code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self : List[Any] , snake_case_ : Optional[Any] , snake_case_ : int=3 , snake_case_ : Union[str, Any]=32 , snake_case_ : Any=3 , snake_case_ : Optional[int]=10 , snake_case_ : List[str]=[10, 20, 30, 40] , snake_case_ : Tuple=[1, 1, 2, 1] , snake_case_ : Union[str, Any]=True , snake_case_ : List[str]=True , snake_case_ : str="relu" , snake_case_ : Any=3 , snake_case_ : Optional[int]=None , ): snake_case__ : List[str] = parent snake_case__ : str = batch_size snake_case__ : str = image_size snake_case__ : List[str] = num_channels snake_case__ : List[str] = embeddings_size snake_case__ : Dict = hidden_sizes snake_case__ : Optional[Any] = depths snake_case__ : Dict = is_training snake_case__ : str = use_labels snake_case__ : Any = hidden_act snake_case__ : str = num_labels snake_case__ : List[str] = scope snake_case__ : Optional[int] = len(UpperCamelCase__ ) def lowerCamelCase ( self : str ): snake_case__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : int = None if self.use_labels: snake_case__ : Dict = ids_tensor([self.batch_size] , self.num_labels ) snake_case__ : str = self.get_config() return config, pixel_values, labels def lowerCamelCase ( self : Any ): return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowerCamelCase ( self : Union[str, Any] , snake_case_ : str , snake_case_ : str , snake_case_ : int ): snake_case__ : Union[str, Any] = TFResNetModel(config=UpperCamelCase__ ) snake_case__ : int = model(UpperCamelCase__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase ( self : Any , snake_case_ : List[Any] , snake_case_ : List[str] , snake_case_ : int ): snake_case__ : Union[str, Any] = self.num_labels snake_case__ : Dict = TFResNetForImageClassification(UpperCamelCase__ ) snake_case__ : int = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase ( self : Optional[int] ): snake_case__ : Union[str, Any] = self.prepare_config_and_inputs() snake_case__ : Optional[int] = config_and_inputs snake_case__ : Union[str, Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" lowercase = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () lowercase = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def lowerCamelCase ( self : Any ): snake_case__ : Union[str, Any] = TFResNetModelTester(self ) snake_case__ : Any = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ ) def lowerCamelCase ( self : Optional[int] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase ( self : int ): return @unittest.skip(reason="""ResNet does not use inputs_embeds""" ) def lowerCamelCase ( self : Optional[int] ): pass @unittest.skip(reason="""ResNet does not support input and output embeddings""" ) def lowerCamelCase ( self : Union[str, Any] ): pass def lowerCamelCase ( self : Optional[int] ): snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Optional[Any] = model_class(UpperCamelCase__ ) snake_case__ : List[str] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : Union[str, Any] = [*signature.parameters.keys()] snake_case__ : Dict = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def lowerCamelCase ( self : int ): snake_case__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def lowerCamelCase ( self : Union[str, Any] ): def check_hidden_states_output(snake_case_ : Optional[Any] , snake_case_ : Optional[int] , snake_case_ : int ): snake_case__ : List[str] = model_class(UpperCamelCase__ ) snake_case__ : Tuple = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) snake_case__ : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case__ : Optional[int] = self.model_tester.num_stages self.assertEqual(len(UpperCamelCase__ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Tuple = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: snake_case__ : Tuple = layer_type snake_case__ : Optional[Any] = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ : Union[str, Any] = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase ( self : List[Any] ): snake_case__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) @slow def lowerCamelCase ( self : List[Any] ): for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : List[str] = TFResNetModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def __snake_case( ) -> Union[str, Any]: snake_case__ : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCamelCase ( self : int ): return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowerCamelCase ( self : Optional[int] ): snake_case__ : List[str] = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) snake_case__ : Union[str, Any] = self.default_image_processor snake_case__ : Optional[Any] = prepare_img() snake_case__ : Optional[Any] = image_processor(images=UpperCamelCase__ , return_tensors="""tf""" ) # forward pass snake_case__ : Optional[int] = model(**UpperCamelCase__ ) # verify the logits snake_case__ : List[Any] = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) snake_case__ : Tuple = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , UpperCamelCase__ , atol=1E-4 ) )
35
