doctest doctest.testmod()
326
0
"""simple docstring""" from timeit import timeit def _snake_case ( UpperCamelCase : int ): if number < 0: raise ValueError("""the value of input must not be negative""" ) UpperCAmelCase : Tuple = 0 while number: number &= number - 1 result += 1 return result def _snake_case ( UpperCamelCase : int ): if number < 0: raise ValueError("""the value of input must not be negative""" ) UpperCAmelCase : Dict = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def _snake_case ( ): def do_benchmark(UpperCamelCase : int ) -> None: UpperCAmelCase : Dict = """import __main__ as z""" print(F"Benchmark when {number = }:" ) print(F"{get_set_bits_count_using_modulo_operator(UpperCamelCase ) = }" ) UpperCAmelCase : List[str] = timeit("""z.get_set_bits_count_using_modulo_operator(25)""" , setup=UpperCamelCase ) print(F"timeit() runs in {timing} seconds" ) print(F"{get_set_bits_count_using_brian_kernighans_algorithm(UpperCamelCase ) = }" ) UpperCAmelCase : str = timeit( """z.get_set_bits_count_using_brian_kernighans_algorithm(25)""" , setup=UpperCamelCase , ) print(F"timeit() runs in {timing} seconds" ) for number in (25, 37, 58, 0): do_benchmark(UpperCamelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
109
"""simple docstring""" from collections.abc import Callable import numpy as np def _snake_case ( UpperCamelCase : Callable , UpperCamelCase : float , UpperCamelCase : float , UpperCamelCase : float , UpperCamelCase : float ): UpperCAmelCase : Any = int(np.ceil((x_end - xa) / step_size ) ) UpperCAmelCase : Optional[Any] = np.zeros((n + 1,) ) UpperCAmelCase : Optional[int] = ya UpperCAmelCase : int = xa for k in range(UpperCamelCase ): UpperCAmelCase : Optional[int] = y[k] + step_size * ode_func(UpperCamelCase , y[k] ) UpperCAmelCase : Optional[int] = y[k] + ( (step_size / 2) * (ode_func(UpperCamelCase , y[k] ) + ode_func(x + step_size , UpperCamelCase )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
109
1
'''simple docstring''' def a__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str ) -> str: """simple docstring""" if not (isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )): raise ValueError("longest_common_substring() takes two strings for inputs" ) UpperCAmelCase_ : Tuple = len(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = len(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] UpperCAmelCase_ : List[Any] = 0 UpperCAmelCase_ : Any = 0 for i in range(1 , texta_length + 1 ): for j in range(1 , texta_length + 1 ): if texta[i - 1] == texta[j - 1]: UpperCAmelCase_ : Union[str, Any] = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: UpperCAmelCase_ : Any = i UpperCAmelCase_ : Any = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
67
'''simple docstring''' from ..utils import DummyObject, requires_backends class _snake_case (metaclass=__SCREAMING_SNAKE_CASE): __A : Union[str, Any] =["torch", "torchsde"] def __init__( self ,*_snake_case ,**_snake_case ): requires_backends(self ,["torch", "torchsde"] ) @classmethod def UpperCamelCase__ ( cls ,*_snake_case ,**_snake_case ): requires_backends(cls ,["torch", "torchsde"] ) @classmethod def UpperCamelCase__ ( cls ,*_snake_case ,**_snake_case ): requires_backends(cls ,["torch", "torchsde"] )
67
1
"""simple docstring""" # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def _SCREAMING_SNAKE_CASE ( _lowercase : Optional[int] , _lowercase : Tuple , _lowercase : Any ) ->Optional[Any]: '''simple docstring''' a : Any = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, oder?", } # BLUE scores as follows: # "pair": [fairseq, transformers] a : Union[str, Any] = { "ru-en": ["[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)", "39.20"], "en-ru": ["[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)", "33.47"], "en-de": ["[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)", "42.83"], "de-en": ["[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)", "41.35"], } a : List[Any] = F"""{src_lang}-{tgt_lang}""" a : Optional[int] = F""" --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = \"facebook/wmt19-{src_lang}-{tgt_lang}\" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = \"{texts[src_lang]}\" input_ids = tokenizer.encode(input, return_tensors=\"pt\") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR's WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) """ os.makedirs(_lowercase , exist_ok=_lowercase ) a : Tuple = os.path.join(_lowercase , "README.md" ) print(F"""Generating {path}""" ) with open(_lowercase , "w" , encoding="utf-8" ) as f: f.write(_lowercase ) # make sure we are under the root of the project a : int = Path(__file__).resolve().parent.parent.parent a : Union[str, Any] = repo_dir / '''model_cards''' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: a , a , a : List[str] = model_name.split('''-''') a : List[str] = model_cards_dir / '''facebook''' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
105
"""simple docstring""" from datetime import datetime import requests def _SCREAMING_SNAKE_CASE ( _lowercase : str ) ->bytes: '''simple docstring''' a : Dict = "https://downloadgram.net/wp-json/wppress/video-downloader/video?url=" a : Dict = requests.get(base_url + url ).json()[0]["urls"][0]["src"] return requests.get(_lowercase ).content if __name__ == "__main__": a : str = input('''Enter Video/IGTV url: ''').strip() a : Any = F'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, '''wb''') as fp: fp.write(download_video(url)) print(F'''Done. Video saved to disk as {file_name}.''')
105
1
import cva import numpy as np class a__ : def __init__( self , A , A ) -> Optional[Any]: '''simple docstring''' if k in (0.0_4, 0.0_6): a = k a = window_size else: raise ValueError("invalid k value" ) def __str__( self ) -> str: '''simple docstring''' return str(self.k ) def lowerCAmelCase_ ( self , A ) -> tuple[cva.Mat, list[list[int]]]: '''simple docstring''' a = cva.imread(A , 0 ) a , a = img.shape a = [] a = img.copy() a = cva.cvtColor(A , cva.COLOR_GRAY2RGB ) a , a = np.gradient(A ) a = dx**2 a = dy**2 a = dx * dy a = 0.0_4 a = self.window_size // 2 for y in range(A , h - offset ): for x in range(A , w - offset ): a = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() a = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() a = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() a = (wxx * wyy) - (wxy**2) a = wxx + wyy a = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": lowercase__ : Optional[int] = HarrisCorner(0.04, 3) lowercase__ , lowercase__ : Optional[Any] = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
180
def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> int: return 1 if digit in (0, 1) else (digit * factorial(digit - 1)) def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> bool: a = 0 a = number while duplicate > 0: a , a = divmod(__UpperCamelCase , 10) fact_sum += factorial(__UpperCamelCase) return fact_sum == number if __name__ == "__main__": print("Program to check whether a number is a Krisnamurthy Number or not.") lowercase__ : str = int(input("Enter number: ").strip()) print( F'{number} is {"" if krishnamurthy(number) else "not "}a Krishnamurthy Number.' )
180
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """ctc_proj""", """mask_emb""": """masked_spec_embed""", } SCREAMING_SNAKE_CASE_ = [ """ctc_proj""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' for attribute in key.split(""".""" ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models SCREAMING_SNAKE_CASE = """lm_head""" SCREAMING_SNAKE_CASE = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if weight_type is not None: SCREAMING_SNAKE_CASE = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).shape else: SCREAMING_SNAKE_CASE = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": SCREAMING_SNAKE_CASE = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE = value elif weight_type == "bias": SCREAMING_SNAKE_CASE = value else: SCREAMING_SNAKE_CASE = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = fairseq_model.state_dict() SCREAMING_SNAKE_CASE = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE = False if "conv_layers" in name: load_conv_layer( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == """group""" , ) SCREAMING_SNAKE_CASE = True else: for key, mapped_key in MAPPING.items(): SCREAMING_SNAKE_CASE = """unispeech.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: SCREAMING_SNAKE_CASE = True if "*" in mapped_key: SCREAMING_SNAKE_CASE = name.split(_SCREAMING_SNAKE_CASE )[0].split(""".""" )[-2] SCREAMING_SNAKE_CASE = mapped_key.replace("""*""" , _SCREAMING_SNAKE_CASE ) if "weight_g" in name: SCREAMING_SNAKE_CASE = """weight_g""" elif "weight_v" in name: SCREAMING_SNAKE_CASE = """weight_v""" elif "bias" in name: SCREAMING_SNAKE_CASE = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj SCREAMING_SNAKE_CASE = """weight""" else: SCREAMING_SNAKE_CASE = None set_recursively(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(_SCREAMING_SNAKE_CASE ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = full_name.split("""conv_layers.""" )[-1] SCREAMING_SNAKE_CASE = name.split(""".""" ) SCREAMING_SNAKE_CASE = int(items[0] ) SCREAMING_SNAKE_CASE = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) SCREAMING_SNAKE_CASE = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) SCREAMING_SNAKE_CASE = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) SCREAMING_SNAKE_CASE = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) SCREAMING_SNAKE_CASE = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_SCREAMING_SNAKE_CASE ) @torch.no_grad() def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True ) -> List[Any]: '''simple docstring''' if config_path is not None: SCREAMING_SNAKE_CASE = UniSpeechConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) else: SCREAMING_SNAKE_CASE = UniSpeechConfig() if is_finetuned: if dict_path: SCREAMING_SNAKE_CASE = Dictionary.load_from_json(_SCREAMING_SNAKE_CASE ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq SCREAMING_SNAKE_CASE = target_dict.pad_index SCREAMING_SNAKE_CASE = target_dict.bos_index SCREAMING_SNAKE_CASE = target_dict.eos_index SCREAMING_SNAKE_CASE = len(target_dict.symbols ) SCREAMING_SNAKE_CASE = os.path.join(_SCREAMING_SNAKE_CASE , """vocab.json""" ) if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_SCREAMING_SNAKE_CASE ) ) return os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = target_dict.indices # fairseq has the <pad> and <s> switched SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 43 with open(_SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = WavaVecaPhonemeCTCTokenizer( _SCREAMING_SNAKE_CASE , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=_SCREAMING_SNAKE_CASE , ) SCREAMING_SNAKE_CASE = True if config.feat_extract_norm == """layer""" else False SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , ) SCREAMING_SNAKE_CASE = WavaVecaProcessor(feature_extractor=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE ) processor.save_pretrained(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = UniSpeechForCTC(_SCREAMING_SNAKE_CASE ) else: SCREAMING_SNAKE_CASE = UniSpeechForPreTraining(_SCREAMING_SNAKE_CASE ) if is_finetuned: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] ), """w2v_path""": checkpoint_path} ) else: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) SCREAMING_SNAKE_CASE = model[0].eval() recursively_load_weights(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) hf_unispeech.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
296
import random class UpperCamelCase__ : '''simple docstring''' @staticmethod def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ : str ) -> tuple[list[int], list[int]]: '''simple docstring''' SCREAMING_SNAKE_CASE = [ord(lowerCamelCase__ ) for i in text] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] for i in plain: SCREAMING_SNAKE_CASE = random.randint(1 ,300 ) SCREAMING_SNAKE_CASE = (i + k) * k cipher.append(lowerCamelCase__ ) key.append(lowerCamelCase__ ) return cipher, key @staticmethod def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ : list[int] ,lowerCamelCase__ : list[int] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = [] for i in range(len(lowerCamelCase__ ) ): SCREAMING_SNAKE_CASE = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(lowerCamelCase__ ) ) return "".join(lowerCamelCase__ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = Onepad().encrypt("""Hello""") print(c, k) print(Onepad().decrypt(c, k))
296
1
lowercase__ : Optional[Any] = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } def a__ ( lowercase : dict, lowercase : Union[str, Any], lowercase : int ) -> list[str]: """simple docstring""" _UpperCamelCase = set() # keep track of all the paths to be checked _UpperCamelCase = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue _UpperCamelCase = queue.pop(0 ) # get the last node from the path _UpperCamelCase = path[-1] if node not in explored: _UpperCamelCase = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: _UpperCamelCase = list(lowercase ) new_path.append(lowercase ) queue.append(lowercase ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(lowercase ) # in case there's no path between the 2 nodes return [] def a__ ( lowercase : dict, lowercase : Dict, lowercase : Union[str, Any] ) -> int: """simple docstring""" if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 _UpperCamelCase = [start] _UpperCamelCase = set(lowercase ) # Keep tab on distances from `start` node. _UpperCamelCase = {start: 0, target: -1} while queue: _UpperCamelCase = queue.pop(0 ) if node == target: _UpperCamelCase = ( dist[node] if dist[target] == -1 else min(dist[target], dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(lowercase ) queue.append(lowercase ) _UpperCamelCase = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, 'G', 'D')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, 'G', 'D')) # returns 4
362
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : List[Any] = logging.get_logger(__name__) lowercase__ : Tuple = { 'microsoft/trocr-base-handwritten': ( 'https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : int = 'trocr' _snake_case : List[str] = ['past_key_values'] _snake_case : Tuple = { 'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model', 'num_hidden_layers': 'decoder_layers', } def __init__( self : Tuple , lowerCAmelCase__ : Union[str, Any]=50265 , lowerCAmelCase__ : List[Any]=1024 , lowerCAmelCase__ : List[str]=12 , lowerCAmelCase__ : int=16 , lowerCAmelCase__ : List[Any]=4096 , lowerCAmelCase__ : Optional[int]="gelu" , lowerCAmelCase__ : int=512 , lowerCAmelCase__ : Optional[Any]=0.1 , lowerCAmelCase__ : Optional[int]=0.0 , lowerCAmelCase__ : Dict=0.0 , lowerCAmelCase__ : Tuple=2 , lowerCAmelCase__ : Dict=0.02 , lowerCAmelCase__ : Tuple=0.0 , lowerCAmelCase__ : int=True , lowerCAmelCase__ : Optional[Any]=False , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : Optional[int]=1 , lowerCAmelCase__ : List[Any]=0 , lowerCAmelCase__ : Any=2 , **lowerCAmelCase__ : Optional[int] , ) -> Any: '''simple docstring''' _UpperCamelCase = vocab_size _UpperCamelCase = d_model _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = activation_function _UpperCamelCase = max_position_embeddings _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = init_std _UpperCamelCase = decoder_layerdrop _UpperCamelCase = use_cache _UpperCamelCase = scale_embedding _UpperCamelCase = use_learned_position_embeddings _UpperCamelCase = layernorm_embedding super().__init__( pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , decoder_start_token_id=lowerCAmelCase__ , **lowerCAmelCase__ , )
287
0
