code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class lowerCamelCase (_SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = TransfoXLTokenizer lowerCamelCase__ = False lowerCamelCase__ = False def __A ( self : str ) -> int: super().setUp() SCREAMING_SNAKE_CASE_ = [ "<unk>", "[CLS]", "[SEP]", "want", "unwanted", "wa", "un", "running", ",", "low", "l", ] SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def __A ( self : Union[str, Any] , **__magic_name__ : Optional[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE_ = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **__A ) def __A ( self : Union[str, Any] , __magic_name__ : int ) -> Any: SCREAMING_SNAKE_CASE_ = "<unk> UNwanted , running" SCREAMING_SNAKE_CASE_ = "<unk> unwanted, running" return input_text, output_text def __A ( self : Any ) -> Dict: SCREAMING_SNAKE_CASE_ = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=__A ) SCREAMING_SNAKE_CASE_ = tokenizer.tokenize("<unk> UNwanted , running" ) self.assertListEqual(__A , ["<unk>", "unwanted", ",", "running"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ) , [0, 4, 8, 7] ) def __A ( self : Tuple ) -> int: SCREAMING_SNAKE_CASE_ = TransfoXLTokenizer(lower_case=__A ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo ! how \n Are yoU ? " ) , ["hello", "!", "how", "are", "you", "?"] ) def __A ( self : List[Any] ) -> Any: SCREAMING_SNAKE_CASE_ = TransfoXLTokenizer(lower_case=__A ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo ! how \n Are yoU ? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def __A ( self : int ) -> int: SCREAMING_SNAKE_CASE_ = TransfoXLTokenizer(lower_case=__A ) SCREAMING_SNAKE_CASE_ = "Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?" SCREAMING_SNAKE_CASE_ = [ "Hello", "(", "bracket", ")", "and", "side", "@-@", "scrolled", "[", "and", "]", "Henry", "\'s", "$", "5", "@,@", "000", "with", "3", "@.@", "34", "m", ".", "What", "\'s", "up", "!", "?", ] self.assertListEqual(tokenizer.tokenize(__A ) , __A ) self.assertEqual(tokenizer.convert_tokens_to_string(__A ) , __A ) def __A ( self : Tuple ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = len(__A ) tokenizer.add_tokens(["new1", "new2"] ) tokenizer.move_added_token("new1" , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(__A ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode("new1" ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , "new1" )
118
"""simple docstring""" from __future__ import annotations import math def _A ( lowercase ): """simple docstring""" if num <= 0: a =f'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(lowercase ) a =[True] * (num + 1) a =[] a =2 a =int(math.sqrt(lowercase ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(lowercase ) # Set multiples of start be False for i in range(start * start , num + 1 , lowercase ): if sieve[i] is True: a =False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(lowercase ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
81
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class UpperCamelCase ( snake_case_ ): UpperCamelCase : int = '''audio-spectrogram-transformer''' def __init__( self : int , UpperCAmelCase__ : str=768 , UpperCAmelCase__ : List[Any]=12 , UpperCAmelCase__ : str=12 , UpperCAmelCase__ : Optional[int]=3072 , UpperCAmelCase__ : Dict="gelu" , UpperCAmelCase__ : Tuple=0.0 , UpperCAmelCase__ : str=0.0 , UpperCAmelCase__ : Tuple=0.0_2 , UpperCAmelCase__ : Any=1E-12 , UpperCAmelCase__ : Tuple=16 , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : Any=10 , UpperCAmelCase__ : Union[str, Any]=10 , UpperCAmelCase__ : List[str]=1024 , UpperCAmelCase__ : Any=128 , **UpperCAmelCase__ : Tuple , ) -> List[str]: super().__init__(**UpperCAmelCase__ ) _a : str = hidden_size _a : Tuple = num_hidden_layers _a : int = num_attention_heads _a : int = intermediate_size _a : Optional[int] = hidden_act _a : Union[str, Any] = hidden_dropout_prob _a : int = attention_probs_dropout_prob _a : List[Any] = initializer_range _a : Any = layer_norm_eps _a : int = patch_size _a : int = qkv_bias _a : Any = frequency_stride _a : Union[str, Any] = time_stride _a : Optional[int] = max_length _a : int = num_mel_bins
324
"""simple docstring""" from __future__ import annotations import time _snake_case = list[tuple[int, int]] _snake_case = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _snake_case = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class UpperCamelCase : def __init__( self : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : Node | None ) -> List[str]: _a : int = pos_x _a : Union[str, Any] = pos_y _a : Tuple = (pos_y, pos_x) _a : Tuple = goal_x _a : int = goal_y _a : str = parent class UpperCamelCase : def __init__( self : List[Any] , UpperCAmelCase__ : tuple[int, int] , UpperCAmelCase__ : tuple[int, int] ) -> List[str]: _a : List[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , UpperCAmelCase__ ) _a : List[str] = Node(goal[1] , goal[0] , goal[1] , goal[0] , UpperCAmelCase__ ) _a : Optional[int] = [self.start] _a : Tuple = False def _lowercase ( self : str ) -> Path | None: while self.node_queue: _a : Tuple = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: _a : Dict = True return self.retrace_path(UpperCAmelCase__ ) _a : Tuple = self.get_successors(UpperCAmelCase__ ) for node in successors: self.node_queue.append(UpperCAmelCase__ ) if not self.reached: return [self.start.pos] return None def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Node ) -> list[Node]: _a : Optional[Any] = [] for action in delta: _a : str = parent.pos_x + action[1] _a : List[Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(UpperCAmelCase__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(UpperCAmelCase__ , UpperCAmelCase__ , self.target.pos_y , self.target.pos_x , UpperCAmelCase__ ) ) return successors def _lowercase ( self : List[Any] , UpperCAmelCase__ : Node | None ) -> Path: _a : Dict = node _a : List[str] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _a : Any = current_node.parent path.reverse() return path class UpperCamelCase : def __init__( self : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] ) -> Any: _a : Dict = BreadthFirstSearch(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Optional[int] = BreadthFirstSearch(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Dict = False def _lowercase ( self : Any ) -> Path | None: while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: _a : List[Any] = self.fwd_bfs.node_queue.pop(0 ) _a : Union[str, Any] = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: _a : Optional[int] = True return self.retrace_bidirectional_path( UpperCAmelCase__ , UpperCAmelCase__ ) _a : List[str] = current_bwd_node _a : int = current_fwd_node _a : Optional[Any] = { self.fwd_bfs: self.fwd_bfs.get_successors(UpperCAmelCase__ ), self.bwd_bfs: self.bwd_bfs.get_successors(UpperCAmelCase__ ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(UpperCAmelCase__ ) if not self.reached: return [self.fwd_bfs.start.pos] return None def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Node , UpperCAmelCase__ : Node ) -> Path: _a : str = self.fwd_bfs.retrace_path(UpperCAmelCase__ ) _a : List[Any] = self.bwd_bfs.retrace_path(UpperCAmelCase__ ) bwd_path.pop() bwd_path.reverse() _a : Tuple = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() _snake_case = (0, 0) _snake_case = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _snake_case = time.time() _snake_case = BreadthFirstSearch(init, goal) _snake_case = bfs.search() _snake_case = time.time() - start_bfs_time print('Unidirectional BFS computation time : ', bfs_time) _snake_case = time.time() _snake_case = BidirectionalBreadthFirstSearch(init, goal) _snake_case = bd_bfs.search() _snake_case = time.time() - start_bd_bfs_time print('Bidirectional BFS computation time : ', bd_bfs_time)
324
1
'''simple docstring''' from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record UpperCamelCase__ : Optional[int] = '\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n' UpperCamelCase__ : Union[str, Any] = '\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n' UpperCamelCase__ : str = '\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for \'record\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'prediction_text\': the predicted answer text\n - for \'multirc\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question-answer pair as specified by the dataset\n - \'prediction\': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for \'record\': list of question-answers dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'answers\': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for \'record\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1\': F1 score\n - for \'multirc\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1_m\': Per-question macro-F1 score\n - \'f1_a\': Average F1 score over all answers\n - for \'axb\':\n \'matthews_correlation\': Matthew Correlation\n - for \'cb\':\n - \'accuracy\': Accuracy\n - \'f1\': F1 score\n - for all others:\n - \'accuracy\': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\')\n >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}]\n >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\')\n >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def lowerCAmelCase_ ( _lowerCamelCase: Optional[Any] , _lowerCamelCase: int ): return float((preds == labels).mean() ) def lowerCAmelCase_ ( _lowerCamelCase: int , _lowerCamelCase: int , _lowerCamelCase: Optional[int]="binary" ): __SCREAMING_SNAKE_CASE : List[Any] = simple_accuracy(a_ , a_ ) __SCREAMING_SNAKE_CASE : str = float(fa_score(y_true=a_ , y_pred=a_ , average=a_ ) ) return { "accuracy": acc, "f1": fa, } def lowerCAmelCase_ ( _lowerCamelCase: Optional[Any] , _lowerCamelCase: Optional[Any] ): __SCREAMING_SNAKE_CASE : Union[str, Any] = {} for id_pred, label in zip(a_ , a_ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = F"{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}" __SCREAMING_SNAKE_CASE : Any = id_pred["""prediction"""] if question_id in question_map: question_map[question_id].append((pred, label) ) else: __SCREAMING_SNAKE_CASE : List[Any] = [(pred, label)] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = [], [] for question, preds_labels in question_map.items(): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[Any] = zip(*a_ ) __SCREAMING_SNAKE_CASE : List[Any] = fa_score(y_true=a_ , y_pred=a_ , average="""macro""" ) fas.append(a_ ) __SCREAMING_SNAKE_CASE : List[str] = int(sum(pred == label for pred, label in preds_labels ) == len(a_ ) ) ems.append(a_ ) __SCREAMING_SNAKE_CASE : Optional[Any] = float(sum(a_ ) / len(a_ ) ) __SCREAMING_SNAKE_CASE : Any = sum(a_ ) / len(a_ ) __SCREAMING_SNAKE_CASE : Optional[int] = float(fa_score(y_true=a_ , y_pred=[id_pred["""prediction"""] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): '''simple docstring''' def UpperCamelCase__ ( self : List[str] ): """simple docstring""" if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" if not self.config_name == """record""" and not self.config_name == """multirc""" else None , ) def UpperCamelCase__ ( self : List[Any] ): """simple docstring""" if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "prediction_text": datasets.Value("""string""" ), }, "references": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "answers": datasets.Sequence(datasets.Value("""string""" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("""int64""" ), "paragraph": datasets.Value("""int64""" ), "question": datasets.Value("""int64""" ), }, "prediction": datasets.Value("""int64""" ), }, "references": datasets.Value("""int64""" ), } else: return { "predictions": datasets.Value("""int64""" ), "references": datasets.Value("""int64""" ), } def UpperCamelCase__ ( self : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Dict ): """simple docstring""" if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(lowerCAmelCase__ , lowerCAmelCase__ )} elif self.config_name == "cb": return acc_and_fa(lowerCAmelCase__ , lowerCAmelCase__ , fa_avg="""macro""" ) elif self.config_name == "record": __SCREAMING_SNAKE_CASE : Dict = [ { """qas""": [ {"""id""": ref["""idx"""]["""query"""], """answers""": [{"""text""": ans} for ans in ref["""answers"""]]} for ref in references ] } ] __SCREAMING_SNAKE_CASE : Any = {pred["""idx"""]["""query"""]: pred["""prediction_text"""] for pred in predictions} return evaluate_record(lowerCAmelCase__ , lowerCAmelCase__ )[0] elif self.config_name == "multirc": return evaluate_multirc(lowerCAmelCase__ , lowerCAmelCase__ ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(lowerCAmelCase__ , lowerCAmelCase__ )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" )
112
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml SCREAMING_SNAKE_CASE :Optional[int] = NewType('DataClass', Any) SCREAMING_SNAKE_CASE :int = NewType('DataClassType', Any) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" if isinstance(a_ , a_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F'''Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).''' ) def UpperCAmelCase ( a_ ) -> Callable[[str], Any]: """simple docstring""" __A = {str(a_ ): choice for choice in choices} return lambda a_ : str_to_choice.get(a_ , a_ ) def UpperCAmelCase ( *, a_ = None , a_ = None , a_ = dataclasses.MISSING , a_ = dataclasses.MISSING , a_ = None , **a_ , ) -> dataclasses.Field: """simple docstring""" if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls __A = {} if aliases is not None: __A = aliases if help is not None: __A = help return dataclasses.field(metadata=a_ , default=a_ , default_factory=a_ , **a_ ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = 42 def __init__( self : Union[str, Any] ,A : Union[DataClassType, Iterable[DataClassType]] ,**A : List[Any] ): # To make the default appear when using --help if "formatter_class" not in kwargs: __A = ArgumentDefaultsHelpFormatter super().__init__(**A ) if dataclasses.is_dataclass(A ): __A = [dataclass_types] __A = list(A ) for dtype in self.dataclass_types: self._add_dataclass_arguments(A ) @staticmethod def UpperCamelCase_ ( A : ArgumentParser ,A : dataclasses.Field ): __A = f'''--{field.name}''' __A = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type ,A ): raise RuntimeError( "Unresolved type detected, which should have been done with the help of " "`typing.get_type_hints` method by default" ) __A = kwargs.pop("aliases" ,[] ) if isinstance(A ,A ): __A = [aliases] __A = getattr(field.type ,"__origin__" ,field.type ) if origin_type is Union or (hasattr(A ,"UnionType" ) and isinstance(A ,types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(A ) not in field.type.__args__ ): raise ValueError( "Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because" " the argument parser only supports one type per argument." f''' Problem encountered in field \'{field.name}\'.''' ) if type(A ) not in field.type.__args__: # filter `str` in Union __A = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] __A = getattr(field.type ,"__origin__" ,field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) __A = ( field.type.__args__[0] if isinstance(A ,field.type.__args__[1] ) else field.type.__args__[1] ) __A = getattr(field.type ,"__origin__" ,field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) __A = {} if origin_type is Literal or (isinstance(field.type ,A ) and issubclass(field.type ,A )): if origin_type is Literal: __A = field.type.__args__ else: __A = [x.value for x in field.type] __A = make_choice_type_function(kwargs["choices"] ) if field.default is not dataclasses.MISSING: __A = field.default else: __A = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument __A = copy(A ) # Hack because type=bool in argparse does not behave as we want. __A = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. __A = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way __A = default # This tells argparse we accept 0 or 1 value after --field_name __A = "?" # This is the value that will get picked if we do --field_name (without value) __A = True elif isclass(A ) and issubclass(A ,A ): __A = field.type.__args__[0] __A = "+" if field.default_factory is not dataclasses.MISSING: __A = field.default_factory() elif field.default is dataclasses.MISSING: __A = True else: __A = field.type if field.default is not dataclasses.MISSING: __A = field.default elif field.default_factory is not dataclasses.MISSING: __A = field.default_factory() else: __A = True parser.add_argument(A ,*A ,**A ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): __A = False parser.add_argument(f'''--no_{field.name}''' ,action="store_false" ,dest=field.name ,**A ) def UpperCamelCase_ ( self : Union[str, Any] ,A : DataClassType ): if hasattr(A ,"_argument_group_name" ): __A = self.add_argument_group(dtype._argument_group_name ) else: __A = self try: __A = get_type_hints(A ) except NameError: raise RuntimeError( f'''Type resolution failed for {dtype}. Try declaring the class in global scope or ''' "removing line of `from __future__ import annotations` which opts in Postponed " "Evaluation of Annotations (PEP 563)" ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(A ): __A = ".".join(map(A ,sys.version_info[:3] ) ) raise RuntimeError( f'''Type resolution failed for {dtype} on Python {python_version}. Try removing ''' "line of `from __future__ import annotations` which opts in union types as " "`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To " "support Python versions that lower than 3.10, you need to use " "`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of " "`X | None`." ) from ex raise for field in dataclasses.fields(A ): if not field.init: continue __A = type_hints[field.name] self._parse_dataclass_field(A ,A ) def UpperCamelCase_ ( self : Union[str, Any] ,A : List[Any]=None ,A : List[Any]=False ,A : Optional[Any]=True ,A : Union[str, Any]=None ,A : Union[str, Any]=None ,): if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): __A = [] if args_filename: args_files.append(Path(A ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix(".args" ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values __A = ArgumentParser() args_file_parser.add_argument(A ,type=A ,action="append" ) # Use only remaining args for further parsing (remove the args_file_flag) __A , __A = args_file_parser.parse_known_args(args=A ) __A = vars(A ).get(args_file_flag.lstrip("-" ) ,A ) if cmd_args_file_paths: args_files.extend([Path(A ) for p in cmd_args_file_paths] ) __A = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last __A = file_args + args if args is not None else file_args + sys.argv[1:] __A , __A = self.parse_known_args(args=A ) __A = [] for dtype in self.dataclass_types: __A = {f.name for f in dataclasses.fields(A ) if f.init} __A = {k: v for k, v in vars(A ).items() if k in keys} for k in keys: delattr(A ,A ) __A = dtype(**A ) outputs.append(A ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(A ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(f'''Some specified arguments are not used by the HfArgumentParser: {remaining_args}''' ) return (*outputs,) def UpperCamelCase_ ( self : Dict ,A : Dict[str, Any] ,A : bool = False ): __A = set(args.keys() ) __A = [] for dtype in self.dataclass_types: __A = {f.name for f in dataclasses.fields(A ) if f.init} __A = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) __A = dtype(**A ) outputs.append(A ) if not allow_extra_keys and unused_keys: raise ValueError(f'''Some keys are not used by the HfArgumentParser: {sorted(A )}''' ) return tuple(A ) def UpperCamelCase_ ( self : List[str] ,A : str ,A : bool = False ): with open(Path(A ) ,encoding="utf-8" ) as open_json_file: __A = json.loads(open_json_file.read() ) __A = self.parse_dict(A ,allow_extra_keys=A ) return tuple(A ) def UpperCamelCase_ ( self : int ,A : str ,A : bool = False ): __A = self.parse_dict(yaml.safe_load(Path(A ).read_text() ) ,allow_extra_keys=A ) return tuple(A )
15
0
"""simple docstring""" import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): def __init__( self : Any , snake_case : Any , snake_case : Any , snake_case : Any=1024 , snake_case : Optional[int]=1024 , snake_case : Optional[Any]=3.6 ): '''simple docstring''' A__ : Optional[int] = tokenizer A__ : Optional[int] = tokenizer.bos_token_id A__ : Dict = dataset A__ : Optional[int] = seq_length A__ : Union[str, Any] = seq_length * chars_per_token * num_of_sequences def __iter__( self : Any ): '''simple docstring''' A__ : int = iter(self.dataset ) A__ : str = True while more_examples: A__ , A__ : Any = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(snake_case )["""content"""] ) buffer_len += len(buffer[-1] ) except StopIteration: A__ : str = False break A__ : Optional[Any] = tokenizer(snake_case , truncation=snake_case )["""input_ids"""] A__ : Optional[Any] = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(snake_case ) , self.seq_length ): A__ : int = all_token_ids[i : i + self.seq_length] if len(snake_case ) == self.seq_length: yield torch.tensor(snake_case ) def _lowerCAmelCase ( UpperCAmelCase__ : Optional[Any] ) ->Dict: A__ : List[Any] = {"""streaming""": True} A__ : Optional[int] = load_dataset(args.dataset_name, split="""train""", **UpperCAmelCase__ ) A__ : str = ConstantLengthDataset(UpperCAmelCase__, UpperCAmelCase__, seq_length=args.seq_length ) A__ : Union[str, Any] = DataLoader(UpperCAmelCase__, batch_size=args.batch_size ) return eval_dataloader def _lowerCAmelCase ( UpperCAmelCase__ : Union[str, Any] ) ->int: model.eval() A__ : Tuple = [] for step, batch in enumerate(UpperCAmelCase__ ): with torch.no_grad(): A__ : List[str] = model(UpperCAmelCase__, labels=UpperCAmelCase__ ) A__ : Dict = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(UpperCAmelCase__ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break A__ : Union[str, Any] = torch.mean(torch.cat(UpperCAmelCase__ ) ) try: A__ : Union[str, Any] = torch.exp(UpperCAmelCase__ ) except OverflowError: A__ : Union[str, Any] = float("""inf""" ) return loss.item(), perplexity.item() # Setup Accelerator A_ = Accelerator() # Parse configuration A_ = HfArgumentParser(EvaluationArguments) A_ = parser.parse_args() set_seed(args.seed) # Logging A_ = logging.getLogger(__name__) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) # Load model and tokenizer A_ = AutoModelForCausalLM.from_pretrained(args.model_ckpt) A_ = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader A_ = create_dataloader(args) # Prepare everything with our `accelerator`. A_ , A_ = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('''Evaluating and saving model after training''') A_ , A_ = evaluate(args) logger.info(F'loss/eval: {eval_loss}, perplexity: {perplexity}')
296
"""simple docstring""" import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels A_ = object() # For specifying empty leaf dict `{}` A_ = object() def _lowerCAmelCase ( UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[Any] ) ->Dict: A__ : Union[str, Any] = tuple((re.compile(x + """$""" ) for x in qs) ) for i in range(len(UpperCAmelCase__ ) - len(UpperCAmelCase__ ) + 1 ): A__ : Optional[Any] = [x.match(UpperCAmelCase__ ) for x, y in zip(UpperCAmelCase__, ks[i:] )] if matches and all(UpperCAmelCase__ ): return True return False def _lowerCAmelCase ( UpperCAmelCase__ : List[Any] ) ->Dict: def replace(UpperCAmelCase__ : int, UpperCAmelCase__ : List[str] ): for rule, replacement in rules: if _match(UpperCAmelCase__, UpperCAmelCase__ ): return replacement return val return replace def _lowerCAmelCase ( ) ->Tuple: return [ # embeddings (("transformer", "wpe", "embedding"), P("""mp""", UpperCAmelCase__ )), (("transformer", "wte", "embedding"), P("""mp""", UpperCAmelCase__ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(UpperCAmelCase__, """mp""" )), (("attention", "out_proj", "kernel"), P("""mp""", UpperCAmelCase__ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(UpperCAmelCase__, """mp""" )), (("mlp", "c_fc", "bias"), P("""mp""" )), (("mlp", "c_proj", "kernel"), P("""mp""", UpperCAmelCase__ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def _lowerCAmelCase ( UpperCAmelCase__ : Tuple ) ->Any: A__ : Union[str, Any] = _get_partition_rules() A__ : int = _replacement_rules(UpperCAmelCase__ ) A__ : Tuple = {k: _unmatched for k in flatten_dict(UpperCAmelCase__ )} A__ : Optional[int] = {k: replace(UpperCAmelCase__, UpperCAmelCase__ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(UpperCAmelCase__ ) )
296
1
def lowerCAmelCase_ ( ) -> Any: """simple docstring""" lowerCamelCase__: Tuple =[] lowerCamelCase__: Tuple =1 while len(__a ) < 1e6: constant.append(str(__a ) ) i += 1 lowerCamelCase__: List[Any] ="".join(__a ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[99999] ) * int(constant[999999] ) ) if __name__ == "__main__": print(solution())
10
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCAmelCase_ ( __a , __a ) -> Optional[Any]: """simple docstring""" assert isinstance(__a , __a ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: Any =tmp_path / "cache" lowerCamelCase__: Optional[int] ={"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase__: int =ParquetDatasetReader(__a , cache_dir=__a , keep_in_memory=__a ).read() _check_parquet_dataset(__a , __a ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: int =tmp_path / "cache" lowerCamelCase__: Tuple ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Union[str, Any] =features.copy() if features else default_expected_features lowerCamelCase__: Union[str, Any] =( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase__: int =ParquetDatasetReader(__a , features=__a , cache_dir=__a ).read() _check_parquet_dataset(__a , __a ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCAmelCase_ ( __a , __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: Union[str, Any] =tmp_path / "cache" lowerCamelCase__: Dict ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[int] =ParquetDatasetReader(__a , cache_dir=__a , split=__a ).read() _check_parquet_dataset(__a , __a ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def lowerCAmelCase_ ( __a , __a , __a ) -> Dict: """simple docstring""" if issubclass(__a , __a ): lowerCamelCase__: str =parquet_path elif issubclass(__a , __a ): lowerCamelCase__: str =[parquet_path] lowerCamelCase__: Optional[Any] =tmp_path / "cache" lowerCamelCase__: Any ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[int] =ParquetDatasetReader(__a , cache_dir=__a ).read() _check_parquet_dataset(__a , __a ) def lowerCAmelCase_ ( __a , __a , __a=("train",) ) -> Union[str, Any]: """simple docstring""" assert isinstance(__a , __a ) for split in splits: lowerCamelCase__: Optional[Any] =dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: Any =tmp_path / "cache" lowerCamelCase__: str ={"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase__: List[str] =ParquetDatasetReader( {"train": parquet_path} , cache_dir=__a , keep_in_memory=__a ).read() _check_parquet_datasetdict(__a , __a ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: List[Any] =tmp_path / "cache" lowerCamelCase__: Any ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: int =features.copy() if features else default_expected_features lowerCamelCase__: Union[str, Any] =( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase__: Union[str, Any] =ParquetDatasetReader({"train": parquet_path} , features=__a , cache_dir=__a ).read() _check_parquet_datasetdict(__a , __a ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[str]: """simple docstring""" if split: lowerCamelCase__: Union[str, Any] ={split: parquet_path} else: lowerCamelCase__: int ="train" lowerCamelCase__: Union[str, Any] ={"train": parquet_path, "test": parquet_path} lowerCamelCase__: int =tmp_path / "cache" lowerCamelCase__: Union[str, Any] ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[Any] =ParquetDatasetReader(__a , cache_dir=__a ).read() _check_parquet_datasetdict(__a , __a , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCAmelCase_ ( __a , __a ) -> Tuple: """simple docstring""" lowerCamelCase__: Tuple =ParquetDatasetWriter(__a , tmp_path / "foo.parquet" ) assert writer.write() > 0 lowerCamelCase__: Tuple =pq.ParquetFile(tmp_path / "foo.parquet" ) lowerCamelCase__: Optional[int] =pf.read() assert dataset.data.table == output_table def lowerCAmelCase_ ( __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: List[str] =str(shared_datadir / "test_image_rgb.jpg" ) lowerCamelCase__: Union[str, Any] ={"image": [image_path]} lowerCamelCase__: int =Features({"image": Image()} ) lowerCamelCase__: Tuple =Dataset.from_dict(__a , features=__a ) lowerCamelCase__: Optional[int] =ParquetDatasetWriter(__a , tmp_path / "foo.parquet" ) assert writer.write() > 0 lowerCamelCase__: Optional[Any] =Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features lowerCamelCase__: List[str] =ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=__a ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def lowerCAmelCase_ ( __a , __a ) -> Any: """simple docstring""" assert get_writer_batch_size(__a ) == expected
10
1
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , __lowercase , __lowercase=13 , __lowercase=7 , __lowercase=True , __lowercase=True , __lowercase=True , __lowercase=True , __lowercase=99 , __lowercase=32 , __lowercase=5 , __lowercase=4 , __lowercase=37 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=512 , __lowercase=16 , __lowercase=2 , __lowercase=0.02 , __lowercase=4 , ) -> Tuple: __UpperCamelCase :str = parent __UpperCamelCase :List[Any] = batch_size __UpperCamelCase :Tuple = seq_length __UpperCamelCase :Dict = is_training __UpperCamelCase :str = use_attention_mask __UpperCamelCase :Dict = use_token_type_ids __UpperCamelCase :str = use_labels __UpperCamelCase :str = vocab_size __UpperCamelCase :Union[str, Any] = hidden_size __UpperCamelCase :int = num_hidden_layers __UpperCamelCase :List[Any] = num_attention_heads __UpperCamelCase :List[str] = intermediate_size __UpperCamelCase :int = hidden_act __UpperCamelCase :str = hidden_dropout_prob __UpperCamelCase :Union[str, Any] = attention_probs_dropout_prob __UpperCamelCase :List[str] = max_position_embeddings __UpperCamelCase :Any = type_vocab_size __UpperCamelCase :Dict = type_sequence_label_size __UpperCamelCase :Optional[int] = initializer_range __UpperCamelCase :Union[str, Any] = num_choices def UpperCamelCase__ ( self) -> Union[str, Any]: __UpperCamelCase :int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __UpperCamelCase :Tuple = None if self.use_attention_mask: __UpperCamelCase :List[Any] = random_attention_mask([self.batch_size, self.seq_length]) __UpperCamelCase :int = None if self.use_token_type_ids: __UpperCamelCase :Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __UpperCamelCase :Any = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCamelCase__ ( self) -> Optional[Any]: __UpperCamelCase :Any = self.prepare_config_and_inputs() __UpperCamelCase :List[Any] = config_and_inputs __UpperCamelCase :Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class lowerCamelCase_ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a__ : Dict = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase__ ( self) -> int: __UpperCamelCase :str = FlaxAlbertModelTester(self) @slow def UpperCamelCase__ ( self) -> int: for model_class_name in self.all_model_classes: __UpperCamelCase :str = model_class_name.from_pretrained('''albert-base-v2''') __UpperCamelCase :Optional[int] = model(np.ones((1, 1))) self.assertIsNotNone(__lowercase) @require_flax class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase__ ( self) -> List[str]: __UpperCamelCase :Tuple = FlaxAlbertModel.from_pretrained('''albert-base-v2''') __UpperCamelCase :List[Any] = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]]) __UpperCamelCase :List[Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) __UpperCamelCase :Dict = model(__lowercase , attention_mask=__lowercase)[0] __UpperCamelCase :Optional[int] = (1, 11, 768) self.assertEqual(output.shape , __lowercase) __UpperCamelCase :List[str] = np.array( [[[-0.65_13, 1.50_35, -0.27_66], [-0.65_15, 1.50_46, -0.27_80], [-0.65_12, 1.50_49, -0.27_84]]]) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __lowercase , atol=1E-4))
371
import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase :List[str] = torch.nn.Linear(2 , 4 ) __UpperCamelCase :Any = torch.optim.AdamW(model.parameters() , lr=1.0 ) __UpperCamelCase :List[Any] = torch.optim.lr_scheduler.OneCycleLR(SCREAMING_SNAKE_CASE , max_lr=0.01 , steps_per_epoch=2 , epochs=1 ) __UpperCamelCase :List[Any] = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) __UpperCamelCase :Dict = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' return (model.weight.abs().sum() + model.bias.abs().sum()).item() def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Union[str, Any] = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(SCREAMING_SNAKE_CASE ) class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' @require_cuda def UpperCamelCase__ ( self) -> Dict: __UpperCamelCase :Dict = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(__lowercase): __UpperCamelCase :Any = Accelerator(cpu=__lowercase) def UpperCamelCase__ ( self) -> Any: __UpperCamelCase :List[Any] = Accelerator() __UpperCamelCase :List[Any] = GradientState() assert state.num_steps == 1 __UpperCamelCase :Any = 4 assert state.num_steps == 4 assert state.sync_gradients is True __UpperCamelCase :int = False assert state.sync_gradients is False GradientState._reset_state() def UpperCamelCase__ ( self) -> Dict: __UpperCamelCase :Tuple = Accelerator() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :Optional[Any] = create_components() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) :int = accelerator.prepare(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase) self.assertTrue(prepared_model in accelerator._models) self.assertTrue(prepared_optimizer in accelerator._optimizers) self.assertTrue(prepared_scheduler in accelerator._schedulers) self.assertTrue(prepared_train_dl in accelerator._dataloaders) self.assertTrue(prepared_valid_dl in accelerator._dataloaders) def UpperCamelCase__ ( self) -> Optional[Any]: __UpperCamelCase :str = Accelerator() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :Optional[Any] = create_components() accelerator.prepare(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase) accelerator.free_memory() self.assertTrue(len(accelerator._models) == 0) self.assertTrue(len(accelerator._optimizers) == 0) self.assertTrue(len(accelerator._schedulers) == 0) self.assertTrue(len(accelerator._dataloaders) == 0) def UpperCamelCase__ ( self) -> Union[str, Any]: PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*__lowercase , **__lowercase): pass with patch('''torch.cuda.set_device''' , __lowercase), patch_environment(ACCELERATE_TORCH_DEVICE='''cuda:64'''): __UpperCamelCase :Optional[Any] = Accelerator() self.assertEqual(str(accelerator.state.device) , '''cuda:64''') def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase :List[Any] = Accelerator() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :List[Any] = create_components() accelerator.prepare(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase) __UpperCamelCase :Tuple = get_signature(__lowercase) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__lowercase) # make sure random weights don't match load_random_weights(__lowercase) self.assertTrue(abs(model_signature - get_signature(__lowercase)) > 1E-3) # make sure loaded weights match accelerator.load_state(__lowercase) self.assertTrue(abs(model_signature - get_signature(__lowercase)) < 1E-3) def UpperCamelCase__ ( self) -> Dict: __UpperCamelCase :List[Any] = Accelerator() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :Any = create_components() accelerator.prepare(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase) __UpperCamelCase :Any = get_signature(__lowercase) # saving hook def save_config(__lowercase , __lowercase , __lowercase): __UpperCamelCase :Union[str, Any] = {'''class_name''': models[0].__class__.__name__} with open(os.path.join(__lowercase , '''data.json''') , '''w''') as f: json.dump(__lowercase , __lowercase) # loading hook def load_config(__lowercase , __lowercase): with open(os.path.join(__lowercase , '''data.json''') , '''r''') as f: __UpperCamelCase :Dict = json.load(__lowercase) __UpperCamelCase :Dict = config['''class_name'''] __UpperCamelCase :Union[str, Any] = accelerator.register_save_state_pre_hook(__lowercase) __UpperCamelCase :Any = accelerator.register_load_state_pre_hook(__lowercase) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__lowercase) # make sure random weights don't match with hooks load_random_weights(__lowercase) self.assertTrue(abs(model_signature - get_signature(__lowercase)) > 1E-3) # random class name to verify correct one is loaded __UpperCamelCase :int = '''random''' # make sure loaded weights match with hooks accelerator.load_state(__lowercase) self.assertTrue(abs(model_signature - get_signature(__lowercase)) < 1E-3) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__lowercase) # make sure random weights don't match with hooks removed load_random_weights(__lowercase) self.assertTrue(abs(model_signature - get_signature(__lowercase)) > 1E-3) # random class name to verify correct one is loaded __UpperCamelCase :Dict = '''random''' # make sure loaded weights match with hooks removed accelerator.load_state(__lowercase) self.assertTrue(abs(model_signature - get_signature(__lowercase)) < 1E-3) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__) def UpperCamelCase__ ( self) -> Dict: __UpperCamelCase :Optional[Any] = Accelerator() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :Union[str, Any] = create_components() __UpperCamelCase :Optional[Any] = None # This should work __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :List[Any] = accelerator.prepare( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) self.assertTrue(dummy_obj is None) def UpperCamelCase__ ( self) -> List[str]: __UpperCamelCase :List[str] = Accelerator() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :Any = create_components() __UpperCamelCase :Dict = [1, 2, 3] # This should work __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :Tuple = accelerator.prepare( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) self.assertEqual( getattr(__lowercase , '''_is_accelerate_prepared''' , __lowercase) , __lowercase , '''Dummy object should have `_is_accelerate_prepared` set to `True`''' , ) self.assertEqual( getattr(__lowercase , '''_is_accelerate_prepared''' , __lowercase) , __lowercase , '''Model is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(__lowercase , '''_is_accelerate_prepared''' , __lowercase) , __lowercase , '''Optimizer is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(__lowercase , '''_is_accelerate_prepared''' , __lowercase) , __lowercase , '''Scheduler is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(__lowercase , '''_is_accelerate_prepared''' , __lowercase) , __lowercase , '''Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(__lowercase , '''_is_accelerate_prepared''' , __lowercase) , __lowercase , '''Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , ) @slow @require_bnb def UpperCamelCase__ ( self) -> int: from transformers import AutoModelForCausalLM __UpperCamelCase :Optional[int] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=__lowercase , device_map={'''''': 0} , ) __UpperCamelCase :Optional[Any] = Accelerator() # This should work __UpperCamelCase :int = accelerator.prepare(__lowercase) @slow @require_bnb def UpperCamelCase__ ( self) -> List[str]: from transformers import AutoModelForCausalLM __UpperCamelCase :str = Accelerator() with init_empty_weights(): __UpperCamelCase :List[Any] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) model.tie_weights() __UpperCamelCase :List[str] = infer_auto_device_map(__lowercase) __UpperCamelCase :str = '''cpu''' __UpperCamelCase :List[Any] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , device_map=__lowercase , load_in_abit=__lowercase , llm_inta_enable_fpaa_cpu_offload=__lowercase) # This should not work and get value error with self.assertRaises(__lowercase): __UpperCamelCase :Union[str, Any] = accelerator.prepare(__lowercase) @slow @require_bnb @require_multi_gpu def UpperCamelCase__ ( self) -> Union[str, Any]: from transformers import AutoModelForCausalLM __UpperCamelCase :int = {'''distributed_type''': DistributedType.MULTI_GPU} with init_empty_weights(): __UpperCamelCase :Tuple = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) model.tie_weights() __UpperCamelCase :int = infer_auto_device_map(__lowercase) __UpperCamelCase :List[Any] = 1 __UpperCamelCase :int = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=__lowercase , device_map=__lowercase , ) __UpperCamelCase :Dict = Accelerator() # This should not work and get value error with self.assertRaises(__lowercase): __UpperCamelCase :Any = accelerator.prepare(__lowercase) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def UpperCamelCase__ ( self) -> Dict: from transformers import AutoModelForCausalLM with init_empty_weights(): __UpperCamelCase :Optional[int] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) __UpperCamelCase :List[str] = infer_auto_device_map(__lowercase) __UpperCamelCase :Optional[int] = 1 __UpperCamelCase :Optional[int] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=__lowercase , device_map=__lowercase , ) __UpperCamelCase :int = Accelerator() # This should work __UpperCamelCase :int = accelerator.prepare(__lowercase) @require_cuda def UpperCamelCase__ ( self) -> int: __UpperCamelCase :Tuple = torch.nn.Linear(10 , 10) __UpperCamelCase :Optional[Any] = torch.optim.SGD(model.parameters() , lr=0.01) __UpperCamelCase :Any = Accelerator(cpu=__lowercase) __UpperCamelCase :Tuple = accelerator.prepare(__lowercase)
105
0
"""simple docstring""" from __future__ import annotations import os from typing import Any import requests lowerCamelCase__ = """https://api.github.com""" # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user lowerCamelCase__ = BASE_URL + """/user""" # https://github.com/settings/tokens lowerCamelCase__ = os.environ.get("""USER_TOKEN""", """""") def __lowerCAmelCase (_UpperCamelCase ): __lowerCAmelCase : Optional[int] = { 'Authorization': F"token {auth_token}", 'Accept': 'application/vnd.github.v3+json', } return requests.get(_UpperCamelCase , headers=_UpperCamelCase ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f'{key}: {value}') else: raise ValueError("""'USER_TOKEN' field cannot be empty.""")
86
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class A__ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=5_12 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=None , ): __lowerCAmelCase : Tuple = parent __lowerCAmelCase : Optional[int] = 13 __lowerCAmelCase : List[Any] = 7 __lowerCAmelCase : int = True __lowerCAmelCase : Optional[int] = True __lowerCAmelCase : List[Any] = True __lowerCAmelCase : Optional[int] = True __lowerCAmelCase : Optional[Any] = 99 __lowerCAmelCase : int = 3_84 __lowerCAmelCase : Union[str, Any] = 2 __lowerCAmelCase : Tuple = 4 __lowerCAmelCase : str = 37 __lowerCAmelCase : Any = 'gelu' __lowerCAmelCase : List[str] = 0.1 __lowerCAmelCase : Any = 0.1 __lowerCAmelCase : Union[str, Any] = 5_12 __lowerCAmelCase : int = 16 __lowerCAmelCase : Union[str, Any] = 2 __lowerCAmelCase : int = 0.02 __lowerCAmelCase : Dict = 3 __lowerCAmelCase : Tuple = 4 __lowerCAmelCase : Tuple = 1_28 __lowerCAmelCase : Optional[int] = 2 __lowerCAmelCase : List[str] = 9 __lowerCAmelCase : int = 1 __lowerCAmelCase : int = None def __lowerCamelCase ( self ): __lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase : Optional[int] = None if self.use_input_mask: __lowerCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase : Tuple = None if self.use_token_type_ids: __lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase : Optional[Any] = None __lowerCAmelCase : Dict = None __lowerCAmelCase : Union[str, Any] = None if self.use_labels: __lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase : Union[str, Any] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_SCREAMING_SNAKE_CASE , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[int] = TFConvBertModel(config=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __lowerCAmelCase : Tuple = [input_ids, input_mask] __lowerCAmelCase : Any = model(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Any = TFConvBertForMaskedLM(config=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowerCAmelCase : Optional[Any] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Tuple = self.num_labels __lowerCAmelCase : Optional[Any] = TFConvBertForSequenceClassification(config=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowerCAmelCase : Union[str, Any] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : int = self.num_choices __lowerCAmelCase : List[str] = TFConvBertForMultipleChoice(config=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = tf.tile(tf.expand_dims(_SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) ) __lowerCAmelCase : Dict = tf.tile(tf.expand_dims(_SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) ) __lowerCAmelCase : Union[str, Any] = tf.tile(tf.expand_dims(_SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) ) __lowerCAmelCase : Tuple = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __lowerCAmelCase : str = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : str = self.num_labels __lowerCAmelCase : Any = TFConvBertForTokenClassification(config=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowerCAmelCase : Union[str, Any] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : str = TFConvBertForQuestionAnswering(config=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowerCAmelCase : Optional[int] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCamelCase ( self ): __lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) : List[str] = config_and_inputs __lowerCAmelCase : Any = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class A__ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase): A_ : List[str] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) A_ : str = ( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) A_ : List[Any] = False A_ : str = False A_ : List[Any] = False def __lowerCamelCase ( self ): __lowerCAmelCase : Dict = TFConvBertModelTester(self ) __lowerCAmelCase : Any = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def __lowerCamelCase ( self ): self.config_tester.run_common_tests() def __lowerCamelCase ( self ): __lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_SCREAMING_SNAKE_CASE ) @slow def __lowerCamelCase ( self ): __lowerCAmelCase , __lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase : Any = True __lowerCAmelCase : Dict = True if hasattr(_SCREAMING_SNAKE_CASE , 'use_cache' ): __lowerCAmelCase : int = True __lowerCAmelCase : List[str] = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __lowerCAmelCase : str = getattr(self.model_tester , 'key_length' , _SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: __lowerCAmelCase : str = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = model_class(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = len(model(_SCREAMING_SNAKE_CASE ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_SCREAMING_SNAKE_CASE , saved_model=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = os.path.join(_SCREAMING_SNAKE_CASE , 'saved_model' , '1' ) __lowerCAmelCase : int = tf.keras.models.load_model(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = model(_SCREAMING_SNAKE_CASE ) if self.is_encoder_decoder: __lowerCAmelCase : List[str] = outputs['encoder_hidden_states'] __lowerCAmelCase : Tuple = outputs['encoder_attentions'] else: __lowerCAmelCase : Optional[int] = outputs['hidden_states'] __lowerCAmelCase : Tuple = outputs['attentions'] self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __lowerCamelCase ( self ): __lowerCAmelCase : Tuple = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase , __lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase : Optional[Any] = True __lowerCAmelCase : List[Any] = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) __lowerCAmelCase : str = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __lowerCAmelCase : Tuple = getattr(self.model_tester , 'key_length' , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = getattr(self.model_tester , 'key_length' , _SCREAMING_SNAKE_CASE ) def check_decoder_attentions_output(_SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Union[str, Any] = len(_SCREAMING_SNAKE_CASE ) self.assertEqual(out_len % 2 , 0 ) __lowerCAmelCase : Optional[Any] = outputs.decoder_attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_SCREAMING_SNAKE_CASE ): __lowerCAmelCase : str = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __lowerCAmelCase : List[str] = True __lowerCAmelCase : Optional[int] = False __lowerCAmelCase : List[Any] = model_class(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = model(self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase : Tuple = len(_SCREAMING_SNAKE_CASE ) self.assertEqual(config.output_hidden_states , _SCREAMING_SNAKE_CASE ) check_encoder_attentions_output(_SCREAMING_SNAKE_CASE ) if self.is_encoder_decoder: __lowerCAmelCase : Any = model_class(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = model(self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) self.assertEqual(config.output_hidden_states , _SCREAMING_SNAKE_CASE ) check_decoder_attentions_output(_SCREAMING_SNAKE_CASE ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __lowerCAmelCase : Optional[Any] = True __lowerCAmelCase : str = model_class(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = model(self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) self.assertEqual(config.output_hidden_states , _SCREAMING_SNAKE_CASE ) check_encoder_attentions_output(_SCREAMING_SNAKE_CASE ) # Check attention is always last and order is fine __lowerCAmelCase : Dict = True __lowerCAmelCase : Optional[Any] = True __lowerCAmelCase : List[Any] = model_class(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = model(self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_SCREAMING_SNAKE_CASE ) ) self.assertEqual(model.config.output_hidden_states , _SCREAMING_SNAKE_CASE ) check_encoder_attentions_output(_SCREAMING_SNAKE_CASE ) @require_tf class A__ ( unittest.TestCase): @slow def __lowerCamelCase ( self ): __lowerCAmelCase : Dict = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) __lowerCAmelCase : int = tf.constant([[0, 1, 2, 3, 4, 5]] ) __lowerCAmelCase : Tuple = model(_SCREAMING_SNAKE_CASE )[0] __lowerCAmelCase : Tuple = [1, 6, 7_68] self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = tf.constant( [ [ [-0.0347_5493, -0.468_6034, -0.3063_8832], [0.2263_7248, -0.2698_8646, -0.742_3424], [0.1032_4868, -0.4501_3508, -0.5828_0784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 )
86
1
'''simple docstring''' from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo a_ : Optional[Any] = """\ @misc{wu2016googles, title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ a_ : Union[str, Any] = """\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the 'GLEU score'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score's range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. """ a_ : str = """\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: 'google_bleu': google_bleu score Examples: Example 1: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.44 Example 2: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.61 Example 3: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results[\"google_bleu\"], 2)) 0.53 Example 4: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results[\"google_bleu\"], 2)) 0.4 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase ( datasets.Metric ): def lowercase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''', id='''token''' ), id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''', id='''token''' ), id='''sequence''' ), id='''references''' ), } ), ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = 1, lowerCAmelCase = 4, ): """simple docstring""" return { "google_bleu": gleu_score.corpus_gleu( list_of_references=lowerCAmelCase, hypotheses=lowerCAmelCase, min_len=lowerCAmelCase, max_len=lowerCAmelCase ) }
6
'''simple docstring''' import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowercase : Union[str, Any] =VQModel lowercase : Union[str, Any] ='sample' @property def lowercase__ ( self, lowerCAmelCase=(32, 32) ): """simple docstring""" lowerCamelCase_ =4 lowerCamelCase_ =3 lowerCamelCase_ =floats_tensor((batch_size, num_channels) + sizes ).to(lowerCAmelCase ) return {"sample": image} @property def lowercase__ ( self ): """simple docstring""" return (3, 32, 32) @property def lowercase__ ( self ): """simple docstring""" return (3, 32, 32) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ={ '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 3, } lowerCamelCase_ =self.dummy_input return init_dict, inputs_dict def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCamelCase_, lowerCamelCase_ =VQModel.from_pretrained('''fusing/vqgan-dummy''', output_loading_info=lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ), 0 ) model.to(lowerCAmelCase ) lowerCamelCase_ =model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =VQModel.from_pretrained('''fusing/vqgan-dummy''' ) model.to(lowerCAmelCase ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) lowerCamelCase_ =torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size ) lowerCamelCase_ =image.to(lowerCAmelCase ) with torch.no_grad(): lowerCamelCase_ =model(lowerCAmelCase ).sample lowerCamelCase_ =output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowerCamelCase_ =torch.tensor([-0.0_1_5_3, -0.4_0_4_4, -0.1_8_8_0, -0.5_1_6_1, -0.2_4_1_8, -0.4_0_7_2, -0.1_6_1_2, -0.0_6_3_3, -0.0_1_4_3] ) # fmt: on self.assertTrue(torch.allclose(lowerCAmelCase, lowerCAmelCase, atol=1e-3 ) )
6
1
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer __a = logging.get_logger(__name__) __a = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __a = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } __a = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } __a = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } __a = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } __a = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } __a = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } __a = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } __a = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } __a = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = VOCAB_FILES_NAMES lowercase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = VOCAB_FILES_NAMES lowercase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __a = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) __a = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) __a = R"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(_a ) class UpperCAmelCase_ : """simple docstring""" def __call__( self : List[Any] , snake_case_ : Optional[Any] , snake_case_ : Optional[str] = None , snake_case_ : Optional[str] = None , snake_case_ : Union[bool, str] = False , snake_case_ : Union[bool, str] = False , snake_case_ : Optional[int] = None , snake_case_ : Optional[Union[str, TensorType]] = None , snake_case_ : Optional[bool] = None , **snake_case_ : List[Any] , ): if titles is None and texts is None: return super().__call__( snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , return_tensors=snake_case_ , return_attention_mask=snake_case_ , **snake_case_ , ) elif titles is None or texts is None: snake_case__ : List[str] = titles if texts is None else texts return super().__call__( snake_case_ , snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , return_tensors=snake_case_ , return_attention_mask=snake_case_ , **snake_case_ , ) snake_case__ : Optional[Any] = titles if not isinstance(snake_case_ , snake_case_ ) else [titles] snake_case__ : Union[str, Any] = texts if not isinstance(snake_case_ , snake_case_ ) else [texts] snake_case__ : Union[str, Any] = len(snake_case_ ) snake_case__ : Any = questions if not isinstance(snake_case_ , snake_case_ ) else [questions] * n_passages if len(snake_case_ ) != len(snake_case_ ): raise ValueError( f"There should be as many titles than texts but got {len(snake_case_ )} titles and {len(snake_case_ )} texts." ) snake_case__ : Dict = super().__call__(snake_case_ , snake_case_ , padding=snake_case_ , truncation=snake_case_ )["""input_ids"""] snake_case__ : List[Any] = super().__call__(snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ )["""input_ids"""] snake_case__ : Any = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(snake_case_ , snake_case_ ) ] } if return_attention_mask is not False: snake_case__ : str = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) snake_case__ : Optional[Any] = attention_mask return self.pad(snake_case_ , padding=snake_case_ , max_length=snake_case_ , return_tensors=snake_case_ ) def lowerCamelCase ( self : Tuple , snake_case_ : BatchEncoding , snake_case_ : DPRReaderOutput , snake_case_ : int = 16 , snake_case_ : int = 64 , snake_case_ : int = 4 , ): snake_case__ : Dict = reader_input["""input_ids"""] snake_case__ , snake_case__ , snake_case__ : int = reader_output[:3] snake_case__ : Optional[int] = len(snake_case_ ) snake_case__ : List[Any] = sorted(range(snake_case_ ) , reverse=snake_case_ , key=relevance_logits.__getitem__ ) snake_case__ : List[DPRReaderOutput] = [] for doc_id in sorted_docs: snake_case__ : int = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence snake_case__ : List[str] = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: snake_case__ : Any = sequence_ids.index(self.pad_token_id ) else: snake_case__ : List[str] = len(snake_case_ ) snake_case__ : Any = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=snake_case_ , top_spans=snake_case_ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=snake_case_ , start_index=snake_case_ , end_index=snake_case_ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(snake_case_ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowerCamelCase ( self : Tuple , snake_case_ : List[int] , snake_case_ : List[int] , snake_case_ : int , snake_case_ : int , ): snake_case__ : Union[str, Any] = [] for start_index, start_score in enumerate(snake_case_ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) snake_case__ : Dict = sorted(snake_case_ , key=lambda snake_case_ : x[1] , reverse=snake_case_ ) snake_case__ : Optional[int] = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f"Wrong span indices: [{start_index}:{end_index}]" ) snake_case__ : Union[str, Any] = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f"Span is too long: {length} > {max_answer_length}" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(snake_case_ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_a ) class UpperCAmelCase_ ( _a , _a ): """simple docstring""" lowercase = VOCAB_FILES_NAMES lowercase = READER_PRETRAINED_VOCAB_FILES_MAP lowercase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = READER_PRETRAINED_INIT_CONFIGURATION lowercase = ["input_ids", "attention_mask"]
35
'''simple docstring''' # Function to print upper half of diamond (pyramid) def __snake_case( _lowerCAmelCase ) -> Any: for i in range(0 , _lowerCAmelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(""" """ , end="""""" ) for _ in range(0 , i + 1 ): # printing stars print("""* """ , end="""""" ) print() def __snake_case( _lowerCAmelCase ) -> List[str]: for i in range(_lowerCAmelCase , 0 , -1 ): for _ in range(_lowerCAmelCase , 0 , -1 ): # printing stars print("""* """ , end="""""" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(""" """ , end="""""" ) def __snake_case( _lowerCAmelCase ) -> List[Any]: if n <= 0: print(""" ... .... nothing printing :(""" ) return floyd(_lowerCAmelCase ) # upper half reverse_floyd(_lowerCAmelCase ) # lower half if __name__ == "__main__": print(R"| /\ | |- | |- |--| |\ /| |-") print(R"|/ \| |- |_ |_ |__| | \/ | |_") __a = 1 while K: __a = int(input("enter the number and , and see the magic : ")) print() pretty_print(user_number) __a = int(input("press 0 to exit... and 1 to continue...")) print("Good Bye...")