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _A : Dict ={ '''configuration_swinv2''': ['''SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Swinv2Config'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : List[Any] =[ '''SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Swinv2ForImageClassification''', '''Swinv2ForMaskedImageModeling''', '''Swinv2Model''', '''Swinv2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys _A : Optional[Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
41
0
from manim import * class lowerCAmelCase ( __a ): '''simple docstring''' def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" __lowercase : List[str] = Rectangle(height=0.5 , width=0.5 ) __lowercase : Dict = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) __lowercase : Dict = [mem.copy() for i in range(6 )] __lowercase : List[str] = [mem.copy() for i in range(6 )] __lowercase : str = VGroup(*__a ).arrange(__a , buff=0 ) __lowercase : List[Any] = VGroup(*__a ).arrange(__a , buff=0 ) __lowercase : str = VGroup(__a , __a ).arrange(__a , buff=0 ) __lowercase : Any = Text("""CPU""" , font_size=24 ) __lowercase : Union[str, Any] = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__a ) __lowercase : List[Any] = [mem.copy() for i in range(1 )] __lowercase : Union[str, Any] = VGroup(*__a ).arrange(__a , buff=0 ) __lowercase : str = Text("""GPU""" , font_size=24 ) __lowercase : List[Any] = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a ) gpu.align_to(__a , __a ) gpu.set_x(gpu.get_x() - 1 ) self.add(__a ) __lowercase : Optional[Any] = [mem.copy() for i in range(6 )] __lowercase : Union[str, Any] = VGroup(*__a ).arrange(__a , buff=0 ) __lowercase : Dict = Text("""Model""" , font_size=24 ) __lowercase : Optional[Any] = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a ) model.move_to([3, -1.0, 0] ) self.play( Create(__a , run_time=1 ) , Create(__a , run_time=1 ) , Create(__a , run_time=1 ) , ) __lowercase : Union[str, Any] = MarkupText( F"First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM." , font_size=24 , ) __lowercase : Any = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __lowercase : List[str] = MarkupText( F"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(__a , run_time=2.5 ) , Write(__a ) , Write(__a ) ) self.add(__a ) __lowercase : Optional[int] = [] __lowercase : List[str] = [] __lowercase : Dict = [] for i, rect in enumerate(__a ): __lowercase : Tuple = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(__a , opacity=0.7 ) cpu_target.move_to(__a ) cpu_target.generate_target() __lowercase : Union[str, Any] = 0.46 / 4 __lowercase : Optional[int] = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__a ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=__a , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=__a , buff=0.0 ) cpu_targs.append(__a ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(__a ) ) second_animations.append(MoveToTarget(__a , run_time=1.5 ) ) self.play(*__a ) self.play(*__a ) self.wait()
360
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] , __a : Dict , __a : List[str]=None , __a : Optional[Any]=None , __a : Union[str, Any]=None , __a : int="resnet50" , __a : List[str]=3 , __a : Tuple=32 , __a : Dict=3 , __a : List[str]=True , __a : Union[str, Any]=True , ) -> Any: """simple docstring""" __lowercase : Optional[int] = parent __lowercase : List[str] = out_indices if out_indices is not None else [4] __lowercase : Optional[int] = stage_names __lowercase : Any = out_features __lowercase : Optional[Any] = backbone __lowercase : Optional[Any] = batch_size __lowercase : Union[str, Any] = image_size __lowercase : List[str] = num_channels __lowercase : str = use_pretrained_backbone __lowercase : str = is_training def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : str = self.get_config() return config, pixel_values def lowerCAmelCase ( self : int ) -> str: """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowerCAmelCase ( self : Optional[int] , __a : Dict , __a : Any ) -> Dict: """simple docstring""" __lowercase : Dict = TimmBackbone(config=__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Optional[Any] = model(__a ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def lowerCAmelCase ( self : Any ) -> int: """simple docstring""" __lowercase : Union[str, Any] = self.prepare_config_and_inputs() __lowercase , __lowercase : str = config_and_inputs __lowercase : List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch @require_timm class lowerCAmelCase ( __a , __a , __a , unittest.TestCase ): '''simple docstring''' _A : List[Any] = (TimmBackbone,) if is_torch_available() else () _A : Dict = {'''feature-extraction''': TimmBackbone} if is_torch_available() else {} _A : List[Any] = False _A : List[str] = False _A : Any = False _A : Optional[Any] = False def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : str = TimmBackboneModelTester(self ) __lowercase : Any = ConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Any ) -> str: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" __lowercase : Tuple = """resnet18""" __lowercase : Optional[int] = """microsoft/resnet-18""" __lowercase : Union[str, Any] = AutoBackbone.from_pretrained(__a , use_timm_backbone=__a ) __lowercase : Dict = AutoBackbone.from_pretrained(__a ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __lowercase : Union[str, Any] = AutoBackbone.from_pretrained(__a , use_timm_backbone=__a , out_indices=[1, 2, 3] ) __lowercase : Optional[Any] = AutoBackbone.from_pretrained(__a , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("""TimmBackbone doesn't support feed forward chunking""" ) def lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't have num_hidden_layers attribute""" ) def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip("""TimmBackbone initialization is managed on the timm side""" ) def lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" pass @unittest.skip("""TimmBackbone model cannot be created without specifying a backbone checkpoint""" ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't have hidden size info in its configuration.""" ) def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't support output_attentions.""" ) def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Safetensors is not supported by timm.""" ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" pass def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Optional[Any] = model_class(__a ) __lowercase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : List[str] = [*signature.parameters.keys()] __lowercase : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : Optional[Any] = True __lowercase : Union[str, Any] = self.has_attentions # no need to test all models as different heads yield the same functionality __lowercase : Union[str, Any] = self.all_model_classes[0] __lowercase : List[Any] = model_class(__a ) model.to(__a ) __lowercase : Optional[Any] = self._prepare_for_class(__a , __a ) __lowercase : Union[str, Any] = model(**__a ) __lowercase : Optional[int] = outputs[0][-1] # Encoder-/Decoder-only models __lowercase : Any = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __lowercase : Optional[int] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=__a ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : List[str] = model_class(__a ) model.to(__a ) model.eval() __lowercase : int = model(**__a ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __lowercase : Any = copy.deepcopy(__a ) __lowercase : Dict = None __lowercase : Tuple = model_class(__a ) model.to(__a ) model.eval() __lowercase : Optional[int] = model(**__a ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __lowercase : List[str] = copy.deepcopy(__a ) __lowercase : Optional[Any] = False __lowercase : str = model_class(__a ) model.to(__a ) model.eval() __lowercase : List[Any] = model(**__a )
306
0
"""simple docstring""" from decimal import Decimal, getcontext from math import ceil, factorial def _snake_case ( lowercase__ : int ) -> str: '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ): raise TypeError("""Undefined for non-integers""" ) elif precision < 1: raise ValueError("""Undefined for non-natural numbers""" ) lowerCAmelCase_ :int = precision lowerCAmelCase_ :Optional[int] = ceil(precision / 1_4 ) lowerCAmelCase_ :List[str] = 4_2_6_8_8_0 * Decimal(1_0_0_0_5 ).sqrt() lowerCAmelCase_ :Union[str, Any] = 1 lowerCAmelCase_ :int = 1_3_5_9_1_4_0_9 lowerCAmelCase_ :str = Decimal(lowercase__ ) for k in range(1 , lowercase__ ): lowerCAmelCase_ :Tuple = factorial(6 * k ) // (factorial(3 * k ) * factorial(lowercase__ ) ** 3) linear_term += 5_4_5_1_4_0_1_3_4 exponential_term *= -2_6_2_5_3_7_4_1_2_6_4_0_7_6_8_0_0_0 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": __UpperCAmelCase = 50 print(F"""The first {n} digits of pi is: {pi(n)}""")
84
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : Optional[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : str = ["""NllbTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = ["""NllbTokenizerFast"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys lowerCamelCase_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
81
0
'''simple docstring''' import os from collections.abc import Iterator def snake_case_ ( __SCREAMING_SNAKE_CASE : Optional[int] = "." ): """simple docstring""" for dir_path, dir_names, filenames in os.walk(__SCREAMING_SNAKE_CASE ): lowercase_ : Union[str, Any] = [d for d in dir_names if d != "scripts" and d[0] not in "._"] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(__SCREAMING_SNAKE_CASE )[1] in (".py", ".ipynb"): yield os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).lstrip('''./''' ) def snake_case_ ( __SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" return F'''{i * ' '}*''' if i else "\n##" def snake_case_ ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" lowercase_ : Any = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(__SCREAMING_SNAKE_CASE ) or old_parts[i] != new_part) and new_part: print(F'''{md_prefix(__SCREAMING_SNAKE_CASE )} {new_part.replace('_' , ' ' ).title()}''' ) return new_path def snake_case_ ( __SCREAMING_SNAKE_CASE : int = "." ): """simple docstring""" lowercase_ : int = "" for filepath in sorted(good_file_paths(__SCREAMING_SNAKE_CASE ) ): lowercase_ : int = os.path.split(__SCREAMING_SNAKE_CASE ) if filepath != old_path: lowercase_ : Tuple = print_path(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = (filepath.count(os.sep ) + 1) if filepath else 0 lowercase_ : Optional[int] = F'''{filepath}/{filename}'''.replace(''' ''' , '''%20''' ) lowercase_ : Tuple = os.path.splitext(filename.replace('''_''' , ''' ''' ).title() )[0] print(F'''{md_prefix(__SCREAMING_SNAKE_CASE )} [{filename}]({url})''' ) if __name__ == "__main__": print_directory_md(".")