"""simple docstring""" import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class _UpperCAmelCase : '''simple docstring''' def __init__( self , A , A=1_3 , A=7 , A=True , A=True , A=True , A=True , A=9_9 , A=3_2 , A=5 , A=4 , A=4 , A="gelu" , A=0.0 , A=0.1 , A=True , A=5_1_2 , A=1_6 , A=2 , A=0.02 , A=3 , A=4 , A=None , ) -> List[str]: _UpperCAmelCase : Optional[Any] = parent _UpperCAmelCase : Any = batch_size _UpperCAmelCase : Any = seq_length _UpperCAmelCase : List[Any] = is_training _UpperCAmelCase : List[str] = use_input_mask _UpperCAmelCase : List[Any] = use_token_type_ids _UpperCAmelCase : List[Any] = use_labels _UpperCAmelCase : Optional[int] = vocab_size _UpperCAmelCase : str = hidden_size _UpperCAmelCase : Dict = num_hidden_layers _UpperCAmelCase : str = num_attention_heads _UpperCAmelCase : List[str] = intermediate_multiple_size _UpperCAmelCase : Optional[int] = hidden_act _UpperCAmelCase : Optional[int] = hidden_dropout _UpperCAmelCase : Dict = attention_dropout _UpperCAmelCase : List[str] = weight_tying _UpperCAmelCase : Any = max_position_embeddings _UpperCAmelCase : Optional[int] = type_vocab_size _UpperCAmelCase : Tuple = type_sequence_label_size _UpperCAmelCase : Optional[Any] = initializer_range _UpperCAmelCase : Optional[int] = num_labels _UpperCAmelCase : Dict = num_choices _UpperCAmelCase : List[str] = scope def __lowerCAmelCase ( self ) -> List[str]: _UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : List[Any] = None if self.use_input_mask: _UpperCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Dict = None if self.use_labels: _UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase : Any = self.get_config() return config, input_ids, input_mask, token_labels def __lowerCAmelCase ( self ) -> Union[str, Any]: return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self ) -> Dict: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : str = self.prepare_config_and_inputs() _UpperCAmelCase : str = True return config, input_ids, input_mask, token_labels def __lowerCAmelCase ( self , A , A , A ) -> int: _UpperCAmelCase : Optional[Any] = GPTNeoXJapaneseModel(config=A ) model.to(A ) model.eval() _UpperCAmelCase : Dict = model(A , attention_mask=A ) _UpperCAmelCase : Union[str, Any] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , A , A , A ) -> Optional[Any]: _UpperCAmelCase : List[Any] = True _UpperCAmelCase : Any = GPTNeoXJapaneseModel(A ) model.to(A ) model.eval() _UpperCAmelCase : List[Any] = model(A , attention_mask=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , A , A , A , A ) -> str: _UpperCAmelCase : str = GPTNeoXJapaneseForCausalLM(config=A ) model.to(A ) model.eval() _UpperCAmelCase : Any = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self , A , A , A ) -> str: _UpperCAmelCase : Tuple = True _UpperCAmelCase : Dict = GPTNeoXJapaneseForCausalLM(config=A ) model.to(A ) model.eval() # first forward pass _UpperCAmelCase : Any = model(A , attention_mask=A , use_cache=A ) _UpperCAmelCase : Tuple = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _UpperCAmelCase : int = ids_tensor((self.batch_size, 3) , config.vocab_size ) _UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _UpperCAmelCase : List[str] = torch.cat([input_ids, next_tokens] , dim=-1 ) _UpperCAmelCase : Dict = torch.cat([input_mask, next_mask] , dim=-1 ) _UpperCAmelCase : Dict = model(A , attention_mask=A , output_hidden_states=A ) _UpperCAmelCase : Tuple = output_from_no_past['''hidden_states'''][0] _UpperCAmelCase : Optional[int] = model( A , attention_mask=A , past_key_values=A , output_hidden_states=A , )['''hidden_states'''][0] # select random slice _UpperCAmelCase : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item() _UpperCAmelCase : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx].detach() _UpperCAmelCase : Optional[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1E-3 ) ) def __lowerCAmelCase ( self ) -> Dict: _UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = config_and_inputs _UpperCAmelCase : int = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( a ,a ,unittest.TestCase ): '''simple docstring''' a__ =(GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () a__ =(GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () a__ =( {'''feature-extraction''': GPTNeoXJapaneseModel, '''text-generation''': GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) a__ =False a__ =False a__ =False a__ =False def __lowerCAmelCase ( self ) -> Any: _UpperCAmelCase : Tuple = GPTNeoXJapaneseModelTester(self ) _UpperCAmelCase : Tuple = ConfigTester(self , config_class=A , hidden_size=3_7 ) def __lowerCAmelCase ( self ) -> str: self.config_tester.run_common_tests() def __lowerCAmelCase ( self ) -> Tuple: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(A , A , A ) def __lowerCAmelCase ( self ) -> Tuple: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(A , A , A ) def __lowerCAmelCase ( self ) -> str: # This regression test was failing with PyTorch < 1.3 _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_decoder() _UpperCAmelCase : Union[str, Any] = None self.model_tester.create_and_check_model_as_decoder(A , A , A ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(A , A , A ) def __lowerCAmelCase ( self ) -> str: _UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*A ) @slow def __lowerCAmelCase ( self ) -> int: _UpperCAmelCase : List[Any] = '''abeja/gpt-neox-japanese-2.7b''' _UpperCAmelCase : str = ['''データサイエンティストとは、''', '''100年後に必要とされる会社は、''', '''フルリモートの環境で働くために必要なことは、''', '''国境の長いトンネルを抜けると''', '''美味しい日本食といえば、'''] _UpperCAmelCase : Any = [ '''データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。''', '''100年後に必要とされる会社は、「人」が中心の会社です。''', '''フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。''', '''国境の長いトンネルを抜けると、そこは雪国だった。''', '''美味しい日本食といえば、やっぱりお寿司ですよね。''', ] _UpperCAmelCase : str = GPTNeoXJapaneseTokenizer.from_pretrained(A ) _UpperCAmelCase : Any = GPTNeoXJapaneseForCausalLM.from_pretrained(A ) _UpperCAmelCase : Tuple = [] for prompt in prompts: _UpperCAmelCase : str = tokenizer(A , return_tensors='''pt''' ).input_ids _UpperCAmelCase : List[Any] = model.generate(A , max_length=5_0 ) _UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(A , skip_special_tokens=A ) predicted_outputs += generated_string self.assertListEqual(A , A )
263
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCAmelCase :Optional[int] = logging.get_logger(__name__) _lowerCAmelCase :List[str] = '▁' _lowerCAmelCase :Tuple = {'vocab_file': 'sentencepiece.bpe.model'} _lowerCAmelCase :List[Any] = { 'vocab_file': { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model' ), } } _lowerCAmelCase :Tuple = { 'xlm-roberta-base': 512, 'xlm-roberta-large': 512, 'xlm-roberta-large-finetuned-conll02-dutch': 512, 'xlm-roberta-large-finetuned-conll02-spanish': 512, 'xlm-roberta-large-finetuned-conll03-english': 512, 'xlm-roberta-large-finetuned-conll03-german': 512, } class _UpperCAmelCase ( a ): '''simple docstring''' a__ =VOCAB_FILES_NAMES a__ =PRETRAINED_VOCAB_FILES_MAP a__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ =['''input_ids''', '''attention_mask'''] def __init__( self , A , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , A = None , **A , ) -> None: # Mask token behave like a normal word, i.e. include the space before it _UpperCAmelCase : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token _UpperCAmelCase : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , sp_model_kwargs=self.sp_model_kwargs , **A , ) _UpperCAmelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A ) ) _UpperCAmelCase : List[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _UpperCAmelCase : List[str] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _UpperCAmelCase : Any = 1 _UpperCAmelCase : Optional[Any] = len(self.sp_model ) + self.fairseq_offset _UpperCAmelCase : int = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> Union[str, Any]: _UpperCAmelCase : Tuple = self.__dict__.copy() _UpperCAmelCase : List[str] = None _UpperCAmelCase : str = self.sp_model.serialized_model_proto() return state def __setstate__( self , A ) -> Optional[int]: _UpperCAmelCase : Optional[int] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _UpperCAmelCase : Optional[Any] = {} _UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __lowerCAmelCase ( self , A , A = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCAmelCase : Any = [self.cls_token_id] _UpperCAmelCase : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __lowerCAmelCase ( self , A , A = None , A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A )) + [1] def __lowerCAmelCase ( self , A , A = None ) -> List[int]: _UpperCAmelCase : Dict = [self.sep_token_id] _UpperCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __lowerCAmelCase ( self ) -> Dict: return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def __lowerCAmelCase ( self ) -> Tuple: _UpperCAmelCase : Dict = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowerCAmelCase ( self , A ) -> List[str]: return self.sp_model.encode(A , out_type=A ) def __lowerCAmelCase ( self , A ) -> Any: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _UpperCAmelCase : Any = self.sp_model.PieceToId(A ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __lowerCAmelCase ( self , A ) -> int: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __lowerCAmelCase ( self , A ) -> int: _UpperCAmelCase : str = ''''''.join(A ).replace(A , ''' ''' ).strip() return out_string def __lowerCAmelCase ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _UpperCAmelCase : List[Any] = os.path.join( A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , '''wb''' ) as fi: _UpperCAmelCase : str = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,)
263
1
"""simple docstring""" import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def _snake_case ( _snake_case : Optional[Any] ): lowerCAmelCase : Union[str, Any] = botoa.client('''iam''' ) lowerCAmelCase : List[str] = { "Version": "2012-10-17", "Statement": [ {"Effect": "Allow", "Principal": {"Service": "sagemaker.amazonaws.com"}, "Action": "sts:AssumeRole"} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=_SCREAMING_SNAKE_CASE , AssumeRolePolicyDocument=json.dumps(_SCREAMING_SNAKE_CASE , indent=2 ) ) lowerCAmelCase : Dict = { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": [ "sagemaker:*", "ecr:GetDownloadUrlForLayer", "ecr:BatchGetImage", "ecr:BatchCheckLayerAvailability", "ecr:GetAuthorizationToken", "cloudwatch:PutMetricData", "cloudwatch:GetMetricData", "cloudwatch:GetMetricStatistics", "cloudwatch:ListMetrics", "logs:CreateLogGroup", "logs:CreateLogStream", "logs:DescribeLogStreams", "logs:PutLogEvents", "logs:GetLogEvents", "s3:CreateBucket", "s3:ListBucket", "s3:GetBucketLocation", "s3:GetObject", "s3:PutObject", ], "Resource": "*", } ], } # attach policy to role iam_client.put_role_policy( RoleName=_SCREAMING_SNAKE_CASE , PolicyName=f'''{role_name}_policy_permission''' , PolicyDocument=json.dumps(_SCREAMING_SNAKE_CASE , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(f'''role {role_name} already exists. Using existing one''' ) def _snake_case ( _snake_case : Optional[int] ): lowerCAmelCase : List[str] = botoa.client('''iam''' ) return iam_client.get_role(RoleName=_SCREAMING_SNAKE_CASE )["Role"]["Arn"] def _snake_case ( ): lowerCAmelCase : Optional[Any] = _ask_options( '''How do you want to authorize?''' , ['''AWS Profile''', '''Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) '''] , _SCREAMING_SNAKE_CASE , ) lowerCAmelCase : List[str] = None if credentials_configuration == 0: lowerCAmelCase : Dict = _ask_field('''Enter your AWS Profile name: [default] ''' , default='''default''' ) lowerCAmelCase : Union[str, Any] = aws_profile else: print( '''Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,''' '''`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`''' ) lowerCAmelCase : List[str] = _ask_field('''AWS Access Key ID: ''' ) lowerCAmelCase : Optional[int] = aws_access_key_id lowerCAmelCase : int = _ask_field('''AWS Secret Access Key: ''' ) lowerCAmelCase : int = aws_secret_access_key lowerCAmelCase : Optional[Any] = _ask_field('''Enter your AWS Region: [us-east-1]''' , default='''us-east-1''' ) lowerCAmelCase : Optional[Any] = aws_region lowerCAmelCase : Dict = _ask_options( '''Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?''' , ['''Provide IAM Role name''', '''Create new IAM role using credentials'''] , _SCREAMING_SNAKE_CASE , ) if role_management == 0: lowerCAmelCase : Dict = _ask_field('''Enter your IAM role name: ''' ) else: lowerCAmelCase : Dict = "accelerate_sagemaker_execution_role" print(f'''Accelerate will create an iam role "{iam_role_name}" using the provided credentials''' ) _create_iam_role_for_sagemaker(_SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = _ask_field( '''Do you want to use custom Docker image? [yes/NO]: ''' , _convert_yes_no_to_bool , default=_SCREAMING_SNAKE_CASE , error_message='''Please enter yes or no.''' , ) lowerCAmelCase : Any = None if is_custom_docker_image: lowerCAmelCase : Optional[Any] = _ask_field('''Enter your Docker image: ''' , lambda _snake_case : str(_SCREAMING_SNAKE_CASE ).lower() ) lowerCAmelCase : List[str] = _ask_field( '''Do you want to provide SageMaker input channels with data locations? [yes/NO]: ''' , _convert_yes_no_to_bool , default=_SCREAMING_SNAKE_CASE , error_message='''Please enter yes or no.''' , ) lowerCAmelCase : Any = None if is_sagemaker_inputs_enabled: lowerCAmelCase : Tuple = _ask_field( '''Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): ''' , lambda _snake_case : str(_SCREAMING_SNAKE_CASE ).lower() , ) lowerCAmelCase : Optional[int] = _ask_field( '''Do you want to enable SageMaker metrics? [yes/NO]: ''' , _convert_yes_no_to_bool , default=_SCREAMING_SNAKE_CASE , error_message='''Please enter yes or no.''' , ) lowerCAmelCase : List[str] = None if is_sagemaker_metrics_enabled: lowerCAmelCase : int = _ask_field( '''Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): ''' , lambda _snake_case : str(_SCREAMING_SNAKE_CASE ).lower() , ) lowerCAmelCase : str = _ask_options( '''What is the distributed mode?''' , ['''No distributed training''', '''Data parallelism'''] , _convert_sagemaker_distributed_mode , ) lowerCAmelCase : Tuple = {} lowerCAmelCase : Dict = _ask_field( '''Do you wish to optimize your script with torch dynamo?[yes/NO]:''' , _convert_yes_no_to_bool , default=_SCREAMING_SNAKE_CASE , error_message='''Please enter yes or no.''' , ) if use_dynamo: lowerCAmelCase : Any = "dynamo_" lowerCAmelCase : str = _ask_options( '''Which dynamo backend would you like to use?''' , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) lowerCAmelCase : int = _ask_field( '''Do you want to customize the defaults sent to torch.compile? [yes/NO]: ''' , _convert_yes_no_to_bool , default=_SCREAMING_SNAKE_CASE , error_message='''Please enter yes or no.''' , ) if use_custom_options: lowerCAmelCase : int = _ask_options( '''Which mode do you want to use?''' , _SCREAMING_SNAKE_CASE , lambda _snake_case : TORCH_DYNAMO_MODES[int(_SCREAMING_SNAKE_CASE )] , default='''default''' , ) lowerCAmelCase : Any = _ask_field( '''Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ''' , _convert_yes_no_to_bool , default=_SCREAMING_SNAKE_CASE , error_message='''Please enter yes or no.''' , ) lowerCAmelCase : Union[str, Any] = _ask_field( '''Do you want to enable dynamic shape tracing? [yes/NO]: ''' , _convert_yes_no_to_bool , default=_SCREAMING_SNAKE_CASE , error_message='''Please enter yes or no.''' , ) lowerCAmelCase : str = "Which EC2 instance type you want to use for your training?" if distributed_type != SageMakerDistributedType.NO: lowerCAmelCase : Tuple = _ask_options( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , lambda _snake_case : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(_SCREAMING_SNAKE_CASE )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" lowerCAmelCase : Union[str, Any] = _ask_field(_SCREAMING_SNAKE_CASE , lambda _snake_case : str(_SCREAMING_SNAKE_CASE ).lower() , default='''ml.p3.2xlarge''' ) lowerCAmelCase : List[Any] = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): lowerCAmelCase : Any = _ask_field( '''How many machines do you want use? [1]: ''' , _SCREAMING_SNAKE_CASE , default=1 , ) lowerCAmelCase : List[Any] = _ask_options( '''Do you wish to use FP16 or BF16 (mixed precision)?''' , ['''no''', '''fp16''', '''bf16''', '''fp8'''] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( '''Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.''' ) return SageMakerConfig( image_uri=_SCREAMING_SNAKE_CASE , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=_SCREAMING_SNAKE_CASE , use_cpu=_SCREAMING_SNAKE_CASE , dynamo_config=_SCREAMING_SNAKE_CASE , eca_instance_type=_SCREAMING_SNAKE_CASE , profile=_SCREAMING_SNAKE_CASE , region=_SCREAMING_SNAKE_CASE , iam_role_name=_SCREAMING_SNAKE_CASE , mixed_precision=_SCREAMING_SNAKE_CASE , num_machines=_SCREAMING_SNAKE_CASE , sagemaker_inputs_file=_SCREAMING_SNAKE_CASE , sagemaker_metrics_file=_SCREAMING_SNAKE_CASE , )
351
"""simple docstring""" import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) snake_case__ : Optional[Any] = logging.getLogger(__name__) def _snake_case ( _snake_case : str ): lowerCAmelCase : Tuple = git.Repo(search_parent_directories=_snake_case ) lowerCAmelCase : Optional[int] = { '''repo_id''': str(_snake_case ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), } with open(os.path.join(_snake_case , '''git_log.json''' ) , '''w''' ) as f: json.dump(_snake_case , _snake_case , indent=4 ) def _snake_case ( _snake_case : Any ): if params.n_gpu <= 0: lowerCAmelCase : Dict = 0 lowerCAmelCase : Optional[int] = -1 lowerCAmelCase : Dict = True lowerCAmelCase : int = False return assert torch.cuda.is_available() logger.info('''Initializing GPUs''' ) if params.n_gpu > 1: assert params.local_rank != -1 lowerCAmelCase : str = int(os.environ['''WORLD_SIZE'''] ) lowerCAmelCase : Optional[int] = int(os.environ['''N_GPU_NODE'''] ) lowerCAmelCase : int = int(os.environ['''RANK'''] ) # number of nodes / node ID lowerCAmelCase : Dict = params.world_size // params.n_gpu_per_node lowerCAmelCase : int = params.global_rank // params.n_gpu_per_node lowerCAmelCase : str = True assert params.n_nodes == int(os.environ['''N_NODES'''] ) assert params.node_id == int(os.environ['''NODE_RANK'''] ) # local job (single GPU) else: assert params.local_rank == -1 lowerCAmelCase : List[Any] = 1 lowerCAmelCase : List[Any] = 0 lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Any = 0 lowerCAmelCase : Any = 1 lowerCAmelCase : Any = 1 lowerCAmelCase : Dict = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowerCAmelCase : Tuple = params.node_id == 0 and params.local_rank == 0 lowerCAmelCase : List[Any] = params.n_nodes > 1 # summary lowerCAmelCase : Optional[int] = f'''--- Global rank: {params.global_rank} - ''' logger.info(PREFIX + '''Number of nodes: %i''' % params.n_nodes ) logger.info(PREFIX + '''Node ID : %i''' % params.node_id ) logger.info(PREFIX + '''Local rank : %i''' % params.local_rank ) logger.info(PREFIX + '''World size : %i''' % params.world_size ) logger.info(PREFIX + '''GPUs per node : %i''' % params.n_gpu_per_node ) logger.info(PREFIX + '''Master : %s''' % str(params.is_master ) ) logger.info(PREFIX + '''Multi-node : %s''' % str(params.multi_node ) ) logger.info(PREFIX + '''Multi-GPU : %s''' % str(params.multi_gpu ) ) logger.info(PREFIX + '''Hostname : %s''' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('''Initializing PyTorch distributed''' ) torch.distributed.init_process_group( init_method='''env://''' , backend='''nccl''' , ) def _snake_case ( _snake_case : Optional[int] ): np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