35
1
"""simple docstring""" import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging _lowerCamelCase : str = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''linear''' UpperCAmelCase__ = '''cosine''' UpperCAmelCase__ = '''cosine_with_restarts''' UpperCAmelCase__ = '''polynomial''' UpperCAmelCase__ = '''constant''' UpperCAmelCase__ = '''constant_with_warmup''' UpperCAmelCase__ = '''piecewise_constant''' def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ = -1 ) -> List[str]: """simple docstring""" return LambdaLR(lowercase_ , lambda lowercase_ : 1 , last_epoch=lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ = -1 ) -> List[str]: """simple docstring""" def lr_lambda(lowercase_ ): if current_step < num_warmup_steps: return float(lowercase_ ) / float(max(1.0 , lowercase_ ) ) return 1.0 return LambdaLR(lowercase_ , lowercase_ , last_epoch=lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ = -1 ) -> List[str]: """simple docstring""" A__ = {} A__ = step_rules.split(''',''' ) for rule_str in rule_list[:-1]: A__ , A__ = rule_str.split(''':''' ) A__ = int(lowercase_ ) A__ = float(lowercase_ ) A__ = value A__ = float(rule_list[-1] ) def create_rules_function(lowercase_ , lowercase_ ): def rule_func(lowercase_ ) -> float: A__ = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(lowercase_ ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func A__ = create_rules_function(lowercase_ , lowercase_ ) return LambdaLR(lowercase_ , lowercase_ , last_epoch=lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_=-1 ) -> Optional[Any]: """simple docstring""" def lr_lambda(lowercase_ ): if current_step < num_warmup_steps: return float(lowercase_ ) / float(max(1 , lowercase_ ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(lowercase_ , lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ = 0.5 , lowercase_ = -1 ) -> List[Any]: """simple docstring""" def lr_lambda(lowercase_ ): if current_step < num_warmup_steps: return float(lowercase_ ) / float(max(1 , lowercase_ ) ) A__ = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(lowercase_ ) * 2.0 * progress )) ) return LambdaLR(lowercase_ , lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ = 1 , lowercase_ = -1 ) -> Tuple: """simple docstring""" def lr_lambda(lowercase_ ): if current_step < num_warmup_steps: return float(lowercase_ ) / float(max(1 , lowercase_ ) ) A__ = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(lowercase_ ) * progress) % 1.0) )) ) return LambdaLR(lowercase_ , lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_=1E-7 , lowercase_=1.0 , lowercase_=-1 ) -> Optional[Any]: """simple docstring""" A__ = optimizer.defaults['''lr'''] if not (lr_init > lr_end): raise ValueError(f"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" ) def lr_lambda(lowercase_ ): if current_step < num_warmup_steps: return float(lowercase_ ) / float(max(1 , lowercase_ ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: A__ = lr_init - lr_end A__ = num_training_steps - num_warmup_steps A__ = 1 - (current_step - num_warmup_steps) / decay_steps A__ = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(lowercase_ , lowercase_ , lowercase_ ) _lowerCamelCase : str = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = 1 , lowercase_ = 1.0 , lowercase_ = -1 , ) -> List[str]: """simple docstring""" A__ = SchedulerType(lowercase_ ) A__ = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(lowercase_ , last_epoch=lowercase_ ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(lowercase_ , step_rules=lowercase_ , last_epoch=lowercase_ ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f"""{name} requires `num_warmup_steps`, please provide that argument.""" ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(lowercase_ , num_warmup_steps=lowercase_ , last_epoch=lowercase_ ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f"""{name} requires `num_training_steps`, please provide that argument.""" ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( lowercase_ , num_warmup_steps=lowercase_ , num_training_steps=lowercase_ , num_cycles=lowercase_ , last_epoch=lowercase_ , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( lowercase_ , num_warmup_steps=lowercase_ , num_training_steps=lowercase_ , power=lowercase_ , last_epoch=lowercase_ , ) return schedule_func( lowercase_ , num_warmup_steps=lowercase_ , num_training_steps=lowercase_ , last_epoch=lowercase_ )
370
from __future__ import annotations import queue class UpperCamelCase_ : '''simple docstring''' def __init__( self : Optional[Any] , UpperCAmelCase__ : Dict) ->Any: '''simple docstring''' A__ = data A__ = None A__ = None def SCREAMING_SNAKE_CASE ( ) -> TreeNode: """simple docstring""" print('''\n********Press N to stop entering at any point of time********\n''' ) A__ = input('''Enter the value of the root node: ''' ).strip().lower() A__ = queue.Queue() A__ = TreeNode(int(lowercase_ ) ) q.put(lowercase_ ) while not q.empty(): A__ = q.get() A__ = f"""Enter the left node of {node_found.data}: """ A__ = input(lowercase_ ).strip().lower() or '''n''' if check == "n": return tree_node A__ = TreeNode(int(lowercase_ ) ) A__ = left_node q.put(lowercase_ ) A__ = f"""Enter the right node of {node_found.data}: """ A__ = input(lowercase_ ).strip().lower() or '''n''' if check == "n": return tree_node A__ = TreeNode(int(lowercase_ ) ) A__ = right_node q.put(lowercase_ ) raise def SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: """simple docstring""" if not isinstance(lowercase_ , lowercase_ ) or not node: return print(node.data , end=''',''' ) pre_order(node.left ) pre_order(node.right ) def SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: """simple docstring""" if not isinstance(lowercase_ , lowercase_ ) or not node: return in_order(node.left ) print(node.data , end=''',''' ) in_order(node.right ) def SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: """simple docstring""" if not isinstance(lowercase_ , lowercase_ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=''',''' ) def SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: """simple docstring""" if not isinstance(lowercase_ , lowercase_ ) or not node: return A__ = queue.Queue() q.put(lowercase_ ) while not q.empty(): A__ = q.get() print(node_dequeued.data , end=''',''' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: """simple docstring""" if not isinstance(lowercase_ , lowercase_ ) or not node: return A__ = queue.Queue() q.put(lowercase_ ) while not q.empty(): A__ = [] while not q.empty(): A__ = q.get() print(node_dequeued.data , end=''',''' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: """simple docstring""" if not isinstance(lowercase_ , lowercase_ ) or not node: return A__ = [] A__ = node while n or stack: while n: # start from root node, find its left child print(n.data , end=''',''' ) stack.append(lowercase_ ) A__ = n.left # end of while means current node doesn't have left child A__ = stack.pop() # start to traverse its right child A__ = n.right def SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: """simple docstring""" if not isinstance(lowercase_ , lowercase_ ) or not node: return A__ = [] A__ = node while n or stack: while n: stack.append(lowercase_ ) A__ = n.left A__ = stack.pop() print(n.data , end=''',''' ) A__ = n.right def SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: """simple docstring""" if not isinstance(lowercase_ , lowercase_ ) or not node: return A__ , A__ = [], [] A__ = node stacka.append(lowercase_ ) while stacka: # to find the reversed order of post order, store it in stack2 A__ = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(lowercase_ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=''',''' ) def SCREAMING_SNAKE_CASE ( lowercase_ = "" , lowercase_=50 , lowercase_="*" ) -> str: """simple docstring""" if not s: return "\n" + width * char A__ , A__ = divmod(width - len(lowercase_ ) - 2 , 2 ) return f"""{left * char} {s} {(left + extra) * char}""" if __name__ == "__main__": import doctest doctest.testmod() print(prompt("""Binary Tree Traversals""")) _lowerCamelCase : TreeNode = build_tree() print(prompt("""Pre Order Traversal""")) pre_order(node) print(prompt() + """\n""") print(prompt("""In Order Traversal""")) in_order(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal""")) post_order(node) print(prompt() + """\n""") print(prompt("""Level Order Traversal""")) level_order(node) print(prompt() + """\n""") print(prompt("""Actual Level Order Traversal""")) level_order_actual(node) print("""*""" * 50 + """\n""") print(prompt("""Pre Order Traversal - Iteration Version""")) pre_order_iter(node) print(prompt() + """\n""") print(prompt("""In Order Traversal - Iteration Version""")) in_order_iter(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal - Iteration Version""")) post_order_iter(node) print(prompt())
231
0
'''simple docstring''' from __future__ import annotations from typing import Any class lowerCAmelCase_: '''simple docstring''' def __init__( self ,__UpperCAmelCase ) -> None: lowerCAmelCase__ : List[str] = num_of_nodes lowerCAmelCase__ : list[list[int]] = [] lowerCAmelCase__ : dict[int, int] = {} def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> None: self.m_edges.append([u_node, v_node, weight] ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> int: if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> None: if self.m_component[u_node] != u_node: for k in self.m_component: lowerCAmelCase__ : Optional[Any] = self.find_component(__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> None: if component_size[u_node] <= component_size[v_node]: lowerCAmelCase__ : Dict = v_node component_size[v_node] += component_size[u_node] self.set_component(__UpperCAmelCase ) elif component_size[u_node] >= component_size[v_node]: lowerCAmelCase__ : Union[str, Any] = self.find_component(__UpperCAmelCase ) component_size[u_node] += component_size[v_node] self.set_component(__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> None: lowerCAmelCase__ : Union[str, Any] = [] lowerCAmelCase__ : Any = 0 lowerCAmelCase__ : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) lowerCAmelCase__ : str = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = edge lowerCAmelCase__ : Union[str, Any] = self.m_component[u] lowerCAmelCase__ : str = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): lowerCAmelCase__ : str = [u, v, w] for edge in minimum_weight_edge: if isinstance(__UpperCAmelCase ,__UpperCAmelCase ): lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = edge lowerCAmelCase__ : Optional[int] = self.m_component[u] lowerCAmelCase__ : Union[str, Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 lowerCAmelCase__ : Tuple = [-1] * self.m_num_of_nodes print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
37
'''simple docstring''' import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a_ : Optional[int] = logging.get_logger(__name__) a_ : Optional[int] = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } a_ : List[Any] = { """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } a_ : Optional[int] = {"""facebook/blenderbot_small-90M""": 5_12} def a_ ( __snake_case : List[Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ =set() lowerCamelCase_ =word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase_ =char lowerCamelCase_ =set(__snake_case ) return pairs class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Optional[int] =VOCAB_FILES_NAMES lowercase : Tuple =PRETRAINED_VOCAB_FILES_MAP lowercase : Tuple =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : Dict =['input_ids', 'attention_mask'] def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase="__start__", lowerCAmelCase="__end__", lowerCAmelCase="__unk__", lowerCAmelCase="__null__", **lowerCAmelCase, ): """simple docstring""" super().__init__(unk_token=lowerCAmelCase, bos_token=lowerCAmelCase, eos_token=lowerCAmelCase, pad_token=lowerCAmelCase, **lowerCAmelCase ) with open(lowerCAmelCase, encoding='''utf-8''' ) as vocab_handle: lowerCamelCase_ =json.load(lowerCAmelCase ) lowerCamelCase_ ={v: k for k, v in self.encoder.items()} with open(lowerCAmelCase, encoding='''utf-8''' ) as merges_handle: lowerCamelCase_ =merges_handle.read().split('''\n''' )[1:-1] lowerCamelCase_ =[tuple(merge.split() ) for merge in merges] lowerCamelCase_ =dict(zip(lowerCAmelCase, range(len(lowerCAmelCase ) ) ) ) lowerCamelCase_ ={} @property def lowercase__ ( self ): """simple docstring""" return len(self.encoder ) def lowercase__ ( self ): """simple docstring""" return dict(self.encoder, **self.added_tokens_encoder ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" if token in self.cache: return self.cache[token] lowerCamelCase_ =re.sub('''([.,!?()])''', R''' \1''', lowerCAmelCase ) lowerCamelCase_ =re.sub('''(\')''', R''' \1 ''', lowerCAmelCase ) lowerCamelCase_ =re.sub(R'''\s{2,}''', ''' ''', lowerCAmelCase ) if "\n" in token: lowerCamelCase_ =token.replace('''\n''', ''' __newln__''' ) lowerCamelCase_ =token.split(''' ''' ) lowerCamelCase_ =[] for token in tokens: if not len(lowerCAmelCase ): continue lowerCamelCase_ =token.lower() lowerCamelCase_ =tuple(lowerCAmelCase ) lowerCamelCase_ =tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) lowerCamelCase_ =get_pairs(lowerCAmelCase ) if not pairs: words.append(lowerCAmelCase ) continue while True: lowerCamelCase_ =min(lowerCAmelCase, key=lambda lowerCAmelCase : self.bpe_ranks.get(lowerCAmelCase, float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase_, lowerCamelCase_ =bigram lowerCamelCase_ =[] lowerCamelCase_ =0 while i < len(lowerCAmelCase ): try: lowerCamelCase_ =word.index(lowerCAmelCase, lowerCAmelCase ) new_word.extend(word[i:j] ) lowerCamelCase_ =j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(lowerCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase_ =tuple(lowerCAmelCase ) lowerCamelCase_ =new_word if len(lowerCAmelCase ) == 1: break else: lowerCamelCase_ =get_pairs(lowerCAmelCase ) lowerCamelCase_ ='''@@ '''.join(lowerCAmelCase ) lowerCamelCase_ =word[:-4] lowerCamelCase_ =word words.append(lowerCAmelCase ) return " ".join(lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =re.findall(R'''\S+\n?''', lowerCAmelCase ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase ).split(''' ''' ) ) ) return split_tokens def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =token.lower() return self.encoder.get(lowerCAmelCase, self.encoder.get(self.unk_token ) ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" return self.decoder.get(lowerCAmelCase, self.unk_token ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =''' '''.join(lowerCAmelCase ).replace('''@@ ''', '''''' ).strip() return out_string def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase_ =os.path.join( lowerCAmelCase, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase_ =os.path.join( lowerCAmelCase, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowerCAmelCase, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=lowerCAmelCase, ensure_ascii=lowerCAmelCase ) + '''\n''' ) lowerCamelCase_ =0 with open(lowerCAmelCase, '''w''', encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) lowerCamelCase_ =token_index writer.write(''' '''.join(lowerCAmelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file
75
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A: Optional[int] = { "configuration_blip_2": [ "BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Blip2Config", "Blip2QFormerConfig", "Blip2VisionConfig", ], "processing_blip_2": ["Blip2Processor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Optional[int] = [ "BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST", "Blip2Model", "Blip2QFormerModel", "Blip2PreTrainedModel", "Blip2ForConditionalGeneration", "Blip2VisionModel", ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys A: Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
76
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType A: Optional[Any] = logging.get_logger(__name__) A: Optional[int] = { "microsoft/layoutlmv3-base": "https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __lowerCAmelCase : int = 'layoutlmv3' def __init__( self , _SCREAMING_SNAKE_CASE=50265 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=3072 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1E-5 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=1024 , _SCREAMING_SNAKE_CASE=128 , _SCREAMING_SNAKE_CASE=128 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=128 , _SCREAMING_SNAKE_CASE=64 , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=224 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: '''simple docstring''' super().__init__( vocab_size=_SCREAMING_SNAKE_CASE , hidden_size=_SCREAMING_SNAKE_CASE , num_hidden_layers=_SCREAMING_SNAKE_CASE , num_attention_heads=_SCREAMING_SNAKE_CASE , intermediate_size=_SCREAMING_SNAKE_CASE , hidden_act=_SCREAMING_SNAKE_CASE , hidden_dropout_prob=_SCREAMING_SNAKE_CASE , attention_probs_dropout_prob=_SCREAMING_SNAKE_CASE , max_position_embeddings=_SCREAMING_SNAKE_CASE , type_vocab_size=_SCREAMING_SNAKE_CASE , initializer_range=_SCREAMING_SNAKE_CASE , layer_norm_eps=_SCREAMING_SNAKE_CASE , pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : List[str] = max_ad_position_embeddings UpperCAmelCase : List[Any] = coordinate_size UpperCAmelCase : List[Any] = shape_size UpperCAmelCase : Any = has_relative_attention_bias UpperCAmelCase : Optional[Any] = rel_pos_bins UpperCAmelCase : int = max_rel_pos UpperCAmelCase : int = has_spatial_attention_bias UpperCAmelCase : Optional[int] = rel_ad_pos_bins UpperCAmelCase : str = max_rel_ad_pos UpperCAmelCase : List[Any] = text_embed UpperCAmelCase : Tuple = visual_embed UpperCAmelCase : List[Any] = input_size UpperCAmelCase : Union[str, Any] = num_channels UpperCAmelCase : Dict = patch_size UpperCAmelCase : Dict = classifier_dropout class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __lowerCAmelCase : Optional[int] = version.parse('1.12' ) @property def SCREAMING_SNAKE_CASE ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def SCREAMING_SNAKE_CASE ( self ) -> float: '''simple docstring''' return 1E-5 @property def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' return 12 def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 3 , _SCREAMING_SNAKE_CASE = 40 , _SCREAMING_SNAKE_CASE = 40 , ) -> Mapping[str, Any]: '''simple docstring''' setattr(processor.image_processor , """apply_ocr""" , _SCREAMING_SNAKE_CASE ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase : str = compute_effective_axis_dimension( _SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase : Any = processor.tokenizer.num_special_tokens_to_add(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[int] = compute_effective_axis_dimension( _SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_SCREAMING_SNAKE_CASE ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase : Union[str, Any] = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes UpperCAmelCase : Optional[Any] = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) UpperCAmelCase : Tuple = self._generate_dummy_images(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Tuple = dict( processor( _SCREAMING_SNAKE_CASE , text=_SCREAMING_SNAKE_CASE , boxes=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , ) ) return inputs
76
1
"""simple docstring""" _a = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(100_000)] def __a ( __lowerCamelCase ): UpperCAmelCase_ : Optional[Any] = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution _a = [None] * 10_000_000 _a = True _a = False def __a ( __lowerCamelCase ): if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore UpperCAmelCase_ : List[Any] = chain(next_number(__lowerCamelCase ) ) UpperCAmelCase_ : List[Any] = number_chain while number < 1000_0000: UpperCAmelCase_ : Dict = number_chain number *= 10 return number_chain def __a ( __lowerCamelCase = 1000_0000 ): for i in range(1, __lowerCamelCase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() print(f"""{solution() = }""")
61
"""simple docstring""" def __a ( __lowerCamelCase = 3, __lowerCamelCase = 7, __lowerCamelCase = 100_0000 ): UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : List[Any] = 1 for current_denominator in range(1, limit + 1 ): UpperCAmelCase_ : Dict = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: UpperCAmelCase_ : List[Any] = current_numerator UpperCAmelCase_ : Optional[int] = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1_000_000))
61
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = {"""vocab_file""": """sentencepiece.bpe.model"""} UpperCamelCase__ = { """vocab_file""": { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model""", } } UpperCamelCase__ = { """camembert-base""": 512, } UpperCamelCase__ = """▁""" class a__ ( snake_case__ ): _a : List[Any] = VOCAB_FILES_NAMES _a : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _a : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : Union[str, Any] = ["""input_ids""", """attention_mask"""] def __init__( self , _A , _A="<s>" , _A="</s>" , _A="</s>" , _A="<s>" , _A="<unk>" , _A="<pad>" , _A="<mask>" , _A=["<s>NOTUSED", "</s>NOTUSED"] , _A = None , **_A , ): """simple docstring""" __lowerCAmelCase = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else mask_token __lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , cls_token=_A , pad_token=_A , mask_token=_A , additional_special_tokens=_A , sp_model_kwargs=self.sp_model_kwargs , **_A , ) __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_A ) ) __lowerCAmelCase = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> __lowerCAmelCase = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3} __lowerCAmelCase = len(self.fairseq_tokens_to_ids ) __lowerCAmelCase = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) __lowerCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __SCREAMING_SNAKE_CASE( self , _A , _A = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] __lowerCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __SCREAMING_SNAKE_CASE( self , _A , _A = None , _A = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) if token_ids_a is None: return [1] + ([0] * len(_A )) + [1] return [1] + ([0] * len(_A )) + [1, 1] + ([0] * len(_A )) + [1] def __SCREAMING_SNAKE_CASE( self , _A , _A = None ): """simple docstring""" __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" return self.sp_model.encode(_A , out_type=_A ) def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(_A ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(_A ) def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" __lowerCAmelCase = [] __lowerCAmelCase = "" __lowerCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_A ) + token __lowerCAmelCase = True __lowerCAmelCase = [] else: current_sub_tokens.append(_A ) __lowerCAmelCase = False out_string += self.sp_model.decode(_A ) return out_string.strip() def __getstate__( self ): """simple docstring""" __lowerCAmelCase = self.__dict__.copy() __lowerCAmelCase = None return state def __setstate__( self , _A ): """simple docstring""" __lowerCAmelCase = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __lowerCAmelCase = {} __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __SCREAMING_SNAKE_CASE( self , _A , _A = None ): """simple docstring""" if not os.path.isdir(_A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCAmelCase = os.path.join( _A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _A ) elif not os.path.isfile(self.vocab_file ): with open(_A , "wb" ) as fi: __lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,)
102
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class a__ : def __init__( self , _A , _A=1_4 , _A=7 , _A=True , _A=True , _A=False , _A=True , _A=9_9 , _A=3_2 , _A=4 , _A=4 , _A=4 , _A=3_7 , _A="gelu" , _A=0.1 , _A=0.1 , _A=5_1_2 , _A=0.02 , ): """simple docstring""" __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_input_mask __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = rotary_dim __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = initializer_range __lowerCAmelCase = None __lowerCAmelCase = vocab_size - 1 __lowerCAmelCase = vocab_size - 1 __lowerCAmelCase = vocab_size - 1 def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = None if self.use_input_mask: __lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=_A , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = 2_0 __lowerCAmelCase = model_class_name(_A ) __lowerCAmelCase = model.init_cache(input_ids.shape[0] , _A ) __lowerCAmelCase = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="i4" ) __lowerCAmelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __lowerCAmelCase = model( input_ids[:, :-1] , attention_mask=_A , past_key_values=_A , position_ids=_A , ) __lowerCAmelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="i4" ) __lowerCAmelCase = model( input_ids[:, -1:] , attention_mask=_A , past_key_values=outputs_cache.past_key_values , position_ids=_A , ) __lowerCAmelCase = model(_A ) __lowerCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"""Max diff is {diff}""" ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = 2_0 __lowerCAmelCase = model_class_name(_A ) __lowerCAmelCase = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) __lowerCAmelCase = model.init_cache(input_ids.shape[0] , _A ) __lowerCAmelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __lowerCAmelCase = model( input_ids[:, :-1] , attention_mask=_A , past_key_values=_A , position_ids=_A , ) __lowerCAmelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="i4" ) __lowerCAmelCase = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=_A , position_ids=_A , ) __lowerCAmelCase = model(_A , attention_mask=_A ) __lowerCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"""Max diff is {diff}""" ) @require_flax class a__ ( snake_case__ , snake_case__ , unittest.TestCase ): _a : str = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () _a : Any = (FlaxGPTJForCausalLM,) if is_flax_available() else () def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = FlaxGPTJModelTester(self ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" for model_class_name in self.all_model_classes: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(_A , _A , _A , _A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" for model_class_name in self.all_model_classes: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( _A , _A , _A , _A ) @tooslow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = GPTaTokenizer.from_pretrained("gpt2" , pad_token="<|endoftext|>" , padding_side="left" ) __lowerCAmelCase = tokenizer(["Hello this is a long string", "Hey"] , return_tensors="np" , padding=_A , truncation=_A ) __lowerCAmelCase = FlaxGPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B" ) __lowerCAmelCase = False __lowerCAmelCase = model.config.eos_token_id __lowerCAmelCase = jax.jit(model.generate ) __lowerCAmelCase = jit_generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , pad_token_id=tokenizer.pad_token_id ).sequences __lowerCAmelCase = tokenizer.batch_decode(_A , skip_special_tokens=_A ) __lowerCAmelCase = [ "Hello this is a long string of text.\n\nI'm trying to get the text of the", "Hey, I'm a little late to the party. I'm going to", ] self.assertListEqual(_A , _A ) @is_pt_flax_cross_test def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __lowerCAmelCase = self._prepare_for_class(_A , _A ) __lowerCAmelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __lowerCAmelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __lowerCAmelCase = getattr(_A , _A ) __lowerCAmelCase , __lowerCAmelCase = pt_inputs["input_ids"].shape __lowerCAmelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_A ): __lowerCAmelCase = 0 __lowerCAmelCase = 1 __lowerCAmelCase = 0 __lowerCAmelCase = 1 __lowerCAmelCase = pt_model_class(_A ).eval() __lowerCAmelCase = model_class(_A , dtype=jnp.floataa ) __lowerCAmelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , _A ) __lowerCAmelCase = fx_state with torch.no_grad(): __lowerCAmelCase = pt_model(**_A ).to_tuple() __lowerCAmelCase = fx_model(**_A ).to_tuple() self.assertEqual(len(_A ) , len(_A ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(_A , _A ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(_A ) __lowerCAmelCase = model_class.from_pretrained(_A , from_pt=_A ) __lowerCAmelCase = fx_model_loaded(**_A ).to_tuple() self.assertEqual( len(_A ) , len(_A ) , "Output lengths differ between Flax and PyTorch" ) for fx_output_loaded, pt_output in zip(_A , _A ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __lowerCAmelCase = self._prepare_for_class(_A , _A ) __lowerCAmelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __lowerCAmelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __lowerCAmelCase = getattr(_A , _A ) __lowerCAmelCase = pt_model_class(_A ).eval() __lowerCAmelCase = model_class(_A , dtype=jnp.floataa ) __lowerCAmelCase = load_flax_weights_in_pytorch_model(_A , fx_model.params ) __lowerCAmelCase , __lowerCAmelCase = pt_inputs["input_ids"].shape __lowerCAmelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_A ): __lowerCAmelCase = 0 __lowerCAmelCase = 1 __lowerCAmelCase = 0 __lowerCAmelCase = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): __lowerCAmelCase = pt_model(**_A ).to_tuple() __lowerCAmelCase = fx_model(**_A ).to_tuple() self.assertEqual(len(_A ) , len(_A ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(_A , _A ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(_A ) __lowerCAmelCase = pt_model_class.from_pretrained(_A , from_flax=_A ) with torch.no_grad(): __lowerCAmelCase = pt_model_loaded(**_A ).to_tuple() self.assertEqual( len(_A ) , len(_A ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(_A , _A ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" for model_class_name in self.all_model_classes: __lowerCAmelCase = model_class_name.from_pretrained("EleutherAI/gpt-j-6B" ) __lowerCAmelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(_A )
102
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class UpperCamelCase ( unittest.TestCase ): @slow def _lowercase ( self : str ) -> Any: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: _a : Optional[Any] = AutoConfig.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Optional[int] = TFAutoModel.from_pretrained(UpperCAmelCase__ , from_pt=UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Any = AutoModel.from_pretrained(UpperCAmelCase__ , from_tf=UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def _lowercase ( self : Optional[int] ) -> Dict: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: _a : Optional[int] = AutoConfig.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) _a : List[str] = TFAutoModelForPreTraining.from_pretrained(UpperCAmelCase__ , from_pt=UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) _a : List[str] = AutoModelForPreTraining.from_pretrained(UpperCAmelCase__ , from_tf=UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def _lowercase ( self : int ) -> List[str]: for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Union[str, Any] = AutoConfig.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Union[str, Any] = TFAutoModelForCausalLM.from_pretrained(UpperCAmelCase__ , from_pt=UpperCAmelCase__ ) _a , _a : Any = TFAutoModelForCausalLM.from_pretrained( UpperCAmelCase__ , output_loading_info=UpperCAmelCase__ , from_pt=UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) _a : List[str] = AutoModelForCausalLM.from_pretrained(UpperCAmelCase__ , from_tf=UpperCAmelCase__ ) _a , _a : Any = AutoModelForCausalLM.from_pretrained( UpperCAmelCase__ , output_loading_info=UpperCAmelCase__ , from_tf=UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def _lowercase ( self : Any ) -> List[str]: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Tuple = AutoConfig.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Tuple = TFAutoModelWithLMHead.from_pretrained(UpperCAmelCase__ , from_pt=UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) _a : str = AutoModelWithLMHead.from_pretrained(UpperCAmelCase__ , from_tf=UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def _lowercase ( self : int ) -> Any: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : str = AutoConfig.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) _a : List[Any] = TFAutoModelForMaskedLM.from_pretrained(UpperCAmelCase__ , from_pt=UpperCAmelCase__ ) _a , _a : Any = TFAutoModelForMaskedLM.from_pretrained( UpperCAmelCase__ , output_loading_info=UpperCAmelCase__ , from_pt=UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) _a : List[Any] = AutoModelForMaskedLM.from_pretrained(UpperCAmelCase__ , from_tf=UpperCAmelCase__ ) _a , _a : Any = AutoModelForMaskedLM.from_pretrained( UpperCAmelCase__ , output_loading_info=UpperCAmelCase__ , from_tf=UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def _lowercase ( self : Optional[int] ) -> str: for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Any = AutoConfig.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained(UpperCAmelCase__ , from_pt=UpperCAmelCase__ ) _a , _a : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained( UpperCAmelCase__ , output_loading_info=UpperCAmelCase__ , from_pt=UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) _a : str = AutoModelForSeqaSeqLM.from_pretrained(UpperCAmelCase__ , from_tf=UpperCAmelCase__ ) _a , _a : int = AutoModelForSeqaSeqLM.from_pretrained( UpperCAmelCase__ , output_loading_info=UpperCAmelCase__ , from_tf=UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def _lowercase ( self : int ) -> Tuple: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: _a : str = AutoConfig.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Optional[Any] = TFAutoModelForSequenceClassification.from_pretrained(UpperCAmelCase__ , from_pt=UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) _a : List[Any] = AutoModelForSequenceClassification.from_pretrained(UpperCAmelCase__ , from_tf=UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def _lowercase ( self : Union[str, Any] ) -> Dict: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: _a : Optional[int] = AutoConfig.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Union[str, Any] = TFAutoModelForQuestionAnswering.from_pretrained(UpperCAmelCase__ , from_pt=UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) _a : List[Any] = AutoModelForQuestionAnswering.from_pretrained(UpperCAmelCase__ , from_tf=UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : int ) -> Optional[int]: _a : Optional[int] = TFAutoModelWithLMHead.from_pretrained(UpperCAmelCase__ , from_pt=UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=UpperCAmelCase__ ) , 14410 ) _a : List[Any] = AutoModelWithLMHead.from_pretrained(UpperCAmelCase__ , from_tf=UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=UpperCAmelCase__ ) , 14410 ) def _lowercase ( self : List[Any] ) -> Any: _a : Tuple = TFAutoModelWithLMHead.from_pretrained(UpperCAmelCase__ , from_pt=UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=UpperCAmelCase__ ) , 14410 ) _a : str = AutoModelWithLMHead.from_pretrained(UpperCAmelCase__ , from_tf=UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=UpperCAmelCase__ ) , 14410 )
294
"""simple docstring""" def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' # Check if the input is valid if not len(UpperCamelCase__ ) == len(UpperCamelCase__ ) == 3: raise ValueError("""Please enter a valid equation.""" ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError("""Both a & b of two equations can't be zero.""" ) # Extract the coefficients _a , _a , _a : Any = equationa _a , _a , _a : Tuple = equationa # Calculate the determinants of the matrices _a : int = aa * ba - aa * ba _a : str = ca * ba - ca * ba _a : str = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError("""Infinite solutions. (Consistent system)""" ) else: raise ValueError("""No solution. (Inconsistent system)""" ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: _a : Dict = determinant_x / determinant _a : str = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
294
1
"""simple docstring""" from torch import nn def UpperCamelCase ( UpperCAmelCase ) ->List[Any]: """simple docstring""" if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(F'''Unsupported activation function: {act_fn}''' )
303
"""simple docstring""" # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->List[Any]: """simple docstring""" a_ = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, nicht wahr?", } # BLUE scores as follows: # "pair": [fairseq, transformers] a_ = { "wmt16-en-de-dist-12-1": [28.3, 27.52], "wmt16-en-de-dist-6-1": [27.4, 27.11], "wmt16-en-de-12-1": [26.9, 25.75], } a_ = F'''{src_lang}-{tgt_lang}''' a_ = F''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "allenai/{model_name}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` ''' model_card_dir.mkdir(parents=UpperCAmelCase , exist_ok=UpperCAmelCase ) a_ = os.path.join(UpperCAmelCase , "README.md" ) print(F'''Generating {path}''' ) with open(UpperCAmelCase , "w" , encoding="utf-8" ) as f: f.write(UpperCAmelCase ) # make sure we are under the root of the project UpperCamelCase_ = Path(__file__).resolve().parent.parent.parent UpperCamelCase_ = repo_dir / 'model_cards' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: UpperCamelCase_ = model_cards_dir / 'allenai' / model_name write_model_card(model_card_dir, src_lang='en', tgt_lang='de', model_name=model_name)
303
1
"""simple docstring""" import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class UpperCAmelCase : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=19 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ): lowercase__: Optional[int] = parent lowercase__: List[str] = batch_size lowercase__: Dict = seq_length lowercase__: Union[str, Any] = is_training lowercase__: Dict = use_input_mask lowercase__: Dict = use_token_type_ids lowercase__: Optional[int] = use_labels lowercase__: Tuple = vocab_size lowercase__: Dict = hidden_size lowercase__: Union[str, Any] = num_hidden_layers lowercase__: Any = num_attention_heads lowercase__: Tuple = intermediate_size lowercase__: Tuple = hidden_act lowercase__: int = hidden_dropout_prob lowercase__: Tuple = attention_probs_dropout_prob lowercase__: Optional[Any] = max_position_embeddings lowercase__: Tuple = type_vocab_size lowercase__: List[str] = type_sequence_label_size lowercase__: Optional[Any] = initializer_range lowercase__: Any = num_labels lowercase__: Optional[Any] = num_choices lowercase__: List[Any] = scope def _snake_case ( self ): lowercase__: Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__: Dict = None if self.use_input_mask: lowercase__: List[str] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__: Any = None lowercase__: Tuple = None lowercase__: List[Any] = None if self.use_labels: lowercase__: Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__: Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowercase__: int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self ): lowercase__: Optional[Any] = EsmConfig( vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=UpperCAmelCase__ , esmfold_config={'''trunk''': {'''num_blocks''': 2}, '''fp16_esm''': False} , ) return config def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Any = EsmForProteinFolding(config=UpperCAmelCase__ ).float() model.to(UpperCAmelCase__ ) model.eval() lowercase__: Any = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) lowercase__: Optional[Any] = model(UpperCAmelCase__ ) lowercase__: Tuple = model(UpperCAmelCase__ ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def _snake_case ( self ): lowercase__: Dict = self.prepare_config_and_inputs() ( ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ): List[str] = config_and_inputs lowercase__: List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase (__lowercase ,__lowercase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :str = False _UpperCAmelCase :Union[str, Any] = (EsmForProteinFolding,) if is_torch_available() else () _UpperCAmelCase :Union[str, Any] = () _UpperCAmelCase :List[Any] = {} if is_torch_available() else {} _UpperCAmelCase :Optional[Any] = False def _snake_case ( self ): lowercase__: int = EsmFoldModelTester(self ) lowercase__: List[str] = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=37 ) def _snake_case ( self ): self.config_tester.run_common_tests() def _snake_case ( self ): lowercase__: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) @unittest.skip('''Does not support attention outputs''' ) def _snake_case ( self ): pass @unittest.skip def _snake_case ( self ): pass @unittest.skip('''Esm does not support embedding resizing''' ) def _snake_case ( self ): pass @unittest.skip('''Esm does not support embedding resizing''' ) def _snake_case ( self ): pass @unittest.skip('''ESMFold does not support passing input embeds!''' ) def _snake_case ( self ): pass @unittest.skip('''ESMFold does not support head pruning.''' ) def _snake_case ( self ): pass @unittest.skip('''ESMFold does not support head pruning.''' ) def _snake_case ( self ): pass @unittest.skip('''ESMFold does not support head pruning.''' ) def _snake_case ( self ): pass @unittest.skip('''ESMFold does not support head pruning.''' ) def _snake_case ( self ): pass @unittest.skip('''ESMFold does not support head pruning.''' ) def _snake_case ( self ): pass @unittest.skip('''ESMFold does not output hidden states in the normal way.''' ) def _snake_case ( self ): pass @unittest.skip('''ESMfold does not output hidden states in the normal way.''' ) def _snake_case ( self ): pass @unittest.skip('''ESMFold only has one output format.''' ) def _snake_case ( self ): pass @unittest.skip('''This test doesn\'t work for ESMFold and doesn\'t test core functionality''' ) def _snake_case ( self ): pass @unittest.skip('''ESMFold does not support input chunking.''' ) def _snake_case ( self ): pass @unittest.skip('''ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.''' ) def _snake_case ( self ): pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def _snake_case ( self ): pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def _snake_case ( self ): pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def _snake_case ( self ): pass @unittest.skip('''ESMFold doesn\'t support data parallel.''' ) def _snake_case ( self ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _snake_case ( self ): pass @require_torch class UpperCAmelCase (__lowercase ): """simple docstring""" @slow def _snake_case ( self ): lowercase__: Dict = EsmForProteinFolding.from_pretrained('''facebook/esmfold_v1''' ).float() model.eval() lowercase__: int = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowercase__: List[str] = model(UpperCAmelCase__ )['''positions'''] lowercase__: List[Any] = torch.tensor([2.5_828, 0.7_993, -10.9_334] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , UpperCAmelCase__ , atol=1e-4 ) )
177
'''simple docstring''' from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __snake_case ="""\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } """ __snake_case ="""\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. """ __snake_case =""" Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for 'record': list of question-answer dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'prediction_text': the predicted answer text - for 'multirc': list of question-answer dictionaries with the following keys: - 'idx': index of the question-answer pair as specified by the dataset - 'prediction': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for 'record': list of question-answers dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'answers': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for 'record': - 'exact_match': Exact match between answer and gold answer - 'f1': F1 score - for 'multirc': - 'exact_match': Exact match between answer and gold answer - 'f1_m': Per-question macro-F1 score - 'f1_a': Average F1 score over all answers - for 'axb': 'matthews_correlation': Matthew Correlation - for 'cb': - 'accuracy': Accuracy - 'f1': F1 score - for all others: - 'accuracy': Accuracy Examples: >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'cb') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'record') >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}] >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc') >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'axb') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'matthews_correlation': 1.0} """ def a_ ( lowerCamelCase : str , lowerCamelCase : Union[str, Any] ): return float((preds == labels).mean() ) def a_ ( lowerCamelCase : Union[str, Any] , lowerCamelCase : Dict , lowerCamelCase : str="binary" ): lowerCAmelCase = simple_accuracy(lowerCamelCase , lowerCamelCase ) lowerCAmelCase = float(fa_score(y_true=lowerCamelCase , y_pred=lowerCamelCase , average=lowerCamelCase ) ) return { "accuracy": acc, "f1": fa, } def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : List[Any] ): lowerCAmelCase = {} for id_pred, label in zip(lowerCamelCase , lowerCamelCase ): lowerCAmelCase = f'''{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}''' lowerCAmelCase = id_pred['prediction'] if question_id in question_map: question_map[question_id].append((pred, label) ) else: lowerCAmelCase = [(pred, label)] lowerCAmelCase , lowerCAmelCase = [], [] for question, preds_labels in question_map.items(): lowerCAmelCase , lowerCAmelCase = zip(*lowerCamelCase ) lowerCAmelCase = fa_score(y_true=lowerCamelCase , y_pred=lowerCamelCase , average='macro' ) fas.append(lowerCamelCase ) lowerCAmelCase = int(sum(pred == label for pred, label in preds_labels ) == len(lowerCamelCase ) ) ems.append(lowerCamelCase ) lowerCAmelCase = float(sum(lowerCamelCase ) / len(lowerCamelCase ) ) lowerCAmelCase = sum(lowerCamelCase ) / len(lowerCamelCase ) lowerCAmelCase = float(fa_score(y_true=lowerCamelCase , y_pred=[id_pred['prediction'] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): def __UpperCAmelCase ( self : List[str] ) -> List[Any]: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( 'You should supply a configuration name selected in ' '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='numpy' if not self.config_name == 'record' and not self.config_name == 'multirc' else None , ) def __UpperCAmelCase ( self : Union[str, Any] ) -> str: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('int64' ), "query": datasets.Value('int64' ), }, "prediction_text": datasets.Value('string' ), }, "references": { "idx": { "passage": datasets.Value('int64' ), "query": datasets.Value('int64' ), }, "answers": datasets.Sequence(datasets.Value('string' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('int64' ), "paragraph": datasets.Value('int64' ), "question": datasets.Value('int64' ), }, "prediction": datasets.Value('int64' ), }, "references": datasets.Value('int64' ), } else: return { "predictions": datasets.Value('int64' ), "references": datasets.Value('int64' ), } def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[Any] ) -> Any: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(UpperCAmelCase__ , UpperCAmelCase__ )} elif self.config_name == "cb": return acc_and_fa(UpperCAmelCase__ , UpperCAmelCase__ , fa_avg='macro' ) elif self.config_name == "record": lowerCAmelCase = [ { 'qas': [ {'id': ref['idx']['query'], 'answers': [{'text': ans} for ans in ref['answers']]} for ref in references ] } ] lowerCAmelCase = {pred['idx']['query']: pred['prediction_text'] for pred in predictions} return evaluate_record(UpperCAmelCase__ , UpperCAmelCase__ )[0] elif self.config_name == "multirc": return evaluate_multirc(UpperCAmelCase__ , UpperCAmelCase__ ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(UpperCAmelCase__ , UpperCAmelCase__ )} else: raise KeyError( 'You should supply a configuration name selected in ' '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' )
4
0
'''simple docstring''' from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
352
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : Optional[Any] = { """CarlCochet/trajectory-transformer-halfcheetah-medium-v2""": ( """https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json""" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "trajectory_transformer" __magic_name__ = ["past_key_values"] __magic_name__ = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , snake_case__=100 , snake_case__=5 , snake_case__=1 , snake_case__=1 , snake_case__=249 , snake_case__=6 , snake_case__=17 , snake_case__=25 , snake_case__=4 , snake_case__=4 , snake_case__=128 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.0006 , snake_case__=512 , snake_case__=0.02 , snake_case__=1E-12 , snake_case__=1 , snake_case__=True , snake_case__=1 , snake_case__=5_0256 , snake_case__=5_0256 , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : List[Any] = vocab_size _lowerCAmelCase : Any = action_weight _lowerCAmelCase : Optional[int] = reward_weight _lowerCAmelCase : Union[str, Any] = value_weight _lowerCAmelCase : List[str] = max_position_embeddings _lowerCAmelCase : Tuple = block_size _lowerCAmelCase : List[Any] = action_dim _lowerCAmelCase : List[Any] = observation_dim _lowerCAmelCase : Union[str, Any] = transition_dim _lowerCAmelCase : Tuple = learning_rate _lowerCAmelCase : int = n_layer _lowerCAmelCase : Any = n_head _lowerCAmelCase : Tuple = n_embd _lowerCAmelCase : Optional[Any] = embd_pdrop _lowerCAmelCase : Union[str, Any] = attn_pdrop _lowerCAmelCase : Any = resid_pdrop _lowerCAmelCase : Optional[Any] = initializer_range _lowerCAmelCase : List[Any] = layer_norm_eps _lowerCAmelCase : Union[str, Any] = kaiming_initializer_range _lowerCAmelCase : List[Any] = use_cache super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ )
25
0
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowerCAmelCase ( _lowerCAmelCase : int ): """simple docstring""" UpperCAmelCase__ = filter(lambda _lowerCAmelCase : p.requires_grad , model.parameters() ) UpperCAmelCase__ = sum([np.prod(p.size() ) for p in model_parameters] ) return params _lowerCAmelCase : List[str] = logging.getLogger(__name__) def lowerCAmelCase ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str ): """simple docstring""" if metric == "rouge2": UpperCAmelCase__ = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": UpperCAmelCase__ = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": UpperCAmelCase__ = "{val_avg_em:.4f}-{step_count}" elif metric == "loss": UpperCAmelCase__ = "{val_avg_loss:.4f}-{step_count}" else: raise NotImplementedError( F'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' " function." ) UpperCAmelCase__ = ModelCheckpoint( dirpath=_lowerCAmelCase , filename=_lowerCAmelCase , monitor=F'''val_{metric}''' , mode="max" , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def lowerCAmelCase ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict ): """simple docstring""" return EarlyStopping( monitor=F'''val_{metric}''' , mode="min" if "loss" in metric else "max" , patience=_lowerCAmelCase , verbose=_lowerCAmelCase , ) class _UpperCamelCase ( pl.Callback ): def UpperCAmelCase_ ( self :List[Any] , lowerCamelCase :List[str] , lowerCamelCase :Union[str, Any] ) -> List[str]: UpperCAmelCase__ = {f'''lr_group_{i}''': param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(UpperCamelCase_ ) @rank_zero_only def UpperCAmelCase_ ( self :Tuple , lowerCamelCase :pl.Trainer , lowerCamelCase :pl.LightningModule , lowerCamelCase :str , lowerCamelCase :Optional[int]=True ) -> None: logger.info(f'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) UpperCAmelCase__ = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results UpperCAmelCase__ = Path(pl_module.hparams.output_dir ) if type_path == "test": UpperCAmelCase__ = od / "test_results.txt" UpperCAmelCase__ = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. UpperCAmelCase__ = od / f'''{type_path}_results/{trainer.global_step:05d}.txt''' UpperCAmelCase__ = od / f'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=UpperCamelCase_ ) generations_file.parent.mkdir(exist_ok=UpperCamelCase_ ) with open(UpperCamelCase_ , "a+" ) as writer: for key in sorted(UpperCamelCase_ ): if key in ["log", "progress_bar", "preds"]: continue UpperCAmelCase__ = metrics[key] if isinstance(UpperCamelCase_ , torch.Tensor ): UpperCAmelCase__ = val.item() UpperCAmelCase__ = f'''{key}: {val:.6f}\n''' writer.write(UpperCamelCase_ ) if not save_generations: return if "preds" in metrics: UpperCAmelCase__ = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(UpperCamelCase_ ) @rank_zero_only def UpperCAmelCase_ ( self :Any , lowerCamelCase :Tuple , lowerCamelCase :Tuple ) -> Optional[int]: try: UpperCAmelCase__ = pl_module.model.model.num_parameters() except AttributeError: UpperCAmelCase__ = pl_module.model.num_parameters() UpperCAmelCase__ = count_trainable_parameters(UpperCamelCase_ ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6} ) @rank_zero_only def UpperCAmelCase_ ( self :str , lowerCamelCase :pl.Trainer , lowerCamelCase :pl.LightningModule ) -> Tuple: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(UpperCamelCase_ , UpperCamelCase_ , "test" ) @rank_zero_only def UpperCAmelCase_ ( self :Union[str, Any] , lowerCamelCase :pl.Trainer , lowerCamelCase :List[str] ) -> Union[str, Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
169
from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging lowerCAmelCase = logging.get_logger(__name__) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" try: with open(SCREAMING_SNAKE_CASE , '''rb''' ) as flax_state_f: lowercase__ = from_bytes(SCREAMING_SNAKE_CASE , flax_state_f.read() ) except UnpicklingError as e: try: with open(SCREAMING_SNAKE_CASE ) as f: if f.read().startswith('''version''' ): raise OSError( '''You seem to have cloned a repository without having git-lfs installed. Please''' ''' install git-lfs and run `git lfs install` followed by `git lfs pull` in the''' ''' folder you cloned.''' ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(f'Unable to convert {model_file} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( '''Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights lowercase__ = flatten_dict(jax.tree_util.tree_map(lambda SCREAMING_SNAKE_CASE : x.dtype == jnp.bfloataa , SCREAMING_SNAKE_CASE ) ).values() if any(SCREAMING_SNAKE_CASE ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) lowercase__ = jax.tree_util.tree_map( lambda SCREAMING_SNAKE_CASE : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , SCREAMING_SNAKE_CASE ) lowercase__ = '''''' lowercase__ = flatten_dict(SCREAMING_SNAKE_CASE , sep='''.''' ) lowercase__ = pt_model.state_dict() # keep track of unexpected & missing keys lowercase__ = [] lowercase__ = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): lowercase__ = flax_key_tuple.split('''.''' ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: lowercase__ = flax_key_tuple_array[:-1] + ['''weight'''] lowercase__ = jnp.transpose(SCREAMING_SNAKE_CASE , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": lowercase__ = flax_key_tuple_array[:-1] + ['''weight'''] lowercase__ = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": lowercase__ = flax_key_tuple_array[:-1] + ['''weight'''] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(SCREAMING_SNAKE_CASE ): lowercase__ = ( flax_key_tuple_string.replace('''_0''' , '''.0''' ) .replace('''_1''' , '''.1''' ) .replace('''_2''' , '''.2''' ) .replace('''_3''' , '''.3''' ) .replace('''_4''' , '''.4''' ) .replace('''_5''' , '''.5''' ) .replace('''_6''' , '''.6''' ) .replace('''_7''' , '''.7''' ) .replace('''_8''' , '''.8''' ) .replace('''_9''' , '''.9''' ) ) lowercase__ = '''.'''.join(SCREAMING_SNAKE_CASE ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' f'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict lowercase__ = np.asarray(SCREAMING_SNAKE_CASE ) if not isinstance(SCREAMING_SNAKE_CASE , np.ndarray ) else flax_tensor lowercase__ = torch.from_numpy(SCREAMING_SNAKE_CASE ) # remove from missing keys missing_keys.remove(SCREAMING_SNAKE_CASE ) else: # weight is not expected by PyTorch model unexpected_keys.append(SCREAMING_SNAKE_CASE ) pt_model.load_state_dict(SCREAMING_SNAKE_CASE ) # re-transform missing_keys to list lowercase__ = list(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' f' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' f' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' f' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) if len(SCREAMING_SNAKE_CASE ) > 0: logger.warning( f'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' f' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' ''' use it for predictions and inference.''' ) return pt_model
110
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging A : Optional[int] = logging.get_logger(__name__) if is_vision_available(): import PIL class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = ['''pixel_values'''] def __init__(self : Dict , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : bool = True , **_UpperCAmelCase : int , ) -> None: """simple docstring""" super().__init__(**_UpperCAmelCase ) lowercase__ = size if size is not None else {"""shortest_edge""": 224} lowercase__ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) lowercase__ = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} lowercase__ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase , param_name="""crop_size""" ) lowercase__ = do_resize lowercase__ = size lowercase__ = resample lowercase__ = do_center_crop lowercase__ = crop_size lowercase__ = do_rescale lowercase__ = rescale_factor lowercase__ = do_normalize lowercase__ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowercase__ = image_std if image_std is not None else OPENAI_CLIP_STD lowercase__ = do_convert_rgb def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : str , ) -> np.ndarray: """simple docstring""" lowercase__ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) lowercase__ = get_resize_output_image_size(_UpperCAmelCase , size=size["""shortest_edge"""] , default_to_square=_UpperCAmelCase ) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Tuple , ) -> np.ndarray: """simple docstring""" lowercase__ = get_size_dict(_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(_UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Dict , ) -> Optional[int]: """simple docstring""" return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowerCamelCase__ (self : int , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Union[str, Any] , ) -> np.ndarray: """simple docstring""" return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowerCamelCase__ (self : int , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : int = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , **_UpperCAmelCase : str , ) -> PIL.Image.Image: """simple docstring""" lowercase__ = do_resize if do_resize is not None else self.do_resize lowercase__ = size if size is not None else self.size lowercase__ = get_size_dict(_UpperCAmelCase , param_name="""size""" , default_to_square=_UpperCAmelCase ) lowercase__ = resample if resample is not None else self.resample lowercase__ = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase__ = crop_size if crop_size is not None else self.crop_size lowercase__ = get_size_dict(_UpperCAmelCase , param_name="""crop_size""" , default_to_square=_UpperCAmelCase ) lowercase__ = do_rescale if do_rescale is not None else self.do_rescale lowercase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ = do_normalize if do_normalize is not None else self.do_normalize lowercase__ = image_mean if image_mean is not None else self.image_mean lowercase__ = image_std if image_std is not None else self.image_std lowercase__ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase__ = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase__ = [convert_to_rgb(_UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. lowercase__ = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: lowercase__ = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images] if do_center_crop: lowercase__ = [self.center_crop(image=_UpperCAmelCase , size=_UpperCAmelCase ) for image in images] if do_rescale: lowercase__ = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images] if do_normalize: lowercase__ = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images] lowercase__ = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] lowercase__ = {"""pixel_values""": images} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
357
from __future__ import annotations from collections import deque class A : '''simple docstring''' def __init__(self : Any , _UpperCAmelCase : list[str] ) -> Optional[int]: """simple docstring""" lowercase__ = [] self.adlist.append( {"""value""": """""", """next_states""": [], """fail_state""": 0, """output""": []} ) for keyword in keywords: self.add_keyword(_UpperCAmelCase ) self.set_fail_transitions() def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : str ) -> int | None: """simple docstring""" for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : str ) -> None: """simple docstring""" lowercase__ = 0 for character in keyword: lowercase__ = self.find_next_state(_UpperCAmelCase , _UpperCAmelCase ) if next_state is None: self.adlist.append( { """value""": character, """next_states""": [], """fail_state""": 0, """output""": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) lowercase__ = len(self.adlist ) - 1 else: lowercase__ = next_state self.adlist[current_state]["output"].append(_UpperCAmelCase ) def lowerCamelCase__ (self : Any ) -> None: """simple docstring""" lowercase__ = deque() for node in self.adlist[0]["next_states"]: q.append(_UpperCAmelCase ) lowercase__ = 0 while q: lowercase__ = q.popleft() for child in self.adlist[r]["next_states"]: q.append(_UpperCAmelCase ) lowercase__ = self.adlist[r]["""fail_state"""] while ( self.find_next_state(_UpperCAmelCase , self.adlist[child]["""value"""] ) is None and state != 0 ): lowercase__ = self.adlist[state]["""fail_state"""] lowercase__ = self.find_next_state( _UpperCAmelCase , self.adlist[child]["""value"""] ) if self.adlist[child]["fail_state"] is None: lowercase__ = 0 lowercase__ = ( self.adlist[child]["""output"""] + self.adlist[self.adlist[child]["""fail_state"""]]["""output"""] ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : str ) -> dict[str, list[int]]: """simple docstring""" lowercase__ = {} # returns a dict with keywords and list of its occurrences lowercase__ = 0 for i in range(len(_UpperCAmelCase ) ): while ( self.find_next_state(_UpperCAmelCase , string[i] ) is None and current_state != 0 ): lowercase__ = self.adlist[current_state]["""fail_state"""] lowercase__ = self.find_next_state(_UpperCAmelCase , string[i] ) if next_state is None: lowercase__ = 0 else: lowercase__ = next_state for key in self.adlist[current_state]["output"]: if key not in result: lowercase__ = [] result[key].append(i - len(_UpperCAmelCase ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
146
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType snake_case_ : Optional[int] = logging.get_logger(__name__) snake_case_ : Optional[Any] = { "microsoft/layoutlmv3-base": "https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json", } class __snake_case ( a ): UpperCAmelCase__ : Dict = '''layoutlmv3''' def __init__( self : Optional[int] , _snake_case : Dict=50265 , _snake_case : Optional[int]=768 , _snake_case : Optional[Any]=12 , _snake_case : List[Any]=12 , _snake_case : Tuple=3072 , _snake_case : Dict="gelu" , _snake_case : Optional[int]=0.1 , _snake_case : Optional[int]=0.1 , _snake_case : List[str]=512 , _snake_case : List[str]=2 , _snake_case : List[str]=0.0_2 , _snake_case : str=1e-5 , _snake_case : Tuple=1 , _snake_case : Dict=0 , _snake_case : Union[str, Any]=2 , _snake_case : Optional[Any]=1024 , _snake_case : Tuple=128 , _snake_case : int=128 , _snake_case : List[str]=True , _snake_case : Union[str, Any]=32 , _snake_case : Optional[int]=128 , _snake_case : Any=64 , _snake_case : List[str]=256 , _snake_case : List[str]=True , _snake_case : Any=True , _snake_case : str=True , _snake_case : Optional[int]=224 , _snake_case : Dict=3 , _snake_case : str=16 , _snake_case : List[Any]=None , **_snake_case : Dict , ): """simple docstring""" super().__init__( vocab_size=_snake_case , hidden_size=_snake_case , num_hidden_layers=_snake_case , num_attention_heads=_snake_case , intermediate_size=_snake_case , hidden_act=_snake_case , hidden_dropout_prob=_snake_case , attention_probs_dropout_prob=_snake_case , max_position_embeddings=_snake_case , type_vocab_size=_snake_case , initializer_range=_snake_case , layer_norm_eps=_snake_case , pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case , ) UpperCAmelCase_ = max_ad_position_embeddings UpperCAmelCase_ = coordinate_size UpperCAmelCase_ = shape_size UpperCAmelCase_ = has_relative_attention_bias UpperCAmelCase_ = rel_pos_bins UpperCAmelCase_ = max_rel_pos UpperCAmelCase_ = has_spatial_attention_bias UpperCAmelCase_ = rel_ad_pos_bins UpperCAmelCase_ = max_rel_ad_pos UpperCAmelCase_ = text_embed UpperCAmelCase_ = visual_embed UpperCAmelCase_ = input_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = patch_size UpperCAmelCase_ = classifier_dropout class __snake_case ( a ): UpperCAmelCase__ : int = version.parse('''1.12''' ) @property def lowerCamelCase ( self : List[Any]): """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ('''bbox''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ]) else: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''bbox''', {0: '''batch''', 1: '''sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels'''}), ]) @property def lowerCamelCase ( self : int): """simple docstring""" return 1e-5 @property def lowerCamelCase ( self : Dict): """simple docstring""" return 12 def lowerCamelCase ( self : Tuple , _snake_case : "ProcessorMixin" , _snake_case : int = -1 , _snake_case : int = -1 , _snake_case : bool = False , _snake_case : Optional["TensorType"] = None , _snake_case : int = 3 , _snake_case : int = 40 , _snake_case : int = 40 , ): """simple docstring""" setattr(processor.image_processor , '''apply_ocr''' , _snake_case) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase_ = compute_effective_axis_dimension( _snake_case , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase_ = processor.tokenizer.num_special_tokens_to_add(_snake_case) UpperCAmelCase_ = compute_effective_axis_dimension( _snake_case , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_snake_case) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase_ = [[''' '''.join([processor.tokenizer.unk_token]) * seq_length]] * batch_size # Generate dummy bounding boxes UpperCAmelCase_ = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) UpperCAmelCase_ = self._generate_dummy_images(_snake_case , _snake_case , _snake_case , _snake_case) UpperCAmelCase_ = dict( processor( _snake_case , text=_snake_case , boxes=_snake_case , return_tensors=_snake_case , )) return inputs
51
from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean snake_case_ : str = 0 snake_case_ : Union[str, Any] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] snake_case_ : str = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right snake_case_ : List[Any] = tuple[int, int] class __snake_case : def __init__( self : Any , _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : Node | None , ): """simple docstring""" UpperCAmelCase_ = pos_x UpperCAmelCase_ = pos_y UpperCAmelCase_ = (pos_y, pos_x) UpperCAmelCase_ = goal_x UpperCAmelCase_ = goal_y UpperCAmelCase_ = g_cost UpperCAmelCase_ = parent UpperCAmelCase_ = self.calculate_heuristic() UpperCAmelCase_ = self.g_cost + self.h_cost def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = self.pos_x - self.goal_x UpperCAmelCase_ = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(_snake_case) + abs(_snake_case) else: return sqrt(dy**2 + dx**2) def __lt__( self : Union[str, Any] , _snake_case : Node): """simple docstring""" return self.f_cost < other.f_cost class __snake_case : def __init__( self : str , _snake_case : TPosition , _snake_case : TPosition): """simple docstring""" UpperCAmelCase_ = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _snake_case) UpperCAmelCase_ = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99999 , _snake_case) UpperCAmelCase_ = [self.start] UpperCAmelCase_ = [] UpperCAmelCase_ = False def lowerCamelCase ( self : Optional[int]): """simple docstring""" while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() UpperCAmelCase_ = self.open_nodes.pop(0) if current_node.pos == self.target.pos: return self.retrace_path(_snake_case) self.closed_nodes.append(_snake_case) UpperCAmelCase_ = self.get_successors(_snake_case) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_snake_case) else: # retrieve the best current path UpperCAmelCase_ = self.open_nodes.pop(self.open_nodes.index(_snake_case)) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_snake_case) else: self.open_nodes.append(_snake_case) return [self.start.pos] def lowerCamelCase ( self : Tuple , _snake_case : Node): """simple docstring""" UpperCAmelCase_ = [] for action in delta: UpperCAmelCase_ = parent.pos_x + action[1] UpperCAmelCase_ = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0]) - 1 and 0 <= pos_y <= len(_snake_case) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _snake_case , _snake_case , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _snake_case , )) return successors def lowerCamelCase ( self : Any , _snake_case : Node | None): """simple docstring""" UpperCAmelCase_ = node UpperCAmelCase_ = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x)) UpperCAmelCase_ = current_node.parent path.reverse() return path class __snake_case : def __init__( self : Any , _snake_case : TPosition , _snake_case : TPosition): """simple docstring""" UpperCAmelCase_ = AStar(_snake_case , _snake_case) UpperCAmelCase_ = AStar(_snake_case , _snake_case) UpperCAmelCase_ = False def lowerCamelCase ( self : List[Any]): """simple docstring""" while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() UpperCAmelCase_ = self.fwd_astar.open_nodes.pop(0) UpperCAmelCase_ = self.bwd_astar.open_nodes.pop(0) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( _snake_case , _snake_case) self.fwd_astar.closed_nodes.append(_snake_case) self.bwd_astar.closed_nodes.append(_snake_case) UpperCAmelCase_ = current_bwd_node UpperCAmelCase_ = current_fwd_node UpperCAmelCase_ = { self.fwd_astar: self.fwd_astar.get_successors(_snake_case), self.bwd_astar: self.bwd_astar.get_successors(_snake_case), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(_snake_case) else: # retrieve the best current path UpperCAmelCase_ = astar.open_nodes.pop( astar.open_nodes.index(_snake_case)) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(_snake_case) else: astar.open_nodes.append(_snake_case) return [self.fwd_astar.start.pos] def lowerCamelCase ( self : int , _snake_case : Node , _snake_case : Node): """simple docstring""" UpperCAmelCase_ = self.fwd_astar.retrace_path(_snake_case) UpperCAmelCase_ = self.bwd_astar.retrace_path(_snake_case) bwd_path.pop() bwd_path.reverse() UpperCAmelCase_ = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] snake_case_ : Any = (0, 0) snake_case_ : Union[str, Any] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) snake_case_ : str = time.time() snake_case_ : List[str] = AStar(init, goal) snake_case_ : Optional[int] = a_star.search() snake_case_ : Optional[Any] = time.time() - start_time print(f"AStar execution time = {end_time:f} seconds") snake_case_ : int = time.time() snake_case_ : Dict = BidirectionalAStar(init, goal) snake_case_ : str = time.time() - bd_start_time print(f"BidirectionalAStar execution time = {bd_end_time:f} seconds")
51
1
'''simple docstring''' import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch SCREAMING_SNAKE_CASE_: Dict =True except ImportError: SCREAMING_SNAKE_CASE_: str =False try: from torch.hub import _get_torch_home SCREAMING_SNAKE_CASE_: Optional[Any] =_get_torch_home() except ImportError: SCREAMING_SNAKE_CASE_: Union[str, Any] =os.path.expanduser( os.getenv('TORCH_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'torch')) ) SCREAMING_SNAKE_CASE_: int =os.path.join(torch_cache_home, 'transformers') SCREAMING_SNAKE_CASE_: Tuple ='https://cdn.huggingface.co' SCREAMING_SNAKE_CASE_: str ='https://s3.amazonaws.com/models.huggingface.co/bert' SCREAMING_SNAKE_CASE_: str ='/'.join(str(Path(__file__).resolve()).split('/')[:-1]) SCREAMING_SNAKE_CASE_: Optional[Any] =os.path.join(PATH, 'config.yaml') SCREAMING_SNAKE_CASE_: Optional[Any] =os.path.join(PATH, 'attributes.txt') SCREAMING_SNAKE_CASE_: Any =os.path.join(PATH, 'objects.txt') SCREAMING_SNAKE_CASE_: Optional[int] =os.getenv('PYTORCH_PRETRAINED_BERT_CACHE', default_cache_path) SCREAMING_SNAKE_CASE_: int =os.getenv('PYTORCH_TRANSFORMERS_CACHE', PYTORCH_PRETRAINED_BERT_CACHE) SCREAMING_SNAKE_CASE_: List[str] =os.getenv('TRANSFORMERS_CACHE', PYTORCH_TRANSFORMERS_CACHE) SCREAMING_SNAKE_CASE_: str ='pytorch_model.bin' SCREAMING_SNAKE_CASE_: Dict ='config.yaml' def lowerCAmelCase_ ( snake_case_ : Optional[int]=OBJECTS , snake_case_ : Optional[Any]=ATTRIBUTES ) -> Any: '''simple docstring''' UpperCAmelCase_ = [] with open(snake_case_ ) as f: for object in f.readlines(): vg_classes.append(object.split("," )[0].lower().strip() ) UpperCAmelCase_ = [] with open(snake_case_ ) as f: for object in f.readlines(): vg_attrs.append(object.split("," )[0].lower().strip() ) return vg_classes, vg_attrs def lowerCAmelCase_ ( snake_case_ : Optional[int] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = OrderedDict() with open(snake_case_ , "rb" ) as f: UpperCAmelCase_ = pkl.load(snake_case_ )["model"] for k in copy.deepcopy(list(ckp.keys() ) ): UpperCAmelCase_ = ckp.pop(snake_case_ ) if isinstance(snake_case_ , np.ndarray ): UpperCAmelCase_ = torch.tensor(snake_case_ ) else: assert isinstance(snake_case_ , torch.tensor ), type(snake_case_ ) UpperCAmelCase_ = v return r class __A : a__ : Optional[Any] = {} def __init__(self : Union[str, Any] , __a : dict , __a : str = "root" , __a : str=0 ): UpperCAmelCase_ = name UpperCAmelCase_ = level UpperCAmelCase_ = {} for k, v in dictionary.items(): if v is None: raise ValueError() UpperCAmelCase_ = copy.deepcopy(__a ) UpperCAmelCase_ = copy.deepcopy(__a ) if isinstance(__a , __a ): UpperCAmelCase_ = Config(__a , name=__a , level=level + 1 ) UpperCAmelCase_ = v setattr(self , __a , __a ) UpperCAmelCase_ = d def __repr__(self : List[Any] ): return str(list((self._pointer.keys()) ) ) def __setattr__(self : int , __a : str , __a : Dict ): UpperCAmelCase_ = val UpperCAmelCase_ = val UpperCAmelCase_ = key.split("." ) UpperCAmelCase_ = len(__a ) - 1 UpperCAmelCase_ = self._pointer if len(__a ) > 1: for i, l in enumerate(__a ): if hasattr(self , __a ) and isinstance(getattr(self , __a ) , __a ): setattr(getattr(self , __a ) , ".".join(levels[i:] ) , __a ) if l == last_level: UpperCAmelCase_ = val else: UpperCAmelCase_ = pointer[l] def _lowercase (self : Optional[Any] ): return self._pointer def _lowercase (self : int , __a : Union[str, Any] , __a : str ): with open(f"""{file_name}""" , "w" ) as stream: dump(__a , __a ) def _lowercase (self : Any , __a : Optional[Any] , __a : List[str] ): with open(f"""{file_name}""" , "w" ) as stream: json.dump(__a , __a ) @staticmethod def _lowercase (__a : str ): with open(__a ) as stream: UpperCAmelCase_ = load(__a , Loader=__a ) return data def __str__(self : Dict ): UpperCAmelCase_ = " " if self._name != "root": UpperCAmelCase_ = f"""{t * (self._level-1)}{self._name}:\n""" else: UpperCAmelCase_ = "" UpperCAmelCase_ = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(__a , __a ): r += f"""{t * (self._level)}{v}\n""" self._level += 1 else: r += f"""{t * (self._level)}{k}: {v} ({type(__a ).__name__})\n""" UpperCAmelCase_ = level return r[:-1] @classmethod def _lowercase (cls : Tuple , __a : str , **__a : Dict ): UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(__a , **__a ) return cls(__a ) @classmethod def _lowercase (cls : Any , __a : str , **__a : Dict ): UpperCAmelCase_ = kwargs.pop("cache_dir" , __a ) UpperCAmelCase_ = kwargs.pop("force_download" , __a ) UpperCAmelCase_ = kwargs.pop("resume_download" , __a ) UpperCAmelCase_ = kwargs.pop("proxies" , __a ) UpperCAmelCase_ = kwargs.pop("local_files_only" , __a ) if os.path.isdir(__a ): UpperCAmelCase_ = os.path.join(__a , __a ) elif os.path.isfile(__a ) or is_remote_url(__a ): UpperCAmelCase_ = pretrained_model_name_or_path else: UpperCAmelCase_ = hf_bucket_url(__a , filename=__a , use_cdn=__a ) try: # Load from URL or cache if already cached UpperCAmelCase_ = cached_path( __a , cache_dir=__a , force_download=__a , proxies=__a , resume_download=__a , local_files_only=__a , ) # Load config dict if resolved_config_file is None: raise EnvironmentError UpperCAmelCase_ = Config.load_yaml(__a ) except EnvironmentError: UpperCAmelCase_ = "Can't load config for" raise EnvironmentError(__a ) if resolved_config_file == config_file: print("loading configuration file from path" ) else: print("loading configuration file cache" ) return Config.load_yaml(__a ), kwargs def lowerCAmelCase_ ( snake_case_ : str ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = torch.load("dump.pt" , map_location=in_tensor.device ) UpperCAmelCase_ = in_tensor.numpy() UpperCAmelCase_ = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(snake_case_ , snake_case_ , rtol=0.01 , atol=0.1 ), ( f"""{sum([1 for x in np.isclose(snake_case_ , snake_case_ , rtol=0.01 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*1_00:.4f} %""" " element-wise mismatch" ) raise Exception("tensors are all good" ) # Hugging face functions below def lowerCAmelCase_ ( snake_case_ : Optional[Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = urlparse(snake_case_ ) return parsed.scheme in ("http", "https") def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : str , snake_case_ : Optional[int]=True ) -> str: '''simple docstring''' UpperCAmelCase_ = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX UpperCAmelCase_ = "/" not in model_id if legacy_format: return f"""{endpoint}/{model_id}-{filename}""" else: return f"""{endpoint}/{model_id}/{filename}""" def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : Optional[int]=None , snake_case_ : List[Any]=0 , snake_case_ : int=None , ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = "python/{}".format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(snake_case_ , snake_case_ ): ua += "; " + "; ".join("{}/{}".format(snake_case_ , snake_case_ ) for k, v in user_agent.items() ) elif isinstance(snake_case_ , snake_case_ ): ua += "; " + user_agent UpperCAmelCase_ = {"user-agent": ua} if resume_size > 0: UpperCAmelCase_ = "bytes=%d-" % (resume_size,) UpperCAmelCase_ = requests.get(snake_case_ , stream=snake_case_ , proxies=snake_case_ , headers=snake_case_ ) if response.status_code == 4_16: # Range not satisfiable return UpperCAmelCase_ = response.headers.get("Content-Length" ) UpperCAmelCase_ = resume_size + int(snake_case_ ) if content_length is not None else None UpperCAmelCase_ = tqdm( unit="B" , unit_scale=snake_case_ , total=snake_case_ , initial=snake_case_ , desc="Downloading" , ) for chunk in response.iter_content(chunk_size=10_24 ): if chunk: # filter out keep-alive new chunks progress.update(len(snake_case_ ) ) temp_file.write(snake_case_ ) progress.close() def lowerCAmelCase_ ( snake_case_ : Optional[int] , snake_case_ : str=None , snake_case_ : List[str]=False , snake_case_ : List[str]=None , snake_case_ : int=10 , snake_case_ : Any=False , snake_case_ : int=None , snake_case_ : str=False , ) -> str: '''simple docstring''' if cache_dir is None: UpperCAmelCase_ = TRANSFORMERS_CACHE if isinstance(snake_case_ , snake_case_ ): UpperCAmelCase_ = str(snake_case_ ) os.makedirs(snake_case_ , exist_ok=snake_case_ ) UpperCAmelCase_ = None if not local_files_only: try: UpperCAmelCase_ = requests.head(snake_case_ , allow_redirects=snake_case_ , proxies=snake_case_ , timeout=snake_case_ ) if response.status_code == 2_00: UpperCAmelCase_ = response.headers.get("ETag" ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass UpperCAmelCase_ = url_to_filename(snake_case_ , snake_case_ ) # get cache path to put the file UpperCAmelCase_ = os.path.join(snake_case_ , snake_case_ ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(snake_case_ ): return cache_path else: UpperCAmelCase_ = [ file for file in fnmatch.filter(os.listdir(snake_case_ ) , filename + ".*" ) if not file.endswith(".json" ) and not file.endswith(".lock" ) ] if len(snake_case_ ) > 0: return os.path.join(snake_case_ , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( "Cannot find the requested files in the cached path and outgoing traffic has been" " disabled. To enable model look-ups and downloads online, set 'local_files_only'" " to False." ) return None # From now on, etag is not None. if os.path.exists(snake_case_ ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. UpperCAmelCase_ = cache_path + ".lock" with FileLock(snake_case_ ): # If the download just completed while the lock was activated. if os.path.exists(snake_case_ ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: UpperCAmelCase_ = cache_path + ".incomplete" @contextmanager def _resumable_file_manager(): with open(snake_case_ , "a+b" ) as f: yield f UpperCAmelCase_ = _resumable_file_manager if os.path.exists(snake_case_ ): UpperCAmelCase_ = os.stat(snake_case_ ).st_size else: UpperCAmelCase_ = 0 else: UpperCAmelCase_ = partial(tempfile.NamedTemporaryFile , dir=snake_case_ , delete=snake_case_ ) UpperCAmelCase_ = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( "%s not found in cache or force_download set to True, downloading to %s" , snake_case_ , temp_file.name , ) http_get( snake_case_ , snake_case_ , proxies=snake_case_ , resume_size=snake_case_ , user_agent=snake_case_ , ) os.replace(temp_file.name , snake_case_ ) UpperCAmelCase_ = {"url": url, "etag": etag} UpperCAmelCase_ = cache_path + ".json" with open(snake_case_ , "w" ) as meta_file: json.dump(snake_case_ , snake_case_ ) return cache_path def lowerCAmelCase_ ( snake_case_ : Optional[Any] , snake_case_ : Any=None ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = url.encode("utf-8" ) UpperCAmelCase_ = shaaaa(snake_case_ ) UpperCAmelCase_ = url_hash.hexdigest() if etag: UpperCAmelCase_ = etag.encode("utf-8" ) UpperCAmelCase_ = shaaaa(snake_case_ ) filename += "." + etag_hash.hexdigest() if url.endswith(".h5" ): filename += ".h5" return filename def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : Tuple=None , snake_case_ : int=False , snake_case_ : Any=None , snake_case_ : List[Any]=False , snake_case_ : Any=None , snake_case_ : Any=False , snake_case_ : List[str]=False , snake_case_ : str=False , ) -> Union[str, Any]: '''simple docstring''' if cache_dir is None: UpperCAmelCase_ = TRANSFORMERS_CACHE if isinstance(snake_case_ , snake_case_ ): UpperCAmelCase_ = str(snake_case_ ) if isinstance(snake_case_ , snake_case_ ): UpperCAmelCase_ = str(snake_case_ ) if is_remote_url(snake_case_ ): # URL, so get it from the cache (downloading if necessary) UpperCAmelCase_ = get_from_cache( snake_case_ , cache_dir=snake_case_ , force_download=snake_case_ , proxies=snake_case_ , resume_download=snake_case_ , user_agent=snake_case_ , local_files_only=snake_case_ , ) elif os.path.exists(snake_case_ ): # File, and it exists. UpperCAmelCase_ = url_or_filename elif urlparse(snake_case_ ).scheme == "": # File, but it doesn't exist. raise EnvironmentError("file {} not found".format(snake_case_ ) ) else: # Something unknown raise ValueError("unable to parse {} as a URL or as a local path".format(snake_case_ ) ) if extract_compressed_file: if not is_zipfile(snake_case_ ) and not tarfile.is_tarfile(snake_case_ ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" UpperCAmelCase_ , UpperCAmelCase_ = os.path.split(snake_case_ ) UpperCAmelCase_ = output_file.replace("." , "-" ) + "-extracted" UpperCAmelCase_ = os.path.join(snake_case_ , snake_case_ ) if os.path.isdir(snake_case_ ) and os.listdir(snake_case_ ) and not force_extract: return output_path_extracted # Prevent parallel extractions UpperCAmelCase_ = output_path + ".lock" with FileLock(snake_case_ ): shutil.rmtree(snake_case_ , ignore_errors=snake_case_ ) os.makedirs(snake_case_ ) if is_zipfile(snake_case_ ): with ZipFile(snake_case_ , "r" ) as zip_file: zip_file.extractall(snake_case_ ) zip_file.close() elif tarfile.is_tarfile(snake_case_ ): UpperCAmelCase_ = tarfile.open(snake_case_ ) tar_file.extractall(snake_case_ ) tar_file.close() else: raise EnvironmentError("Archive format of {} could not be identified".format(snake_case_ ) ) return output_path_extracted return output_path def lowerCAmelCase_ ( snake_case_ : Any , snake_case_ : Optional[int]="," ) -> int: '''simple docstring''' assert isinstance(snake_case_ , snake_case_ ) if os.path.isfile(snake_case_ ): with open(snake_case_ ) as f: UpperCAmelCase_ = eval(f.read() ) else: UpperCAmelCase_ = requests.get(snake_case_ ) try: UpperCAmelCase_ = requests.json() except Exception: UpperCAmelCase_ = req.content.decode() assert data is not None, "could not connect" try: UpperCAmelCase_ = eval(snake_case_ ) except Exception: UpperCAmelCase_ = data.split("\n" ) req.close() return data def lowerCAmelCase_ ( snake_case_ : List[str] ) -> Any: '''simple docstring''' UpperCAmelCase_ = requests.get(snake_case_ ) UpperCAmelCase_ = np.array(Image.open(BytesIO(response.content ) ) ) return img def lowerCAmelCase_ ( snake_case_ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = url.split("/" )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(snake_case_ ) with open(snake_case_ , "rb" ) as stream: UpperCAmelCase_ = pkl.load(snake_case_ ) UpperCAmelCase_ = weights.pop("model" ) UpperCAmelCase_ = {} for k, v in model.items(): UpperCAmelCase_ = torch.from_numpy(snake_case_ ) if "running_var" in k: UpperCAmelCase_ = torch.tensor([0] ) UpperCAmelCase_ = k.replace("running_var" , "num_batches_tracked" ) UpperCAmelCase_ = zero return new def lowerCAmelCase_ ( ) -> int: '''simple docstring''' print(f"""{os.path.abspath(os.path.join(snake_case_ , os.pardir ) )}/demo.ipynb""" ) def lowerCAmelCase_ ( snake_case_ : Any , snake_case_ : Any="RGB" ) -> Dict: '''simple docstring''' assert isinstance(snake_case_ , snake_case_ ) if os.path.isfile(snake_case_ ): UpperCAmelCase_ = cva.imread(snake_case_ ) else: UpperCAmelCase_ = get_image_from_url(snake_case_ ) assert img is not None, f"""could not connect to: {im}""" UpperCAmelCase_ = cva.cvtColor(snake_case_ , cva.COLOR_BGR2RGB ) if input_format == "RGB": UpperCAmelCase_ = img[:, :, ::-1] return img def lowerCAmelCase_ ( snake_case_ : Tuple , snake_case_ : Union[str, Any]=1 ) -> str: '''simple docstring''' return (images[i : i + batch] for i in range(0 , len(snake_case_ ) , snake_case_ ))