370
'''simple docstring''' def snake_case_ ( __SCREAMING_SNAKE_CASE : str ): """simple docstring""" assert column_title.isupper() lowercase_ : Dict = 0 lowercase_ : Tuple = len(__SCREAMING_SNAKE_CASE ) - 1 lowercase_ : Optional[int] = 0 while index >= 0: lowercase_ : Optional[Any] = (ord(column_title[index] ) - 64) * pow(26 , __SCREAMING_SNAKE_CASE ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
264
0
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel UpperCAmelCase__ = HfApi() UpperCAmelCase__ = {} # fmt: off UpperCAmelCase__ = torch.tensor([ -0.7515, -1.6883, 0.2420, 0.0300, 0.6347, 1.3433, -1.1743, -3.7467, 1.2342, -2.2485, 0.4636, 0.8076, -0.7991, 0.3969, 0.8498, 0.9189, -1.8887, -3.3522, 0.7639, 0.2040, 0.6271, -2.7148, -1.6316, 3.0839, 0.3186, 0.2721, -0.9759, -1.2461, 2.6257, 1.3557 ]) UpperCAmelCase__ = torch.tensor([ -2.3639, -2.5344, 0.0054, -0.6674, 1.5990, 1.0158, 0.3124, -2.1436, 1.8795, -2.5429, -0.1566, -0.3973, 1.2490, 2.6447, 1.2283, -0.5208, -2.8154, -3.5119, 2.3838, 1.2033, 1.7201, -2.1256, -1.4576, 2.7948, 2.4204, -0.9752, -1.2546, 0.8027, 3.2758, 3.1365 ]) UpperCAmelCase__ = torch.tensor([ -0.6531, -0.6891, -0.3172, -0.5375, -0.9140, -0.5367, -0.1175, -0.7869, -0.3808, -0.4513, -0.2098, -0.0083, 0.3183, 0.5140, 0.2247, -0.1304, -0.1302, -0.2802, -0.2084, -0.2025, -0.4967, -0.4873, -0.0861, 0.6925, 0.0250, 0.1290, -0.1543, 0.6316, 1.0460, 1.4943 ]) UpperCAmelCase__ = torch.tensor([ 0.0911, 0.1107, 0.0182, 0.0435, -0.0805, -0.0608, 0.0381, 0.2172, -0.0280, 0.1327, -0.0299, -0.0255, -0.0050, -0.1170, -0.1046, 0.0309, 0.1367, 0.1728, -0.0533, -0.0748, -0.0534, 0.1624, 0.0384, -0.1805, -0.0707, 0.0642, 0.0220, -0.0134, -0.1333, -0.1505 ]) UpperCAmelCase__ = torch.tensor([ 0.1321, 0.1337, 0.0440, 0.0622, -0.0591, -0.0370, 0.0503, 0.2133, -0.0177, 0.1415, -0.0116, -0.0112, 0.0044, -0.0980, -0.0789, 0.0395, 0.1502, 0.1785, -0.0488, -0.0514, -0.0404, 0.1539, 0.0454, -0.1559, -0.0665, 0.0659, 0.0383, -0.0005, -0.1266, -0.1386 ]) UpperCAmelCase__ = torch.tensor([ 0.1154, 0.1218, 0.0307, 0.0526, -0.0711, -0.0541, 0.0366, 0.2078, -0.0267, 0.1317, -0.0226, -0.0193, -0.0014, -0.1055, -0.0902, 0.0330, 0.1391, 0.1709, -0.0562, -0.0693, -0.0560, 0.1482, 0.0381, -0.1683, -0.0681, 0.0661, 0.0331, -0.0046, -0.1268, -0.1431 ]) UpperCAmelCase__ = torch.tensor([ 0.1192, 0.1240, 0.0414, 0.0606, -0.0557, -0.0412, 0.0430, 0.2042, -0.0200, 0.1385, -0.0115, -0.0132, 0.0017, -0.0965, -0.0802, 0.0398, 0.1433, 0.1747, -0.0458, -0.0533, -0.0407, 0.1545, 0.0419, -0.1574, -0.0645, 0.0626, 0.0341, -0.0010, -0.1199, -0.1390 ]) UpperCAmelCase__ = torch.tensor([ 0.1075, 0.1074, 0.0205, 0.0431, -0.0774, -0.0607, 0.0298, 0.2042, -0.0320, 0.1267, -0.0281, -0.0250, -0.0064, -0.1091, -0.0946, 0.0290, 0.1328, 0.1650, -0.0580, -0.0738, -0.0586, 