314
0
import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json lowercase__ :List[Any] = "sshleifer/mar_enro_6_3_student" class lowercase ( SCREAMING_SNAKE_CASE__ ): def A__ ( self): super().setUp() lowercase = cached_path( '''https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz''' ,extract_compressed_file=A__ ,) lowercase = f'{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k' @slow @require_torch_gpu def A__ ( self): MarianMTModel.from_pretrained(A__) @slow @require_torch_gpu def A__ ( self): lowercase = { '''$MAX_LEN''': 6_4, '''$BS''': 6_4, '''$GAS''': 1, '''$ENRO_DIR''': self.data_dir, '''facebook/mbart-large-cc25''': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '''--learning_rate=3e-5''': '''--learning_rate 3e-4''', '''--num_train_epochs 6''': '''--num_train_epochs 1''', } # Clean up bash script lowercase = (self.test_file_dir / '''train_mbart_cc25_enro.sh''').open().read().split('''finetune.py''')[1].strip() lowercase = bash_script.replace('''\\\n''' ,'''''').strip().replace('''"$@"''' ,'''''') for k, v in env_vars_to_replace.items(): lowercase = bash_script.replace(A__ ,str(A__)) lowercase = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") lowercase = f'\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n '.split() # XXX: args.gpus > 1 : handle multi_gpu in the future lowercase = ['''finetune.py'''] + bash_script.split() + args with patch.object(A__ ,'''argv''' ,A__): lowercase = argparse.ArgumentParser() lowercase = pl.Trainer.add_argparse_args(A__) lowercase = SummarizationModule.add_model_specific_args(A__ ,os.getcwd()) lowercase = parser.parse_args() lowercase = main(A__) # Check metrics lowercase = load_json(model.metrics_save_path) lowercase = metrics['''val'''][0] lowercase = metrics['''val'''][-1] self.assertEqual(len(metrics['''val''']) ,(args.max_epochs / args.val_check_interval)) assert isinstance(last_step_stats[f'val_avg_{model.val_metric}'] ,A__) self.assertGreater(last_step_stats['''val_avg_gen_time'''] ,0.01) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['''val_avg_gen_time'''] ,1.0) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['''val_avg_bleu'''] - first_step_stats['''val_avg_bleu'''] ,2) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['''val_avg_bleu'''] ,1_7) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['''val'''][-1]['''val_avg_bleu'''] - metrics['''test'''][-1]['''test_avg_bleu''']) ,1.1) # check lightning ckpt can be loaded and has a reasonable statedict lowercase = os.listdir(A__) lowercase = [x for x in contents if x.endswith('''.ckpt''')][0] lowercase = os.path.join(args.output_dir ,A__) lowercase = torch.load(A__ ,map_location='''cpu''') lowercase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: lowercase = {os.path.basename(A__) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test''']) == 1 class lowercase ( SCREAMING_SNAKE_CASE__ ): @timeout_decorator.timeout(6_0_0) @slow @require_torch_gpu def A__ ( self): lowercase = f'{self.test_file_dir_str}/test_data/wmt_en_ro' lowercase = { '''--fp16_opt_level=O1''': '''''', '''$MAX_LEN''': 1_2_8, '''$BS''': 1_6, '''$GAS''': 1, '''$ENRO_DIR''': data_dir, '''$m''': '''sshleifer/student_marian_en_ro_6_1''', '''val_check_interval=0.25''': '''val_check_interval=1.0''', } # Clean up bash script lowercase = ( (self.test_file_dir / '''distil_marian_no_teacher.sh''').open().read().split('''distillation.py''')[1].strip() ) lowercase = bash_script.replace('''\\\n''' ,'''''').strip().replace('''"$@"''' ,'''''') lowercase = bash_script.replace('''--fp16 ''' ,''' ''') for k, v in env_vars_to_replace.items(): lowercase = bash_script.replace(A__ ,str(A__)) lowercase = self.get_auto_remove_tmp_dir() lowercase = bash_script.replace('''--fp16''' ,'''''') lowercase = 6 lowercase = ( ['''distillation.py'''] + bash_script.split() + [ f'--output_dir={output_dir}', '''--gpus=1''', '''--learning_rate=1e-3''', f'--num_train_epochs={epochs}', '''--warmup_steps=10''', '''--val_check_interval=1.0''', '''--do_predict''', ] ) with patch.object(A__ ,'''argv''' ,A__): lowercase = argparse.ArgumentParser() lowercase = pl.Trainer.add_argparse_args(A__) lowercase = SummarizationDistiller.add_model_specific_args(A__ ,os.getcwd()) lowercase = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu lowercase = distill_main(A__) # Check metrics lowercase = load_json(model.metrics_save_path) lowercase = metrics['''val'''][0] lowercase = metrics['''val'''][-1] assert len(metrics['''val''']) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[f'val_avg_{model.val_metric}'] ,A__) # check lightning ckpt can be loaded and has a reasonable statedict lowercase = os.listdir(A__) lowercase = [x for x in contents if x.endswith('''.ckpt''')][0] lowercase = os.path.join(args.output_dir ,A__) lowercase = torch.load(A__ ,map_location='''cpu''') lowercase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: lowercase = {os.path.basename(A__) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test''']) == 1
101
def lowerCamelCase ( SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 1_000 ): '''simple docstring''' __UpperCamelCase :Union[str, Any] = 1 __UpperCamelCase :Any = 0 for divide_by_number in range(SCREAMING_SNAKE_CASE , digit + 1 ): __UpperCamelCase :list[int] = [] __UpperCamelCase :Optional[int] = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(SCREAMING_SNAKE_CASE ): __UpperCamelCase :Optional[Any] = len(SCREAMING_SNAKE_CASE ) __UpperCamelCase :int = divide_by_number else: has_been_divided.append(SCREAMING_SNAKE_CASE ) __UpperCamelCase :Any = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
43
0
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class lowercase ( unittest.TestCase , A__ ): '''simple docstring''' def snake_case_ ( self ) -> Optional[int]: """simple docstring""" UpperCAmelCase = load_tool('''text-to-speech''' ) self.tool.setup() def snake_case_ ( self ) -> Any: """simple docstring""" # SpeechT5 isn't deterministic torch.manual_seed(0 ) UpperCAmelCase = self.tool('''hey''' ) UpperCAmelCase = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) ) def snake_case_ ( self ) -> int: """simple docstring""" # SpeechT5 isn't deterministic torch.manual_seed(0 ) UpperCAmelCase = self.tool('''hey''' ) UpperCAmelCase = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) )
152
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __magic_name__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ["NllbTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ["NllbTokenizerFast"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __magic_name__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
152
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { 'RWKV/rwkv-4-169m-pile': 'https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json', 'RWKV/rwkv-4-430m-pile': 'https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json', 'RWKV/rwkv-4-1b5-pile': 'https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json', 'RWKV/rwkv-4-3b-pile': 'https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json', 'RWKV/rwkv-4-7b-pile': 'https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json', 'RWKV/rwkv-4-14b-pile': 'https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json', 'RWKV/rwkv-raven-1b5': 'https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json', 'RWKV/rwkv-raven-3b': 'https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json', 'RWKV/rwkv-raven-7b': 'https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json', 'RWKV/rwkv-raven-14b': 'https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json', } class lowerCAmelCase_ ( __A ): __lowerCamelCase : int = "rwkv" __lowerCamelCase : str = {"max_position_embeddings": "context_length"} def __init__( self , _lowerCAmelCase=50277 , _lowerCAmelCase=1024 , _lowerCAmelCase=4096 , _lowerCAmelCase=32 , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0 , _lowerCAmelCase=0 , _lowerCAmelCase=6 , _lowerCAmelCase=False , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> Optional[Any]: _lowerCAmelCase = vocab_size _lowerCAmelCase = context_length _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = attention_hidden_size if attention_hidden_size is not None else hidden_size _lowerCAmelCase = intermediate_size if intermediate_size is not None else 4 * hidden_size _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = rescale_every _lowerCAmelCase = use_cache _lowerCAmelCase = bos_token_id _lowerCAmelCase = eos_token_id super().__init__( tie_word_embeddings=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase )
158
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase__ : Optional[int] = {'configuration_yolos': ['YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'YolosConfig', 'YolosOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : int = ['YolosFeatureExtractor'] UpperCamelCase__ : int = ['YolosImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Dict = [ 'YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST', 'YolosForObjectDetection', 'YolosModel', 'YolosPreTrainedModel', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys UpperCamelCase__ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
0
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 lowerCAmelCase : str = get_tests_dir('fixtures') class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' UpperCamelCase = mock.Mock() UpperCamelCase = 500 UpperCamelCase = {} UpperCamelCase = HTTPError UpperCamelCase = {} # Download this model to make sure it's in the cache. UpperCamelCase = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=A_ ) as mock_head: UpperCamelCase = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' ) # This check we did call the fake head request mock_head.assert_called() def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' UpperCamelCase = ViTImageProcessor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json' ) def UpperCAmelCase_ ( self )-> str: '''simple docstring''' with self.assertRaises(A_ ): # config is in subfolder, the following should not work without specifying the subfolder UpperCamelCase = AutoImageProcessor.from_pretrained('hf-internal-testing/stable-diffusion-all-variants' ) UpperCamelCase = AutoImageProcessor.from_pretrained( 'hf-internal-testing/stable-diffusion-all-variants' , subfolder='feature_extractor' ) self.assertIsNotNone(A_ ) @is_staging_test class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): @classmethod def UpperCAmelCase_ ( cls )-> List[str]: '''simple docstring''' UpperCamelCase = TOKEN HfFolder.save_token(A_ ) @classmethod def UpperCAmelCase_ ( cls )-> List[str]: '''simple docstring''' try: delete_repo(token=cls._token , repo_id='test-image-processor' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-image-processor-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-image-processor' ) except HTTPError: pass def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' UpperCamelCase = ViTImageProcessor.from_pretrained(A_ ) image_processor.push_to_hub('test-image-processor' , use_auth_token=self._token ) UpperCamelCase = ViTImageProcessor.from_pretrained(F'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(A_ , getattr(A_ , A_ ) ) # Reset repo delete_repo(token=self._token , repo_id='test-image-processor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( A_ , repo_id='test-image-processor' , push_to_hub=A_ , use_auth_token=self._token ) UpperCamelCase = ViTImageProcessor.from_pretrained(F'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(A_ , getattr(A_ , A_ ) ) def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' UpperCamelCase = ViTImageProcessor.from_pretrained(A_ ) image_processor.push_to_hub('valid_org/test-image-processor' , use_auth_token=self._token ) UpperCamelCase = ViTImageProcessor.from_pretrained('valid_org/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(A_ , getattr(A_ , A_ ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-image-processor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( A_ , repo_id='valid_org/test-image-processor-org' , push_to_hub=A_ , use_auth_token=self._token ) UpperCamelCase = ViTImageProcessor.from_pretrained('valid_org/test-image-processor-org' ) for k, v in image_processor.__dict__.items(): self.assertEqual(A_ , getattr(A_ , A_ ) ) def UpperCAmelCase_ ( self )-> int: '''simple docstring''' CustomImageProcessor.register_for_auto_class() UpperCamelCase = CustomImageProcessor.from_pretrained(A_ ) image_processor.push_to_hub('test-dynamic-image-processor' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {'AutoImageProcessor': 'custom_image_processing.CustomImageProcessor'} , ) UpperCamelCase = AutoImageProcessor.from_pretrained( F'''{USER}/test-dynamic-image-processor''' , trust_remote_code=A_ ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , 'CustomImageProcessor' )
251
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : str = {'vocab_file': 'sentencepiece.bpe.model'} lowerCAmelCase : Union[str, Any] = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, } lowerCAmelCase : List[str] = { 'moussaKam/mbarthez': 10_24, 'moussaKam/barthez': 10_24, 'moussaKam/barthez-orangesum-title': 10_24, } lowerCAmelCase : Dict = '▁' class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ["""input_ids""", """attention_mask"""] def __init__( self , A_ , A_="<s>" , A_="</s>" , A_="</s>" , A_="<s>" , A_="<unk>" , A_="<pad>" , A_="<mask>" , A_ = None , **A_ , )-> None: '''simple docstring''' UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A_ , eos_token=A_ , unk_token=A_ , sep_token=A_ , cls_token=A_ , pad_token=A_ , mask_token=A_ , sp_model_kwargs=self.sp_model_kwargs , **A_ , ) UpperCamelCase = vocab_file UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A_ ) ) UpperCamelCase = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} UpperCamelCase = len(self.sp_model ) - 1 UpperCamelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def UpperCAmelCase_ ( self , A_ , A_ = None )-> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase = [self.cls_token_id] UpperCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase_ ( self , A_ , A_ = None , A_ = False )-> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1] def UpperCAmelCase_ ( self , A_ , A_ = None )-> List[int]: '''simple docstring''' UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' return len(self.sp_model ) def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase_ ( self , A_ )-> List[str]: '''simple docstring''' return self.sp_model.encode(A_ , out_type=A_ ) def UpperCAmelCase_ ( self , A_ )-> Union[str, Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCamelCase = self.sp_model.PieceToId(A_ ) return spm_id if spm_id else self.unk_token_id def UpperCAmelCase_ ( self , A_ )-> Any: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(A_ ) def UpperCAmelCase_ ( self , A_ )-> Optional[int]: '''simple docstring''' UpperCamelCase = [] UpperCamelCase = '' UpperCamelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A_ ) + token UpperCamelCase = True UpperCamelCase = [] else: current_sub_tokens.append(A_ ) UpperCamelCase = False out_string += self.sp_model.decode(A_ ) return out_string.strip() def __getstate__( self )-> int: '''simple docstring''' UpperCamelCase = self.__dict__.copy() UpperCamelCase = None return state def __setstate__( self , A_ )-> List[Any]: '''simple docstring''' UpperCamelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): UpperCamelCase = {} UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase_ ( self , A_ , A_ = None )-> Tuple[str]: '''simple docstring''' if not os.path.isdir(A_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A_ ) elif not os.path.isfile(self.vocab_file ): with open(A_ , 'wb' ) as fi: UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(A_ ) return (out_vocab_file,)
251
1
"""simple docstring""" def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : list[int] ): '''simple docstring''' if not numbers: return 0 if not isinstance(SCREAMING_SNAKE_CASE , (list, tuple) ) or not all( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for number in numbers ): raise ValueError("""numbers must be an iterable of integers""" ) lowerCAmelCase = lowerCAmelCase = lowerCAmelCase = numbers[0] for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): # update the maximum and minimum subarray products lowerCAmelCase = numbers[i] if number < 0: lowerCAmelCase , lowerCAmelCase = min_till_now, max_till_now lowerCAmelCase = max(SCREAMING_SNAKE_CASE , max_till_now * number ) lowerCAmelCase = min(SCREAMING_SNAKE_CASE , min_till_now * number ) # update the maximum product found till now lowerCAmelCase = max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return max_prod