106
'''simple docstring''' import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format='%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=os.environ.get('LOGLEVEL', 'INFO').upper(), stream=sys.stdout, ) SCREAMING_SNAKE_CASE_: Tuple =logging.getLogger(__name__) SCREAMING_SNAKE_CASE_: Any ={'facebook/bart-base': BartForConditionalGeneration} SCREAMING_SNAKE_CASE_: int ={'facebook/bart-base': BartTokenizer} def lowerCAmelCase_ ( ) -> str: '''simple docstring''' UpperCAmelCase_ = argparse.ArgumentParser(description="Export Bart model + Beam Search to ONNX graph." ) parser.add_argument( "--validation_file" , type=snake_case_ , default=snake_case_ , help="A csv or a json file containing the validation data." ) parser.add_argument( "--max_length" , type=snake_case_ , default=5 , help="The maximum total input sequence length after tokenization." , ) parser.add_argument( "--num_beams" , type=snake_case_ , default=snake_case_ , help=( "Number of beams to use for evaluation. This argument will be " "passed to ``model.generate``, which is used during ``evaluate`` and ``predict``." ) , ) parser.add_argument( "--model_name_or_path" , type=snake_case_ , help="Path to pretrained model or model identifier from huggingface.co/models." , required=snake_case_ , ) parser.add_argument( "--config_name" , type=snake_case_ , default=snake_case_ , help="Pretrained config name or path if not the same as model_name" , ) parser.add_argument( "--device" , type=snake_case_ , default="cpu" , help="Device where the model will be run" , ) parser.add_argument("--output_file_path" , type=snake_case_ , default=snake_case_ , help="Where to store the final ONNX file." ) UpperCAmelCase_ = parser.parse_args() return args def lowerCAmelCase_ ( snake_case_ : Optional[Any] , snake_case_ : int="cpu" ) -> Dict: '''simple docstring''' UpperCAmelCase_ = model_dict[model_name].from_pretrained(snake_case_ ).to(snake_case_ ) UpperCAmelCase_ = tokenizer_dict[model_name].from_pretrained(snake_case_ ) if model_name in ["facebook/bart-base"]: UpperCAmelCase_ = 0 UpperCAmelCase_ = None UpperCAmelCase_ = 0 return huggingface_model, tokenizer def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : int , snake_case_ : Dict ) -> Dict: '''simple docstring''' model.eval() UpperCAmelCase_ = None UpperCAmelCase_ = torch.jit.script(BARTBeamSearchGenerator(snake_case_ ) ) with torch.no_grad(): UpperCAmelCase_ = "My friends are cool but they eat too many carbs." UpperCAmelCase_ = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=10_24 , return_tensors="pt" ).to(model.device ) UpperCAmelCase_ = model.generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , num_beams=snake_case_ , max_length=snake_case_ , early_stopping=snake_case_ , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( snake_case_ , ( inputs["input_ids"], inputs["attention_mask"], num_beams, max_length, model.config.decoder_start_token_id, ) , snake_case_ , opset_version=14 , input_names=["input_ids", "attention_mask", "num_beams", "max_length", "decoder_start_token_id"] , output_names=["output_ids"] , dynamic_axes={ "input_ids": {0: "batch", 1: "seq"}, "output_ids": {0: "batch", 1: "seq_out"}, } , example_outputs=snake_case_ , ) logger.info("Model exported to {}".format(snake_case_ ) ) UpperCAmelCase_ = remove_dup_initializers(os.path.abspath(snake_case_ ) ) logger.info("Deduplicated and optimized model written to {}".format(snake_case_ ) ) UpperCAmelCase_ = onnxruntime.InferenceSession(snake_case_ ) UpperCAmelCase_ = ort_sess.run( snake_case_ , { "input_ids": inputs["input_ids"].cpu().numpy(), "attention_mask": inputs["attention_mask"].cpu().numpy(), "num_beams": np.array(snake_case_ ), "max_length": np.array(snake_case_ ), "decoder_start_token_id": np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info("Model outputs from torch and ONNX Runtime are similar." ) logger.info("Success." ) def lowerCAmelCase_ ( ) -> int: '''simple docstring''' UpperCAmelCase_ = parse_args() UpperCAmelCase_ = 5 UpperCAmelCase_ = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() UpperCAmelCase_ = torch.device(args.device ) UpperCAmelCase_ , UpperCAmelCase_ = load_model_tokenizer(args.model_name_or_path , snake_case_ ) if model.config.decoder_start_token_id is None: raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined" ) model.to(snake_case_ ) if args.max_length: UpperCAmelCase_ = args.max_length if args.num_beams: UpperCAmelCase_ = args.num_beams if args.output_file_path: UpperCAmelCase_ = args.output_file_path else: UpperCAmelCase_ = "BART.onnx" logger.info("Exporting model to ONNX" ) export_and_validate_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) if __name__ == "__main__": main()
106
1
'''simple docstring''' from typing import List from .keymap import KEYMAP, get_character def UpperCamelCase_( snake_case : str ): '''simple docstring''' def decorator(snake_case : List[str] ): snake_case_ = getattr(snake_case , "handle_key" , [] ) handle += [key] setattr(snake_case , "handle_key" , snake_case ) return func return decorator def UpperCamelCase_( *snake_case : List[str] ): '''simple docstring''' def decorator(snake_case : Optional[Any] ): snake_case_ = getattr(snake_case , "handle_key" , [] ) handle += keys setattr(snake_case , "handle_key" , snake_case ) return func return decorator class _snake_case ( lowercase_ ): def __new__( cls , a__ , a__ , a__ ) -> str: '''simple docstring''' snake_case_ = super().__new__(cls , a__ , a__ , a__ ) if not hasattr(a__ , "key_handler" ): setattr(a__ , "key_handler" , {} ) setattr(a__ , "handle_input" , KeyHandler.handle_input ) for value in attrs.values(): snake_case_ = getattr(a__ , "handle_key" , [] ) for key in handled_keys: snake_case_ = value return new_cls @staticmethod def lowerCAmelCase__ ( cls ) -> List[str]: '''simple docstring''' snake_case_ = get_character() if char != KEYMAP["undefined"]: snake_case_ = ord(a__ ) snake_case_ = cls.key_handler.get(a__ ) if handler: snake_case_ = char return handler(cls ) else: return None def UpperCamelCase_( cls : int ): '''simple docstring''' return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
85
'''simple docstring''' import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html a__ : List[str] = 'platform' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class UpperCAmelCase__ : __SCREAMING_SNAKE_CASE = PegasusConfig __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = '''gelu''' def __init__( self , lowercase , lowercase=1_3 , lowercase=7 , lowercase=True , lowercase=False , lowercase=9_9 , lowercase=3_2 , lowercase=5 , lowercase=4 , lowercase=3_7 , lowercase=0.1 , lowercase=0.1 , lowercase=2_0 , lowercase=2 , lowercase=1 , lowercase=0 , ) -> Optional[Any]: __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = eos_token_id __UpperCamelCase = pad_token_id __UpperCamelCase = bos_token_id def __lowerCamelCase ( self ) -> str: __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) __UpperCamelCase = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) __UpperCamelCase = np.concatenate([input_ids, eos_tensor] , axis=1 ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __UpperCamelCase = prepare_pegasus_inputs_dict(lowercase , lowercase , lowercase ) return config, inputs_dict def __lowerCamelCase ( self , lowercase , lowercase , lowercase ) -> Dict: __UpperCamelCase = 2_0 __UpperCamelCase = model_class_name(lowercase ) __UpperCamelCase = model.encode(inputs_dict["""input_ids"""] ) __UpperCamelCase , __UpperCamelCase = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) __UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , lowercase , lowercase ) __UpperCamelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) __UpperCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __UpperCamelCase = model.decode( decoder_input_ids[:, :-1] , lowercase , decoder_attention_mask=lowercase , past_key_values=lowercase , decoder_position_ids=lowercase , ) __UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) __UpperCamelCase = model.decode( decoder_input_ids[:, -1:] , lowercase , decoder_attention_mask=lowercase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowercase , ) __UpperCamelCase = model.decode(lowercase , lowercase ) __UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase ) -> Any: __UpperCamelCase = 2_0 __UpperCamelCase = model_class_name(lowercase ) __UpperCamelCase = model.encode(inputs_dict["""input_ids"""] ) __UpperCamelCase , __UpperCamelCase = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) __UpperCamelCase = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , lowercase , lowercase ) __UpperCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __UpperCamelCase = model.decode( decoder_input_ids[:, :-1] , lowercase , decoder_attention_mask=lowercase , past_key_values=lowercase , decoder_position_ids=lowercase , ) __UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) __UpperCamelCase = model.decode( decoder_input_ids[:, -1:] , lowercase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowercase , decoder_position_ids=lowercase , ) __UpperCamelCase = model.decode(lowercase , lowercase , decoder_attention_mask=lowercase ) __UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" ) def _lowercase ( __A ,__A ,__A ,__A=None ,__A=None ,): '''simple docstring''' if attention_mask is None: __UpperCamelCase = np.not_equal(__A ,config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: __UpperCamelCase = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape ,dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ).astype(np.inta ), ] ,axis=-1 ,) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class UpperCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase): __SCREAMING_SNAKE_CASE = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) __SCREAMING_SNAKE_CASE = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def __lowerCamelCase ( self ) -> Optional[Any]: __UpperCamelCase = FlaxPegasusModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=lowercase ) def __lowerCamelCase ( self ) -> List[Any]: self.config_tester.run_common_tests() def __lowerCamelCase ( self ) -> List[Any]: __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowercase , lowercase , lowercase ) def __lowerCamelCase ( self ) -> List[Any]: __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowercase , lowercase , lowercase ) def __lowerCamelCase ( self ) -> List[str]: __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCamelCase = self._prepare_for_class(lowercase , lowercase ) __UpperCamelCase = model_class(lowercase ) @jax.jit def encode_jitted(lowercase , lowercase=None , **lowercase ): return model.encode(input_ids=lowercase , attention_mask=lowercase ) with self.subTest("""JIT Enabled""" ): __UpperCamelCase = encode_jitted(**lowercase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __UpperCamelCase = encode_jitted(**lowercase ).to_tuple() self.assertEqual(len(lowercase ) , len(lowercase ) ) for jitted_output, output in zip(lowercase , lowercase ): self.assertEqual(jitted_output.shape , output.shape ) def __lowerCamelCase ( self ) -> List[Any]: __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCamelCase = model_class(lowercase ) __UpperCamelCase = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) __UpperCamelCase = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(lowercase , lowercase , lowercase ): return model.decode( decoder_input_ids=lowercase , decoder_attention_mask=lowercase , encoder_outputs=lowercase , ) with self.subTest("""JIT Enabled""" ): __UpperCamelCase = decode_jitted(**lowercase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __UpperCamelCase = decode_jitted(**lowercase ).to_tuple() self.assertEqual(len(lowercase ) , len(lowercase ) ) for jitted_output, output in zip(lowercase , lowercase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def __lowerCamelCase ( self ) -> Dict: for model_class_name in self.all_model_classes: __UpperCamelCase = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=lowercase ) __UpperCamelCase = np.ones((1, 1) ) __UpperCamelCase = model(lowercase ) self.assertIsNotNone(lowercase ) @slow def __lowerCamelCase ( self ) -> str: __UpperCamelCase = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" ) __UpperCamelCase = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" ) __UpperCamelCase = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] __UpperCamelCase = [ """California's largest electricity provider has turned off power to hundreds of thousands of customers.""", """Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""", ] __UpperCamelCase = tokenizer(lowercase , return_tensors="""np""" , truncation=lowercase , max_length=5_1_2 , padding=lowercase ) __UpperCamelCase = model.generate(**lowercase , num_beams=2 ).sequences __UpperCamelCase = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) assert tgt_text == decoded
349
0
from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge _lowerCAmelCase : Optional[Any] = [ "Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of the" " final seconds on board Flight 9525. The Germanwings co-pilot says he had a \"previous episode of severe" " depression\" German airline confirms it knew of Andreas Lubitz's depression years before he took control.", "The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal" " accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC's" " founding Rome Statute in January. Israel and the United States opposed the Palestinians' efforts to join the" " body.", "Amnesty International releases its annual report on the death penalty. The report catalogs the use of" " state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the" " world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital" " punishment.", ] _lowerCAmelCase : List[Any] = [ "Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports ." " Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz" " had informed his Lufthansa training school of an episode of severe depression, airline says .", "Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June ." " Israel and the United States opposed the move, which could open the door to war crimes investigations against" " Israelis .", "Amnesty's annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to" " death . Organization claims that governments around the world are using the threat of terrorism to advance" " executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death" " sentences up by 28% .", ] def UpperCamelCase_( ): """simple docstring""" __a =calculate_rouge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , bootstrap_aggregation=__SCREAMING_SNAKE_CASE , rouge_keys=['rouge2', 'rougeL'] ) assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __a =calculate_rouge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , bootstrap_aggregation=__SCREAMING_SNAKE_CASE , rouge_keys=['rouge2'] ) assert ( pd.DataFrame(no_aggregation['rouge2'] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra['rouge2'] ).fmeasure.mean() ) def UpperCamelCase_( ): """simple docstring""" __a ="""rougeLsum""" __a =calculate_rouge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , newline_sep=__SCREAMING_SNAKE_CASE , rouge_keys=[k] )[k] __a =calculate_rouge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , newline_sep=__SCREAMING_SNAKE_CASE , rouge_keys=[k] )[k] assert score > score_no_sep def UpperCamelCase_( ): """simple docstring""" __a =["""rouge1""", """rouge2""", """rougeL"""] __a =calculate_rouge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , newline_sep=__SCREAMING_SNAKE_CASE , rouge_keys=__SCREAMING_SNAKE_CASE ) __a =calculate_rouge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , newline_sep=__SCREAMING_SNAKE_CASE , rouge_keys=__SCREAMING_SNAKE_CASE ) assert score_sep == score_no_sep def UpperCamelCase_( ): """simple docstring""" __a =[ """Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.""", """Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .""", ] __a =[ """Margot Frank, died in 1945, a month earlier than previously thought.""", """Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of""" """ the final seconds on board Flight 9525.""", ] assert calculate_rouge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , newline_sep=__SCREAMING_SNAKE_CASE ) == calculate_rouge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , newline_sep=__SCREAMING_SNAKE_CASE ) def UpperCamelCase_( ): """simple docstring""" __a =[ """\" \"a person who has such a video needs to immediately give it to the investigators,\" prosecutor says .<n> \"it is a very disturbing scene,\" editor-in-chief of bild online tells \"erin burnett: outfront\" """ ] __a =[ """ Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports . Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .""" ] __a =calculate_rouge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , rouge_keys=['rougeLsum'] , newline_sep=__SCREAMING_SNAKE_CASE )["""rougeLsum"""] __a =calculate_rouge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , rouge_keys=['rougeLsum'] )["""rougeLsum"""] assert new_score > prev_score def UpperCamelCase_( ): """simple docstring""" __a =Path('examples/seq2seq/test_data/wmt_en_ro' ) __a =calculate_rouge_path(data_dir.joinpath('test.source' ) , data_dir.joinpath('test.target' ) ) assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __a =calculate_rouge_path( data_dir.joinpath('test.source' ) , data_dir.joinpath('test.target' ) , bootstrap_aggregation=__SCREAMING_SNAKE_CASE ) assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
370
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class __magic_name__ : def __init__( self , __snake_case , __snake_case=13 , __snake_case=7 , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=False , __snake_case=False , __snake_case=False , __snake_case=2 , __snake_case=99 , __snake_case=0 , __snake_case=32 , __snake_case=5 , __snake_case=4 , __snake_case=0.1 , __snake_case=0.1 , __snake_case=512 , __snake_case=2 , __snake_case=0.02 , __snake_case=2 , __snake_case=4 , __snake_case="last" , __snake_case=True , __snake_case=None , __snake_case=0 , ) -> Optional[Any]: '''simple docstring''' __a =parent __a =batch_size __a =seq_length __a =is_training __a =use_input_lengths __a =use_token_type_ids __a =use_labels __a =gelu_activation __a =sinusoidal_embeddings __a =causal __a =asm __a =n_langs __a =vocab_size __a =n_special __a =hidden_size __a =num_hidden_layers __a =num_attention_heads __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =max_position_embeddings __a =type_sequence_label_size __a =initializer_range __a =num_labels __a =num_choices __a =summary_type __a =use_proj __a =scope __a =bos_token_id def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a =random_attention_mask([self.batch_size, self.seq_length] ) __a =None if self.use_input_lengths: __a =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __a =None if self.use_token_type_ids: __a =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __a =None __a =None __a =None if self.use_labels: __a =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a =ids_tensor([self.batch_size] , 2 ).float() __a =ids_tensor([self.batch_size] , self.num_choices ) __a =self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __magic_name__ ( self ) -> Any: '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> List[Any]: '''simple docstring''' __a =XLMModel(config=__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , lengths=__snake_case , langs=__snake_case ) __a =model(__snake_case , langs=__snake_case ) __a =model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Optional[int]: '''simple docstring''' __a =XLMWithLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Dict: '''simple docstring''' __a =XLMForQuestionAnsweringSimple(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case ) __a =model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) __a =outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> List[Any]: '''simple docstring''' __a =XLMForQuestionAnswering(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case ) __a =model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , p_mask=__snake_case , ) __a =model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , ) ((__a) , ) =result_with_labels.to_tuple() __a =model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) ((__a) , ) =result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Optional[Any]: '''simple docstring''' __a =XLMForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case ) __a =model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Any: '''simple docstring''' __a =self.num_labels __a =XLMForTokenClassification(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Tuple: '''simple docstring''' __a =self.num_choices __a =XLMForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() __a =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) =config_and_inputs __a ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable SCREAMING_SNAKE_CASE = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> int: '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __magic_name__ ( self , __snake_case , __snake_case , __snake_case=False ) -> str: '''simple docstring''' __a =super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": __a =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) __a =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) return inputs_dict def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =XLMModelTester(self ) __a =ConfigTester(self , config_class=__snake_case , emb_dim=37 ) def __magic_name__ ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*__snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*__snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*__snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*__snake_case ) def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*__snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*__snake_case ) def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=False , __snake_case=1 ) -> Optional[Any]: '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_attentions in attentions] , [True] * len(__snake_case ) ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(__snake_case ): # adds PAD dummy token __a =min_length + idx + 1 __a =min_length + idx + 1 __a =( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(__snake_case ) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=False , __snake_case=1 ) -> Dict: '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_hidden_states in hidden_states] , [True] * len(__snake_case ) , ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(__snake_case ): # adds PAD dummy token __a =min_length + idx + 1 __a =(batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(__snake_case ) , ) pass @slow def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a =XLMModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch class __magic_name__ ( unittest.TestCase ): @slow def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(__snake_case ) __a =torch.tensor([[14, 447]] , dtype=torch.long , device=__snake_case ) # the president __a =[ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference __a =model.generate(__snake_case , do_sample=__snake_case ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , __snake_case )
308
0
def A ( a_ = 1 ,a_ = 1_000 ) -> int: __UpperCamelCase : Any =1 __UpperCamelCase : Tuple =0 for divide_by_number in range(a_ ,digit + 1 ): __UpperCamelCase : list[int] =[] __UpperCamelCase : Optional[Any] =numerator for _ in range(1 ,digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(a_ ): __UpperCamelCase : Dict =len(a_ ) __UpperCamelCase : List[Any] =divide_by_number else: has_been_divided.append(a_ ) __UpperCamelCase : Any =now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
71
from math import asin, atan, cos, radians, sin, sqrt, tan A__ : Optional[int] = 637_8137.0 A__ : List[str] = 635_6752.31_4245 A__ : Union[str, Any] = 6_37_81_37 def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = (AXIS_A - AXIS_B) / AXIS_A lowercase__ = atan((1 - flattening) * tan(radians(lowerCamelCase_ ) ) ) lowercase__ = atan((1 - flattening) * tan(radians(lowerCamelCase_ ) ) ) lowercase__ = radians(lowerCamelCase_ ) lowercase__ = radians(lowerCamelCase_ ) # Equation lowercase__ = sin((phi_a - phi_a) / 2 ) lowercase__ = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda lowercase__ = sqrt(sin_sq_phi + (cos(lowerCamelCase_ ) * cos(lowerCamelCase_ ) * sin_sq_lambda) ) return 2 * RADIUS * asin(lowerCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
207
0
import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : Optional[int] = [] if isinstance(__UpperCAmelCase , __UpperCAmelCase ): for v in tree.values(): shapes.extend(_fetch_dims(__UpperCAmelCase ) ) elif isinstance(__UpperCAmelCase , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(__UpperCAmelCase ) ) elif isinstance(__UpperCAmelCase , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError("""Not supported""" ) return shapes @torch.jit.ignore def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple ): __lowercase : str = [] for d in reversed(__UpperCAmelCase ): idx.append(flat_idx % d ) __lowercase : Optional[Any] = flat_idx // d return tuple(reversed(__UpperCAmelCase ) ) @torch.jit.ignore def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] = None , lowerCAmelCase_ : Union[str, Any] = None , ): # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(lowerCAmelCase_ : str ) -> None: __lowercase : Tuple = True for i in range(len(__UpperCAmelCase ) ): __lowercase : Optional[Any] = -1 * (i + 1) l[reversed_idx] &= tally __lowercase : Dict = l[reversed_idx] if start_edges is None: __lowercase : Optional[int] = [s == 0 for s in start] reduce_edge_list(__UpperCAmelCase ) if end_edges is None: __lowercase : Optional[int] = [e == (d - 1) for e, d in zip(__UpperCAmelCase , __UpperCAmelCase )] reduce_edge_list(__UpperCAmelCase ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(__UpperCAmelCase ) == 0: return [()] elif len(__UpperCAmelCase ) == 1: return [(slice(start[0] , end[0] + 1 ),)] __lowercase : List[Tuple[slice, ...]] = [] __lowercase : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(__UpperCAmelCase , __UpperCAmelCase ): if s == e: path_list.append(slice(__UpperCAmelCase , s + 1 ) ) else: break __lowercase : Tuple[slice, ...] = tuple(__UpperCAmelCase ) __lowercase : int = len(__UpperCAmelCase ) # start == end, and we're done if divergence_idx == len(__UpperCAmelCase ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None __lowercase : int = start[divergence_idx] return tuple( path + (slice(__UpperCAmelCase , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None __lowercase : Dict = end[divergence_idx] return tuple( path + (slice(__UpperCAmelCase , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) __lowercase : Optional[int] = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : int ): __lowercase : List[Any] = t.shape[:no_batch_dims] __lowercase : Optional[Any] = list(_flat_idx_to_idx(__UpperCAmelCase , __UpperCAmelCase ) ) # _get_minimal_slice_set is inclusive __lowercase : Dict = list(_flat_idx_to_idx(flat_end - 1 , __UpperCAmelCase ) ) # Get an ordered list of slices to perform __lowercase : int = _get_minimal_slice_set( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) __lowercase : Tuple = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] = False , lowerCAmelCase_ : str = None , lowerCAmelCase_ : Dict = False , ): if not (len(__UpperCAmelCase ) > 0): raise ValueError("""Must provide at least one input""" ) __lowercase : List[Any] = [shape[:no_batch_dims] for shape in _fetch_dims(__UpperCAmelCase )] __lowercase : int = tuple([max(__UpperCAmelCase ) for s in zip(*__UpperCAmelCase )] ) def _prep_inputs(lowerCAmelCase_ : List[Any] ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: __lowercase : Any = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) __lowercase : List[str] = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: __lowercase : Union[str, Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t __lowercase : Dict[str, Any] = tensor_tree_map(_prep_inputs , __UpperCAmelCase ) __lowercase : int = None if _out is not None: __lowercase : str = tensor_tree_map(lambda lowerCAmelCase_ : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) __lowercase : Optional[Any] = 1 for d in orig_batch_dims: flat_batch_dim *= d __lowercase : Any = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(lowerCAmelCase_ : Optional[Any] ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t __lowercase : Optional[Any] = 0 __lowercase : int = prepped_outputs for _ in range(__UpperCAmelCase ): # Chunk the input if not low_mem: __lowercase : int = _select_chunk else: __lowercase : Optional[Any] = partial( _chunk_slice , flat_start=__UpperCAmelCase , flat_end=min(__UpperCAmelCase , i + chunk_size ) , no_batch_dims=len(__UpperCAmelCase ) , ) __lowercase : Dict[str, Any] = tensor_tree_map(__UpperCAmelCase , __UpperCAmelCase ) # Run the layer on the chunk __lowercase : Optional[Any] = layer(**__UpperCAmelCase ) # Allocate space for the output if out is None: __lowercase : Any = tensor_tree_map(lambda lowerCAmelCase_ : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , __UpperCAmelCase ) # Put the chunk in its pre-allocated space if isinstance(__UpperCAmelCase , __UpperCAmelCase ): def assign(lowerCAmelCase_ : str , lowerCAmelCase_ : Any ) -> None: for k, v in da.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): assign(__UpperCAmelCase , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: __lowercase : Optional[int] = da[k] assign(__UpperCAmelCase , __UpperCAmelCase ) elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): for xa, xa in zip(__UpperCAmelCase , __UpperCAmelCase ): if _add_into_out: xa[i : i + chunk_size] += xa else: __lowercase : Optional[int] = xa elif isinstance(__UpperCAmelCase , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: __lowercase : Union[str, Any] = output_chunk else: raise ValueError("""Not supported""" ) i += chunk_size __lowercase : Any = tensor_tree_map(lambda lowerCAmelCase_ : t.view(orig_batch_dims + t.shape[1:] ) , __UpperCAmelCase ) return out class lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] , __a : Optional[Any] = 512 , ) -> Optional[int]: """simple docstring""" __lowercase : int = max_chunk_size __lowercase : Optional[int] = None __lowercase : Optional[tuple] = None def lowerCAmelCase ( self : Optional[int] , __a : Optional[int] , __a : Tuple , __a : Tuple ) -> Optional[int]: """simple docstring""" logging.info("""Tuning chunk size...""" ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size __lowercase : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] __lowercase : List[Any] = [c for c in candidates if c > min_chunk_size] __lowercase : str = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(__a : Optional[int] ) -> bool: try: with torch.no_grad(): fn(*_UpperCAmelCase , chunk_size=_UpperCAmelCase ) return True except RuntimeError: return False __lowercase : Any = 0 __lowercase : Any = len(_UpperCAmelCase ) - 1 while i > min_viable_chunk_size_index: __lowercase : List[str] = test_chunk_size(candidates[i] ) if not viable: __lowercase : Optional[int] = (min_viable_chunk_size_index + i) // 2 else: __lowercase : Dict = i __lowercase : Union[str, Any] = (i + len(_UpperCAmelCase ) - 1) // 2 return candidates[min_viable_chunk_size_index] def lowerCAmelCase ( self : Optional[int] , __a : int , __a : List[Any] ) -> int: """simple docstring""" __lowercase : Tuple = True for aa, aa in zip(_UpperCAmelCase , _UpperCAmelCase ): assert type(_UpperCAmelCase ) == type(_UpperCAmelCase ) if isinstance(_UpperCAmelCase , (list, tuple) ): consistent &= self._compare_arg_caches(_UpperCAmelCase , _UpperCAmelCase ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase : Union[str, Any] = [v for _, v in sorted(aa.items() , key=lambda __a : x[0] )] __lowercase : Union[str, Any] = [v for _, v in sorted(aa.items() , key=lambda __a : x[0] )] consistent &= self._compare_arg_caches(_UpperCAmelCase , _UpperCAmelCase ) else: consistent &= aa == aa return consistent def lowerCAmelCase ( self : Dict , __a : Tuple , __a : Any , __a : Any , ) -> Tuple: """simple docstring""" __lowercase : str = True __lowercase : tuple = tree_map(lambda __a : a.shape if isinstance(_UpperCAmelCase , torch.Tensor ) else a , _UpperCAmelCase , _UpperCAmelCase ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(_UpperCAmelCase ) __lowercase : str = self._compare_arg_caches(self.cached_arg_data , _UpperCAmelCase ) else: # Otherwise, we can reuse the precomputed value __lowercase : Optional[int] = False if not consistent: __lowercase : List[Any] = self._determine_favorable_chunk_size( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) __lowercase : str = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
352
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Dict = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) __lowercase : List[str] = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __lowercase : Optional[Any] = model(__a )["""last_hidden_state"""] __lowercase : Any = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , __a ) # compare the actual values for a slice. __lowercase : Dict = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
306
0
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class lowercase__ ( _lowerCamelCase): UpperCamelCase_ = (DPMSolverSDEScheduler,) UpperCamelCase_ = 10 def __A ( self : Optional[Any] , **UpperCamelCase__ : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = { '''num_train_timesteps''': 1100, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''noise_sampler_seed''': 0, } config.update(**lowerCAmelCase_ ) return config def __A ( self : str ): '''simple docstring''' for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=lowerCAmelCase_ ) def __A ( self : Union[str, Any] ): '''simple docstring''' for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCAmelCase_ , beta_end=lowerCAmelCase_ ) def __A ( self : str ): '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCAmelCase_ ) def __A ( self : Optional[Any] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase_ ) def __A ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Optional[Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Optional[Any] = scheduler_class(**lowerCAmelCase_ ) scheduler.set_timesteps(self.num_inference_steps ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_model() SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE : List[str] = sample.to(lowerCAmelCase_ ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE : Dict = scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = model(lowerCAmelCase_ , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = output.prev_sample SCREAMING_SNAKE_CASE : str = torch.sum(torch.abs(lowerCAmelCase_ ) ) SCREAMING_SNAKE_CASE : List[Any] = torch.mean(torch.abs(lowerCAmelCase_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_8210_4492_1875 ) < 1E-2 assert abs(result_mean.item() - 0.2178_7059_6456_5277 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3521_1181_6406 ) < 1E-2 assert abs(result_mean.item() - 0.2_2342_9068_9229_9652 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1E-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1E-3 def __A ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : int = self.get_scheduler_config(prediction_type='''v_prediction''' ) SCREAMING_SNAKE_CASE : str = scheduler_class(**lowerCAmelCase_ ) scheduler.set_timesteps(self.num_inference_steps ) SCREAMING_SNAKE_CASE : Tuple = self.dummy_model() SCREAMING_SNAKE_CASE : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE : Dict = sample.to(lowerCAmelCase_ ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE : str = scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : str = model(lowerCAmelCase_ , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : str = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : Dict = output.prev_sample SCREAMING_SNAKE_CASE : Tuple = torch.sum(torch.abs(lowerCAmelCase_ ) ) SCREAMING_SNAKE_CASE : Tuple = torch.mean(torch.abs(lowerCAmelCase_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_1492_0043_9453 ) < 1E-2 assert abs(result_mean.item() - 0.1_6226_2890_1481_6284 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_6633_6059_5703 ) < 1E-2 assert abs(result_mean.item() - 0.1_6688_3260_0116_7297 ) < 1E-3 else: assert abs(result_sum.item() - 119.8_4875_4882_8125 ) < 1E-2 assert abs(result_mean.item() - 0.1560_5306_6253_6621 ) < 1E-3 def __A ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : int = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Optional[int] = scheduler_class(**lowerCAmelCase_ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_model() SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_sample_deter.to(lowerCAmelCase_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: SCREAMING_SNAKE_CASE : Any = scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = model(lowerCAmelCase_ , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : str = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = output.prev_sample SCREAMING_SNAKE_CASE : int = torch.sum(torch.abs(lowerCAmelCase_ ) ) SCREAMING_SNAKE_CASE : Dict = torch.mean(torch.abs(lowerCAmelCase_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_9573_9746_0938 ) < 1E-2 assert abs(result_mean.item() - 0.2_1805_9346_0798_2635 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3536_3769_5312 ) < 1E-2 assert abs(result_mean.item() - 0.2_2342_9083_8241_5771 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1E-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1E-3 def __A ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : str = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Optional[int] = scheduler_class(**lowerCAmelCase_ , use_karras_sigmas=lowerCAmelCase_ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_model() SCREAMING_SNAKE_CASE : Any = self.dummy_sample_deter.to(lowerCAmelCase_ ) * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE : List[str] = sample.to(lowerCAmelCase_ ) for t in scheduler.timesteps: SCREAMING_SNAKE_CASE : Tuple = scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = model(lowerCAmelCase_ , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = output.prev_sample SCREAMING_SNAKE_CASE : Dict = torch.sum(torch.abs(lowerCAmelCase_ ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.mean(torch.abs(lowerCAmelCase_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_9741_3574_2188 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_6535_6445_3125 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2 else: assert abs(result_sum.item() - 170.3_1352_2338_8672 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2
182
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() lowercase : List[str] = logging.get_logger("transformers.models.speecht5") def SCREAMING_SNAKE_CASE__ ( __A , __A , __A ) -> Dict: hf_model.apply_weight_norm() _snake_case = checkpoint['input_conv.weight_g'] _snake_case = checkpoint['input_conv.weight_v'] _snake_case = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): _snake_case = checkpoint[F'upsamples.{i}.1.weight_g'] _snake_case = checkpoint[F'upsamples.{i}.1.weight_v'] _snake_case = checkpoint[F'upsamples.{i}.1.bias'] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): _snake_case = checkpoint[F'blocks.{i}.convs1.{j}.1.weight_g'] _snake_case = checkpoint[F'blocks.{i}.convs1.{j}.1.weight_v'] _snake_case = checkpoint[F'blocks.{i}.convs1.{j}.1.bias'] _snake_case = checkpoint[F'blocks.{i}.convs2.{j}.1.weight_g'] _snake_case = checkpoint[F'blocks.{i}.convs2.{j}.1.weight_v'] _snake_case = checkpoint[F'blocks.{i}.convs2.{j}.1.bias'] _snake_case = checkpoint['output_conv.1.weight_g'] _snake_case = checkpoint['output_conv.1.weight_v'] _snake_case = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( __A , __A , __A , __A=None , __A=None , ) -> List[Any]: if config_path is not None: _snake_case = SpeechTaHifiGanConfig.from_pretrained(__A ) else: _snake_case = SpeechTaHifiGanConfig() _snake_case = SpeechTaHifiGan(__A ) _snake_case = torch.load(__A ) load_weights(orig_checkpoint['model']['generator'] , __A , __A ) _snake_case = np.load(__A ) _snake_case = stats[0].reshape(-1 ) _snake_case = stats[1].reshape(-1 ) _snake_case = torch.from_numpy(__A ).float() _snake_case = torch.from_numpy(__A ).float() model.save_pretrained(__A ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(__A ) if __name__ == "__main__": lowercase : Dict = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) lowercase : List[Any] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
42
0
'''simple docstring''' import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class A__ ( _snake_case , unittest.TestCase ): lowercase = BlenderbotSmallTokenizer lowercase = False def snake_case_ ( self ) -> int: '''simple docstring''' super().setUp() A_ = ["""__start__""", """adapt""", """act""", """ap@@""", """te""", """__end__""", """__unk__"""] A_ = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) A_ = ["""#version: 0.2""", """a p""", """t e</w>""", """ap t</w>""", """a d""", """ad apt</w>""", """a c""", """ac t</w>""", """"""] A_ = {"""unk_token""": """__unk__""", """bos_token""": """__start__""", """eos_token""": """__end__"""} A_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) A_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCamelCase__ ) ) def snake_case_ ( self , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> Any: '''simple docstring''' A_ = """adapt act apte""" A_ = """adapt act apte""" return input_text, output_text def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) A_ = """adapt act apte""" A_ = ["""adapt""", """act""", """ap@@""", """te"""] A_ = tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) A_ = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] A_ = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , UpperCamelCase__ ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) assert tok("""sam""" ).input_ids == [1384] A_ = """I am a small frog.""" A_ = tok([src_text] , padding=UpperCamelCase__ , truncation=UpperCamelCase__ )["""input_ids"""] A_ = tok.batch_decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__ )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) A_ = """I am a small frog .""" A_ = """.""" A_ = tok(UpperCamelCase__ )["""input_ids"""] A_ = tok(UpperCamelCase__ )["""input_ids"""] assert encoded[-1] == encoded_dot[0]
101
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> float: if edge <= 0 or not isinstance(UpperCAmelCase__, UpperCAmelCase__ ): raise ValueError("""Length must be a positive.""" ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> float: if edge <= 0 or not isinstance(UpperCAmelCase__, UpperCAmelCase__ ): raise ValueError("""Length must be a positive.""" ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
101
1
"""simple docstring""" from itertools import count def _lowercase ( __lowerCAmelCase = 50 ) -> str: SCREAMING_SNAKE_CASE__ : Dict = [1] * min_block_length for n in count(lowerCamelCase__ ): fill_count_functions.append(1 ) for block_length in range(lowerCamelCase__ , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 100_0000: break return n if __name__ == "__main__": print(f'{solution() = }')
132
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase : Any = { "configuration_altclip": [ "ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "AltCLIPConfig", "AltCLIPTextConfig", "AltCLIPVisionConfig", ], "processing_altclip": ["AltCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Tuple = [ "ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "AltCLIPPreTrainedModel", "AltCLIPModel", "AltCLIPTextModel", "AltCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys UpperCAmelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
252
0
import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: lowercase__ = old_name if "patch_embed" in old_name: lowercase__ = old_name.split('.' ) if layer == "0": lowercase__ = old_name.replace('0' , 'convolution1' ) elif layer == "1": lowercase__ = old_name.replace('1' , 'batchnorm_before' ) elif layer == "3": lowercase__ = old_name.replace('3' , 'convolution2' ) else: lowercase__ = old_name.replace('4' , 'batchnorm_after' ) if "network" in old_name and re.search(R'\d\.\d' , _SCREAMING_SNAKE_CASE ): lowercase__ = R"""\b\d{2}\b""" if bool(re.search(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ): lowercase__ = re.search(R'\d\.\d\d.' , _SCREAMING_SNAKE_CASE ).group() else: lowercase__ = re.search(R'\d\.\d.' , _SCREAMING_SNAKE_CASE ).group() if int(match[0] ) < 6: lowercase__ = old_name.replace(_SCREAMING_SNAKE_CASE , '' ) lowercase__ = trimmed_name.replace('network' , match[0] + '.meta4D_layers.blocks.' + match[2:-1] ) lowercase__ = """intermediate_stages.""" + trimmed_name else: lowercase__ = old_name.replace(_SCREAMING_SNAKE_CASE , '' ) if int(match[2] ) < num_meta4D_last_stage: lowercase__ = trimmed_name.replace('network' , 'meta4D_layers.blocks.' + match[2] ) else: lowercase__ = str(int(match[2] ) - num_meta4D_last_stage ) lowercase__ = trimmed_name.replace('network' , 'meta3D_layers.blocks.' + layer_index ) if "norm1" in old_name: lowercase__ = trimmed_name.replace('norm1' , 'layernorm1' ) elif "norm2" in old_name: lowercase__ = trimmed_name.replace('norm2' , 'layernorm2' ) elif "fc1" in old_name: lowercase__ = trimmed_name.replace('fc1' , 'linear_in' ) elif "fc2" in old_name: lowercase__ = trimmed_name.replace('fc2' , 'linear_out' ) lowercase__ = """last_stage.""" + trimmed_name elif "network" in old_name and re.search(R'.\d.' , _SCREAMING_SNAKE_CASE ): lowercase__ = old_name.replace('network' , 'intermediate_stages' ) if "fc" in new_name: lowercase__ = new_name.replace('fc' , 'convolution' ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): lowercase__ = new_name.replace('norm1' , 'batchnorm_before' ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): lowercase__ = new_name.replace('norm2' , 'batchnorm_after' ) if "proj" in new_name: lowercase__ = new_name.replace('proj' , 'projection' ) if "dist_head" in new_name: lowercase__ = new_name.replace('dist_head' , 'distillation_classifier' ) elif "head" in new_name: lowercase__ = new_name.replace('head' , 'classifier' ) elif "patch_embed" in new_name: lowercase__ = """efficientformer.""" + new_name elif new_name == "norm.weight" or new_name == "norm.bias": lowercase__ = new_name.replace('norm' , 'layernorm' ) lowercase__ = """efficientformer.""" + new_name else: lowercase__ = """efficientformer.encoder.""" + new_name return new_name def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: for key in checkpoint.copy().keys(): lowercase__ = checkpoint.pop(_SCREAMING_SNAKE_CASE ) lowercase__ = val return checkpoint def __UpperCamelCase () -> Union[str, Any]: lowercase__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase__ = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return image def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: lowercase__ = torch.load(_SCREAMING_SNAKE_CASE , map_location='cpu' )["""model"""] lowercase__ = EfficientFormerConfig.from_json_file(_SCREAMING_SNAKE_CASE ) lowercase__ = EfficientFormerForImageClassificationWithTeacher(_SCREAMING_SNAKE_CASE ) lowercase__ = """_""".join(checkpoint_path.split('/' )[-1].split('.' )[0].split('_' )[:-1] ) lowercase__ = config.depths[-1] - config.num_metaad_blocks + 1 lowercase__ = convert_torch_checkpoint(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) model.eval() lowercase__ = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } # prepare image lowercase__ = prepare_img() lowercase__ = 256 lowercase__ = 224 lowercase__ = EfficientFormerImageProcessor( size={'shortest_edge': image_size} , crop_size={'height': crop_size, 'width': crop_size} , resample=pillow_resamplings['bicubic'] , ) lowercase__ = processor(images=_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values # original processing pipeline lowercase__ = Compose( [ Resize(_SCREAMING_SNAKE_CASE , interpolation=pillow_resamplings['bicubic'] ), CenterCrop(_SCREAMING_SNAKE_CASE ), ToTensor(), Normalize(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), ] ) lowercase__ = image_transforms(_SCREAMING_SNAKE_CASE ).unsqueeze(0 ) assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowercase__ = model(_SCREAMING_SNAKE_CASE ) lowercase__ = outputs.logits lowercase__ = (1, 1000) if "l1" in model_name: lowercase__ = torch.Tensor( [-0.1_3_1_2, 0.4_3_5_3, -1.0_4_9_9, -0.5_1_2_4, 0.4_1_8_3, -0.6_7_9_3, -1.3_7_7_7, -0.0_8_9_3, -0.7_3_5_8, -2.4_3_2_8] ) assert torch.allclose(logits[0, :10] , _SCREAMING_SNAKE_CASE , atol=1E-3 ) assert logits.shape == expected_shape elif "l3" in model_name: lowercase__ = torch.Tensor( [-1.3_1_5_0, -1.5_4_5_6, -1.2_5_5_6, -0.8_4_9_6, -0.7_1_2_7, -0.7_8_9_7, -0.9_7_2_8, -0.3_0_5_2, 0.3_7_5_1, -0.3_1_2_7] ) assert torch.allclose(logits[0, :10] , _SCREAMING_SNAKE_CASE , atol=1E-3 ) assert logits.shape == expected_shape elif "l7" in model_name: lowercase__ = torch.Tensor( [-1.0_2_8_3, -1.4_1_3_1, -0.5_6_4_4, -1.3_1_1_5, -0.5_7_8_5, -1.2_0_4_9, -0.7_5_2_8, 0.1_9_9_2, -0.3_8_2_2, -0.0_8_7_8] ) assert logits.shape == expected_shape else: raise ValueError( F"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""" ) # Save Checkpoints Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) processor.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Processor successfuly saved at {pytorch_dump_path}""" ) if push_to_hub: print('Pushing model to the hub...' ) model.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""" , commit_message='Add model' , use_temp_dir=_SCREAMING_SNAKE_CASE , ) processor.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""" , commit_message='Add image processor' , use_temp_dir=_SCREAMING_SNAKE_CASE , ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--pytorch_model_path""", default=None, type=str, required=True, help="""Path to EfficientFormer pytorch checkpoint.""", ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The json file for EfficientFormer model config.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") parser.add_argument( """--no-push_to_hub""", dest="""push_to_hub""", action="""store_false""", help="""Do not push model and image processor to the hub""", ) parser.set_defaults(push_to_hub=True) lowercase_ = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
360
from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def __UpperCamelCase () -> str: import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join lowercase__ = '__test_patch_submodule_mock__' with patch_submodule(_test_patching , 'os.path.join' , _SCREAMING_SNAKE_CASE ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def __UpperCamelCase () -> Any: assert _test_patching.open is open lowercase__ = '__test_patch_submodule_builtin_mock__' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , 'open' , _SCREAMING_SNAKE_CASE ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def __UpperCamelCase () -> List[str]: # pandas.read_csv is not present in _test_patching lowercase__ = '__test_patch_submodule_missing_mock__' with patch_submodule(_test_patching , 'pandas.read_csv' , _SCREAMING_SNAKE_CASE ): pass def __UpperCamelCase () -> List[str]: # builtin should always be mocked even if they're not in the globals # in case they're loaded at one point lowercase__ = '__test_patch_submodule_missing_builtin_mock__' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , 'len' , _SCREAMING_SNAKE_CASE ) is None with patch_submodule(_test_patching , 'len' , _SCREAMING_SNAKE_CASE ): assert _test_patching.len is mock assert _test_patching.len is len def __UpperCamelCase () -> List[str]: lowercase__ = '__test_patch_submodule_start_and_stop_mock__' lowercase__ = patch_submodule(_test_patching , 'open' , _SCREAMING_SNAKE_CASE ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def __UpperCamelCase () -> Optional[int]: from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join lowercase__ = '__test_patch_submodule_successive_join__' lowercase__ = '__test_patch_submodule_successive_dirname__' lowercase__ = '__test_patch_submodule_successive_rename__' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , 'os.path.join' , _SCREAMING_SNAKE_CASE ): with patch_submodule(_test_patching , 'os.rename' , _SCREAMING_SNAKE_CASE ): with patch_submodule(_test_patching , 'os.path.dirname' , _SCREAMING_SNAKE_CASE ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , 'os.rename' , _SCREAMING_SNAKE_CASE ): with patch_submodule(_test_patching , 'os.path.join' , _SCREAMING_SNAKE_CASE ): with patch_submodule(_test_patching , 'os.path.dirname' , _SCREAMING_SNAKE_CASE ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def __UpperCamelCase () -> Optional[Any]: lowercase__ = '__test_patch_submodule_doesnt_exist_mock__' with patch_submodule(_test_patching , '__module_that_doesn_exist__.__attribute_that_doesn_exist__' , _SCREAMING_SNAKE_CASE ): pass with patch_submodule(_test_patching , 'os.__attribute_that_doesn_exist__' , _SCREAMING_SNAKE_CASE ): pass
269
0
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( A__ , unittest.TestCase): snake_case__ : str = LEDTokenizer snake_case__ : List[str] = LEDTokenizerFast snake_case__ : str = True def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" super().setUp() _lowerCamelCase : Union[str, Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] _lowerCamelCase : Optional[Any] = dict(zip(_A , range(len(_A ) ) ) ) _lowerCamelCase : Dict = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] _lowerCamelCase : Tuple = {"unk_token": "<unk>"} _lowerCamelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _lowerCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_A ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_A ) ) def SCREAMING_SNAKE_CASE ( self : Tuple , **__lowerCAmelCase : List[str] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def SCREAMING_SNAKE_CASE ( self : str , **__lowerCAmelCase : Union[str, Any] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def SCREAMING_SNAKE_CASE ( self : Tuple , __lowerCAmelCase : Any ): """simple docstring""" return "lower newer", "lower newer" @cached_property def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" return LEDTokenizer.from_pretrained('''allenai/led-base-16384''' ) @cached_property def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" return LEDTokenizerFast.from_pretrained('''allenai/led-base-16384''' ) @require_torch def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[int] = ["A long paragraph for summarization.", "Another paragraph for summarization."] _lowerCamelCase : List[Any] = [0, 2_5_0, 2_5_1, 1_7_8_1_8, 1_3, 3_9_1_8_6, 1_9_3_8, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCamelCase : Optional[Any] = tokenizer(_A , max_length=len(_A ) , padding=_A , return_tensors='''pt''' ) self.assertIsInstance(_A , _A ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) _lowerCamelCase : List[str] = batch.input_ids.tolist()[0] self.assertListEqual(_A , _A ) @require_torch def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : str = ["A long paragraph for summarization.", "Another paragraph for summarization."] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCamelCase : int = tokenizer(_A , padding=_A , return_tensors='''pt''' ) self.assertIn('''input_ids''' , _A ) self.assertIn('''attention_mask''' , _A ) self.assertNotIn('''labels''' , _A ) self.assertNotIn('''decoder_attention_mask''' , _A ) @require_torch def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : Dict = [ "Summary of the text.", "Another summary.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCamelCase : Union[str, Any] = tokenizer(text_target=_A , max_length=3_2 , padding='''max_length''' , return_tensors='''pt''' ) self.assertEqual(3_2 , targets['''input_ids'''].shape[1] ) @require_torch def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCamelCase : List[str] = tokenizer( ['''I am a small frog''' * 1_0_2_4, '''I am a small frog'''] , padding=_A , truncation=_A , return_tensors='''pt''' ) self.assertIsInstance(_A , _A ) self.assertEqual(batch.input_ids.shape , (2, 5_1_2_2) ) @require_torch def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : Tuple = ["A long paragraph for summarization."] _lowerCamelCase : str = [ "Summary of the text.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCamelCase : Optional[Any] = tokenizer(_A , return_tensors='''pt''' ) _lowerCamelCase : Optional[int] = tokenizer(text_target=_A , return_tensors='''pt''' ) _lowerCamelCase : Optional[int] = inputs["input_ids"] _lowerCamelCase : Any = targets["input_ids"] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCamelCase : str = ["Summary of the text.", "Another summary."] _lowerCamelCase : Optional[int] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] _lowerCamelCase : Optional[int] = tokenizer(_A , padding=_A ) _lowerCamelCase : List[Any] = [[0] * len(_A ) for x in encoded_output["input_ids"]] _lowerCamelCase : Optional[Any] = tokenizer.pad(_A ) self.assertSequenceEqual(outputs['''global_attention_mask'''] , _A ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowerCamelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained(_A , **_A ) _lowerCamelCase : Dict = self.tokenizer_class.from_pretrained(_A , **_A ) _lowerCamelCase : Any = "A, <mask> AllenNLP sentence." _lowerCamelCase : Tuple = tokenizer_r.encode_plus(_A , add_special_tokens=_A , return_token_type_ids=_A ) _lowerCamelCase : Any = tokenizer_p.encode_plus(_A , add_special_tokens=_A , return_token_type_ids=_A ) self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) _lowerCamelCase : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) _lowerCamelCase : str = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( _A , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( _A , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
72
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer __lowerCamelCase : Optional[Any] = logging.get_logger(__name__) __lowerCamelCase : Dict = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __lowerCamelCase : int = { '''vocab_file''': { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt''' ), } } __lowerCamelCase : Any = { '''junnyu/roformer_chinese_small''': 15_36, '''junnyu/roformer_chinese_base''': 15_36, '''junnyu/roformer_chinese_char_small''': 5_12, '''junnyu/roformer_chinese_char_base''': 5_12, '''junnyu/roformer_small_discriminator''': 1_28, '''junnyu/roformer_small_generator''': 1_28, } __lowerCamelCase : Union[str, Any] = { '''junnyu/roformer_chinese_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_base''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_base''': {'''do_lower_case''': True}, '''junnyu/roformer_small_discriminator''': {'''do_lower_case''': True}, '''junnyu/roformer_small_generator''': {'''do_lower_case''': True}, } class a__ ( A__ ): A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = PRETRAINED_INIT_CONFIGURATION A = RoFormerTokenizer def __init__( self : List[str],_A : int=None,_A : int=None,_A : int=True,_A : List[Any]="[UNK]",_A : Tuple="[SEP]",_A : List[Any]="[PAD]",_A : Optional[int]="[CLS]",_A : Optional[Any]="[MASK]",_A : Optional[int]=True,_A : List[str]=None,**_A : List[Any],): """simple docstring""" super().__init__( _A,tokenizer_file=_A,do_lower_case=_A,unk_token=_A,sep_token=_A,pad_token=_A,cls_token=_A,mask_token=_A,tokenize_chinese_chars=_A,strip_accents=_A,**_A,) SCREAMING_SNAKE_CASE_ : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("lowercase",_A ) != do_lower_case or pre_tok_state.get("strip_accents",_A ) != strip_accents ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = getattr(_A,pre_tok_state.pop("type" ) ) SCREAMING_SNAKE_CASE_ : Any = do_lower_case SCREAMING_SNAKE_CASE_ : List[str] = strip_accents SCREAMING_SNAKE_CASE_ : str = pre_tok_class(**_A ) SCREAMING_SNAKE_CASE_ : List[str] = do_lower_case def __getstate__( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.__dict__.copy() SCREAMING_SNAKE_CASE_ : Optional[Any] = BertPreTokenizer() return state def __setstate__( self : List[Any],_A : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = d SCREAMING_SNAKE_CASE_ : List[str] = self.__dict__["_tokenizer"].get_vocab() SCREAMING_SNAKE_CASE_ : Any = PreTokenizer.custom(JiebaPreTokenizer(_A ) ) def __UpperCamelCase ( self : Union[str, Any],_A : List[Any],_A : str=None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCamelCase ( self : str,_A : List[int],_A : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCamelCase ( self : int,_A : str,_A : Optional[str] = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self._tokenizer.model.save(_A,name=_A ) return tuple(_A ) def __UpperCamelCase ( self : int,_A : Optional[int],_A : List[Any]=None,_A : Tuple=None,_A : str=False,**_A : List[Any],): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = BertPreTokenizer() return super().save_pretrained(_A,_A,_A,_A,**_A )
18
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class _snake_case ( lowercase__): UpperCamelCase__ : str ="""dpr""" def __init__( self : int, __lowercase : List[str]=3_0522, __lowercase : Any=768, __lowercase : Union[str, Any]=12, __lowercase : Optional[int]=12, __lowercase : List[Any]=3072, __lowercase : List[str]="gelu", __lowercase : Union[str, Any]=0.1, __lowercase : str=0.1, __lowercase : List[str]=512, __lowercase : Optional[int]=2, __lowercase : Dict=0.02, __lowercase : Any=1e-1_2, __lowercase : List[Any]=0, __lowercase : str="absolute", __lowercase : int = 0, **__lowercase : str, ): super().__init__(pad_token_id=__lowercase, **__lowercase ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = projection_dim lowercase__ = position_embedding_type
224
import fire from utils import calculate_rouge, save_json def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ ): lowercase__ = [x.strip() for x in open(SCREAMING_SNAKE_CASE_ ).readlines()] lowercase__ = [x.strip() for x in open(SCREAMING_SNAKE_CASE_ ).readlines()][: len(SCREAMING_SNAKE_CASE_ )] lowercase__ = calculate_rouge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if save_path is not None: save_json(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , indent=SCREAMING_SNAKE_CASE_ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
224
1
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class __snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : int =1 UpperCAmelCase : str =3 UpperCAmelCase : Tuple =(32, 32) UpperCAmelCase : List[str] =floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(snake_case__ ) return image @property def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) return model @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : List[Any] =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(snake_case__ ) @property def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' def extract(*snake_case__ , **snake_case__ ): class __snake_case : def __init__( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : Dict =torch.ones([0] ) def UpperCAmelCase__ ( self , snake_case__ ) -> Any: '''simple docstring''' self.pixel_values.to(snake_case__ ) return self return Out() return extract def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : Tuple ='''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase : Union[str, Any] =self.dummy_cond_unet UpperCAmelCase : Optional[Any] =DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) UpperCAmelCase : List[Any] =self.dummy_vae UpperCAmelCase : Any =self.dummy_text_encoder UpperCAmelCase : Optional[int] =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # make sure here that pndm scheduler skips prk UpperCAmelCase : Union[str, Any] =StableDiffusionPipeline( unet=snake_case__ , scheduler=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , safety_checker=snake_case__ , feature_extractor=self.dummy_extractor , ) UpperCAmelCase : int =sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase : Dict ='''A painting of a squirrel eating a burger''' UpperCAmelCase : Optional[Any] =torch.Generator(device=snake_case__ ).manual_seed(0 ) UpperCAmelCase : Optional[Any] =sd_pipe([prompt] , generator=snake_case__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' ) UpperCAmelCase : Dict =output.images UpperCAmelCase : int =torch.Generator(device=snake_case__ ).manual_seed(0 ) UpperCAmelCase : Any =sd_pipe( [prompt] , generator=snake_case__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=snake_case__ , )[0] UpperCAmelCase : Optional[Any] =image[0, -3:, -3:, -1] UpperCAmelCase : Any =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : Optional[Any] =np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] ='''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase : Tuple =self.dummy_cond_unet UpperCAmelCase : Any =PNDMScheduler(skip_prk_steps=snake_case__ ) UpperCAmelCase : List[str] =self.dummy_vae UpperCAmelCase : Dict =self.dummy_text_encoder UpperCAmelCase : Any =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # make sure here that pndm scheduler skips prk UpperCAmelCase : Optional[Any] =StableDiffusionPipeline( unet=snake_case__ , scheduler=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , safety_checker=snake_case__ , feature_extractor=self.dummy_extractor , ) UpperCAmelCase : List[str] =sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase : Union[str, Any] ='''A painting of a squirrel eating a burger''' UpperCAmelCase : List[Any] =torch.Generator(device=snake_case__ ).manual_seed(0 ) UpperCAmelCase : Dict =sd_pipe([prompt] , generator=snake_case__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' ) UpperCAmelCase : List[str] =output.images UpperCAmelCase : Dict =torch.Generator(device=snake_case__ ).manual_seed(0 ) UpperCAmelCase : Optional[int] =sd_pipe( [prompt] , generator=snake_case__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=snake_case__ , )[0] UpperCAmelCase : Dict =image[0, -3:, -3:, -1] UpperCAmelCase : str =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : Tuple =np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : int =StableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-lms-pipe''' , safety_checker=snake_case__ ) assert isinstance(snake_case__ , snake_case__ ) assert isinstance(pipe.scheduler , snake_case__ ) assert pipe.safety_checker is None UpperCAmelCase : Any =pipe('''example prompt''' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(snake_case__ ) UpperCAmelCase : List[Any] =StableDiffusionPipeline.from_pretrained(snake_case__ ) # sanity check that the pipeline still works assert pipe.safety_checker is None UpperCAmelCase : int =pipe('''example prompt''' , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Optional[Any] =self.dummy_cond_unet UpperCAmelCase : str =PNDMScheduler(skip_prk_steps=snake_case__ ) UpperCAmelCase : Tuple =self.dummy_vae UpperCAmelCase : Dict =self.dummy_text_encoder UpperCAmelCase : List[Any] =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # put models in fp16 UpperCAmelCase : Union[str, Any] =unet.half() UpperCAmelCase : Any =vae.half() UpperCAmelCase : List[str] =bert.half() # make sure here that pndm scheduler skips prk UpperCAmelCase : List[Any] =StableDiffusionPipeline( unet=snake_case__ , scheduler=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , safety_checker=snake_case__ , feature_extractor=self.dummy_extractor , ) UpperCAmelCase : Optional[int] =sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase : Tuple ='''A painting of a squirrel eating a burger''' UpperCAmelCase : Any =sd_pipe([prompt] , num_inference_steps=2 , output_type='''np''' ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class __snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : List[Any] =StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=snake_case__ ) UpperCAmelCase : Tuple =LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) UpperCAmelCase : int =sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase : Dict =( '''portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle''' ''' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with''' ''' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and''' ''' children from bahnhof zoo, detailed ''' ) UpperCAmelCase : str =40_0366_0346 UpperCAmelCase : Optional[Any] =7 # without safety guidance (sld_guidance_scale = 0) UpperCAmelCase : Tuple =torch.manual_seed(snake_case__ ) UpperCAmelCase : str =sd_pipe( [prompt] , generator=snake_case__ , guidance_scale=snake_case__ , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCAmelCase : Any =output.images UpperCAmelCase : Tuple =image[0, -3:, -3:, -1] UpperCAmelCase : List[str] =[0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) UpperCAmelCase : Optional[int] =torch.manual_seed(snake_case__ ) UpperCAmelCase : Union[str, Any] =sd_pipe( [prompt] , generator=snake_case__ , guidance_scale=snake_case__ , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCAmelCase : Tuple =output.images UpperCAmelCase : List[Any] =image[0, -3:, -3:, -1] UpperCAmelCase : List[Any] =[0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=snake_case__ ) UpperCAmelCase : List[Any] =LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) UpperCAmelCase : Dict =sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase : Dict ='''padme amidala taking a bath artwork, safe for work, no nudity''' UpperCAmelCase : Any =27_3497_1755 UpperCAmelCase : List[str] =7 UpperCAmelCase : Union[str, Any] =torch.manual_seed(snake_case__ ) UpperCAmelCase : Any =sd_pipe( [prompt] , generator=snake_case__ , guidance_scale=snake_case__ , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCAmelCase : List[str] =output.images UpperCAmelCase : Optional[int] =image[0, -3:, -3:, -1] UpperCAmelCase : str =[0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 UpperCAmelCase : Any =torch.manual_seed(snake_case__ ) UpperCAmelCase : str =sd_pipe( [prompt] , generator=snake_case__ , guidance_scale=snake_case__ , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCAmelCase : Dict =output.images UpperCAmelCase : Tuple =image[0, -3:, -3:, -1] UpperCAmelCase : List[Any] =[0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' ) UpperCAmelCase : str =sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase : Tuple =( '''the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.''' ''' leyendecker''' ) UpperCAmelCase : Any =10_4435_5234 UpperCAmelCase : Union[str, Any] =12 UpperCAmelCase : Optional[int] =torch.manual_seed(snake_case__ ) UpperCAmelCase : List[str] =sd_pipe( [prompt] , generator=snake_case__ , guidance_scale=snake_case__ , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCAmelCase : Dict =output.images UpperCAmelCase : List[str] =image[0, -3:, -3:, -1] UpperCAmelCase : Dict =np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 UpperCAmelCase : Tuple =torch.manual_seed(snake_case__ ) UpperCAmelCase : List[str] =sd_pipe( [prompt] , generator=snake_case__ , guidance_scale=snake_case__ , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCAmelCase : Dict =output.images UpperCAmelCase : Union[str, Any] =image[0, -3:, -3:, -1] UpperCAmelCase : Dict =np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
348
__snake_case = '''Input must be a string of 8 numbers plus letter''' __snake_case = '''TRWAGMYFPDXBNJZSQVHLCKE''' def lowerCAmelCase_ ( __lowerCAmelCase )-> bool: '''simple docstring''' if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): UpperCAmelCase : Optional[Any] =f'''Expected string as input, found {type(__lowerCAmelCase ).__name__}''' raise TypeError(__lowerCAmelCase ) UpperCAmelCase : List[Any] =spanish_id.replace('''-''' , '''''' ).upper() if len(__lowerCAmelCase ) != 9: raise ValueError(__lowerCAmelCase ) try: UpperCAmelCase : int =int(spanish_id_clean[0:8] ) UpperCAmelCase : Optional[int] =spanish_id_clean[8] except ValueError as ex: raise ValueError(__lowerCAmelCase ) from ex if letter.isdigit(): raise ValueError(__lowerCAmelCase ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
348
1
"""simple docstring""" import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("""0.8.3"""): raise Exception("""requires gluonnlp == 0.8.3""") if version.parse(mx.__version__) != version.parse("""1.5.0"""): raise Exception("""requires mxnet == 1.5.0""") logging.set_verbosity_info() lowercase__ : int = logging.get_logger(__name__) lowercase__ : Tuple = """The Nymphenburg Palace is a beautiful palace in Munich!""" def UpperCamelCase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : str ) -> Optional[int]: """simple docstring""" lowerCAmelCase_ : Dict = { """attention_cell""": """multi_head""", """num_layers""": 4, """units""": 1024, """hidden_size""": 768, """max_length""": 512, """num_heads""": 8, """scaled""": True, """dropout""": 0.1, """use_residual""": True, """embed_size""": 1024, """embed_dropout""": 0.1, """word_embed""": None, """layer_norm_eps""": 1e-5, """token_type_vocab_size""": 2, } lowerCAmelCase_ : Union[str, Any] = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py lowerCAmelCase_ : List[Any] = BERTEncoder( attention_cell=predefined_args['attention_cell'] , num_layers=predefined_args['num_layers'] , units=predefined_args['units'] , hidden_size=predefined_args['hidden_size'] , max_length=predefined_args['max_length'] , num_heads=predefined_args['num_heads'] , scaled=predefined_args['scaled'] , dropout=predefined_args['dropout'] , output_attention=lowerCAmelCase__ , output_all_encodings=lowerCAmelCase__ , use_residual=predefined_args['use_residual'] , activation=predefined_args.get('activation' , 'gelu' ) , layer_norm_eps=predefined_args.get('layer_norm_eps' , lowerCAmelCase__ ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later lowerCAmelCase_ : Any = """openwebtext_ccnews_stories_books_cased""" # Specify download folder to Gluonnlp's vocab lowerCAmelCase_ : List[str] = os.path.join(get_home_dir() , 'models' ) lowerCAmelCase_ : Union[str, Any] = _load_vocab(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , cls=lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = nlp.model.BERTModel( lowerCAmelCase__ , len(lowerCAmelCase__ ) , units=predefined_args['units'] , embed_size=predefined_args['embed_size'] , embed_dropout=predefined_args['embed_dropout'] , word_embed=predefined_args['word_embed'] , use_pooler=lowerCAmelCase__ , use_token_type_embed=lowerCAmelCase__ , token_type_vocab_size=predefined_args['token_type_vocab_size'] , use_classifier=lowerCAmelCase__ , use_decoder=lowerCAmelCase__ , ) original_bort.load_parameters(lowerCAmelCase__ , cast_dtype=lowerCAmelCase__ , ignore_extra=lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = original_bort._collect_params_with_prefix() # Build our config 🤗 lowerCAmelCase_ : str = { """architectures""": ["""BertForMaskedLM"""], """attention_probs_dropout_prob""": predefined_args["""dropout"""], """hidden_act""": """gelu""", """hidden_dropout_prob""": predefined_args["""dropout"""], """hidden_size""": predefined_args["""embed_size"""], """initializer_range""": 0.02, """intermediate_size""": predefined_args["""hidden_size"""], """layer_norm_eps""": predefined_args["""layer_norm_eps"""], """max_position_embeddings""": predefined_args["""max_length"""], """model_type""": """bort""", """num_attention_heads""": predefined_args["""num_heads"""], """num_hidden_layers""": predefined_args["""num_layers"""], """pad_token_id""": 1, # 2 = BERT, 1 = RoBERTa """type_vocab_size""": 1, # 2 = BERT, 1 = RoBERTa """vocab_size""": len(lowerCAmelCase__ ), } lowerCAmelCase_ : Tuple = BertConfig.from_dict(lowerCAmelCase__ ) lowerCAmelCase_ : str = BertForMaskedLM(lowerCAmelCase__ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(lowerCAmelCase__ : List[str] ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[int] ): lowerCAmelCase_ : Union[str, Any] = hf_param.shape lowerCAmelCase_ : Optional[int] = to_torch(params[gluon_param] ) lowerCAmelCase_ : List[Any] = gluon_param.shape assert ( shape_hf == shape_gluon ), f"The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers" return gluon_param lowerCAmelCase_ : List[str] = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , 'word_embed.0.weight' ) lowerCAmelCase_ : Any = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , 'encoder.position_weight' ) lowerCAmelCase_ : List[str] = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , 'encoder.layer_norm.beta' ) lowerCAmelCase_ : List[Any] = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , 'encoder.layer_norm.gamma' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) lowerCAmelCase_ : List[Any] = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): lowerCAmelCase_ : BertLayer = hf_bort_model.bert.encoder.layer[i] # self attention lowerCAmelCase_ : BertSelfAttention = layer.attention.self lowerCAmelCase_ : Any = check_and_map_params( self_attn.key.bias.data , f"encoder.transformer_cells.{i}.attention_cell.proj_key.bias" ) lowerCAmelCase_ : Any = check_and_map_params( self_attn.key.weight.data , f"encoder.transformer_cells.{i}.attention_cell.proj_key.weight" ) lowerCAmelCase_ : Optional[int] = check_and_map_params( self_attn.query.bias.data , f"encoder.transformer_cells.{i}.attention_cell.proj_query.bias" ) lowerCAmelCase_ : Dict = check_and_map_params( self_attn.query.weight.data , f"encoder.transformer_cells.{i}.attention_cell.proj_query.weight" ) lowerCAmelCase_ : Optional[Any] = check_and_map_params( self_attn.value.bias.data , f"encoder.transformer_cells.{i}.attention_cell.proj_value.bias" ) lowerCAmelCase_ : List[Any] = check_and_map_params( self_attn.value.weight.data , f"encoder.transformer_cells.{i}.attention_cell.proj_value.weight" ) # self attention output lowerCAmelCase_ : BertSelfOutput = layer.attention.output lowerCAmelCase_ : str = check_and_map_params( self_output.dense.bias , f"encoder.transformer_cells.{i}.proj.bias" ) lowerCAmelCase_ : List[str] = check_and_map_params( self_output.dense.weight , f"encoder.transformer_cells.{i}.proj.weight" ) lowerCAmelCase_ : Optional[int] = check_and_map_params( self_output.LayerNorm.bias , f"encoder.transformer_cells.{i}.layer_norm.beta" ) lowerCAmelCase_ : str = check_and_map_params( self_output.LayerNorm.weight , f"encoder.transformer_cells.{i}.layer_norm.gamma" ) # intermediate lowerCAmelCase_ : BertIntermediate = layer.intermediate lowerCAmelCase_ : Union[str, Any] = check_and_map_params( intermediate.dense.bias , f"encoder.transformer_cells.{i}.ffn.ffn_1.bias" ) lowerCAmelCase_ : List[str] = check_and_map_params( intermediate.dense.weight , f"encoder.transformer_cells.{i}.ffn.ffn_1.weight" ) # output lowerCAmelCase_ : BertOutput = layer.output lowerCAmelCase_ : List[Any] = check_and_map_params( bert_output.dense.bias , f"encoder.transformer_cells.{i}.ffn.ffn_2.bias" ) lowerCAmelCase_ : Any = check_and_map_params( bert_output.dense.weight , f"encoder.transformer_cells.{i}.ffn.ffn_2.weight" ) lowerCAmelCase_ : Tuple = check_and_map_params( bert_output.LayerNorm.bias , f"encoder.transformer_cells.{i}.ffn.layer_norm.beta" ) lowerCAmelCase_ : Tuple = check_and_map_params( bert_output.LayerNorm.weight , f"encoder.transformer_cells.{i}.ffn.layer_norm.gamma" ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models lowerCAmelCase_ : List[str] = RobertaTokenizer.from_pretrained('roberta-base' ) lowerCAmelCase_ : Dict = tokenizer.encode_plus(lowerCAmelCase__ )["""input_ids"""] # Get gluon output lowerCAmelCase_ : int = mx.nd.array([input_ids] ) lowerCAmelCase_ : int = original_bort(inputs=lowerCAmelCase__ , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = BertModel.from_pretrained(lowerCAmelCase__ ) hf_bort_model.eval() lowerCAmelCase_ : Optional[int] = tokenizer.encode_plus(lowerCAmelCase__ , return_tensors='pt' ) lowerCAmelCase_ : Dict = hf_bort_model(**lowerCAmelCase__ )[0] lowerCAmelCase_ : int = output_gluon[0].asnumpy() lowerCAmelCase_ : str = output_hf[0].detach().numpy() lowerCAmelCase_ : Optional[Any] = np.max(np.abs(hf_layer - gluon_layer ) ).item() lowerCAmelCase_ : Any = np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) if success: print('✔️ Both model do output the same tensors' ) else: print('❌ Both model do **NOT** output the same tensors' ) print('Absolute difference is:' , lowerCAmelCase__ ) if __name__ == "__main__": lowercase__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--bort_checkpoint_path""", default=None, type=str, required=True, help="""Path the official Bort params file.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowercase__ : List[str] = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