0.1440, 0.0337, -0.1746, -0.0712, 0.0605, 0.0250, -0.0099, -0.1316, -0.1473 ]) UpperCAmelCase__ = torch.tensor([ -1.4572, -2.0481, -0.0414, -0.6005, 1.4136, 0.5848, 0.4028, -2.7330, 1.2212, -2.1228, 0.2155, 0.4039, 0.7662, 2.0535, 0.7477, -0.3243, -2.1758, -2.7648, 1.6947, 0.7026, 1.2338, -1.6078, -0.8682, 2.2810, 1.8574, -0.5718, -0.5586, -0.0186, 2.3415, 2.1251]) UpperCAmelCase__ = torch.tensor([ -1.3690, -1.9720, -0.4090, -0.6966, 1.4660, 0.9938, -0.1385, -2.7324, 0.7736, -1.8917, 0.2923, 0.4293, 0.1693, 1.4112, 1.1887, -0.3181, -2.2160, -2.6381, 1.3170, 0.8163, 0.9240, -1.6544, -0.6099, 2.5259, 1.6430, -0.9090, -0.9392, -0.0126, 2.4268, 2.3266 ]) UpperCAmelCase__ = torch.tensor([ -1.3525, -1.9628, -0.3956, -0.6860, 1.4664, 1.0014, -0.1259, -2.7212, 0.7772, -1.8811, 0.2996, 0.4388, 0.1704, 1.4029, 1.1701, -0.3027, -2.2053, -2.6287, 1.3350, 0.8131, 0.9274, -1.6292, -0.6098, 2.5131, 1.6505, -0.8958, -0.9298, -0.0151, 2.4257, 2.3355 ]) UpperCAmelCase__ = torch.tensor([ -2.0585, -2.7897, -0.2850, -0.8940, 1.9052, 0.5702, 0.6345, -3.8959, 1.5932, -3.2319, 0.1974, 0.0287, 1.7566, 2.6543, 0.8387, -0.5351, -3.2736, -4.3375, 2.9029, 1.6390, 1.4640, -2.1701, -1.9013, 2.9341, 3.4981, -0.6255, -1.1644, -0.1591, 3.7097, 3.2066 ]) UpperCAmelCase__ = torch.tensor([ -2.3139, -2.5594, -0.0197, -0.6785, 1.7001, 1.1606, 0.3075, -2.1740, 1.8071, -2.5630, -0.0926, -0.3811, 1.2116, 2.6246, 1.2731, -0.5398, -2.8153, -3.6140, 2.3893, 1.3262, 1.6258, -2.1856, -1.3267, 2.8395, 2.3779, -1.0623, -1.2468, 0.8959, 3.3367, 3.2243 ]) UpperCAmelCase__ = torch.tensor([ -2.0628, -2.7667, -0.2089, -0.8263, 2.0539, 0.5992, 0.6495, -3.8336, 1.6025, -3.2817, 0.1721, -0.0633, 1.7516, 2.7039, 0.8100, -0.5908, -3.2113, -4.4343, 2.9257, 1.3632, 1.5562, -2.1489, -1.9894, 3.0560, 3.3396, -0.7328, -1.0417, 0.0383, 3.7093, 3.2343 ]) UpperCAmelCase__ = torch.tensor([ -1.4574, -2.0569, -0.0473, -0.6117, 1.4018, 0.5769, 0.4129, -2.7344, 1.2241, -2.1397, 0.2000, 0.3937, 0.7616, 2.0453, 0.7324, -0.3391, -2.1746, -2.7744, 1.6963, 0.6921, 1.2187, -1.6172, -0.8877, 2.2439, 1.8471, -0.5839, -0.5605, -0.0464, 2.3250, 2.1219 ]) # fmt: on UpperCAmelCase__ = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": UpperCAmelCase__ = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(f"""Started running {mod.modelId}!!!""") if mod.modelId.startswith("CompVis"): UpperCAmelCase__ = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: UpperCAmelCase__ = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) UpperCAmelCase__ = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) UpperCAmelCase__ = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): UpperCAmelCase__ = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1E-3 ) print(f"""{mod.modelId} has passed successfully!!!""")