46
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class __snake_case : _a : int _a : TreeNode | None= None _a : TreeNode | None= None lowercase : Dict = namedtuple("""CoinsDistribResult""", """moves excess""") def _snake_case( SCREAMING_SNAKE_CASE__ ) -> int: if root is None: return 0 # Validation def count_nodes(SCREAMING_SNAKE_CASE__ ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(SCREAMING_SNAKE_CASE__ ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(SCREAMING_SNAKE_CASE__ ) != count_coins(SCREAMING_SNAKE_CASE__ ): raise ValueError("""The nodes number should be same as the number of coins""" ) # Main calculation def get_distrib(SCREAMING_SNAKE_CASE__ ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) lowercase , lowercase : int = get_distrib(node.left ) lowercase , lowercase : List[Any] = get_distrib(node.right ) lowercase : Optional[Any] = 1 - left_distrib_excess lowercase : Union[str, Any] = 1 - right_distrib_excess lowercase : List[Any] = ( left_distrib_moves + right_distrib_moves + abs(SCREAMING_SNAKE_CASE__ ) + abs(SCREAMING_SNAKE_CASE__ ) ) lowercase : Any = node.data - coins_to_left - coins_to_right return CoinsDistribResult(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return get_distrib(SCREAMING_SNAKE_CASE__ )[0] if __name__ == "__main__": import doctest doctest.testmod()
20
0
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase__ : def __init__( self : int , _a : Union[str, Any] , _a : Any=1_3 , _a : Optional[int]=7 , _a : Any=True , _a : Union[str, Any]=True , _a : int=True , _a : Dict=True , _a : str=9_9 , _a : List[Any]=1_6 , _a : int=3_6 , _a : Tuple=6 , _a : List[str]=6 , _a : Dict=6 , _a : Dict=3_7 , _a : Dict="gelu" , _a : str=0.1 , _a : Optional[Any]=0.1 , _a : int=5_1_2 , _a : Optional[Any]=1_6 , _a : List[Any]=2 , _a : Optional[Any]=0.0_2 , _a : List[str]=3 , _a : Tuple=4 , _a : Optional[int]=None , ): a__: str =parent a__: Any =batch_size a__: int =seq_length a__: List[str] =is_training a__: List[str] =use_input_mask a__: Dict =use_token_type_ids a__: int =use_labels a__: List[str] =vocab_size a__: Optional[Any] =embedding_size a__: str =hidden_size a__: str =num_hidden_layers a__: int =num_hidden_groups a__: str =num_attention_heads a__: Dict =intermediate_size a__: Tuple =hidden_act a__: str =hidden_dropout_prob a__: int =attention_probs_dropout_prob a__: Any =max_position_embeddings a__: Dict =type_vocab_size a__: Union[str, Any] =type_sequence_label_size a__: List[str] =initializer_range a__: Optional[Any] =num_labels a__: Dict =num_choices a__: List[Any] =scope def _lowerCamelCase ( self : str ): a__: Dict =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a__: Optional[Any] =None if self.use_input_mask: a__: List[Any] =random_attention_mask([self.batch_size, self.seq_length] ) a__: Any =None if self.use_token_type_ids: a__: List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a__: List[str] =None a__: Dict =None a__: Any =None if self.use_labels: a__: Optional[int] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) a__: Dict =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a__: Union[str, Any] =ids_tensor([self.batch_size] , self.num_choices ) a__: Optional[Any] =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self : Any ): return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def _lowerCamelCase ( self : Union[str, Any] , _a : Optional[Any] , _a : Union[str, Any] , _a : Optional[Any] , _a : Optional[Any] , _a : Optional[Any] , _a : List[Any] , _a : str ): a__: List[str] =AlbertModel(config=_a ) model.to(_a ) model.eval() a__: List[Any] =model(_a , attention_mask=_a , token_type_ids=_a ) a__: Union[str, Any] =model(_a , token_type_ids=_a ) a__: Optional[int] =model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _lowerCamelCase ( self : Union[str, Any] , _a : Optional[Any] , _a : Dict , _a : List[Any] , _a : Optional[int] , _a : Optional[Any] , _a : List[Any] , _a : Optional[int] ): a__: List[Any] =AlbertForPreTraining(config=_a ) model.to(_a ) model.eval() a__: Union[str, Any] =model( _a , attention_mask=_a , token_type_ids=_a , labels=_a , sentence_order_label=_a , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def _lowerCamelCase ( self : List[str] , _a : str , _a : Dict , _a : Union[str, Any] , _a : List[str] , _a : List[str] , _a : Any , _a : Optional[int] ): a__: List[str] =AlbertForMaskedLM(config=_a ) model.to(_a ) model.eval() a__: Tuple =model(_a , attention_mask=_a , token_type_ids=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self : Any , _a : List[Any] , _a : Union[str, Any] , _a : Any , _a : Optional[int] , _a : Optional[int] , _a : List[str] , _a : Tuple ): a__: Tuple =AlbertForQuestionAnswering(config=_a ) model.to(_a ) model.eval() a__: Optional[int] =model( _a , attention_mask=_a , token_type_ids=_a , start_positions=_a , end_positions=_a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self : str , _a : List[str] , _a : Tuple , _a : Dict , _a : str , _a : Tuple , _a : Dict , _a : str ): a__: List[str] =self.num_labels a__: Optional[int] =AlbertForSequenceClassification(_a ) model.to(_a ) model.eval() a__: List[Any] =model(_a , attention_mask=_a , token_type_ids=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self : Tuple , _a : Tuple , _a : Tuple , _a : Any , _a : List[str] , _a : List[str] , _a : List[str] , _a : Any ): a__: List[Any] =self.num_labels a__: Optional[Any] =AlbertForTokenClassification(config=_a ) model.to(_a ) model.eval() a__: Dict =model(_a , attention_mask=_a , token_type_ids=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self : Tuple , _a : int , _a : Tuple , _a : Tuple , _a : Dict , _a : Optional[int] , _a : Optional[Any] , _a : Tuple ): a__: Optional[int] =self.num_choices a__: Any =AlbertForMultipleChoice(config=_a ) model.to(_a ) model.eval() a__: Optional[int] =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a__: Optional[int] =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a__: Optional[int] =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a__: Any =model( _a , attention_mask=_a , token_type_ids=_a , labels=_a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self : Union[str, Any] ): a__: Any =self.prepare_config_and_inputs() ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ): int =config_and_inputs a__: int ={"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowerCamelCase__ ( _a , _a , unittest.TestCase ): _lowerCAmelCase = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) _lowerCAmelCase = ( { '''feature-extraction''': AlbertModel, '''fill-mask''': AlbertForMaskedLM, '''question-answering''': AlbertForQuestionAnswering, '''text-classification''': AlbertForSequenceClassification, '''token-classification''': AlbertForTokenClassification, '''zero-shot''': AlbertForSequenceClassification, } if is_torch_available() else {} ) _lowerCAmelCase = True def _lowerCamelCase ( self : List[Any] , _a : Dict , _a : Union[str, Any] , _a : int=False ): a__: str =super()._prepare_for_class(_a , _a , return_labels=_a ) if return_labels: if model_class in get_values(_a ): a__: Optional[int] =torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_a ) a__: Optional[Any] =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_a ) return inputs_dict def _lowerCamelCase ( self : int ): a__: Union[str, Any] =AlbertModelTester(self ) a__: Dict =ConfigTester(self , config_class=_a , hidden_size=3_7 ) def _lowerCamelCase ( self : Tuple ): self.config_tester.run_common_tests() def _lowerCamelCase ( self : List[Any] ): a__: List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def _lowerCamelCase ( self : Optional[Any] ): a__: Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_a ) def _lowerCamelCase ( self : Optional[Any] ): a__: Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_a ) def _lowerCamelCase ( self : Tuple ): a__: str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_a ) def _lowerCamelCase ( self : str ): a__: Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_a ) def _lowerCamelCase ( self : Any ): a__: Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_a ) def _lowerCamelCase ( self : List[Any] ): a__: Tuple =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a__: Dict =type self.model_tester.create_and_check_model(*_a ) @slow def _lowerCamelCase ( self : Optional[int] ): for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__: Dict =AlbertModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @require_torch class lowerCamelCase__ ( unittest.TestCase ): @slow def _lowerCamelCase ( self : str ): a__: Any =AlbertModel.from_pretrained("albert-base-v2" ) a__: Optional[int] =torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) a__: Union[str, Any] =torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): a__: Union[str, Any] =model(_a , attention_mask=_a )[0] a__: Optional[Any] =torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , _a ) a__: List[str] =torch.tensor( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _a , atol=1e-4 ) )
42
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. __UpperCAmelCase = 2_00 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. __UpperCAmelCase = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. __UpperCAmelCase = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 10_00)) def __lowerCamelCase ( __magic_name__ : str , __magic_name__ : str ): a__: int =len([g for position, g in enumerate(__magic_name__ ) if g == main_target[position]] ) return (item, float(__magic_name__ )) def __lowerCamelCase ( __magic_name__ : str , __magic_name__ : str ): a__: Any =random.randint(0 , len(__magic_name__ ) - 1 ) a__: Tuple =parent_a[:random_slice] + parent_a[random_slice:] a__: List[str] =parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def __lowerCamelCase ( __magic_name__ : str , __magic_name__ : list[str] ): a__: str =list(__magic_name__ ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: a__: Union[str, Any] =random.choice(__magic_name__ ) return "".join(__magic_name__ ) def __lowerCamelCase ( __magic_name__ : tuple[str, float] , __magic_name__ : list[tuple[str, float]] , __magic_name__ : list[str] , ): a__: List[Any] =[] # Generate more children proportionally to the fitness score. a__: Dict =int(parent_a[1] * 100 ) + 1 a__: Tuple =10 if child_n >= 10 else child_n for _ in range(__magic_name__ ): a__: List[str] =population_score[random.randint(0 , __magic_name__ )][0] a__ , a__: Dict =crossover(parent_a[0] , __magic_name__ ) # Append new string to the population list. pop.append(mutate(__magic_name__ , __magic_name__ ) ) pop.append(mutate(__magic_name__ , __magic_name__ ) ) return pop def __lowerCamelCase ( __magic_name__ : str , __magic_name__ : list[str] , __magic_name__ : bool = True ): # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: a__: Any =F"{N_POPULATION} must be bigger than {N_SELECTED}" raise ValueError(__magic_name__ ) # Verify that the target contains no genes besides the ones inside genes variable. a__: int =sorted({c for c in target if c not in genes} ) if not_in_genes_list: a__: str =F"{not_in_genes_list} is not in genes list, evolution cannot converge" raise ValueError(__magic_name__ ) # Generate random starting population. a__: Tuple =[] for _ in range(__magic_name__ ): population.append("".join([random.choice(__magic_name__ ) for i in range(len(__magic_name__ ) )] ) ) # Just some logs to know what the algorithms is doing. a__ , a__: Any =0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(__magic_name__ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. a__: Dict =[evaluate(__magic_name__ , __magic_name__ ) for item in population] # Check if there is a matching evolution. a__: Any =sorted(__magic_name__ , key=lambda __magic_name__ : x[1] , reverse=__magic_name__ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F"\nGeneration: {generation}" F"\nTotal Population:{total_population}" F"\nBest score: {population_score[0][1]}" F"\nBest string: {population_score[0][0]}" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. a__: Optional[int] =population[: int(N_POPULATION / 3 )] population.clear() population.extend(__magic_name__ ) # Normalize population score to be between 0 and 1. a__: List[str] =[ (item, score / len(__magic_name__ )) for item, score in population_score ] # This is selection for i in range(__magic_name__ ): population.extend(select(population_score[int(__magic_name__ )] , __magic_name__ , __magic_name__ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(__magic_name__ ) > N_POPULATION: break if __name__ == "__main__": __UpperCAmelCase = ( '''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!''' ) __UpperCAmelCase = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = basic(target_str, genes_list) print( f"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
42
1
"""simple docstring""" import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowercase ( __snake_case : Tuple , __snake_case : Dict ): lowercase_ : int = old_name if "patch_embed" in old_name: lowercase_ , lowercase_ , lowercase_ : Optional[int] = old_name.split('''.''' ) if layer == "0": lowercase_ : Optional[Any] = old_name.replace('''0''' , '''convolution1''' ) elif layer == "1": lowercase_ : str = old_name.replace('''1''' , '''batchnorm_before''' ) elif layer == "3": lowercase_ : List[Any] = old_name.replace('''3''' , '''convolution2''' ) else: lowercase_ : List[Any] = old_name.replace('''4''' , '''batchnorm_after''' ) if "network" in old_name and re.search(r'''\d\.\d''' , __snake_case ): lowercase_ : List[str] = r'''\b\d{2}\b''' if bool(re.search(__snake_case , __snake_case ) ): lowercase_ : Optional[Any] = re.search(r'''\d\.\d\d.''' , __snake_case ).group() else: lowercase_ : Dict = re.search(r'''\d\.\d.''' , __snake_case ).group() if int(match[0] ) < 6: lowercase_ : int = old_name.replace(__snake_case , '''''' ) lowercase_ : Union[str, Any] = trimmed_name.replace('''network''' , match[0] + '''.meta4D_layers.blocks.''' + match[2:-1] ) lowercase_ : Any = '''intermediate_stages.''' + trimmed_name else: lowercase_ : Optional[Any] = old_name.replace(__snake_case , '''''' ) if int(match[2] ) < num_meta4D_last_stage: lowercase_ : List[str] = trimmed_name.replace('''network''' , '''meta4D_layers.blocks.''' + match[2] ) else: lowercase_ : Tuple = str(int(match[2] ) - num_meta4D_last_stage ) lowercase_ : Union[str, Any] = trimmed_name.replace('''network''' , '''meta3D_layers.blocks.''' + layer_index ) if "norm1" in old_name: lowercase_ : Optional[int] = trimmed_name.replace('''norm1''' , '''layernorm1''' ) elif "norm2" in old_name: lowercase_ : List[Any] = trimmed_name.replace('''norm2''' , '''layernorm2''' ) elif "fc1" in old_name: lowercase_ : Union[str, Any] = trimmed_name.replace('''fc1''' , '''linear_in''' ) elif "fc2" in old_name: lowercase_ : str = trimmed_name.replace('''fc2''' , '''linear_out''' ) lowercase_ : str = '''last_stage.''' + trimmed_name elif "network" in old_name and re.search(r'''.\d.''' , __snake_case ): lowercase_ : Union[str, Any] = old_name.replace('''network''' , '''intermediate_stages''' ) if "fc" in new_name: lowercase_ : Tuple = new_name.replace('''fc''' , '''convolution''' ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): lowercase_ : str = new_name.replace('''norm1''' , '''batchnorm_before''' ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): lowercase_ : List[Any] = new_name.replace('''norm2''' , '''batchnorm_after''' ) if "proj" in new_name: lowercase_ : Union[str, Any] = new_name.replace('''proj''' , '''projection''' ) if "dist_head" in new_name: lowercase_ : List[str] = new_name.replace('''dist_head''' , '''distillation_classifier''' ) elif "head" in new_name: lowercase_ : List[Any] = new_name.replace('''head''' , '''classifier''' ) elif "patch_embed" in new_name: lowercase_ : int = '''efficientformer.''' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": lowercase_ : Dict = new_name.replace('''norm''' , '''layernorm''' ) lowercase_ : Any = '''efficientformer.''' + new_name else: lowercase_ : List[Any] = '''efficientformer.encoder.''' + new_name return new_name def lowercase ( __snake_case : int , __snake_case : List[Any] ): for key in checkpoint.copy().keys(): lowercase_ : int = checkpoint.pop(__snake_case ) lowercase_ : int = val return checkpoint def lowercase ( ): lowercase_ : Any = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase_ : List[Any] = Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) return image def lowercase ( __snake_case : Path , __snake_case : Path , __snake_case : Path , __snake_case : bool ): lowercase_ : Union[str, Any] = torch.load(__snake_case , map_location='''cpu''' )['''model'''] lowercase_ : str = EfficientFormerConfig.from_json_file(__snake_case ) lowercase_ : Tuple = EfficientFormerForImageClassificationWithTeacher(__snake_case ) lowercase_ : Dict = '''_'''.join(checkpoint_path.split('''/''' )[-1].split('''.''' )[0].split('''_''' )[:-1] ) lowercase_ : Optional[Any] = config.depths[-1] - config.num_metaad_blocks + 1 lowercase_ : Optional[int] = convert_torch_checkpoint(__snake_case , __snake_case ) model.load_state_dict(__snake_case ) model.eval() lowercase_ : Dict = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } # prepare image lowercase_ : str = prepare_img() lowercase_ : int = 2_5_6 lowercase_ : str = 2_2_4 lowercase_ : Tuple = EfficientFormerImageProcessor( size={'''shortest_edge''': image_size} , crop_size={'''height''': crop_size, '''width''': crop_size} , resample=pillow_resamplings['''bicubic'''] , ) lowercase_ : Union[str, Any] = processor(images=__snake_case , return_tensors='''pt''' ).pixel_values # original processing pipeline lowercase_ : int = Compose( [ Resize(__snake_case , interpolation=pillow_resamplings['''bicubic'''] ), CenterCrop(__snake_case ), ToTensor(), Normalize(__snake_case , __snake_case ), ] ) lowercase_ : Dict = image_transforms(__snake_case ).unsqueeze(0 ) assert torch.allclose(__snake_case , __snake_case ) lowercase_ : str = model(__snake_case ) lowercase_ : List[str] = outputs.logits lowercase_ : Any = (1, 1_0_0_0) if "l1" in model_name: lowercase_ : Any = torch.Tensor( [-0.1312, 0.4353, -1.0499, -0.5124, 0.4183, -0.6793, -1.3777, -0.0893, -0.7358, -2.4328] ) assert torch.allclose(logits[0, :1_0] , __snake_case , atol=1e-3 ) assert logits.shape == expected_shape elif "l3" in model_name: lowercase_ : Dict = torch.Tensor( [-1.3150, -1.5456, -1.2556, -0.8496, -0.7127, -0.7897, -0.9728, -0.3052, 0.3751, -0.3127] ) assert torch.allclose(logits[0, :1_0] , __snake_case , atol=1e-3 ) assert logits.shape == expected_shape elif "l7" in model_name: lowercase_ : Optional[Any] = torch.Tensor( [-1.0283, -1.4131, -0.5644, -1.3115, -0.5785, -1.2049, -0.7528, 0.1992, -0.3822, -0.0878] ) assert logits.shape == expected_shape else: raise ValueError( F'''Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7''' ) # Save Checkpoints Path(__snake_case ).mkdir(exist_ok=__snake_case ) model.save_pretrained(__snake_case ) print(F'''Checkpoint successfuly converted. Model saved at {pytorch_dump_path}''' ) processor.save_pretrained(__snake_case ) print(F'''Processor successfuly saved at {pytorch_dump_path}''' ) if push_to_hub: print('''Pushing model to the hub...''' ) model.push_to_hub( repo_id=F'''Bearnardd/{pytorch_dump_path}''' , commit_message='''Add model''' , use_temp_dir=__snake_case , ) processor.push_to_hub( repo_id=F'''Bearnardd/{pytorch_dump_path}''' , commit_message='''Add image processor''' , use_temp_dir=__snake_case , ) if __name__ == "__main__": __A : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--pytorch_model_path''', default=None, type=str, required=True, help='''Path to EfficientFormer pytorch checkpoint.''', ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The json file for EfficientFormer model config.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') parser.add_argument( '''--no-push_to_hub''', dest='''push_to_hub''', action='''store_false''', help='''Do not push model and image processor to the hub''', ) parser.set_defaults(push_to_hub=True) __A : int = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
33
from __future__ import annotations import math lowercase : Any = '2020.9.26' lowercase : Union[str, Any] = 'xcodz-dot, cclaus, dhruvmanila' def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float) -> tuple[float, float]: '''simple docstring''' if not all(isinstance(_lowerCamelCase , (float, int)) for val in locals().values()): __UpperCamelCase : str = F'Input values must either be float or int: {list(locals().values())}' raise TypeError(_lowerCamelCase) __UpperCamelCase : List[str] = ((x * distance) / (z + distance)) * scale __UpperCamelCase : List[Any] = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : str , _lowerCamelCase : float) -> tuple[float, float, float]: '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase): raise TypeError("Axis must be a str") __UpperCamelCase : str = locals() del input_variables["axis"] if not all(isinstance(_lowerCamelCase , (float, int)) for val in input_variables.values()): __UpperCamelCase : Dict = ( "Input values except axis must either be float or int: " F'{list(input_variables.values())}' ) raise TypeError(_lowerCamelCase) __UpperCamelCase : Optional[Any] = (angle % 360) / 450 * 180 / math.pi if axis == "z": __UpperCamelCase : Tuple = x * math.cos(_lowerCamelCase) - y * math.sin(_lowerCamelCase) __UpperCamelCase : Union[str, Any] = y * math.cos(_lowerCamelCase) + x * math.sin(_lowerCamelCase) __UpperCamelCase : Any = z elif axis == "x": __UpperCamelCase : Dict = y * math.cos(_lowerCamelCase) - z * math.sin(_lowerCamelCase) __UpperCamelCase : Any = z * math.cos(_lowerCamelCase) + y * math.sin(_lowerCamelCase) __UpperCamelCase : List[str] = x elif axis == "y": __UpperCamelCase : Any = x * math.cos(_lowerCamelCase) - z * math.sin(_lowerCamelCase) __UpperCamelCase : Any = z * math.cos(_lowerCamelCase) + x * math.sin(_lowerCamelCase) __UpperCamelCase : Dict = y else: raise ValueError("not a valid axis, choose one of 'x', 'y', 'z'") return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(f"{convert_to_ad(1.0, 2.0, 3.0, 1_0.0, 1_0.0) = }") print(f"{rotate(1.0, 2.0, 3.0, 'y', 9_0.0) = }")
232
0
import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : List[Any] = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class __magic_name__ ( A_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = XLNetTokenizer SCREAMING_SNAKE_CASE = XLNetTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __a =XLNetTokenizer(snake_case__ , keep_accents=snake_case__ ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a ="<s>" __a =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , '<eod>' ) self.assertEqual(len(snake_case__ ) , 1006 ) def __magic_name__ ( self ) -> Any: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =XLNetTokenizer(snake_case__ , keep_accents=snake_case__ ) __a =tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [285, 46, 10, 170, 382] ) __a =tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) __a =tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual(snake_case__ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) __a =tokenizer.convert_ids_to_tokens(snake_case__ ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =XLNetTokenizer(snake_case__ , do_lower_case=snake_case__ ) __a =tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + '', 'i', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 'se', '.', ] , ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['▁he', 'll', 'o'] ) def __magic_name__ ( self ) -> int: '''simple docstring''' __a =XLNetTokenizer(snake_case__ , do_lower_case=snake_case__ ) __a =tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 'se', '.', ] , ) @slow def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =XLNetTokenizer.from_pretrained('xlnet-base-cased' ) __a =tokenizer.encode('sequence builders' , add_special_tokens=snake_case__ ) __a =tokenizer.encode('multi-sequence build' , add_special_tokens=snake_case__ ) __a =tokenizer.build_inputs_with_special_tokens(snake_case__ ) __a =tokenizer.build_inputs_with_special_tokens(snake_case__ , snake_case__ ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a ={"input_ids": [[17, 2_1442, 270, 17, 10, 1_4645, 318, 34, 17, 4546, 3145, 787, 13, 7752, 2_2018, 23, 21, 17, 4546, 3145, 787, 13, 3352, 1_4431, 13, 5500, 11, 1176, 580, 13, 1_6819, 4797, 23, 17, 10, 1_7135, 658, 19, 457, 7932, 13, 184, 19, 3154, 1_7135, 6468, 19, 1404, 1_2269, 19, 4229, 5356, 1_6264, 46, 19, 17, 2_0545, 1_0395, 9, 9, 9, 11, 28, 6421, 9531, 2_0729, 17, 10, 353, 1_7022, 11, 21, 6421, 9531, 1_6949, 17, 10, 1_1509, 753, 11, 33, 95, 2421, 7385, 956, 1_4431, 2626, 25, 842, 7385, 4836, 21, 1429, 2272, 9855, 3120, 161, 2_4738, 19, 1_3203, 658, 218, 787, 21, 430, 1_8482, 847, 2637, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 322, 2_2178, 27, 1064, 22, 956, 13, 1_1101, 1429, 5854, 2_4313, 1_8953, 40, 422, 2_4366, 68, 1758, 37, 1_0483, 1_4257, 31, 207, 263, 21, 203, 3773, 25, 71, 9735, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 2049, 3442, 17, 1_3894, 3380, 23, 95, 18, 1_7634, 2288, 9, 4, 3]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='xlnet-base-cased' , revision='c841166438c31ec7ca9a106dee7bb312b73ae511' , )
360
import os def UpperCamelCase_( _snake_case : str = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(_snake_case ) , _snake_case ) ) as input_file: __a =[ [int(_snake_case ) for element in line.split(',' )] for line in input_file.readlines() ] __a =len(_snake_case ) __a =len(matrix[0] ) __a =[[-1 for _ in range(_snake_case )] for _ in range(_snake_case )] for i in range(_snake_case ): __a =matrix[i][0] for j in range(1 , _snake_case ): for i in range(_snake_case ): __a =minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , _snake_case ): __a =min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): __a =min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
308
0
from typing import TYPE_CHECKING from ...utils import _LazyModule UpperCAmelCase_ = {'tokenization_byt5': ['ByT5Tokenizer']} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
12
"""simple docstring""" import os from distutils.util import strtobool def lowercase (_lowerCAmelCase , _lowerCAmelCase ): for e in env_keys: __lowerCAmelCase = int(os.environ.get(_lowerCAmelCase , -1 ) ) if val >= 0: return val return default def lowercase (_lowerCAmelCase , _lowerCAmelCase=False ): __lowerCAmelCase = os.environ.get(_lowerCAmelCase , str(_lowerCAmelCase ) ) return strtobool(_lowerCAmelCase ) == 1 # As its name indicates `strtobool` actually returns an int... def lowercase (_lowerCAmelCase , _lowerCAmelCase="no" ): __lowerCAmelCase = os.environ.get(_lowerCAmelCase , str(_lowerCAmelCase ) ) return value
301
0
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class _SCREAMING_SNAKE_CASE ( __a ): def __init__( self : Union[str, Any] , a__ : Any ): __magic_name__ = data def __iter__( self : List[str] ): for element in self.data: yield element def UpperCamelCase ( a=True ) -> Union[str, Any]: '''simple docstring''' __magic_name__ = Accelerator(even_batches=a ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def UpperCamelCase ( a , a , a , a = False ) -> int: '''simple docstring''' if iterable: __magic_name__ = DummyIterableDataset(torch.as_tensor(range(a ) ) ) else: __magic_name__ = TensorDataset(torch.as_tensor(range(a ) ) ) __magic_name__ = DataLoader(a , batch_size=a ) __magic_name__ = accelerator.prepare(a ) return dl def UpperCamelCase ( a , a , a , a , a , ) -> Union[str, Any]: '''simple docstring''' __magic_name__ = create_dataloader(accelerator=a , dataset_size=a , batch_size=a ) __magic_name__ = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def UpperCamelCase ( ) -> Optional[Any]: '''simple docstring''' __magic_name__ = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( a , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( a , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def UpperCamelCase ( ) -> Optional[int]: '''simple docstring''' __magic_name__ = create_accelerator(even_batches=a ) verify_dataloader_batch_sizes( a , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( a , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def UpperCamelCase ( ) -> str: '''simple docstring''' __magic_name__ = create_accelerator(even_batches=a ) __magic_name__ = torch.nn.Linear(1 , 1 ) __magic_name__ = accelerator.prepare(a ) __magic_name__ = create_dataloader(a , dataset_size=3 , batch_size=1 ) __magic_name__ = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(a ): __magic_name__ = ddp_model(batch[0].float() ) __magic_name__ = output.sum() loss.backward() batch_idxs.append(a ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def UpperCamelCase ( a ) -> List[Any]: '''simple docstring''' with warnings.catch_warnings(record=a ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , a ) assert "only supported for multi-GPU" in str(w[-1].message ) def UpperCamelCase ( ) -> int: '''simple docstring''' __magic_name__ = True __magic_name__ = False __magic_name__ = create_accelerator(even_batches=a ) __magic_name__ = torch.nn.Linear(1 , 1 ) __magic_name__ = accelerator.prepare(a ) __magic_name__ = create_dataloader(a , dataset_size=3 , batch_size=1 ) __magic_name__ = create_dataloader(a , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=a ): __magic_name__ = train_dl.batch_sampler.even_batches __magic_name__ = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def UpperCamelCase ( ) -> List[Any]: '''simple docstring''' __magic_name__ = True __magic_name__ = False __magic_name__ = create_accelerator(even_batches=a ) __magic_name__ = torch.nn.Linear(1 , 1 ) __magic_name__ = accelerator.prepare(a ) create_dataloader(a , dataset_size=3 , batch_size=1 , iterable=a ) __magic_name__ = create_dataloader(a , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings('''ignore''' ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=a ): __magic_name__ = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def UpperCamelCase ( ) -> Optional[Any]: '''simple docstring''' __magic_name__ = create_accelerator() __magic_name__ = torch.nn.Linear(1 , 1 ) __magic_name__ = accelerator.prepare(a ) create_dataloader(a , dataset_size=3 , batch_size=1 , iterable=a ) with warnings.catch_warnings(record=a ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=a ): pass assert issubclass(w[-1].category , a ) assert "only supported for map-style datasets" in str(w[-1].message ) def UpperCamelCase ( ) -> List[str]: '''simple docstring''' __magic_name__ = create_accelerator() accelerator.print('''Test that even_batches variable ensures uniform batches across processes''' ) test_default_ensures_even_batch_sizes() accelerator.print('''Run tests with even_batches disabled''' ) test_can_disable_even_batches() accelerator.print('''Test joining uneven inputs''' ) test_can_join_uneven_inputs() accelerator.print('''Test overriding even_batches when joining uneven inputs''' ) test_join_can_override_even_batches() accelerator.print('''Test overriding even_batches for mixed dataloader types''' ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print('''Test overriding even_batches raises a warning for iterable dataloaders''' ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print('''Test join with non DDP distributed raises warning''' ) __magic_name__ = accelerator.state.distributed_type __magic_name__ = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(a ) __magic_name__ = original_state if __name__ == "__main__": main()
98
'''simple docstring''' import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm _lowerCAmelCase = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex _lowerCAmelCase = 10 _lowerCAmelCase = 256 def UpperCamelCase ( a ) -> Optional[MinHash]: '''simple docstring''' if len(a ) < MIN_NUM_TOKENS: return None __magic_name__ = MinHash(num_perm=a ) for token in set(a ): min_hash.update(token.encode() ) return min_hash def UpperCamelCase ( a ) -> Set[str]: '''simple docstring''' return {t for t in NON_ALPHA.split(a ) if len(t.strip() ) > 0} class _SCREAMING_SNAKE_CASE : def __init__( self : Any , *, a__ : float = 0.85 , ): __magic_name__ = duplication_jaccard_threshold __magic_name__ = NUM_PERM __magic_name__ = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) __magic_name__ = defaultdict(a__ ) def snake_case__ ( self : int , a__ : Tuple , a__ : MinHash ): __magic_name__ = self._index.query(a__ ) if code_key in self._index.keys: print(F'''Duplicate key {code_key}''' ) return self._index.insert(a__ , a__ ) if len(a__ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(a__ ) break else: self._duplicate_clusters[close_duplicates[0]].add(a__ ) def snake_case__ ( self : Optional[int] ): __magic_name__ = [] for base, duplicates in self._duplicate_clusters.items(): __magic_name__ = [base] + list(a__ ) # reformat the cluster to be a list of dict __magic_name__ = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(a__ ) return duplicate_clusters def snake_case__ ( self : int , a__ : Tuple ): __magic_name__ = self.get_duplicate_clusters() with open(a__ , '''w''' ) as f: json.dump(a__ , a__ ) def UpperCamelCase ( a ) -> List[Any]: '''simple docstring''' __magic_name__ , __magic_name__ = element __magic_name__ = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def UpperCamelCase ( a ) -> List[Any]: '''simple docstring''' with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(a , max_queue_size=1_0000 ) , chunksize=100 , ): if data is not None: yield data def UpperCamelCase ( a , a ) -> Tuple: '''simple docstring''' __magic_name__ = DuplicationIndex(duplication_jaccard_threshold=a ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(a ) ) , max_queue_size=100 ) ): di.add(a , a ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def UpperCamelCase ( a , a ) -> float: '''simple docstring''' __magic_name__ = get_tokens(a ) __magic_name__ = get_tokens(a ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) _lowerCAmelCase = None def UpperCamelCase ( a , a ) -> Dict: '''simple docstring''' __magic_name__ = [] for elementa in cluster: __magic_name__ = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: __magic_name__ = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(a , a ) >= jaccard_threshold: elementa["copies"] += 1 break else: __magic_name__ = 1 extremes.append(a ) return extremes def UpperCamelCase ( a , a , a ) -> Optional[Any]: '''simple docstring''' global _shared_dataset __magic_name__ = dataset __magic_name__ = [] __magic_name__ = partial(_find_cluster_extremes_shared , jaccard_threshold=a ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( a , a , ) , total=len(a ) , ): extremes_list.append(a ) return extremes_list def UpperCamelCase ( a , a = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: '''simple docstring''' __magic_name__ = make_duplicate_clusters(a , a ) __magic_name__ = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} __magic_name__ = {} __magic_name__ = find_extremes(a , a , a ) for extremes in extremes_clusters: for element in extremes: __magic_name__ = element __magic_name__ = duplicate_indices - set(extreme_dict.keys() ) __magic_name__ = dataset.filter(lambda a , a : idx not in remove_indices , with_indices=a ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: __magic_name__ = element['''base_index'''] in extreme_dict if element["is_extreme"]: __magic_name__ = extreme_dict[element['''base_index''']]['''copies'''] print(F'''Original dataset size: {len(a )}''' ) print(F'''Number of duplicate clusters: {len(a )}''' ) print(F'''Files in duplicate cluster: {len(a )}''' ) print(F'''Unique files in duplicate cluster: {len(a )}''' ) print(F'''Filtered dataset size: {len(a )}''' ) return ds_filter, duplicate_clusters