366
"""simple docstring""" import re def UpperCamelCase_ ( lowerCAmelCase__ : str ) -> bool: """simple docstring""" lowerCAmelCase_ : str = re.compile( R'^(?:0|94|\+94|0{2}94)' R'7(0|1|2|4|5|6|7|8)' R'(-| |)' R'\d{7}$' ) return bool(re.search(lowerCAmelCase__ , lowerCAmelCase__ ) ) if __name__ == "__main__": lowercase__ : Optional[int] = """0094702343221""" print(is_sri_lankan_phone_number(phone))
289
0
def __lowercase ( a__ , a__ , a__ ) -> int: if len(a__ ) != len(a__ ): raise ValueError('The length of profit and weight must be same.' ) if max_weight <= 0: raise ValueError('max_weight must greater than zero.' ) if any(p < 0 for p in profit ): raise ValueError('Profit can not be negative.' ) if any(w < 0 for w in weight ): raise ValueError('Weight can not be negative.' ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. __SCREAMING_SNAKE_CASE = [p / w for p, w in zip(a__ , a__ )] # Creating a copy of the list and sorting profit/weight in ascending order __SCREAMING_SNAKE_CASE = sorted(a__ ) # declaring useful variables __SCREAMING_SNAKE_CASE = len(a__ ) __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight __SCREAMING_SNAKE_CASE = sorted_profit_by_weight[length - i - 1] __SCREAMING_SNAKE_CASE = profit_by_weight.index(a__ ) __SCREAMING_SNAKE_CASE = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( '''Input profits, weights, and then max_weight (all positive ints) separated by ''' '''spaces.''' ) lowerCAmelCase__ : str =[int(x) for x in input('''Input profits separated by spaces: ''').split()] lowerCAmelCase__ : Tuple =[int(x) for x in input('''Input weights separated by spaces: ''').split()] lowerCAmelCase__ : int =int(input('''Max weight allowed: ''')) # Function Call calc_profit(profit, weight, max_weight)
257
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class UpperCAmelCase_ : '''simple docstring''' UpperCamelCase__ : int = MBartConfig UpperCamelCase__ : Optional[Any] = {} UpperCamelCase__ : Union[str, Any] = '''gelu''' def __init__( self , _A , _A=13 , _A=7 , _A=True , _A=False , _A=99 , _A=32 , _A=2 , _A=4 , _A=37 , _A=0.1 , _A=0.1 , _A=20 , _A=2 , _A=1 , _A=0 , ): '''simple docstring''' __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = eos_token_id __SCREAMING_SNAKE_CASE = pad_token_id __SCREAMING_SNAKE_CASE = bos_token_id def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __SCREAMING_SNAKE_CASE = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __SCREAMING_SNAKE_CASE = tf.concat([input_ids, eos_tensor] , axis=1 ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __SCREAMING_SNAKE_CASE = prepare_mbart_inputs_dict(_A , _A , _A ) return config, inputs_dict def _A ( self , _A , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = TFMBartModel(config=_A ).get_decoder() __SCREAMING_SNAKE_CASE = inputs_dict['input_ids'] __SCREAMING_SNAKE_CASE = input_ids[:1, :] __SCREAMING_SNAKE_CASE = inputs_dict['attention_mask'][:1, :] __SCREAMING_SNAKE_CASE = inputs_dict['head_mask'] __SCREAMING_SNAKE_CASE = 1 # first forward pass __SCREAMING_SNAKE_CASE = model(_A , attention_mask=_A , head_mask=_A , use_cache=_A ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = outputs.to_tuple() __SCREAMING_SNAKE_CASE = past_key_values[1] def __lowercase ( a__ , a__ , a__ , a__=None , a__=None , a__=None , a__=None , a__=None , ) -> str: if attention_mask is None: __SCREAMING_SNAKE_CASE = tf.cast(tf.math.not_equal(a__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __SCREAMING_SNAKE_CASE = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __SCREAMING_SNAKE_CASE = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase__ : Any = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () UpperCamelCase__ : int = (TFMBartForConditionalGeneration,) if is_tf_available() else () UpperCamelCase__ : Optional[Any] = ( { '''conversational''': TFMBartForConditionalGeneration, '''feature-extraction''': TFMBartModel, '''summarization''': TFMBartForConditionalGeneration, '''text2text-generation''': TFMBartForConditionalGeneration, '''translation''': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) UpperCamelCase__ : List[str] = True UpperCamelCase__ : Tuple = False UpperCamelCase__ : Union[str, Any] = False def _A ( self , _A , _A , _A , _A , _A ): '''simple docstring''' if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = TFMBartModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=_A ) def _A ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_A ) @require_sentencepiece @require_tokenizers @require_tf class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' UpperCamelCase__ : Any = [ ''' UN Chief Says There Is No Military Solution in Syria''', ] UpperCamelCase__ : str = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', ] UpperCamelCase__ : List[str] = '''facebook/mbart-large-en-ro''' @cached_property def _A ( self ): '''simple docstring''' return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _A ( self , **_A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.translate_src_text(**_A ) self.assertListEqual(self.expected_text , _A ) def _A ( self , **_A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.tokenizer(self.src_text , **_A , return_tensors='tf' ) __SCREAMING_SNAKE_CASE = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) __SCREAMING_SNAKE_CASE = self.tokenizer.batch_decode(_A , skip_special_tokens=_A ) return generated_words @slow def _A ( self ): '''simple docstring''' self._assert_generated_batch_equal_expected()
257
1
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _lowerCamelCase( unittest.TestCase ): def __init__( self, lowerCamelCase, lowerCamelCase=7, lowerCamelCase=3, lowerCamelCase=18, lowerCamelCase=30, lowerCamelCase=4_00, lowerCamelCase=True, lowerCamelCase=None, lowerCamelCase=True, ) -> str: """simple docstring""" _lowercase : Tuple = size if size is not None else {'height': 18, 'width': 18} _lowercase : Tuple = parent _lowercase : Dict = batch_size _lowercase : Any = num_channels _lowercase : int = image_size _lowercase : List[str] = min_resolution _lowercase : str = max_resolution _lowercase : str = do_resize _lowercase : Optional[int] = size _lowercase : Any = apply_ocr def UpperCamelCase ( self) -> Any: """simple docstring""" return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class _lowerCamelCase( _a, unittest.TestCase ): lowercase_ : List[str] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : Any = LayoutLMvaImageProcessingTester(self) @property def UpperCamelCase ( self) -> Dict: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : List[str] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowerCamelCase, 'do_resize')) self.assertTrue(hasattr(lowerCamelCase, 'size')) self.assertTrue(hasattr(lowerCamelCase, 'apply_ocr')) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : int = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {'height': 18, 'width': 18}) _lowercase : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict, size=42) self.assertEqual(image_processor.size, {'height': 42, 'width': 42}) def UpperCamelCase ( self) -> Dict: """simple docstring""" pass def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : str = self.image_processing_class(**self.image_processor_dict) # create random PIL images _lowercase : Any = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase) for image in image_inputs: self.assertIsInstance(lowerCamelCase, Image.Image) # Test not batched input _lowercase : Dict = image_processing(image_inputs[0], return_tensors='pt') self.assertEqual( encoding.pixel_values.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ), ) self.assertIsInstance(encoding.words, lowerCamelCase) self.assertIsInstance(encoding.boxes, lowerCamelCase) # Test batched _lowercase : str = image_processing(lowerCamelCase, return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ), ) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Optional[int] = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _lowercase : List[str] = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, numpify=lowerCamelCase) for image in image_inputs: self.assertIsInstance(lowerCamelCase, np.ndarray) # Test not batched input _lowercase : List[Any] = image_processing(image_inputs[0], return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ), ) # Test batched _lowercase : Union[str, Any] = image_processing(lowerCamelCase, return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ), ) def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _lowercase : Optional[Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, torchify=lowerCamelCase) for image in image_inputs: self.assertIsInstance(lowerCamelCase, torch.Tensor) # Test not batched input _lowercase : Tuple = image_processing(image_inputs[0], return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ), ) # Test batched _lowercase : List[Any] = image_processing(lowerCamelCase, return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ), ) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Optional[Any] = LayoutLMvaImageProcessor() from datasets import load_dataset _lowercase : Optional[Any] = load_dataset('hf-internal-testing/fixtures_docvqa', split='test') _lowercase : Optional[Any] = Image.open(ds[0]['file']).convert('RGB') _lowercase : Optional[Any] = image_processing(lowerCamelCase, return_tensors='pt') self.assertEqual(encoding.pixel_values.shape, (1, 3, 2_24, 2_24)) self.assertEqual(len(encoding.words), len(encoding.boxes)) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 _lowercase : List[str] = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 _lowercase : Any = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words, lowerCamelCase) self.assertListEqual(encoding.boxes, lowerCamelCase) # with apply_OCR = False _lowercase : List[str] = LayoutLMvaImageProcessor(apply_ocr=lowerCamelCase) _lowercase : Union[str, Any] = image_processing(lowerCamelCase, return_tensors='pt') self.assertEqual(encoding.pixel_values.shape, (1, 3, 2_24, 2_24))
357
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class _lowerCamelCase: def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0) _lowercase : Dict = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) _lowercase : List[str] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) _lowercase : Optional[int] = UNetaDConditionModel( sample_size=32, layers_per_block=1, block_out_channels=[32, 64], down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ], mid_block_type='UNetMidBlock2DSimpleCrossAttn', up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'], in_channels=3, out_channels=6, cross_attention_dim=32, encoder_hid_dim=32, attention_head_dim=8, addition_embed_type='text', addition_embed_type_num_heads=2, cross_attention_norm='group_norm', resnet_time_scale_shift='scale_shift', act_fn='gelu', ) unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests torch.manual_seed(0) _lowercase : Dict = DDPMScheduler( num_train_timesteps=10_00, beta_schedule='squaredcos_cap_v2', beta_start=0.0_0_0_1, beta_end=0.0_2, thresholding=lowerCamelCase, dynamic_thresholding_ratio=0.9_5, sample_max_value=1.0, prediction_type='epsilon', variance_type='learned_range', ) torch.manual_seed(0) _lowercase : List[Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def UpperCamelCase ( self) -> List[str]: """simple docstring""" torch.manual_seed(0) _lowercase : List[str] = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) _lowercase : int = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) _lowercase : List[str] = UNetaDConditionModel( sample_size=32, layers_per_block=[1, 2], block_out_channels=[32, 64], down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ], mid_block_type='UNetMidBlock2DSimpleCrossAttn', up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'], in_channels=6, out_channels=6, cross_attention_dim=32, encoder_hid_dim=32, attention_head_dim=8, addition_embed_type='text', addition_embed_type_num_heads=2, cross_attention_norm='group_norm', resnet_time_scale_shift='scale_shift', act_fn='gelu', class_embed_type='timestep', mid_block_scale_factor=1.4_1_4, time_embedding_act_fn='gelu', time_embedding_dim=32, ) unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests torch.manual_seed(0) _lowercase : Optional[int] = DDPMScheduler( num_train_timesteps=10_00, beta_schedule='squaredcos_cap_v2', beta_start=0.0_0_0_1, beta_end=0.0_2, thresholding=lowerCamelCase, dynamic_thresholding_ratio=0.9_5, sample_max_value=1.0, prediction_type='epsilon', variance_type='learned_range', ) torch.manual_seed(0) _lowercase : str = DDPMScheduler( num_train_timesteps=10_00, beta_schedule='squaredcos_cap_v2', beta_start=0.0_0_0_1, beta_end=0.0_2, ) torch.manual_seed(0) _lowercase : Union[str, Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : List[Any] = self.get_dummy_components() _lowercase : List[str] = self.pipeline_class(**lowerCamelCase) pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : int = self.get_dummy_inputs(lowerCamelCase) _lowercase : int = inputs['prompt'] _lowercase : Dict = inputs['generator'] _lowercase : Optional[int] = inputs['num_inference_steps'] _lowercase : str = inputs['output_type'] if "image" in inputs: _lowercase : List[Any] = inputs['image'] else: _lowercase : List[Any] = None if "mask_image" in inputs: _lowercase : Union[str, Any] = inputs['mask_image'] else: _lowercase : Dict = None if "original_image" in inputs: _lowercase : Any = inputs['original_image'] else: _lowercase : Tuple = None _lowercase , _lowercase : str = pipe.encode_prompt(lowerCamelCase) # inputs with prompt converted to embeddings _lowercase : Any = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: _lowercase : int = image if mask_image is not None: _lowercase : str = mask_image if original_image is not None: _lowercase : Optional[Any] = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(lowerCamelCase, lowerCamelCase, lowerCamelCase) _lowercase : Dict = pipe(**lowerCamelCase)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase) _lowercase : Any = self.pipeline_class.from_pretrained(lowerCamelCase) pipe_loaded.to(lowerCamelCase) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(lowerCamelCase, lowerCamelCase) is None, F'''`{optional_component}` did not stay set to None after loading.''', ) _lowercase : Dict = self.get_dummy_inputs(lowerCamelCase) _lowercase : Optional[Any] = inputs['generator'] _lowercase : Any = inputs['num_inference_steps'] _lowercase : List[Any] = inputs['output_type'] # inputs with prompt converted to embeddings _lowercase : Optional[int] = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: _lowercase : str = image if mask_image is not None: _lowercase : Optional[int] = mask_image if original_image is not None: _lowercase : int = original_image _lowercase : str = pipe_loaded(**lowerCamelCase)[0] _lowercase : List[Any] = np.abs(to_np(lowerCamelCase) - to_np(lowerCamelCase)).max() self.assertLess(lowerCamelCase, 1E-4) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Optional[Any] = self.get_dummy_components() _lowercase : Any = self.pipeline_class(**lowerCamelCase) pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : List[str] = self.get_dummy_inputs(lowerCamelCase) _lowercase : Tuple = pipe(**lowerCamelCase)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase) _lowercase : List[str] = self.pipeline_class.from_pretrained(lowerCamelCase) pipe_loaded.to(lowerCamelCase) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests _lowercase : int = self.get_dummy_inputs(lowerCamelCase) _lowercase : Tuple = pipe_loaded(**lowerCamelCase)[0] _lowercase : str = np.abs(to_np(lowerCamelCase) - to_np(lowerCamelCase)).max() self.assertLess(lowerCamelCase, 1E-4)
84
0
'''simple docstring''' from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class lowerCamelCase_ (a__ ): '''simple docstring''' def __init__( self : Optional[int] , A : str , A : int ): super().__init__() self.register_modules(unet=A , scheduler=A ) @torch.no_grad() def __call__( self : Dict , A : Dict = 1 , A : Optional[int] = None , A : List[Any] = 50 , A : Union[str, Any] = "pil" , A : Tuple = True , **A : Dict , ): _UpperCAmelCase : Optional[int] = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=A , ) _UpperCAmelCase : Union[str, Any] = image.to(self.device ) # set step values self.scheduler.set_timesteps(A ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output _UpperCAmelCase : Any = self.unet(A , A ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _UpperCAmelCase : List[Any] = self.scheduler.step(A , A , A ).prev_sample _UpperCAmelCase : Tuple = (image / 2 + 0.5).clamp(0 , 1 ) _UpperCAmelCase : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCAmelCase : str = self.numpy_to_pil(A ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=A ), "This is a local test"
31
'''simple docstring''' def _UpperCamelCase ( __A ) -> int: '''simple docstring''' UpperCamelCase__ = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def _UpperCamelCase ( __A = 100 ) -> int: '''simple docstring''' UpperCamelCase__ = 1 UpperCamelCase__ = 2 for i in range(2 , max_n + 1 ): UpperCamelCase__ = pre_numerator UpperCamelCase__ = 2 * i // 3 if i % 3 == 0 else 1 UpperCamelCase__ = cur_numerator UpperCamelCase__ = e_cont * pre_numerator + temp return sum_digits(__A ) if __name__ == "__main__": print(F"""{solution() = }""")
80
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor __lowerCAmelCase : Any =logging.get_logger(__name__) class _A ( snake_case_ ): def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" warnings.warn( """The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use FlavaImageProcessor instead.""" , __lowerCAmelCase , ) super().__init__(*__lowerCAmelCase , **__lowerCAmelCase )
352
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) __lowerCAmelCase : List[str] ={"""configuration_vit""": ["""VIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTConfig""", """ViTOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[Any] =["""ViTFeatureExtractor"""] __lowerCAmelCase : List[str] =["""ViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str =[ """VIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTForImageClassification""", """ViTForMaskedImageModeling""", """ViTModel""", """ViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Any =[ """TFViTForImageClassification""", """TFViTModel""", """TFViTPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Dict =[ """FlaxViTForImageClassification""", """FlaxViTModel""", """FlaxViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys __lowerCAmelCase : List[str] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
32
0
import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = MobileBertTokenizer SCREAMING_SNAKE_CASE__ : Tuple = MobileBertTokenizerFast SCREAMING_SNAKE_CASE__ : int = True SCREAMING_SNAKE_CASE__ : Tuple = True SCREAMING_SNAKE_CASE__ : List[Any] = filter_non_english SCREAMING_SNAKE_CASE__ : List[Any] = '''google/mobilebert-uncased''' def __magic_name__( self :Optional[Any] ) -> Tuple: super().setUp() __SCREAMING_SNAKE_CASE : Any = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __SCREAMING_SNAKE_CASE : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) __SCREAMING_SNAKE_CASE : int = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def __magic_name__( self :int , lowerCAmelCase__ :List[str] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : List[Any] = '''UNwant\u00E9d,running''' __SCREAMING_SNAKE_CASE : Any = '''unwanted, running''' return input_text, output_text def __magic_name__( self :List[str] ) -> int: __SCREAMING_SNAKE_CASE : int = self.tokenizer_class(self.vocab_file ) __SCREAMING_SNAKE_CASE : List[str] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(lowerCAmelCase__ , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [9, 6, 7, 12, 10, 11] ) def __magic_name__( self :Optional[Any] ) -> Tuple: if not self.test_rust_tokenizer: return __SCREAMING_SNAKE_CASE : str = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Tuple = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE : Dict = '''UNwant\u00E9d,running''' __SCREAMING_SNAKE_CASE : Tuple = tokenizer.tokenize(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE : Any = tokenizer.encode(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # With lower casing __SCREAMING_SNAKE_CASE : int = self.get_tokenizer(do_lower_case=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = self.get_rust_tokenizer(do_lower_case=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = '''UNwant\u00E9d,running''' __SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.tokenize(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__( self :List[str] ) -> List[Any]: __SCREAMING_SNAKE_CASE : int = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def __magic_name__( self :List[str] ) -> str: __SCREAMING_SNAKE_CASE : int = BasicTokenizer(do_lower_case=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __magic_name__( self :Optional[int] ) -> int: __SCREAMING_SNAKE_CASE : Optional[Any] = BasicTokenizer(do_lower_case=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def __magic_name__( self :Tuple ) -> Any: __SCREAMING_SNAKE_CASE : List[str] = BasicTokenizer(do_lower_case=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __magic_name__( self :Optional[int] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : List[Any] = BasicTokenizer(do_lower_case=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __magic_name__( self :Any ) -> Dict: __SCREAMING_SNAKE_CASE : Optional[int] = BasicTokenizer(do_lower_case=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __magic_name__( self :Union[str, Any] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Optional[int] = BasicTokenizer(do_lower_case=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __magic_name__( self :Tuple ) -> Any: __SCREAMING_SNAKE_CASE : int = BasicTokenizer(do_lower_case=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __magic_name__( self :Optional[Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE : Dict = BasicTokenizer(do_lower_case=lowerCAmelCase__ , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def __magic_name__( self :int ) -> List[str]: __SCREAMING_SNAKE_CASE : List[Any] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] __SCREAMING_SNAKE_CASE : List[str] = {} for i, token in enumerate(lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : List[str] = i __SCREAMING_SNAKE_CASE : Tuple = WordpieceTokenizer(vocab=lowerCAmelCase__ , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def __magic_name__( self :Optional[Any] ) -> List[Any]: self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def __magic_name__( self :Optional[int] ) -> Optional[int]: self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def __magic_name__( self :List[Any] ) -> Dict: self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def __magic_name__( self :List[str] ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : List[Any] = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(lowerCAmelCase__ ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) self.assertListEqual( [rust_tokenizer.tokenize(lowerCAmelCase__ ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) @slow def __magic_name__( self :Tuple ) -> List[Any]: __SCREAMING_SNAKE_CASE : Optional[Any] = self.tokenizer_class.from_pretrained('''google/mobilebert-uncased''' ) __SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode('''sequence builders''' , add_special_tokens=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ , lowerCAmelCase__ ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def __magic_name__( self :Optional[Any] ) -> int: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __SCREAMING_SNAKE_CASE : int = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = f'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' __SCREAMING_SNAKE_CASE : List[str] = tokenizer_r.encode_plus( lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : int = tokenizer_r.do_lower_case if hasattr(lowerCAmelCase__ , '''do_lower_case''' ) else False __SCREAMING_SNAKE_CASE : Optional[Any] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def __magic_name__( self :Dict ) -> List[str]: __SCREAMING_SNAKE_CASE : Optional[int] = ['''的''', '''人''', '''有'''] __SCREAMING_SNAKE_CASE : Union[str, Any] = ''''''.join(lowerCAmelCase__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __SCREAMING_SNAKE_CASE : Any = True __SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = tokenizer_p.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = tokenizer_r.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = tokenizer_r.convert_ids_to_tokens(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(lowerCAmelCase__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : Dict = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = tokenizer_r.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer_p.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = tokenizer_r.convert_ids_to_tokens(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = tokenizer_p.convert_ids_to_tokens(lowerCAmelCase__ ) # it is expected that only the first Chinese character is not preceded by "##". __SCREAMING_SNAKE_CASE : Tuple = [ f'''##{token}''' if idx != 0 else token for idx, token in enumerate(lowerCAmelCase__ ) ] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
9
"""simple docstring""" from __future__ import annotations class SCREAMING_SNAKE_CASE__ : def __init__( self , _SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' UpperCAmelCase : Any = data UpperCAmelCase : Node | None = None UpperCAmelCase : Node | None = None def _snake_case ( UpperCamelCase : Node | None ): # In Order traversal of the tree if tree: display(tree.left ) print(tree.data ) display(tree.right ) def _snake_case ( UpperCamelCase : Node | None ): return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def _snake_case ( UpperCamelCase : Node ): if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def _snake_case ( ): # Main function for testing. UpperCAmelCase : int = Node(1 ) UpperCAmelCase : Tuple = Node(2 ) UpperCAmelCase : Any = Node(3 ) UpperCAmelCase : Optional[int] = Node(4 ) UpperCAmelCase : Any = Node(5 ) UpperCAmelCase : Optional[int] = Node(6 ) UpperCAmelCase : int = Node(7 ) UpperCAmelCase : str = Node(8 ) UpperCAmelCase : str = Node(9 ) print(is_full_binary_tree(UpperCamelCase ) ) print(depth_of_tree(UpperCamelCase ) ) print("""Tree is: """ ) display(UpperCamelCase ) if __name__ == "__main__": main()
109
0
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): """simple docstring""" a_ = ["""image_processor""", """tokenizer"""] a_ = """LayoutLMv3ImageProcessor""" a_ = ("""LayoutLMv3Tokenizer""", """LayoutLMv3TokenizerFast""") def __init__( self : List[str] , __A : Union[str, Any]=None , __A : int=None , **__A : List[Any] ): snake_case__ : List[str] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , snake_case__ , ) snake_case__ : int = kwargs.pop("feature_extractor" ) snake_case__ : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(snake_case__ , snake_case__ ) def __call__( self : List[str] , __A : List[str] , __A : Any = None , __A : List[Any] = None , __A : int = None , __A : str = None , __A : Tuple = True , __A : Optional[Any] = False , __A : List[Any] = None , __A : Tuple = None , __A : Any = 0 , __A : Union[str, Any] = None , __A : int = None , __A : List[Any] = None , __A : List[str] = False , __A : Union[str, Any] = False , __A : Any = False , __A : Optional[Any] = False , __A : Dict = True , __A : int = None , **__A : Any , ): if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) # first, apply the image processor snake_case__ : Optional[int] = self.image_processor(images=snake_case__ , return_tensors=snake_case__ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(snake_case__ , snake_case__ ): snake_case__ : int = [text] # add batch dimension (as the image processor always adds a batch dimension) snake_case__ : List[Any] = features['''words'''] snake_case__ : Any = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=snake_case__ , add_special_tokens=snake_case__ , padding=snake_case__ , truncation=snake_case__ , max_length=snake_case__ , stride=snake_case__ , pad_to_multiple_of=snake_case__ , return_token_type_ids=snake_case__ , return_attention_mask=snake_case__ , return_overflowing_tokens=snake_case__ , return_special_tokens_mask=snake_case__ , return_offsets_mapping=snake_case__ , return_length=snake_case__ , verbose=snake_case__ , return_tensors=snake_case__ , **snake_case__ , ) # add pixel values snake_case__ : str = features.pop("pixel_values" ) if return_overflowing_tokens is True: snake_case__ : Dict = self.get_overflowing_images(snake_case__ , encoded_inputs["overflow_to_sample_mapping"] ) snake_case__ : int = images return encoded_inputs def _lowercase ( self : Any , __A : Union[str, Any] , __A : Any ): snake_case__ : Any = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(snake_case__ ) != len(snake_case__ ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" f''' {len(snake_case__ )} and {len(snake_case__ )}''' ) return images_with_overflow def _lowercase ( self : Any , *__A : Optional[Any] , **__A : List[Any] ): return self.tokenizer.batch_decode(*snake_case__ , **snake_case__ ) def _lowercase ( self : int , *__A : Any , **__A : int ): return self.tokenizer.decode(*snake_case__ , **snake_case__ ) @property def _lowercase ( self : List[Any] ): return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def _lowercase ( self : List[Any] ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , snake_case__ , ) return self.image_processor_class @property def _lowercase ( self : Tuple ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , snake_case__ , ) return self.image_processor
362
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = ["image_processor", "tokenizer"] a_ = "ViltImageProcessor" a_ = ("BertTokenizer", "BertTokenizerFast") def __init__( self : Optional[int] , __A : Optional[int]=None , __A : Optional[Any]=None , **__A : int ): snake_case__ : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __A , ) snake_case__ : Tuple = kwargs.pop("feature_extractor" ) snake_case__ : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__A , __A ) snake_case__ : Tuple = self.image_processor def __call__( self : List[Any] , __A : int , __A : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __A : bool = True , __A : Union[bool, str, PaddingStrategy] = False , __A : Union[bool, str, TruncationStrategy] = None , __A : Optional[int] = None , __A : int = 0 , __A : Optional[int] = None , __A : Optional[bool] = None , __A : Optional[bool] = None , __A : bool = False , __A : bool = False , __A : bool = False , __A : bool = False , __A : bool = True , __A : Optional[Union[str, TensorType]] = None , **__A : List[Any] , ): snake_case__ : Optional[int] = self.tokenizer( text=__A , add_special_tokens=__A , padding=__A , truncation=__A , max_length=__A , stride=__A , pad_to_multiple_of=__A , return_token_type_ids=__A , return_attention_mask=__A , return_overflowing_tokens=__A , return_special_tokens_mask=__A , return_offsets_mapping=__A , return_length=__A , verbose=__A , return_tensors=__A , **__A , ) # add pixel_values + pixel_mask snake_case__ : Optional[Any] = self.image_processor(__A , return_tensors=__A ) encoding.update(__A ) return encoding def _lowercase ( self : Optional[Any] , *__A : List[str] , **__A : Optional[int] ): return self.tokenizer.batch_decode(*__A , **__A ) def _lowercase ( self : Dict , *__A : str , **__A : str ): return self.tokenizer.decode(*__A , **__A ) @property def _lowercase ( self : str ): snake_case__ : Optional[Any] = self.tokenizer.model_input_names snake_case__ : Any = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _lowercase ( self : List[Any] ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __A , ) return self.image_processor_class @property def _lowercase ( self : str ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __A , ) return self.image_processor
286
0
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time __lowerCAmelCase : str = Lock() def __magic_name__ ( A : Optional[Any], A : Any, A : Union[str, Any], A : List[str], A : int, A : Optional[int], A : Dict ): '''simple docstring''' global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0, 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(A ) process_lock.release() # receive your right neighbor's value process_lock.acquire() a = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left a = min(A, A ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(A ) process_lock.release() # receive your left neighbor's value process_lock.acquire() a = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right a = max(A, A ) # after all swaps are performed, send the values back to main result_pipe[1].send(A ) def __magic_name__ ( A : int ): '''simple docstring''' a = [] a = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop a = Pipe() a = Pipe() process_array_.append( Process( target=A, args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]), ) ) a = temp_rs a = temp_rr for i in range(1, len(A ) - 1 ): a = Pipe() a = Pipe() process_array_.append( Process( target=A, args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]), ) ) a = temp_rs a = temp_rr process_array_.append( Process( target=A, args=( len(A ) - 1, arr[len(A ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(A ) - 1], ), ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0, len(A ) ): a = result_pipe[p][0].recv() process_array_[p].join() return arr def __magic_name__ ( ): '''simple docstring''' a = list(range(10, 0, -1 ) ) print("Initial List" ) print(*A ) a = odd_even_transposition(A ) print("Sorted List\n" ) print(*A ) if __name__ == "__main__": main()
107
A : Union[str, Any] = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} A : List[Any] = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def UpperCamelCase ( __magic_name__ : dict[int, list[int]] , __magic_name__ : int , __magic_name__ : list[bool] ) -> list[int]: """simple docstring""" lowercase__ = True lowercase__ = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(__magic_name__ , __magic_name__ , __magic_name__ ) order.append(__magic_name__ ) return order def UpperCamelCase ( __magic_name__ : dict[int, list[int]] , __magic_name__ : int , __magic_name__ : list[bool] ) -> list[int]: """simple docstring""" lowercase__ = True lowercase__ = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(__magic_name__ , __magic_name__ , __magic_name__ ) return component def UpperCamelCase ( __magic_name__ : dict[int, list[int]] ) -> list[list[int]]: """simple docstring""" lowercase__ = len(__magic_name__ ) * [False] lowercase__ = {vert: [] for vert in range(len(__magic_name__ ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(__magic_name__ ) lowercase__ = [] for i, was_visited in enumerate(__magic_name__ ): if not was_visited: order += topology_sort(__magic_name__ , __magic_name__ , __magic_name__ ) lowercase__ = [] lowercase__ = len(__magic_name__ ) * [False] for i in range(len(__magic_name__ ) ): lowercase__ = order[len(__magic_name__ ) - i - 1] if not visited[vert]: lowercase__ = find_components(__magic_name__ , __magic_name__ , __magic_name__ ) components_list.append(__magic_name__ ) return components_list
305
0
from __future__ import annotations import collections import pprint from pathlib import Path def __A ( a_ :str) -> str: return "".join(sorted(a_)) def __A ( a_ :str) -> list[str]: return word_by_signature[signature(a_)] A = Path(__file__).parent.joinpath('''words.txt''').read_text(encoding='''utf-8''') A = sorted({word.strip().lower() for word in data.splitlines()}) A = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": A = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('''anagrams.txt''', '''w''') as file: file.write('''all_anagrams = \n ''') file.write(pprint.pformat(all_anagrams))
364
"""simple docstring""" import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class __lowercase : '''simple docstring''' @staticmethod def _lowerCamelCase ( *_UpperCAmelCase , **_UpperCAmelCase ): pass def __A ( a_ :Image) -> str: __a : List[str] = hashlib.mda(image.tobytes()) return m.hexdigest()[:10] def __A ( a_ :Image) -> Dict: __a : Any = np.array(a_) __a : Tuple = npimg.shape return {"hash": hashimage(a_), "shape": shape} @is_pipeline_test @require_vision @require_torch class __lowercase ( unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) __lowerCAmelCase = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : List[str] = MaskGenerationPipeline(model=_UpperCAmelCase , image_processor=_UpperCAmelCase ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): pass @require_tf @unittest.skip('''Image segmentation not implemented in TF''' ) def _lowerCamelCase ( self ): pass @slow @require_torch def _lowerCamelCase ( self ): __a : Dict = pipeline('''mask-generation''' , model='''facebook/sam-vit-huge''' ) __a : Optional[Any] = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''' , points_per_batch=256 ) # Shortening by hashing __a : Optional[int] = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(_UpperCAmelCase ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0_4_4_4}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.0_2_1}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0_1_6_7}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0_1_3_2}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0_0_5_3}, {'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (480, 640)}, '''scores''': 0.9_9_6_7}, {'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (480, 640)}, '''scores''': 0.9_9_3}, {'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (480, 640)}, '''scores''': 0.9_9_0_9}, {'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (480, 640)}, '''scores''': 0.9_8_7_9}, {'''mask''': {'''hash''': '''801064ff79''', '''shape''': (480, 640)}, '''scores''': 0.9_8_3_4}, {'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (480, 640)}, '''scores''': 0.9_7_1_6}, {'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (480, 640)}, '''scores''': 0.9_6_1_2}, {'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (480, 640)}, '''scores''': 0.9_5_9_9}, {'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (480, 640)}, '''scores''': 0.9_5_5_2}, {'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (480, 640)}, '''scores''': 0.9_5_3_2}, {'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (480, 640)}, '''scores''': 0.9_5_1_6}, {'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (480, 640)}, '''scores''': 0.9_4_9_9}, {'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (480, 640)}, '''scores''': 0.9_4_8_3}, {'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (480, 640)}, '''scores''': 0.9_4_6_4}, {'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (480, 640)}, '''scores''': 0.9_4_3}, {'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (480, 640)}, '''scores''': 0.9_4_3}, {'''mask''': {'''hash''': '''c749b25868''', '''shape''': (480, 640)}, '''scores''': 0.9_4_0_8}, {'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (480, 640)}, '''scores''': 0.9_3_3_5}, {'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (480, 640)}, '''scores''': 0.9_3_2_6}, {'''mask''': {'''hash''': '''788b798e24''', '''shape''': (480, 640)}, '''scores''': 0.9_2_6_2}, {'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (480, 640)}, '''scores''': 0.8_9_9_9}, {'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (480, 640)}, '''scores''': 0.8_9_8_6}, {'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (480, 640)}, '''scores''': 0.8_9_8_4}, {'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (480, 640)}, '''scores''': 0.8_8_7_3}, {'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (480, 640)}, '''scores''': 0.8_8_7_1} ] , ) # fmt: on @require_torch @slow def _lowerCamelCase ( self ): __a : Dict = '''facebook/sam-vit-huge''' __a : Tuple = pipeline('''mask-generation''' , model=_UpperCAmelCase ) __a : List[Any] = image_segmenter( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing __a : Optional[int] = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(_UpperCAmelCase ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0_4_4_4}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.0_2_1_0}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0_1_6_7}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0_1_3_2}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0_0_5_3}, ] , )
188
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''NllbTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''NllbTokenizerFast'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
153
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline lowerCAmelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name class _lowerCamelCase ( _lowercase ): def __init__(self , __a , __a ) -> str: super().__init__() self.register_modules(unet=__a , scheduler=__a ) @torch.no_grad() def __call__(self , __a = 1 , __a = 1_00 , __a = None , __a = None , __a = True , ) -> Union[AudioPipelineOutput, Tuple]: if audio_length_in_s is None: UpperCamelCase = self.unet.config.sample_size / self.unet.config.sample_rate UpperCamelCase = audio_length_in_s * self.unet.config.sample_rate UpperCamelCase = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( F"{audio_length_in_s} is too small. Make sure it's bigger or equal to" F" {3 * down_scale_factor / self.unet.config.sample_rate}." ) UpperCamelCase = int(__a ) if sample_size % down_scale_factor != 0: UpperCamelCase = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( F"{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled" F" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising" " process." ) UpperCamelCase = int(__a ) UpperCamelCase = next(iter(self.unet.parameters() ) ).dtype UpperCamelCase = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(__a , __a ) and len(__a ) != batch_size: raise ValueError( F"You have passed a list of generators of length {len(__a )}, but requested an effective batch" F" size of {batch_size}. Make sure the batch size matches the length of the generators." ) UpperCamelCase = randn_tensor(__a , generator=__a , device=self.device , dtype=__a ) # set step values self.scheduler.set_timesteps(__a , device=audio.device ) UpperCamelCase = self.scheduler.timesteps.to(__a ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output UpperCamelCase = self.unet(__a , __a ).sample # 2. compute previous image: x_t -> t_t-1 UpperCamelCase = self.scheduler.step(__a , __a , __a ).prev_sample UpperCamelCase = audio.clamp(-1 , 1 ).float().cpu().numpy() UpperCamelCase = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=__a )
153
1
'''simple docstring''' def __magic_name__ ( A , A ) -> List[Any]: return "\n".join( F'''{number} * {i} = {number * i}''' for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=1_0))
350
'''simple docstring''' from __future__ import annotations def __magic_name__ ( A , A , A ) -> int | float: if len(A ) == 0: raise ValueError('find_max() arg is an empty sequence' ) if ( left >= len(A ) or left < -len(A ) or right >= len(A ) or right < -len(A ) ): raise IndexError('list index out of range' ) if left == right: return nums[left] snake_case = (left + right) >> 1 # the middle snake_case = find_max(A , A , A ) # find max in range[left, mid] snake_case = find_max(A , mid + 1 , A ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
332
0
"""simple docstring""" import heapq as hq import math from collections.abc import Iterator class UpperCAmelCase_ : def __init__( self , UpperCamelCase_ ) -> List[Any]: __lowercase : Tuple = str(id_ ) __lowercase : Tuple = None __lowercase : List[str] = None __lowercase : Union[str, Any] = [] __lowercase : List[str] = {} # {vertex:distance} def __lt__( self , UpperCamelCase_ ) -> str: return self.key < other.key def __repr__( self ) -> Union[str, Any]: return self.id def _lowerCamelCase ( self , UpperCamelCase_ ) -> int: self.neighbors.append(UpperCamelCase_ ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: __lowercase : Any = weight def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __UpperCamelCase ) graph[b - 1].add_edge(graph[a - 1] , __UpperCamelCase ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): __lowercase : Union[str, Any] = [] for u in graph: __lowercase : Tuple = math.inf __lowercase : str = None __lowercase : str = 0 __lowercase : Optional[int] = graph[:] while q: __lowercase : str = min(__UpperCamelCase ) q.remove(__UpperCamelCase ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): __lowercase : Optional[int] = u __lowercase : int = u.edges[v.id] for i in range(1 , len(__UpperCamelCase ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): for u in graph: __lowercase : Tuple = math.inf __lowercase : str = None __lowercase : Any = 0 __lowercase : int = list(__UpperCamelCase ) hq.heapify(__UpperCamelCase ) while h: __lowercase : List[str] = hq.heappop(__UpperCamelCase ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): __lowercase : Union[str, Any] = u __lowercase : str = u.edges[v.id] hq.heapify(__UpperCamelCase ) for i in range(1 , len(__UpperCamelCase ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def __UpperCAmelCase ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
249
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCAmelCase_ ( snake_case ): @staticmethod @abstractmethod def _lowerCamelCase ( UpperCamelCase_ ) -> Union[str, Any]: raise NotImplementedError() @abstractmethod def _lowerCamelCase ( self ) -> str: raise NotImplementedError()
249
1
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowerCamelCase__ ( __lowercase): '''simple docstring''' def _lowerCamelCase ( self :int ) -> Union[str, Any]: __UpperCamelCase : int = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(a , "tf_padding" ) ) self.parent.assertTrue(hasattr(a , "depth_multiplier" ) ) class lowerCamelCase__ : '''simple docstring''' def __init__( self :Dict , a :int , a :Dict=1_3 , a :Union[str, Any]=3 , a :List[Any]=3_2 , a :Tuple=0.25 , a :Union[str, Any]=8 , a :Optional[int]=True , a :Optional[Any]=1_0_2_4 , a :Tuple=3_2 , a :Optional[Any]="relu6" , a :List[Any]=0.1 , a :Tuple=0.02 , a :Any=True , a :Optional[int]=True , a :Optional[Any]=1_0 , a :List[str]=None , ) -> Tuple: __UpperCamelCase : Union[str, Any] = parent __UpperCamelCase : int = batch_size __UpperCamelCase : int = num_channels __UpperCamelCase : Tuple = image_size __UpperCamelCase : Dict = depth_multiplier __UpperCamelCase : int = min_depth __UpperCamelCase : int = tf_padding __UpperCamelCase : List[Any] = int(last_hidden_size * depth_multiplier ) __UpperCamelCase : str = output_stride __UpperCamelCase : Optional[Any] = hidden_act __UpperCamelCase : Tuple = classifier_dropout_prob __UpperCamelCase : Union[str, Any] = use_labels __UpperCamelCase : Optional[int] = is_training __UpperCamelCase : Tuple = num_labels __UpperCamelCase : str = initializer_range __UpperCamelCase : str = scope def _lowerCamelCase ( self :List[str] ) -> int: __UpperCamelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase : str = None __UpperCamelCase : Any = None if self.use_labels: __UpperCamelCase : Tuple = ids_tensor([self.batch_size] , self.num_labels ) __UpperCamelCase : Any = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __UpperCamelCase : Union[str, Any] = self.get_config() return config, pixel_values, labels, pixel_labels def _lowerCamelCase ( self :List[Any] ) -> Union[str, Any]: return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self :Any , a :str , a :Any , a :Optional[Any] , a :Optional[int] ) -> List[str]: __UpperCamelCase : Any = MobileNetVaModel(config=a ) model.to(a ) model.eval() __UpperCamelCase : Tuple = model(a ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _lowerCamelCase ( self :List[Any] , a :Tuple , a :List[Any] , a :Optional[Any] , a :Optional[int] ) -> Optional[int]: __UpperCamelCase : Union[str, Any] = self.num_labels __UpperCamelCase : Optional[int] = MobileNetVaForImageClassification(a ) model.to(a ) model.eval() __UpperCamelCase : Dict = model(a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self :Tuple ) -> Tuple: __UpperCamelCase : List[Any] = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : List[Any] = config_and_inputs __UpperCamelCase : Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase__ ( __lowercase , __lowercase , unittest.TestCase): '''simple docstring''' _A = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () _A = ( {'feature-extraction': MobileNetVaModel, 'image-classification': MobileNetVaForImageClassification} if is_torch_available() else {} ) _A = False _A = False _A = False _A = False def _lowerCamelCase ( self :str ) -> Any: __UpperCamelCase : Dict = MobileNetVaModelTester(self ) __UpperCamelCase : Any = MobileNetVaConfigTester(self , config_class=a , has_text_modality=a ) def _lowerCamelCase ( self :Optional[int] ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV1 does not use inputs_embeds" ) def _lowerCamelCase ( self :List[str] ) -> str: pass @unittest.skip(reason="MobileNetV1 does not support input and output embeddings" ) def _lowerCamelCase ( self :Union[str, Any] ) -> Union[str, Any]: pass @unittest.skip(reason="MobileNetV1 does not output attentions" ) def _lowerCamelCase ( self :Optional[int] ) -> Optional[int]: pass def _lowerCamelCase ( self :Optional[Any] ) -> Optional[int]: __UpperCamelCase , __UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase : Tuple = model_class(a ) __UpperCamelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase : Any = [*signature.parameters.keys()] __UpperCamelCase : Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , a ) def _lowerCamelCase ( self :int ) -> Any: __UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _lowerCamelCase ( self :Dict ) -> Dict: def check_hidden_states_output(a :Optional[int] , a :Dict , a :List[str] ): __UpperCamelCase : Optional[int] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): __UpperCamelCase : Tuple = model(**self._prepare_for_class(a , a ) ) __UpperCamelCase : str = outputs.hidden_states __UpperCamelCase : Dict = 2_6 self.assertEqual(len(a ) , a ) __UpperCamelCase , __UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase : List[Any] = True check_hidden_states_output(a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCamelCase : Dict = True check_hidden_states_output(a , a , a ) def _lowerCamelCase ( self :str ) -> List[str]: __UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a ) @slow def _lowerCamelCase ( self :Dict ) -> Any: for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase : Union[str, Any] = MobileNetVaModel.from_pretrained(a ) self.assertIsNotNone(a ) def _SCREAMING_SNAKE_CASE ( ) -> List[Any]: '''simple docstring''' __UpperCamelCase : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' @cached_property def _lowerCamelCase ( self :List[str] ) -> List[Any]: return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224" ) if is_vision_available() else None ) @slow def _lowerCamelCase ( self :List[str] ) -> List[Any]: __UpperCamelCase : List[Any] = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224" ).to(a ) __UpperCamelCase : str = self.default_image_processor __UpperCamelCase : Optional[int] = prepare_img() __UpperCamelCase : str = image_processor(images=a , return_tensors="pt" ).to(a ) # forward pass with torch.no_grad(): __UpperCamelCase : List[str] = model(**a ) # verify the logits __UpperCamelCase : Optional[int] = torch.Size((1, 1_0_0_1) ) self.assertEqual(outputs.logits.shape , a ) __UpperCamelCase : Tuple = torch.tensor([-4.1739, -1.1233, 3.1205] ).to(a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a , atol=1E-4 ) )
151
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging lowercase : Any = logging.get_logger(__name__) lowercase : Any = {'vocab_file': 'spiece.model'} lowercase : int = { 'vocab_file': { 'TsinghuaAI/CPM-Generate': 'https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model', } } class lowerCamelCase__ ( __lowercase): '''simple docstring''' def __init__( self :int , a :List[Any] , a :Optional[Any]=False , a :List[str]=True , a :str=False , a :Optional[Any]="<s>" , a :Tuple="</s>" , a :int="<unk>" , a :Optional[Any]="<sep>" , a :List[str]="<pad>" , a :Any="<cls>" , a :List[Any]="<mask>" , a :Optional[Any]=["<eop>", "<eod>"] , a :Optional[Dict[str, Any]] = None , **a :List[str] , ) -> None: __UpperCamelCase : Any = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else mask_token __UpperCamelCase : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=a , remove_space=a , keep_accents=a , bos_token=a , eos_token=a , unk_token=a , sep_token=a , pad_token=a , cls_token=a , mask_token=a , additional_special_tokens=a , sp_model_kwargs=self.sp_model_kwargs , **a , ) __UpperCamelCase : int = 3 __UpperCamelCase : Union[str, Any] = do_lower_case __UpperCamelCase : str = remove_space __UpperCamelCase : int = keep_accents __UpperCamelCase : Optional[int] = vocab_file __UpperCamelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( "You need to install jieba to use CpmTokenizer or CpmTokenizerFast. " "See https://pypi.org/project/jieba/ for installation." ) __UpperCamelCase : Optional[Any] = jieba __UpperCamelCase : Optional[int] = str.maketrans(" \n" , "\u2582\u2583" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def _lowerCamelCase ( self :Optional[int] ) -> List[str]: return len(self.sp_model ) def _lowerCamelCase ( self :Dict ) -> str: __UpperCamelCase : Optional[int] = {self.convert_ids_to_tokens(a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self :Optional[int] ) -> int: __UpperCamelCase : Tuple = self.__dict__.copy() __UpperCamelCase : Optional[Any] = None return state def __setstate__( self :Optional[int] , a :Dict ) -> str: __UpperCamelCase : Optional[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __UpperCamelCase : Union[str, Any] = {} __UpperCamelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCamelCase ( self :List[Any] , a :str ) -> int: if self.remove_space: __UpperCamelCase : int = " ".join(inputs.strip().split() ) else: __UpperCamelCase : Union[str, Any] = inputs __UpperCamelCase : List[str] = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: __UpperCamelCase : Tuple = unicodedata.normalize("NFKD" , a ) __UpperCamelCase : Optional[Any] = "".join([c for c in outputs if not unicodedata.combining(a )] ) if self.do_lower_case: __UpperCamelCase : Any = outputs.lower() return outputs def _lowerCamelCase ( self :Tuple , a :str ) -> List[str]: __UpperCamelCase : List[Any] = self.preprocess_text(a ) __UpperCamelCase : int = self.sp_model.encode(a , out_type=a ) __UpperCamelCase : Optional[Any] = [] for piece in pieces: if len(a ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): __UpperCamelCase : str = self.sp_model.EncodeAsPieces(piece[:-1].replace(a , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: __UpperCamelCase : List[str] = cur_pieces[1:] else: __UpperCamelCase : int = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(a ) else: new_pieces.append(a ) return new_pieces def _lowerCamelCase ( self :str , a :Dict ) -> List[str]: return self.sp_model.PieceToId(a ) def _lowerCamelCase ( self :Tuple , a :int ) -> Tuple: return self.sp_model.IdToPiece(a ) def _lowerCamelCase ( self :Union[str, Any] , a :Union[str, Any] ) -> List[Any]: __UpperCamelCase : str = "".join(a ).replace(a , " " ).strip() return out_string def _lowerCamelCase ( self :Any , a :List[int] , a :Optional[List[int]] = None ) -> List[int]: __UpperCamelCase : Tuple = [self.sep_token_id] __UpperCamelCase : int = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowerCamelCase ( self :Any , a :List[int] , a :Optional[List[int]] = None , a :bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a , token_ids_a=a , already_has_special_tokens=a ) if token_ids_a is not None: return ([0] * len(a )) + [1] + ([0] * len(a )) + [1, 1] return ([0] * len(a )) + [1, 1] def _lowerCamelCase ( self :Dict , a :List[int] , a :Optional[List[int]] = None ) -> List[int]: __UpperCamelCase : Optional[int] = [self.sep_token_id] __UpperCamelCase : Dict = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _lowerCamelCase ( self :Union[str, Any] , a :str , a :Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(a ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __UpperCamelCase : Tuple = os.path.join( a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a ) elif not os.path.isfile(self.vocab_file ): with open(a , "wb" ) as fi: __UpperCamelCase : List[Any] = self.sp_model.serialized_model_proto() fi.write(a ) return (out_vocab_file,) def _lowerCamelCase ( self :str , *a :str , **a :Any ) -> Tuple: __UpperCamelCase : int = super()._decode(*a , **a ) __UpperCamelCase : int = text.replace(" " , "" ).replace("\u2582" , " " ).replace("\u2583" , "\n" ) return text
151
1
import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = [] if isinstance(_lowerCamelCase , _lowerCamelCase ): for v in tree.values(): shapes.extend(_fetch_dims(_lowerCamelCase ) ) elif isinstance(_lowerCamelCase , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(_lowerCamelCase ) ) elif isinstance(_lowerCamelCase , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError("Not supported" ) return shapes @torch.jit.ignore def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : str = [] for d in reversed(_lowerCamelCase ): idx.append(flat_idx % d ) _lowerCAmelCase : Dict = flat_idx // d return tuple(reversed(_lowerCamelCase ) ) @torch.jit.ignore def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , ): '''simple docstring''' def reduce_edge_list(_lowerCamelCase ) -> None: _lowerCAmelCase : List[str] = True for i in range(len(_lowerCamelCase ) ): _lowerCAmelCase : Any = -1 * (i + 1) l[reversed_idx] &= tally _lowerCAmelCase : str = l[reversed_idx] if start_edges is None: _lowerCAmelCase : Optional[int] = [s == 0 for s in start] reduce_edge_list(_lowerCamelCase ) if end_edges is None: _lowerCAmelCase : Dict = [e == (d - 1) for e, d in zip(_lowerCamelCase , _lowerCamelCase )] reduce_edge_list(_lowerCamelCase ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(_lowerCamelCase ) == 0: return [()] elif len(_lowerCamelCase ) == 1: return [(slice(start[0] , end[0] + 1 ),)] _lowerCAmelCase : List[Tuple[slice, ...]] = [] _lowerCAmelCase : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(_lowerCamelCase , _lowerCamelCase ): if s == e: path_list.append(slice(_lowerCamelCase , s + 1 ) ) else: break _lowerCAmelCase : Tuple[slice, ...] = tuple(_lowerCamelCase ) _lowerCAmelCase : Tuple = len(_lowerCamelCase ) # start == end, and we're done if divergence_idx == len(_lowerCamelCase ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None _lowerCAmelCase : Optional[int] = start[divergence_idx] return tuple( path + (slice(_lowerCamelCase , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None _lowerCAmelCase : str = end[divergence_idx] return tuple( path + (slice(_lowerCamelCase , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) _lowerCAmelCase : Tuple = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = t.shape[:no_batch_dims] _lowerCAmelCase : List[str] = list(_flat_idx_to_idx(_lowerCamelCase , _lowerCamelCase ) ) # _get_minimal_slice_set is inclusive _lowerCAmelCase : List[str] = list(_flat_idx_to_idx(flat_end - 1 , _lowerCamelCase ) ) # Get an ordered list of slices to perform _lowerCAmelCase : str = _get_minimal_slice_set( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) _lowerCAmelCase : Optional[int] = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = False , ): '''simple docstring''' if not (len(_lowerCamelCase ) > 0): raise ValueError("Must provide at least one input" ) _lowerCAmelCase : Tuple = [shape[:no_batch_dims] for shape in _fetch_dims(_lowerCamelCase )] _lowerCAmelCase : Tuple = tuple([max(_lowerCamelCase ) for s in zip(*_lowerCamelCase )] ) def _prep_inputs(_lowerCamelCase ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: _lowerCAmelCase : Dict = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) _lowerCAmelCase : Optional[Any] = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: _lowerCAmelCase : Union[str, Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t _lowerCAmelCase : Dict[str, Any] = tensor_tree_map(_prep_inputs , _lowerCamelCase ) _lowerCAmelCase : Tuple = None if _out is not None: _lowerCAmelCase : List[Any] = tensor_tree_map(lambda _lowerCamelCase : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) _lowerCAmelCase : int = 1 for d in orig_batch_dims: flat_batch_dim *= d _lowerCAmelCase : Union[str, Any] = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(_lowerCamelCase ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t _lowerCAmelCase : int = 0 _lowerCAmelCase : Any = prepped_outputs for _ in range(_lowerCamelCase ): # Chunk the input if not low_mem: _lowerCAmelCase : List[str] = _select_chunk else: _lowerCAmelCase : Dict = partial( _chunk_slice , flat_start=_lowerCamelCase , flat_end=min(_lowerCamelCase , i + chunk_size ) , no_batch_dims=len(_lowerCamelCase ) , ) _lowerCAmelCase : Dict[str, Any] = tensor_tree_map(_lowerCamelCase , _lowerCamelCase ) # Run the layer on the chunk _lowerCAmelCase : int = layer(**_lowerCamelCase ) # Allocate space for the output if out is None: _lowerCAmelCase : Union[str, Any] = tensor_tree_map(lambda _lowerCamelCase : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , _lowerCamelCase ) # Put the chunk in its pre-allocated space if isinstance(_lowerCamelCase , _lowerCamelCase ): def assign(_lowerCamelCase , _lowerCamelCase ) -> None: for k, v in da.items(): if isinstance(_lowerCamelCase , _lowerCamelCase ): assign(_lowerCamelCase , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: _lowerCAmelCase : Tuple = da[k] assign(_lowerCamelCase , _lowerCamelCase ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): for xa, xa in zip(_lowerCamelCase , _lowerCamelCase ): if _add_into_out: xa[i : i + chunk_size] += xa else: _lowerCAmelCase : int = xa elif isinstance(_lowerCamelCase , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: _lowerCAmelCase : List[str] = output_chunk else: raise ValueError("Not supported" ) i += chunk_size _lowerCAmelCase : Any = tensor_tree_map(lambda _lowerCamelCase : t.view(orig_batch_dims + t.shape[1:] ) , _lowerCamelCase ) return out class UpperCAmelCase_ : def __init__( self, __a = 512, ): '''simple docstring''' _lowerCAmelCase : List[str] = max_chunk_size _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : Optional[tuple] = None def snake_case__ ( self, __a, __a, __a): '''simple docstring''' logging.info("Tuning chunk size...") if min_chunk_size >= self.max_chunk_size: return min_chunk_size _lowerCAmelCase : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size, 2)) + 1)] _lowerCAmelCase : List[Any] = [c for c in candidates if c > min_chunk_size] _lowerCAmelCase : Union[str, Any] = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(__a) -> bool: try: with torch.no_grad(): fn(*__a, chunk_size=__a) return True except RuntimeError: return False _lowerCAmelCase : List[Any] = 0 _lowerCAmelCase : List[str] = len(__a) - 1 while i > min_viable_chunk_size_index: _lowerCAmelCase : Tuple = test_chunk_size(candidates[i]) if not viable: _lowerCAmelCase : int = (min_viable_chunk_size_index + i) // 2 else: _lowerCAmelCase : Any = i _lowerCAmelCase : Union[str, Any] = (i + len(__a) - 1) // 2 return candidates[min_viable_chunk_size_index] def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = True for aa, aa in zip(__a, __a): assert type(__a) == type(__a) if isinstance(__a, (list, tuple)): consistent &= self._compare_arg_caches(__a, __a) elif isinstance(__a, __a): _lowerCAmelCase : Optional[Any] = [v for _, v in sorted(aa.items(), key=lambda __a: x[0])] _lowerCAmelCase : Dict = [v for _, v in sorted(aa.items(), key=lambda __a: x[0])] consistent &= self._compare_arg_caches(__a, __a) else: consistent &= aa == aa return consistent def snake_case__ ( self, __a, __a, __a, ): '''simple docstring''' _lowerCAmelCase : int = True _lowerCAmelCase : tuple = tree_map(lambda __a: a.shape if isinstance(__a, torch.Tensor) else a, __a, __a) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data) == len(__a) _lowerCAmelCase : Tuple = self._compare_arg_caches(self.cached_arg_data, __a) else: # Otherwise, we can reuse the precomputed value _lowerCAmelCase : Union[str, Any] = False if not consistent: _lowerCAmelCase : Any = self._determine_favorable_chunk_size( __a, __a, __a, ) _lowerCAmelCase : Any = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
36
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _snake_case = logging.get_logger(__name__) _snake_case = { "microsoft/swin-tiny-patch4-window7-224": ( "https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json" ), # See all Swin models at https://huggingface.co/models?filter=swin } class UpperCAmelCase_ ( a , a): lowerCamelCase__ = 'swin' lowerCamelCase__ = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self, __a=224, __a=4, __a=3, __a=96, __a=[2, 2, 6, 2], __a=[3, 6, 12, 24], __a=7, __a=4.0, __a=True, __a=0.0, __a=0.0, __a=0.1, __a="gelu", __a=False, __a=0.02, __a=1E-5, __a=32, __a=None, __a=None, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : Any = image_size _lowerCAmelCase : Union[str, Any] = patch_size _lowerCAmelCase : Tuple = num_channels _lowerCAmelCase : List[Any] = embed_dim _lowerCAmelCase : Tuple = depths _lowerCAmelCase : Optional[Any] = len(__a) _lowerCAmelCase : int = num_heads _lowerCAmelCase : int = window_size _lowerCAmelCase : int = mlp_ratio _lowerCAmelCase : List[Any] = qkv_bias _lowerCAmelCase : str = hidden_dropout_prob _lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCAmelCase : Any = drop_path_rate _lowerCAmelCase : int = hidden_act _lowerCAmelCase : Tuple = use_absolute_embeddings _lowerCAmelCase : Optional[int] = layer_norm_eps _lowerCAmelCase : Tuple = initializer_range _lowerCAmelCase : Tuple = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCAmelCase : List[str] = int(embed_dim * 2 ** (len(__a) - 1)) _lowerCAmelCase : List[Any] = ["stem"] + [f"stage{idx}" for idx in range(1, len(__a) + 1)] _lowerCAmelCase , _lowerCAmelCase : Optional[int] = get_aligned_output_features_output_indices( out_features=__a, out_indices=__a, stage_names=self.stage_names) class UpperCAmelCase_ ( a): lowerCamelCase__ = version.parse('1.11') @property def snake_case__ ( self): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ]) @property def snake_case__ ( self): '''simple docstring''' return 1E-4
36
1
'''simple docstring''' import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() a : Dict = 2 class UpperCamelCase_ : def __init__( self , *, # begin keyword-only arguments A="<s>" , A="<pad>" , A="</s>" , A="<unk>" , A=None , ) -> Any: UpperCAmelCase : List[str] = bos, unk, pad, eos UpperCAmelCase : Union[str, Any] = [] UpperCAmelCase : Optional[int] = [] UpperCAmelCase : Dict = {} UpperCAmelCase : List[Any] = self.add_symbol(A ) UpperCAmelCase : List[str] = self.add_symbol(A ) UpperCAmelCase : int = self.add_symbol(A ) UpperCAmelCase : List[Any] = self.add_symbol(A ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(A ) UpperCAmelCase : List[str] = len(self.symbols ) def __eq__( self , A ) -> Tuple: return self.indices == other.indices def __getitem__( self , A ) -> Optional[Any]: if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self ) -> Optional[int]: return len(self.symbols ) def __contains__( self , A ) -> List[Any]: return sym in self.indices @classmethod def _lowercase( cls , A ) -> Optional[Any]: UpperCAmelCase : List[Any] = cls() d.add_from_file(A ) return d def _lowercase( self , A , A=1 , A=False ) -> List[str]: if word in self.indices and not overwrite: UpperCAmelCase : List[Any] = self.indices[word] UpperCAmelCase : int = self.count[idx] + n return idx else: UpperCAmelCase : Optional[int] = len(self.symbols ) UpperCAmelCase : List[str] = idx self.symbols.append(A ) self.count.append(A ) return idx def _lowercase( self , A ) -> Dict: return 0 def _lowercase( self , A ) -> Optional[Any]: if isinstance(A , A ): try: with open(A , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(A ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("""Incorrect encoding detected in {}, please rebuild the dataset""".format(A ) ) return UpperCAmelCase : str = f.readlines() UpperCAmelCase : Optional[Any] = self._load_meta(A ) for line in lines[indices_start_line:]: try: UpperCAmelCase : str = line.rstrip().rsplit(""" """ , 1 ) if field == "#fairseq:overwrite": UpperCAmelCase : Any = True UpperCAmelCase : str = line.rsplit(""" """ , 1 ) else: UpperCAmelCase : Dict = False UpperCAmelCase : List[Any] = int(A ) UpperCAmelCase : Any = line if word in self and not overwrite: raise RuntimeError( """Duplicate word found when loading Dictionary: '{}'. """ """Duplicate words can overwrite earlier ones by adding the """ """#fairseq:overwrite flag at the end of the corresponding row """ """in the dictionary file. If using the Camembert model, please """ """download an updated copy of the model file.""".format(A ) ) self.add_symbol(A , n=A , overwrite=A ) except ValueError: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt> [flags]'""" ) def __lowerCamelCase ( _lowercase ) -> Optional[Any]: # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} UpperCAmelCase : Optional[Any] = dict((re.sub(R"""@@$""" , """""" , _lowercase ), v) if k.endswith("""@@""" ) else (re.sub(R"""$""" , """</w>""" , _lowercase ), v) for k, v in d.items() ) UpperCAmelCase : int = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[F'''{k}</w>'''] UpperCAmelCase : Optional[Any] = d[k] # restore return da def __lowerCamelCase ( _lowercase , _lowercase ) -> Any: # prep if not os.path.exists(_lowercase ): raise ValueError(F'''path {biogpt_checkpoint_path} does not exist!''' ) os.makedirs(_lowercase , exist_ok=_lowercase ) print(F'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models UpperCAmelCase : Optional[int] = os.path.join(_lowercase , """checkpoint.pt""" ) if not os.path.isfile(_lowercase ): raise ValueError(F'''path to the file {checkpoint_file} does not exist!''' ) UpperCAmelCase : Optional[int] = torch.load(_lowercase , map_location="""cpu""" ) UpperCAmelCase : List[Any] = chkpt["""cfg"""]["""model"""] # dicts UpperCAmelCase : List[Any] = os.path.join(_lowercase , """dict.txt""" ) if not os.path.isfile(_lowercase ): raise ValueError(F'''path to the file {dict_file} does not exist!''' ) UpperCAmelCase : Any = Dictionary.load(_lowercase ) UpperCAmelCase : Dict = rewrite_dict_keys(src_dict.indices ) UpperCAmelCase : Optional[int] = len(_lowercase ) UpperCAmelCase : Dict = os.path.join(_lowercase , VOCAB_FILES_NAMES["""vocab_file"""] ) print(F'''Generating {src_vocab_file} of {src_vocab_size} records''' ) with open(_lowercase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(_lowercase , ensure_ascii=_lowercase , indent=_lowercase ) ) # merges_file (bpecodes) UpperCAmelCase : Tuple = os.path.join(_lowercase , """bpecodes""" ) if not os.path.isfile(_lowercase ): raise ValueError(F'''path to the file {bpecodes_file} does not exist!''' ) UpperCAmelCase : List[Any] = os.path.join(_lowercase , VOCAB_FILES_NAMES["""merges_file"""] ) shutil.copyfile(_lowercase , _lowercase ) # model config UpperCAmelCase : List[str] = os.path.join(_lowercase , """config.json""" ) UpperCAmelCase : Optional[Any] = { """activation_dropout""": args["""activation_dropout"""], """architectures""": ["""BioGptForCausalLM"""], """attention_probs_dropout_prob""": args["""attention_dropout"""], """bos_token_id""": 0, """eos_token_id""": 2, """hidden_act""": args["""activation_fn"""], """hidden_dropout_prob""": args["""dropout"""], """hidden_size""": args["""decoder_embed_dim"""], """initializer_range""": 0.02, """intermediate_size""": args["""decoder_ffn_embed_dim"""], """layer_norm_eps""": 1e-12, """layerdrop""": args["""decoder_layerdrop"""], """max_position_embeddings""": args["""max_target_positions"""], """model_type""": """biogpt""", """num_attention_heads""": args["""decoder_attention_heads"""], """num_hidden_layers""": args["""decoder_layers"""], """pad_token_id""": 1, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_decoder_input_output_embed"""], """vocab_size""": src_vocab_size, } # good hparam defaults to start with print(F'''Generating {biogpt_model_config_file}''' ) with open(_lowercase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(_lowercase , ensure_ascii=_lowercase , indent=_lowercase ) ) # tokenizer config UpperCAmelCase : Tuple = os.path.join(_lowercase , _lowercase ) UpperCAmelCase : Optional[Any] = { """bos_token""": """<s>""", """eos_token""": """</s>""", """model_max_length""": 1_0_2_4, """pad_token""": """<pad>""", """special_tokens_map_file""": None, """tokenizer_class""": """BioGptTokenizer""", """unk_token""": """<unk>""", } print(F'''Generating {biogpt_tokenizer_config_file}''' ) with open(_lowercase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(_lowercase , ensure_ascii=_lowercase , indent=_lowercase ) ) # model UpperCAmelCase : Any = chkpt["""model"""] # remove unneeded keys UpperCAmelCase : Optional[int] = [ """decoder.version""", ] for k in ignore_keys: model_state_dict.pop(_lowercase , _lowercase ) UpperCAmelCase : int = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith("""output_projection.weight""" ): UpperCAmelCase : Tuple = model_state_dict.pop(_lowercase ) else: UpperCAmelCase : Tuple = model_state_dict.pop(_lowercase ) UpperCAmelCase : List[Any] = BioGptConfig.from_pretrained(_lowercase ) UpperCAmelCase : Any = BioGptForCausalLM(_lowercase ) # check that it loads ok model_new.load_state_dict(_lowercase ) # save UpperCAmelCase : Union[str, Any] = os.path.join(_lowercase , _lowercase ) print(F'''Generating {pytorch_weights_dump_path}''' ) torch.save(_lowercase , _lowercase ) print("""Conversion is done!""" ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--biogpt_checkpoint_path""", default=None, type=str, required=True, help=( """Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,""" """ bpecodes, etc.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) a : Optional[int] = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
353
'''simple docstring''' def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : List[str] = 0 while num > 0: digit_sum += num % 1_0 num //= 1_0 return digit_sum def __lowerCamelCase ( _lowercase = 1_0_0 ) -> int: UpperCAmelCase : int = 1 UpperCAmelCase : str = 2 for i in range(2 , max_n + 1 ): UpperCAmelCase : Tuple = pre_numerator UpperCAmelCase : Optional[int] = 2 * i // 3 if i % 3 == 0 else 1 UpperCAmelCase : Union[str, Any] = cur_numerator UpperCAmelCase : Optional[int] = e_cont * pre_numerator + temp return sum_digits(_lowercase ) if __name__ == "__main__": print(F'''{solution() = }''')
338
0
'''simple docstring''' import string def lowerCAmelCase_ ( _lowerCamelCase: str ): __SCREAMING_SNAKE_CASE : Dict = """""" for i in sequence: __SCREAMING_SNAKE_CASE : Any = ord(_lowerCamelCase ) if 65 <= extract <= 90: output += chr(1_55 - extract ) elif 97 <= extract <= 1_22: output += chr(2_19 - extract ) else: output += i return output def lowerCAmelCase_ ( _lowerCamelCase: str ): __SCREAMING_SNAKE_CASE : Optional[Any] = string.ascii_letters __SCREAMING_SNAKE_CASE : Union[str, Any] = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(_lowerCamelCase )] if c in letters else c for c in sequence ) def lowerCAmelCase_ ( ): from timeit import timeit print("""Running performance benchmarks...""" ) __SCREAMING_SNAKE_CASE : Union[str, Any] = """from string import printable ; from __main__ import atbash, atbash_slow""" print(F"> atbash_slow(): {timeit('atbash_slow(printable)' , setup=_lowerCamelCase )} seconds" ) print(F"> atbash(): {timeit('atbash(printable)' , setup=_lowerCamelCase )} seconds" ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(f"{example} encrypted in atbash: {atbash(example)}") benchmark()
112
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu UpperCamelCase__ : List[Any] = [ '''EAGER''', '''AOT_EAGER''', '''INDUCTOR''', '''NVFUSER''', '''AOT_NVFUSER''', '''AOT_CUDAGRAPHS''', '''OFI''', '''FX2TRT''', '''ONNXRT''', '''IPEX''', ] def lowerCAmelCase_ ( _lowerCamelCase: str , _lowerCamelCase: Union[str, Any]=None , _lowerCamelCase: Optional[int]=None , _lowerCamelCase: str=None ): __SCREAMING_SNAKE_CASE : Optional[int] = True while ask_again: __SCREAMING_SNAKE_CASE : Tuple = input(_lowerCamelCase ) try: if default is not None and len(_lowerCamelCase ) == 0: return default return convert_value(_lowerCamelCase ) if convert_value is not None else result except Exception: if error_message is not None: print(_lowerCamelCase ) def lowerCAmelCase_ ( _lowerCamelCase: Tuple , _lowerCamelCase: Union[str, Any]=[] , _lowerCamelCase: List[Any]=None , _lowerCamelCase: Optional[Any]=0 ): __SCREAMING_SNAKE_CASE : Union[str, Any] = BulletMenu(_lowerCamelCase , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : Dict = menu.run(default_choice=_lowerCamelCase ) return convert_value(_lowerCamelCase ) if convert_value is not None else result def lowerCAmelCase_ ( _lowerCamelCase: Optional[Any] ): __SCREAMING_SNAKE_CASE : List[str] = int(_lowerCamelCase ) return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] ) def lowerCAmelCase_ ( _lowerCamelCase: Any ): __SCREAMING_SNAKE_CASE : str = int(_lowerCamelCase ) return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] ) def lowerCAmelCase_ ( _lowerCamelCase: Tuple ): __SCREAMING_SNAKE_CASE : Tuple = int(_lowerCamelCase ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def lowerCAmelCase_ ( _lowerCamelCase: Union[str, Any] ): __SCREAMING_SNAKE_CASE : List[str] = int(_lowerCamelCase ) return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] ) def lowerCAmelCase_ ( _lowerCamelCase: Tuple ): __SCREAMING_SNAKE_CASE : int = int(_lowerCamelCase ) return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] ) def lowerCAmelCase_ ( _lowerCamelCase: List[Any] ): return {"yes": True, "no": False}[value.lower()] class _UpperCamelCase ( argparse.RawDescriptionHelpFormatter ): '''simple docstring''' def UpperCamelCase__ ( self : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = super()._format_usage(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = usage.replace("""<command> [<args>] """ , """""" ) return usage
112
1
"""simple docstring""" from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline A = logging.get_logger(__name__) @add_end_docstrings(_UpperCamelCase ) class __lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__( self , **_UpperCAmelCase ): super().__init__(**_UpperCAmelCase ) if self.framework != "pt": raise ValueError(f"""The {self.__class__} is only available in PyTorch.""" ) # No specific FOR_XXX available yet def __call__( self , _UpperCAmelCase , **_UpperCAmelCase ): return super().__call__(_UpperCAmelCase , **_UpperCAmelCase ) def _lowerCamelCase ( self , **_UpperCAmelCase ): __a : List[str] = {} if "candidate_labels" in kwargs: __a : int = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: __a : Tuple = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase="This is a sound of {}." ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): if audio.startswith('''http://''' ) or audio.startswith('''https://''' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png __a : Dict = requests.get(_UpperCAmelCase ).content else: with open(_UpperCAmelCase , '''rb''' ) as f: __a : Optional[Any] = f.read() if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __a : Any = ffmpeg_read(_UpperCAmelCase , self.feature_extractor.sampling_rate ) if not isinstance(_UpperCAmelCase , np.ndarray ): raise ValueError('''We expect a numpy ndarray as input''' ) if len(audio.shape ) != 1: raise ValueError('''We expect a single channel audio input for ZeroShotAudioClassificationPipeline''' ) __a : Dict = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors='''pt''' ) __a : List[Any] = candidate_labels __a : Tuple = [hypothesis_template.format(_UpperCAmelCase ) for x in candidate_labels] __a : str = self.tokenizer(_UpperCAmelCase , return_tensors=self.framework , padding=_UpperCAmelCase ) __a : List[Any] = [text_inputs] return inputs def _lowerCamelCase ( self , _UpperCAmelCase ): __a : Any = model_inputs.pop('''candidate_labels''' ) __a : Union[str, Any] = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] , _UpperCAmelCase ): __a : Tuple = text_inputs[0] else: # Batching case. __a : Optional[int] = text_inputs[0][0] __a : str = self.model(**_UpperCAmelCase , **_UpperCAmelCase ) __a : List[str] = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_audio, } return model_outputs def _lowerCamelCase ( self , _UpperCAmelCase ): __a : str = model_outputs.pop('''candidate_labels''' ) __a : Optional[int] = model_outputs['''logits'''][0] if self.framework == "pt": __a : List[Any] = logits.softmax(dim=0 ) __a : List[Any] = probs.tolist() else: raise ValueError('''`tf` framework not supported.''' ) __a : Optional[int] = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(_UpperCAmelCase , _UpperCAmelCase ) , key=lambda _UpperCAmelCase : -x[0] ) ] return result
188
"""simple docstring""" import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) A = { '''iou_prediction_head.layers.0''': '''iou_prediction_head.proj_in''', '''iou_prediction_head.layers.1''': '''iou_prediction_head.layers.0''', '''iou_prediction_head.layers.2''': '''iou_prediction_head.proj_out''', '''mask_decoder.output_upscaling.0''': '''mask_decoder.upscale_conv1''', '''mask_decoder.output_upscaling.1''': '''mask_decoder.upscale_layer_norm''', '''mask_decoder.output_upscaling.3''': '''mask_decoder.upscale_conv2''', '''mask_downscaling.0''': '''mask_embed.conv1''', '''mask_downscaling.1''': '''mask_embed.layer_norm1''', '''mask_downscaling.3''': '''mask_embed.conv2''', '''mask_downscaling.4''': '''mask_embed.layer_norm2''', '''mask_downscaling.6''': '''mask_embed.conv3''', '''point_embeddings''': '''point_embed''', '''pe_layer.positional_encoding_gaussian_matrix''': '''shared_embedding.positional_embedding''', '''image_encoder''': '''vision_encoder''', '''neck.0''': '''neck.conv1''', '''neck.1''': '''neck.layer_norm1''', '''neck.2''': '''neck.conv2''', '''neck.3''': '''neck.layer_norm2''', '''patch_embed.proj''': '''patch_embed.projection''', '''.norm''': '''.layer_norm''', '''blocks''': '''layers''', } def __A ( a_ :List[Any]) -> List[Any]: __a : List[Any] = {} state_dict.pop('''pixel_mean''' , a_) state_dict.pop('''pixel_std''' , a_) __a : List[Any] = R'''.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*''' for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __a : int = key.replace(a_ , a_) if re.match(a_ , a_): __a : Optional[Any] = int(re.match(a_ , a_).group(2)) if layer_nb == 0: __a : Any = key.replace('''layers.0''' , '''proj_in''') elif layer_nb == 1: __a : Dict = key.replace('''layers.1''' , '''layers.0''') elif layer_nb == 2: __a : Optional[int] = key.replace('''layers.2''' , '''proj_out''') __a : int = value __a : Union[str, Any] = model_state_dict[ '''prompt_encoder.shared_embedding.positional_embedding''' ] return model_state_dict def __A ( a_ :Optional[int] , a_ :Optional[Any] , a_ :Dict , a_ :Optional[int]="ybelkada/segment-anything") -> Dict: __a : Dict = hf_hub_download(a_ , F"""checkpoints/{model_name}.pth""") if "sam_vit_b" in model_name: __a : List[str] = SamConfig() elif "sam_vit_l" in model_name: __a : List[Any] = SamVisionConfig( hidden_size=10_24 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) __a : List[Any] = SamConfig( vision_config=a_ , ) elif "sam_vit_h" in model_name: __a : List[str] = SamVisionConfig( hidden_size=12_80 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) __a : Optional[int] = SamConfig( vision_config=a_ , ) __a : int = torch.load(a_ , map_location='''cpu''') __a : Tuple = replace_keys(a_) __a : Optional[int] = SamImageProcessor() __a : Any = SamProcessor(image_processor=a_) __a : Any = SamModel(a_) hf_model.load_state_dict(a_) __a : Dict = hf_model.to('''cuda''') __a : Tuple = '''https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png''' __a : str = Image.open(requests.get(a_ , stream=a_).raw).convert('''RGB''') __a : Tuple = [[[4_00, 6_50]]] __a : Tuple = [[1]] __a : Tuple = processor(images=np.array(a_) , return_tensors='''pt''').to('''cuda''') with torch.no_grad(): __a : str = hf_model(**a_) __a : Optional[int] = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.5_7_9_8_9_0_2_5_1_1_5_9_6_6_8 __a : Any = processor( images=np.array(a_) , input_points=a_ , input_labels=a_ , return_tensors='''pt''').to('''cuda''') with torch.no_grad(): __a : Optional[int] = hf_model(**a_) __a : Optional[int] = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_7_1_2_6_0_3_0_9_2_1_9_3_6_0_4 __a : str = ((75, 2_75, 17_25, 8_50),) __a : List[str] = processor(images=np.array(a_) , input_boxes=a_ , return_tensors='''pt''').to('''cuda''') with torch.no_grad(): __a : Any = hf_model(**a_) __a : Any = output.iou_scores.squeeze() assert scores[-1].item() == 0.8_6_8_6_0_1_5_6_0_5_9_2_6_5_1_4 # Test with 2 points and 1 image. __a : int = [[[4_00, 6_50], [8_00, 6_50]]] __a : Dict = [[1, 1]] __a : Optional[Any] = processor( images=np.array(a_) , input_points=a_ , input_labels=a_ , return_tensors='''pt''').to('''cuda''') with torch.no_grad(): __a : int = hf_model(**a_) __a : Any = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_9_3_6_0_4_7_7_9_2_4_3_4_6_9_2 if __name__ == "__main__": A = argparse.ArgumentParser() A = ['''sam_vit_b_01ec64''', '''sam_vit_h_4b8939''', '''sam_vit_l_0b3195'''] parser.add_argument( '''--model_name''', default='''sam_vit_h_4b8939''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) parser.add_argument( '''--model_hub_id''', default='''ybelkada/segment-anything''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) A = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
188
1
def __A ( __lowerCAmelCase )-> str: """simple docstring""" if isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if num == 0: return "0b0" _UpperCAmelCase = False if num < 0: _UpperCAmelCase = True _UpperCAmelCase = -num _UpperCAmelCase = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(__lowerCAmelCase ) for e in binary ) return "0b" + "".join(str(__lowerCAmelCase ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
39
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowerCAmelCase_ = logging.get_logger(__name__) class _A ( _lowerCamelCase ): _UpperCamelCase : Dict = ['''input_features'''] def __init__( self : int , _A : int=80 , _A : Union[str, Any]=16_000 , _A : Union[str, Any]=160 , _A : Any=30 , _A : str=400 , _A : Union[str, Any]=0.0 , _A : Tuple=False , **_A : List[str] , ) -> int: """simple docstring""" super().__init__( feature_size=_A , sampling_rate=_A , padding_value=_A , return_attention_mask=_A , **_A , ) lowercase : Optional[Any] = n_fft lowercase : Optional[int] = hop_length lowercase : Optional[int] = chunk_length lowercase : Union[str, Any] = chunk_length * sampling_rate lowercase : Optional[Any] = self.n_samples // hop_length lowercase : Optional[Any] = sampling_rate lowercase : Union[str, Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=_A , min_frequency=0.0 , max_frequency=8_000.0 , sampling_rate=_A , norm='''slaney''' , mel_scale='''slaney''' , ) def __a ( self : Dict , _A : np.array ) -> np.ndarray: """simple docstring""" lowercase : List[str] = spectrogram( _A , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='''log10''' , ) lowercase : Union[str, Any] = log_spec[:, :-1] lowercase : Optional[Any] = np.maximum(_A , log_spec.max() - 8.0 ) lowercase : str = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def __a ( _A : List[np.ndarray] , _A : List[np.ndarray] , _A : float = 0.0 ) -> List[np.ndarray]: """simple docstring""" if attention_mask is not None: lowercase : Optional[Any] = np.array(_A , np.intaa ) lowercase : List[str] = [] for vector, length in zip(_A , attention_mask.sum(-1 ) ): lowercase : Optional[int] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: lowercase : int = padding_value normed_input_values.append(_A ) else: lowercase : Dict = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __call__( self : Union[str, Any] , _A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _A : bool = True , _A : Optional[int] = None , _A : Optional[Union[str, TensorType]] = None , _A : Optional[bool] = None , _A : Optional[str] = "max_length" , _A : Optional[int] = None , _A : Optional[int] = None , _A : Optional[bool] = None , **_A : int , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) lowercase : Union[str, Any] = isinstance(_A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) lowercase : Optional[Any] = is_batched_numpy or ( isinstance(_A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase : List[str] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_A , np.ndarray ): lowercase : List[Any] = np.asarray(_A , dtype=np.floataa ) elif isinstance(_A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase : Optional[int] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase : List[str] = [np.asarray([raw_speech] ).T] lowercase : Tuple = BatchFeature({'''input_features''': raw_speech} ) # convert into correct format for padding lowercase : str = self.pad( _A , padding=_A , max_length=max_length if max_length else self.n_samples , truncation=_A , pad_to_multiple_of=_A , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: lowercase : Tuple = self.zero_mean_unit_var_norm( padded_inputs['''input_features'''] , attention_mask=padded_inputs['''attention_mask'''] , padding_value=self.padding_value , ) lowercase : str = np.stack(padded_inputs['''input_features'''] , axis=0 ) # make sure list is in array format lowercase : List[str] = padded_inputs.get('''input_features''' ).transpose(2 , 0 , 1 ) lowercase : str = [self._np_extract_fbank_features(_A ) for waveform in input_features[0]] if isinstance(input_features[0] , _A ): lowercase : int = [np.asarray(_A , dtype=np.floataa ) for feature in input_features] else: lowercase : Optional[int] = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) lowercase : List[str] = padded_inputs['''attention_mask'''][:, :: self.hop_length] if return_tensors is not None: lowercase : Any = padded_inputs.convert_to_tensors(_A ) return padded_inputs def __a ( self : Optional[Any] ) -> Dict[str, Any]: """simple docstring""" lowercase : Optional[Any] = copy.deepcopy(self.__dict__ ) lowercase : Dict = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
308
0
from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # pylint: disable=invalid-name _SCREAMING_SNAKE_CASE = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n' def snake_case ( snake_case__ :Union[str, Any] , snake_case__ :Union[str, Any] , snake_case__ :Dict=8) -> int: """simple docstring""" _A = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _A = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def snake_case ( snake_case__ :Union[str, Any] , snake_case__ :str=512 , snake_case__ :Tuple=512) -> Dict: """simple docstring""" _A = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1) _A = np.array(pil_image.convert("""RGB""")) _A = arr.astype(np.floataa) / 127.5 - 1 _A = np.transpose(A__ , [2, 0, 1]) _A = torch.from_numpy(A__).unsqueeze(0) return image class a ( __lowerCamelCase ): """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) -> Optional[Any]: super().__init__() self.register_modules( unet=UpperCamelCase_ , scheduler=UpperCamelCase_ , movq=UpperCamelCase_ , ) _A = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[Any]: # get the original timestep using init_timestep _A = min(int(num_inference_steps * strength ) , UpperCamelCase_ ) _A = max(num_inference_steps - init_timestep , 0 ) _A = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None ) -> List[Any]: if not isinstance(UpperCamelCase_ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(UpperCamelCase_ )}''' ) _A = image.to(device=UpperCamelCase_ , dtype=UpperCamelCase_ ) _A = batch_size * num_images_per_prompt if image.shape[1] == 4: _A = image else: if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(UpperCamelCase_ )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): _A = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(UpperCamelCase_ ) ] _A = torch.cat(UpperCamelCase_ , dim=0 ) else: _A = self.movq.encode(UpperCamelCase_ ).latent_dist.sample(UpperCamelCase_ ) _A = self.movq.config.scaling_factor * init_latents _A = torch.cat([init_latents] , dim=0 ) _A = init_latents.shape _A = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=UpperCamelCase_ , dtype=UpperCamelCase_ ) # get latents _A = self.scheduler.add_noise(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) _A = init_latents return latents def UpperCAmelCase ( self , lowerCAmelCase_=0 ) -> Optional[int]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) _A = torch.device(F'''cuda:{gpu_id}''' ) _A = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase_ , UpperCamelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_=0 ) -> int: if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) _A = torch.device(F'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=UpperCamelCase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _A = None for cpu_offloaded_model in [self.unet, self.movq]: _A , _A = cpu_offload_with_hook(UpperCamelCase_ , UpperCamelCase_ , prev_module_hook=UpperCamelCase_ ) # We'll offload the last model manually. _A = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCAmelCase ( self ) -> int: if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(UpperCamelCase_ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(UpperCamelCase_ ) def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 5_12 , lowerCAmelCase_ = 5_12 , lowerCAmelCase_ = 1_00 , lowerCAmelCase_ = 4.0 , lowerCAmelCase_ = 0.3 , lowerCAmelCase_ = 1 , lowerCAmelCase_ = None , lowerCAmelCase_ = "pil" , lowerCAmelCase_ = True , ) -> Dict: _A = self._execution_device _A = guidance_scale > 1.0 if isinstance(UpperCamelCase_ , UpperCamelCase_ ): _A = torch.cat(UpperCamelCase_ , dim=0 ) _A = image_embeds.shape[0] if isinstance(UpperCamelCase_ , UpperCamelCase_ ): _A = torch.cat(UpperCamelCase_ , dim=0 ) if do_classifier_free_guidance: _A = image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) _A = negative_image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) _A = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCamelCase_ ) if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): _A = [image] if not all(isinstance(UpperCamelCase_ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F'''Input is in incorrect format: {[type(UpperCamelCase_ ) for i in image]}. Currently, we only support PIL image and pytorch tensor''' ) _A = torch.cat([prepare_image(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) for i in image] , dim=0 ) _A = image.to(dtype=image_embeds.dtype , device=UpperCamelCase_ ) _A = self.movq.encode(UpperCamelCase_ )["""latents"""] _A = latents.repeat_interleave(UpperCamelCase_ , dim=0 ) self.scheduler.set_timesteps(UpperCamelCase_ , device=UpperCamelCase_ ) _A , _A = self.get_timesteps(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) _A = timesteps[:1].repeat(batch_size * num_images_per_prompt ) _A , _A = downscale_height_and_width(UpperCamelCase_ , UpperCamelCase_ , self.movq_scale_factor ) _A = self.prepare_latents( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , image_embeds.dtype , UpperCamelCase_ , UpperCamelCase_ ) for i, t in enumerate(self.progress_bar(UpperCamelCase_ ) ): # expand the latents if we are doing classifier free guidance _A = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _A = {"""image_embeds""": image_embeds} _A = self.unet( sample=UpperCamelCase_ , timestep=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , added_cond_kwargs=UpperCamelCase_ , return_dict=UpperCamelCase_ , )[0] if do_classifier_free_guidance: _A , _A = noise_pred.split(latents.shape[1] , dim=1 ) _A , _A = noise_pred.chunk(2 ) _A , _A = variance_pred.chunk(2 ) _A = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _A = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _A , _A = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _A = self.scheduler.step( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ , )[0] # post-processing _A = self.movq.decode(UpperCamelCase_ , force_not_quantize=UpperCamelCase_ )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: _A = image * 0.5 + 0.5 _A = image.clamp(0 , 1 ) _A = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _A = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ )
357
import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup _SCREAMING_SNAKE_CASE = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582' } def snake_case ( snake_case__ :str = "dhaka" , snake_case__ :int = 5) -> int: _A = min(snake_case__ , 50) # Prevent abuse! _A = { """q""": query, """tbm""": """isch""", """hl""": """en""", """ijn""": """0""", } _A = requests.get("""https://www.google.com/search""" , params=snake_case__ , headers=snake_case__) _A = BeautifulSoup(html.text , """html.parser""") _A = """""".join( re.findall(R"""AF_initDataCallback\(([^<]+)\);""" , str(soup.select("""script""")))) _A = json.dumps(snake_case__) _A = json.loads(snake_case__) _A = re.findall( R"""\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",""" , snake_case__ , ) if not matched_google_image_data: return 0 _A = re.sub( R"""\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]""" , """""" , str(snake_case__) , ) _A = re.findall( R"""(?:'|,),\[\"(https:|http.*?)\",\d+,\d+\]""" , snake_case__ , ) for index, fixed_full_res_image in enumerate(snake_case__): if index >= max_images: return index _A = bytes(snake_case__ , """ascii""").decode( """unicode-escape""") _A = bytes(snake_case__ , """ascii""").decode( """unicode-escape""") _A = urllib.request.build_opener() _A = [ ( """User-Agent""", """Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36""" """ (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582""", ) ] urllib.request.install_opener(snake_case__) _A = F'''query_{query.replace(' ' , '_')}''' if not os.path.exists(snake_case__): os.makedirs(snake_case__) urllib.request.urlretrieve( # noqa: S310 snake_case__ , F'''{path_name}/original_size_img_{index}.jpg''') return index if __name__ == "__main__": try: _SCREAMING_SNAKE_CASE = download_images_from_google_query(sys.argv[1]) print(F'''{image_count} images were downloaded to disk.''') except IndexError: print('Please provide a search term.') raise
81
0
'''simple docstring''' import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : str = (DDIMParallelScheduler,) A_ : Optional[int] = (("""eta""", 0.0), ("""num_inference_steps""", 50)) def __lowerCAmelCase ( self : Optional[int] , **_A : List[str] ) -> Optional[Any]: __magic_name__ : Dict = { 'num_train_timesteps': 1000, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'clip_sample': True, } config.update(**_A ) return config def __lowerCAmelCase ( self : Union[str, Any] , **_A : Tuple ) -> Union[str, Any]: __magic_name__ : List[Any] = self.scheduler_classes[0] __magic_name__ : Optional[Any] = self.get_scheduler_config(**_A ) __magic_name__ : Optional[int] = scheduler_class(**_A ) __magic_name__ , __magic_name__ : List[str] = 10, 0.0 __magic_name__ : Optional[Any] = self.dummy_model() __magic_name__ : List[Any] = self.dummy_sample_deter scheduler.set_timesteps(_A ) for t in scheduler.timesteps: __magic_name__ : List[Any] = model(_A , _A ) __magic_name__ : Optional[int] = scheduler.step(_A , _A , _A , _A ).prev_sample return sample def __lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=_A ) def __lowerCAmelCase ( self : Optional[int] ) -> int: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_A ) __magic_name__ : Any = self.scheduler_classes[0] __magic_name__ : List[Any] = self.get_scheduler_config(steps_offset=1 ) __magic_name__ : List[str] = scheduler_class(**_A ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def __lowerCAmelCase ( self : int ) -> str: for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_A , beta_end=_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_A ) def __lowerCAmelCase ( self : Optional[Any] ) -> Dict: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def __lowerCAmelCase ( self : Optional[Any] ) -> Tuple: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_A ) def __lowerCAmelCase ( self : str ) -> int: for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=_A ) def __lowerCAmelCase ( self : Dict ) -> Dict: for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=_A ) def __lowerCAmelCase ( self : Any ) -> Dict: self.check_over_configs(thresholding=_A ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=_A , prediction_type=_A , sample_max_value=_A , ) def __lowerCAmelCase ( self : Dict ) -> Any: for t in [1, 10, 49]: self.check_over_forward(time_step=_A ) def __lowerCAmelCase ( self : Tuple ) -> List[str]: for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=_A , num_inference_steps=_A ) def __lowerCAmelCase ( self : str ) -> Tuple: for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=_A , eta=_A ) def __lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]: __magic_name__ : List[Any] = self.scheduler_classes[0] __magic_name__ : int = self.get_scheduler_config() __magic_name__ : Union[str, Any] = scheduler_class(**_A ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.1_4771 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.3_2460 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.0_0979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1E-5 def __lowerCAmelCase ( self : Tuple ) -> Any: __magic_name__ : Any = self.scheduler_classes[0] __magic_name__ : int = self.get_scheduler_config() __magic_name__ : int = scheduler_class(**_A ) __magic_name__ , __magic_name__ : Optional[int] = 10, 0.0 scheduler.set_timesteps(_A ) __magic_name__ : Optional[Any] = self.dummy_model() __magic_name__ : str = self.dummy_sample_deter __magic_name__ : List[str] = self.dummy_sample_deter + 0.1 __magic_name__ : Tuple = self.dummy_sample_deter - 0.1 __magic_name__ : Tuple = samplea.shape[0] __magic_name__ : Dict = torch.stack([samplea, samplea, samplea] , dim=0 ) __magic_name__ : Optional[Any] = torch.arange(_A )[0:3, None].repeat(1 , _A ) __magic_name__ : List[Any] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) __magic_name__ : Any = scheduler.batch_step_no_noise(_A , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , _A ) __magic_name__ : Optional[Any] = torch.sum(torch.abs(_A ) ) __magic_name__ : Optional[Any] = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 1147.7904 ) < 1E-2 assert abs(result_mean.item() - 0.4982 ) < 1E-3 def __lowerCAmelCase ( self : List[str] ) -> Dict: __magic_name__ : List[str] = self.full_loop() __magic_name__ : Any = torch.sum(torch.abs(_A ) ) __magic_name__ : List[str] = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 172.0067 ) < 1E-2 assert abs(result_mean.item() - 0.22_3967 ) < 1E-3 def __lowerCAmelCase ( self : int ) -> List[Any]: __magic_name__ : List[Any] = self.full_loop(prediction_type='v_prediction' ) __magic_name__ : List[str] = torch.sum(torch.abs(_A ) ) __magic_name__ : List[str] = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 52.5302 ) < 1E-2 assert abs(result_mean.item() - 0.0684 ) < 1E-3 def __lowerCAmelCase ( self : str ) -> str: # We specify different beta, so that the first alpha is 0.99 __magic_name__ : Optional[Any] = self.full_loop(set_alpha_to_one=_A , beta_start=0.01 ) __magic_name__ : Any = torch.sum(torch.abs(_A ) ) __magic_name__ : Optional[Any] = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 149.8295 ) < 1E-2 assert abs(result_mean.item() - 0.1951 ) < 1E-3 def __lowerCAmelCase ( self : str ) -> Union[str, Any]: # We specify different beta, so that the first alpha is 0.99 __magic_name__ : Optional[Any] = self.full_loop(set_alpha_to_one=_A , beta_start=0.01 ) __magic_name__ : Any = torch.sum(torch.abs(_A ) ) __magic_name__ : List[Any] = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 149.0784 ) < 1E-2 assert abs(result_mean.item() - 0.1941 ) < 1E-3
331
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" __magic_name__ : List[Any] = filter(lambda lowerCAmelCase : p.requires_grad , model.parameters() ) __magic_name__ : Tuple = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCAmelCase :Union[str, Any] = logging.getLogger(__name__) def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : int ): """simple docstring""" if metric == "rouge2": __magic_name__ : Any = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": __magic_name__ : Optional[Any] = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": __magic_name__ : Dict = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": __magic_name__ : int = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( f'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' ' function.' ) __magic_name__ : List[Any] = ModelCheckpoint( dirpath=lowerCAmelCase , filename=lowerCAmelCase , monitor=f'val_{metric}' , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] ): """simple docstring""" return EarlyStopping( monitor=f'val_{metric}' , mode='min' if 'loss' in metric else 'max' , patience=lowerCAmelCase , verbose=lowerCAmelCase , ) class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] , _A : Optional[Any] , _A : List[str] ) -> int: __magic_name__ : Optional[Any] = {F'lr_group_{i}': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_A ) @rank_zero_only def __lowerCAmelCase ( self : Any , _A : pl.Trainer , _A : pl.LightningModule , _A : str , _A : Dict=True ) -> None: logger.info(F'***** {type_path} results at step {trainer.global_step:05d} *****' ) __magic_name__ : List[str] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results __magic_name__ : Optional[Any] = Path(pl_module.hparams.output_dir ) if type_path == "test": __magic_name__ : List[Any] = od / 'test_results.txt' __magic_name__ : Dict = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __magic_name__ : Dict = od / F'{type_path}_results/{trainer.global_step:05d}.txt' __magic_name__ : Optional[Any] = od / F'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=_A ) generations_file.parent.mkdir(exist_ok=_A ) with open(_A , 'a+' ) as writer: for key in sorted(_A ): if key in ["log", "progress_bar", "preds"]: continue __magic_name__ : Optional[Any] = metrics[key] if isinstance(_A , torch.Tensor ): __magic_name__ : Tuple = val.item() __magic_name__ : int = F'{key}: {val:.6f}\n' writer.write(_A ) if not save_generations: return if "preds" in metrics: __magic_name__ : str = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(_A ) @rank_zero_only def __lowerCAmelCase ( self : List[str] , _A : Union[str, Any] , _A : Tuple ) -> Tuple: try: __magic_name__ : str = pl_module.model.model.num_parameters() except AttributeError: __magic_name__ : List[str] = pl_module.model.num_parameters() __magic_name__ : List[Any] = count_trainable_parameters(_A ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def __lowerCAmelCase ( self : Union[str, Any] , _A : pl.Trainer , _A : pl.LightningModule ) -> List[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_A , _A , 'test' ) @rank_zero_only def __lowerCAmelCase ( self : Tuple , _A : pl.Trainer , _A : Any ) -> List[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
331
1
"""simple docstring""" import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def __lowerCamelCase ( __UpperCamelCase ) -> Any: """simple docstring""" lowerCAmelCase_ : Dict = torch.exp(__UpperCamelCase ) lowerCAmelCase_ : str = torch.sum(__UpperCamelCase , dim=1 ) # sum of exp(x_i) lowerCAmelCase_ : Any = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(__UpperCamelCase ) - B / A class __lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , a_ : Optional[int] ): super().__init__() lowerCAmelCase_ : List[Any] = config.output_attentions lowerCAmelCase_ : List[str] = config.output_hidden_states lowerCAmelCase_ : str = nn.ModuleList([BertLayer(a_ ) for _ in range(config.num_hidden_layers )] ) lowerCAmelCase_ : List[Any] = nn.ModuleList([BertHighway(a_ ) for _ in range(config.num_hidden_layers )] ) lowerCAmelCase_ : Optional[int] = [-1 for _ in range(config.num_hidden_layers )] def lowerCamelCase ( self : Optional[int] , a_ : List[str] ): if (type(a_ ) is float) or (type(a_ ) is int): for i in range(len(self.early_exit_entropy ) ): lowerCAmelCase_ : Any = x else: lowerCAmelCase_ : Optional[int] = x def lowerCamelCase ( self : int , a_ : List[Any] ): lowerCAmelCase_ : List[Any] = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def lowerCamelCase ( self : List[str] , a_ : List[str] , a_ : Tuple=None , a_ : Dict=None , a_ : Tuple=None , a_ : List[Any]=None , ): lowerCAmelCase_ : Optional[int] = () lowerCAmelCase_ : Any = () lowerCAmelCase_ : Optional[int] = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: lowerCAmelCase_ : Optional[int] = all_hidden_states + (hidden_states,) lowerCAmelCase_ : Optional[int] = layer_module( a_ , a_ , head_mask[i] , a_ , a_ ) lowerCAmelCase_ : Dict = layer_outputs[0] if self.output_attentions: lowerCAmelCase_ : Optional[Any] = all_attentions + (layer_outputs[1],) lowerCAmelCase_ : Optional[int] = (hidden_states,) if self.output_hidden_states: lowerCAmelCase_ : int = current_outputs + (all_hidden_states,) if self.output_attentions: lowerCAmelCase_ : str = current_outputs + (all_attentions,) lowerCAmelCase_ : List[str] = self.highway[i](a_ ) # logits, pooled_output if not self.training: lowerCAmelCase_ : Dict = highway_exit[0] lowerCAmelCase_ : Optional[Any] = entropy(a_ ) lowerCAmelCase_ : List[Any] = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy lowerCAmelCase_ : str = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: lowerCAmelCase_ : str = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(a_ , i + 1 ) else: lowerCAmelCase_ : List[Any] = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: lowerCAmelCase_ : Optional[int] = all_hidden_states + (hidden_states,) lowerCAmelCase_ : List[str] = (hidden_states,) if self.output_hidden_states: lowerCAmelCase_ : int = outputs + (all_hidden_states,) if self.output_attentions: lowerCAmelCase_ : Union[str, Any] = outputs + (all_attentions,) lowerCAmelCase_ : Tuple = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( """The Bert Model transformer with early exiting (DeeBERT). """ , A__ , ) class __lowerCamelCase ( A__ ): '''simple docstring''' def __init__( self : Dict , a_ : str ): super().__init__(a_ ) lowerCAmelCase_ : int = config lowerCAmelCase_ : int = BertEmbeddings(a_ ) lowerCAmelCase_ : Tuple = DeeBertEncoder(a_ ) lowerCAmelCase_ : List[Any] = BertPooler(a_ ) self.init_weights() def lowerCamelCase ( self : int ): self.encoder.init_highway_pooler(self.pooler ) def lowerCamelCase ( self : List[str] ): return self.embeddings.word_embeddings def lowerCamelCase ( self : Dict , a_ : List[str] ): lowerCAmelCase_ : str = value def lowerCamelCase ( self : Optional[Any] , a_ : str ): for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(a_ ) @add_start_docstrings_to_model_forward(a_ ) def lowerCamelCase ( self : Union[str, Any] , a_ : Dict=None , a_ : int=None , a_ : Optional[Any]=None , a_ : str=None , a_ : int=None , a_ : Optional[Any]=None , a_ : List[Any]=None , a_ : Optional[int]=None , ): if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: lowerCAmelCase_ : str = input_ids.size() elif inputs_embeds is not None: lowerCAmelCase_ : List[str] = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds" ) lowerCAmelCase_ : List[Any] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: lowerCAmelCase_ : Union[str, Any] = torch.ones(a_ , device=a_ ) if encoder_attention_mask is None: lowerCAmelCase_ : Any = torch.ones(a_ , device=a_ ) if token_type_ids is None: lowerCAmelCase_ : List[str] = torch.zeros(a_ , dtype=torch.long , device=a_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. lowerCAmelCase_ : torch.Tensor = self.get_extended_attention_mask(a_ , a_ , a_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: lowerCAmelCase_ : Optional[int] = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: lowerCAmelCase_ : Union[str, Any] = encoder_attention_mask[:, None, None, :] lowerCAmelCase_ : Optional[int] = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility lowerCAmelCase_ : Tuple = (1.0 - encoder_extended_attention_mask) * -10000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] lowerCAmelCase_ : List[str] = self.get_head_mask(a_ , self.config.num_hidden_layers ) lowerCAmelCase_ : List[Any] = self.embeddings( input_ids=a_ , position_ids=a_ , token_type_ids=a_ , inputs_embeds=a_ ) lowerCAmelCase_ : Union[str, Any] = self.encoder( a_ , attention_mask=a_ , head_mask=a_ , encoder_hidden_states=a_ , encoder_attention_mask=a_ , ) lowerCAmelCase_ : Optional[Any] = encoder_outputs[0] lowerCAmelCase_ : List[str] = self.pooler(a_ ) lowerCAmelCase_ : str = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class __lowerCamelCase ( A__ ): '''simple docstring''' def __init__( self : int , a_ : Optional[Any] , a_ : Any ): lowerCAmelCase_ : List[Any] = message lowerCAmelCase_ : Dict = exit_layer # start from 1! class __lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , a_ : Union[str, Any] ): super().__init__() lowerCAmelCase_ : List[Any] = BertPooler(a_ ) lowerCAmelCase_ : List[str] = nn.Dropout(config.hidden_dropout_prob ) lowerCAmelCase_ : Union[str, Any] = nn.Linear(config.hidden_size , config.num_labels ) def lowerCamelCase ( self : List[Any] , a_ : int ): # Pooler lowerCAmelCase_ : Dict = encoder_outputs[0] lowerCAmelCase_ : List[Any] = self.pooler(a_ ) # "return" pooler_output # BertModel lowerCAmelCase_ : str = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification lowerCAmelCase_ : Optional[int] = bmodel_output[1] lowerCAmelCase_ : List[Any] = self.dropout(a_ ) lowerCAmelCase_ : Union[str, Any] = self.classifier(a_ ) return logits, pooled_output @add_start_docstrings( """Bert Model (with early exiting - DeeBERT) with a classifier on top, also takes care of multi-layer training. """ , A__ , ) class __lowerCamelCase ( A__ ): '''simple docstring''' def __init__( self : int , a_ : List[str] ): super().__init__(a_ ) lowerCAmelCase_ : str = config.num_labels lowerCAmelCase_ : int = config.num_hidden_layers lowerCAmelCase_ : Union[str, Any] = DeeBertModel(a_ ) lowerCAmelCase_ : Optional[Any] = nn.Dropout(config.hidden_dropout_prob ) lowerCAmelCase_ : int = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(a_ ) def lowerCamelCase ( self : Optional[Any] , a_ : str=None , a_ : str=None , a_ : Optional[Any]=None , a_ : str=None , a_ : Optional[int]=None , a_ : Optional[Any]=None , a_ : int=None , a_ : List[str]=-1 , a_ : int=False , ): lowerCAmelCase_ : Dict = self.num_layers try: lowerCAmelCase_ : List[Any] = self.bert( a_ , attention_mask=a_ , token_type_ids=a_ , position_ids=a_ , head_mask=a_ , inputs_embeds=a_ , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits lowerCAmelCase_ : Union[str, Any] = outputs[1] lowerCAmelCase_ : List[str] = self.dropout(a_ ) lowerCAmelCase_ : int = self.classifier(a_ ) lowerCAmelCase_ : str = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: lowerCAmelCase_ : List[str] = e.message lowerCAmelCase_ : Tuple = e.exit_layer lowerCAmelCase_ : Optional[Any] = outputs[0] if not self.training: lowerCAmelCase_ : Dict = entropy(a_ ) lowerCAmelCase_ : Tuple = [] lowerCAmelCase_ : Optional[int] = [] if labels is not None: if self.num_labels == 1: # We are doing regression lowerCAmelCase_ : str = MSELoss() lowerCAmelCase_ : Dict = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: lowerCAmelCase_ : Optional[Any] = CrossEntropyLoss() lowerCAmelCase_ : List[str] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits lowerCAmelCase_ : List[Any] = [] for highway_exit in outputs[-1]: lowerCAmelCase_ : Optional[Any] = highway_exit[0] if not self.training: highway_logits_all.append(a_ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression lowerCAmelCase_ : Dict = MSELoss() lowerCAmelCase_ : int = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: lowerCAmelCase_ : Optional[int] = CrossEntropyLoss() lowerCAmelCase_ : Tuple = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(a_ ) if train_highway: lowerCAmelCase_ : List[Any] = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: lowerCAmelCase_ : Optional[Any] = (loss,) + outputs if not self.training: lowerCAmelCase_ : Dict = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: lowerCAmelCase_ : Optional[int] = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
161
"""simple docstring""" import os def __lowerCamelCase ( ) -> Optional[Any]: """simple docstring""" with open(os.path.dirname(__UpperCamelCase ) + "/grid.txt" ) as f: lowerCAmelCase_ : str = [] # noqa: E741 for _ in range(20 ): l.append([int(__UpperCamelCase ) for x in f.readline().split()] ) lowerCAmelCase_ : Dict = 0 # right for i in range(20 ): for j in range(17 ): lowerCAmelCase_ : Optional[Any] = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: lowerCAmelCase_ : Dict = temp # down for i in range(17 ): for j in range(20 ): lowerCAmelCase_ : Union[str, Any] = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: lowerCAmelCase_ : List[str] = temp # diagonal 1 for i in range(17 ): for j in range(17 ): lowerCAmelCase_ : Optional[Any] = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: lowerCAmelCase_ : List[Any] = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): lowerCAmelCase_ : List[Any] = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: lowerCAmelCase_ : str = temp return maximum if __name__ == "__main__": print(solution())
161
1
import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class _lowercase ( _UpperCAmelCase , unittest.TestCase): """simple docstring""" A__ = BertJapaneseTokenizer A__ = False A__ = True def lowerCAmelCase ( self : str ): '''simple docstring''' super().setUp() lowerCamelCase__ : Optional[Any] = [ "[UNK]", "[CLS]", "[SEP]", "こんにちは", "こん", "にちは", "ばんは", "##こん", "##にちは", "##ばんは", "世界", "##世界", "、", "##、", "。", "##。", ] lowerCamelCase__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Optional[int] ): '''simple docstring''' lowerCamelCase__ : List[Any] = "こんにちは、世界。 \nこんばんは、世界。" lowerCamelCase__ : Dict = "こんにちは 、 世界 。 こんばんは 、 世界 。" return input_text, output_text def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : List[str] = self.get_input_output_texts(lowerCAmelCase__ ) lowerCamelCase__ : Optional[int] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) lowerCamelCase__ : int = tokenizer.decode(lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ ) return text, ids def lowerCAmelCase ( self : Dict ): '''simple docstring''' pass # TODO add if relevant def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' pass # TODO add if relevant def lowerCAmelCase ( self : Any ): '''simple docstring''' pass # TODO add if relevant def lowerCAmelCase ( self : Tuple ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.tokenizer_class(self.vocab_file ) lowerCamelCase__ : int = tokenizer.tokenize("こんにちは、世界。\nこんばんは、世界。" ) self.assertListEqual(lowerCAmelCase__ , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.tokenizer_class(self.vocab_file , word_tokenizer_type="mecab" ) self.assertIsNotNone(lowerCAmelCase__ ) lowerCamelCase__ : int = "こんにちは、世界。\nこんばんは、世界。" lowerCamelCase__ : Dict = tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) lowerCamelCase__ : Dict = os.path.join(self.tmpdirname , "tokenizer.bin" ) with open(lowerCAmelCase__ , "wb" ) as handle: pickle.dump(lowerCAmelCase__ , lowerCAmelCase__ ) with open(lowerCAmelCase__ , "rb" ) as handle: lowerCamelCase__ : Any = pickle.load(lowerCAmelCase__ ) lowerCamelCase__ : Any = tokenizer_new.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : List[str] = MecabTokenizer(mecab_dic="ipadic" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def lowerCAmelCase ( self : int ): '''simple docstring''' try: lowerCamelCase__ : List[Any] = MecabTokenizer(mecab_dic="unidic_lite" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def lowerCAmelCase ( self : Any ): '''simple docstring''' try: lowerCamelCase__ : List[Any] = MecabTokenizer(mecab_dic="unidic" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : str = MecabTokenizer(do_lower_case=lowerCAmelCase__ , mecab_dic="ipadic" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iphone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' try: lowerCamelCase__ : Any = MecabTokenizer( do_lower_case=lowerCAmelCase__ , normalize_text=lowerCAmelCase__ , mecab_option="-d /usr/local/lib/mecab/dic/jumandic" ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れた", "\u3000", "。"] , ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' lowerCamelCase__ : List[str] = MecabTokenizer(normalize_text=lowerCAmelCase__ , mecab_dic="ipadic" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", " ", "。"] , ) @require_sudachi def lowerCAmelCase ( self : int ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.tokenizer_class(self.vocab_file , word_tokenizer_type="sudachi" ) self.assertIsNotNone(lowerCAmelCase__ ) lowerCamelCase__ : Optional[Any] = "こんにちは、世界。\nこんばんは、世界。" lowerCamelCase__ : str = tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) lowerCamelCase__ : Union[str, Any] = os.path.join(self.tmpdirname , "tokenizer.bin" ) with open(lowerCAmelCase__ , "wb" ) as handle: pickle.dump(lowerCAmelCase__ , lowerCAmelCase__ ) with open(lowerCAmelCase__ , "rb" ) as handle: lowerCamelCase__ : Union[str, Any] = pickle.load(lowerCAmelCase__ ) lowerCamelCase__ : Optional[Any] = tokenizer_new.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @require_sudachi def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' lowerCamelCase__ : Dict = SudachiTokenizer(sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , [" ", "\t", "アップル", "ストア", "で", "iPhone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", " ", "。", " ", " "] , ) @require_sudachi def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : Tuple = SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="A" ) self.assertListEqual(tokenizer.tokenize("外国人参政権" ) , ["外国", "人", "参政", "権"] ) @require_sudachi def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="B" ) self.assertListEqual(tokenizer.tokenize("外国人参政権" ) , ["外国人", "参政権"] ) @require_sudachi def lowerCAmelCase ( self : Tuple ): '''simple docstring''' lowerCamelCase__ : Optional[int] = SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="C" ) self.assertListEqual(tokenizer.tokenize("外国人参政権" ) , ["外国人参政権"] ) @require_sudachi def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = SudachiTokenizer(do_lower_case=lowerCAmelCase__ , sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , [" ", "\t", "アップル", "ストア", "で", "iphone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", " ", "。", " ", " "] , ) @require_sudachi def lowerCAmelCase ( self : str ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = SudachiTokenizer(normalize_text=lowerCAmelCase__ , sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , [" ", "\t", "アップル", "ストア", "で", "iPhone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", "\u3000", "。", " ", " "] , ) @require_sudachi def lowerCAmelCase ( self : Tuple ): '''simple docstring''' lowerCamelCase__ : List[Any] = SudachiTokenizer(trim_whitespace=lowerCAmelCase__ , sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) @require_jumanpp def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' lowerCamelCase__ : str = self.tokenizer_class(self.vocab_file , word_tokenizer_type="jumanpp" ) self.assertIsNotNone(lowerCAmelCase__ ) lowerCamelCase__ : Optional[Any] = "こんにちは、世界。\nこんばんは、世界。" lowerCamelCase__ : Tuple = tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) lowerCamelCase__ : List[str] = os.path.join(self.tmpdirname , "tokenizer.bin" ) with open(lowerCAmelCase__ , "wb" ) as handle: pickle.dump(lowerCAmelCase__ , lowerCAmelCase__ ) with open(lowerCAmelCase__ , "rb" ) as handle: lowerCamelCase__ : Any = pickle.load(lowerCAmelCase__ ) lowerCamelCase__ : List[Any] = tokenizer_new.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @require_jumanpp def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' lowerCamelCase__ : List[str] = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , ) @require_jumanpp def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' lowerCamelCase__ : int = JumanppTokenizer(do_lower_case=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iphone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , ) @require_jumanpp def lowerCAmelCase ( self : Tuple ): '''simple docstring''' lowerCamelCase__ : str = JumanppTokenizer(normalize_text=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["ア", "ッ", "フ", "゚", "ル", "ストア", "で", "iPhone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , ) @require_jumanpp def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Any = JumanppTokenizer(trim_whitespace=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れた", "。"] , ) @require_jumanpp def lowerCAmelCase ( self : str ): '''simple docstring''' lowerCamelCase__ : List[str] = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize("ありがとうございますm(_ _)m見つけるのが大変です。" ) , ["ありがとう", "ございます", "m(_ _)m", "見つける", "の", "が", "大変です", "。"] , ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : List[str] = ["[UNK]", "[CLS]", "[SEP]", "こんにちは", "こん", "にちは", "ばんは", "##こん", "##にちは", "##ばんは"] lowerCamelCase__ : Dict = {} for i, token in enumerate(lowerCAmelCase__ ): lowerCamelCase__ : Optional[Any] = i lowerCamelCase__ : Dict = WordpieceTokenizer(vocab=lowerCAmelCase__ , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("こんにちは" ) , ["こんにちは"] ) self.assertListEqual(tokenizer.tokenize("こんばんは" ) , ["こん", "##ばんは"] ) self.assertListEqual(tokenizer.tokenize("こんばんは こんばんにちは こんにちは" ) , ["こん", "##ばんは", "[UNK]", "こんにちは"] ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__ : Tuple = BertJapaneseTokenizer.from_pretrained("nlp-waseda/roberta-base-japanese-with-auto-jumanpp" ) lowerCamelCase__ : Optional[Any] = tokenizer.subword_tokenizer lowerCamelCase__ : List[Any] = subword_tokenizer.tokenize("国境 の 長い トンネル を 抜ける と 雪国 であった 。" ) self.assertListEqual(lowerCAmelCase__ , ["▁国境", "▁の", "▁長い", "▁トンネル", "▁を", "▁抜ける", "▁と", "▁雪", "国", "▁であった", "▁。"] ) lowerCamelCase__ : List[Any] = subword_tokenizer.tokenize("こんばんは こんばん にち は こんにちは" ) self.assertListEqual(lowerCAmelCase__ , ["▁こん", "ばん", "は", "▁こん", "ばん", "▁に", "ち", "▁は", "▁こんにちは"] ) def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.tokenizer_class.from_pretrained("cl-tohoku/bert-base-japanese" ) lowerCamelCase__ : str = tokenizer.encode("ありがとう。" , add_special_tokens=lowerCAmelCase__ ) lowerCamelCase__ : List[Any] = tokenizer.encode("どういたしまして。" , add_special_tokens=lowerCAmelCase__ ) lowerCamelCase__ : int = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ ) lowerCamelCase__ : List[str] = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ , lowerCAmelCase__ ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class _lowercase ( _UpperCAmelCase , unittest.TestCase): """simple docstring""" A__ = BertJapaneseTokenizer A__ = False def lowerCAmelCase ( self : Dict ): '''simple docstring''' super().setUp() lowerCamelCase__ : Optional[Any] = ["[UNK]", "[CLS]", "[SEP]", "こ", "ん", "に", "ち", "は", "ば", "世", "界", "、", "。"] lowerCamelCase__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def lowerCAmelCase ( self : Optional[int] , **__lowerCamelCase : Any ): '''simple docstring''' return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type="character" , **lowerCAmelCase__ ) def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Dict ): '''simple docstring''' lowerCamelCase__ : str = "こんにちは、世界。 \nこんばんは、世界。" lowerCamelCase__ : Dict = "こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。" return input_text, output_text def lowerCAmelCase ( self : Dict ): '''simple docstring''' pass # TODO add if relevant def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' pass # TODO add if relevant def lowerCAmelCase ( self : int ): '''simple docstring''' pass # TODO add if relevant def lowerCAmelCase ( self : str ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.tokenizer_class(self.vocab_file , subword_tokenizer_type="character" ) lowerCamelCase__ : int = tokenizer.tokenize("こんにちは、世界。 \nこんばんは、世界。" ) self.assertListEqual( lowerCAmelCase__ , ["こ", "ん", "に", "ち", "は", "、", "世", "界", "。", "こ", "ん", "ば", "ん", "は", "、", "世", "界", "。"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : Any = ["[UNK]", "[CLS]", "[SEP]", "こ", "ん", "に", "ち", "は", "ば", "世", "界", "、", "。"] lowerCamelCase__ : Optional[int] = {} for i, token in enumerate(lowerCAmelCase__ ): lowerCamelCase__ : Optional[int] = i lowerCamelCase__ : int = CharacterTokenizer(vocab=lowerCAmelCase__ , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("こんにちは" ) , ["こ", "ん", "に", "ち", "は"] ) self.assertListEqual(tokenizer.tokenize("こんにちほ" ) , ["こ", "ん", "に", "ち", "[UNK]"] ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : Tuple = self.tokenizer_class.from_pretrained("cl-tohoku/bert-base-japanese-char" ) lowerCamelCase__ : Dict = tokenizer.encode("ありがとう。" , add_special_tokens=lowerCAmelCase__ ) lowerCamelCase__ : Union[str, Any] = tokenizer.encode("どういたしまして。" , add_special_tokens=lowerCAmelCase__ ) lowerCamelCase__ : List[Any] = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ ) lowerCamelCase__ : Dict = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ , lowerCAmelCase__ ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class _lowercase ( unittest.TestCase): """simple docstring""" def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : Dict = "cl-tohoku/bert-base-japanese" lowerCamelCase__ : List[Any] = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) class _lowercase ( unittest.TestCase): """simple docstring""" def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' lowerCamelCase__ : Dict = "cl-tohoku/bert-base-japanese" with self.assertLogs("transformers" , level="WARNING" ) as cm: BertTokenizer.from_pretrained(lowerCAmelCase__ ) self.assertTrue( cm.records[0].message.startswith( "The tokenizer class you load from this checkpoint is not the same type as the class this function" " is called from." ) ) lowerCamelCase__ : Tuple = "bert-base-cased" with self.assertLogs("transformers" , level="WARNING" ) as cm: BertJapaneseTokenizer.from_pretrained(lowerCAmelCase__ ) self.assertTrue( cm.records[0].message.startswith( "The tokenizer class you load from this checkpoint is not the same type as the class this function" " is called from." ) )
184
import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __a : str = 1_6 __a : str = 3_2 def UpperCAmelCase ( lowercase ): """simple docstring""" return int(x / 2**20 ) class _UpperCamelCase : """simple docstring""" def __enter__( self ) -> str: '''simple docstring''' gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero __lowercase = torch.cuda.memory_allocated() return self def __exit__( self , *lowerCAmelCase__ ) -> int: '''simple docstring''' gc.collect() torch.cuda.empty_cache() __lowercase = torch.cuda.memory_allocated() __lowercase = torch.cuda.max_memory_allocated() __lowercase = bamb(self.end - self.begin ) __lowercase = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def UpperCAmelCase ( lowercase , lowercase = 16 , lowercase = "bert-base-cased" , lowercase = 320 , lowercase = 160 , ): """simple docstring""" __lowercase = AutoTokenizer.from_pretrained(lowercase ) __lowercase = load_dataset( '''glue''' , '''mrpc''' , split={'''train''': F"train[:{n_train}]", '''validation''': F"validation[:{n_val}]"} ) def tokenize_function(lowercase ): # max_length=None => use the model max length (it's actually the default) __lowercase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowercase , max_length=lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __lowercase = datasets.map( lowercase , batched=lowercase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=lowercase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowercase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowercase , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(lowercase , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. __lowercase = DataLoader( tokenized_datasets['''train'''] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase ) __lowercase = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase ) return train_dataloader, eval_dataloader def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" __lowercase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowercase = config['''lr'''] __lowercase = int(config['''num_epochs'''] ) __lowercase = int(config['''seed'''] ) __lowercase = int(config['''batch_size'''] ) __lowercase = args.model_name_or_path set_seed(lowercase ) __lowercase , __lowercase = get_dataloaders(lowercase , lowercase , lowercase , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowercase = AutoModelForSequenceClassification.from_pretrained(lowercase , return_dict=lowercase ) # Instantiate optimizer __lowercase = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __lowercase = optimizer_cls(params=model.parameters() , lr=lowercase ) if accelerator.state.deepspeed_plugin is not None: __lowercase = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: __lowercase = 1 __lowercase = (len(lowercase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __lowercase = get_linear_schedule_with_warmup( optimizer=lowercase , num_warmup_steps=0 , num_training_steps=lowercase , ) else: __lowercase = DummyScheduler(lowercase , total_num_steps=lowercase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = accelerator.prepare( lowercase , lowercase , lowercase , lowercase , lowercase ) # We need to keep track of how many total steps we have iterated over __lowercase = 0 # We also need to keep track of the stating epoch so files are named properly __lowercase = 0 # Now we train the model __lowercase = {} for epoch in range(lowercase , lowercase ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(lowercase ): __lowercase = model(**lowercase ) __lowercase = outputs.loss __lowercase = loss / gradient_accumulation_steps accelerator.backward(lowercase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print('''Memory before entering the train : {}'''.format(bamb(tracemalloc.begin ) ) ) accelerator.print('''Memory consumed at the end of the train (end-begin): {}'''.format(tracemalloc.used ) ) accelerator.print('''Peak Memory consumed during the train (max-begin): {}'''.format(tracemalloc.peaked ) ) accelerator.print( '''Total Peak Memory consumed during the train (max): {}'''.format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) __lowercase = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[F"epoch-{epoch}"] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , '''peak_memory_utilization.json''' ) , '''w''' ) as f: json.dump(lowercase , lowercase ) def UpperCAmelCase ( ): """simple docstring""" __lowercase = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=lowercase , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=lowercase , ) parser.add_argument( '''--output_dir''' , type=lowercase , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--peak_memory_upper_bound''' , type=lowercase , default=lowercase , help='''The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.''' , ) parser.add_argument( '''--n_train''' , type=lowercase , default=320 , help='''Number of training examples to use.''' , ) parser.add_argument( '''--n_val''' , type=lowercase , default=160 , help='''Number of validation examples to use.''' , ) parser.add_argument( '''--num_epochs''' , type=lowercase , default=1 , help='''Number of train epochs.''' , ) __lowercase = parser.parse_args() __lowercase = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(lowercase , lowercase ) if __name__ == "__main__": main()
210
0
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class A__ ( snake_case__ ): """simple docstring""" __magic_name__ = 'Speech2TextFeatureExtractor' __magic_name__ = 'Speech2TextTokenizer' def __init__( self , __snake_case , __snake_case ): super().__init__(__snake_case , __snake_case ) snake_case = self.feature_extractor snake_case = False def __call__( self , *__snake_case , **__snake_case ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__snake_case , **__snake_case ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) snake_case = kwargs.pop('''raw_speech''' ) else: snake_case = kwargs.pop('''audio''' , __snake_case ) snake_case = kwargs.pop('''sampling_rate''' , __snake_case ) snake_case = kwargs.pop('''text''' , __snake_case ) if len(__snake_case ) > 0: snake_case = args[0] snake_case = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: snake_case = self.feature_extractor(__snake_case , *__snake_case , sampling_rate=__snake_case , **__snake_case ) if text is not None: snake_case = self.tokenizer(__snake_case , **__snake_case ) if text is None: return inputs elif audio is None: return encodings else: snake_case = encodings['''input_ids'''] return inputs def a_ ( self , *__snake_case , **__snake_case ): return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def a_ ( self , *__snake_case , **__snake_case ): return self.tokenizer.decode(*__snake_case , **__snake_case ) @contextmanager def a_ ( self ): warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) snake_case = True snake_case = self.tokenizer yield snake_case = self.feature_extractor snake_case = False
213
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Any = { "facebook/detr-resnet-50": "https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json", # See all DETR models at https://huggingface.co/models?filter=detr } class A__ ( snake_case__ ): """simple docstring""" __magic_name__ = 'detr' __magic_name__ = ['past_key_values'] __magic_name__ = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , __snake_case=True , __snake_case=None , __snake_case=3 , __snake_case=1_0_0 , __snake_case=6 , __snake_case=2_0_4_8 , __snake_case=8 , __snake_case=6 , __snake_case=2_0_4_8 , __snake_case=8 , __snake_case=0.0 , __snake_case=0.0 , __snake_case=True , __snake_case="relu" , __snake_case=2_5_6 , __snake_case=0.1 , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.02 , __snake_case=1.0 , __snake_case=False , __snake_case="sine" , __snake_case="resnet50" , __snake_case=True , __snake_case=False , __snake_case=1 , __snake_case=5 , __snake_case=2 , __snake_case=1 , __snake_case=1 , __snake_case=5 , __snake_case=2 , __snake_case=0.1 , **__snake_case , ): if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) snake_case = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(__snake_case , __snake_case ): snake_case = backbone_config.get('''model_type''' ) snake_case = CONFIG_MAPPING[backbone_model_type] snake_case = config_class.from_dict(__snake_case ) # set timm attributes to None snake_case , snake_case , snake_case = None, None, None snake_case = use_timm_backbone snake_case = backbone_config snake_case = num_channels snake_case = num_queries snake_case = d_model snake_case = encoder_ffn_dim snake_case = encoder_layers snake_case = encoder_attention_heads snake_case = decoder_ffn_dim snake_case = decoder_layers snake_case = decoder_attention_heads snake_case = dropout snake_case = attention_dropout snake_case = activation_dropout snake_case = activation_function snake_case = init_std snake_case = init_xavier_std snake_case = encoder_layerdrop snake_case = decoder_layerdrop snake_case = encoder_layers snake_case = auxiliary_loss snake_case = position_embedding_type snake_case = backbone snake_case = use_pretrained_backbone snake_case = dilation # Hungarian matcher snake_case = class_cost snake_case = bbox_cost snake_case = giou_cost # Loss coefficients snake_case = mask_loss_coefficient snake_case = dice_loss_coefficient snake_case = bbox_loss_coefficient snake_case = giou_loss_coefficient snake_case = eos_coefficient super().__init__(is_encoder_decoder=__snake_case , **__snake_case ) @property def a_ ( self ): return self.encoder_attention_heads @property def a_ ( self ): return self.d_model @classmethod def a_ ( cls , __snake_case , **__snake_case ): return cls(backbone_config=__snake_case , **__snake_case ) def a_ ( self ): snake_case = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: snake_case = self.backbone_config.to_dict() snake_case = self.__class__.model_type return output class A__ ( snake_case__ ): """simple docstring""" __magic_name__ = version.parse('1.11' ) @property def a_ ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def a_ ( self ): return 1E-5 @property def a_ ( self ): return 1_2
213
1
from ....configuration_utils import PretrainedConfig from ....utils import logging a_ = logging.get_logger(__name__) a_ = { '''CarlCochet/trajectory-transformer-halfcheetah-medium-v2''': ( '''https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json''' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class _lowercase ( _a ): lowercase = """trajectory_transformer""" lowercase = ["""past_key_values"""] lowercase = { """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Union[str, Any] , snake_case : Any=1_0_0 , snake_case : str=5 , snake_case : str=1 , snake_case : Optional[int]=1 , snake_case : int=2_4_9 , snake_case : str=6 , snake_case : Dict=1_7 , snake_case : Optional[Any]=2_5 , snake_case : List[str]=4 , snake_case : str=4 , snake_case : Tuple=1_2_8 , snake_case : Dict=0.1 , snake_case : str=0.1 , snake_case : Any=0.1 , snake_case : int=0.0006 , snake_case : List[str]=5_1_2 , snake_case : str=0.02 , snake_case : Any=1e-12 , snake_case : int=1 , snake_case : Optional[Any]=True , snake_case : Tuple=1 , snake_case : int=5_0_2_5_6 , snake_case : Union[str, Any]=5_0_2_5_6 , **snake_case : Dict , ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : Dict = vocab_size UpperCamelCase_ : int = action_weight UpperCamelCase_ : Tuple = reward_weight UpperCamelCase_ : str = value_weight UpperCamelCase_ : Tuple = max_position_embeddings UpperCamelCase_ : Tuple = block_size UpperCamelCase_ : Optional[int] = action_dim UpperCamelCase_ : int = observation_dim UpperCamelCase_ : List[str] = transition_dim UpperCamelCase_ : List[Any] = learning_rate UpperCamelCase_ : Optional[Any] = n_layer UpperCamelCase_ : Any = n_head UpperCamelCase_ : List[str] = n_embd UpperCamelCase_ : Any = embd_pdrop UpperCamelCase_ : str = attn_pdrop UpperCamelCase_ : Union[str, Any] = resid_pdrop UpperCamelCase_ : Optional[Any] = initializer_range UpperCamelCase_ : List[Any] = layer_norm_eps UpperCamelCase_ : Optional[int] = kaiming_initializer_range UpperCamelCase_ : Tuple = use_cache super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
175
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
38
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Any = '''facebook/bart-large-mnli''' __UpperCamelCase : Any = ( '''This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ''' '''should be the text to classify, and `labels`, which should be the list of labels to use for classification. ''' '''It returns the most likely label in the list of provided `labels` for the input text.''' ) __UpperCamelCase : Any = '''text_classifier''' __UpperCamelCase : int = AutoTokenizer __UpperCamelCase : Union[str, Any] = AutoModelForSequenceClassification __UpperCamelCase : Tuple = ['''text''', ['''text''']] __UpperCamelCase : int = ['''text'''] def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" super().setup() _A: int = self.model.config _A: str = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail''' ): _A: int = int(lowerCAmelCase_ ) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str] ): """simple docstring""" _A: Any = labels return self.pre_processor( [text] * len(lowerCAmelCase_ ) , [F"""This example is {label}""" for label in labels] , return_tensors='''pt''' , padding='''max_length''' , ) def __magic_name__ ( self : Any , lowerCAmelCase_ : Any ): """simple docstring""" _A: Optional[int] = outputs.logits _A: Tuple = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
301
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE__ ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : str = field(default='''automatic-speech-recognition''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) __UpperCamelCase : ClassVar[Features] = Features({'''audio''': Audio()} ) __UpperCamelCase : ClassVar[Features] = Features({'''transcription''': Value('''string''' )} ) __UpperCamelCase : str = "audio" __UpperCamelCase : str = "transcription" def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" if self.audio_column not in features: raise ValueError(F"""Column {self.audio_column} is not present in features.""" ) if not isinstance(features[self.audio_column] , lowerCAmelCase_ ): raise ValueError(F"""Column {self.audio_column} is not an Audio type.""" ) _A: Optional[int] = copy.deepcopy(self ) _A: str = self.input_schema.copy() _A: List[str] = features[self.audio_column] _A: Dict = input_schema return task_template @property def __magic_name__ ( self : str ): """simple docstring""" return {self.audio_column: "audio", self.transcription_column: "transcription"}
301
1
"""simple docstring""" import math def lowercase ( _snake_case : float , _snake_case : float ) ->float: """simple docstring""" if initial_intensity < 0: raise ValueError('''The value of intensity cannot be negative''' ) # handling of negative values of initial intensity if angle < 0 or angle > 360: raise ValueError('''In Malus Law, the angle is in the range 0-360 degrees''' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(_snake_case ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name="""malus_law""")
102
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _UpperCAmelCase ( __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =ShapEPipeline lowerCamelCase__ =['prompt'] lowerCamelCase__ =['prompt'] lowerCamelCase__ =[ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] lowerCamelCase__ =False @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return 32 @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return 32 @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return 8 @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' torch.manual_seed(0 ) __snake_case : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModelWithProjection(a_ ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' torch.manual_seed(0 ) __snake_case : Optional[int] = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } __snake_case : Optional[int] = PriorTransformer(**a_ ) return model @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' torch.manual_seed(0 ) __snake_case : Optional[int] = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } __snake_case : List[Any] = ShapERenderer(**a_ ) return model def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.dummy_prior __snake_case : str = self.dummy_text_encoder __snake_case : str = self.dummy_tokenizer __snake_case : Tuple = self.dummy_renderer __snake_case : int = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=10_24 , prediction_type='''sample''' , use_karras_sigmas=a_ , clip_sample=a_ , clip_sample_range=1.0 , ) __snake_case : Union[str, Any] = { '''prior''': prior, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''renderer''': renderer, '''scheduler''': scheduler, } return components def SCREAMING_SNAKE_CASE (self , a_ , a_=0 ): '''simple docstring''' if str(a_ ).startswith('''mps''' ): __snake_case : Tuple = torch.manual_seed(a_ ) else: __snake_case : Union[str, Any] = torch.Generator(device=a_ ).manual_seed(a_ ) __snake_case : Optional[int] = { '''prompt''': '''horse''', '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = '''cpu''' __snake_case : str = self.get_dummy_components() __snake_case : List[Any] = self.pipeline_class(**a_ ) __snake_case : str = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case : Optional[Any] = pipe(**self.get_dummy_inputs(a_ ) ) __snake_case : List[str] = output.images[0] __snake_case : List[str] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __snake_case : List[Any] = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = torch_device == '''cpu''' __snake_case : Tuple = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=a_ , relax_max_difference=a_ , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.get_dummy_components() __snake_case : int = self.pipeline_class(**a_ ) __snake_case : int = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case : Optional[Any] = 1 __snake_case : List[Any] = 2 __snake_case : int = self.get_dummy_inputs(a_ ) for key in inputs.keys(): if key in self.batch_params: __snake_case : Dict = batch_size * [inputs[key]] __snake_case : Union[str, Any] = pipe(**a_ , num_images_per_prompt=a_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_np_out.npy''' ) __snake_case : Optional[Any] = ShapEPipeline.from_pretrained('''openai/shap-e''' ) __snake_case : Optional[int] = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case : Optional[Any] = torch.Generator(device=a_ ).manual_seed(0 ) __snake_case : str = pipe( '''a shark''' , generator=a_ , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(a_ , a_ )
102
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase :Optional[int] = logging.get_logger(__name__) lowerCAmelCase :Any = { """uclanlp/visualbert-vqa""": """https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json""", """uclanlp/visualbert-vqa-pre""": """https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json""", """uclanlp/visualbert-vqa-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json""" ), """uclanlp/visualbert-vcr""": """https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json""", """uclanlp/visualbert-vcr-pre""": """https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json""", """uclanlp/visualbert-vcr-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json""" ), """uclanlp/visualbert-nlvr2""": """https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json""", """uclanlp/visualbert-nlvr2-pre""": """https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json""", """uclanlp/visualbert-nlvr2-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json""" ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class _lowerCamelCase ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' A_ : List[str] = """visual_bert""" def __init__( self : Tuple , _A : Optional[Any]=30522 , _A : str=768 , _A : Any=512 , _A : Optional[int]=12 , _A : Any=12 , _A : Optional[Any]=3072 , _A : Optional[Any]="gelu" , _A : Tuple=0.1 , _A : Optional[Any]=0.1 , _A : Dict=512 , _A : List[Any]=2 , _A : Union[str, Any]=0.02 , _A : Dict=1E-12 , _A : Optional[int]=False , _A : Union[str, Any]=True , _A : str=1 , _A : str=0 , _A : Optional[Any]=2 , **_A : Dict , ) -> int: super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) __magic_name__ : Dict = vocab_size __magic_name__ : Dict = max_position_embeddings __magic_name__ : Union[str, Any] = hidden_size __magic_name__ : Any = visual_embedding_dim __magic_name__ : int = num_hidden_layers __magic_name__ : Dict = num_attention_heads __magic_name__ : List[str] = intermediate_size __magic_name__ : str = hidden_act __magic_name__ : Union[str, Any] = hidden_dropout_prob __magic_name__ : Tuple = attention_probs_dropout_prob __magic_name__ : Any = initializer_range __magic_name__ : Tuple = type_vocab_size __magic_name__ : str = layer_norm_eps __magic_name__ : int = bypass_transformer __magic_name__ : Union[str, Any] = special_visual_initialize
353
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() lowerCAmelCase :str = logging.get_logger(__name__) lowerCAmelCase :str = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''adapter_layer''': '''encoder.layers.*.adapter_layer''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', '''pooling_layer.linear''': '''projector''', '''pooling_layer.projection''': '''classifier''', } lowerCAmelCase :List[str] = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', '''projector''', '''classifier''', ] def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" __magic_name__ : Any = {} with open(lowerCAmelCase , 'r' ) as file: for line_number, line in enumerate(lowerCAmelCase ): __magic_name__ : Optional[Any] = line.strip() if line: __magic_name__ : Optional[int] = line.split() __magic_name__ : Any = line_number __magic_name__ : Union[str, Any] = words[0] __magic_name__ : Dict = value return result def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple ): """simple docstring""" for attribute in key.split('.' ): __magic_name__ : Optional[Any] = getattr(lowerCAmelCase , lowerCAmelCase ) __magic_name__ : Tuple = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(lowerCAmelCase ): __magic_name__ : Optional[Any] = PARAM_MAPPING[full_name.split('.' )[-1]] __magic_name__ : List[Any] = 'param' if weight_type is not None and weight_type != "param": __magic_name__ : List[str] = getattr(lowerCAmelCase , lowerCAmelCase ).shape elif weight_type is not None and weight_type == "param": __magic_name__ : Tuple = hf_pointer for attribute in hf_param_name.split('.' ): __magic_name__ : str = getattr(lowerCAmelCase , lowerCAmelCase ) __magic_name__ : Union[str, Any] = shape_pointer.shape # let's reduce dimension __magic_name__ : int = value[0] else: __magic_name__ : Optional[Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": __magic_name__ : Optional[Any] = value elif weight_type == "weight_g": __magic_name__ : List[str] = value elif weight_type == "weight_v": __magic_name__ : Optional[int] = value elif weight_type == "bias": __magic_name__ : Optional[Any] = value elif weight_type == "param": for attribute in hf_param_name.split('.' ): __magic_name__ : Optional[int] = getattr(lowerCAmelCase , lowerCAmelCase ) __magic_name__ : List[str] = value else: __magic_name__ : int = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : str , lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : str ): """simple docstring""" __magic_name__ : Optional[int] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(lowerCAmelCase ): __magic_name__ : List[Any] = PARAM_MAPPING[full_name.split('.' )[-1]] __magic_name__ : Dict = 'param' if weight_type is not None and weight_type != "param": __magic_name__ : Union[str, Any] = '.'.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __magic_name__ : Optional[Any] = '.'.join([key, hf_param_name] ) else: __magic_name__ : int = key __magic_name__ : int = value if 'lm_head' in full_key else value[0] lowerCAmelCase :int = { '''W_a''': '''linear_1.weight''', '''W_b''': '''linear_2.weight''', '''b_a''': '''linear_1.bias''', '''b_b''': '''linear_2.bias''', '''ln_W''': '''norm.weight''', '''ln_b''': '''norm.bias''', } def lowerCamelCase ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple=None , lowerCAmelCase : Tuple=None ): """simple docstring""" __magic_name__ : Dict = False for key, mapped_key in MAPPING.items(): __magic_name__ : int = 'wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __magic_name__ : Union[str, Any] = True if "*" in mapped_key: __magic_name__ : List[Any] = name.split(lowerCAmelCase )[0].split('.' )[-2] __magic_name__ : List[str] = mapped_key.replace('*' , lowerCAmelCase ) if "weight_g" in name: __magic_name__ : str = 'weight_g' elif "weight_v" in name: __magic_name__ : Optional[int] = 'weight_v' elif "bias" in name: __magic_name__ : int = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj __magic_name__ : List[str] = 'weight' else: __magic_name__ : Any = None if hf_dict is not None: rename_dict(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) else: set_recursively(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return is_used return is_used def lowerCamelCase ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict ): """simple docstring""" __magic_name__ : Union[str, Any] = [] __magic_name__ : Any = fairseq_model.state_dict() __magic_name__ : Optional[int] = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __magic_name__ : Optional[Any] = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , hf_model.config.feat_extract_norm == 'group' , ) __magic_name__ : Optional[int] = True else: __magic_name__ : str = load_wavaveca_layer(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) if not is_used: unused_weights.append(lowerCAmelCase ) logger.warning(f'Unused weights: {unused_weights}' ) def lowerCamelCase ( lowerCAmelCase : List[str] , lowerCAmelCase : Dict , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : int ): """simple docstring""" __magic_name__ : Any = full_name.split('conv_layers.' )[-1] __magic_name__ : int = name.split('.' ) __magic_name__ : Any = int(items[0] ) __magic_name__ : Any = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __magic_name__ : Union[str, Any] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __magic_name__ : str = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) __magic_name__ : Optional[int] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) __magic_name__ : Dict = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(lowerCAmelCase ) @torch.no_grad() def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict=None , lowerCAmelCase : Any=None , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Any=False ): """simple docstring""" if config_path is not None: __magic_name__ : int = WavaVecaConfig.from_pretrained(lowerCAmelCase ) else: __magic_name__ : List[str] = WavaVecaConfig() if is_seq_class: __magic_name__ : Any = read_txt_into_dict(lowerCAmelCase ) __magic_name__ : Optional[Any] = idalabel __magic_name__ : Union[str, Any] = WavaVecaForSequenceClassification(lowerCAmelCase ) __magic_name__ : Optional[int] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=lowerCAmelCase , return_attention_mask=lowerCAmelCase , ) feature_extractor.save_pretrained(lowerCAmelCase ) elif is_finetuned: if dict_path: __magic_name__ : str = Dictionary.load(lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __magic_name__ : Dict = target_dict.pad_index __magic_name__ : Union[str, Any] = target_dict.bos_index __magic_name__ : Union[str, Any] = target_dict.eos_index __magic_name__ : Union[str, Any] = len(target_dict.symbols ) __magic_name__ : Dict = os.path.join(lowerCAmelCase , 'vocab.json' ) if not os.path.isdir(lowerCAmelCase ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(lowerCAmelCase ) ) return os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) __magic_name__ : List[Any] = target_dict.indices # fairseq has the <pad> and <s> switched __magic_name__ : Any = 0 __magic_name__ : Optional[int] = 1 with open(lowerCAmelCase , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(lowerCAmelCase , lowerCAmelCase ) __magic_name__ : List[str] = WavaVecaCTCTokenizer( lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=lowerCAmelCase , ) __magic_name__ : Tuple = True if config.feat_extract_norm == 'layer' else False __magic_name__ : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=lowerCAmelCase , return_attention_mask=lowerCAmelCase , ) __magic_name__ : List[Any] = WavaVecaProcessor(feature_extractor=lowerCAmelCase , tokenizer=lowerCAmelCase ) processor.save_pretrained(lowerCAmelCase ) __magic_name__ : Dict = WavaVecaForCTC(lowerCAmelCase ) else: __magic_name__ : Tuple = WavaVecaForPreTraining(lowerCAmelCase ) if is_finetuned or is_seq_class: __magic_name__ , __magic_name__ , __magic_name__ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: __magic_name__ : Optional[Any] = argparse.Namespace(task='audio_pretraining' ) __magic_name__ : Dict = fairseq.tasks.setup_task(lowerCAmelCase ) __magic_name__ , __magic_name__ , __magic_name__ : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCAmelCase ) __magic_name__ : Any = model[0].eval() recursively_load_weights(lowerCAmelCase , lowerCAmelCase , not is_finetuned ) hf_wavavec.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": lowerCAmelCase :str = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) parser.add_argument( '''--is_seq_class''', action='''store_true''', help='''Whether the model to convert is a fine-tuned sequence classification model or not''', ) lowerCAmelCase :Dict = parser.parse_args() lowerCAmelCase :Tuple = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
275
0