98
1
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) _a = logging.getLogger() _a = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __lowerCamelCase ( snake_case__): """simple docstring""" def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase ) _UpperCAmelCase = {'source': 'What is love ?', 'target': 'life'} _UpperCAmelCase = {'train': 12, 'val': 2, 'test': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: _UpperCAmelCase = '\n'.join([contents[field]] * n_lines[split] ) with open(os.path.join(UpperCAmelCase , F"""{split}.{field}""" ) , 'w' ) as f: f.write(UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase = "pytorch" ): """simple docstring""" _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = os.path.join(UpperCAmelCase , 'output' ) _UpperCAmelCase = os.path.join(UpperCAmelCase , 'data' ) self._create_dummy_data(data_dir=UpperCAmelCase ) _UpperCAmelCase = F""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(F"""--gpus={gpus}""" ) if is_apex_available(): testargs.append('--fp16' ) else: testargs.append('--gpus=0' ) testargs.append('--distributed_backend=ddp_cpu' ) testargs.append('--num_processes=2' ) _UpperCAmelCase = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(UpperCAmelCase , env=self.get_env() ) _UpperCAmelCase = os.path.join(UpperCAmelCase , 'metrics.json' ) with open(UpperCAmelCase ) as f: _UpperCAmelCase = json.load(UpperCAmelCase ) return result @require_torch_gpu def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_gpu @require_ray def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu @require_ray def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 )
39
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
201
0
import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer _lowerCAmelCase : Tuple = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowerCAmelCase : Dict = { '''vocab_file''': { '''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json''', }, '''merges_file''': { '''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''Salesforce/codegen-350M-mono''': ( '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json''' ), }, } _lowerCAmelCase : Tuple = { '''Salesforce/codegen-350M-mono''': 2_048, } class __magic_name__ ( _a ): """simple docstring""" __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ["""input_ids""", """attention_mask"""] __UpperCamelCase = CodeGenTokenizer def __init__( self :Optional[int] , snake_case :Dict=None , snake_case :Dict=None , snake_case :Dict=None , snake_case :str="<|endoftext|>" , snake_case :Dict="<|endoftext|>" , snake_case :Optional[int]="<|endoftext|>" , snake_case :List[Any]=False , **snake_case :Optional[int] , ): '''simple docstring''' super().__init__( __lowerCAmelCase , __lowerCAmelCase , tokenizer_file=__lowerCAmelCase , unk_token=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , **__lowerCAmelCase , ) if kwargs.pop("add_bos_token" , __lowerCAmelCase ): A_ : Tuple = kwargs.pop("name_or_path" , "" ) raise ValueError( "Currenty GPT2's fast tokenizer does NOT support adding a BOS token." "Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n" f"`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n" f"`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n" "This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005." " so that the fast tokenizer works correctly." ) A_ : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , __lowerCAmelCase ) != add_prefix_space: A_ : List[str] = getattr(__lowerCAmelCase , pre_tok_state.pop("type" ) ) A_ : Optional[int] = add_prefix_space A_ : str = pre_tok_class(**__lowerCAmelCase ) A_ : Tuple = add_prefix_space def SCREAMING_SNAKE_CASE ( self :Optional[int] , *snake_case :Dict , **snake_case :Any ): '''simple docstring''' A_ : Dict = kwargs.get("is_split_into_words" , __lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__lowerCAmelCase , **__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] , *snake_case :Tuple , **snake_case :Tuple ): '''simple docstring''' A_ : Union[str, Any] = kwargs.get("is_split_into_words" , __lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*__lowerCAmelCase , **__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self :str , snake_case :str , snake_case :Optional[int] = None ): '''simple docstring''' A_ : Optional[Any] = self._tokenizer.model.save(__lowerCAmelCase , name=__lowerCAmelCase ) return tuple(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :List[str] , snake_case :List[Any] = False , snake_case :Any = None , snake_case :str = None , **snake_case :Optional[Any] , ): '''simple docstring''' A_ : str = super().decode( token_ids=__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase , **__lowerCAmelCase , ) if truncate_before_pattern is not None and len(__lowerCAmelCase ) > 0: A_ : int = self.truncate(__lowerCAmelCase , __lowerCAmelCase ) return decoded_text def SCREAMING_SNAKE_CASE ( self :str , snake_case :Optional[Any] , snake_case :List[Any] ): '''simple docstring''' def find_re(snake_case :int , snake_case :Dict , snake_case :Optional[Any] ): A_ : str = pattern.search(__lowerCAmelCase , __lowerCAmelCase ) return m.start() if m else -1 A_ : List[str] = [re.compile(__lowerCAmelCase , re.MULTILINE ) for pattern in truncate_before_pattern] A_ : Optional[int] = list(re.finditer("^print" , __lowerCAmelCase , re.MULTILINE ) ) if len(__lowerCAmelCase ) > 1: A_ : Union[str, Any] = completion[: prints[1].start()] A_ : int = list(re.finditer("^def" , __lowerCAmelCase , re.MULTILINE ) ) if len(__lowerCAmelCase ) > 1: A_ : List[Any] = completion[: defs[1].start()] A_ : Dict = 0 A_ : Any = [ pos for pos in [find_re(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for terminal in terminals] if pos != -1 ] if len(__lowerCAmelCase ) > 0: return completion[: min(__lowerCAmelCase )] else: return completion
370
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass _lowerCAmelCase : Any = (3, 9, -11, 0, 7, 5, 1, -1) _lowerCAmelCase : Any = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class __magic_name__ : """simple docstring""" __UpperCamelCase = 42 __UpperCamelCase = 42 class __magic_name__ : """simple docstring""" def __init__( self :str , snake_case :Iterable[int] ): '''simple docstring''' A_ : Node | None = None for i in sorted(snake_case , reverse=snake_case ): A_ : str = Node(snake_case , self.head ) def __iter__( self :Any ): '''simple docstring''' A_ : List[Any] = self.head while node: yield node.data A_ : Optional[int] = node.next_node def __len__( self :Tuple ): '''simple docstring''' return sum(1 for _ in self ) def __str__( self :Tuple ): '''simple docstring''' return " -> ".join([str(snake_case ) for node in self] ) def __snake_case ( _lowerCAmelCase : SortedLinkedList , _lowerCAmelCase : SortedLinkedList ) -> SortedLinkedList: return SortedLinkedList(list(_lowerCAmelCase ) + list(_lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : int = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
70
0
'''simple docstring''' from collections import deque from math import floor from random import random from time import time class __UpperCAmelCase : def __init__( self ): """simple docstring""" _snake_case = {} def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=1 ): """simple docstring""" if self.graph.get(SCREAMING_SNAKE_CASE__ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: _snake_case = [[w, v]] if not self.graph.get(SCREAMING_SNAKE_CASE__ ): _snake_case = [] def lowerCamelCase ( self ): """simple docstring""" return list(self.graph ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if self.graph.get(SCREAMING_SNAKE_CASE__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(SCREAMING_SNAKE_CASE__ ) def lowerCamelCase ( self , lowerCAmelCase_=-2 , lowerCAmelCase_=-1 ): """simple docstring""" if s == d: return [] _snake_case = [] _snake_case = [] if s == -2: _snake_case = list(self.graph )[0] stack.append(SCREAMING_SNAKE_CASE__ ) visited.append(SCREAMING_SNAKE_CASE__ ) _snake_case = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _snake_case = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(SCREAMING_SNAKE_CASE__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _snake_case = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(SCREAMING_SNAKE_CASE__ ) != 0: _snake_case = stack[len(SCREAMING_SNAKE_CASE__ ) - 1] else: _snake_case = ss # check if se have reached the starting point if len(SCREAMING_SNAKE_CASE__ ) == 0: return visited def lowerCamelCase ( self , lowerCAmelCase_=-1 ): """simple docstring""" if c == -1: _snake_case = floor(random() * 1_00_00 ) + 10 for i in range(SCREAMING_SNAKE_CASE__ ): # every vertex has max 100 edges for _ in range(floor(random() * 1_02 ) + 1 ): _snake_case = floor(random() * c ) + 1 if n != i: self.add_pair(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) def lowerCamelCase ( self , lowerCAmelCase_=-2 ): """simple docstring""" _snake_case = deque() _snake_case = [] if s == -2: _snake_case = list(self.graph )[0] d.append(SCREAMING_SNAKE_CASE__ ) visited.append(SCREAMING_SNAKE_CASE__ ) while d: _snake_case = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" return len(self.graph[u] ) def lowerCamelCase ( self , lowerCAmelCase_=-2 ): """simple docstring""" _snake_case = [] _snake_case = [] if s == -2: _snake_case = list(self.graph )[0] stack.append(SCREAMING_SNAKE_CASE__ ) visited.append(SCREAMING_SNAKE_CASE__ ) _snake_case = s _snake_case = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _snake_case = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _snake_case = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(SCREAMING_SNAKE_CASE__ ) != 0: _snake_case = stack[len(SCREAMING_SNAKE_CASE__ ) - 1] else: _snake_case = ss # check if se have reached the starting point if len(SCREAMING_SNAKE_CASE__ ) == 0: return sorted_nodes def lowerCamelCase ( self ): """simple docstring""" _snake_case = [] _snake_case = [] _snake_case = list(self.graph )[0] stack.append(SCREAMING_SNAKE_CASE__ ) visited.append(SCREAMING_SNAKE_CASE__ ) _snake_case = -2 _snake_case = [] _snake_case = s _snake_case = False _snake_case = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _snake_case = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _snake_case = len(SCREAMING_SNAKE_CASE__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _snake_case = node[1] break # check if all the children are visited if s == ss: stack.pop() _snake_case = True if len(SCREAMING_SNAKE_CASE__ ) != 0: _snake_case = stack[len(SCREAMING_SNAKE_CASE__ ) - 1] else: _snake_case = False indirect_parents.append(SCREAMING_SNAKE_CASE__ ) _snake_case = s _snake_case = ss # check if se have reached the starting point if len(SCREAMING_SNAKE_CASE__ ) == 0: return list(SCREAMING_SNAKE_CASE__ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = [] _snake_case = [] _snake_case = list(self.graph )[0] stack.append(SCREAMING_SNAKE_CASE__ ) visited.append(SCREAMING_SNAKE_CASE__ ) _snake_case = -2 _snake_case = [] _snake_case = s _snake_case = False _snake_case = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _snake_case = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _snake_case = len(SCREAMING_SNAKE_CASE__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _snake_case = node[1] break # check if all the children are visited if s == ss: stack.pop() _snake_case = True if len(SCREAMING_SNAKE_CASE__ ) != 0: _snake_case = stack[len(SCREAMING_SNAKE_CASE__ ) - 1] else: _snake_case = False indirect_parents.append(SCREAMING_SNAKE_CASE__ ) _snake_case = s _snake_case = ss # check if se have reached the starting point if len(SCREAMING_SNAKE_CASE__ ) == 0: return False def lowerCamelCase ( self , lowerCAmelCase_=-2 , lowerCAmelCase_=-1 ): """simple docstring""" _snake_case = time() self.dfs(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case = time() return end - begin def lowerCamelCase ( self , lowerCAmelCase_=-2 ): """simple docstring""" _snake_case = time() self.bfs(SCREAMING_SNAKE_CASE__ ) _snake_case = time() return end - begin class __UpperCAmelCase : def __init__( self ): """simple docstring""" _snake_case = {} def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=1 ): """simple docstring""" if self.graph.get(SCREAMING_SNAKE_CASE__ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist _snake_case = [[w, v]] # add the other way if self.graph.get(SCREAMING_SNAKE_CASE__ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist _snake_case = [[w, u]] def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if self.graph.get(SCREAMING_SNAKE_CASE__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(SCREAMING_SNAKE_CASE__ ) # the other way round if self.graph.get(SCREAMING_SNAKE_CASE__ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(SCREAMING_SNAKE_CASE__ ) def lowerCamelCase ( self , lowerCAmelCase_=-2 , lowerCAmelCase_=-1 ): """simple docstring""" if s == d: return [] _snake_case = [] _snake_case = [] if s == -2: _snake_case = list(self.graph )[0] stack.append(SCREAMING_SNAKE_CASE__ ) visited.append(SCREAMING_SNAKE_CASE__ ) _snake_case = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _snake_case = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(SCREAMING_SNAKE_CASE__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _snake_case = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(SCREAMING_SNAKE_CASE__ ) != 0: _snake_case = stack[len(SCREAMING_SNAKE_CASE__ ) - 1] else: _snake_case = ss # check if se have reached the starting point if len(SCREAMING_SNAKE_CASE__ ) == 0: return visited def lowerCamelCase ( self , lowerCAmelCase_=-1 ): """simple docstring""" if c == -1: _snake_case = floor(random() * 1_00_00 ) + 10 for i in range(SCREAMING_SNAKE_CASE__ ): # every vertex has max 100 edges for _ in range(floor(random() * 1_02 ) + 1 ): _snake_case = floor(random() * c ) + 1 if n != i: self.add_pair(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) def lowerCamelCase ( self , lowerCAmelCase_=-2 ): """simple docstring""" _snake_case = deque() _snake_case = [] if s == -2: _snake_case = list(self.graph )[0] d.append(SCREAMING_SNAKE_CASE__ ) visited.append(SCREAMING_SNAKE_CASE__ ) while d: _snake_case = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" return len(self.graph[u] ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = [] _snake_case = [] _snake_case = list(self.graph )[0] stack.append(SCREAMING_SNAKE_CASE__ ) visited.append(SCREAMING_SNAKE_CASE__ ) _snake_case = -2 _snake_case = [] _snake_case = s _snake_case = False _snake_case = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _snake_case = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _snake_case = len(SCREAMING_SNAKE_CASE__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _snake_case = node[1] break # check if all the children are visited if s == ss: stack.pop() _snake_case = True if len(SCREAMING_SNAKE_CASE__ ) != 0: _snake_case = stack[len(SCREAMING_SNAKE_CASE__ ) - 1] else: _snake_case = False indirect_parents.append(SCREAMING_SNAKE_CASE__ ) _snake_case = s _snake_case = ss # check if se have reached the starting point if len(SCREAMING_SNAKE_CASE__ ) == 0: return list(SCREAMING_SNAKE_CASE__ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = [] _snake_case = [] _snake_case = list(self.graph )[0] stack.append(SCREAMING_SNAKE_CASE__ ) visited.append(SCREAMING_SNAKE_CASE__ ) _snake_case = -2 _snake_case = [] _snake_case = s _snake_case = False _snake_case = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _snake_case = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _snake_case = len(SCREAMING_SNAKE_CASE__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _snake_case = node[1] break # check if all the children are visited if s == ss: stack.pop() _snake_case = True if len(SCREAMING_SNAKE_CASE__ ) != 0: _snake_case = stack[len(SCREAMING_SNAKE_CASE__ ) - 1] else: _snake_case = False indirect_parents.append(SCREAMING_SNAKE_CASE__ ) _snake_case = s _snake_case = ss # check if se have reached the starting point if len(SCREAMING_SNAKE_CASE__ ) == 0: return False def lowerCamelCase ( self ): """simple docstring""" return list(self.graph ) def lowerCamelCase ( self , lowerCAmelCase_=-2 , lowerCAmelCase_=-1 ): """simple docstring""" _snake_case = time() self.dfs(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case = time() return end - begin def lowerCamelCase ( self , lowerCAmelCase_=-2 ): """simple docstring""" _snake_case = time() self.bfs(SCREAMING_SNAKE_CASE__ ) _snake_case = time() return end - begin