'''simple docstring''' import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer snake_case_ : List[Any] = logging.get_logger(__name__) class lowercase__ ( lowercase ): lowercase__ = """AutoTokenizer""" lowercase__ = ["""tokenizer"""] lowercase__ = { """semantic_prompt""": 1, """coarse_prompt""": 2, """fine_prompt""": 2, } def __init__( self : List[str] ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : Tuple=None ): '''simple docstring''' super().__init__(lowerCamelCase__ ) _UpperCamelCase : Dict = speaker_embeddings @classmethod def UpperCamelCase_ ( cls : Union[str, Any] ,lowerCamelCase__ : int ,lowerCamelCase__ : str="speaker_embeddings_path.json" ,**lowerCamelCase__ : Optional[Any] ): '''simple docstring''' if speaker_embeddings_dict_path is not None: _UpperCamelCase : Optional[Any] = get_file_from_repo( lowerCamelCase__ ,lowerCamelCase__ ,subfolder=kwargs.pop('subfolder' ,lowerCamelCase__ ) ,cache_dir=kwargs.pop('cache_dir' ,lowerCamelCase__ ) ,force_download=kwargs.pop('force_download' ,lowerCamelCase__ ) ,proxies=kwargs.pop('proxies' ,lowerCamelCase__ ) ,resume_download=kwargs.pop('resume_download' ,lowerCamelCase__ ) ,local_files_only=kwargs.pop('local_files_only' ,lowerCamelCase__ ) ,use_auth_token=kwargs.pop('use_auth_token' ,lowerCamelCase__ ) ,revision=kwargs.pop('revision' ,lowerCamelCase__ ) ,) if speaker_embeddings_path is None: logger.warning( F'`{os.path.join(lowerCamelCase__ ,lowerCamelCase__ )}` does not exists\n , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json\n dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.' ) _UpperCamelCase : Union[str, Any] = None else: with open(lowerCamelCase__ ) as speaker_embeddings_json: _UpperCamelCase : Optional[int] = json.load(lowerCamelCase__ ) else: _UpperCamelCase : Tuple = None _UpperCamelCase : Tuple = AutoTokenizer.from_pretrained(lowerCamelCase__ ,**lowerCamelCase__ ) return cls(tokenizer=lowerCamelCase__ ,speaker_embeddings=lowerCamelCase__ ) def UpperCamelCase_ ( self : Tuple ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : int="speaker_embeddings_path.json" ,lowerCamelCase__ : Dict="speaker_embeddings" ,lowerCamelCase__ : bool = False ,**lowerCamelCase__ : Tuple ,): '''simple docstring''' if self.speaker_embeddings is not None: os.makedirs(os.path.join(lowerCamelCase__ ,lowerCamelCase__ ,'v2' ) ,exist_ok=lowerCamelCase__ ) _UpperCamelCase : Tuple = {} _UpperCamelCase : Optional[Any] = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": _UpperCamelCase : Any = self._load_voice_preset(lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['repo_or_path'] ,lowerCamelCase__ ,F'{prompt_key}_{key}' ) ,voice_preset[key] ,allow_pickle=lowerCamelCase__ ,) _UpperCamelCase : List[str] = os.path.join(lowerCamelCase__ ,F'{prompt_key}_{key}.npy' ) _UpperCamelCase : str = tmp_dict with open(os.path.join(lowerCamelCase__ ,lowerCamelCase__ ) ,'w' ) as fp: json.dump(lowerCamelCase__ ,lowerCamelCase__ ) super().save_pretrained(lowerCamelCase__ ,lowerCamelCase__ ,**lowerCamelCase__ ) def UpperCamelCase_ ( self : Union[str, Any] ,lowerCamelCase__ : str = None ,**lowerCamelCase__ : Dict ): '''simple docstring''' _UpperCamelCase : Tuple = self.speaker_embeddings[voice_preset] _UpperCamelCase : Union[str, Any] = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F'Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].' ) _UpperCamelCase : Dict = get_file_from_repo( self.speaker_embeddings.get('repo_or_path' ,'/' ) ,voice_preset_paths[key] ,subfolder=kwargs.pop('subfolder' ,lowerCamelCase__ ) ,cache_dir=kwargs.pop('cache_dir' ,lowerCamelCase__ ) ,force_download=kwargs.pop('force_download' ,lowerCamelCase__ ) ,proxies=kwargs.pop('proxies' ,lowerCamelCase__ ) ,resume_download=kwargs.pop('resume_download' ,lowerCamelCase__ ) ,local_files_only=kwargs.pop('local_files_only' ,lowerCamelCase__ ) ,use_auth_token=kwargs.pop('use_auth_token' ,lowerCamelCase__ ) ,revision=kwargs.pop('revision' ,lowerCamelCase__ ) ,) if path is None: raise ValueError( F'`{os.path.join(self.speaker_embeddings.get("repo_or_path" ,"/" ) ,voice_preset_paths[key] )}` does not exists\n , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}\n embeddings.' ) _UpperCamelCase : List[str] = np.load(lowerCamelCase__ ) return voice_preset_dict def UpperCamelCase_ ( self : Any ,lowerCamelCase__ : Optional[dict] = None ): '''simple docstring''' for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F'Voice preset unrecognized, missing {key} as a key.' ) if not isinstance(voice_preset[key] ,np.ndarray ): raise ValueError(F'{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F'{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.' ) def __call__( self : Any ,lowerCamelCase__ : Optional[Any]=None ,lowerCamelCase__ : Union[str, Any]=None ,lowerCamelCase__ : Any="pt" ,lowerCamelCase__ : Dict=256 ,lowerCamelCase__ : int=False ,lowerCamelCase__ : int=True ,lowerCamelCase__ : List[str]=False ,**lowerCamelCase__ : Union[str, Any] ,): '''simple docstring''' if voice_preset is not None and not isinstance(lowerCamelCase__ ,lowerCamelCase__ ): if ( isinstance(lowerCamelCase__ ,lowerCamelCase__ ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): _UpperCamelCase : Optional[int] = self._load_voice_preset(lowerCamelCase__ ) else: if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) and not voice_preset.endswith('.npz' ): _UpperCamelCase : Tuple = voice_preset + '.npz' _UpperCamelCase : str = np.load(lowerCamelCase__ ) if voice_preset is not None: self._validate_voice_preset_dict(lowerCamelCase__ ,**lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = BatchFeature(data=lowerCamelCase__ ,tensor_type=lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = self.tokenizer( lowerCamelCase__ ,return_tensors=lowerCamelCase__ ,padding='max_length' ,max_length=lowerCamelCase__ ,return_attention_mask=lowerCamelCase__ ,return_token_type_ids=lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ,**lowerCamelCase__ ,) if voice_preset is not None: _UpperCamelCase : Optional[Any] = voice_preset return encoded_text
83
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class a_ : def __init__( self : Any , lowercase : Optional[int] , lowercase : List[Any]=13 , lowercase : int=10 , lowercase : str=3 , lowercase : List[Any]=2 , lowercase : Dict=2 , lowercase : List[str]=2 , lowercase : int=True , lowercase : List[Any]=True , lowercase : Union[str, Any]=32 , lowercase : Optional[int]=5 , lowercase : List[Any]=4 , lowercase : List[str]=37 , lowercase : Union[str, Any]="gelu" , lowercase : List[Any]=0.1 , lowercase : Any=0.1 , lowercase : Optional[Any]=10 , lowercase : Union[str, Any]=0.02 , lowercase : Optional[int]=0.9 , lowercase : List[str]=None , ): """simple docstring""" lowercase_ :Optional[int] = parent lowercase_ :str = batch_size lowercase_ :Optional[int] = image_size lowercase_ :Tuple = num_channels lowercase_ :Optional[Any] = patch_size lowercase_ :List[str] = tubelet_size lowercase_ :List[Any] = num_frames lowercase_ :Dict = is_training lowercase_ :Optional[int] = use_labels lowercase_ :Optional[int] = hidden_size lowercase_ :List[str] = num_hidden_layers lowercase_ :List[str] = num_attention_heads lowercase_ :int = intermediate_size lowercase_ :Any = hidden_act lowercase_ :Tuple = hidden_dropout_prob lowercase_ :str = attention_probs_dropout_prob lowercase_ :Any = type_sequence_label_size lowercase_ :int = initializer_range lowercase_ :Dict = mask_ratio lowercase_ :Optional[int] = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame lowercase_ :str = (image_size // patch_size) ** 2 lowercase_ :Union[str, Any] = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos lowercase_ :Optional[Any] = int(mask_ratio * self.seq_length ) def lowercase__ ( self : List[str] ): """simple docstring""" lowercase_ :Optional[Any] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) lowercase_ :Union[str, Any] = None if self.use_labels: lowercase_ :str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ :Optional[int] = self.get_config() return config, pixel_values, labels def lowercase__ ( self : List[str] ): """simple docstring""" return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase , initializer_range=self.initializer_range , ) def lowercase__ ( self : Optional[int] , lowercase : Dict , lowercase : Dict , lowercase : Optional[int] ): """simple docstring""" lowercase_ :int = VideoMAEModel(config=lowercase ) model.to(lowercase ) model.eval() lowercase_ :Optional[int] = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : str , lowercase : str , lowercase : List[str] , lowercase : int ): """simple docstring""" lowercase_ :Union[str, Any] = VideoMAEForPreTraining(lowercase ) model.to(lowercase ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowercase_ :Optional[int] = torch.ones((self.num_masks,) ) lowercase_ :List[str] = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) lowercase_ :Dict = mask.expand(self.batch_size , -1 ).bool() lowercase_ :str = model(lowercase , lowercase ) # model only returns predictions for masked patches lowercase_ :Any = mask.sum().item() lowercase_ :Tuple = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def lowercase__ ( self : Any ): """simple docstring""" lowercase_ :int = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ :Dict = config_and_inputs lowercase_ :Any = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class a_ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __A = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) __A = ( {"feature-extraction": VideoMAEModel, "video-classification": VideoMAEForVideoClassification} if is_torch_available() else {} ) __A = False __A = False __A = False __A = False def lowercase__ ( self : Dict ): """simple docstring""" lowercase_ :List[Any] = VideoMAEModelTester(self ) lowercase_ :Dict = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase , hidden_size=37 ) def lowercase__ ( self : List[Any] , lowercase : List[str] , lowercase : List[str] , lowercase : List[str]=False ): """simple docstring""" lowercase_ :Tuple = copy.deepcopy(lowercase ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowercase_ :Tuple = torch.ones((self.model_tester.num_masks,) ) lowercase_ :Tuple = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) lowercase_ :Optional[int] = mask.expand(self.model_tester.batch_size , -1 ).bool() lowercase_ :Dict = bool_masked_pos.to(lowercase ) if return_labels: if model_class in [ *get_values(lowercase ), ]: lowercase_ :Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase ) return inputs_dict def lowercase__ ( self : Tuple ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="VideoMAE does not use inputs_embeds" ) def lowercase__ ( self : Dict ): """simple docstring""" pass def lowercase__ ( self : Tuple ): """simple docstring""" lowercase_ , lowercase_ :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ :Dict = model_class(lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase_ :List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase , nn.Linear ) ) def lowercase__ ( self : Optional[int] ): """simple docstring""" lowercase_ , lowercase_ :Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ :Any = model_class(lowercase ) lowercase_ :Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ :List[str] = [*signature.parameters.keys()] lowercase_ :str = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowercase ) def lowercase__ ( self : Dict ): """simple docstring""" lowercase_ :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def lowercase__ ( self : Optional[int] ): """simple docstring""" lowercase_ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase ) @slow def lowercase__ ( self : Dict ): """simple docstring""" for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ :List[Any] = VideoMAEModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) def lowercase__ ( self : Union[str, Any] ): """simple docstring""" if not self.has_attentions: pass else: lowercase_ , lowercase_ :Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ :Union[str, Any] = True for model_class in self.all_model_classes: lowercase_ :Dict = self.model_tester.seq_length - self.model_tester.num_masks lowercase_ :Optional[Any] = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) lowercase_ :Union[str, Any] = True lowercase_ :List[Any] = False lowercase_ :Optional[int] = True lowercase_ :Union[str, Any] = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): lowercase_ :List[Any] = model(**self._prepare_for_class(lowercase , lowercase ) ) lowercase_ :str = outputs.attentions self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase_ :Union[str, Any] = True lowercase_ :Optional[Any] = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): lowercase_ :Optional[Any] = model(**self._prepare_for_class(lowercase , lowercase ) ) lowercase_ :Union[str, Any] = outputs.attentions self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowercase_ :List[str] = len(lowercase ) # Check attention is always last and order is fine lowercase_ :Optional[Any] = True lowercase_ :Dict = True lowercase_ :Dict = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): lowercase_ :List[Any] = model(**self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(out_len + 1 , len(lowercase ) ) lowercase_ :int = outputs.attentions self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def lowercase__ ( self : int ): """simple docstring""" def check_hidden_states_output(lowercase : Union[str, Any] , lowercase : Dict , lowercase : Any ): lowercase_ :Any = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): lowercase_ :Optional[int] = model(**self._prepare_for_class(lowercase , lowercase ) ) lowercase_ :Optional[int] = outputs.hidden_states lowercase_ :Any = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowercase ) , lowercase ) lowercase_ :List[str] = self.model_tester.seq_length - self.model_tester.num_masks lowercase_ :List[Any] = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowercase_ , lowercase_ :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ :Optional[int] = True check_hidden_states_output(lowercase , lowercase , lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ :List[Any] = True check_hidden_states_output(lowercase , lowercase , lowercase ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowercase__ ( self : List[str] ): """simple docstring""" pass def UpperCAmelCase_ ( ): lowercase_ :Dict = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" ,filename="eating_spaghetti.npy" ,repo_type="dataset" ) lowercase_ :Optional[Any] = np.load(__lowerCamelCase ) return list(__lowerCamelCase ) @require_torch @require_vision class a_ ( unittest.TestCase ): @cached_property def lowercase__ ( self : Any ): """simple docstring""" return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowercase__ ( self : Optional[int] ): """simple docstring""" lowercase_ :Union[str, Any] = VideoMAEForVideoClassification.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics" ).to( lowercase ) lowercase_ :List[str] = self.default_image_processor lowercase_ :List[str] = prepare_video() lowercase_ :int = image_processor(lowercase , return_tensors="pt" ).to(lowercase ) # forward pass with torch.no_grad(): lowercase_ :Dict = model(**lowercase ) # verify the logits lowercase_ :Dict = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , lowercase ) lowercase_ :int = torch.tensor([0.36_69, -0.06_88, -0.24_21] ).to(lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase , atol=1e-4 ) ) @slow def lowercase__ ( self : str ): """simple docstring""" lowercase_ :List[Any] = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short" ).to(lowercase ) lowercase_ :Dict = self.default_image_processor lowercase_ :Union[str, Any] = prepare_video() lowercase_ :List[str] = image_processor(lowercase , return_tensors="pt" ).to(lowercase ) # add boolean mask, indicating which patches to mask lowercase_ :int = hf_hub_download(repo_id="hf-internal-testing/bool-masked-pos" , filename="bool_masked_pos.pt" ) lowercase_ :List[str] = torch.load(lowercase ) # forward pass with torch.no_grad(): lowercase_ :List[Any] = model(**lowercase ) # verify the logits lowercase_ :Union[str, Any] = torch.Size([1, 1_408, 1_536] ) lowercase_ :List[Any] = torch.tensor( [[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] , device=lowercase ) self.assertEqual(outputs.logits.shape , lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , lowercase , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) lowercase_ :Any = torch.tensor([0.51_42] , device=lowercase ) self.assertTrue(torch.allclose(outputs.loss , lowercase , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) lowercase_ :Union[str, Any] = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short" , norm_pix_loss=lowercase ).to( lowercase ) with torch.no_grad(): lowercase_ :Tuple = model(**lowercase ) lowercase_ :Optional[Any] = torch.tensor(torch.tensor([0.64_69] ) , device=lowercase ) self.assertTrue(torch.allclose(outputs.loss , lowercase , atol=1e-4 ) )
223
0
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = ["""image_processor""", """tokenizer"""] UpperCAmelCase__ = """LayoutLMv3ImageProcessor""" UpperCAmelCase__ = ("""LayoutLMv3Tokenizer""", """LayoutLMv3TokenizerFast""") def __init__( self : Optional[int] , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Optional[int]=None , **UpperCAmelCase : Tuple ) -> int: lowerCamelCase__ : str = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCAmelCase , ) lowerCamelCase__ : Dict = kwargs.pop('feature_extractor' ) lowerCamelCase__ : Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self : Union[str, Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Dict , ) -> BatchEncoding: # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) # first, apply the image processor lowerCamelCase__ : List[Any] = self.image_processor(images=UpperCAmelCase , return_tensors=UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase__ : int = [text] # add batch dimension (as the image processor always adds a batch dimension) lowerCamelCase__ : Dict = features['words'] lowerCamelCase__ : Optional[Any] = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) # add pixel values lowerCamelCase__ : Union[str, Any] = features.pop('pixel_values' ) if return_overflowing_tokens is True: lowerCamelCase__ : Any = self.get_overflowing_images(UpperCAmelCase , encoded_inputs['overflow_to_sample_mapping'] ) lowerCamelCase__ : Any = images return encoded_inputs def A_ ( self : Union[str, Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any ) -> Union[str, Any]: # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image lowerCamelCase__ : Tuple = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' F""" {len(UpperCAmelCase )} and {len(UpperCAmelCase )}""" ) return images_with_overflow def A_ ( self : Union[str, Any] , *UpperCAmelCase : Dict , **UpperCAmelCase : Union[str, Any] ) -> Tuple: return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def A_ ( self : Optional[Any] , *UpperCAmelCase : int , **UpperCAmelCase : List[Any] ) -> Optional[Any]: return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def A_ ( self : List[Any] ) -> Union[str, Any]: return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def A_ ( self : str ) -> Tuple: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , UpperCAmelCase , ) return self.image_processor_class @property def A_ ( self : List[Any] ) -> Optional[int]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , UpperCAmelCase , ) return self.image_processor
45
from __future__ import annotations def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> None: lowerCamelCase__ : Optional[Any] = len(_UpperCAmelCase ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['. ' * i + 'Q ' + '. ' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(_UpperCAmelCase ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , _UpperCAmelCase , _UpperCAmelCase , ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> None: lowerCamelCase__ : list[list[str]] = [] depth_first_search([] , [] , [] , _UpperCAmelCase , _UpperCAmelCase ) # Print all the boards for board in boards: for column in board: print(_UpperCAmelCase ) print('' ) print(len(_UpperCAmelCase ) , 'solutions were found.' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
45
1
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class snake_case ( lowercase ): """simple docstring""" _lowerCamelCase = ["image_processor", "tokenizer"] _lowerCamelCase = "LayoutLMv3ImageProcessor" _lowerCamelCase = ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast") def __init__( self , UpperCamelCase=None , UpperCamelCase=None , **UpperCamelCase ): """simple docstring""" lowerCamelCase_ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , UpperCamelCase , ) lowerCamelCase_ = kwargs.pop("feature_extractor" ) lowerCamelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(UpperCamelCase , UpperCamelCase ) def __call__( self , UpperCamelCase , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = True , UpperCamelCase = False , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = 0 , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = False , UpperCamelCase = False , UpperCamelCase = False , UpperCamelCase = False , UpperCamelCase = True , UpperCamelCase = None , **UpperCamelCase , ): """simple docstring""" # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) # first, apply the image processor lowerCamelCase_ = self.image_processor(images=UpperCamelCase , return_tensors=UpperCamelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCamelCase , UpperCamelCase ): lowerCamelCase_ = [text] # add batch dimension (as the image processor always adds a batch dimension) lowerCamelCase_ = features["words"] lowerCamelCase_ = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=UpperCamelCase , add_special_tokens=UpperCamelCase , padding=UpperCamelCase , truncation=UpperCamelCase , max_length=UpperCamelCase , stride=UpperCamelCase , pad_to_multiple_of=UpperCamelCase , return_token_type_ids=UpperCamelCase , return_attention_mask=UpperCamelCase , return_overflowing_tokens=UpperCamelCase , return_special_tokens_mask=UpperCamelCase , return_offsets_mapping=UpperCamelCase , return_length=UpperCamelCase , verbose=UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase , ) # add pixel values lowerCamelCase_ = features.pop("pixel_values" ) if return_overflowing_tokens is True: lowerCamelCase_ = self.get_overflowing_images(UpperCamelCase , encoded_inputs["overflow_to_sample_mapping"] ) lowerCamelCase_ = images return encoded_inputs def snake_case ( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image lowerCamelCase_ = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCamelCase ) != len(UpperCamelCase ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" f''' {len(UpperCamelCase )} and {len(UpperCamelCase )}''' ) return images_with_overflow def snake_case ( self , *UpperCamelCase , **UpperCamelCase ): """simple docstring""" return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def snake_case ( self , *UpperCamelCase , **UpperCamelCase ): """simple docstring""" return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @property def snake_case ( self ): """simple docstring""" return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def snake_case ( self ): """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCamelCase , ) return self.image_processor_class @property def snake_case ( self ): """simple docstring""" warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCamelCase , ) return self.image_processor
55
'''simple docstring''' import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''encoder.layer_norm_for_extract''': '''layer_norm_for_extract''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''label_embs_concat''': '''label_embeddings_concat''', '''mask_emb''': '''masked_spec_embed''', '''spk_proj''': '''speaker_proj''', } lowerCAmelCase__ = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', '''label_embeddings_concat''', '''speaker_proj''', '''layer_norm_for_extract''', ] def _A ( A__ , A__ , A__ , A__ , A__ ): """simple docstring""" for attribute in key.split('''.''' ): __lowercase = getattr(A__ , A__ ) if weight_type is not None: __lowercase = getattr(A__ , A__ ).shape else: __lowercase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": __lowercase = value elif weight_type == "weight_g": __lowercase = value elif weight_type == "weight_v": __lowercase = value elif weight_type == "bias": __lowercase = value else: __lowercase = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def _A ( A__ , A__ ): """simple docstring""" __lowercase = [] __lowercase = fairseq_model.state_dict() __lowercase = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): __lowercase = False if "conv_layers" in name: load_conv_layer( A__ , A__ , A__ , A__ , hf_model.config.feat_extract_norm == '''group''' , ) __lowercase = True else: for key, mapped_key in MAPPING.items(): __lowercase = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue __lowercase = True if "*" in mapped_key: __lowercase = name.split(A__ )[0].split('''.''' )[-2] __lowercase = mapped_key.replace('''*''' , A__ ) if "weight_g" in name: __lowercase = '''weight_g''' elif "weight_v" in name: __lowercase = '''weight_v''' elif "bias" in name: __lowercase = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowercase = '''weight''' else: __lowercase = None set_recursively(A__ , A__ , A__ , A__ , A__ ) continue if not is_used: unused_weights.append(A__ ) logger.warning(F"Unused weights: {unused_weights}" ) def _A ( A__ , A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase = full_name.split('''conv_layers.''' )[-1] __lowercase = name.split('''.''' ) __lowercase = int(items[0] ) __lowercase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) __lowercase = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) __lowercase = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found." ) __lowercase = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) __lowercase = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(A__ ) @torch.no_grad() def _A ( A__ , A__ , A__=None , A__=None , A__=True ): """simple docstring""" if config_path is not None: __lowercase = UniSpeechSatConfig.from_pretrained(A__ ) else: __lowercase = UniSpeechSatConfig() __lowercase = '''''' if is_finetuned: __lowercase = UniSpeechSatForCTC(A__ ) else: __lowercase = UniSpeechSatForPreTraining(A__ ) __lowercase , __lowercase , __lowercase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) __lowercase = model[0].eval() recursively_load_weights(A__ , A__ ) hf_wavavec.save_pretrained(A__ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) lowerCAmelCase__ = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
104
0
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def A ( _lowercase ): SCREAMING_SNAKE_CASE : Optional[Any] = [] for line in lines: SCREAMING_SNAKE_CASE : List[str] = re.sub(R'''#.*''' , '''''' , _lowercase ) # remove comments if line: filtered_lines.append(_lowercase ) SCREAMING_SNAKE_CASE : List[str] = '''\n'''.join(_lowercase ) # Make a hash from all this code SCREAMING_SNAKE_CASE : Any = full_str.encode('''utf-8''' ) return shaaaa(_lowercase ).hexdigest() # get importable module names and hash for caching __UpperCamelCase : int = { 'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), 'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), 'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), 'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), 'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), 'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), 'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), 'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions __UpperCamelCase : Union[str, Any] = { '.csv': ('csv', {}), '.tsv': ('csv', {'sep': '\t'}), '.json': ('json', {}), '.jsonl': ('json', {}), '.parquet': ('parquet', {}), '.arrow': ('arrow', {}), '.txt': ('text', {}), } _EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) __UpperCamelCase : Any = {'imagefolder', 'audiofolder'} # Used to filter data files based on extensions given a module name __UpperCamelCase : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('.zip') _MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
258
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class lowercase__ : def __init__( self : Any , UpperCamelCase__ : Any , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : List[Any]="resnet50" , UpperCamelCase__ : int=3 , UpperCamelCase__ : Optional[Any]=32 , UpperCamelCase__ : List[Any]=3 , UpperCamelCase__ : Any=True , UpperCamelCase__ : int=True , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = parent SCREAMING_SNAKE_CASE : Union[str, Any] = out_indices if out_indices is not None else [4] SCREAMING_SNAKE_CASE : List[Any] = stage_names SCREAMING_SNAKE_CASE : int = out_features SCREAMING_SNAKE_CASE : Optional[int] = backbone SCREAMING_SNAKE_CASE : Union[str, Any] = batch_size SCREAMING_SNAKE_CASE : Dict = image_size SCREAMING_SNAKE_CASE : Optional[int] = num_channels SCREAMING_SNAKE_CASE : List[Any] = use_pretrained_backbone SCREAMING_SNAKE_CASE : Dict = is_training def __A ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Tuple = self.get_config() return config, pixel_values def __A ( self : List[Any] ): '''simple docstring''' return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def __A ( self : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = TimmBackbone(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Dict = model(UpperCamelCase__ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def __A ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = config_and_inputs SCREAMING_SNAKE_CASE : Tuple = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch @require_timm class lowercase__ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase): UpperCamelCase_ = (TimmBackbone,) if is_torch_available() else () UpperCamelCase_ = {"""feature-extraction""": TimmBackbone} if is_torch_available() else {} UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False def __A ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = TimmBackboneModelTester(self ) SCREAMING_SNAKE_CASE : Tuple = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ ) def __A ( self : List[Any] ): '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __A ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = '''resnet18''' SCREAMING_SNAKE_CASE : str = '''microsoft/resnet-18''' SCREAMING_SNAKE_CASE : Dict = AutoBackbone.from_pretrained(UpperCamelCase__ , use_timm_backbone=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Tuple = AutoBackbone.from_pretrained(UpperCamelCase__ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) SCREAMING_SNAKE_CASE : List[str] = AutoBackbone.from_pretrained(UpperCamelCase__ , use_timm_backbone=UpperCamelCase__ , out_indices=[1, 2, 3] ) SCREAMING_SNAKE_CASE : Optional[Any] = AutoBackbone.from_pretrained(UpperCamelCase__ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('''TimmBackbone doesn\'t support feed forward chunking''' ) def __A ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip('''TimmBackbone doesn\'t have num_hidden_layers attribute''' ) def __A ( self : int ): '''simple docstring''' pass @unittest.skip('''TimmBackbone initialization is managed on the timm side''' ) def __A ( self : Optional[Any] ): '''simple docstring''' pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def __A ( self : List[Any] ): '''simple docstring''' pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def __A ( self : Any ): '''simple docstring''' pass @unittest.skip('''TimmBackbone model cannot be created without specifying a backbone checkpoint''' ) def __A ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def __A ( self : int ): '''simple docstring''' pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def __A ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def __A ( self : Optional[Any] ): '''simple docstring''' pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def __A ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def __A ( self : List[str] ): '''simple docstring''' pass @unittest.skip('''TimmBackbone doesn\'t have hidden size info in its configuration.''' ) def __A ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip('''TimmBackbone doesn\'t support output_attentions.''' ) def __A ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip('''Safetensors is not supported by timm.''' ) def __A ( self : List[Any] ): '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __A ( self : int ): '''simple docstring''' pass def __A ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Dict = model_class(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : str = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def __A ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : int = True SCREAMING_SNAKE_CASE : Any = self.has_attentions # no need to test all models as different heads yield the same functionality SCREAMING_SNAKE_CASE : Any = self.all_model_classes[0] SCREAMING_SNAKE_CASE : List[str] = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Any = model(**UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Tuple = outputs[0][-1] # Encoder-/Decoder-only models SCREAMING_SNAKE_CASE : List[Any] = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: SCREAMING_SNAKE_CASE : Any = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=UpperCamelCase__ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def __A ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Tuple = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(**UpperCamelCase__ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None SCREAMING_SNAKE_CASE : List[str] = copy.deepcopy(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = None SCREAMING_SNAKE_CASE : str = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(**UpperCamelCase__ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights SCREAMING_SNAKE_CASE : Optional[Any] = copy.deepcopy(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : str = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE : int = model(**UpperCamelCase__ )
258
1
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging __A = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["pixel_values"] def __init__(self : Dict , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Union[int, float] = 1 / 255 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : int = 8 , **UpperCAmelCase_ : Optional[int] , ) ->None: '''simple docstring''' super().__init__(**UpperCAmelCase_) lowerCamelCase__: Dict =do_rescale lowerCamelCase__: Any =rescale_factor lowerCamelCase__: List[str] =do_pad lowerCamelCase__: List[Any] =pad_size def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : float , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : List[str]) ->np.ndarray: '''simple docstring''' return rescale(UpperCAmelCase_ , scale=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None) ->str: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Tuple =get_image_size(UpperCAmelCase_) lowerCamelCase__: Any =(old_height // size + 1) * size - old_height lowerCamelCase__: Optional[int] =(old_width // size + 1) * size - old_width return pad(UpperCAmelCase_ , ((0, pad_height), (0, pad_width)) , mode="symmetric" , data_format=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : ImageInput , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , UpperCAmelCase_ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCAmelCase_ : List[Any] , ) ->Any: '''simple docstring''' lowerCamelCase__: Optional[int] =do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase__: Dict =rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase__: int =do_pad if do_pad is not None else self.do_pad lowerCamelCase__: Dict =pad_size if pad_size is not None else self.pad_size lowerCamelCase__: Any =make_list_of_images(UpperCAmelCase_) if not valid_images(UpperCAmelCase_): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") # All transformations expect numpy arrays. lowerCamelCase__: Dict =[to_numpy_array(UpperCAmelCase_) for image in images] if do_rescale: lowerCamelCase__: str =[self.rescale(image=UpperCAmelCase_ , scale=UpperCAmelCase_) for image in images] if do_pad: lowerCamelCase__: Tuple =[self.pad(UpperCAmelCase_ , size=UpperCAmelCase_) for image in images] lowerCamelCase__: Tuple =[to_channel_dimension_format(UpperCAmelCase_ , UpperCAmelCase_) for image in images] lowerCamelCase__: Union[str, Any] ={"pixel_values": images} return BatchFeature(data=UpperCAmelCase_ , tensor_type=UpperCAmelCase_)
10
from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
188
0
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : Optional[int] =StableUnCLIPImgaImgPipeline a_ : int =TEXT_GUIDED_IMAGE_VARIATION_PARAMS a_ : str =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS a_ : int =frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess a_ : Optional[int] =frozenset([] ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Dict = 32 _snake_case : List[str] = embedder_hidden_size # image encoding components _snake_case : Optional[int] = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) _snake_case : Union[str, Any] = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=UpperCamelCase , projection_dim=UpperCamelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) _snake_case : Tuple = StableUnCLIPImageNormalizer(embedding_dim=UpperCamelCase ) _snake_case : int = DDPMScheduler(beta_schedule='squaredcos_cap_v2' ) torch.manual_seed(0 ) _snake_case : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) _snake_case : List[Any] = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) _snake_case : Optional[Any] = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='projection' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=UpperCamelCase , layers_per_block=1 , upcast_attention=UpperCamelCase , use_linear_projection=UpperCamelCase , ) torch.manual_seed(0 ) _snake_case : Optional[int] = DDIMScheduler( beta_schedule='scaled_linear' , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type='v_prediction' , set_alpha_to_one=UpperCamelCase , steps_offset=1 , ) torch.manual_seed(0 ) _snake_case : Optional[Any] = AutoencoderKL() _snake_case : List[Any] = { # image encoding components 'feature_extractor': feature_extractor, 'image_encoder': image_encoder.eval(), # image noising components 'image_normalizer': image_normalizer.eval(), 'image_noising_scheduler': image_noising_scheduler, # regular denoising components 'tokenizer': tokenizer, 'text_encoder': text_encoder.eval(), 'unet': unet.eval(), 'scheduler': scheduler, 'vae': vae.eval(), } return components def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : List[str] , UpperCamelCase : str=0 , UpperCamelCase : Union[str, Any]=True ): '''simple docstring''' if str(UpperCamelCase ).startswith('mps' ): _snake_case : List[Any] = torch.manual_seed(UpperCamelCase ) else: _snake_case : Any = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) _snake_case : Optional[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase ) if pil_image: _snake_case : Optional[Any] = input_image * 0.5 + 0.5 _snake_case : Any = input_image.clamp(0 , 1 ) _snake_case : List[Any] = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() _snake_case : Tuple = DiffusionPipeline.numpy_to_pil(UpperCamelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case : Any = self.get_dummy_components() _snake_case : Any = StableUnCLIPImgaImgPipeline(**UpperCamelCase ) _snake_case : str = sd_pipe.to(UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase ) _snake_case : Any = self.get_dummy_inputs(UpperCamelCase ) inputs.update({'image_embeds': None} ) _snake_case : Tuple = sd_pipe(**UpperCamelCase ).images _snake_case : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _snake_case : Optional[int] = np.array([0.38_72, 0.72_24, 0.56_01, 0.47_41, 0.68_72, 0.58_14, 0.46_36, 0.38_67, 0.50_78] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Optional[Any] = torch_device in ['cpu', 'mps'] self._test_attention_slicing_forward_pass(test_max_difference=UpperCamelCase ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : List[Any] = torch_device in ['cpu', 'mps'] self._test_inference_batch_single_identical(test_max_difference=UpperCamelCase ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_max_difference=UpperCamelCase ) @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' ) _snake_case : List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy' ) _snake_case : Any = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-l-img2img' , torch_dtype=torch.floataa ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _snake_case : List[Any] = torch.Generator(device='cpu' ).manual_seed(0 ) _snake_case : str = pipe(UpperCamelCase , 'anime turle' , generator=UpperCamelCase , output_type='np' ) _snake_case : Optional[int] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' ) _snake_case : Dict = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy' ) _snake_case : Dict = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-h-img2img' , torch_dtype=torch.floataa ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _snake_case : Optional[int] = torch.Generator(device='cpu' ).manual_seed(0 ) _snake_case : Union[str, Any] = pipe(UpperCamelCase , 'anime turle' , generator=UpperCamelCase , output_type='np' ) _snake_case : List[Any] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _snake_case : str = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-h-img2img' , torch_dtype=torch.floataa ) _snake_case : Optional[Any] = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _snake_case : List[str] = pipe( UpperCamelCase , 'anime turtle' , num_inference_steps=2 , output_type='np' , ) _snake_case : int = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
260
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { """configuration_pix2struct""": [ """PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Pix2StructConfig""", """Pix2StructTextConfig""", """Pix2StructVisionConfig""", ], """processing_pix2struct""": ["""Pix2StructProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["""Pix2StructImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Pix2StructPreTrainedModel""", """Pix2StructForConditionalGeneration""", """Pix2StructVisionModel""", """Pix2StructTextModel""", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
260
1
from __future__ import annotations import requests def lowerCamelCase_ ( _a ): """simple docstring""" lowerCAmelCase__ : Optional[int] = f'https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty' return requests.get(UpperCamelCase__ ).json() def lowerCamelCase_ ( _a = 10 ): """simple docstring""" lowerCAmelCase__ : List[str] = '''https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty''' lowerCAmelCase__ : Dict = requests.get(UpperCamelCase__ ).json()[:max_stories] return [get_hackernews_story(UpperCamelCase__ ) for story_id in story_ids] def lowerCamelCase_ ( _a = 10 ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = hackernews_top_stories(UpperCamelCase__ ) return "\n".join('''* [{title}]({url})'''.format(**UpperCamelCase__ ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
131
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer __A : Dict = logging.get_logger(__name__) __A : Any = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __A : Tuple = { "vocab_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt" ), "squeezebert/squeezebert-mnli": "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt", "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt" ), }, "tokenizer_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli": ( "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json" ), }, } __A : List[Any] = { "squeezebert/squeezebert-uncased": 512, "squeezebert/squeezebert-mnli": 512, "squeezebert/squeezebert-mnli-headless": 512, } __A : List[Any] = { "squeezebert/squeezebert-uncased": {"do_lower_case": True}, "squeezebert/squeezebert-mnli": {"do_lower_case": True}, "squeezebert/squeezebert-mnli-headless": {"do_lower_case": True}, } class A_ (a_ ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = SqueezeBertTokenizer def __init__( self , _A=None , _A=None , _A=True , _A="[UNK]" , _A="[SEP]" , _A="[PAD]" , _A="[CLS]" , _A="[MASK]" , _A=True , _A=None , **_A , ): '''simple docstring''' super().__init__( _A , tokenizer_file=_A , do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , tokenize_chinese_chars=_A , strip_accents=_A , **_A , ) UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _A ) != do_lower_case or normalizer_state.get('''strip_accents''' , _A ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _A ) != tokenize_chinese_chars ): UpperCAmelCase = getattr(_A , normalizer_state.pop('''type''' ) ) UpperCAmelCase = do_lower_case UpperCAmelCase = strip_accents UpperCAmelCase = tokenize_chinese_chars UpperCAmelCase = normalizer_class(**_A ) UpperCAmelCase = do_lower_case def _lowercase ( self , _A , _A=None ): '''simple docstring''' UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowercase ( self , _A , _A = None ): '''simple docstring''' UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowercase ( self , _A , _A = None ): '''simple docstring''' UpperCAmelCase = self._tokenizer.model.save(_A , name=_A ) return tuple(_A )
273
0
'''simple docstring''' import doctest from collections import deque import numpy as np class __lowerCamelCase : """simple docstring""" def __init__( self : List[Any]): _A : Any = [2, 1, 2, -1] _A : Optional[int] = [1, 2, 3, 4] def A ( self : int): _A : Any = len(self.first_signal) _A : Any = len(self.second_signal) _A : Union[str, Any] = max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) # create a zero matrix of max_length x max_length _A : Union[str, Any] = [[0] * max_length for i in range(SCREAMING_SNAKE_CASE)] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(SCREAMING_SNAKE_CASE): _A : str = deque(self.second_signal) rotated_signal.rotate(SCREAMING_SNAKE_CASE) for j, item in enumerate(SCREAMING_SNAKE_CASE): matrix[i][j] += item # multiply the matrix with the first signal _A : Union[str, Any] = np.matmul(np.transpose(SCREAMING_SNAKE_CASE) , np.transpose(self.first_signal)) # rounding-off to two decimal places return [round(SCREAMING_SNAKE_CASE , 2) for i in final_signal] if __name__ == "__main__": doctest.testmod()
356
'''simple docstring''' def lowerCAmelCase__ ( lowerCamelCase : int ,lowerCamelCase : list[int] ,lowerCamelCase : int ): def count_of_possible_combinations(lowerCamelCase : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(lowerCamelCase ) def lowerCAmelCase__ ( lowerCamelCase : int ,lowerCamelCase : list[int] ,lowerCamelCase : int ): def count_of_possible_combinations_with_dp_array( lowerCamelCase : int ,lowerCamelCase : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] _A : Optional[Any] = sum( count_of_possible_combinations_with_dp_array(target - item ,lowerCamelCase ) for item in array ) _A : List[str] = answer return answer _A : Optional[int] = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(lowerCamelCase ,lowerCamelCase ) def lowerCAmelCase__ ( lowerCamelCase : int ,lowerCamelCase : list[int] ,lowerCamelCase : int ): _A : Dict = [0] * (target + 1) _A : List[str] = 1 for i in range(1 ,target + 1 ): for j in range(lowerCamelCase ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() A : Dict = 3 A : Union[str, Any] = 5 A : Union[str, Any] = [1, 2, 5] print(combination_sum_iv(n, array, target))
227
0
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
97
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : Union[str, Any] = { "Salesforce/instruct-blip-flan-t5": "https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json", } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'instructblip_vision_model' def __init__( self , __snake_case=1408 , __snake_case=6144 , __snake_case=39 , __snake_case=16 , __snake_case=224 , __snake_case=14 , __snake_case="gelu" , __snake_case=1e-6 , __snake_case=0.0 , __snake_case=1e-10 , __snake_case=True , **__snake_case , ) -> str: '''simple docstring''' super().__init__(**__snake_case ) __a =hidden_size __a =intermediate_size __a =num_hidden_layers __a =num_attention_heads __a =patch_size __a =image_size __a =initializer_range __a =attention_dropout __a =layer_norm_eps __a =hidden_act __a =qkv_bias @classmethod def __magic_name__ ( cls , __snake_case , **__snake_case ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(__snake_case ) __a , __a =cls.get_config_dict(__snake_case , **__snake_case ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __a =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(__snake_case , **__snake_case ) class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'instructblip_qformer' def __init__( self , __snake_case=3_0522 , __snake_case=768 , __snake_case=12 , __snake_case=12 , __snake_case=3072 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=512 , __snake_case=0.02 , __snake_case=1e-12 , __snake_case=0 , __snake_case="absolute" , __snake_case=2 , __snake_case=1408 , **__snake_case , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=__snake_case , **__snake_case ) __a =vocab_size __a =hidden_size __a =num_hidden_layers __a =num_attention_heads __a =hidden_act __a =intermediate_size __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =max_position_embeddings __a =initializer_range __a =layer_norm_eps __a =position_embedding_type __a =cross_attention_frequency __a =encoder_hidden_size @classmethod def __magic_name__ ( cls , __snake_case , **__snake_case ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(__snake_case ) __a , __a =cls.get_config_dict(__snake_case , **__snake_case ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __a =config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(__snake_case , **__snake_case ) class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'instructblip' SCREAMING_SNAKE_CASE = True def __init__( self , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=32 , **__snake_case ) -> str: '''simple docstring''' super().__init__(**__snake_case ) if vision_config is None: __a ={} logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' ) if qformer_config is None: __a ={} logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' ) if text_config is None: __a ={} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) __a =InstructBlipVisionConfig(**__snake_case ) __a =InstructBlipQFormerConfig(**__snake_case ) __a =text_config['model_type'] if 'model_type' in text_config else 'opt' __a =CONFIG_MAPPING[text_model_type](**__snake_case ) __a =self.text_config.tie_word_embeddings __a =self.text_config.is_encoder_decoder __a =num_query_tokens __a =self.vision_config.hidden_size __a =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __a =1.0 __a =0.02 @classmethod def __magic_name__ ( cls , __snake_case , __snake_case , __snake_case , **__snake_case , ) -> Optional[Any]: '''simple docstring''' return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__snake_case , ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =copy.deepcopy(self.__dict__ ) __a =self.vision_config.to_dict() __a =self.qformer_config.to_dict() __a =self.text_config.to_dict() __a =self.__class__.model_type return output
218
0
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class UpperCAmelCase__ ( unittest.TestCase , A_ ): """simple docstring""" def _a ( self ) -> List[str]: __UpperCamelCase =load_tool('text-to-speech' ) self.tool.setup() def _a ( self ) -> List[Any]: # SpeechT5 isn't deterministic torch.manual_seed(0 ) __UpperCamelCase =self.tool('hey' ) __UpperCamelCase =result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) ) def _a ( self ) -> Optional[int]: # SpeechT5 isn't deterministic torch.manual_seed(0 ) __UpperCamelCase =self.tool('hey' ) __UpperCamelCase =result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) )
117
import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def _UpperCAmelCase ( ): print('Making key files...' ) make_key_files('rsa' , 10_24 ) print('Key files generation successful.' ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): print('Generating prime p...' ) __UpperCamelCase =rabinMiller.generate_large_prime(SCREAMING_SNAKE_CASE__ ) print('Generating prime q...' ) __UpperCamelCase =rabinMiller.generate_large_prime(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =p * q print('Generating e that is relatively prime to (p - 1) * (q - 1)...' ) while True: __UpperCamelCase =random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(SCREAMING_SNAKE_CASE__ , (p - 1) * (q - 1) ) == 1: break print('Calculating d that is mod inverse of e...' ) __UpperCamelCase =cryptoMath.find_mod_inverse(SCREAMING_SNAKE_CASE__ , (p - 1) * (q - 1) ) __UpperCamelCase =(n, e) __UpperCamelCase =(n, d) return (public_key, private_key) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ): if os.path.exists(F'{name}_pubkey.txt' ) or os.path.exists(F'{name}_privkey.txt' ): print('\nWARNING:' ) print( F'"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n' 'Use a different name or delete these files and re-run this program.' ) sys.exit() __UpperCamelCase , __UpperCamelCase =generate_key(SCREAMING_SNAKE_CASE__ ) print(F'\nWriting public key to file {name}_pubkey.txt...' ) with open(F'{name}_pubkey.txt' , 'w' ) as out_file: out_file.write(F'{key_size},{public_key[0]},{public_key[1]}' ) print(F'Writing private key to file {name}_privkey.txt...' ) with open(F'{name}_privkey.txt' , 'w' ) as out_file: out_file.write(F'{key_size},{private_key[0]},{private_key[1]}' ) if __name__ == "__main__": main()
117
1
from __future__ import annotations from decimal import Decimal from numpy import array def lowercase_ ( _lowerCamelCase : list[list[float]]): lowercase__ : Tuple = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(_lowerCamelCase) == 2 and len(matrix[0]) == 2 and len(matrix[1]) == 2: # Calculate the determinant of the matrix lowercase__ : str = float( d(matrix[0][0]) * d(matrix[1][1]) - d(matrix[1][0]) * d(matrix[0][1])) if determinant == 0: raise ValueError("This matrix has no inverse.") # Creates a copy of the matrix with swapped positions of the elements lowercase__ : Dict = [[0.0, 0.0], [0.0, 0.0]] lowercase__ , lowercase__ : Union[str, Any] = matrix[1][1], matrix[0][0] lowercase__ , lowercase__ : int = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(_lowerCamelCase)) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(_lowerCamelCase) == 3 and len(matrix[0]) == 3 and len(matrix[1]) == 3 and len(matrix[2]) == 3 ): # Calculate the determinant of the matrix using Sarrus rule lowercase__ : Any = float( ( (d(matrix[0][0]) * d(matrix[1][1]) * d(matrix[2][2])) + (d(matrix[0][1]) * d(matrix[1][2]) * d(matrix[2][0])) + (d(matrix[0][2]) * d(matrix[1][0]) * d(matrix[2][1])) ) - ( (d(matrix[0][2]) * d(matrix[1][1]) * d(matrix[2][0])) + (d(matrix[0][1]) * d(matrix[1][0]) * d(matrix[2][2])) + (d(matrix[0][0]) * d(matrix[1][2]) * d(matrix[2][1])) )) if determinant == 0: raise ValueError("This matrix has no inverse.") # Creating cofactor matrix lowercase__ : Optional[Any] = [ [d(0.0), d(0.0), d(0.0)], [d(0.0), d(0.0), d(0.0)], [d(0.0), d(0.0), d(0.0)], ] lowercase__ : Optional[int] = (d(matrix[1][1]) * d(matrix[2][2])) - ( d(matrix[1][2]) * d(matrix[2][1]) ) lowercase__ : List[Any] = -( (d(matrix[1][0]) * d(matrix[2][2])) - (d(matrix[1][2]) * d(matrix[2][0])) ) lowercase__ : List[Any] = (d(matrix[1][0]) * d(matrix[2][1])) - ( d(matrix[1][1]) * d(matrix[2][0]) ) lowercase__ : Optional[Any] = -( (d(matrix[0][1]) * d(matrix[2][2])) - (d(matrix[0][2]) * d(matrix[2][1])) ) lowercase__ : Optional[int] = (d(matrix[0][0]) * d(matrix[2][2])) - ( d(matrix[0][2]) * d(matrix[2][0]) ) lowercase__ : int = -( (d(matrix[0][0]) * d(matrix[2][1])) - (d(matrix[0][1]) * d(matrix[2][0])) ) lowercase__ : int = (d(matrix[0][1]) * d(matrix[1][2])) - ( d(matrix[0][2]) * d(matrix[1][1]) ) lowercase__ : Any = -( (d(matrix[0][0]) * d(matrix[1][2])) - (d(matrix[0][2]) * d(matrix[1][0])) ) lowercase__ : List[Any] = (d(matrix[0][0]) * d(matrix[1][1])) - ( d(matrix[0][1]) * d(matrix[1][0]) ) # Transpose the cofactor matrix (Adjoint matrix) lowercase__ : List[Any] = array(_lowerCamelCase) for i in range(3): for j in range(3): lowercase__ : int = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix lowercase__ : List[Any] = array(_lowerCamelCase) for i in range(3): for j in range(3): inverse_matrix[i][j] /= d(_lowerCamelCase) # Calculate the inverse of the matrix return [[float(d(_lowerCamelCase)) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("Please provide a matrix of size 2x2 or 3x3.")
87
import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = R''' Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax. kwargs (`Dict[str, Any]`, *optional*): Additional stopping criteria specific kwargs. Return: `bool`. `False` indicates we should continue, `True` indicates we should stop. ''' class snake_case_ ( __A ): @add_start_docstrings(lowercase_ ) def __call__( self : Optional[Any] , lowercase_ : torch.LongTensor , lowercase_ : torch.FloatTensor , **lowercase_ : List[str] ) -> bool: raise NotImplementedError("StoppingCriteria needs to be subclassed" ) class snake_case_ ( __A ): def __init__( self : Dict , lowercase_ : int , lowercase_ : Optional[int] = None ) -> List[str]: lowercase__ : str = max_length lowercase__ : Optional[int] = max_position_embeddings @add_start_docstrings(lowercase_ ) def __call__( self : Tuple , lowercase_ : torch.LongTensor , lowercase_ : torch.FloatTensor , **lowercase_ : Union[str, Any] ) -> bool: lowercase__ : str = input_ids.shape[-1] lowercase__ : Any = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( "This is a friendly reminder - the current text generation call will exceed the model's predefined " F'''maximum length ({self.max_position_embeddings}). Depending on the model, you may observe ''' "exceptions, performance degradation, or nothing at all." ) return is_done class snake_case_ ( __A ): def __init__( self : Tuple , lowercase_ : int , lowercase_ : int ) -> List[str]: warnings.warn( "The class `MaxNewTokensCriteria` is deprecated. " F'''Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` ''' "with `max_length = start_length + max_new_tokens` instead." , lowercase_ , ) lowercase__ : Optional[int] = start_length lowercase__ : str = max_new_tokens lowercase__ : Tuple = start_length + max_new_tokens @add_start_docstrings(lowercase_ ) def __call__( self : List[Any] , lowercase_ : torch.LongTensor , lowercase_ : torch.FloatTensor , **lowercase_ : Dict ) -> bool: return input_ids.shape[-1] >= self.max_length class snake_case_ ( __A ): def __init__( self : Tuple , lowercase_ : float , lowercase_ : Optional[float] = None ) -> Dict: lowercase__ : List[str] = max_time lowercase__ : Tuple = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(lowercase_ ) def __call__( self : int , lowercase_ : torch.LongTensor , lowercase_ : torch.FloatTensor , **lowercase_ : Union[str, Any] ) -> bool: return time.time() - self.initial_timestamp > self.max_time class snake_case_ ( __A ): @add_start_docstrings(lowercase_ ) def __call__( self : str , lowercase_ : torch.LongTensor , lowercase_ : torch.FloatTensor , **lowercase_ : List[str] ) -> bool: return any(criteria(lowercase_ , lowercase_ ) for criteria in self ) @property def __UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: for stopping_criterium in self: if isinstance(lowercase_ , lowercase_ ): return stopping_criterium.max_length elif isinstance(lowercase_ , lowercase_ ): return stopping_criterium.max_length return None def lowercase_ ( _lowerCamelCase : StoppingCriteriaList , _lowerCamelCase : int): lowercase__ : Optional[int] = stopping_criteria.max_length lowercase__ : str = deepcopy(_lowerCamelCase) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn("You set different `max_length` for stopping criteria and `max_length` parameter" , _lowerCamelCase) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=_lowerCamelCase)) return new_stopping_criteria
87
1
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" @register_to_config def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : int = 128 , SCREAMING_SNAKE_CASE__ : int = 256 , SCREAMING_SNAKE_CASE__ : float = 2_000.0 , SCREAMING_SNAKE_CASE__ : int = 768 , SCREAMING_SNAKE_CASE__ : int = 12 , SCREAMING_SNAKE_CASE__ : int = 12 , SCREAMING_SNAKE_CASE__ : int = 64 , SCREAMING_SNAKE_CASE__ : int = 2_048 , SCREAMING_SNAKE_CASE__ : float = 0.1 , ) -> Union[str, Any]: super().__init__() lowerCAmelCase__ = nn.Sequential( nn.Linear(SCREAMING_SNAKE_CASE__ , d_model * 4 , bias=SCREAMING_SNAKE_CASE__ ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=SCREAMING_SNAKE_CASE__ ) , nn.SiLU() , ) lowerCAmelCase__ = nn.Embedding(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = False lowerCAmelCase__ = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = nn.Dropout(p=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = nn.ModuleList() for lyr_num in range(SCREAMING_SNAKE_CASE__ ): # FiLM conditional T5 decoder lowerCAmelCase__ = DecoderLayer(d_model=SCREAMING_SNAKE_CASE__ , d_kv=SCREAMING_SNAKE_CASE__ , num_heads=SCREAMING_SNAKE_CASE__ , d_ff=SCREAMING_SNAKE_CASE__ , dropout_rate=SCREAMING_SNAKE_CASE__ ) self.decoders.append(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = TaLayerNorm(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = nn.Dropout(p=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) def a ( self : Any , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Any ) -> Optional[int]: lowerCAmelCase__ = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def a ( self : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict ) -> str: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. lowerCAmelCase__ = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) lowerCAmelCase__ = self.conditioning_emb(SCREAMING_SNAKE_CASE__ ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) lowerCAmelCase__ = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. lowerCAmelCase__ = torch.broadcast_to( torch.arange(SCREAMING_SNAKE_CASE__ , device=decoder_input_tokens.device ) , (batch, seq_length) , ) lowerCAmelCase__ = self.position_encoding(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.continuous_inputs_projection(SCREAMING_SNAKE_CASE__ ) inputs += position_encodings lowerCAmelCase__ = self.dropout(SCREAMING_SNAKE_CASE__ ) # decoder: No padding present. lowerCAmelCase__ = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. lowerCAmelCase__ = [(x, self.encoder_decoder_mask(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )) for x, y in encodings_and_masks] # cross attend style: concat encodings lowerCAmelCase__ = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) lowerCAmelCase__ = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: lowerCAmelCase__ = lyr( SCREAMING_SNAKE_CASE__ , conditioning_emb=SCREAMING_SNAKE_CASE__ , encoder_hidden_states=SCREAMING_SNAKE_CASE__ , encoder_attention_mask=SCREAMING_SNAKE_CASE__ , )[0] lowerCAmelCase__ = self.decoder_norm(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.post_dropout(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.spec_out(SCREAMING_SNAKE_CASE__ ) return spec_out class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str=1e-6 ) -> Dict: super().__init__() lowerCAmelCase__ = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=SCREAMING_SNAKE_CASE__ , d_kv=SCREAMING_SNAKE_CASE__ , num_heads=SCREAMING_SNAKE_CASE__ , dropout_rate=SCREAMING_SNAKE_CASE__ ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=SCREAMING_SNAKE_CASE__ , d_kv=SCREAMING_SNAKE_CASE__ , num_heads=SCREAMING_SNAKE_CASE__ , dropout_rate=SCREAMING_SNAKE_CASE__ , layer_norm_epsilon=SCREAMING_SNAKE_CASE__ , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=SCREAMING_SNAKE_CASE__ , d_ff=SCREAMING_SNAKE_CASE__ , dropout_rate=SCREAMING_SNAKE_CASE__ , layer_norm_epsilon=SCREAMING_SNAKE_CASE__ ) ) def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , ) -> Any: lowerCAmelCase__ = self.layer[0]( SCREAMING_SNAKE_CASE__ , conditioning_emb=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , ) if encoder_hidden_states is not None: lowerCAmelCase__ = torch.where(encoder_attention_mask > 0 , 0 , -1e1_0 ).to( encoder_hidden_states.dtype ) lowerCAmelCase__ = self.layer[1]( SCREAMING_SNAKE_CASE__ , key_value_states=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , ) # Apply Film Conditional Feed Forward layer lowerCAmelCase__ = self.layer[-1](SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return (hidden_states,) class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str ) -> Union[str, Any]: super().__init__() lowerCAmelCase__ = TaLayerNorm(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = TaFiLMLayer(in_features=d_model * 4 , out_features=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = Attention(query_dim=SCREAMING_SNAKE_CASE__ , heads=SCREAMING_SNAKE_CASE__ , dim_head=SCREAMING_SNAKE_CASE__ , out_bias=SCREAMING_SNAKE_CASE__ , scale_qk=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = nn.Dropout(SCREAMING_SNAKE_CASE__ ) def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Any=None , ) -> Optional[Any]: # pre_self_attention_layer_norm lowerCAmelCase__ = self.layer_norm(SCREAMING_SNAKE_CASE__ ) if conditioning_emb is not None: lowerCAmelCase__ = self.FiLMLayer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Self-attention block lowerCAmelCase__ = self.attention(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = hidden_states + self.dropout(SCREAMING_SNAKE_CASE__ ) return hidden_states class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict ) -> int: super().__init__() lowerCAmelCase__ = Attention(query_dim=SCREAMING_SNAKE_CASE__ , heads=SCREAMING_SNAKE_CASE__ , dim_head=SCREAMING_SNAKE_CASE__ , out_bias=SCREAMING_SNAKE_CASE__ , scale_qk=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = TaLayerNorm(SCREAMING_SNAKE_CASE__ , eps=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = nn.Dropout(SCREAMING_SNAKE_CASE__ ) def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : List[Any]=None , ) -> Tuple: lowerCAmelCase__ = self.layer_norm(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.attention( SCREAMING_SNAKE_CASE__ , encoder_hidden_states=SCREAMING_SNAKE_CASE__ , attention_mask=attention_mask.squeeze(1 ) , ) lowerCAmelCase__ = hidden_states + self.dropout(SCREAMING_SNAKE_CASE__ ) return layer_output class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ) -> Union[str, Any]: super().__init__() lowerCAmelCase__ = TaDenseGatedActDense(d_model=SCREAMING_SNAKE_CASE__ , d_ff=SCREAMING_SNAKE_CASE__ , dropout_rate=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = TaFiLMLayer(in_features=d_model * 4 , out_features=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = TaLayerNorm(SCREAMING_SNAKE_CASE__ , eps=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = nn.Dropout(SCREAMING_SNAKE_CASE__ ) def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple=None ) -> Tuple: lowerCAmelCase__ = self.layer_norm(SCREAMING_SNAKE_CASE__ ) if conditioning_emb is not None: lowerCAmelCase__ = self.film(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.DenseReluDense(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = hidden_states + self.dropout(SCREAMING_SNAKE_CASE__ ) return hidden_states class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self : int , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Any ) -> Tuple: super().__init__() lowerCAmelCase__ = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = nn.Dropout(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = NewGELUActivation() def a ( self : str , SCREAMING_SNAKE_CASE__ : str ) -> int: lowerCAmelCase__ = self.act(self.wi_a(SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase__ = self.wi_a(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = hidden_gelu * hidden_linear lowerCAmelCase__ = self.dropout(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.wo(SCREAMING_SNAKE_CASE__ ) return hidden_states class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : int=1e-6 ) -> Any: super().__init__() lowerCAmelCase__ = nn.Parameter(torch.ones(SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase__ = eps def a ( self : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Union[str, Any]: # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 lowerCAmelCase__ = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: lowerCAmelCase__ = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class __lowerCamelCase ( nn.Module ): """simple docstring""" def a ( self : Any , SCREAMING_SNAKE_CASE__ : torch.Tensor ) -> torch.Tensor: return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044_715 * torch.pow(SCREAMING_SNAKE_CASE__ , 3.0 )) )) class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Dict: super().__init__() lowerCAmelCase__ = nn.Linear(SCREAMING_SNAKE_CASE__ , out_features * 2 , bias=SCREAMING_SNAKE_CASE__ ) def a ( self : Dict , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple ) -> Any: lowerCAmelCase__ = self.scale_bias(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ , lowerCAmelCase__ = torch.chunk(SCREAMING_SNAKE_CASE__ , 2 , -1 ) lowerCAmelCase__ = x * (1 + scale) + shift return x
221
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def a ( self : Dict ) -> Optional[int]: lowerCAmelCase__ = tempfile.mkdtemp() lowerCAmelCase__ = BlipImageProcessor() lowerCAmelCase__ = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) lowerCAmelCase__ = BlipaProcessor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(self.tmpdirname ) def a ( self : int , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).tokenizer def a ( self : Tuple , **SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).image_processor def a ( self : str ) -> int: shutil.rmtree(self.tmpdirname ) def a ( self : List[Any] ) -> Any: lowerCAmelCase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase__ = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def a ( self : str ) -> Dict: lowerCAmelCase__ = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowerCAmelCase__ = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) lowerCAmelCase__ = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ ) def a ( self : int ) -> str: lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = BlipaProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors="np" ) lowerCAmelCase__ = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def a ( self : Tuple ) -> int: lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = BlipaProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = "lower newer" lowerCAmelCase__ = processor(text=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = tokenizer(SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def a ( self : Dict ) -> str: lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = BlipaProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = "lower newer" lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE__ ): processor() def a ( self : str ) -> List[str]: lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = BlipaProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase__ = processor.batch_decode(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def a ( self : List[str] ) -> Any: lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = BlipaProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = "lower newer" lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
221
1
"""simple docstring""" # A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def _lowerCAmelCase ( lowercase_ ): UpperCAmelCase = [False] * len(lowercase_ ) UpperCAmelCase = [-1] * len(lowercase_ ) def dfs(lowercase_ , lowercase_ ): UpperCAmelCase = True UpperCAmelCase = c for u in graph[v]: if not visited[u]: dfs(lowercase_ , 1 - c ) for i in range(len(lowercase_ ) ): if not visited[i]: dfs(lowercase_ , 0 ) for i in range(len(lowercase_ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph snake_case_ = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
78
from math import factorial def A_ ( snake_case : int = 100 ) -> int: '''simple docstring''' return sum(int(snake_case ) for x in str(factorial(snake_case ) ) ) if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
328
0
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class lowercase ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 42 class lowercase ( nn.Module ): '''simple docstring''' def __init__( self , _snake_case=3 , _snake_case=3 , _snake_case=("DownEncoderBlock2D",) , _snake_case=(64,) , _snake_case=2 , _snake_case=32 , _snake_case="silu" , _snake_case=True , ) -> str: """simple docstring""" super().__init__() UpperCAmelCase = layers_per_block UpperCAmelCase = torch.nn.Convad( _snake_case , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) UpperCAmelCase = None UpperCAmelCase = nn.ModuleList([] ) # down UpperCAmelCase = block_out_channels[0] for i, down_block_type in enumerate(_snake_case ): UpperCAmelCase = output_channel UpperCAmelCase = block_out_channels[i] UpperCAmelCase = i == len(_snake_case ) - 1 UpperCAmelCase = get_down_block( _snake_case , num_layers=self.layers_per_block , in_channels=_snake_case , out_channels=_snake_case , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=_snake_case , resnet_groups=_snake_case , attention_head_dim=_snake_case , temb_channels=_snake_case , ) self.down_blocks.append(_snake_case ) # mid UpperCAmelCase = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=_snake_case , output_scale_factor=1 , resnet_time_scale_shift='''default''' , attention_head_dim=block_out_channels[-1] , resnet_groups=_snake_case , temb_channels=_snake_case , ) # out UpperCAmelCase = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=_snake_case , eps=1e-6 ) UpperCAmelCase = nn.SiLU() UpperCAmelCase = 2 * out_channels if double_z else out_channels UpperCAmelCase = nn.Convad(block_out_channels[-1] , _snake_case , 3 , padding=1 ) UpperCAmelCase = False def snake_case_ ( self , _snake_case ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = x UpperCAmelCase = self.conv_in(_snake_case ) if self.training and self.gradient_checkpointing: def create_custom_forward(_snake_case ): def custom_forward(*_snake_case ): return module(*_snake_case ) return custom_forward # down if is_torch_version('''>=''' , '''1.11.0''' ): for down_block in self.down_blocks: UpperCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(_snake_case ) , _snake_case , use_reentrant=_snake_case ) # middle UpperCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , _snake_case , use_reentrant=_snake_case ) else: for down_block in self.down_blocks: UpperCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(_snake_case ) , _snake_case ) # middle UpperCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , _snake_case ) else: # down for down_block in self.down_blocks: UpperCAmelCase = down_block(_snake_case ) # middle UpperCAmelCase = self.mid_block(_snake_case ) # post-process UpperCAmelCase = self.conv_norm_out(_snake_case ) UpperCAmelCase = self.conv_act(_snake_case ) UpperCAmelCase = self.conv_out(_snake_case ) return sample class lowercase ( nn.Module ): '''simple docstring''' def __init__( self , _snake_case=3 , _snake_case=3 , _snake_case=("UpDecoderBlock2D",) , _snake_case=(64,) , _snake_case=2 , _snake_case=32 , _snake_case="silu" , _snake_case="group" , ) -> List[Any]: """simple docstring""" super().__init__() UpperCAmelCase = layers_per_block UpperCAmelCase = nn.Convad( _snake_case , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) UpperCAmelCase = None UpperCAmelCase = nn.ModuleList([] ) UpperCAmelCase = in_channels if norm_type == '''spatial''' else None # mid UpperCAmelCase = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=_snake_case , output_scale_factor=1 , resnet_time_scale_shift='''default''' if norm_type == '''group''' else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=_snake_case , temb_channels=_snake_case , ) # up UpperCAmelCase = list(reversed(_snake_case ) ) UpperCAmelCase = reversed_block_out_channels[0] for i, up_block_type in enumerate(_snake_case ): UpperCAmelCase = output_channel UpperCAmelCase = reversed_block_out_channels[i] UpperCAmelCase = i == len(_snake_case ) - 1 UpperCAmelCase = get_up_block( _snake_case , num_layers=self.layers_per_block + 1 , in_channels=_snake_case , out_channels=_snake_case , prev_output_channel=_snake_case , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=_snake_case , resnet_groups=_snake_case , attention_head_dim=_snake_case , temb_channels=_snake_case , resnet_time_scale_shift=_snake_case , ) self.up_blocks.append(_snake_case ) UpperCAmelCase = output_channel # out if norm_type == "spatial": UpperCAmelCase = SpatialNorm(block_out_channels[0] , _snake_case ) else: UpperCAmelCase = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=_snake_case , eps=1e-6 ) UpperCAmelCase = nn.SiLU() UpperCAmelCase = nn.Convad(block_out_channels[0] , _snake_case , 3 , padding=1 ) UpperCAmelCase = False def snake_case_ ( self , _snake_case , _snake_case=None ) -> str: """simple docstring""" UpperCAmelCase = z UpperCAmelCase = self.conv_in(_snake_case ) UpperCAmelCase = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(_snake_case ): def custom_forward(*_snake_case ): return module(*_snake_case ) return custom_forward if is_torch_version('''>=''' , '''1.11.0''' ): # middle UpperCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , _snake_case , _snake_case , use_reentrant=_snake_case ) UpperCAmelCase = sample.to(_snake_case ) # up for up_block in self.up_blocks: UpperCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(_snake_case ) , _snake_case , _snake_case , use_reentrant=_snake_case ) else: # middle UpperCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , _snake_case , _snake_case ) UpperCAmelCase = sample.to(_snake_case ) # up for up_block in self.up_blocks: UpperCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(_snake_case ) , _snake_case , _snake_case ) else: # middle UpperCAmelCase = self.mid_block(_snake_case , _snake_case ) UpperCAmelCase = sample.to(_snake_case ) # up for up_block in self.up_blocks: UpperCAmelCase = up_block(_snake_case , _snake_case ) # post-process if latent_embeds is None: UpperCAmelCase = self.conv_norm_out(_snake_case ) else: UpperCAmelCase = self.conv_norm_out(_snake_case , _snake_case ) UpperCAmelCase = self.conv_act(_snake_case ) UpperCAmelCase = self.conv_out(_snake_case ) return sample class lowercase ( nn.Module ): '''simple docstring''' def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case=None , _snake_case="random" , _snake_case=False , _snake_case=True ) -> Union[str, Any]: """simple docstring""" super().__init__() UpperCAmelCase = n_e UpperCAmelCase = vq_embed_dim UpperCAmelCase = beta UpperCAmelCase = legacy UpperCAmelCase = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) UpperCAmelCase = remap if self.remap is not None: self.register_buffer('''used''' , torch.tensor(np.load(self.remap ) ) ) UpperCAmelCase = self.used.shape[0] UpperCAmelCase = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": UpperCAmelCase = self.re_embed UpperCAmelCase = self.re_embed + 1 print( f"""Remapping {self.n_e} indices to {self.re_embed} indices. """ f"""Using {self.unknown_index} for unknown indices.""" ) else: UpperCAmelCase = n_e UpperCAmelCase = sane_index_shape def snake_case_ ( self , _snake_case ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = inds.shape assert len(_snake_case ) > 1 UpperCAmelCase = inds.reshape(ishape[0] , -1 ) UpperCAmelCase = self.used.to(_snake_case ) UpperCAmelCase = (inds[:, :, None] == used[None, None, ...]).long() UpperCAmelCase = match.argmax(-1 ) UpperCAmelCase = match.sum(2 ) < 1 if self.unknown_index == "random": UpperCAmelCase = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: UpperCAmelCase = self.unknown_index return new.reshape(_snake_case ) def snake_case_ ( self , _snake_case ) -> Dict: """simple docstring""" UpperCAmelCase = inds.shape assert len(_snake_case ) > 1 UpperCAmelCase = inds.reshape(ishape[0] , -1 ) UpperCAmelCase = self.used.to(_snake_case ) if self.re_embed > self.used.shape[0]: # extra token UpperCAmelCase = 0 # simply set to zero UpperCAmelCase = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , _snake_case ) return back.reshape(_snake_case ) def snake_case_ ( self , _snake_case ) -> Optional[Any]: """simple docstring""" # reshape z -> (batch, height, width, channel) and flatten UpperCAmelCase = z.permute(0 , 2 , 3 , 1 ).contiguous() UpperCAmelCase = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z UpperCAmelCase = torch.argmin(torch.cdist(_snake_case , self.embedding.weight ) , dim=1 ) UpperCAmelCase = self.embedding(_snake_case ).view(z.shape ) UpperCAmelCase = None UpperCAmelCase = None # compute loss for embedding if not self.legacy: UpperCAmelCase = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: UpperCAmelCase = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients UpperCAmelCase = z + (z_q - z).detach() # reshape back to match original input shape UpperCAmelCase = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: UpperCAmelCase = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis UpperCAmelCase = self.remap_to_used(_snake_case ) UpperCAmelCase = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: UpperCAmelCase = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def snake_case_ ( self , _snake_case , _snake_case ) -> List[str]: """simple docstring""" # shape specifying (batch, height, width, channel) if self.remap is not None: UpperCAmelCase = indices.reshape(shape[0] , -1 ) # add batch axis UpperCAmelCase = self.unmap_to_all(_snake_case ) UpperCAmelCase = indices.reshape(-1 ) # flatten again # get quantized latent vectors UpperCAmelCase = self.embedding(_snake_case ) if shape is not None: UpperCAmelCase = z_q.view(_snake_case ) # reshape back to match original input shape UpperCAmelCase = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class lowercase ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _snake_case , _snake_case=False ) -> Dict: """simple docstring""" UpperCAmelCase = parameters UpperCAmelCase , UpperCAmelCase = torch.chunk(_snake_case , 2 , dim=1 ) UpperCAmelCase = torch.clamp(self.logvar , -30.0 , 20.0 ) UpperCAmelCase = deterministic UpperCAmelCase = torch.exp(0.5 * self.logvar ) UpperCAmelCase = torch.exp(self.logvar ) if self.deterministic: UpperCAmelCase = UpperCAmelCase = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def snake_case_ ( self , _snake_case = None ) -> torch.FloatTensor: """simple docstring""" # make sure sample is on the same device as the parameters and has same dtype UpperCAmelCase = randn_tensor( self.mean.shape , generator=_snake_case , device=self.parameters.device , dtype=self.parameters.dtype ) UpperCAmelCase = self.mean + self.std * sample return x def snake_case_ ( self , _snake_case=None ) -> Dict: """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def snake_case_ ( self , _snake_case , _snake_case=[1, 2, 3] ) -> int: """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) UpperCAmelCase = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=_snake_case ) def snake_case_ ( self ) -> Optional[int]: """simple docstring""" return self.mean