42
"""simple docstring""" from typing import Any def __lowerCamelCase ( a_ : list ) -> list[Any]: if not input_list: return [] __SCREAMING_SNAKE_CASE :int = [input_list.count(a_ ) for value in input_list] __SCREAMING_SNAKE_CASE :str = max(a_ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(a_ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
191
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) __UpperCamelCase = { "configuration_trocr": ["TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrOCRConfig"], "processing_trocr": ["TrOCRProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "TROCR_PRETRAINED_MODEL_ARCHIVE_LIST", "TrOCRForCausalLM", "TrOCRPreTrainedModel", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
13
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" for attribute in key.split(""".""" ): __snake_case : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase ) if weight_type is not None: __snake_case : Optional[Any] = getattr(_lowerCamelCase , _lowerCamelCase ).shape else: __snake_case : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": __snake_case : Union[str, Any] = value elif weight_type == "weight_g": __snake_case : str = value elif weight_type == "weight_v": __snake_case : Tuple = value elif weight_type == "bias": __snake_case : str = value else: __snake_case : List[Any] = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" __snake_case : Tuple = [] __snake_case : List[Any] = fairseq_model.state_dict() __snake_case : int = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): __snake_case : Any = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , ) __snake_case : Optional[int] = True else: for key, mapped_key in MAPPING.items(): __snake_case : Optional[Any] = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __snake_case : Dict = True if "*" in mapped_key: __snake_case : List[Any] = name.split(_lowerCamelCase )[0].split(""".""" )[-2] __snake_case : Optional[int] = mapped_key.replace("""*""" , _lowerCamelCase ) if "weight_g" in name: __snake_case : Dict = """weight_g""" elif "weight_v" in name: __snake_case : List[str] = """weight_v""" elif "weight" in name: __snake_case : str = """weight""" elif "bias" in name: __snake_case : int = """bias""" else: __snake_case : int = None set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) continue if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Dict = full_name.split("""conv_layers.""" )[-1] __snake_case : Optional[int] = name.split(""".""" ) __snake_case : Dict = int(items[0] ) __snake_case : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __snake_case : Union[str, Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __snake_case : int = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) __snake_case : str = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) __snake_case : List[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" __snake_case : List[str] = SEWConfig() if is_finetuned: __snake_case : List[Any] = model.wav_encoder.wav_model.cfg else: __snake_case : Optional[Any] = model.cfg __snake_case : Tuple = fs_config.conv_bias __snake_case : List[Any] = eval(fs_config.conv_feature_layers ) __snake_case : List[Any] = [x[0] for x in conv_layers] __snake_case : Dict = [x[1] for x in conv_layers] __snake_case : Tuple = [x[2] for x in conv_layers] __snake_case : List[str] = """gelu""" __snake_case : Dict = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group""" __snake_case : Optional[int] = 0.0 __snake_case : Optional[Any] = fs_config.activation_fn.name __snake_case : Dict = fs_config.encoder_embed_dim __snake_case : Dict = 0.02 __snake_case : Any = fs_config.encoder_ffn_embed_dim __snake_case : Tuple = 1E-5 __snake_case : Dict = fs_config.encoder_layerdrop __snake_case : Any = fs_config.encoder_attention_heads __snake_case : int = fs_config.conv_pos_groups __snake_case : Tuple = fs_config.conv_pos __snake_case : Optional[int] = len(_lowerCamelCase ) __snake_case : int = fs_config.encoder_layers __snake_case : Optional[int] = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: __snake_case : Union[str, Any] = model.cfg __snake_case : Tuple = fs_config.final_dropout __snake_case : Tuple = fs_config.layerdrop __snake_case : Any = fs_config.activation_dropout __snake_case : int = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 __snake_case : Tuple = fs_config.attention_dropout __snake_case : List[Any] = fs_config.dropout_input __snake_case : Optional[Any] = fs_config.dropout __snake_case : str = fs_config.mask_channel_length __snake_case : Any = fs_config.mask_channel_prob __snake_case : int = fs_config.mask_length __snake_case : str = fs_config.mask_prob __snake_case : str = """Wav2Vec2FeatureExtractor""" __snake_case : Dict = """Wav2Vec2CTCTokenizer""" return config @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ) -> int: """simple docstring""" if is_finetuned: __snake_case , __snake_case , __snake_case : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __snake_case , __snake_case , __snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: __snake_case : Optional[Any] = SEWConfig.from_pretrained(_lowerCamelCase ) else: __snake_case : int = convert_config(model[0] , _lowerCamelCase ) __snake_case : Dict = model[0].eval() __snake_case : Optional[Any] = True if config.feat_extract_norm == """layer""" else False __snake_case : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) if is_finetuned: if dict_path: __snake_case : str = Dictionary.load(_lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __snake_case : Union[str, Any] = target_dict.pad_index __snake_case : Optional[Any] = target_dict.bos_index __snake_case : Tuple = target_dict.pad_index __snake_case : List[str] = target_dict.bos_index __snake_case : Optional[Any] = target_dict.eos_index __snake_case : List[str] = len(target_dict.symbols ) __snake_case : Optional[Any] = os.path.join(_lowerCamelCase , """vocab.json""" ) if not os.path.isdir(_lowerCamelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_lowerCamelCase ) ) return os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) with open(_lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , _lowerCamelCase ) __snake_case : List[Any] = WavaVecaCTCTokenizer( _lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=_lowerCamelCase , ) __snake_case : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) __snake_case : List[str] = SEWForCTC(_lowerCamelCase ) else: __snake_case : List[str] = SEWModel(_lowerCamelCase ) feature_extractor.save_pretrained(_lowerCamelCase ) recursively_load_weights(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) hf_model.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __UpperCamelCase = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
13
1
"""simple docstring""" import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class A__ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=[1, 2, 1] , _SCREAMING_SNAKE_CASE=[2, 2, 4] , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=2.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1E-5 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=["stage1", "stage2", "stage3"] , _SCREAMING_SNAKE_CASE=[1, 2, 3] , ): __lowerCAmelCase : List[str] = parent __lowerCAmelCase : Tuple = batch_size __lowerCAmelCase : str = image_size __lowerCAmelCase : Any = patch_size __lowerCAmelCase : str = num_channels __lowerCAmelCase : str = embed_dim __lowerCAmelCase : Optional[Any] = depths __lowerCAmelCase : Tuple = num_heads __lowerCAmelCase : int = window_size __lowerCAmelCase : List[str] = mlp_ratio __lowerCAmelCase : Tuple = qkv_bias __lowerCAmelCase : Union[str, Any] = hidden_dropout_prob __lowerCAmelCase : List[str] = attention_probs_dropout_prob __lowerCAmelCase : str = drop_path_rate __lowerCAmelCase : Any = hidden_act __lowerCAmelCase : Any = use_absolute_embeddings __lowerCAmelCase : Dict = patch_norm __lowerCAmelCase : int = layer_norm_eps __lowerCAmelCase : Any = initializer_range __lowerCAmelCase : Tuple = is_training __lowerCAmelCase : Tuple = scope __lowerCAmelCase : Dict = use_labels __lowerCAmelCase : Tuple = type_sequence_label_size __lowerCAmelCase : List[str] = encoder_stride __lowerCAmelCase : int = out_features __lowerCAmelCase : List[str] = out_indices def __lowerCamelCase ( self ): __lowerCAmelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase : List[Any] = None if self.use_labels: __lowerCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase : str = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self ): return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : List[Any] = MaskFormerSwinModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase : Tuple = model(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __lowerCAmelCase : Union[str, Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[int] = MaskFormerSwinBackbone(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase : List[str] = model(_SCREAMING_SNAKE_CASE ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(_SCREAMING_SNAKE_CASE ): __lowerCAmelCase : List[Any] = ['stem'] __lowerCAmelCase : Any = MaskFormerSwinBackbone(config=_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : List[str] = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = config_and_inputs __lowerCAmelCase : Dict = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A__ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase): A_ : List[Any] = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) A_ : Union[str, Any] = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {} A_ : str = False A_ : Union[str, Any] = False A_ : Optional[Any] = False A_ : Optional[int] = False A_ : Optional[int] = False def __lowerCamelCase ( self ): __lowerCAmelCase : str = MaskFormerSwinModelTester(self ) __lowerCAmelCase : Optional[int] = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with' ' `nn.DataParallel`' ) ) def __lowerCamelCase ( self ): pass def __lowerCamelCase ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCamelCase ( self ): return def __lowerCamelCase ( self ): __lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_SCREAMING_SNAKE_CASE ) @unittest.skip('Swin does not use inputs_embeds' ) def __lowerCamelCase ( self ): pass @unittest.skip('Swin does not support feedforward chunking' ) def __lowerCamelCase ( self ): pass def __lowerCamelCase ( self ): __lowerCAmelCase , __lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase : List[str] = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCAmelCase : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def __lowerCamelCase ( self ): __lowerCAmelCase , __lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase : Any = model_class(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase : Union[str, Any] = [*signature.parameters.keys()] __lowerCAmelCase : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) @unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' ) def __lowerCamelCase ( self ): pass @unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' ) def __lowerCamelCase ( self ): pass def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Any = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): __lowerCAmelCase : str = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase : Dict = outputs.hidden_states __lowerCAmelCase : str = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # Swin has a different seq_length __lowerCAmelCase : Dict = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowerCAmelCase : List[str] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __lowerCamelCase ( self ): __lowerCAmelCase , __lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase : Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __lowerCAmelCase : List[str] = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase : Optional[Any] = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase , __lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase : Optional[Any] = 3 __lowerCAmelCase : Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __lowerCAmelCase : str = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowerCAmelCase : str = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __lowerCAmelCase : Optional[Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __lowerCAmelCase : Optional[Any] = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase : Any = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) @unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' ) def __lowerCamelCase ( self ): pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def __lowerCamelCase ( self ): pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def __lowerCamelCase ( self ): pass def __lowerCamelCase ( self ): __lowerCAmelCase , __lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Any = 0 return t def check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE={} ): with torch.no_grad(): __lowerCAmelCase : str = model(**_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = model(**_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).to_tuple() def recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if isinstance(_SCREAMING_SNAKE_CASE , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ) , set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ) , atol=1E-5 ) , msg=( 'Tuple and dict output are not equal. Difference:' f" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:" f" {torch.isnan(_SCREAMING_SNAKE_CASE ).any()} and `inf`: {torch.isinf(_SCREAMING_SNAKE_CASE )}. Dict has" f" `nan`: {torch.isnan(_SCREAMING_SNAKE_CASE ).any()} and `inf`: {torch.isinf(_SCREAMING_SNAKE_CASE )}." ) , ) recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: __lowerCAmelCase : int = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase : Dict = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , {'output_hidden_states': True} ) __lowerCAmelCase : Optional[int] = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , {'output_hidden_states': True} ) @require_torch class A__ ( unittest.TestCase , _lowerCamelCase): A_ : Tuple = (MaskFormerSwinBackbone,) if is_torch_available() else () A_ : Union[str, Any] = MaskFormerSwinConfig def __lowerCamelCase ( self ): __lowerCAmelCase : Tuple = MaskFormerSwinModelTester(self ) def __lowerCamelCase ( self ): __lowerCAmelCase , __lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase : Any = inputs_dict['pixel_values'].shape[0] for backbone_class in self.all_model_classes: __lowerCAmelCase : int = backbone_class(_SCREAMING_SNAKE_CASE ) backbone.to(_SCREAMING_SNAKE_CASE ) backbone.eval() __lowerCAmelCase : Union[str, Any] = backbone(**_SCREAMING_SNAKE_CASE ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , _SCREAMING_SNAKE_CASE ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True __lowerCAmelCase : Tuple = backbone(**_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Optional[int] = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: __lowerCAmelCase : str = backbone(**_SCREAMING_SNAKE_CASE , output_attentions=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(outputs.attentions )
86
"""simple docstring""" import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class A__ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=14 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=5_12 , _SCREAMING_SNAKE_CASE=0.02 , ): __lowerCAmelCase : Union[str, Any] = parent __lowerCAmelCase : Any = batch_size __lowerCAmelCase : Any = seq_length __lowerCAmelCase : Optional[Any] = is_training __lowerCAmelCase : Any = use_input_mask __lowerCAmelCase : Any = use_token_type_ids __lowerCAmelCase : Tuple = use_labels __lowerCAmelCase : Optional[Any] = vocab_size __lowerCAmelCase : Tuple = hidden_size __lowerCAmelCase : str = rotary_dim __lowerCAmelCase : Union[str, Any] = num_hidden_layers __lowerCAmelCase : Union[str, Any] = num_attention_heads __lowerCAmelCase : int = intermediate_size __lowerCAmelCase : List[str] = hidden_act __lowerCAmelCase : int = hidden_dropout_prob __lowerCAmelCase : Any = attention_probs_dropout_prob __lowerCAmelCase : List[Any] = max_position_embeddings __lowerCAmelCase : Optional[Any] = initializer_range __lowerCAmelCase : Tuple = None __lowerCAmelCase : int = vocab_size - 1 __lowerCAmelCase : Dict = vocab_size - 1 __lowerCAmelCase : int = vocab_size - 1 def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase : List[str] = None if self.use_input_mask: __lowerCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase : Optional[int] = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=_SCREAMING_SNAKE_CASE , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[int] = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Any = config_and_inputs __lowerCAmelCase : Dict = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : List[str] = 20 __lowerCAmelCase : List[str] = model_class_name(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = model.init_cache(input_ids.shape[0] , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='i4' ) __lowerCAmelCase : Optional[Any] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __lowerCAmelCase : Any = model( input_ids[:, :-1] , attention_mask=_SCREAMING_SNAKE_CASE , past_key_values=_SCREAMING_SNAKE_CASE , position_ids=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Any = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __lowerCAmelCase : int = model( input_ids[:, -1:] , attention_mask=_SCREAMING_SNAKE_CASE , past_key_values=outputs_cache.past_key_values , position_ids=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Any = model(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Tuple = 20 __lowerCAmelCase : List[str] = model_class_name(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) __lowerCAmelCase : List[str] = model.init_cache(input_ids.shape[0] , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __lowerCAmelCase : Optional[Any] = model( input_ids[:, :-1] , attention_mask=_SCREAMING_SNAKE_CASE , past_key_values=_SCREAMING_SNAKE_CASE , position_ids=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : str = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __lowerCAmelCase : Tuple = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=_SCREAMING_SNAKE_CASE , position_ids=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Union[str, Any] = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" ) @require_flax class A__ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase): A_ : Tuple = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () A_ : str = (FlaxGPTJForCausalLM,) if is_flax_available() else () def __lowerCamelCase ( self ): __lowerCAmelCase : int = FlaxGPTJModelTester(self ) def __lowerCamelCase ( self ): for model_class_name in self.all_model_classes: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): for model_class_name in self.all_model_classes: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @tooslow def __lowerCamelCase ( self ): __lowerCAmelCase : Tuple = GPTaTokenizer.from_pretrained('gpt2' , pad_token='<|endoftext|>' , padding_side='left' ) __lowerCAmelCase : Optional[int] = tokenizer(['Hello this is a long string', 'Hey'] , return_tensors='np' , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B' ) __lowerCAmelCase : Any = False __lowerCAmelCase : Any = model.config.eos_token_id __lowerCAmelCase : Union[str, Any] = jax.jit(model.generate ) __lowerCAmelCase : Optional[Any] = jit_generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , pad_token_id=tokenizer.pad_token_id ).sequences __lowerCAmelCase : str = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = [ 'Hello this is a long string of text.\n\nI\'m trying to get the text of the', 'Hey, I\'m a little late to the party. I\'m going to', ] self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @is_pt_flax_cross_test def __lowerCamelCase ( self ): __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __lowerCAmelCase : str = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __lowerCAmelCase : Dict = model_class.__name__[4:] # Skip the "Flax" at the beginning __lowerCAmelCase : Optional[int] = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase : List[Any] = pt_inputs['input_ids'].shape __lowerCAmelCase : int = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Tuple = 0 __lowerCAmelCase : Tuple = 1 __lowerCAmelCase : List[str] = 0 __lowerCAmelCase : Any = 1 __lowerCAmelCase : Optional[Any] = pt_model_class(_SCREAMING_SNAKE_CASE ).eval() __lowerCAmelCase : Any = model_class(_SCREAMING_SNAKE_CASE , dtype=jnp.floataa ) __lowerCAmelCase : int = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = fx_state with torch.no_grad(): __lowerCAmelCase : Union[str, Any] = pt_model(**_SCREAMING_SNAKE_CASE ).to_tuple() __lowerCAmelCase : str = fx_model(**_SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = model_class.from_pretrained(_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = fx_model_loaded(**_SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual( len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def __lowerCamelCase ( self ): __lowerCAmelCase , __lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __lowerCAmelCase : List[str] = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __lowerCAmelCase : Dict = model_class.__name__[4:] # Skip the "Flax" at the beginning __lowerCAmelCase : str = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = pt_model_class(_SCREAMING_SNAKE_CASE ).eval() __lowerCAmelCase : Tuple = model_class(_SCREAMING_SNAKE_CASE , dtype=jnp.floataa ) __lowerCAmelCase : List[str] = load_flax_weights_in_pytorch_model(_SCREAMING_SNAKE_CASE , fx_model.params ) __lowerCAmelCase , __lowerCAmelCase : int = pt_inputs['input_ids'].shape __lowerCAmelCase : List[str] = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_SCREAMING_SNAKE_CASE ): __lowerCAmelCase : str = 0 __lowerCAmelCase : Optional[Any] = 1 __lowerCAmelCase : Optional[int] = 0 __lowerCAmelCase : Optional[Any] = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): __lowerCAmelCase : List[str] = pt_model(**_SCREAMING_SNAKE_CASE ).to_tuple() __lowerCAmelCase : Optional[int] = fx_model(**_SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = pt_model_class.from_pretrained(_SCREAMING_SNAKE_CASE , from_flax=_SCREAMING_SNAKE_CASE ) with torch.no_grad(): __lowerCAmelCase : Any = pt_model_loaded(**_SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual( len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def __lowerCamelCase ( self ): for model_class_name in self.all_model_classes: __lowerCAmelCase : Optional[int] = model_class_name.from_pretrained('EleutherAI/gpt-j-6B' ) __lowerCAmelCase : List[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
86
1
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _SCREAMING_SNAKE_CASE ( __a ): __SCREAMING_SNAKE_CASE :int = ["""image_processor""", """tokenizer"""] __SCREAMING_SNAKE_CASE :List[str] = """BridgeTowerImageProcessor""" __SCREAMING_SNAKE_CASE :Optional[Any] = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self : Dict , a__ : Optional[int] , a__ : Tuple ): super().__init__(a__ , a__ ) def __call__( self : Tuple , a__ : Dict , a__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , a__ : bool = True , a__ : Union[bool, str, PaddingStrategy] = False , a__ : Union[bool, str, TruncationStrategy] = None , a__ : Optional[int] = None , a__ : int = 0 , a__ : Optional[int] = None , a__ : Optional[bool] = None , a__ : Optional[bool] = None , a__ : bool = False , a__ : bool = False , a__ : bool = False , a__ : bool = False , a__ : bool = True , a__ : Optional[Union[str, TensorType]] = None , **a__ : Tuple , ): __magic_name__ = self.tokenizer( text=a__ , add_special_tokens=a__ , padding=a__ , truncation=a__ , max_length=a__ , stride=a__ , pad_to_multiple_of=a__ , return_token_type_ids=a__ , return_attention_mask=a__ , return_overflowing_tokens=a__ , return_special_tokens_mask=a__ , return_offsets_mapping=a__ , return_length=a__ , verbose=a__ , return_tensors=a__ , **a__ , ) # add pixel_values + pixel_mask __magic_name__ = self.image_processor( a__ , return_tensors=a__ , do_normalize=a__ , do_center_crop=a__ , **a__ ) encoding.update(a__ ) return encoding def snake_case__ ( self : Dict , *a__ : Optional[int] , **a__ : Union[str, Any] ): return self.tokenizer.batch_decode(*a__ , **a__ ) def snake_case__ ( self : Dict , *a__ : Tuple , **a__ : int ): return self.tokenizer.decode(*a__ , **a__ ) @property def snake_case__ ( self : int ): __magic_name__ = self.tokenizer.model_input_names __magic_name__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
355
'''simple docstring''' import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels _lowerCAmelCase = object() # For specifying empty leaf dict `{}` _lowerCAmelCase = object() def UpperCamelCase ( a , a ) -> Union[str, Any]: '''simple docstring''' __magic_name__ = tuple((re.compile(x + '''$''' ) for x in qs) ) for i in range(len(a ) - len(a ) + 1 ): __magic_name__ = [x.match(a ) for x, y in zip(a , ks[i:] )] if matches and all(a ): return True return False def UpperCamelCase ( a ) -> Tuple: '''simple docstring''' def replace(a , a ): for rule, replacement in rules: if _match(a , a ): return replacement return val return replace def UpperCamelCase ( ) -> Union[str, Any]: '''simple docstring''' return [ # embeddings (("transformer", "wpe", "embedding"), P('''mp''' , a )), (("transformer", "wte", "embedding"), P('''mp''' , a )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(a , '''mp''' )), (("attention", "out_proj", "kernel"), P('''mp''' , a )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(a , '''mp''' )), (("mlp", "c_fc", "bias"), P('''mp''' )), (("mlp", "c_proj", "kernel"), P('''mp''' , a )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def UpperCamelCase ( a ) -> str: '''simple docstring''' __magic_name__ = _get_partition_rules() __magic_name__ = _replacement_rules(a ) __magic_name__ = {k: _unmatched for k in flatten_dict(a )} __magic_name__ = {k: replace(a , a ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(a ) )
98
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ : Dict = logging.get_logger(__name__) lowerCAmelCase_ : int = { 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a ='gpt_bigcode' __a =['past_key_values'] __a ={ 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Optional[Any] , __a : Tuple=5_02_57 , __a : str=10_24 , __a : Dict=7_68 , __a : Tuple=12 , __a : str=12 , __a : Optional[int]=None , __a : Dict="gelu_pytorch_tanh" , __a : Tuple=0.1 , __a : Tuple=0.1 , __a : Union[str, Any]=0.1 , __a : Tuple=1e-5 , __a : str=0.02 , __a : Dict=True , __a : Union[str, Any]=True , __a : Optional[int]=5_02_56 , __a : Optional[int]=5_02_56 , __a : Union[str, Any]=True , __a : Dict=True , __a : Union[str, Any]=True , **__a : List[Any] , ): _a = vocab_size _a = n_positions _a = n_embd _a = n_layer _a = n_head _a = n_inner _a = activation_function _a = resid_pdrop _a = embd_pdrop _a = attn_pdrop _a = layer_norm_epsilon _a = initializer_range _a = scale_attn_weights _a = use_cache _a = attention_softmax_in_fpaa _a = scale_attention_softmax_in_fpaa _a = multi_query _a = bos_token_id _a = eos_token_id super().__init__(bos_token_id=__a , eos_token_id=__a , **__a )
63
"""simple docstring""" import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCamelCase_ = 'src/diffusers' UpperCamelCase_ = '.' # This is to make sure the diffusers module imported is the one in the repo. UpperCamelCase_ = importlib.util.spec_from_file_location( 'diffusers', os.path.join(DIFFUSERS_PATH, '__init__.py'), submodule_search_locations=[DIFFUSERS_PATH], ) UpperCamelCase_ = spec.loader.load_module() def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->Dict: """simple docstring""" return line.startswith(UpperCAmelCase ) or len(UpperCAmelCase ) <= 1 or re.search(r"^\s*\)(\s*->.*:|:)\s*$" , UpperCAmelCase ) is not None def UpperCamelCase ( UpperCAmelCase ) ->Any: """simple docstring""" a_ = object_name.split("." ) a_ = 0 # First let's find the module where our object lives. a_ = parts[i] while i < len(UpperCAmelCase ) and not os.path.isfile(os.path.join(UpperCAmelCase , F'''{module}.py''' ) ): i += 1 if i < len(UpperCAmelCase ): a_ = os.path.join(UpperCAmelCase , parts[i] ) if i >= len(UpperCAmelCase ): raise ValueError(F'''`object_name` should begin with the name of a module of diffusers but got {object_name}.''' ) with open(os.path.join(UpperCAmelCase , F'''{module}.py''' ) , "r" , encoding="utf-8" , newline="\n" ) as f: a_ = f.readlines() # Now let's find the class / func in the code! a_ = "" a_ = 0 for name in parts[i + 1 :]: while ( line_index < len(UpperCAmelCase ) and re.search(rF'''^{indent}(class|def)\s+{name}(\(|\:)''' , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(UpperCAmelCase ): raise ValueError(F''' {object_name} does not match any function or class in {module}.''' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). a_ = line_index while line_index < len(UpperCAmelCase ) and _should_continue(lines[line_index] , UpperCAmelCase ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 a_ = lines[start_index:line_index] return "".join(UpperCAmelCase ) UpperCamelCase_ = re.compile(R'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)') UpperCamelCase_ = re.compile(R'^\s*(\S+)->(\S+)(\s+.*|$)') UpperCamelCase_ = re.compile(R'<FILL\s+[^>]*>') def UpperCamelCase ( UpperCAmelCase ) ->int: """simple docstring""" a_ = code.split("\n" ) a_ = 0 while idx < len(UpperCAmelCase ) and len(lines[idx] ) == 0: idx += 1 if idx < len(UpperCAmelCase ): return re.search(r"^(\s*)\S" , lines[idx] ).groups()[0] return "" def UpperCamelCase ( UpperCAmelCase ) ->int: """simple docstring""" a_ = len(get_indent(UpperCAmelCase ) ) > 0 if has_indent: a_ = F'''class Bla:\n{code}''' a_ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=UpperCAmelCase ) a_ = black.format_str(UpperCAmelCase , mode=UpperCAmelCase ) a_ , a_ = style_docstrings_in_code(UpperCAmelCase ) return result[len("class Bla:\n" ) :] if has_indent else result def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase=False ) ->str: """simple docstring""" with open(UpperCAmelCase , "r" , encoding="utf-8" , newline="\n" ) as f: a_ = f.readlines() a_ = [] a_ = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(UpperCAmelCase ): a_ = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. a_ , a_ , a_ = search.groups() a_ = find_code_in_diffusers(UpperCAmelCase ) a_ = get_indent(UpperCAmelCase ) a_ = line_index + 1 if indent == theoretical_indent else line_index + 2 a_ = theoretical_indent a_ = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. a_ = True while line_index < len(UpperCAmelCase ) and should_continue: line_index += 1 if line_index >= len(UpperCAmelCase ): break a_ = lines[line_index] a_ = _should_continue(UpperCAmelCase , UpperCAmelCase ) and re.search(F'''^{indent}# End copy''' , UpperCAmelCase ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 a_ = lines[start_index:line_index] a_ = "".join(UpperCAmelCase ) # Remove any nested `Copied from` comments to avoid circular copies a_ = [line for line in theoretical_code.split("\n" ) if _re_copy_warning.search(UpperCAmelCase ) is None] a_ = "\n".join(UpperCAmelCase ) # Before comparing, use the `replace_pattern` on the original code. if len(UpperCAmelCase ) > 0: a_ = replace_pattern.replace("with" , "" ).split("," ) a_ = [_re_replace_pattern.search(UpperCAmelCase ) for p in patterns] for pattern in patterns: if pattern is None: continue a_ , a_ , a_ = pattern.groups() a_ = re.sub(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if option.strip() == "all-casing": a_ = re.sub(obja.lower() , obja.lower() , UpperCAmelCase ) a_ = re.sub(obja.upper() , obja.upper() , UpperCAmelCase ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line a_ = blackify(lines[start_index - 1] + theoretical_code ) a_ = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: a_ = lines[:start_index] + [theoretical_code] + lines[line_index:] a_ = start_index + 1 if overwrite and len(UpperCAmelCase ) > 0: # Warn the user a file has been modified. print(F'''Detected changes, rewriting {filename}.''' ) with open(UpperCAmelCase , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(UpperCAmelCase ) return diffs def UpperCamelCase ( UpperCAmelCase = False ) ->int: """simple docstring""" a_ = glob.glob(os.path.join(UpperCAmelCase , "**/*.py" ) , recursive=UpperCAmelCase ) a_ = [] for filename in all_files: a_ = is_copy_consistent(UpperCAmelCase , UpperCAmelCase ) diffs += [F'''- {filename}: copy does not match {d[0]} at line {d[1]}''' for d in new_diffs] if not overwrite and len(UpperCAmelCase ) > 0: a_ = "\n".join(UpperCAmelCase ) raise Exception( "Found the following copy inconsistencies:\n" + diff + "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them." ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') UpperCamelCase_ = parser.parse_args() check_copies(args.fix_and_overwrite)
243
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __magic_name__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ["MLukeTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys __magic_name__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
152
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available __magic_name__ = { "configuration_ernie": ["ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieConfig", "ErnieOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ "ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST", "ErnieForCausalLM", "ErnieForMaskedLM", "ErnieForMultipleChoice", "ErnieForNextSentencePrediction", "ErnieForPreTraining", "ErnieForQuestionAnswering", "ErnieForSequenceClassification", "ErnieForTokenClassification", "ErnieModel", "ErniePreTrainedModel", ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
152
1