366
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class lowercase ( TensorFormatter[Mapping, """torch.Tensor""", Mapping] ): '''simple docstring''' def __init__( self , _snake_case=None , **_snake_case ) -> int: """simple docstring""" super().__init__(features=_snake_case ) UpperCAmelCase = torch_tensor_kwargs import torch # noqa import torch at initialization def snake_case_ ( self , _snake_case ) -> Union[str, Any]: """simple docstring""" import torch if isinstance(_snake_case , _snake_case ) and column: if all( isinstance(_snake_case , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(_snake_case ) return column def snake_case_ ( self , _snake_case ) -> Optional[int]: """simple docstring""" import torch if isinstance(_snake_case , (str, bytes, type(_snake_case )) ): return value elif isinstance(_snake_case , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() UpperCAmelCase = {} if isinstance(_snake_case , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): UpperCAmelCase = {'''dtype''': torch.intaa} elif isinstance(_snake_case , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): UpperCAmelCase = {'''dtype''': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_snake_case , PIL.Image.Image ): UpperCAmelCase = np.asarray(_snake_case ) return torch.tensor(_snake_case , **{**default_dtype, **self.torch_tensor_kwargs} ) def snake_case_ ( self , _snake_case ) -> Optional[Any]: """simple docstring""" import torch # support for torch, tf, jax etc. if hasattr(_snake_case , '''__array__''' ) and not isinstance(_snake_case , torch.Tensor ): UpperCAmelCase = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_snake_case , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_snake_case ) for substruct in data_struct] ) elif isinstance(_snake_case , (list, tuple) ): return self._consolidate([self.recursive_tensorize(_snake_case ) for substruct in data_struct] ) return self._tensorize(_snake_case ) def snake_case_ ( self , _snake_case ) -> List[Any]: """simple docstring""" return map_nested(self._recursive_tensorize , _snake_case , map_list=_snake_case ) def snake_case_ ( self , _snake_case ) -> Mapping: """simple docstring""" UpperCAmelCase = self.numpy_arrow_extractor().extract_row(_snake_case ) UpperCAmelCase = self.python_features_decoder.decode_row(_snake_case ) return self.recursive_tensorize(_snake_case ) def snake_case_ ( self , _snake_case ) -> "torch.Tensor": """simple docstring""" UpperCAmelCase = self.numpy_arrow_extractor().extract_column(_snake_case ) UpperCAmelCase = self.python_features_decoder.decode_column(_snake_case , pa_table.column_names[0] ) UpperCAmelCase = self.recursive_tensorize(_snake_case ) UpperCAmelCase = self._consolidate(_snake_case ) return column def snake_case_ ( self , _snake_case ) -> Mapping: """simple docstring""" UpperCAmelCase = self.numpy_arrow_extractor().extract_batch(_snake_case ) UpperCAmelCase = self.python_features_decoder.decode_batch(_snake_case ) UpperCAmelCase = self.recursive_tensorize(_snake_case ) for column_name in batch: UpperCAmelCase = self._consolidate(batch[column_name] ) return batch
152
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class A__ ( unittest.TestCase): @slow def __lowerCamelCase ( self ): __lowerCAmelCase : List[str] = TFCamembertModel.from_pretrained('jplu/tf-camembert-base' ) __lowerCAmelCase : Optional[Any] = tf.convert_to_tensor( [[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __lowerCAmelCase : Optional[int] = model(_SCREAMING_SNAKE_CASE )['last_hidden_state'] __lowerCAmelCase : Optional[Any] = tf.TensorShape((1, 10, 7_68) ) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) # compare the actual values for a slice. __lowerCAmelCase : Optional[Any] = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
86
"""simple docstring""" from __future__ import annotations lowerCamelCase__ = list[tuple[int, int]] lowerCamelCase__ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowerCamelCase__ = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class A__ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ): __lowerCAmelCase : int = pos_x __lowerCAmelCase : Optional[Any] = pos_y __lowerCAmelCase : Optional[int] = (pos_y, pos_x) __lowerCAmelCase : Union[str, Any] = goal_x __lowerCAmelCase : Any = goal_y __lowerCAmelCase : Optional[Any] = g_cost __lowerCAmelCase : Any = parent __lowerCAmelCase : Union[str, Any] = self.calculate_heuristic() def __lowerCamelCase ( self ): __lowerCAmelCase : str = abs(self.pos_x - self.goal_x ) __lowerCAmelCase : str = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self , _SCREAMING_SNAKE_CASE ): return self.f_cost < other.f_cost class A__ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[int] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_99_99 , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = [self.start] __lowerCAmelCase : list[Node] = [] __lowerCAmelCase : str = False def __lowerCamelCase ( self ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __lowerCAmelCase : Optional[int] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: __lowerCAmelCase : Union[str, Any] = True return self.retrace_path(_SCREAMING_SNAKE_CASE ) self.closed_nodes.append(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = self.get_successors(_SCREAMING_SNAKE_CASE ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_SCREAMING_SNAKE_CASE ) else: # retrieve the best current path __lowerCAmelCase : Optional[Any] = self.open_nodes.pop(self.open_nodes.index(_SCREAMING_SNAKE_CASE ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_SCREAMING_SNAKE_CASE ) else: self.open_nodes.append(_SCREAMING_SNAKE_CASE ) if not self.reached: return [self.start.pos] return None def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Dict = [] for action in delta: __lowerCAmelCase : Optional[int] = parent.pos_x + action[1] __lowerCAmelCase : Union[str, Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_SCREAMING_SNAKE_CASE ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _SCREAMING_SNAKE_CASE , ) ) return successors def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Union[str, Any] = node __lowerCAmelCase : Optional[int] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __lowerCAmelCase : int = current_node.parent path.reverse() return path if __name__ == "__main__": lowerCamelCase__ = (0, 0) lowerCamelCase__ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("""------""") lowerCamelCase__ = GreedyBestFirst(init, goal) lowerCamelCase__ = greedy_bf.search() if path: for pos_x, pos_y in path: lowerCamelCase__ = 2 for elem in grid: print(elem)
86
1
from __future__ import annotations import math SCREAMING_SNAKE_CASE : Union[str, Any] = "2020.9.26" SCREAMING_SNAKE_CASE : Union[str, Any] = "xcodz-dot, cclaus, dhruvmanila" def UpperCamelCase ( _a , _a , _a , _a , _a ) -> tuple[float, float]: '''simple docstring''' if not all(isinstance(_a , (float, int) ) for val in locals().values() ): lowercase_ :Optional[int] = f"Input values must either be float or int: {list(locals().values() )}" raise TypeError(_a ) lowercase_ :Tuple = ((x * distance) / (z + distance)) * scale lowercase_ :Optional[int] = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def UpperCamelCase ( _a , _a , _a , _a , _a ) -> tuple[float, float, float]: '''simple docstring''' if not isinstance(_a , _a ): raise TypeError('''Axis must be a str''' ) lowercase_ :List[Any] = locals() del input_variables["axis"] if not all(isinstance(_a , (float, int) ) for val in input_variables.values() ): lowercase_ :List[str] = ( '''Input values except axis must either be float or int: ''' f"{list(input_variables.values() )}" ) raise TypeError(_a ) lowercase_ :Tuple = (angle % 3_6_0) / 4_5_0 * 1_8_0 / math.pi if axis == "z": lowercase_ :Any = x * math.cos(_a ) - y * math.sin(_a ) lowercase_ :List[Any] = y * math.cos(_a ) + x * math.sin(_a ) lowercase_ :int = z elif axis == "x": lowercase_ :List[Any] = y * math.cos(_a ) - z * math.sin(_a ) lowercase_ :int = z * math.cos(_a ) + y * math.sin(_a ) lowercase_ :int = x elif axis == "y": lowercase_ :Union[str, Any] = x * math.cos(_a ) - z * math.sin(_a ) lowercase_ :List[str] = z * math.cos(_a ) + x * math.sin(_a ) lowercase_ :Any = y else: raise ValueError('''not a valid axis, choose one of \'x\', \'y\', \'z\'''' ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(f"{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }") print(f"{rotate(1.0, 2.0, 3.0, 'y', 90.0) = }")
252
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Any = { "edbeeching/decision-transformer-gym-hopper-medium": ( "https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class UpperCamelCase ( lowercase__ ): '''simple docstring''' lowercase : Optional[int] ="""decision_transformer""" lowercase : Dict =["""past_key_values"""] lowercase : Any ={ """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , UpperCamelCase_=17 , UpperCamelCase_=4 , UpperCamelCase_=128 , UpperCamelCase_=4096 , UpperCamelCase_=True , UpperCamelCase_=1 , UpperCamelCase_=1024 , UpperCamelCase_=3 , UpperCamelCase_=1 , UpperCamelCase_=None , UpperCamelCase_="relu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=1E-5 , UpperCamelCase_=0.02 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=5_0256 , UpperCamelCase_=5_0256 , UpperCamelCase_=False , UpperCamelCase_=False , **UpperCamelCase_ , ): lowercase_ :Any = state_dim lowercase_ :List[str] = act_dim lowercase_ :List[str] = hidden_size lowercase_ :int = max_ep_len lowercase_ :List[str] = action_tanh lowercase_ :Any = vocab_size lowercase_ :List[Any] = n_positions lowercase_ :List[str] = n_layer lowercase_ :Optional[Any] = n_head lowercase_ :int = n_inner lowercase_ :List[str] = activation_function lowercase_ :List[str] = resid_pdrop lowercase_ :Dict = embd_pdrop lowercase_ :List[Any] = attn_pdrop lowercase_ :Union[str, Any] = layer_norm_epsilon lowercase_ :List[str] = initializer_range lowercase_ :Any = scale_attn_weights lowercase_ :Union[str, Any] = use_cache lowercase_ :Any = scale_attn_by_inverse_layer_idx lowercase_ :Tuple = reorder_and_upcast_attn lowercase_ :int = bos_token_id lowercase_ :List[str] = eos_token_id super().__init__(bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ )
252
1
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def _lowercase ( lowercase__ , lowercase__=False ): __lowerCAmelCase : Union[str, Any] = OmegaConf.load(lowercase__ ) if display: print(yaml.dump(OmegaConf.to_container(lowercase__ ) ) ) return config def _lowercase ( lowercase__ , lowercase__=None , lowercase__=None ): if conf_path is None: __lowerCAmelCase : Tuple = '''./model_checkpoints/vqgan_only.yaml''' __lowerCAmelCase : Tuple = load_config(lowercase__ , display=lowercase__ ) __lowerCAmelCase : Optional[Any] = VQModel(**config.model.params ) if ckpt_path is None: __lowerCAmelCase : List[str] = '''./model_checkpoints/vqgan_only.pt''' __lowerCAmelCase : List[str] = torch.load(lowercase__ , map_location=lowercase__ ) if ".ckpt" in ckpt_path: __lowerCAmelCase : Tuple = sd['''state_dict'''] model.load_state_dict(lowercase__ , strict=lowercase__ ) model.to(lowercase__ ) del sd return model def _lowercase ( lowercase__ , lowercase__ ): __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase : str = model.encode(lowercase__ ) print(f"""VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}""" ) __lowerCAmelCase : Optional[int] = model.decode(lowercase__ ) return xrec def _lowercase ( lowercase__ , lowercase__=False ): __lowerCAmelCase, __lowerCAmelCase : str = string.rsplit('''.''' , 1 ) if reload: __lowerCAmelCase : Any = importlib.import_module(lowercase__ ) importlib.reload(lowercase__ ) return getattr(importlib.import_module(lowercase__ , package=lowercase__ ) , cls ) def _lowercase ( lowercase__ ): if "target" not in config: raise KeyError('''Expected key `target` to instantiate.''' ) return get_obj_from_str(config['''target'''] )(**config.get('''params''' , {} ) ) def _lowercase ( lowercase__ , lowercase__ , lowercase__=True , lowercase__=True ): __lowerCAmelCase : Tuple = instantiate_from_config(lowercase__ ) if sd is not None: model.load_state_dict(lowercase__ ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def _lowercase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): # load the specified checkpoint if ckpt: __lowerCAmelCase : List[Any] = torch.load(lowercase__ , map_location='''cpu''' ) __lowerCAmelCase : Dict = pl_sd['''global_step'''] print(f"""loaded model from global step {global_step}.""" ) else: __lowerCAmelCase : Any = {'''state_dict''': None} __lowerCAmelCase : Union[str, Any] = None __lowerCAmelCase : Optional[Any] = load_model_from_config(config.model , pl_sd['''state_dict'''] , gpu=lowercase__ , eval_mode=lowercase__ )['''model'''] return model, global_step
275
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def _lowercase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): if isinstance(lowercase__ , lowercase__ ): __lowerCAmelCase : Dict = np.full((len(lowercase__ ), sequence_length, 2) , lowercase__ ) else: __lowerCAmelCase : Optional[int] = np.full((len(lowercase__ ), sequence_length) , lowercase__ ) for i, tensor in enumerate(lowercase__ ): if padding_side == "right": if isinstance(lowercase__ , lowercase__ ): __lowerCAmelCase : Union[str, Any] = tensor[:sequence_length] else: __lowerCAmelCase : int = tensor[:sequence_length] else: if isinstance(lowercase__ , lowercase__ ): __lowerCAmelCase : Union[str, Any] = tensor[:sequence_length] else: __lowerCAmelCase : Optional[Any] = tensor[:sequence_length] return out_tensor.tolist() def _lowercase ( lowercase__ ): __lowerCAmelCase : Union[str, Any] = ord(lowercase__ ) if (cp >= 3_3 and cp <= 4_7) or (cp >= 5_8 and cp <= 6_4) or (cp >= 9_1 and cp <= 9_6) or (cp >= 1_2_3 and cp <= 1_2_6): return True __lowerCAmelCase : int = unicodedata.category(lowercase__ ) if cat.startswith('''P''' ): return True return False @dataclass class __lowercase (_UpperCAmelCase ): _UpperCamelCase = 42 _UpperCamelCase = True _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = -100 _UpperCamelCase = "pt" def UpperCamelCase__ ( self , A_ ) ->Optional[int]: '''simple docstring''' import torch __lowerCAmelCase : List[str] = '''label''' if '''label''' in features[0].keys() else '''labels''' __lowerCAmelCase : Union[str, Any] = [feature[label_name] for feature in features] if label_name in features[0].keys() else None __lowerCAmelCase : List[Any] = self.tokenizer.pad( A_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch __lowerCAmelCase : Dict = torch.tensor(batch['''entity_ids'''] ).shape[1] __lowerCAmelCase : Optional[int] = self.tokenizer.padding_side if padding_side == "right": __lowerCAmelCase : Any = [ list(A_ ) + [self.label_pad_token_id] * (sequence_length - len(A_ )) for label in labels ] else: __lowerCAmelCase : Optional[int] = [ [self.label_pad_token_id] * (sequence_length - len(A_ )) + list(A_ ) for label in labels ] __lowerCAmelCase : Tuple = [feature['''ner_tags'''] for feature in features] __lowerCAmelCase : List[Any] = padding_tensor(A_ , -1 , A_ , A_ ) __lowerCAmelCase : Optional[int] = [feature['''original_entity_spans'''] for feature in features] __lowerCAmelCase : Any = padding_tensor(A_ , (-1, -1) , A_ , A_ ) __lowerCAmelCase : Optional[Any] = {k: torch.tensor(A_ , dtype=torch.intaa ) for k, v in batch.items()} return batch
275
1
"""simple docstring""" def lowercase ( _snake_case : str , _snake_case : str ) ->bool: """simple docstring""" __snake_case : Optional[int] = len(_snake_case ) + 1 __snake_case : Optional[int] = len(_snake_case ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. __snake_case : Tuple = [[0 for i in range(_snake_case )] for j in range(_snake_case )] # since string of zero length match pattern of zero length __snake_case : Tuple = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , _snake_case ): __snake_case : List[Any] = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , _snake_case ): __snake_case : Optional[int] = dp[0][j - 2] if pattern[j - 1] == '''*''' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , _snake_case ): for j in range(1 , _snake_case ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": __snake_case : List[str] = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: __snake_case : Union[str, Any] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): __snake_case : str = dp[i - 1][j] else: __snake_case : str = 0 else: __snake_case : Tuple = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") SCREAMING_SNAKE_CASE : Any = """aab""" SCREAMING_SNAKE_CASE : str = """c*a*b""" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F'{input_string} matches the given pattern {pattern}') else: print(F'{input_string} does not match with the given pattern {pattern}')
24
"""simple docstring""" import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def lowercase ( _snake_case : str , _snake_case : str , _snake_case : str ) ->List[Any]: """simple docstring""" def get_masked_lm_array(_snake_case : str ): __snake_case : int = f"""masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : str = tf.train.load_variable(_snake_case , _snake_case ) if "kernel" in name: __snake_case : Any = array.transpose() return torch.from_numpy(_snake_case ) def get_encoder_array(_snake_case : str ): __snake_case : List[str] = f"""encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : Union[str, Any] = tf.train.load_variable(_snake_case , _snake_case ) if "kernel" in name: __snake_case : Optional[int] = array.transpose() return torch.from_numpy(_snake_case ) def get_encoder_layer_array(_snake_case : int , _snake_case : str ): __snake_case : str = f"""encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : Optional[int] = tf.train.load_variable(_snake_case , _snake_case ) if "kernel" in name: __snake_case : Optional[Any] = array.transpose() return torch.from_numpy(_snake_case ) def get_encoder_attention_layer_array(_snake_case : int , _snake_case : str , _snake_case : str ): __snake_case : Any = f"""encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : Dict = tf.train.load_variable(_snake_case , _snake_case ) __snake_case : int = array.reshape(_snake_case ) if "kernel" in name: __snake_case : Optional[int] = array.transpose() return torch.from_numpy(_snake_case ) print(f"""Loading model based on config from {config_path}...""" ) __snake_case : Optional[Any] = BertConfig.from_json_file(_snake_case ) __snake_case : Dict = BertForMaskedLM(_snake_case ) # Layers for layer_index in range(0 , config.num_hidden_layers ): __snake_case : BertLayer = model.bert.encoder.layer[layer_index] # Self-attention __snake_case : BertSelfAttention = layer.attention.self __snake_case : int = get_encoder_attention_layer_array( _snake_case , '''_query_dense/kernel''' , self_attn.query.weight.data.shape ) __snake_case : str = get_encoder_attention_layer_array( _snake_case , '''_query_dense/bias''' , self_attn.query.bias.data.shape ) __snake_case : str = get_encoder_attention_layer_array( _snake_case , '''_key_dense/kernel''' , self_attn.key.weight.data.shape ) __snake_case : List[Any] = get_encoder_attention_layer_array( _snake_case , '''_key_dense/bias''' , self_attn.key.bias.data.shape ) __snake_case : Tuple = get_encoder_attention_layer_array( _snake_case , '''_value_dense/kernel''' , self_attn.value.weight.data.shape ) __snake_case : Union[str, Any] = get_encoder_attention_layer_array( _snake_case , '''_value_dense/bias''' , self_attn.value.bias.data.shape ) # Self-attention Output __snake_case : BertSelfOutput = layer.attention.output __snake_case : Dict = get_encoder_attention_layer_array( _snake_case , '''_output_dense/kernel''' , self_output.dense.weight.data.shape ) __snake_case : Tuple = get_encoder_attention_layer_array( _snake_case , '''_output_dense/bias''' , self_output.dense.bias.data.shape ) __snake_case : str = get_encoder_layer_array(_snake_case , '''_attention_layer_norm/gamma''' ) __snake_case : Any = get_encoder_layer_array(_snake_case , '''_attention_layer_norm/beta''' ) # Intermediate __snake_case : BertIntermediate = layer.intermediate __snake_case : int = get_encoder_layer_array(_snake_case , '''_intermediate_dense/kernel''' ) __snake_case : int = get_encoder_layer_array(_snake_case , '''_intermediate_dense/bias''' ) # Output __snake_case : BertOutput = layer.output __snake_case : List[str] = get_encoder_layer_array(_snake_case , '''_output_dense/kernel''' ) __snake_case : Dict = get_encoder_layer_array(_snake_case , '''_output_dense/bias''' ) __snake_case : List[str] = get_encoder_layer_array(_snake_case , '''_output_layer_norm/gamma''' ) __snake_case : Union[str, Any] = get_encoder_layer_array(_snake_case , '''_output_layer_norm/beta''' ) # Embeddings __snake_case : Optional[int] = get_encoder_array('''_position_embedding_layer/embeddings''' ) __snake_case : str = get_encoder_array('''_type_embedding_layer/embeddings''' ) __snake_case : int = get_encoder_array('''_embedding_norm_layer/gamma''' ) __snake_case : Tuple = get_encoder_array('''_embedding_norm_layer/beta''' ) # LM Head __snake_case : Optional[Any] = model.cls.predictions.transform __snake_case : Dict = get_masked_lm_array('''dense/kernel''' ) __snake_case : Union[str, Any] = get_masked_lm_array('''dense/bias''' ) __snake_case : str = get_masked_lm_array('''layer_norm/gamma''' ) __snake_case : Tuple = get_masked_lm_array('''layer_norm/beta''' ) __snake_case : Tuple = get_masked_lm_array('''embedding_table''' ) # Pooling __snake_case : Optional[Any] = BertPooler(config=_snake_case ) __snake_case : BertPooler = get_encoder_array('''_pooler_layer/kernel''' ) __snake_case : BertPooler = get_encoder_array('''_pooler_layer/bias''' ) # Export final model model.save_pretrained(_snake_case ) # Integration test - should load without any errors ;) __snake_case : Dict = BertForMaskedLM.from_pretrained(_snake_case ) print(new_model.eval() ) print('''Model conversion was done sucessfully!''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() parser.add_argument( """--tf_checkpoint_path""", type=str, required=True, help="""Path to the TensorFlow Token Dropping checkpoint path.""" ) parser.add_argument( """--bert_config_file""", type=str, required=True, help="""The config json file corresponding to the BERT model. This specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", type=str, required=True, help="""Path to the output PyTorch model.""", ) SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
24
1
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : int = { "snap-research/efficientformer-l1-300": ( "https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json" ), } class _lowerCamelCase( _a ): lowercase_ : List[Any] = """efficientformer""" def __init__( self, lowerCamelCase = [3, 2, 6, 4], lowerCamelCase = [48, 96, 2_24, 4_48], lowerCamelCase = [True, True, True, True], lowerCamelCase = 4_48, lowerCamelCase = 32, lowerCamelCase = 4, lowerCamelCase = 7, lowerCamelCase = 5, lowerCamelCase = 8, lowerCamelCase = 4, lowerCamelCase = 0.0, lowerCamelCase = 16, lowerCamelCase = 3, lowerCamelCase = 3, lowerCamelCase = 3, lowerCamelCase = 2, lowerCamelCase = 1, lowerCamelCase = 0.0, lowerCamelCase = 1, lowerCamelCase = True, lowerCamelCase = True, lowerCamelCase = 1E-5, lowerCamelCase = "gelu", lowerCamelCase = 0.0_2, lowerCamelCase = 1E-12, lowerCamelCase = 2_24, lowerCamelCase = 1E-05, **lowerCamelCase, ) -> None: """simple docstring""" super().__init__(**lowerCamelCase) _lowercase : Dict = hidden_act _lowercase : Union[str, Any] = hidden_dropout_prob _lowercase : int = hidden_sizes _lowercase : Union[str, Any] = num_hidden_layers _lowercase : List[Any] = num_attention_heads _lowercase : Dict = initializer_range _lowercase : int = layer_norm_eps _lowercase : Optional[Any] = patch_size _lowercase : List[str] = num_channels _lowercase : Tuple = depths _lowercase : Tuple = mlp_expansion_ratio _lowercase : str = downsamples _lowercase : Tuple = dim _lowercase : Tuple = key_dim _lowercase : Union[str, Any] = attention_ratio _lowercase : int = resolution _lowercase : Optional[Any] = pool_size _lowercase : Optional[int] = downsample_patch_size _lowercase : Dict = downsample_stride _lowercase : Optional[Any] = downsample_pad _lowercase : Optional[int] = drop_path_rate _lowercase : List[str] = num_metaad_blocks _lowercase : List[Any] = distillation _lowercase : List[str] = use_layer_scale _lowercase : Dict = layer_scale_init_value _lowercase : Union[str, Any] = image_size _lowercase : Dict = batch_norm_eps
21
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE : List[str] = { "configuration_speech_to_text": ["SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Speech2TextConfig"], "processing_speech_to_text": ["Speech2TextProcessor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Union[str, Any] = ["Speech2TextTokenizer"] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : int = ["Speech2TextFeatureExtractor"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[Any] = [ "TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSpeech2TextForConditionalGeneration", "TFSpeech2TextModel", "TFSpeech2TextPreTrainedModel", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : str = [ "SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Speech2TextForConditionalGeneration", "Speech2TextModel", "Speech2TextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Dict = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class _snake_case ( lowercase_ ): lowerCAmelCase_ : Any = "camembert" def __init__( self , a__=30_522 , a__=768 , a__=12 , a__=12 , a__=3_072 , a__="gelu" , a__=0.1 , a__=0.1 , a__=512 , a__=2 , a__=0.0_2 , a__=1e-12 , a__=1 , a__=0 , a__=2 , a__="absolute" , a__=True , a__=None , **a__ , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = hidden_act snake_case_ = intermediate_size snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = position_embedding_type snake_case_ = use_cache snake_case_ = classifier_dropout class _snake_case ( lowercase_ ): @property def lowerCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": snake_case_ = {0: "batch", 1: "choice", 2: "sequence"} else: snake_case_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
354
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class _snake_case : def __init__( self , a__ , a__=13 , a__=7 , a__=True , a__=True , a__=True , a__=True , a__=99 , a__=32 , a__=2 , a__=4 , a__=37 , a__="gelu" , a__=0.1 , a__=0.1 , a__=512 , a__=16 , a__=2 , a__=0.0_2 , a__=3 , a__=4 , a__=None , a__=1_000 , ) -> Optional[int]: '''simple docstring''' snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope snake_case_ = range_bbox def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment snake_case_ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: snake_case_ = bbox[i, j, 3] snake_case_ = bbox[i, j, 1] snake_case_ = t if bbox[i, j, 2] < bbox[i, j, 0]: snake_case_ = bbox[i, j, 2] snake_case_ = bbox[i, j, 0] snake_case_ = t snake_case_ = tf.convert_to_tensor(a__ ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ ) -> Optional[Any]: '''simple docstring''' snake_case_ = TFLayoutLMModel(config=a__ ) snake_case_ = model(a__ , a__ , attention_mask=a__ , token_type_ids=a__ ) snake_case_ = model(a__ , a__ , token_type_ids=a__ ) snake_case_ = model(a__ , a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase__ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ ) -> Union[str, Any]: '''simple docstring''' snake_case_ = TFLayoutLMForMaskedLM(config=a__ ) snake_case_ = model(a__ , a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ ) -> Optional[int]: '''simple docstring''' snake_case_ = self.num_labels snake_case_ = TFLayoutLMForSequenceClassification(config=a__ ) snake_case_ = model(a__ , a__ , attention_mask=a__ , token_type_ids=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ ) -> List[str]: '''simple docstring''' snake_case_ = self.num_labels snake_case_ = TFLayoutLMForTokenClassification(config=a__ ) snake_case_ = model(a__ , a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ ) -> Union[str, Any]: '''simple docstring''' snake_case_ = TFLayoutLMForQuestionAnswering(config=a__ ) snake_case_ = model(a__ , a__ , attention_mask=a__ , token_type_ids=a__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) = config_and_inputs snake_case_ = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class _snake_case ( lowercase_ , lowercase_ , unittest.TestCase ): lowerCAmelCase_ : Optional[int] = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) lowerCAmelCase_ : List[Any] = ( { "feature-extraction": TFLayoutLMModel, "fill-mask": TFLayoutLMForMaskedLM, "text-classification": TFLayoutLMForSequenceClassification, "token-classification": TFLayoutLMForTokenClassification, "zero-shot": TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase_ : Union[str, Any] = False lowerCAmelCase_ : int = True lowerCAmelCase_ : List[str] = 10 def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ = TFLayoutLMModelTester(self ) snake_case_ = ConfigTester(self , config_class=a__ , hidden_size=37 ) def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a__ ) def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a__ ) def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a__ ) def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a__ ) @slow def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = TFLayoutLMModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @unittest.skip("Onnx compliancy broke with TF 2.10" ) def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' pass def UpperCamelCase_( ): '''simple docstring''' snake_case_ = tf.convert_to_tensor([[1_0_1,1_0_1_9,1_0_1_4,1_0_1_6,1_0_3_7,1_2_8_4_9,4_7_4_7,1_0_0_4,1_4_2_4_6,2_2_7_8,5_4_3_9,4_5_2_4,5_0_0_2,2_9_3_0,2_1_9_3,2_9_3_0,4_3_4_1,3_2_0_8,1_0_0_5,1_0_5_5,2_1_7_1,2_8_4_8,1_1_3_0_0,3_5_3_1,1_0_2],[1_0_1,4_0_7_0,4_0_3_4,7_0_2_0,1_0_2_4,3_0_5_8,1_0_1_5,1_0_1_3,2_8_6_1,1_0_1_3,6_0_7_0,1_9_2_7_4,2_7_7_2,6_2_0_5,2_7_8_1_4,1_6_1_4_7,1_6_1_4_7,4_3_4_3,2_0_4_7,1_0_2_8_3,1_0_9_6_9,1_4_3_8_9,1_0_1_2,2_3_3_8,1_0_2]] ) # noqa: E231 snake_case_ = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 snake_case_ = tf.convert_to_tensor([[[0,0,0,0],[4_2_3,2_3_7,4_4_0,2_5_1],[4_2_7,2_7_2,4_4_1,2_8_7],[4_1_9,1_1_5,4_3_7,1_2_9],[9_6_1,8_8_5,9_9_2,9_1_2],[2_5_6,3_8,3_3_0,5_8],[2_5_6,3_8,3_3_0,5_8],[3_3_6,4_2,3_5_3,5_7],[3_6_0,3_9,4_0_1,5_6],[3_6_0,3_9,4_0_1,5_6],[4_1_1,3_9,4_7_1,5_9],[4_7_9,4_1,5_2_8,5_9],[5_3_3,3_9,6_3_0,6_0],[6_7,1_1_3,1_3_4,1_3_1],[1_4_1,1_1_5,2_0_9,1_3_2],[6_8,1_4_9,1_3_3,1_6_6],[1_4_1,1_4_9,1_8_7,1_6_4],[1_9_5,1_4_8,2_8_7,1_6_5],[1_9_5,1_4_8,2_8_7,1_6_5],[1_9_5,1_4_8,2_8_7,1_6_5],[2_9_5,1_4_8,3_4_9,1_6_5],[4_4_1,1_4_9,4_9_2,1_6_6],[4_9_7,1_4_9,5_4_6,1_6_4],[6_4,2_0_1,1_2_5,2_1_8],[1_0_0_0,1_0_0_0,1_0_0_0,1_0_0_0]],[[0,0,0,0],[6_6_2,1_5_0,7_5_4,1_6_6],[6_6_5,1_9_9,7_4_2,2_1_1],[5_1_9,2_1_3,5_5_4,2_2_8],[5_1_9,2_1_3,5_5_4,2_2_8],[1_3_4,4_3_3,1_8_7,4_5_4],[1_3_0,4_6_7,2_0_4,4_8_0],[1_3_0,4_6_7,2_0_4,4_8_0],[1_3_0,4_6_7,2_0_4,4_8_0],[1_3_0,4_6_7,2_0_4,4_8_0],[1_3_0,4_6_7,2_0_4,4_8_0],[3_1_4,4_6_9,3_7_6,4_8_2],[5_0_4,6_8_4,5_8_2,7_0_6],[9_4_1,8_2_5,9_7_3,9_0_0],[9_4_1,8_2_5,9_7_3,9_0_0],[9_4_1,8_2_5,9_7_3,9_0_0],[9_4_1,8_2_5,9_7_3,9_0_0],[6_1_0,7_4_9,6_5_2,7_6_5],[1_3_0,6_5_9,1_6_8,6_7_2],[1_7_6,6_5_7,2_3_7,6_7_2],[2_3_8,6_5_7,3_1_2,6_7_2],[4_4_3,6_5_3,6_2_8,6_7_2],[4_4_3,6_5_3,6_2_8,6_7_2],[7_1_6,3_0_1,8_2_5,3_1_7],[1_0_0_0,1_0_0_0,1_0_0_0,1_0_0_0]]] ) # noqa: E231 snake_case_ = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) snake_case_ = tf.convert_to_tensor([[-1_0_0,1_0,1_0,1_0,9,1,-1_0_0,7,7,-1_0_0,7,7,4,2,5,2,8,8,-1_0_0,-1_0_0,5,0,3,2,-1_0_0],[-1_0_0,1_2,1_2,1_2,-1_0_0,1_2,1_0,-1_0_0,-1_0_0,-1_0_0,-1_0_0,1_0,1_2,9,-1_0_0,-1_0_0,-1_0_0,1_0,1_0,1_0,9,1_2,-1_0_0,1_0,-1_0_0]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class _snake_case ( unittest.TestCase ): @slow def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ = TFLayoutLMModel.from_pretrained("microsoft/layoutlm-base-uncased" ) snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ = prepare_layoutlm_batch_inputs() # forward pass snake_case_ = model(input_ids=a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ ) # test the sequence output on [0, :3, :3] snake_case_ = tf.convert_to_tensor( [[0.1_7_8_5, -0.1_9_4_7, -0.0_4_2_5], [-0.3_2_5_4, -0.2_8_0_7, 0.2_5_5_3], [-0.5_3_9_1, -0.3_3_2_2, 0.3_3_6_4]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , a__ , atol=1e-3 ) ) # test the pooled output on [1, :3] snake_case_ = tf.convert_to_tensor([-0.6_5_8_0, -0.0_2_1_4, 0.8_5_5_2] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , a__ , atol=1e-3 ) ) @slow def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ = TFLayoutLMForSequenceClassification.from_pretrained("microsoft/layoutlm-base-uncased" , num_labels=2 ) snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ = prepare_layoutlm_batch_inputs() # forward pass snake_case_ = model( input_ids=a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar snake_case_ = outputs.loss snake_case_ = (2,) self.assertEqual(loss.shape , a__ ) # test the shape of the logits snake_case_ = outputs.logits snake_case_ = (2, 2) self.assertEqual(logits.shape , a__ ) @slow def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ = TFLayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased" , num_labels=13 ) snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ = prepare_layoutlm_batch_inputs() # forward pass snake_case_ = model( input_ids=a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) # test the shape of the logits snake_case_ = outputs.logits snake_case_ = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , a__ ) @slow def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ = TFLayoutLMForQuestionAnswering.from_pretrained("microsoft/layoutlm-base-uncased" ) snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ = prepare_layoutlm_batch_inputs() # forward pass snake_case_ = model(input_ids=a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ ) # test the shape of the logits snake_case_ = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , a__ ) self.assertEqual(outputs.end_logits.shape , a__ )
92
0
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __snake_case =logging.get_logger(__name__) __snake_case ="""▁""" __snake_case ={ """vocab_file""": """vocab.json""", """spm_file""": """sentencepiece.bpe.model""", } __snake_case ={ """vocab_file""": { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json""" ), }, """spm_file""": { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model""" ) }, } __snake_case ={ """facebook/s2t-small-librispeech-asr""": 1_024, } __snake_case =["""pt""", """fr""", """ru""", """nl""", """ro""", """it""", """es""", """de"""] __snake_case ={"""mustc""": MUSTC_LANGS} class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : int = VOCAB_FILES_NAMES lowerCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Union[str, Any] = MAX_MODEL_INPUT_SIZES lowerCamelCase : List[str] = ['''input_ids''', '''attention_mask'''] lowerCamelCase : List[int] = [] def __init__( self : Optional[int] , UpperCAmelCase__ : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : List[str]="<s>" , UpperCAmelCase__ : str="</s>" , UpperCAmelCase__ : str="<pad>" , UpperCAmelCase__ : Tuple="<unk>" , UpperCAmelCase__ : Any=False , UpperCAmelCase__ : str=False , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : Optional[Dict[str, Any]] = None , **UpperCAmelCase__ : str , ) -> None: lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , do_upper_case=UpperCAmelCase__ , do_lower_case=UpperCAmelCase__ , tgt_lang=UpperCAmelCase__ , lang_codes=UpperCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase__ , ) lowerCAmelCase = do_upper_case lowerCAmelCase = do_lower_case lowerCAmelCase = load_json(UpperCAmelCase__ ) lowerCAmelCase = {v: k for k, v in self.encoder.items()} lowerCAmelCase = spm_file lowerCAmelCase = load_spm(UpperCAmelCase__ , self.sp_model_kwargs ) if lang_codes is not None: lowerCAmelCase = lang_codes lowerCAmelCase = LANGUAGES[lang_codes] lowerCAmelCase = [F'''<lang:{lang}>''' for lang in self.langs] lowerCAmelCase = {lang: self.sp_model.PieceToId(F'''<lang:{lang}>''' ) for lang in self.langs} lowerCAmelCase = self.lang_tokens lowerCAmelCase = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: lowerCAmelCase = {} @property def __UpperCAmelCase ( self : Optional[int] ) -> int: return len(self.encoder ) @property def __UpperCAmelCase ( self : Tuple ) -> str: return self._tgt_lang @tgt_lang.setter def __UpperCAmelCase ( self : Dict , UpperCAmelCase__ : Tuple ) -> None: lowerCAmelCase = new_tgt_lang self.set_tgt_lang_special_tokens(UpperCAmelCase__ ) def __UpperCAmelCase ( self : int , UpperCAmelCase__ : str ) -> None: lowerCAmelCase = self.lang_code_to_id[tgt_lang] lowerCAmelCase = [lang_code_id] def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : str ) -> List[str]: return self.sp_model.encode(UpperCAmelCase__ , out_type=UpperCAmelCase__ ) def __UpperCAmelCase ( self : int , UpperCAmelCase__ : Dict ) -> Optional[int]: return self.encoder.get(UpperCAmelCase__ , self.encoder[self.unk_token] ) def __UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase__ : int ) -> str: return self.decoder.get(UpperCAmelCase__ , self.unk_token ) def __UpperCAmelCase ( self : Tuple , UpperCAmelCase__ : List[str] ) -> str: lowerCAmelCase = [] lowerCAmelCase = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: lowerCAmelCase = self.sp_model.decode(UpperCAmelCase__ ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " lowerCAmelCase = [] else: current_sub_tokens.append(UpperCAmelCase__ ) lowerCAmelCase = self.sp_model.decode(UpperCAmelCase__ ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : Dict=None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None , UpperCAmelCase__ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase__ , token_ids_a=UpperCAmelCase__ , already_has_special_tokens=UpperCAmelCase__ ) lowerCAmelCase = [1] * len(self.prefix_tokens ) lowerCAmelCase = [1] if token_ids_a is None: return prefix_ones + ([0] * len(UpperCAmelCase__ )) + suffix_ones return prefix_ones + ([0] * len(UpperCAmelCase__ )) + ([0] * len(UpperCAmelCase__ )) + suffix_ones def __UpperCAmelCase ( self : str ) -> Dict: lowerCAmelCase = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : int ) -> Dict: lowerCAmelCase = self.__dict__.copy() lowerCAmelCase = None return state def __setstate__( self : Optional[Any] , UpperCAmelCase__ : Dict ) -> None: lowerCAmelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowerCAmelCase = {} lowerCAmelCase = load_spm(self.spm_file , self.sp_model_kwargs ) def __UpperCAmelCase ( self : int , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Tuple[str]: lowerCAmelCase = Path(UpperCAmelCase__ ) assert save_dir.is_dir(), F'''{save_directory} should be a directory''' lowerCAmelCase = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) lowerCAmelCase = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , UpperCAmelCase__ ) if os.path.abspath(self.spm_file ) != os.path.abspath(UpperCAmelCase__ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , UpperCAmelCase__ ) elif not os.path.isfile(self.spm_file ): with open(UpperCAmelCase__ , 'wb' ) as fi: lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase__ ) return (str(UpperCAmelCase__ ), str(UpperCAmelCase__ )) def a_ ( lowerCamelCase : str , lowerCamelCase : Dict[str, Any] ): lowerCAmelCase = sentencepiece.SentencePieceProcessor(**lowerCamelCase ) spm.Load(str(lowerCamelCase ) ) return spm def a_ ( lowerCamelCase : str ): with open(lowerCamelCase , 'r' ) as f: return json.load(lowerCamelCase ) def a_ ( lowerCamelCase : Tuple , lowerCamelCase : str ): with open(lowerCamelCase , 'w' ) as f: json.dump(lowerCamelCase , lowerCamelCase , indent=2 )
4
'''simple docstring''' def a_ ( lowerCamelCase : Optional[Any] ): return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def a_ ( lowerCamelCase : dict[int, list[int]] ): lowerCAmelCase = 0 lowerCAmelCase = len(lowerCamelCase ) # No of vertices in graph lowerCAmelCase = [0] * n lowerCAmelCase = [False] * n def dfs(lowerCamelCase : Tuple , lowerCamelCase : str , lowerCamelCase : Dict , lowerCamelCase : str ): lowerCAmelCase = True lowerCAmelCase = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(lowerCamelCase , lowerCamelCase , lowerCamelCase , id_ ) lowerCAmelCase = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge lowerCAmelCase = min(low[at] , low[to] ) lowerCAmelCase = [] for i in range(lowerCamelCase ): if not visited[i]: dfs(lowerCamelCase , -1 , lowerCamelCase , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
4
1
"""simple docstring""" import os import pytest from transformers.dynamic_module_utils import get_imports lowercase__ = '\nimport os\n' lowercase__ = '\ndef foo():\n import os\n return False\n' lowercase__ = '\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n' lowercase__ = '\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n' lowercase__ = '\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n' lowercase__ = '\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n' lowercase__ = '\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n' lowercase__ = '\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n' lowercase__ = '\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n' lowercase__ = '\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n' lowercase__ = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('case' , _SCREAMING_SNAKE_CASE ) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Union[str, Any]: a__: Optional[int] = os.path.join(_SCREAMING_SNAKE_CASE , 'test_file.py' ) with open(_SCREAMING_SNAKE_CASE , 'w' ) as _tmp_file: _tmp_file.write(_SCREAMING_SNAKE_CASE ) a__: Any = get_imports(_SCREAMING_SNAKE_CASE ) assert parsed_imports == ["os"]
203
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: lowercase__ = None lowercase__ = logging.get_logger(__name__) lowercase__ = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} lowercase__ = { 'vocab_file': { 'facebook/mbart-large-en-ro': ( 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model' ), 'facebook/mbart-large-cc25': ( 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/mbart-large-en-ro': 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json', 'facebook/mbart-large-cc25': 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json', }, } lowercase__ = { 'facebook/mbart-large-en-ro': 1024, 'facebook/mbart-large-cc25': 1024, } # fmt: off lowercase__ = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN'] class __snake_case ( __lowerCAmelCase ): a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = ["""input_ids""", """attention_mask"""] a__ = MBartTokenizer a__ = [] a__ = [] def __init__( self , lowercase=None , lowercase=None , lowercase="<s>" , lowercase="</s>" , lowercase="</s>" , lowercase="<s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase="<mask>" , lowercase=None , lowercase=None , lowercase=None , **lowercase , ) -> Tuple: '''simple docstring''' a__: List[str] = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase) if isinstance(lowercase , lowercase) else mask_token super().__init__( vocab_file=lowercase , tokenizer_file=lowercase , bos_token=lowercase , eos_token=lowercase , sep_token=lowercase , cls_token=lowercase , unk_token=lowercase , pad_token=lowercase , mask_token=lowercase , src_lang=lowercase , tgt_lang=lowercase , additional_special_tokens=lowercase , **lowercase , ) a__: Tuple = vocab_file a__: Union[str, Any] = False if not self.vocab_file else True a__: Union[str, Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens]) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens}) a__: int = { lang_code: self.convert_tokens_to_ids(lowercase) for lang_code in FAIRSEQ_LANGUAGE_CODES } a__: List[Any] = src_lang if src_lang is not None else 'en_XX' a__: Tuple = self.convert_tokens_to_ids(self._src_lang) a__: str = tgt_lang self.set_src_lang_special_tokens(self._src_lang) @property def lowerCamelCase_ ( self) -> str: '''simple docstring''' return self._src_lang @src_lang.setter def lowerCamelCase_ ( self , lowercase) -> None: '''simple docstring''' a__: Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def lowerCamelCase_ ( self , lowercase , lowercase = None) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCamelCase_ ( self , lowercase , lowercase = None) -> List[int]: '''simple docstring''' a__: Any = [self.sep_token_id] a__: List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def lowerCamelCase_ ( self , lowercase , lowercase , lowercase , lowercase , **lowercase) -> Union[str, Any]: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model') a__: Union[str, Any] = src_lang a__: Any = self(lowercase , add_special_tokens=lowercase , return_tensors=lowercase , **lowercase) a__: str = self.convert_tokens_to_ids(lowercase) a__: Any = tgt_lang_id return inputs def lowerCamelCase_ ( self , lowercase , lowercase = "en_XX" , lowercase = None , lowercase = "ro_RO" , **lowercase , ) -> BatchEncoding: '''simple docstring''' a__: Any = src_lang a__: List[Any] = tgt_lang return super().prepare_seqaseq_batch(lowercase , lowercase , **lowercase) def lowerCamelCase_ ( self) -> Dict: '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang) def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang) def lowerCamelCase_ ( self , lowercase) -> None: '''simple docstring''' a__: int = self.convert_tokens_to_ids(lowercase) a__: List[Any] = [] a__: List[str] = [self.eos_token_id, self.cur_lang_code] a__: Dict = self.convert_ids_to_tokens(self.prefix_tokens) a__: Any = self.convert_ids_to_tokens(self.suffix_tokens) a__: int = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def lowerCamelCase_ ( self , lowercase) -> None: '''simple docstring''' a__: str = self.convert_tokens_to_ids(lowercase) a__: List[Any] = [] a__: Dict = [self.eos_token_id, self.cur_lang_code] a__: Any = self.convert_ids_to_tokens(self.prefix_tokens) a__: Optional[Any] = self.convert_ids_to_tokens(self.suffix_tokens) a__: str = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def lowerCamelCase_ ( self , lowercase , lowercase = None) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(lowercase): logger.error(f'Vocabulary path ({save_directory}) should be a directory.') return a__: Any = os.path.join( lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowercase): copyfile(self.vocab_file , lowercase) return (out_vocab_file,)
203
1
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def A ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = ArgumentParser( description=( """PyTorch TPU distributed training launch """ """helper utility that will spawn up """ """multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=_SCREAMING_SNAKE_CASE , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=_SCREAMING_SNAKE_CASE , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=_SCREAMING_SNAKE_CASE ) return parser.parse_args() def A ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = parse_args() # Import training_script as a module. SCREAMING_SNAKE_CASE__ = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) SCREAMING_SNAKE_CASE__ = script_fpath.stem SCREAMING_SNAKE_CASE__ = importlib.import_module(_SCREAMING_SNAKE_CASE ) # Patch sys.argv SCREAMING_SNAKE_CASE__ = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
165
"""simple docstring""" from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class _a ( lowerCAmelCase): """simple docstring""" def lowercase__ ( self : List[Any] , __UpperCamelCase : float )->float: return 0.0 def lowercase ( _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) _UpperCAmelCase = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def lowercase ( _SCREAMING_SNAKE_CASE : FilterType , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = 512 _UpperCAmelCase = [1] + [0] * (size - 1) _UpperCAmelCase = [filter_type.process(_SCREAMING_SNAKE_CASE ) for item in inputs] _UpperCAmelCase = [0] * (samplerate - size) # zero-padding outputs += filler _UpperCAmelCase = np.abs(np.fft.fft(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = 20 * np.logaa(_SCREAMING_SNAKE_CASE ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('''Frequency (Hz)''' ) plt.xscale('''log''' ) # Display within reasonable bounds _UpperCAmelCase = get_bounds(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel('''Gain (dB)''' ) plt.plot(_SCREAMING_SNAKE_CASE ) plt.show() def lowercase ( _SCREAMING_SNAKE_CASE : FilterType , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = 512 _UpperCAmelCase = [1] + [0] * (size - 1) _UpperCAmelCase = [filter_type.process(_SCREAMING_SNAKE_CASE ) for item in inputs] _UpperCAmelCase = [0] * (samplerate - size) # zero-padding outputs += filler _UpperCAmelCase = np.angle(np.fft.fft(_SCREAMING_SNAKE_CASE ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('''Frequency (Hz)''' ) plt.xscale('''log''' ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel('''Phase shift (Radians)''' ) plt.plot(np.unwrap(_SCREAMING_SNAKE_CASE , -2 * pi ) ) plt.show()
260
0
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger SCREAMING_SNAKE_CASE : List[str] = get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[Any] = r"\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n" class _lowerCamelCase: @add_start_docstrings(lowerCamelCase) def __call__( self, lowerCamelCase, lowerCamelCase) -> jnp.ndarray: """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''') class _lowerCamelCase: @add_start_docstrings(lowerCamelCase) def __call__( self, lowerCamelCase, lowerCamelCase) -> jnp.ndarray: """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''') class _lowerCamelCase( _a ): @add_start_docstrings(lowerCamelCase) def __call__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase) -> jnp.ndarray: """simple docstring""" for processor in self: _lowercase : Optional[Any] = inspect.signature(processor.__call__).parameters if len(lowerCamelCase) > 3: if not all(arg in kwargs for arg in list(function_args.keys())[2:]): raise ValueError( F'''Make sure that all the required parameters: {list(function_args.keys())} for ''' F'''{processor.__class__} are passed to the logits processor.''') _lowercase : Dict = processor(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase) else: _lowercase : str = processor(lowerCamelCase, lowerCamelCase, lowerCamelCase) return scores class _lowerCamelCase( _a ): def __init__( self, lowerCamelCase) -> int: """simple docstring""" if not isinstance(lowerCamelCase, lowerCamelCase) or not (temperature > 0): raise ValueError(F'''`temperature` has to be a strictly positive float, but is {temperature}''') _lowercase : List[Any] = temperature def __call__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> jnp.ndarray: """simple docstring""" _lowercase : List[str] = scores / self.temperature return scores class _lowerCamelCase( _a ): def __init__( self, lowerCamelCase, lowerCamelCase = -float('Inf'), lowerCamelCase = 1) -> str: """simple docstring""" if not isinstance(lowerCamelCase, lowerCamelCase) or (top_p < 0 or top_p > 1.0): raise ValueError(F'''`top_p` has to be a float > 0 and < 1, but is {top_p}''') if not isinstance(lowerCamelCase, lowerCamelCase) or (min_tokens_to_keep < 1): raise ValueError(F'''`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}''') _lowercase : List[Any] = top_p _lowercase : Union[str, Any] = filter_value _lowercase : Union[str, Any] = min_tokens_to_keep def __call__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> jnp.ndarray: """simple docstring""" _lowercase , _lowercase : Tuple = lax.top_k(lowerCamelCase, scores.shape[-1]) _lowercase : Dict = jnp.full_like(lowerCamelCase, self.filter_value) _lowercase : int = jax.nn.softmax(lowerCamelCase, axis=-1).cumsum(axis=-1) _lowercase : int = cumulative_probs < self.top_p # include the token that is higher than top_p as well _lowercase : Optional[int] = jnp.roll(lowerCamelCase, 1) score_mask |= score_mask.at[:, 0].set(lowerCamelCase) # min tokens to keep _lowercase : List[Any] = score_mask.at[:, : self.min_tokens_to_keep].set(lowerCamelCase) _lowercase : Dict = jnp.where(lowerCamelCase, lowerCamelCase, lowerCamelCase) _lowercase : str = jax.lax.sort_key_val(lowerCamelCase, lowerCamelCase)[-1] return next_scores class _lowerCamelCase( _a ): def __init__( self, lowerCamelCase, lowerCamelCase = -float('Inf'), lowerCamelCase = 1) -> Any: """simple docstring""" if not isinstance(lowerCamelCase, lowerCamelCase) or top_k <= 0: raise ValueError(F'''`top_k` has to be a strictly positive integer, but is {top_k}''') _lowercase : Any = max(lowerCamelCase, lowerCamelCase) _lowercase : Dict = filter_value def __call__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> jnp.ndarray: """simple docstring""" _lowercase , _lowercase : List[str] = scores.shape _lowercase : str = jnp.full(batch_size * vocab_size, self.filter_value) _lowercase : Dict = min(self.top_k, scores.shape[-1]) # Safety check _lowercase , _lowercase : List[str] = lax.top_k(lowerCamelCase, lowerCamelCase) _lowercase : Optional[int] = jnp.broadcast_to((jnp.arange(lowerCamelCase) * vocab_size)[:, None], (batch_size, topk)).flatten() _lowercase : Optional[int] = topk_scores.flatten() _lowercase : str = topk_indices.flatten() + shift _lowercase : int = next_scores_flat.at[topk_indices_flat].set(lowerCamelCase) _lowercase : List[Any] = next_scores_flat.reshape(lowerCamelCase, lowerCamelCase) return next_scores class _lowerCamelCase( _a ): def __init__( self, lowerCamelCase) -> str: """simple docstring""" _lowercase : List[Any] = bos_token_id def __call__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> jnp.ndarray: """simple docstring""" _lowercase : Any = jnp.full(scores.shape, -float('inf')) _lowercase : Optional[int] = 1 - jnp.bool_(cur_len - 1) _lowercase : Union[str, Any] = jnp.where(lowerCamelCase, new_scores.at[:, self.bos_token_id].set(0), lowerCamelCase) return scores class _lowerCamelCase( _a ): def __init__( self, lowerCamelCase, lowerCamelCase) -> int: """simple docstring""" _lowercase : Optional[Any] = max_length _lowercase : Tuple = eos_token_id def __call__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> jnp.ndarray: """simple docstring""" _lowercase : Any = jnp.full(scores.shape, -float('inf')) _lowercase : str = 1 - jnp.bool_(cur_len - self.max_length + 1) _lowercase : Tuple = jnp.where(lowerCamelCase, new_scores.at[:, self.eos_token_id].set(0), lowerCamelCase) return scores class _lowerCamelCase( _a ): def __init__( self, lowerCamelCase, lowerCamelCase) -> Dict: """simple docstring""" if not isinstance(lowerCamelCase, lowerCamelCase) or min_length < 0: raise ValueError(F'''`min_length` has to be a positive integer, but is {min_length}''') if not isinstance(lowerCamelCase, lowerCamelCase) or eos_token_id < 0: raise ValueError(F'''`eos_token_id` has to be a positive integer, but is {eos_token_id}''') _lowercase : int = min_length _lowercase : Union[str, Any] = eos_token_id def __call__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> jnp.ndarray: """simple docstring""" _lowercase : Tuple = 1 - jnp.clip(cur_len - self.min_length, 0, 1) _lowercase : Any = jnp.where(lowerCamelCase, scores.at[:, self.eos_token_id].set(-float('inf')), lowerCamelCase) return scores class _lowerCamelCase( _a ): def __init__( self, lowerCamelCase, lowerCamelCase) -> int: """simple docstring""" _lowercase : Optional[int] = list(lowerCamelCase) _lowercase : Optional[int] = begin_index def __call__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> str: """simple docstring""" _lowercase : Optional[int] = 1 - jnp.bool_(cur_len - self.begin_index) _lowercase : List[Any] = jnp.where(lowerCamelCase, scores.at[:, self.begin_suppress_tokens].set(-float('inf')), lowerCamelCase) return scores class _lowerCamelCase( _a ): def __init__( self, lowerCamelCase) -> int: """simple docstring""" _lowercase : Dict = list(lowerCamelCase) def __call__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> jnp.ndarray: """simple docstring""" _lowercase : Dict = scores.at[..., self.suppress_tokens].set(-float('inf')) return scores class _lowerCamelCase( _a ): def __init__( self, lowerCamelCase) -> str: """simple docstring""" _lowercase : List[Any] = dict(lowerCamelCase) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. _lowercase : List[str] = jnp.ones((max(force_token_map.keys()) + 1), dtype=jnp.intaa) * -1 for index, token in force_token_map.items(): if token is not None: _lowercase : Optional[int] = force_token_array.at[index].set(lowerCamelCase) _lowercase : str = jnp.intaa(lowerCamelCase) def __call__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> jnp.ndarray: """simple docstring""" def _force_token(lowerCamelCase): _lowercase : Optional[Any] = scores.shape[0] _lowercase : int = self.force_token_array[generation_idx] _lowercase : Optional[int] = jnp.ones_like(lowerCamelCase, dtype=scores.dtype) * -float('inf') _lowercase : List[str] = jnp.zeros((batch_size, 1), dtype=scores.dtype) _lowercase : Tuple = lax.dynamic_update_slice(lowerCamelCase, lowerCamelCase, (0, current_token)) return new_scores _lowercase : Optional[int] = lax.cond( cur_len >= self.force_token_array.shape[0], lambda: scores, lambda: lax.cond( self.force_token_array[cur_len] >= 0, lambda: _force_token(lowerCamelCase), lambda: scores, ), ) return scores class _lowerCamelCase( _a ): def __init__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> str: """simple docstring""" _lowercase : str = generate_config.eos_token_id _lowercase : Optional[int] = generate_config.no_timestamps_token_id _lowercase : int = generate_config.no_timestamps_token_id + 1 _lowercase : List[str] = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(lowerCamelCase, 'max_initial_timestamp_index'): _lowercase : Union[str, Any] = generate_config.max_initial_timestamp_index else: _lowercase : Tuple = model_config.vocab_size if self.max_initial_timestamp_index is None: _lowercase : List[str] = model_config.vocab_size def __call__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Any: """simple docstring""" _lowercase : Union[str, Any] = scores.at[:, self.no_timestamps_token_id].set(-float('inf')) def handle_pairs(lowerCamelCase, lowerCamelCase): _lowercase : List[str] = jnp.where((cur_len - self.begin_index) >= 1, lowerCamelCase, lowerCamelCase) _lowercase : Optional[Any] = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin, True and last_was_timestamp, lowerCamelCase, ) _lowercase : Any = jnp.where((cur_len - self.begin_index) < 2, lowerCamelCase, lowerCamelCase) _lowercase : List[str] = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin, lowerCamelCase, lowerCamelCase, ) return jnp.where( lowerCamelCase, jnp.where( penultimate_was_timestamp > 0, scores_k.at[self.timestamp_begin :].set(-float('inf')), scores_k.at[: self.eos_token_id].set(-float('inf')), ), lowerCamelCase, ) _lowercase : List[Any] = jax.vmap(lowerCamelCase)(lowerCamelCase, lowerCamelCase) _lowercase : Union[str, Any] = jnp.where(cur_len == self.begin_index, lowerCamelCase, lowerCamelCase) _lowercase : Dict = jnp.where( self.max_initial_timestamp_index is not None, True and apply_max_initial_timestamp, lowerCamelCase, ) _lowercase : Any = self.timestamp_begin + self.max_initial_timestamp_index _lowercase : Tuple = jnp.where( lowerCamelCase, scores.at[:, last_allowed + 1 :].set(-float('inf')), lowerCamelCase, ) # if sum of probability over timestamps is above any other token, sample timestamp _lowercase : List[str] = jax.nn.log_softmax(lowerCamelCase, axis=-1) def handle_cumulative_probs(lowerCamelCase, lowerCamelCase): _lowercase : Dict = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :], axis=-1) _lowercase : str = jnp.max(logprobs_k[: self.timestamp_begin]) return jnp.where( timestamp_logprob > max_text_token_logprob, scores_k.at[: self.timestamp_begin].set(-float('inf')), lowerCamelCase, ) _lowercase : Any = jax.vmap(lowerCamelCase)(lowerCamelCase, lowerCamelCase) return scores
84
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class _lowerCamelCase: def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0) _lowercase : Dict = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) _lowercase : List[str] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) _lowercase : Optional[int] = UNetaDConditionModel( sample_size=32, layers_per_block=1, block_out_channels=[32, 64], down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ], mid_block_type='UNetMidBlock2DSimpleCrossAttn', up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'], in_channels=3, out_channels=6, cross_attention_dim=32, encoder_hid_dim=32, attention_head_dim=8, addition_embed_type='text', addition_embed_type_num_heads=2, cross_attention_norm='group_norm', resnet_time_scale_shift='scale_shift', act_fn='gelu', ) unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests torch.manual_seed(0) _lowercase : Dict = DDPMScheduler( num_train_timesteps=10_00, beta_schedule='squaredcos_cap_v2', beta_start=0.0_0_0_1, beta_end=0.0_2, thresholding=lowerCamelCase, dynamic_thresholding_ratio=0.9_5, sample_max_value=1.0, prediction_type='epsilon', variance_type='learned_range', ) torch.manual_seed(0) _lowercase : List[Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def UpperCamelCase ( self) -> List[str]: """simple docstring""" torch.manual_seed(0) _lowercase : List[str] = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) _lowercase : int = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) _lowercase : List[str] = UNetaDConditionModel( sample_size=32, layers_per_block=[1, 2], block_out_channels=[32, 64], down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ], mid_block_type='UNetMidBlock2DSimpleCrossAttn', up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'], in_channels=6, out_channels=6, cross_attention_dim=32, encoder_hid_dim=32, attention_head_dim=8, addition_embed_type='text', addition_embed_type_num_heads=2, cross_attention_norm='group_norm', resnet_time_scale_shift='scale_shift', act_fn='gelu', class_embed_type='timestep', mid_block_scale_factor=1.4_1_4, time_embedding_act_fn='gelu', time_embedding_dim=32, ) unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests torch.manual_seed(0) _lowercase : Optional[int] = DDPMScheduler( num_train_timesteps=10_00, beta_schedule='squaredcos_cap_v2', beta_start=0.0_0_0_1, beta_end=0.0_2, thresholding=lowerCamelCase, dynamic_thresholding_ratio=0.9_5, sample_max_value=1.0, prediction_type='epsilon', variance_type='learned_range', ) torch.manual_seed(0) _lowercase : str = DDPMScheduler( num_train_timesteps=10_00, beta_schedule='squaredcos_cap_v2', beta_start=0.0_0_0_1, beta_end=0.0_2, ) torch.manual_seed(0) _lowercase : Union[str, Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : List[Any] = self.get_dummy_components() _lowercase : List[str] = self.pipeline_class(**lowerCamelCase) pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : int = self.get_dummy_inputs(lowerCamelCase) _lowercase : int = inputs['prompt'] _lowercase : Dict = inputs['generator'] _lowercase : Optional[int] = inputs['num_inference_steps'] _lowercase : str = inputs['output_type'] if "image" in inputs: _lowercase : List[Any] = inputs['image'] else: _lowercase : List[Any] = None if "mask_image" in inputs: _lowercase : Union[str, Any] = inputs['mask_image'] else: _lowercase : Dict = None if "original_image" in inputs: _lowercase : Any = inputs['original_image'] else: _lowercase : Tuple = None _lowercase , _lowercase : str = pipe.encode_prompt(lowerCamelCase) # inputs with prompt converted to embeddings _lowercase : Any = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: _lowercase : int = image if mask_image is not None: _lowercase : str = mask_image if original_image is not None: _lowercase : Optional[Any] = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(lowerCamelCase, lowerCamelCase, lowerCamelCase) _lowercase : Dict = pipe(**lowerCamelCase)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase) _lowercase : Any = self.pipeline_class.from_pretrained(lowerCamelCase) pipe_loaded.to(lowerCamelCase) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(lowerCamelCase, lowerCamelCase) is None, F'''`{optional_component}` did not stay set to None after loading.''', ) _lowercase : Dict = self.get_dummy_inputs(lowerCamelCase) _lowercase : Optional[Any] = inputs['generator'] _lowercase : Any = inputs['num_inference_steps'] _lowercase : List[Any] = inputs['output_type'] # inputs with prompt converted to embeddings _lowercase : Optional[int] = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: _lowercase : str = image if mask_image is not None: _lowercase : Optional[int] = mask_image if original_image is not None: _lowercase : int = original_image _lowercase : str = pipe_loaded(**lowerCamelCase)[0] _lowercase : List[Any] = np.abs(to_np(lowerCamelCase) - to_np(lowerCamelCase)).max() self.assertLess(lowerCamelCase, 1E-4) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Optional[Any] = self.get_dummy_components() _lowercase : Any = self.pipeline_class(**lowerCamelCase) pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : List[str] = self.get_dummy_inputs(lowerCamelCase) _lowercase : Tuple = pipe(**lowerCamelCase)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase) _lowercase : List[str] = self.pipeline_class.from_pretrained(lowerCamelCase) pipe_loaded.to(lowerCamelCase) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests _lowercase : int = self.get_dummy_inputs(lowerCamelCase) _lowercase : Tuple = pipe_loaded(**lowerCamelCase)[0] _lowercase : str = np.abs(to_np(lowerCamelCase) - to_np(lowerCamelCase)).max() self.assertLess(lowerCamelCase, 1E-4)
84
1
'''simple docstring''' import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class __UpperCamelCase ( unittest.TestCase ): def __UpperCAmelCase ( self , __a ): '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ): __a : List[Any] = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(__a ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[str] = 'sshleifer/tiny-gpt2' __a : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__a , multi_process=__a , ) __a : List[Any] = TensorFlowBenchmark(__a ) __a : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : int = 'sgugger/tiny-distilbert-classification' __a : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , only_pretrain_model=__a , ) __a : Dict = TensorFlowBenchmark(__a ) __a : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Tuple = 'sshleifer/tiny-gpt2' __a : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) __a : str = TensorFlowBenchmark(__a ) __a : str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : str = 'sshleifer/tiny-gpt2' __a : Optional[Any] = AutoConfig.from_pretrained(__a ) __a : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__a , multi_process=__a , ) __a : Tuple = TensorFlowBenchmark(__a , [config] ) __a : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Tuple = 'sshleifer/tiny-gpt2' __a : Optional[int] = AutoConfig.from_pretrained(__a ) __a : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) __a : Tuple = TensorFlowBenchmark(__a , [config] ) __a : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[Any] = 'sshleifer/tiny-gpt2' __a : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) __a : Optional[Any] = TensorFlowBenchmark(__a ) __a : str = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Union[str, Any] = 'sshleifer/tiny-gpt2' __a : Tuple = AutoConfig.from_pretrained(__a ) __a : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) __a : Optional[Any] = TensorFlowBenchmark(__a , [config] ) __a : Any = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Dict = 'patrickvonplaten/t5-tiny-random' __a : Optional[int] = AutoConfig.from_pretrained(__a ) __a : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) __a : str = TensorFlowBenchmark(__a , configs=[config] ) __a : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 , 'Cannot do xla on CPU.' ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[Any] = 'sshleifer/tiny-gpt2' __a : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , use_xla=__a , multi_process=__a , ) __a : int = TensorFlowBenchmark(__a ) __a : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[Any] = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: __a : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__a , save_to_csv=__a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__a , 'inf_time.csv' ) , inference_memory_csv_file=os.path.join(__a , 'inf_mem.csv' ) , env_info_csv_file=os.path.join(__a , 'env.csv' ) , multi_process=__a , ) __a : int = TensorFlowBenchmark(__a ) benchmark.run() self.assertTrue(Path(os.path.join(__a , 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__a , 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__a , 'env.csv' ) ).exists() ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Tuple = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(__a ): self.assertTrue(hasattr(__a , 'sequential' ) ) self.assertTrue(hasattr(__a , 'cumulative' ) ) self.assertTrue(hasattr(__a , 'current' ) ) self.assertTrue(hasattr(__a , 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: __a : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__a , 'log.txt' ) , log_print=__a , trace_memory_line_by_line=__a , eager_mode=__a , multi_process=__a , ) __a : Any = TensorFlowBenchmark(__a ) __a : str = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(__a , 'log.txt' ) ).exists() )
27
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def __lowerCamelCase ( snake_case__ ) -> Dict: """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def __lowerCamelCase ( snake_case__ ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = gather(snake_case__ ) assert gathered_tensor.tolist() == list(range(1 ,state.num_processes**2 + 1 ) ) def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = [state.process_index] _SCREAMING_SNAKE_CASE = gather_object(snake_case__ ) assert len(snake_case__ ) == state.num_processes, F'{gathered_obj}, {len(snake_case__ )} != {state.num_processes}' assert gathered_obj == list(range(state.num_processes ) ), F'{gathered_obj} != {list(range(state.num_processes ) )}' def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = broadcast(snake_case__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 ,state.num_processes + 1 ) ) def __lowerCamelCase ( snake_case__ ) -> Tuple: """simple docstring""" if state.is_main_process: _SCREAMING_SNAKE_CASE = torch.arange(state.num_processes + 1 ).to(state.device ) else: _SCREAMING_SNAKE_CASE = torch.arange(state.num_processes ).to(state.device ) _SCREAMING_SNAKE_CASE = pad_across_processes(snake_case__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 ,state.num_processes ) ) + [0] def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" if state.num_processes != 2: return _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = reduce(snake_case__ ,"""sum""" ) _SCREAMING_SNAKE_CASE = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(snake_case__ ,snake_case__ ), F'{reduced_tensor} != {truth_tensor}' def __lowerCamelCase ( snake_case__ ) -> List[Any]: """simple docstring""" if state.num_processes != 2: return _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = reduce(snake_case__ ,"""mean""" ) _SCREAMING_SNAKE_CASE = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(snake_case__ ,snake_case__ ), F'{reduced_tensor} != {truth_tensor}' def __lowerCamelCase ( snake_case__ ) -> str: """simple docstring""" main() def __lowerCamelCase ( ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = PartialState() state.print(F'State: {state}' ) state.print("""testing gather""" ) test_gather(snake_case__ ) state.print("""testing gather_object""" ) test_gather_object(snake_case__ ) state.print("""testing broadcast""" ) test_broadcast(snake_case__ ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(snake_case__ ) state.print("""testing reduce_sum""" ) test_reduce_sum(snake_case__ ) state.print("""testing reduce_mean""" ) test_reduce_mean(snake_case__ ) if __name__ == "__main__": main()
306
0
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class A__ ( snake_case__ ): """simple docstring""" __magic_name__ = (DDPMParallelScheduler,) def a_ ( self , **__snake_case ): snake_case = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**__snake_case ) return config def a_ ( self ): for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=__snake_case ) def a_ ( self ): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__snake_case , beta_end=__snake_case ) def a_ ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__snake_case ) def a_ ( self ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=__snake_case ) def a_ ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=__snake_case ) def a_ ( self ): self.check_over_configs(thresholding=__snake_case ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=__snake_case , prediction_type=__snake_case , sample_max_value=__snake_case , ) def a_ ( self ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=__snake_case ) def a_ ( self ): for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=__snake_case ) def a_ ( self ): snake_case = self.scheduler_classes[0] snake_case = self.get_scheduler_config() snake_case = scheduler_class(**__snake_case ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.0_0979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1E-5 def a_ ( self ): snake_case = self.scheduler_classes[0] snake_case = self.get_scheduler_config() snake_case = scheduler_class(**__snake_case ) snake_case = len(__snake_case ) snake_case = self.dummy_model() snake_case = self.dummy_sample_deter snake_case = self.dummy_sample_deter + 0.1 snake_case = self.dummy_sample_deter - 0.1 snake_case = samplea.shape[0] snake_case = torch.stack([samplea, samplea, samplea] , dim=0 ) snake_case = torch.arange(__snake_case )[0:3, None].repeat(1 , __snake_case ) snake_case = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) snake_case = scheduler.batch_step_no_noise(__snake_case , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) snake_case = torch.sum(torch.abs(__snake_case ) ) snake_case = torch.mean(torch.abs(__snake_case ) ) assert abs(result_sum.item() - 1153.1833 ) < 1E-2 assert abs(result_mean.item() - 0.5005 ) < 1E-3 def a_ ( self ): snake_case = self.scheduler_classes[0] snake_case = self.get_scheduler_config() snake_case = scheduler_class(**__snake_case ) snake_case = len(__snake_case ) snake_case = self.dummy_model() snake_case = self.dummy_sample_deter snake_case = torch.manual_seed(0 ) for t in reversed(range(__snake_case ) ): # 1. predict noise residual snake_case = model(__snake_case , __snake_case ) # 2. predict previous mean of sample x_t-1 snake_case = scheduler.step(__snake_case , __snake_case , __snake_case , generator=__snake_case ).prev_sample snake_case = pred_prev_sample snake_case = torch.sum(torch.abs(__snake_case ) ) snake_case = torch.mean(torch.abs(__snake_case ) ) assert abs(result_sum.item() - 258.9606 ) < 1E-2 assert abs(result_mean.item() - 0.3372 ) < 1E-3 def a_ ( self ): snake_case = self.scheduler_classes[0] snake_case = self.get_scheduler_config(prediction_type='''v_prediction''' ) snake_case = scheduler_class(**__snake_case ) snake_case = len(__snake_case ) snake_case = self.dummy_model() snake_case = self.dummy_sample_deter snake_case = torch.manual_seed(0 ) for t in reversed(range(__snake_case ) ): # 1. predict noise residual snake_case = model(__snake_case , __snake_case ) # 2. predict previous mean of sample x_t-1 snake_case = scheduler.step(__snake_case , __snake_case , __snake_case , generator=__snake_case ).prev_sample snake_case = pred_prev_sample snake_case = torch.sum(torch.abs(__snake_case ) ) snake_case = torch.mean(torch.abs(__snake_case ) ) assert abs(result_sum.item() - 202.0296 ) < 1E-2 assert abs(result_mean.item() - 0.2631 ) < 1E-3 def a_ ( self ): snake_case = self.scheduler_classes[0] snake_case = self.get_scheduler_config() snake_case = scheduler_class(**__snake_case ) snake_case = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=__snake_case ) snake_case = scheduler.timesteps for i, timestep in enumerate(__snake_case ): if i == len(__snake_case ) - 1: snake_case = -1 else: snake_case = timesteps[i + 1] snake_case = scheduler.previous_timestep(__snake_case ) snake_case = prev_t.item() self.assertEqual(__snake_case , __snake_case ) def a_ ( self ): snake_case = self.scheduler_classes[0] snake_case = self.get_scheduler_config() snake_case = scheduler_class(**__snake_case ) snake_case = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(__snake_case , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=__snake_case ) def a_ ( self ): snake_case = self.scheduler_classes[0] snake_case = self.get_scheduler_config() snake_case = scheduler_class(**__snake_case ) snake_case = [1_0_0, 8_7, 5_0, 1, 0] snake_case = len(__snake_case ) with self.assertRaises(__snake_case , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=__snake_case , timesteps=__snake_case ) def a_ ( self ): snake_case = self.scheduler_classes[0] snake_case = self.get_scheduler_config() snake_case = scheduler_class(**__snake_case ) snake_case = [scheduler.config.num_train_timesteps] with self.assertRaises( __snake_case , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=__snake_case )
213
from __future__ import annotations from scipy.special import comb # type: ignore class A__ : """simple docstring""" def __init__( self , __snake_case ): snake_case = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. snake_case = len(__snake_case ) - 1 def a_ ( self , __snake_case ): assert 0 <= t <= 1, "Time t must be between 0 and 1." snake_case = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , __snake_case ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(__snake_case ) , 5 ) == 1 return output_values def a_ ( self , __snake_case ): assert 0 <= t <= 1, "Time t must be between 0 and 1." snake_case = self.basis_function(__snake_case ) snake_case = 0.0 snake_case = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def a_ ( self , __snake_case = 0.01 ): from matplotlib import pyplot as plt # type: ignore snake_case = [] # x coordinates of points to plot snake_case = [] # y coordinates of points to plot snake_case = 0.0 while t <= 1: snake_case = self.bezier_curve_function(__snake_case ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size snake_case = [i[0] for i in self.list_of_points] snake_case = [i[1] for i in self.list_of_points] plt.plot( __snake_case , __snake_case , color='''blue''' , label='''Curve of Degree ''' + str(self.degree ) , ) plt.scatter(__snake_case , __snake_case , color='''red''' , label='''Control Points''' ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
213
1
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def lowerCAmelCase_ ( snake_case_ : list , snake_case_ : list , snake_case_ : list , snake_case_ : list , snake_case_ : list ) -> float: '''simple docstring''' UpperCAmelCase_ = np.array([[1, item, train_mtch[i]] for i, item in enumerate(snake_case_ )] ) UpperCAmelCase_ = np.array(snake_case_ ) UpperCAmelCase_ = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , snake_case_ ) ) , x.transpose() ) , snake_case_ ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def lowerCAmelCase_ ( snake_case_ : list , snake_case_ : list , snake_case_ : list ) -> float: '''simple docstring''' UpperCAmelCase_ = (1, 2, 1) UpperCAmelCase_ = (1, 1, 0, 7) UpperCAmelCase_ = SARIMAX( snake_case_ , exog=snake_case_ , order=snake_case_ , seasonal_order=snake_case_ ) UpperCAmelCase_ = model.fit(disp=snake_case_ , maxiter=6_00 , method="nm" ) UpperCAmelCase_ = model_fit.predict(1 , len(snake_case_ ) , exog=[test_match] ) return result[0] def lowerCAmelCase_ ( snake_case_ : list , snake_case_ : list , snake_case_ : list ) -> float: '''simple docstring''' UpperCAmelCase_ = SVR(kernel="rbf" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(snake_case_ , snake_case_ ) UpperCAmelCase_ = regressor.predict(snake_case_ ) return y_pred[0] def lowerCAmelCase_ ( snake_case_ : list ) -> float: '''simple docstring''' train_user.sort() UpperCAmelCase_ = np.percentile(snake_case_ , 25 ) UpperCAmelCase_ = np.percentile(snake_case_ , 75 ) UpperCAmelCase_ = qa - qa UpperCAmelCase_ = qa - (iqr * 0.1) return low_lim def lowerCAmelCase_ ( snake_case_ : list , snake_case_ : float ) -> bool: '''simple docstring''' UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 for i in list_vote: if i > actual_result: UpperCAmelCase_ = not_safe + 1 else: if abs(abs(snake_case_ ) - abs(snake_case_ ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) SCREAMING_SNAKE_CASE_: List[Any] =[[1_82_31, 0.0, 1], [2_26_21, 1.0, 2], [1_56_75, 0.0, 3], [2_35_83, 1.0, 4]] SCREAMING_SNAKE_CASE_: Dict =pd.DataFrame( data_input, columns=['total_user', 'total_even', 'days'] ) SCREAMING_SNAKE_CASE_: Any =Normalizer().fit_transform(data_input_df.values) # split data SCREAMING_SNAKE_CASE_: List[str] =normalize_df[:, 2].tolist() SCREAMING_SNAKE_CASE_: str =normalize_df[:, 0].tolist() SCREAMING_SNAKE_CASE_: str =normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) SCREAMING_SNAKE_CASE_: Dict =normalize_df[:, [1, 2]].tolist() SCREAMING_SNAKE_CASE_: Tuple =x[: len(x) - 1] SCREAMING_SNAKE_CASE_: List[Any] =x[len(x) - 1 :] # for linear regression & sarimax SCREAMING_SNAKE_CASE_: int =total_date[: len(total_date) - 1] SCREAMING_SNAKE_CASE_: Dict =total_user[: len(total_user) - 1] SCREAMING_SNAKE_CASE_: Tuple =total_match[: len(total_match) - 1] SCREAMING_SNAKE_CASE_: Optional[int] =total_date[len(total_date) - 1 :] SCREAMING_SNAKE_CASE_: str =total_user[len(total_user) - 1 :] SCREAMING_SNAKE_CASE_: int =total_match[len(total_match) - 1 :] # voting system with forecasting SCREAMING_SNAKE_CASE_: Optional[int] =[ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data SCREAMING_SNAKE_CASE_: Optional[int] ='' if data_safety_checker(res_vote, tst_user) else 'not ' print('Today\'s data is {not_str}safe.')
1
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList lowerCAmelCase : List[Any] = ['\nclass', '\ndef', '\n#', '\n@', '\nprint', '\nif'] class _A ( __magic_name__): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=1 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = tokenizer SCREAMING_SNAKE_CASE_ : List[str] = dataset SCREAMING_SNAKE_CASE_ : List[Any] = len(_SCREAMING_SNAKE_CASE ) if n_tasks is None else n_tasks SCREAMING_SNAKE_CASE_ : Optional[int] = n_copies def __iter__( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['prompt'].strip() ) SCREAMING_SNAKE_CASE_ : Tuple = self.tokenizer(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , return_tensors='pt' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class _A ( __magic_name__): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = start_length SCREAMING_SNAKE_CASE_ : Any = eof_strings SCREAMING_SNAKE_CASE_ : Tuple = tokenizer def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(_SCREAMING_SNAKE_CASE ) def A_ ( a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = re.split('(%s)' % '|'.join(a ) , a ) # last string should be "" return "".join(string_list[:-2] ) def A_ ( a , a , a , a , a , a=2_0 , **a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = defaultdict(a ) # dict of list of generated tokens for step, batch in tqdm(enumerate(a ) ): with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Optional[Any] = batch['ids'].shape[-1] SCREAMING_SNAKE_CASE_ : str = accelerator.unwrap_model(a ).generate( input_ids=batch['ids'][:, : batch['input_len']] , num_return_sequences=a , **a ) # each task is generated batch_size times SCREAMING_SNAKE_CASE_ : Union[str, Any] = batch['task_id'].repeat(a ) SCREAMING_SNAKE_CASE_ : Optional[int] = accelerator.pad_across_processes( a , dim=1 , pad_index=tokenizer.pad_token_id ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = accelerator.gather((generated_tokens, generated_tasks) ) SCREAMING_SNAKE_CASE_ : int = generated_tokens.cpu().numpy() SCREAMING_SNAKE_CASE_ : List[Any] = generated_tasks.cpu().numpy() for task, generated_tokens in zip(a , a ): gen_token_dict[task].append(a ) SCREAMING_SNAKE_CASE_ : str = [[] for _ in range(a )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: SCREAMING_SNAKE_CASE_ : Dict = tokenizer.decode(a , skip_special_tokens=a , clean_up_tokenization_spaces=a ) code_gens[task].append(remove_last_block(a ) ) return code_gens def A_ ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = HfArgumentParser(a ) SCREAMING_SNAKE_CASE_ : Tuple = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric SCREAMING_SNAKE_CASE_ : Optional[int] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing SCREAMING_SNAKE_CASE_ : List[str] = 'false' if args.num_workers is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = multiprocessing.cpu_count() # Use dataset load to feed to accelerate SCREAMING_SNAKE_CASE_ : Dict = Accelerator() set_seed(args.seed , device_specific=a ) # Load model and tokenizer SCREAMING_SNAKE_CASE_ : str = AutoTokenizer.from_pretrained(args.model_ckpt ) SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer.eos_token SCREAMING_SNAKE_CASE_ : Any = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings SCREAMING_SNAKE_CASE_ : Any = { 'do_sample': args.do_sample, 'temperature': args.temperature, 'max_new_tokens': args.max_new_tokens, 'top_p': args.top_p, 'top_k': args.top_k, 'stopping_criteria': StoppingCriteriaList([EndOfFunctionCriteria(0 , a , a )] ), } # Load evaluation dataset and metric SCREAMING_SNAKE_CASE_ : List[str] = load_dataset('openai_humaneval' ) SCREAMING_SNAKE_CASE_ : str = load_metric('code_eval' ) SCREAMING_SNAKE_CASE_ : Tuple = args.num_tasks if args.num_tasks is not None else len(human_eval['test'] ) SCREAMING_SNAKE_CASE_ : Any = args.n_samples // args.batch_size SCREAMING_SNAKE_CASE_ : int = TokenizedDataset(a , human_eval['test'] , n_copies=a , n_tasks=a ) # do not confuse args.batch_size, which is actually the num_return_sequences SCREAMING_SNAKE_CASE_ : Tuple = DataLoader(a , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: SCREAMING_SNAKE_CASE_ : Union[str, Any] = code_eval_metric.compute(references=[''] , predictions=[['']] ) except ValueError as exception: print( 'Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`' ' flag to enable code evaluation.' ) raise exception SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = accelerator.prepare(a , a ) SCREAMING_SNAKE_CASE_ : List[str] = complete_code( a , a , a , a , n_tasks=a , batch_size=args.batch_size , **a , ) if accelerator.is_main_process: SCREAMING_SNAKE_CASE_ : str = [] for task in tqdm(range(a ) ): SCREAMING_SNAKE_CASE_ : str = human_eval['test'][task]['test'] SCREAMING_SNAKE_CASE_ : int = f"check({human_eval['test'][task]['entry_point']})" references.append('\n' + test_func + '\n' + entry_point ) # Evaluate completions with "code_eval" metric SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = code_eval_metric.compute( references=a , predictions=a , num_workers=args.num_workers ) print(f"Results: {pass_at_k}" ) # Save results to json file with open(args.output_file , 'w' ) as fp: json.dump(a , a ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
253
0
"""simple docstring""" import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class A_ (unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = inspect.getfile(accelerate.test_utils ) SCREAMING_SNAKE_CASE__ : Tuple = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_cli.py"""] ) SCREAMING_SNAKE_CASE__ : Dict = ["""accelerate""", """launch"""] SCREAMING_SNAKE_CASE__ : Optional[int] = Path.home() / """.cache/huggingface/accelerate""" SCREAMING_SNAKE_CASE__ : Tuple = """default_config.yaml""" SCREAMING_SNAKE_CASE__ : Any = config_folder / config_file SCREAMING_SNAKE_CASE__ : List[str] = config_folder / """_default_config.yaml""" SCREAMING_SNAKE_CASE__ : Optional[Any] = Path("""tests/test_configs""" ) @classmethod def UpperCamelCase__ ( cls ): """simple docstring""" if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def UpperCamelCase__ ( cls ): """simple docstring""" if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def UpperCamelCase__ ( self ): """simple docstring""" for config in sorted(self.test_config_path.glob("**/*.yaml" ) ): with self.subTest(config_file=lowercase_ ): execute_subprocess_async( self.base_cmd + ["--config_file", str(lowercase_ ), self.test_file_path] , env=os.environ.copy() ) def UpperCamelCase__ ( self ): """simple docstring""" execute_subprocess_async(["accelerate", "test"] , env=os.environ.copy() ) class A_ (unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = """test-tpu""" SCREAMING_SNAKE_CASE__ : Dict = """us-central1-a""" SCREAMING_SNAKE_CASE__ : str = """ls""" SCREAMING_SNAKE_CASE__ : Any = ["""accelerate""", """tpu-config"""] SCREAMING_SNAKE_CASE__ : Dict = """cd /usr/share""" SCREAMING_SNAKE_CASE__ : Tuple = """tests/test_samples/test_command_file.sh""" SCREAMING_SNAKE_CASE__ : str = """Running gcloud compute tpus tpu-vm ssh""" def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = run_command( self.cmd + ["--command", self.command, "--tpu_zone", self.tpu_zone, "--tpu_name", self.tpu_name, "--debug"] , return_stdout=lowercase_ , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , lowercase_ , ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = run_command( self.cmd + [ "--config_file", "tests/test_configs/0_12_0.yaml", "--command", self.command, "--tpu_zone", self.tpu_zone, "--tpu_name", self.tpu_name, "--debug", ] , return_stdout=lowercase_ , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , lowercase_ , ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--debug"] , return_stdout=lowercase_ ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , lowercase_ , ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--command", self.command, "--debug"] , return_stdout=lowercase_ , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , lowercase_ , ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = run_command( self.cmd + [ "--config_file", "tests/test_configs/latest.yaml", "--command", self.command, "--command", "echo \"Hello World\"", "--debug", ] , return_stdout=lowercase_ , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all""" , lowercase_ , ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--command_file", self.command_file, "--debug"] , return_stdout=lowercase_ , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , lowercase_ , ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = run_command( self.cmd + [ "--config_file", "tests/test_configs/0_12_0.yaml", "--command_file", self.command_file, "--tpu_zone", self.tpu_zone, "--tpu_name", self.tpu_name, "--debug", ] , return_stdout=lowercase_ , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , lowercase_ , ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--install_accelerate", "--debug"] , return_stdout=lowercase_ , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all""" , lowercase_ , ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = run_command( self.cmd + [ "--config_file", "tests/test_configs/latest.yaml", "--install_accelerate", "--accelerate_version", "12.0.0", "--debug", ] , return_stdout=lowercase_ , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all""" , lowercase_ , )
23
"""simple docstring""" import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class A_ (lowercase__ ,lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = IFImgaImgSuperResolutionPipeline SCREAMING_SNAKE_CASE__ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""width""", """height"""} SCREAMING_SNAKE_CASE__ : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""original_image"""} ) SCREAMING_SNAKE_CASE__ : List[Any] = PipelineTesterMixin.required_optional_params - {"""latents"""} def UpperCamelCase__ ( self ): """simple docstring""" return self._get_superresolution_dummy_components() def UpperCamelCase__ ( self , lowercase_ , lowercase_=0 ): """simple docstring""" if str(lowercase_ ).startswith("mps" ): UpperCAmelCase_ : Optional[Any] = torch.manual_seed(lowercase_ ) else: UpperCAmelCase_ : Union[str, Any] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) UpperCAmelCase_ : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) UpperCAmelCase_ : Optional[int] = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) UpperCAmelCase_ : int = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def UpperCamelCase__ ( self ): """simple docstring""" # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_local() def UpperCamelCase__ ( self ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
23
1
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def a ( snake_case__: Dict[str, torch.Tensor] ): '''simple docstring''' lowercase_ = [] lowercase_ = [] lowercase_ = [] for rt in rc.restypes: lowercase_ = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) lowercase_ = {name: i for i, name in enumerate(snake_case__ )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) lowercase_ = torch.tensor( snake_case__ , dtype=torch.intaa , device=protein['''aatype'''].device , ) lowercase_ = torch.tensor( snake_case__ , dtype=torch.intaa , device=protein['''aatype'''].device , ) lowercase_ = torch.tensor( snake_case__ , dtype=torch.floataa , device=protein['''aatype'''].device , ) lowercase_ = protein['''aatype'''].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein lowercase_ = restype_atomaa_to_atomaa[protein_aatype] lowercase_ = restype_atomaa_mask[protein_aatype] lowercase_ = residx_atomaa_mask lowercase_ = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back lowercase_ = restype_atomaa_to_atomaa[protein_aatype] lowercase_ = residx_atomaa_to_atomaa.long() # create the corresponding mask lowercase_ = torch.zeros([21, 37] , dtype=torch.floataa , device=protein['''aatype'''].device ) for restype, restype_letter in enumerate(rc.restypes ): lowercase_ = rc.restype_atoa[restype_letter] lowercase_ = rc.residue_atoms[restype_name] for atom_name in atom_names: lowercase_ = rc.atom_order[atom_name] lowercase_ = 1 lowercase_ = restype_atomaa_mask[protein_aatype] lowercase_ = residx_atomaa_mask return protein def a ( snake_case__: Dict[str, torch.Tensor] ): '''simple docstring''' lowercase_ = tree_map(lambda snake_case__ : torch.tensor(snake_case__ , device=batch['''aatype'''].device ) , snake_case__ , np.ndarray ) lowercase_ = tensor_tree_map(lambda snake_case__ : np.array(snake_case__ ) , make_atomaa_masks(snake_case__ ) ) return out
30
# flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter __a :Optional[Any] = logging.get_logger(__name__) __a :Dict[Optional[str], Type[Formatter]] = {} __a :Dict[Optional[str], str] = {} __a :Dict[Optional[str], Exception] = {} def __snake_case ( __UpperCamelCase : type ,__UpperCamelCase : Optional[str] ,__UpperCamelCase : Optional[List[str]] = None ,): """simple docstring""" A_ = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f'''Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})''' ) A_ = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f'''Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})''' ) A_ = format_type def __snake_case ( __UpperCamelCase : Exception ,__UpperCamelCase : Optional[str] ,__UpperCamelCase : Optional[List[str]] = None ): """simple docstring""" A_ = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): A_ = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['python']) _register_formatter(ArrowFormatter, 'arrow', aliases=['pa', 'pyarrow']) _register_formatter(NumpyFormatter, 'numpy', aliases=['np']) _register_formatter(PandasFormatter, 'pandas', aliases=['pd']) _register_formatter(CustomFormatter, 'custom') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, 'torch', aliases=['pt', 'pytorch']) else: __a :List[Any] = ValueError('PyTorch needs to be installed to be able to return PyTorch tensors.') _register_unavailable_formatter(_torch_error, 'torch', aliases=['pt', 'pytorch']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, 'tensorflow', aliases=['tf']) else: __a :List[str] = ValueError('Tensorflow needs to be installed to be able to return Tensorflow tensors.') _register_unavailable_formatter(_tf_error, 'tensorflow', aliases=['tf']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, 'jax', aliases=[]) else: __a :Tuple = ValueError('JAX needs to be installed to be able to return JAX arrays.') _register_unavailable_formatter(_jax_error, 'jax', aliases=[]) def __snake_case ( __UpperCamelCase : Optional[str] ): """simple docstring""" if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def __snake_case ( __UpperCamelCase : Optional[str] ,**__UpperCamelCase : List[Any] ): """simple docstring""" A_ = get_format_type_from_alias(__UpperCamelCase ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**__UpperCamelCase ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f'''Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'''' )
312
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase__ ={ 'configuration_roformer': ['ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoFormerConfig', 'RoFormerOnnxConfig'], 'tokenization_roformer': ['RoFormerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ =['RoFormerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ =[ 'ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoFormerForCausalLM', 'RoFormerForMaskedLM', 'RoFormerForMultipleChoice', 'RoFormerForQuestionAnswering', 'RoFormerForSequenceClassification', 'RoFormerForTokenClassification', 'RoFormerLayer', 'RoFormerModel', 'RoFormerPreTrainedModel', 'load_tf_weights_in_roformer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ =[ 'TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRoFormerForCausalLM', 'TFRoFormerForMaskedLM', 'TFRoFormerForMultipleChoice', 'TFRoFormerForQuestionAnswering', 'TFRoFormerForSequenceClassification', 'TFRoFormerForTokenClassification', 'TFRoFormerLayer', 'TFRoFormerModel', 'TFRoFormerPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ =[ 'FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxRoFormerForMaskedLM', 'FlaxRoFormerForMultipleChoice', 'FlaxRoFormerForQuestionAnswering', 'FlaxRoFormerForSequenceClassification', 'FlaxRoFormerForTokenClassification', 'FlaxRoFormerModel', 'FlaxRoFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys lowercase__ =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
90
import argparse import os import re import packaging.version lowercase__ ='examples/' lowercase__ ={ 'examples': (re.compile(R'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(R'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(R'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), R'\1version="VERSION",'), 'doc': (re.compile(R'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } lowercase__ ={ 'init': 'src/transformers/__init__.py', 'setup': 'setup.py', } lowercase__ ='README.md' def __UpperCamelCase ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple ): with open(lowerCAmelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __a : Tuple = f.read() __a , __a : Optional[int] = REPLACE_PATTERNS[pattern] __a : List[Any] = replace.replace('''VERSION''' , lowerCAmelCase__ ) __a : Any = re_pattern.sub(lowerCAmelCase__ , lowerCAmelCase__ ) with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(lowerCAmelCase__ ) def __UpperCamelCase ( lowerCAmelCase__ : Tuple ): for folder, directories, fnames in os.walk(lowerCAmelCase__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ , pattern='''examples''' ) def __UpperCamelCase ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if not patch: update_version_in_examples(lowerCAmelCase__ ) def __UpperCamelCase ( ): __a : Optional[int] = '''🤗 Transformers currently provides the following architectures''' __a : int = '''1. Want to contribute a new model?''' with open(lowerCAmelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __a : Tuple = f.readlines() # Find the start of the list. __a : Optional[int] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __a : Any = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): __a : str = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(lowerCAmelCase__ ) def __UpperCamelCase ( ): with open(REPLACE_FILES['''init'''] , '''r''' ) as f: __a : Optional[int] = f.read() __a : str = REPLACE_PATTERNS['''init'''][0].search(lowerCAmelCase__ ).groups()[0] return packaging.version.parse(lowerCAmelCase__ ) def __UpperCamelCase ( lowerCAmelCase__ : Union[str, Any]=False ): __a : str = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: __a : Union[str, Any] = default_version.base_version elif patch: __a : Tuple = f"{default_version.major}.{default_version.minor}.{default_version.micro + 1}" else: __a : List[str] = f"{default_version.major}.{default_version.minor + 1}.0" # Now let's ask nicely if that's the right one. __a : List[str] = input(f"Which version are you releasing? [{default_version}]" ) if len(lowerCAmelCase__ ) == 0: __a : Tuple = default_version print(f"Updating version to {version}." ) global_version_update(lowerCAmelCase__ , patch=lowerCAmelCase__ ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def __UpperCamelCase ( ): __a : Dict = get_version() __a : str = f"{current_version.major}.{current_version.minor + 1}.0.dev0" __a : Any = current_version.base_version # Check with the user we got that right. __a : Any = input(f"Which version are we developing now? [{dev_version}]" ) if len(lowerCAmelCase__ ) == 0: __a : Any = dev_version print(f"Updating version to {version}." ) global_version_update(lowerCAmelCase__ ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": lowercase__ =argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') lowercase__ =parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
90
1
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel lowercase_ = HfApi() lowercase_ = {} # fmt: off lowercase_ = torch.tensor([ -0.7_515, -1.6_883, 0.2_420, 0.0_300, 0.6_347, 1.3_433, -1.1_743, -3.7_467, 1.2_342, -2.2_485, 0.4_636, 0.8_076, -0.7_991, 0.3_969, 0.8_498, 0.9_189, -1.8_887, -3.3_522, 0.7_639, 0.2_040, 0.6_271, -2.7_148, -1.6_316, 3.0_839, 0.3_186, 0.2_721, -0.9_759, -1.2_461, 2.6_257, 1.3_557 ]) lowercase_ = torch.tensor([ -2.3_639, -2.5_344, 0.0_054, -0.6_674, 1.5_990, 1.0_158, 0.3_124, -2.1_436, 1.8_795, -2.5_429, -0.1_566, -0.3_973, 1.2_490, 2.6_447, 1.2_283, -0.5_208, -2.8_154, -3.5_119, 2.3_838, 1.2_033, 1.7_201, -2.1_256, -1.4_576, 2.7_948, 2.4_204, -0.9_752, -1.2_546, 0.8_027, 3.2_758, 3.1_365 ]) lowercase_ = torch.tensor([ -0.6_531, -0.6_891, -0.3_172, -0.5_375, -0.9_140, -0.5_367, -0.1_175, -0.7_869, -0.3_808, -0.4_513, -0.2_098, -0.0_083, 0.3_183, 0.5_140, 0.2_247, -0.1_304, -0.1_302, -0.2_802, -0.2_084, -0.2_025, -0.4_967, -0.4_873, -0.0_861, 0.6_925, 0.0_250, 0.1_290, -0.1_543, 0.6_316, 1.0_460, 1.4_943 ]) lowercase_ = torch.tensor([ 0.0_911, 0.1_107, 0.0_182, 0.0_435, -0.0_805, -0.0_608, 0.0_381, 0.2_172, -0.0_280, 0.1_327, -0.0_299, -0.0_255, -0.0_050, -0.1_170, -0.1_046, 0.0_309, 0.1_367, 0.1_728, -0.0_533, -0.0_748, -0.0_534, 0.1_624, 0.0_384, -0.1_805, -0.0_707, 0.0_642, 0.0_220, -0.0_134, -0.1_333, -0.1_505 ]) lowercase_ = torch.tensor([ 0.1_321, 0.1_337, 0.0_440, 0.0_622, -0.0_591, -0.0_370, 0.0_503, 0.2_133, -0.0_177, 0.1_415, -0.0_116, -0.0_112, 0.0_044, -0.0_980, -0.0_789, 0.0_395, 0.1_502, 0.1_785, -0.0_488, -0.0_514, -0.0_404, 0.1_539, 0.0_454, -0.1_559, -0.0_665, 0.0_659, 0.0_383, -0.0_005, -0.1_266, -0.1_386 ]) lowercase_ = torch.tensor([ 0.1_154, 0.1_218, 0.0_307, 0.0_526, -0.0_711, -0.0_541, 0.0_366, 0.2_078, -0.0_267, 0.1_317, -0.0_226, -0.0_193, -0.0_014, -0.1_055, -0.0_902, 0.0_330, 0.1_391, 0.1_709, -0.0_562, -0.0_693, -0.0_560, 0.1_482, 0.0_381, -0.1_683, -0.0_681, 0.0_661, 0.0_331, -0.0_046, -0.1_268, -0.1_431 ]) lowercase_ = torch.tensor([ 0.1_192, 0.1_240, 0.0_414, 0.0_606, -0.0_557, -0.0_412, 0.0_430, 0.2_042, -0.0_200, 0.1_385, -0.0_115, -0.0_132, 0.0_017, -0.0_965, -0.0_802, 0.0_398, 0.1_433, 0.1_747, -0.0_458, -0.0_533, -0.0_407, 0.1_545, 0.0_419, -0.1_574, -0.0_645, 0.0_626, 0.0_341, -0.0_010, -0.1_199, -0.1_390 ]) lowercase_ = torch.tensor([ 0.1_075, 0.1_074, 0.0_205, 0.0_431, -0.0_774, -0.0_607, 0.0_298, 0.2_042, -0.0_320, 0.1_267, -0.0_281, -0.0_250, -0.0_064, -0.1_091, -0.0_946, 0.0_290, 0.1_328, 0.1_650, -0.0_580, -0.0_738, -0.0_586, 0.1_440, 0.0_337, -0.1_746, -0.0_712, 0.0_605, 0.0_250, -0.0_099, -0.1_316, -0.1_473 ]) lowercase_ = torch.tensor([ -1.4_572, -2.0_481, -0.0_414, -0.6_005, 1.4_136, 0.5_848, 0.4_028, -2.7_330, 1.2_212, -2.1_228, 0.2_155, 0.4_039, 0.7_662, 2.0_535, 0.7_477, -0.3_243, -2.1_758, -2.7_648, 1.6_947, 0.7_026, 1.2_338, -1.6_078, -0.8_682, 2.2_810, 1.8_574, -0.5_718, -0.5_586, -0.0_186, 2.3_415, 2.1_251]) lowercase_ = torch.tensor([ -1.3_690, -1.9_720, -0.4_090, -0.6_966, 1.4_660, 0.9_938, -0.1_385, -2.7_324, 0.7_736, -1.8_917, 0.2_923, 0.4_293, 0.1_693, 1.4_112, 1.1_887, -0.3_181, -2.2_160, -2.6_381, 1.3_170, 0.8_163, 0.9_240, -1.6_544, -0.6_099, 2.5_259, 1.6_430, -0.9_090, -0.9_392, -0.0_126, 2.4_268, 2.3_266 ]) lowercase_ = torch.tensor([ -1.3_525, -1.9_628, -0.3_956, -0.6_860, 1.4_664, 1.0_014, -0.1_259, -2.7_212, 0.7_772, -1.8_811, 0.2_996, 0.4_388, 0.1_704, 1.4_029, 1.1_701, -0.3_027, -2.2_053, -2.6_287, 1.3_350, 0.8_131, 0.9_274, -1.6_292, -0.6_098, 2.5_131, 1.6_505, -0.8_958, -0.9_298, -0.0_151, 2.4_257, 2.3_355 ]) lowercase_ = torch.tensor([ -2.0_585, -2.7_897, -0.2_850, -0.8_940, 1.9_052, 0.5_702, 0.6_345, -3.8_959, 1.5_932, -3.2_319, 0.1_974, 0.0_287, 1.7_566, 2.6_543, 0.8_387, -0.5_351, -3.2_736, -4.3_375, 2.9_029, 1.6_390, 1.4_640, -2.1_701, -1.9_013, 2.9_341, 3.4_981, -0.6_255, -1.1_644, -0.1_591, 3.7_097, 3.2_066 ]) lowercase_ = torch.tensor([ -2.3_139, -2.5_594, -0.0_197, -0.6_785, 1.7_001, 1.1_606, 0.3_075, -2.1_740, 1.8_071, -2.5_630, -0.0_926, -0.3_811, 1.2_116, 2.6_246, 1.2_731, -0.5_398, -2.8_153, -3.6_140, 2.3_893, 1.3_262, 1.6_258, -2.1_856, -1.3_267, 2.8_395, 2.3_779, -1.0_623, -1.2_468, 0.8_959, 3.3_367, 3.2_243 ]) lowercase_ = torch.tensor([ -2.0_628, -2.7_667, -0.2_089, -0.8_263, 2.0_539, 0.5_992, 0.6_495, -3.8_336, 1.6_025, -3.2_817, 0.1_721, -0.0_633, 1.7_516, 2.7_039, 0.8_100, -0.5_908, -3.2_113, -4.4_343, 2.9_257, 1.3_632, 1.5_562, -2.1_489, -1.9_894, 3.0_560, 3.3_396, -0.7_328, -1.0_417, 0.0_383, 3.7_093, 3.2_343 ]) lowercase_ = torch.tensor([ -1.4_574, -2.0_569, -0.0_473, -0.6_117, 1.4_018, 0.5_769, 0.4_129, -2.7_344, 1.2_241, -2.1_397, 0.2_000, 0.3_937, 0.7_616, 2.0_453, 0.7_324, -0.3_391, -2.1_746, -2.7_744, 1.6_963, 0.6_921, 1.2_187, -1.6_172, -0.8_877, 2.2_439, 1.8_471, -0.5_839, -0.5_605, -0.0_464, 2.3_250, 2.1_219 ]) # fmt: on lowercase_ = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": lowercase_ = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(f"""Started running {mod.modelId}!!!""") if mod.modelId.startswith("CompVis"): lowercase_ = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: lowercase_ = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) lowercase_ = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) lowercase_ = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): lowercase_ = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1e-3 ) print(f"""{mod.modelId} has passed successfully!!!""")
7
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin lowercase_ = False @skip_mps class A ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase = StableDiffusionAttendAndExcitePipeline lowerCamelCase = False lowerCamelCase = TEXT_TO_IMAGE_PARAMS lowerCamelCase = TEXT_TO_IMAGE_BATCH_PARAMS.union({'token_indices'} ) lowerCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def snake_case__ ( cls : Any )-> Optional[Any]: '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(lowercase_ ) @classmethod def snake_case__ ( cls : Optional[Any] )-> Dict: '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(lowercase_ ) def snake_case__ ( self : List[str] )-> int: '''simple docstring''' torch.manual_seed(0 ) A__ = UNetaDConditionModel( block_out_channels=(3_2, 6_4),layers_per_block=1,sample_size=3_2,in_channels=4,out_channels=4,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'),up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'),cross_attention_dim=3_2,attention_head_dim=(2, 4),use_linear_projection=lowercase_,) A__ = DDIMScheduler( beta_start=0.00_085,beta_end=0.012,beta_schedule='scaled_linear',clip_sample=lowercase_,set_alpha_to_one=lowercase_,) torch.manual_seed(0 ) A__ = AutoencoderKL( block_out_channels=[3_2, 6_4],in_channels=3,out_channels=3,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'],up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'],latent_channels=4,sample_size=1_2_8,) torch.manual_seed(0 ) A__ = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=3_2,intermediate_size=3_7,layer_norm_eps=1E-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1_0_0_0,hidden_act='gelu',projection_dim=5_1_2,) A__ = CLIPTextModel(lowercase_ ) A__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) A__ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def snake_case__ ( self : Tuple,lowercase_ : str,lowercase_ : List[Any]=0 )-> int: '''simple docstring''' if str(lowercase_ ).startswith('mps' ): A__ = torch.manual_seed(lowercase_ ) else: A__ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) A__ = A__ = { 'prompt': 'a cat and a frog', 'token_indices': [2, 5], 'generator': generator, 'num_inference_steps': 1, 'guidance_scale': 6.0, 'output_type': 'numpy', 'max_iter_to_alter': 2, 'thresholds': {0: 0.7}, } return inputs def snake_case__ ( self : List[str] )-> Optional[Any]: '''simple docstring''' A__ = 'cpu' A__ = self.get_dummy_components() A__ = self.pipeline_class(**lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) A__ = self.get_dummy_inputs(lowercase_ ) A__ = pipe(**lowercase_ ).images A__ = image[0, -3:, -3:, -1] self.assertEqual(image.shape,(1, 6_4, 6_4, 3) ) A__ = np.array( [0.63_905_364, 0.62_897_307, 0.48_599_017, 0.5_133_624, 0.5_550_048, 0.45_769_516, 0.50_326_973, 0.5_023_139, 0.45_384_496] ) A__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowercase_,1E-3 ) def snake_case__ ( self : str )-> Optional[Any]: '''simple docstring''' super().test_cpu_offload_forward_pass(expected_max_diff=5E-4 ) def snake_case__ ( self : str )-> int: '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def snake_case__ ( self : str )-> Optional[int]: '''simple docstring''' self._test_inference_batch_single_identical(batch_size=2,expected_max_diff=7E-4 ) def snake_case__ ( self : Optional[Any] )-> int: '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def snake_case__ ( self : Union[str, Any] )-> str: '''simple docstring''' super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5E-4 ) def snake_case__ ( self : Dict )-> Any: '''simple docstring''' super().test_save_load_local(expected_max_difference=5E-4 ) def snake_case__ ( self : Dict )-> List[str]: '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=4E-4 ) @require_torch_gpu @slow class A ( unittest.TestCase ): """simple docstring""" @classmethod def snake_case__ ( cls : Any )-> Optional[int]: '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(lowercase_ ) @classmethod def snake_case__ ( cls : int )-> List[Any]: '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(lowercase_ ) def snake_case__ ( self : List[Any] )-> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self : Union[str, Any] )-> List[Any]: '''simple docstring''' A__ = torch.manual_seed(5_1 ) A__ = StableDiffusionAttendAndExcitePipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4',safety_checker=lowercase_,torch_dtype=torch.floataa ) pipe.to('cuda' ) A__ = 'a painting of an elephant with glasses' A__ = [5, 7] A__ = pipe( prompt=lowercase_,token_indices=lowercase_,guidance_scale=7.5,generator=lowercase_,num_inference_steps=5,max_iter_to_alter=5,output_type='numpy',).images[0] A__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy' ) assert np.abs((expected_image - image).max() ) < 5E-1
7
1
'''simple docstring''' import heapq def _lowerCAmelCase ( lowerCamelCase_ : dict ): __lowercase = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(lowerCamelCase_ , [-1 * len(lowerCamelCase_ ), (key, value)] ) # chosen_vertices = set of chosen vertices __lowercase = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices __lowercase = heapq.heappop(lowerCamelCase_ )[1][0] chosen_vertices.add(lowerCamelCase_ ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: __lowercase = elem[1][1].index(lowerCamelCase_ ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(lowerCamelCase_ ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() _SCREAMING_SNAKE_CASE = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(f'''Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}''')
217
'''simple docstring''' import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint _SCREAMING_SNAKE_CASE = { '''169M''': 1_2, '''430M''': 2_4, '''1B5''': 2_4, '''3B''': 3_2, '''7B''': 3_2, '''14B''': 4_0, } _SCREAMING_SNAKE_CASE = { '''169M''': 7_6_8, '''430M''': 1_0_2_4, '''1B5''': 2_0_4_8, '''3B''': 2_5_6_0, '''7B''': 4_0_9_6, '''14B''': 5_1_2_0, } def _lowerCAmelCase ( lowerCamelCase_ : Dict ): __lowercase = list(state_dict.keys() ) for name in state_dict_keys: __lowercase = state_dict.pop(lowerCamelCase_ ) # emb -> embedding if name.startswith('''emb.''' ): __lowercase = name.replace('''emb.''' , '''embeddings.''' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('''blocks.0.ln0''' ): __lowercase = name.replace('''blocks.0.ln0''' , '''blocks.0.pre_ln''' ) # att -> attention __lowercase = re.sub(r'''blocks\.(\d+)\.att''' , r'''blocks.\1.attention''' , lowerCamelCase_ ) # ffn -> feed_forward __lowercase = re.sub(r'''blocks\.(\d+)\.ffn''' , r'''blocks.\1.feed_forward''' , lowerCamelCase_ ) # time_mix_k -> time_mix_key and reshape if name.endswith('''.time_mix_k''' ): __lowercase = name.replace('''.time_mix_k''' , '''.time_mix_key''' ) # time_mix_v -> time_mix_value and reshape if name.endswith('''.time_mix_v''' ): __lowercase = name.replace('''.time_mix_v''' , '''.time_mix_value''' ) # time_mix_r -> time_mix_key and reshape if name.endswith('''.time_mix_r''' ): __lowercase = name.replace('''.time_mix_r''' , '''.time_mix_receptance''' ) if name != "head.weight": __lowercase = '''rwkv.''' + name __lowercase = weight return state_dict def _lowerCAmelCase ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : Any=False , lowerCamelCase_ : int=None ): # 1. If possible, build the tokenizer. if tokenizer_file is None: print('''No `--tokenizer_file` provided, we will use the default tokenizer.''' ) __lowercase = 5_0_2_7_7 __lowercase = AutoTokenizer.from_pretrained('''EleutherAI/gpt-neox-20b''' ) else: __lowercase = PreTrainedTokenizerFast(tokenizer_file=lowerCamelCase_ ) __lowercase = len(lowerCamelCase_ ) tokenizer.save_pretrained(lowerCamelCase_ ) # 2. Build the config __lowercase = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: __lowercase = candidate break if size is None: raise ValueError('''Could not infer the size, please provide it with the `--size` argument.''' ) if size not in possible_sizes: raise ValueError(f"`size` should be one of {possible_sizes}, got {size}." ) __lowercase = RwkvConfig( vocab_size=lowerCamelCase_ , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(lowerCamelCase_ ) # 3. Download model file then convert state_dict __lowercase = hf_hub_download(lowerCamelCase_ , lowerCamelCase_ ) __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' ) __lowercase = convert_state_dict(lowerCamelCase_ ) # 4. Split in shards and save __lowercase , __lowercase = shard_checkpoint(lowerCamelCase_ ) for shard_file, shard in shards.items(): torch.save(lowerCamelCase_ , os.path.join(lowerCamelCase_ , lowerCamelCase_ ) ) if index is not None: __lowercase = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) # Save the index as well with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: __lowercase = json.dumps(lowerCamelCase_ , indent=2 , sort_keys=lowerCamelCase_ ) + '''\n''' f.write(lowerCamelCase_ ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( '''Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.''' ) __lowercase = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: __lowercase = torch.load(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(lowerCamelCase_ , lowerCamelCase_ ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('''Please provide a `model_name` to push the model to the Hub.''' ) __lowercase = AutoModelForCausalLM.from_pretrained(lowerCamelCase_ ) model.push_to_hub(lowerCamelCase_ , max_shard_size='''2GB''' ) tokenizer.push_to_hub(lowerCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--repo_id''', default=None, type=str, required=True, help='''Repo ID from which to pull the checkpoint.''' ) parser.add_argument( '''--checkpoint_file''', default=None, type=str, required=True, help='''Name of the checkpoint file in the repo.''' ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''Where to save the converted model.''' ) parser.add_argument( '''--tokenizer_file''', default=None, type=str, help='''Path to the tokenizer file to use (if not provided, only the model is converted).''', ) parser.add_argument( '''--size''', default=None, type=str, help='''Size of the model. Will be inferred from the `checkpoint_file` if not passed.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Push to the Hub the converted model.''', ) parser.add_argument( '''--model_name''', default=None, type=str, help='''Name of the pushed model on the Hub, including the username / organization.''', ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
217
1
'''simple docstring''' from collections.abc import Sequence def UpperCamelCase_( snake_case : Tuple , snake_case : Any = False ): '''simple docstring''' if not arr: return 0 snake_case_ = 0 if allow_empty_subarrays else float("-inf" ) snake_case_ = 0.0 for num in arr: snake_case_ = max(0 if allow_empty_subarrays else num , curr_sum + num ) snake_case_ = max(__lowerCamelCase , __lowerCamelCase ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() _SCREAMING_SNAKE_CASE : Any = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F"{max_subarray_sum(nums) = }")
85
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _snake_case : int = logging.get_logger(__name__) def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : Any = DPTConfig(embedding_type="hybrid" ) if "large" in checkpoint_url: __snake_case : Optional[int] = 1_0_2_4 __snake_case : List[Any] = 4_0_9_6 __snake_case : List[Any] = 2_4 __snake_case : Optional[Any] = 1_6 __snake_case : str = [5, 1_1, 1_7, 2_3] __snake_case : List[str] = [2_5_6, 5_1_2, 1_0_2_4, 1_0_2_4] __snake_case : Union[str, Any] = (1, 3_8_4, 3_8_4) if "nyu" or "midas" in checkpoint_url: __snake_case : Tuple = 7_6_8 __snake_case : Any = [1, 1, 1, 0.5] __snake_case : Any = [2_5_6, 5_1_2, 7_6_8, 7_6_8] __snake_case : Any = 1_5_0 __snake_case : Optional[Any] = 1_6 __snake_case : List[str] = (1, 3_8_4, 3_8_4) __snake_case : Tuple = False __snake_case : Optional[Any] = "project" if "ade" in checkpoint_url: __snake_case : Optional[int] = True __snake_case : List[str] = 7_6_8 __snake_case : int = [1, 1, 1, 0.5] __snake_case : Any = 1_5_0 __snake_case : Tuple = 1_6 __snake_case : List[str] = "huggingface/label-files" __snake_case : Union[str, Any] = "ade20k-id2label.json" __snake_case : List[str] = json.load(open(cached_download(hf_hub_url(__lowerCamelCase , __lowerCamelCase , repo_type="dataset" ) ) , "r" ) ) __snake_case : int = {int(__lowerCamelCase ): v for k, v in idalabel.items()} __snake_case : Optional[Any] = idalabel __snake_case : str = {v: k for k, v in idalabel.items()} __snake_case : Tuple = [1, 1_5_0, 4_8_0, 4_8_0] return config, expected_shape def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : Tuple = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(__lowerCamelCase , __lowerCamelCase ) def lowerCAmelCase_ ( __lowerCamelCase ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): __snake_case : Tuple = name.replace("pretrained.model" , "dpt.encoder" ) if "pretrained.model" in name: __snake_case : Tuple = name.replace("pretrained.model" , "dpt.embeddings" ) if "patch_embed" in name: __snake_case : Optional[Any] = name.replace("patch_embed" , "" ) if "pos_embed" in name: __snake_case : Optional[int] = name.replace("pos_embed" , "position_embeddings" ) if "attn.proj" in name: __snake_case : List[str] = name.replace("attn.proj" , "attention.output.dense" ) if "proj" in name and "project" not in name: __snake_case : Union[str, Any] = name.replace("proj" , "projection" ) if "blocks" in name: __snake_case : int = name.replace("blocks" , "layer" ) if "mlp.fc1" in name: __snake_case : Tuple = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: __snake_case : Any = name.replace("mlp.fc2" , "output.dense" ) if "norm1" in name and "backbone" not in name: __snake_case : Optional[Any] = name.replace("norm1" , "layernorm_before" ) if "norm2" in name and "backbone" not in name: __snake_case : Any = name.replace("norm2" , "layernorm_after" ) if "scratch.output_conv" in name: __snake_case : Dict = name.replace("scratch.output_conv" , "head" ) if "scratch" in name: __snake_case : Union[str, Any] = name.replace("scratch" , "neck" ) if "layer1_rn" in name: __snake_case : List[Any] = name.replace("layer1_rn" , "convs.0" ) if "layer2_rn" in name: __snake_case : str = name.replace("layer2_rn" , "convs.1" ) if "layer3_rn" in name: __snake_case : List[str] = name.replace("layer3_rn" , "convs.2" ) if "layer4_rn" in name: __snake_case : Optional[int] = name.replace("layer4_rn" , "convs.3" ) if "refinenet" in name: __snake_case : Optional[int] = int(name[len("neck.refinenet" ) : len("neck.refinenet" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 __snake_case : int = name.replace(F'refinenet{layer_idx}' , F'fusion_stage.layers.{abs(layer_idx-4 )}' ) if "out_conv" in name: __snake_case : Any = name.replace("out_conv" , "projection" ) if "resConfUnit1" in name: __snake_case : List[Any] = name.replace("resConfUnit1" , "residual_layer1" ) if "resConfUnit2" in name: __snake_case : Tuple = name.replace("resConfUnit2" , "residual_layer2" ) if "conv1" in name: __snake_case : List[str] = name.replace("conv1" , "convolution1" ) if "conv2" in name: __snake_case : str = name.replace("conv2" , "convolution2" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: __snake_case : Union[str, Any] = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0" ) if "pretrained.act_postprocess2.0.project.0" in name: __snake_case : Optional[int] = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0" ) if "pretrained.act_postprocess3.0.project.0" in name: __snake_case : List[str] = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0" ) if "pretrained.act_postprocess4.0.project.0" in name: __snake_case : Dict = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0" ) # resize blocks if "pretrained.act_postprocess1.3" in name: __snake_case : Tuple = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection" ) if "pretrained.act_postprocess1.4" in name: __snake_case : int = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize" ) if "pretrained.act_postprocess2.3" in name: __snake_case : Union[str, Any] = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection" ) if "pretrained.act_postprocess2.4" in name: __snake_case : Optional[Any] = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize" ) if "pretrained.act_postprocess3.3" in name: __snake_case : Optional[int] = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection" ) if "pretrained.act_postprocess4.3" in name: __snake_case : Dict = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection" ) if "pretrained.act_postprocess4.4" in name: __snake_case : Union[str, Any] = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize" ) if "pretrained" in name: __snake_case : Union[str, Any] = name.replace("pretrained" , "dpt" ) if "bn" in name: __snake_case : Tuple = name.replace("bn" , "batch_norm" ) if "head" in name: __snake_case : Dict = name.replace("head" , "head.head" ) if "encoder.norm" in name: __snake_case : Optional[int] = name.replace("encoder.norm" , "layernorm" ) if "auxlayer" in name: __snake_case : Tuple = name.replace("auxlayer" , "auxiliary_head.head" ) if "backbone" in name: __snake_case : str = name.replace("backbone" , "backbone.bit.encoder" ) if ".." in name: __snake_case : Tuple = name.replace(".." , "." ) if "stem.conv" in name: __snake_case : int = name.replace("stem.conv" , "bit.embedder.convolution" ) if "blocks" in name: __snake_case : Any = name.replace("blocks" , "layers" ) if "convolution" in name and "backbone" in name: __snake_case : Optional[int] = name.replace("convolution" , "conv" ) if "layer" in name and "backbone" in name: __snake_case : List[Any] = name.replace("layer" , "layers" ) if "backbone.bit.encoder.bit" in name: __snake_case : Optional[int] = name.replace("backbone.bit.encoder.bit" , "backbone.bit" ) if "embedder.conv" in name: __snake_case : int = name.replace("embedder.conv" , "embedder.convolution" ) if "backbone.bit.encoder.stem.norm" in name: __snake_case : Optional[Any] = name.replace("backbone.bit.encoder.stem.norm" , "backbone.bit.embedder.norm" ) return name def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __snake_case : int = state_dict.pop(F'dpt.encoder.layer.{i}.attn.qkv.weight' ) __snake_case : Any = state_dict.pop(F'dpt.encoder.layer.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __snake_case : str = in_proj_weight[: config.hidden_size, :] __snake_case : List[Any] = in_proj_bias[: config.hidden_size] __snake_case : str = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __snake_case : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __snake_case : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] __snake_case : int = in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( ): __snake_case : List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" __snake_case : int = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case , __snake_case : Optional[int] = get_dpt_config(__lowerCamelCase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") __snake_case : Optional[int] = torch.load(__lowerCamelCase , map_location="cpu" ) # remove certain keys remove_ignore_keys_(__lowerCamelCase ) # rename keys for key in state_dict.copy().keys(): __snake_case : Optional[int] = state_dict.pop(__lowerCamelCase ) __snake_case : Optional[Any] = val # read in qkv matrices read_in_q_k_v(__lowerCamelCase , __lowerCamelCase ) # load HuggingFace model __snake_case : Dict = DPTForSemanticSegmentation(__lowerCamelCase ) if "ade" in checkpoint_url else DPTForDepthEstimation(__lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) model.eval() # Check outputs on an image __snake_case : str = 4_8_0 if "ade" in checkpoint_url else 3_8_4 __snake_case : Any = DPTImageProcessor(size=__lowerCamelCase ) __snake_case : int = prepare_img() __snake_case : Union[str, Any] = image_processor(__lowerCamelCase , return_tensors="pt" ) # forward pass __snake_case : Dict = model(**__lowerCamelCase ).logits if "ade" in checkpoint_url else model(**__lowerCamelCase ).predicted_depth if show_prediction: __snake_case : int = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode="bicubic" , align_corners=__lowerCamelCase , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 2_5_5 ).show() if pytorch_dump_folder_path is not None: Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(__lowerCamelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__lowerCamelCase ) if push_to_hub: model.push_to_hub("ybelkada/dpt-hybrid-midas" ) image_processor.push_to_hub("ybelkada/dpt-hybrid-midas" ) if __name__ == "__main__": _snake_case : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you're pushing to the hub.", ) parser.add_argument( "--show_prediction", action="store_true", ) _snake_case : str = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
123
0
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __a = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_a ) __a = -1 __a = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_a ) __a = model.generate(_a , max_new_tokens=10 , do_sample=_a ) __a = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: __a = TextStreamer(_a ) model.generate(_a , max_new_tokens=10 , do_sample=_a , streamer=_a ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __a = cs.out[:-1] self.assertEqual(_a , _a ) def __UpperCAmelCase ( self ): __a = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __a = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_a ) __a = -1 __a = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_a ) __a = model.generate(_a , max_new_tokens=10 , do_sample=_a ) __a = tokenizer.decode(greedy_ids[0] ) __a = TextIteratorStreamer(_a ) __a = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} __a = Thread(target=model.generate , kwargs=_a ) thread.start() __a = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(_a , _a ) def __UpperCAmelCase ( self ): __a = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __a = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_a ) __a = -1 __a = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_a ) __a = model.generate(_a , max_new_tokens=10 , do_sample=_a ) __a = greedy_ids[:, input_ids.shape[1] :] __a = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: __a = TextStreamer(_a , skip_prompt=_a ) model.generate(_a , max_new_tokens=10 , do_sample=_a , streamer=_a ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __a = cs.out[:-1] self.assertEqual(_a , _a ) def __UpperCAmelCase ( self ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them __a = AutoTokenizer.from_pretrained('''distilgpt2''' ) __a = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(_a ) __a = -1 __a = torch.ones((1, 5) , device=_a ).long() * model.config.bos_token_id with CaptureStdout() as cs: __a = TextStreamer(_a , skip_special_tokens=_a ) model.generate(_a , max_new_tokens=1 , do_sample=_a , streamer=_a ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token __a = cs.out[:-1] # Remove the final "\n" __a = tokenizer(_a , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def __UpperCAmelCase ( self ): __a = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __a = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_a ) __a = -1 __a = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_a ) __a = TextIteratorStreamer(_a , timeout=0.001 ) __a = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} __a = Thread(target=model.generate , kwargs=_a ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(_a ): __a = '''''' for new_text in streamer: streamer_text += new_text
352
"""simple docstring""" import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_a , '''width_multiplier''' ) ) class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a=13 , _a=64 , _a=2 , _a=3 , _a="swish" , _a=3 , _a=32 , _a=0.1 , _a=0.02 , _a=True , _a=True , _a=10 , _a=None , _a=0.25 , _a=0.0 , _a=0.0 , ): __a = parent __a = batch_size __a = image_size __a = patch_size __a = num_channels __a = make_divisible(512 * width_multiplier , divisor=8 ) __a = hidden_act __a = conv_kernel_size __a = output_stride __a = classifier_dropout_prob __a = use_labels __a = is_training __a = num_labels __a = initializer_range __a = scope __a = width_multiplier __a = ffn_dropout __a = attn_dropout def __UpperCAmelCase ( self ): __a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.num_labels ) __a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __a = self.get_config() return config, pixel_values, labels, pixel_labels def __UpperCAmelCase ( self ): return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def __UpperCAmelCase ( self , _a , _a , _a , _a ): __a = MobileViTVaModel(config=_a ) model.to(_a ) model.eval() __a = model(_a ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __UpperCAmelCase ( self , _a , _a , _a , _a ): __a = self.num_labels __a = MobileViTVaForImageClassification(_a ) model.to(_a ) model.eval() __a = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self , _a , _a , _a , _a ): __a = self.num_labels __a = MobileViTVaForSemanticSegmentation(_a ) model.to(_a ) model.eval() __a = model(_a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __a = model(_a , labels=_a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __UpperCAmelCase ( self ): __a = self.prepare_config_and_inputs() __a , __a , __a , __a = config_and_inputs __a = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) __UpperCAmelCase : Union[str, Any] = ( { 'feature-extraction': MobileViTVaModel, 'image-classification': MobileViTVaForImageClassification, 'image-segmentation': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCAmelCase : Tuple = False __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : Tuple = False __UpperCAmelCase : List[str] = False def __UpperCAmelCase ( self ): __a = MobileViTVaModelTester(self ) __a = MobileViTVaConfigTester(self , config_class=_a , has_text_modality=_a ) def __UpperCAmelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViTV2 does not use inputs_embeds''' ) def __UpperCAmelCase ( self ): pass @unittest.skip(reason='''MobileViTV2 does not support input and output embeddings''' ) def __UpperCAmelCase ( self ): pass @unittest.skip(reason='''MobileViTV2 does not output attentions''' ) def __UpperCAmelCase ( self ): pass @require_torch_multi_gpu @unittest.skip(reason='''Got `CUDA error: misaligned address` for tests after this one being run.''' ) def __UpperCAmelCase ( self ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __UpperCAmelCase ( self ): pass def __UpperCAmelCase ( self ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(_a ) __a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __UpperCAmelCase ( self ): def check_hidden_states_output(_a , _a , _a ): __a = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(_a , _a ) ) __a = outputs.hidden_states __a = 5 self.assertEqual(len(_a ) , _a ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __a = 2 for i in range(len(_a ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a = True check_hidden_states_output(_a , _a , _a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_a ) @slow def __UpperCAmelCase ( self ): for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = MobileViTVaModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowercase ( ) -> str: __a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __UpperCAmelCase ( self ): return ( MobileViTImageProcessor.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ) if is_vision_available() else None ) @slow def __UpperCAmelCase ( self ): __a = MobileViTVaForImageClassification.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ).to( _a ) __a = self.default_image_processor __a = prepare_img() __a = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): __a = model(**_a ) # verify the logits __a = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _a ) __a = torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1E-4 ) ) @slow def __UpperCAmelCase ( self ): __a = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __a = model.to(_a ) __a = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __a = prepare_img() __a = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): __a = model(**_a ) __a = outputs.logits # verify the logits __a = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _a ) __a = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=_a , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _a , atol=1E-4 ) ) @slow def __UpperCAmelCase ( self ): __a = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __a = model.to(_a ) __a = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __a = prepare_img() __a = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): __a = model(**_a ) __a = outputs.logits.detach().cpu() __a = image_processor.post_process_semantic_segmentation(outputs=_a , target_sizes=[(50, 60)] ) __a = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _a ) __a = image_processor.post_process_semantic_segmentation(outputs=_a ) __a = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _a )
11
0
"""simple docstring""" import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder lowercase__ : str = '''base_with_context''' def __lowercase ( _a , _a ): snake_case_ : Union[str, Any] = nn.Parameter(torch.FloatTensor(weights['''token_embedder''']['''embedding'''] ) ) snake_case_ : Any = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ) , requires_grad=_a ) for lyr_num, lyr in enumerate(model.encoders ): snake_case_ : Tuple = weights[f"layers_{lyr_num}"] snake_case_ : Optional[Any] = nn.Parameter( torch.FloatTensor(ly_weight['''pre_attention_layer_norm''']['''scale'''] ) ) snake_case_ : int = ly_weight['''attention'''] snake_case_ : Dict = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) snake_case_ : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) snake_case_ : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) snake_case_ : List[str] = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) snake_case_ : str = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) snake_case_ : List[str] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) snake_case_ : List[str] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) snake_case_ : Any = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) snake_case_ : Dict = nn.Parameter(torch.FloatTensor(weights['''encoder_norm''']['''scale'''] ) ) return model def __lowercase ( _a , _a ): snake_case_ : Optional[Any] = nn.Parameter(torch.FloatTensor(weights['''input_proj''']['''kernel'''].T ) ) snake_case_ : Any = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ) , requires_grad=_a ) for lyr_num, lyr in enumerate(model.encoders ): snake_case_ : int = weights[f"layers_{lyr_num}"] snake_case_ : Any = ly_weight['''attention'''] snake_case_ : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) snake_case_ : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) snake_case_ : Dict = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) snake_case_ : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) snake_case_ : Tuple = nn.Parameter( torch.FloatTensor(ly_weight['''pre_attention_layer_norm''']['''scale'''] ) ) snake_case_ : List[str] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) snake_case_ : int = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) snake_case_ : str = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) snake_case_ : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) snake_case_ : str = nn.Parameter(torch.FloatTensor(weights['''encoder_norm''']['''scale'''] ) ) return model def __lowercase ( _a , _a ): snake_case_ : int = nn.Parameter(torch.FloatTensor(weights['''time_emb_dense0''']['''kernel'''].T ) ) snake_case_ : Optional[int] = nn.Parameter(torch.FloatTensor(weights['''time_emb_dense1''']['''kernel'''].T ) ) snake_case_ : Tuple = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ) , requires_grad=_a ) snake_case_ : int = nn.Parameter( torch.FloatTensor(weights['''continuous_inputs_projection''']['''kernel'''].T ) ) for lyr_num, lyr in enumerate(model.decoders ): snake_case_ : Union[str, Any] = weights[f"layers_{lyr_num}"] snake_case_ : List[str] = nn.Parameter( torch.FloatTensor(ly_weight['''pre_self_attention_layer_norm''']['''scale'''] ) ) snake_case_ : List[Any] = nn.Parameter( torch.FloatTensor(ly_weight['''FiLMLayer_0''']['''DenseGeneral_0''']['''kernel'''].T ) ) snake_case_ : Union[str, Any] = ly_weight['''self_attention'''] snake_case_ : Any = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) snake_case_ : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) snake_case_ : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) snake_case_ : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) snake_case_ : Optional[Any] = ly_weight['''MultiHeadDotProductAttention_0'''] snake_case_ : int = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) snake_case_ : int = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) snake_case_ : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) snake_case_ : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) snake_case_ : Dict = nn.Parameter( torch.FloatTensor(ly_weight['''pre_cross_attention_layer_norm''']['''scale'''] ) ) snake_case_ : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) snake_case_ : Dict = nn.Parameter( torch.FloatTensor(ly_weight['''FiLMLayer_1''']['''DenseGeneral_0''']['''kernel'''].T ) ) snake_case_ : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) snake_case_ : Any = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) snake_case_ : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) snake_case_ : Union[str, Any] = nn.Parameter(torch.FloatTensor(weights['''decoder_norm''']['''scale'''] ) ) snake_case_ : Dict = nn.Parameter(torch.FloatTensor(weights['''spec_out_dense''']['''kernel'''].T ) ) return model def __lowercase ( _a ): snake_case_ : List[str] = checkpoints.load_tax_checkpoint(args.checkpoint_path ) snake_case_ : Tuple = jnp.tree_util.tree_map(onp.array , _a ) snake_case_ : str = [ '''from __gin__ import dynamic_registration''', '''from music_spectrogram_diffusion.models.diffusion import diffusion_utils''', '''diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0''', '''diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()''', ] snake_case_ : Any = os.path.join(args.checkpoint_path , '''..''' , '''config.gin''' ) snake_case_ : List[Any] = inference.parse_training_gin_file(_a , _a ) snake_case_ : Any = inference.InferenceModel(args.checkpoint_path , _a ) snake_case_ : Dict = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' , variance_type='''fixed_large''' ) snake_case_ : Union[str, Any] = SpectrogramNotesEncoder( max_length=synth_model.sequence_length['''inputs'''] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='''gated-gelu''' , ) snake_case_ : int = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length['''targets_context'''] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='''gated-gelu''' , ) snake_case_ : int = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length['''targets_context'''] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) snake_case_ : Any = load_notes_encoder(ta_checkpoint['''target''']['''token_encoder'''] , _a ) snake_case_ : List[str] = load_continuous_encoder(ta_checkpoint['''target''']['''continuous_encoder'''] , _a ) snake_case_ : List[str] = load_decoder(ta_checkpoint['''target''']['''decoder'''] , _a ) snake_case_ : Union[str, Any] = OnnxRuntimeModel.from_pretrained('''kashif/soundstream_mel_decoder''' ) snake_case_ : List[Any] = SpectrogramDiffusionPipeline( notes_encoder=_a , continuous_encoder=_a , decoder=_a , scheduler=_a , melgan=_a , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": lowercase__ : List[str] = argparse.ArgumentParser() parser.add_argument('''--output_path''', default=None, type=str, required=True, help='''Path to the converted model.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument( '''--checkpoint_path''', default=f'{MODEL}/checkpoint_500000', type=str, required=False, help='''Path to the original jax model checkpoint.''', ) lowercase__ : Any = parser.parse_args() main(args)
264
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _UpperCAmelCase ( lowerCAmelCase__): def __init__( self : Any , lowercase_ : TransformeraDModel , lowercase_ : AutoencoderKL , lowercase_ : KarrasDiffusionSchedulers , lowercase_ : Optional[Dict[int, str]] = None , ): super().__init__() self.register_modules(transformer=lowercase_ , vae=lowercase_ , scheduler=lowercase_ ) # create a imagenet -> id dictionary for easier use snake_case_ : Tuple = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(''',''' ): snake_case_ : str = int(lowercase_ ) snake_case_ : Any = dict(sorted(self.labels.items() ) ) def _snake_case ( self : List[Any] , lowercase_ : Union[str, List[str]] ): if not isinstance(lowercase_ , lowercase_ ): snake_case_ : Tuple = list(lowercase_ ) for l in label: if l not in self.labels: raise ValueError( f"{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}." ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self : Optional[int] , lowercase_ : List[int] , lowercase_ : float = 4.0 , lowercase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase_ : int = 50 , lowercase_ : Optional[str] = "pil" , lowercase_ : bool = True , ): snake_case_ : Any = len(lowercase_ ) snake_case_ : List[str] = self.transformer.config.sample_size snake_case_ : Union[str, Any] = self.transformer.config.in_channels snake_case_ : str = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=lowercase_ , device=self.device , dtype=self.transformer.dtype , ) snake_case_ : Optional[Any] = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents snake_case_ : Optional[int] = torch.tensor(lowercase_ , device=self.device ).reshape(-1 ) snake_case_ : Dict = torch.tensor([1000] * batch_size , device=self.device ) snake_case_ : Tuple = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(lowercase_ ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: snake_case_ : List[Any] = latent_model_input[: len(lowercase_ ) // 2] snake_case_ : Union[str, Any] = torch.cat([half, half] , dim=0 ) snake_case_ : Optional[Any] = self.scheduler.scale_model_input(lowercase_ , lowercase_ ) snake_case_ : int = t if not torch.is_tensor(lowercase_ ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) snake_case_ : Tuple = latent_model_input.device.type == '''mps''' if isinstance(lowercase_ , lowercase_ ): snake_case_ : List[str] = torch.floataa if is_mps else torch.floataa else: snake_case_ : Optional[int] = torch.intaa if is_mps else torch.intaa snake_case_ : List[Any] = torch.tensor([timesteps] , dtype=lowercase_ , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: snake_case_ : str = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML snake_case_ : Tuple = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output snake_case_ : List[Any] = self.transformer( lowercase_ , timestep=lowercase_ , class_labels=lowercase_ ).sample # perform guidance if guidance_scale > 1: snake_case_, snake_case_ : Dict = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] snake_case_, snake_case_ : Any = torch.split(lowercase_ , len(lowercase_ ) // 2 , dim=0 ) snake_case_ : int = uncond_eps + guidance_scale * (cond_eps - uncond_eps) snake_case_ : str = torch.cat([half_eps, half_eps] , dim=0 ) snake_case_ : List[Any] = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: snake_case_, snake_case_ : Optional[Any] = torch.split(lowercase_ , lowercase_ , dim=1 ) else: snake_case_ : List[str] = noise_pred # compute previous image: x_t -> x_t-1 snake_case_ : int = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample if guidance_scale > 1: snake_case_, snake_case_ : Optional[Any] = latent_model_input.chunk(2 , dim=0 ) else: snake_case_ : Dict = latent_model_input snake_case_ : Union[str, Any] = 1 / self.vae.config.scaling_factor * latents snake_case_ : Tuple = self.vae.decode(lowercase_ ).sample snake_case_ : str = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 snake_case_ : Union[str, Any] = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": snake_case_ : Union[str, Any] = self.numpy_to_pil(lowercase_ ) if not return_dict: return (samples,) return ImagePipelineOutput(images=lowercase_ )
264
1
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowercase__ : int = logging.get_logger(__name__) lowercase__ : Tuple = { "b0": efficientnet.EfficientNetBa, "b1": efficientnet.EfficientNetBa, "b2": efficientnet.EfficientNetBa, "b3": efficientnet.EfficientNetBa, "b4": efficientnet.EfficientNetBa, "b5": efficientnet.EfficientNetBa, "b6": efficientnet.EfficientNetBa, "b7": efficientnet.EfficientNetBa, } lowercase__ : List[Any] = { "b0": { "hidden_dim": 1_280, "width_coef": 1.0, "depth_coef": 1.0, "image_size": 224, "dropout_rate": 0.2, "dw_padding": [], }, "b1": { "hidden_dim": 1_280, "width_coef": 1.0, "depth_coef": 1.1, "image_size": 240, "dropout_rate": 0.2, "dw_padding": [16], }, "b2": { "hidden_dim": 1_408, "width_coef": 1.1, "depth_coef": 1.2, "image_size": 260, "dropout_rate": 0.3, "dw_padding": [5, 8, 16], }, "b3": { "hidden_dim": 1_536, "width_coef": 1.2, "depth_coef": 1.4, "image_size": 300, "dropout_rate": 0.3, "dw_padding": [5, 18], }, "b4": { "hidden_dim": 1_792, "width_coef": 1.4, "depth_coef": 1.8, "image_size": 380, "dropout_rate": 0.4, "dw_padding": [6], }, "b5": { "hidden_dim": 2_048, "width_coef": 1.6, "depth_coef": 2.2, "image_size": 456, "dropout_rate": 0.4, "dw_padding": [13, 27], }, "b6": { "hidden_dim": 2_304, "width_coef": 1.8, "depth_coef": 2.6, "image_size": 528, "dropout_rate": 0.5, "dw_padding": [31], }, "b7": { "hidden_dim": 2_560, "width_coef": 2.0, "depth_coef": 3.1, "image_size": 600, "dropout_rate": 0.5, "dw_padding": [18], }, } def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> Optional[int]: a = EfficientNetConfig() a = CONFIG_MAP[model_name]["hidden_dim"] a = CONFIG_MAP[model_name]["width_coef"] a = CONFIG_MAP[model_name]["depth_coef"] a = CONFIG_MAP[model_name]["image_size"] a = CONFIG_MAP[model_name]["dropout_rate"] a = CONFIG_MAP[model_name]["dw_padding"] a = "huggingface/label-files" a = "imagenet-1k-id2label.json" a = 10_00 a = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type="dataset") , "r")) a = {int(__UpperCamelCase): v for k, v in idalabel.items()} a = idalabel a = {v: k for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE ( ) -> List[Any]: a = "http://images.cocodataset.org/val2017/000000039769.jpg" a = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase).raw) return im def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> Union[str, Any]: a = CONFIG_MAP[model_name]["image_size"] a = EfficientNetImageProcessor( size={"height": size, "width": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47_853_944, 0.4_732_864, 0.47_434_163] , do_center_crop=__UpperCamelCase , ) return preprocessor def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> int: a = [v.split("_")[0].split("block")[1] for v in original_param_names if v.startswith("block")] a = sorted(set(__UpperCamelCase)) a = len(__UpperCamelCase) a = {b: str(__UpperCamelCase) for b, i in zip(__UpperCamelCase , range(__UpperCamelCase))} a = [] rename_keys.append(("stem_conv/kernel:0", "embeddings.convolution.weight")) rename_keys.append(("stem_bn/gamma:0", "embeddings.batchnorm.weight")) rename_keys.append(("stem_bn/beta:0", "embeddings.batchnorm.bias")) rename_keys.append(("stem_bn/moving_mean:0", "embeddings.batchnorm.running_mean")) rename_keys.append(("stem_bn/moving_variance:0", "embeddings.batchnorm.running_var")) for b in block_names: a = block_name_mapping[b] rename_keys.append((f'''block{b}_expand_conv/kernel:0''', f'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''')) rename_keys.append((f'''block{b}_expand_bn/gamma:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''')) rename_keys.append((f'''block{b}_expand_bn/beta:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''')) rename_keys.append( (f'''block{b}_expand_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''')) rename_keys.append( (f'''block{b}_expand_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''')) rename_keys.append( (f'''block{b}_dwconv/depthwise_kernel:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''')) rename_keys.append((f'''block{b}_bn/gamma:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''')) rename_keys.append((f'''block{b}_bn/beta:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''')) rename_keys.append( (f'''block{b}_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''')) rename_keys.append( (f'''block{b}_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''')) rename_keys.append((f'''block{b}_se_reduce/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''')) rename_keys.append((f'''block{b}_se_reduce/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''')) rename_keys.append((f'''block{b}_se_expand/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''')) rename_keys.append((f'''block{b}_se_expand/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''')) rename_keys.append( (f'''block{b}_project_conv/kernel:0''', f'''encoder.blocks.{hf_b}.projection.project_conv.weight''')) rename_keys.append((f'''block{b}_project_bn/gamma:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.weight''')) rename_keys.append((f'''block{b}_project_bn/beta:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.bias''')) rename_keys.append( (f'''block{b}_project_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''')) rename_keys.append( (f'''block{b}_project_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_var''')) rename_keys.append(("top_conv/kernel:0", "encoder.top_conv.weight")) rename_keys.append(("top_bn/gamma:0", "encoder.top_bn.weight")) rename_keys.append(("top_bn/beta:0", "encoder.top_bn.bias")) rename_keys.append(("top_bn/moving_mean:0", "encoder.top_bn.running_mean")) rename_keys.append(("top_bn/moving_variance:0", "encoder.top_bn.running_var")) a = {} for item in rename_keys: if item[0] in original_param_names: a = "efficientnet." + item[1] a = "classifier.weight" a = "classifier.bias" return key_mapping def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase) -> Optional[Any]: for key, value in tf_params.items(): if "normalization" in key: continue a = key_mapping[key] if "_conv" in key and "kernel" in key: a = torch.from_numpy(__UpperCamelCase).permute(3 , 2 , 0 , 1) elif "depthwise_kernel" in key: a = torch.from_numpy(__UpperCamelCase).permute(2 , 3 , 0 , 1) elif "kernel" in key: a = torch.from_numpy(np.transpose(__UpperCamelCase)) else: a = torch.from_numpy(__UpperCamelCase) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(__UpperCamelCase) @torch.no_grad() def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase) -> List[str]: a = model_classes[model_name]( include_top=__UpperCamelCase , weights="imagenet" , input_tensor=__UpperCamelCase , input_shape=__UpperCamelCase , pooling=__UpperCamelCase , classes=10_00 , classifier_activation="softmax" , ) a = original_model.trainable_variables a = original_model.non_trainable_variables a = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: a = param.numpy() a = list(tf_params.keys()) # Load HuggingFace model a = get_efficientnet_config(__UpperCamelCase) a = EfficientNetForImageClassification(__UpperCamelCase).eval() a = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("Converting parameters...") a = rename_keys(__UpperCamelCase) replace_params(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase) # Initialize preprocessor and preprocess input image a = convert_image_processor(__UpperCamelCase) a = preprocessor(images=prepare_img() , return_tensors="pt") # HF model inference hf_model.eval() with torch.no_grad(): a = hf_model(**__UpperCamelCase) a = outputs.logits.detach().numpy() # Original model inference a = False a = CONFIG_MAP[model_name]["image_size"] a = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST) a = image.img_to_array(__UpperCamelCase) a = np.expand_dims(__UpperCamelCase , axis=0) a = original_model.predict(__UpperCamelCase) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3), "The predicted logits are not the same." print("Model outputs match!") if save_model: # Create folder to save model if not os.path.isdir(__UpperCamelCase): os.mkdir(__UpperCamelCase) # Save converted model and image processor hf_model.save_pretrained(__UpperCamelCase) preprocessor.save_pretrained(__UpperCamelCase) if push_to_hub: # Push model and image processor to hub print(f'''Pushing converted {model_name} to the hub...''') a = f'''efficientnet-{model_name}''' preprocessor.push_to_hub(__UpperCamelCase) hf_model.push_to_hub(__UpperCamelCase) if __name__ == "__main__": lowercase__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="b0", type=str, help="Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].", ) parser.add_argument( "--pytorch_dump_folder_path", default="hf_model", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--save_model", action="store_true", help="Save model to local") parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") lowercase__ : str = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
180
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class a__ ( pl.LightningModule ): def __init__( self , A ) -> Optional[Any]: '''simple docstring''' super().__init__() a = model a = 2 a = nn.Linear(self.model.config.hidden_size , self.num_labels ) def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase) -> List[Any]: # load longformer model from model identifier a = LongformerModel.from_pretrained(__UpperCamelCase) a = LightningModel(__UpperCamelCase) a = torch.load(__UpperCamelCase , map_location=torch.device("cpu")) lightning_model.load_state_dict(ckpt["state_dict"]) # init longformer question answering model a = LongformerForQuestionAnswering.from_pretrained(__UpperCamelCase) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict()) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict()) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(__UpperCamelCase) print(f'''Conversion successful. Model saved under {pytorch_dump_folder_path}''') if __name__ == "__main__": lowercase__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowercase__ : Union[str, Any] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
180
1
'''simple docstring''' from collections.abc import Sequence def lowercase__( __UpperCamelCase: Sequence[float] ,__UpperCamelCase: float ): """simple docstring""" return sum(c * (x**i) for i, c in enumerate(__UpperCamelCase ) ) def lowercase__( __UpperCamelCase: Sequence[float] ,__UpperCamelCase: float ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = 0.0 for coeff in reversed(__UpperCamelCase ): SCREAMING_SNAKE_CASE : List[Any] = result * x + coeff return result if __name__ == "__main__": UpperCamelCase_ = (0.0, 0.0, 5.0, 9.3, 7.0) UpperCamelCase_ = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
251
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' ,[ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] ,) def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE : str = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' ,'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' ,'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' ,'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) SCREAMING_SNAKE_CASE : int = DatasetInfosDict.from_directory(__UpperCamelCase ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' ,[ DatasetInfo(), DatasetInfo( description='foo' ,features=Features({'a': Value('int32' )} ) ,builder_name='builder' ,config_name='config' ,version='1.0.0' ,splits=[{'name': 'train'}] ,download_size=42 ,), ] ,) def lowercase__( __UpperCamelCase: List[Any] ,__UpperCamelCase: DatasetInfo ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = str(__UpperCamelCase ) dataset_info.write_to_directory(__UpperCamelCase ) SCREAMING_SNAKE_CASE : List[str] = DatasetInfo.from_directory(__UpperCamelCase ) assert dataset_info == reloaded assert os.path.exists(os.path.join(__UpperCamelCase ,'dataset_info.json' ) ) def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : str = DatasetInfo( description='foo' ,citation='bar' ,homepage='https://foo.bar' ,license='CC0' ,features=Features({'a': Value('int32' )} ) ,post_processed={} ,supervised_keys=() ,task_templates=[] ,builder_name='builder' ,config_name='config' ,version='1.0.0' ,splits=[{'name': 'train', 'num_examples': 42}] ,download_checksums={} ,download_size=13_37 ,post_processing_size=4_42 ,dataset_size=12_34 ,size_in_bytes=13_37 + 4_42 + 12_34 ,) SCREAMING_SNAKE_CASE : List[Any] = dataset_info._to_yaml_dict() assert sorted(__UpperCamelCase ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] ,(list, dict, int, str) ) SCREAMING_SNAKE_CASE : Dict = yaml.safe_dump(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Tuple = yaml.safe_load(__UpperCamelCase ) assert dataset_info_yaml_dict == reloaded def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = DatasetInfo() SCREAMING_SNAKE_CASE : Optional[int] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' ,[ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' ,features=Features({'a': Value('int32' )} ) ,builder_name='builder' ,config_name='config' ,version='1.0.0' ,splits=[{'name': 'train'}] ,download_size=42 ,) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=13_37 ), } ), ] ,) def lowercase__( __UpperCamelCase: Optional[Any] ,__UpperCamelCase: DatasetInfosDict ): """simple docstring""" SCREAMING_SNAKE_CASE : int = str(__UpperCamelCase ) dataset_infos_dict.write_to_directory(__UpperCamelCase ) SCREAMING_SNAKE_CASE : List[str] = DatasetInfosDict.from_directory(__UpperCamelCase ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): SCREAMING_SNAKE_CASE : str = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml SCREAMING_SNAKE_CASE : Optional[int] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(__UpperCamelCase ,'README.md' ) )
251
1
'''simple docstring''' import functools def _lowercase ( __A ,__A ): '''simple docstring''' __UpperCamelCase = len(UpperCamelCase__ ) __UpperCamelCase = len(UpperCamelCase__ ) @functools.cache def min_distance(__A ,__A ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa __UpperCamelCase = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 ,UpperCamelCase__ ) ,1 + min_distance(UpperCamelCase__ ,indexa + 1 ) ,diff + min_distance(indexa + 1 ,indexa + 1 ) ,) return min_distance(0 ,0 ) if __name__ == "__main__": import doctest doctest.testmod()
367
'''simple docstring''' import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex a__ : Optional[Any] = logging.getLogger(__name__) class UpperCAmelCase__ : def __init__( self ) -> Union[str, Any]: __UpperCamelCase = False def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: if not self.initialized: __UpperCamelCase = RagRetriever( lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , index=lowercase , init_retrieval=lowercase , ) __UpperCamelCase = True def __lowerCamelCase ( self ) -> List[Any]: self.retriever.index.init_index() def __lowerCamelCase ( self , lowercase , lowercase ) -> Optional[Any]: __UpperCamelCase , __UpperCamelCase = self.retriever._main_retrieve(lowercase , lowercase ) return doc_ids, retrieved_doc_embeds class UpperCAmelCase__ ( UpperCAmelCase_): def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase=None ) -> Optional[Any]: if index is not None and index.is_initialized() and len(lowercase ) > 0: raise ValueError( """When using Ray for distributed fine-tuning, """ """you'll need to provide the paths instead, """ """as the dataset and the index are loaded """ """separately. More info in examples/rag/use_own_knowledge_dataset.py """ ) super().__init__( lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , index=lowercase , init_retrieval=lowercase , ) __UpperCamelCase = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(lowercase , lowercase , lowercase , lowercase ) for worker in self.retrieval_workers ] ) def __lowerCamelCase ( self ) -> Optional[int]: logger.info("""initializing retrieval""" ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def __lowerCamelCase ( self , lowercase , lowercase ) -> List[str]: if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. __UpperCamelCase = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] __UpperCamelCase , __UpperCamelCase = ray.get(random_worker.retrieve.remote(lowercase , lowercase ) ) else: __UpperCamelCase , __UpperCamelCase = self._main_retrieve(lowercase , lowercase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowercase ) @classmethod def __lowerCamelCase ( cls , lowercase , lowercase=None , **lowercase ) -> Tuple: return super(lowercase , cls ).get_tokenizers(lowercase , lowercase , **lowercase ) @classmethod def __lowerCamelCase ( cls , lowercase , lowercase , lowercase=None , **lowercase ) -> Dict: __UpperCamelCase = kwargs.pop("""config""" , lowercase ) or RagConfig.from_pretrained(lowercase , **lowercase ) __UpperCamelCase = RagTokenizer.from_pretrained(lowercase , config=lowercase ) __UpperCamelCase = rag_tokenizer.question_encoder __UpperCamelCase = rag_tokenizer.generator if indexed_dataset is not None: __UpperCamelCase = """custom""" __UpperCamelCase = CustomHFIndex(config.retrieval_vector_size , lowercase ) else: __UpperCamelCase = cls._build_index(lowercase ) return cls( lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , retrieval_workers=lowercase , index=lowercase , )
243
0
import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib A_ : Tuple = threading.Lock() A_ : Optional[logging.Handler] = None A_ : Any = { 'debug': logging.DEBUG, 'info': logging.INFO, 'warning': logging.WARNING, 'error': logging.ERROR, 'critical': logging.CRITICAL, } A_ : List[str] = logging.WARNING A_ : Tuple = True def UpperCamelCase () -> List[str]: A__ : Dict = os.getenv("""TRANSFORMERS_VERBOSITY""" , lowercase_ ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"""Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, """ f"""has to be one of: { ', '.join(log_levels.keys() ) }""" ) return _default_log_level def UpperCamelCase () -> str: return __name__.split(""".""" )[0] def UpperCamelCase () -> logging.Logger: return logging.getLogger(_get_library_name() ) def UpperCamelCase () -> None: global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return A__ : Tuple = logging.StreamHandler() # Set sys.stderr as stream. A__ : List[Any] = sys.stderr.flush # Apply our default configuration to the library root logger. A__ : List[Any] = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) A__ : Union[str, Any] = False def UpperCamelCase () -> None: global _default_handler with _lock: if not _default_handler: return A__ : int = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) A__ : Optional[int] = None def UpperCamelCase () -> Tuple: return log_levels def UpperCamelCase (lowercase_: Optional[str] = None ) -> logging.Logger: if name is None: A__ : Dict = _get_library_name() _configure_library_root_logger() return logging.getLogger(lowercase_ ) def UpperCamelCase () -> int: _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def UpperCamelCase (lowercase_: int ) -> None: _configure_library_root_logger() _get_library_root_logger().setLevel(lowercase_ ) def UpperCamelCase () -> Union[str, Any]: return set_verbosity(lowercase_ ) def UpperCamelCase () -> Union[str, Any]: return set_verbosity(lowercase_ ) def UpperCamelCase () -> List[Any]: return set_verbosity(lowercase_ ) def UpperCamelCase () -> Union[str, Any]: return set_verbosity(lowercase_ ) def UpperCamelCase () -> None: _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def UpperCamelCase () -> None: _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def UpperCamelCase (lowercase_: logging.Handler ) -> None: _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(lowercase_ ) def UpperCamelCase (lowercase_: logging.Handler ) -> None: _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(lowercase_ ) def UpperCamelCase () -> None: _configure_library_root_logger() A__ : Any = False def UpperCamelCase () -> None: _configure_library_root_logger() A__ : List[Any] = True def UpperCamelCase () -> None: A__ : List[Any] = _get_library_root_logger().handlers for handler in handlers: A__ : Any = logging.Formatter("""[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s""" ) handler.setFormatter(lowercase_ ) def UpperCamelCase () -> None: A__ : Optional[Any] = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(lowercase_ ) def UpperCamelCase (self: List[str] , *lowercase_: Optional[int] , **lowercase_: Dict ) -> str: A__ : Tuple = os.getenv("""TRANSFORMERS_NO_ADVISORY_WARNINGS""" , lowercase_ ) if no_advisory_warnings: return self.warning(*lowercase_ , **lowercase_ ) A_ : Optional[int] = warning_advice @functools.lru_cache(lowercase_ ) def UpperCamelCase (self: Tuple , *lowercase_: int , **lowercase_: Optional[Any] ) -> List[Any]: self.warning(*lowercase_ , **lowercase_ ) A_ : List[str] = warning_once class _a : '''simple docstring''' def __init__( self , *A__ , **A__ ): # pylint: disable=unused-argument A__ : List[Any] = args[0] if args else None def __iter__( self ): return iter(self._iterator ) def __getattr__( self , A__ ): def empty_fn(*A__ , **A__ ): # pylint: disable=unused-argument return return empty_fn def __enter__( self ): return self def __exit__( self , A__ , A__ , A__ ): return class _a : '''simple docstring''' def __call__( self , *A__ , **A__ ): if _tqdm_active: return tqdm_lib.tqdm(*A__ , **A__ ) else: return EmptyTqdm(*A__ , **A__ ) def __A ( self , *A__ , **A__ ): A__ : List[Any] = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*A__ , **A__ ) def __A ( self ): if _tqdm_active: return tqdm_lib.tqdm.get_lock() A_ : Dict = _tqdm_cls() def UpperCamelCase () -> bool: global _tqdm_active return bool(_tqdm_active ) def UpperCamelCase () -> Optional[int]: global _tqdm_active A__ : List[str] = True hf_hub_utils.enable_progress_bars() def UpperCamelCase () -> List[str]: global _tqdm_active A__ : Dict = False hf_hub_utils.disable_progress_bars()
192
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : int = logging.get_logger(__name__) A_ : Optional[Any] = { 'alibaba-damo/mgp-str-base': 'https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json', } class _a (__magic_name__ ): '''simple docstring''' UpperCAmelCase__: List[Any] = '''mgp-str''' def __init__( self , A__=[32, 128] , A__=4 , A__=3 , A__=27 , A__=38 , A__=5_0257 , A__=3_0522 , A__=768 , A__=12 , A__=12 , A__=4.0 , A__=True , A__=False , A__=1e-5 , A__=0.0 , A__=0.0 , A__=0.0 , A__=False , A__=0.0_2 , **A__ , ): super().__init__(**A__ ) A__ : Dict = image_size A__ : int = patch_size A__ : Dict = num_channels A__ : List[Any] = max_token_length A__ : str = num_character_labels A__ : Tuple = num_bpe_labels A__ : Optional[Any] = num_wordpiece_labels A__ : Optional[int] = hidden_size A__ : Tuple = num_hidden_layers A__ : Any = num_attention_heads A__ : List[Any] = mlp_ratio A__ : Tuple = distilled A__ : Union[str, Any] = layer_norm_eps A__ : Tuple = drop_rate A__ : List[str] = qkv_bias A__ : Optional[Any] = attn_drop_rate A__ : Union[str, Any] = drop_path_rate A__ : Optional[Any] = output_aa_attentions A__ : Optional[int] = initializer_range
192
1
"""simple docstring""" from __future__ import annotations A : List[Any] = [-1_0, -5, 0, 5, 5.1, 1_1, 1_3, 2_1, 3, 4, -2_1, -1_0, -5, -1, 0] A : int = [-5, 0, 5, 5.1, 1_1, 1_3, 2_1, -1, 4, -1, -1_0, -5, -1, 0, -1] def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = [] __lowerCAmelCase = len(_lowercase ) for i in range(_lowercase ): __lowerCAmelCase = -1 for j in range(i + 1 , _lowercase ): if arr[i] < arr[j]: __lowerCAmelCase = arr[j] break result.append(_lowercase ) return result def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = [] for i, outer in enumerate(_lowercase ): __lowerCAmelCase = -1 for inner in arr[i + 1 :]: if outer < inner: __lowerCAmelCase = inner break result.append(_lowercase ) return result def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = len(_lowercase ) __lowerCAmelCase = [] __lowerCAmelCase = [-1] * arr_size for index in reversed(range(_lowercase ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: __lowerCAmelCase = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) A : Any = ( "from __main__ import arr, next_greatest_element_slow, " "next_greatest_element_fast, next_greatest_element" ) print( "next_greatest_element_slow():", timeit("next_greatest_element_slow(arr)", setup=setup), ) print( "next_greatest_element_fast():", timeit("next_greatest_element_fast(arr)", setup=setup), ) print( " next_greatest_element():", timeit("next_greatest_element(arr)", setup=setup), )
359
"""simple docstring""" from ..utils import DummyObject, requires_backends class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Optional[Any] =["""transformers""", """torch""", """note_seq"""] def __init__( self , *__a , **__a ): requires_backends(self , ["transformers", "torch", "note_seq"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["transformers", "torch", "note_seq"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["transformers", "torch", "note_seq"] )
259
0