0
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params a_ = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["""memory_attention""", """encoder_attn"""], ["""attention""", """attn"""], ["""/""", """."""], [""".LayerNorm.gamma""", """_layer_norm.weight"""], [""".LayerNorm.beta""", """_layer_norm.bias"""], ["""r.layer_""", """r.layers."""], ["""output_proj""", """out_proj"""], ["""ffn.dense_1.""", """fc2."""], ["""ffn.dense.""", """fc1."""], ["""ffn_layer_norm""", """final_layer_norm"""], ["""kernel""", """weight"""], ["""encoder_layer_norm.""", """encoder.layer_norm."""], ["""decoder_layer_norm.""", """decoder.layer_norm."""], ["""embeddings.weights""", """shared.weight"""], ] def a__ ( _UpperCamelCase : int ): for pegasus_name, hf_name in PATTERNS: __lowerCamelCase = k.replace(_UpperCamelCase ,_UpperCamelCase ) return k def a__ ( _UpperCamelCase : dict ,_UpperCamelCase : dict ): __lowerCamelCase = DEFAULTS.copy() cfg_kwargs.update(_UpperCamelCase ) __lowerCamelCase = PegasusConfig(**_UpperCamelCase ) __lowerCamelCase = PegasusForConditionalGeneration(_UpperCamelCase ) __lowerCamelCase = torch_model.model.state_dict() __lowerCamelCase = {} for k, v in tf_weights.items(): __lowerCamelCase = rename_state_dict_key(_UpperCamelCase ) if new_k not in sd: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: __lowerCamelCase = v.T __lowerCamelCase = torch.tensor(_UpperCamelCase ,dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected __lowerCamelCase = torch.zeros_like(mapping['''shared.weight'''][cfg.pad_token_id + 1] ) __lowerCamelCase = mapping['''shared.weight'''] __lowerCamelCase = mapping['''shared.weight'''] __lowerCamelCase = {k: torch.zeros_like(_UpperCamelCase ) for k, v in sd.items() if k.endswith('''bias''' ) and k not in mapping} mapping.update(**_UpperCamelCase ) __lowerCamelCase ,__lowerCamelCase = torch_model.model.load_state_dict(_UpperCamelCase ,strict=_UpperCamelCase ) __lowerCamelCase = [ k for k in missing if k not in ['''encoder.embed_positions.weight''', '''decoder.embed_positions.weight'''] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def a__ ( _UpperCamelCase : str="./ckpt/aeslc/model.ckpt-32000" ): __lowerCamelCase = tf.train.list_variables(_UpperCamelCase ) __lowerCamelCase = {} __lowerCamelCase = ['''Adafactor''', '''global_step'''] for name, shape in tqdm(_UpperCamelCase ,desc='''converting tf checkpoint to dict''' ): __lowerCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue __lowerCamelCase = tf.train.load_variable(_UpperCamelCase ,_UpperCamelCase ) __lowerCamelCase = array return tf_weights def a__ ( _UpperCamelCase : str ,_UpperCamelCase : str ): # save tokenizer first __lowerCamelCase = Path(_UpperCamelCase ).parent.name __lowerCamelCase = task_specific_params[F"""summarization_{dataset}"""]['''max_position_embeddings'''] __lowerCamelCase = PegasusTokenizer.from_pretrained('''sshleifer/pegasus''' ,model_max_length=_UpperCamelCase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(_UpperCamelCase ) # convert model __lowerCamelCase = get_tf_weights_as_numpy(_UpperCamelCase ) __lowerCamelCase = task_specific_params[F"""summarization_{dataset}"""] if dataset == "large": __lowerCamelCase = task_specific_params __lowerCamelCase = convert_pegasus(_UpperCamelCase ,_UpperCamelCase ) torch_model.save_pretrained(_UpperCamelCase ) __lowerCamelCase = torch_model.state_dict() sd.pop('''model.decoder.embed_positions.weight''' ) sd.pop('''model.encoder.embed_positions.weight''' ) torch.save(_UpperCamelCase ,Path(_UpperCamelCase ) / '''pytorch_model.bin''' ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument("""tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") a_ = parser.parse_args() if args.save_dir is None: a_ = Path(args.tf_ckpt_path).parent.name a_ = os.path.join("""pegasus""", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
330
0
"""simple docstring""" import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase ( self ) -> List[str]: _a = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() _a = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) _a = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } _a = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 16000, '''return_attention_mask''': False, '''do_normalize''': True, } _a = tempfile.mkdtemp() _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _a = os.path.join(self.tmpdirname , __UpperCAmelCase ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + '''\n''' ) with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + '''\n''' ) # load decoder from hub _a = '''hf-internal-testing/ngram-beam-search-decoder''' def _UpperCAmelCase ( self , **__UpperCAmelCase ) -> List[str]: _a = self.add_kwargs_tokens_map.copy() kwargs.update(__UpperCAmelCase ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def _UpperCAmelCase ( self , **__UpperCAmelCase ) -> Optional[int]: return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def _UpperCAmelCase ( self , **__UpperCAmelCase ) -> Optional[int]: return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def _UpperCAmelCase ( self ) -> Optional[Any]: _a = self.get_tokenizer() _a = self.get_feature_extractor() _a = self.get_decoder() _a = WavaVecaProcessorWithLM(tokenizer=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , decoder=__UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) _a = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCAmelCase ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __UpperCAmelCase ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: _a = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match _a = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def _UpperCAmelCase ( self ) -> Any: _a = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(__UpperCAmelCase , '''include''' ): WavaVecaProcessorWithLM( tokenizer=__UpperCAmelCase , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def _UpperCAmelCase ( self ) -> Tuple: _a = self.get_feature_extractor() _a = self.get_tokenizer() _a = self.get_decoder() _a = WavaVecaProcessorWithLM(tokenizer=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , decoder=__UpperCAmelCase ) _a = floats_list((3, 1000) ) _a = feature_extractor(__UpperCAmelCase , return_tensors='''np''' ) _a = processor(__UpperCAmelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _UpperCAmelCase ( self ) -> int: _a = self.get_feature_extractor() _a = self.get_tokenizer() _a = self.get_decoder() _a = WavaVecaProcessorWithLM(tokenizer=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , decoder=__UpperCAmelCase ) _a = '''This is a test string''' _a = processor(text=__UpperCAmelCase ) _a = tokenizer(__UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _UpperCAmelCase ( self , __UpperCAmelCase=(2, 10, 16) , __UpperCAmelCase=77 ) -> List[Any]: np.random.seed(__UpperCAmelCase ) return np.random.rand(*__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> List[str]: _a = self.get_feature_extractor() _a = self.get_tokenizer() _a = self.get_decoder() _a = WavaVecaProcessorWithLM(tokenizer=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , decoder=__UpperCAmelCase ) _a = self._get_dummy_logits(shape=(10, 16) , seed=13 ) _a = processor.decode(__UpperCAmelCase ) _a = decoder.decode_beams(__UpperCAmelCase )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def _UpperCAmelCase ( self , __UpperCAmelCase ) -> List[str]: _a = self.get_feature_extractor() _a = self.get_tokenizer() _a = self.get_decoder() _a = WavaVecaProcessorWithLM(tokenizer=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , decoder=__UpperCAmelCase ) _a = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: _a = processor.batch_decode(__UpperCAmelCase ) else: with get_context(__UpperCAmelCase ).Pool() as pool: _a = processor.batch_decode(__UpperCAmelCase , __UpperCAmelCase ) _a = list(__UpperCAmelCase ) with get_context('''fork''' ).Pool() as p: _a = decoder.decode_beams_batch(__UpperCAmelCase , __UpperCAmelCase ) _a , _a , _a = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(__UpperCAmelCase , decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text ) self.assertListEqual(__UpperCAmelCase , decoded_processor.logit_score ) self.assertListEqual(__UpperCAmelCase , decoded_processor.lm_score ) def _UpperCAmelCase ( self ) -> str: _a = self.get_feature_extractor() _a = self.get_tokenizer() _a = self.get_decoder() _a = WavaVecaProcessorWithLM(tokenizer=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , decoder=__UpperCAmelCase ) _a = self._get_dummy_logits() _a = 15 _a = -20.0 _a = -4.0 _a = processor.batch_decode( __UpperCAmelCase , beam_width=__UpperCAmelCase , beam_prune_logp=__UpperCAmelCase , token_min_logp=__UpperCAmelCase , ) _a = decoded_processor_out.text _a = list(__UpperCAmelCase ) with get_context('''fork''' ).Pool() as pool: _a = decoder.decode_beams_batch( __UpperCAmelCase , __UpperCAmelCase , beam_width=__UpperCAmelCase , beam_prune_logp=__UpperCAmelCase , token_min_logp=__UpperCAmelCase , ) _a = [d[0][0] for d in decoded_decoder_out] _a = [d[0][2] for d in decoded_decoder_out] _a = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , __UpperCAmelCase ) self.assertTrue(np.array_equal(__UpperCAmelCase , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , __UpperCAmelCase , atol=1e-3 ) ) self.assertTrue(np.array_equal(__UpperCAmelCase , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , __UpperCAmelCase , atol=1e-3 ) ) def _UpperCAmelCase ( self ) -> Dict: _a = self.get_feature_extractor() _a = self.get_tokenizer() _a = self.get_decoder() _a = WavaVecaProcessorWithLM(tokenizer=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , decoder=__UpperCAmelCase ) _a = self._get_dummy_logits() _a = 2.0 _a = 5.0 _a = -20.0 _a = True _a = processor.batch_decode( __UpperCAmelCase , alpha=__UpperCAmelCase , beta=__UpperCAmelCase , unk_score_offset=__UpperCAmelCase , lm_score_boundary=__UpperCAmelCase , ) _a = decoded_processor_out.text _a = list(__UpperCAmelCase ) decoder.reset_params( alpha=__UpperCAmelCase , beta=__UpperCAmelCase , unk_score_offset=__UpperCAmelCase , lm_score_boundary=__UpperCAmelCase , ) with get_context('''fork''' ).Pool() as pool: _a = decoder.decode_beams_batch( __UpperCAmelCase , __UpperCAmelCase , ) _a = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , __UpperCAmelCase ) _a = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> List[str]: _a = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _a = processor.decoder.model_container[processor.decoder._model_key] _a = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() _a = os.listdir(__UpperCAmelCase ) _a = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[Any]: _a = snapshot_download('''hf-internal-testing/processor_with_lm''' ) _a = WavaVecaProcessorWithLM.from_pretrained(__UpperCAmelCase ) _a = processor.decoder.model_container[processor.decoder._model_key] _a = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() _a = os.listdir(__UpperCAmelCase ) _a = os.listdir(__UpperCAmelCase ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> List[Any]: _a = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _a = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _a = floats_list((3, 1000) ) _a = processor_wavaveca(__UpperCAmelCase , return_tensors='''np''' ) _a = processor_auto(__UpperCAmelCase , return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) _a = self._get_dummy_logits() _a = processor_wavaveca.batch_decode(__UpperCAmelCase ) _a = processor_auto.batch_decode(__UpperCAmelCase ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = self.get_feature_extractor() _a = self.get_tokenizer() _a = self.get_decoder() _a = WavaVecaProcessorWithLM(tokenizer=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , decoder=__UpperCAmelCase ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , ) @staticmethod def _UpperCAmelCase ( __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: _a = [d[key] for d in offsets] return retrieved_list def _UpperCAmelCase ( self ) -> int: _a = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _a = self._get_dummy_logits()[0] _a = processor.decode(__UpperCAmelCase , output_word_offsets=__UpperCAmelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(__UpperCAmelCase , __UpperCAmelCase ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] ) def _UpperCAmelCase ( self ) -> List[str]: _a = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _a = self._get_dummy_logits() _a = processor.batch_decode(__UpperCAmelCase , output_word_offsets=__UpperCAmelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(__UpperCAmelCase , __UpperCAmelCase ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(__UpperCAmelCase , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def _UpperCAmelCase ( self ) -> str: import torch _a = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=__UpperCAmelCase ) _a = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=16000 ) ) _a = iter(__UpperCAmelCase ) _a = next(__UpperCAmelCase ) _a = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) _a = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train _a = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values with torch.no_grad(): _a = model(__UpperCAmelCase ).logits.cpu().numpy() _a = processor.decode(logits[0] , output_word_offsets=__UpperCAmelCase ) _a = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate _a = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] _a = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(__UpperCAmelCase , '''word''' ) ) , __UpperCAmelCase ) self.assertEqual(''' '''.join(self.get_from_offsets(__UpperCAmelCase , '''word''' ) ) , output.text ) # output times _a = torch.tensor(self.get_from_offsets(__UpperCAmelCase , '''start_time''' ) ) _a = torch.tensor(self.get_from_offsets(__UpperCAmelCase , '''end_time''' ) ) # fmt: off _a = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) _a = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=0.01 ) ) self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=0.01 ) )
153
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ) -> Dict: _a = StableDiffusionKDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) _a = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) sd_pipe.set_scheduler('''sample_euler''' ) _a = '''A painting of a squirrel eating a burger''' _a = torch.manual_seed(0 ) _a = sd_pipe([prompt] , generator=__UpperCAmelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' ) _a = output.images _a = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _a = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _UpperCAmelCase ( self ) -> List[str]: _a = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) _a = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) sd_pipe.set_scheduler('''sample_euler''' ) _a = '''A painting of a squirrel eating a burger''' _a = torch.manual_seed(0 ) _a = sd_pipe([prompt] , generator=__UpperCAmelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' ) _a = output.images _a = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _a = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def _UpperCAmelCase ( self ) -> str: _a = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) _a = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) sd_pipe.set_scheduler('''sample_dpmpp_2m''' ) _a = '''A painting of a squirrel eating a burger''' _a = torch.manual_seed(0 ) _a = sd_pipe( [prompt] , generator=__UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=15 , output_type='''np''' , use_karras_sigmas=__UpperCAmelCase , ) _a = output.images _a = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _a = np.array( [0.11381689, 0.12112921, 0.1389457, 0.12549606, 0.1244964, 0.10831517, 0.11562866, 0.10867816, 0.10499048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
153
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json", "YituTech/conv-bert-medium-small": ( "https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json" ), "YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class __A ( A ): '''simple docstring''' __lowerCamelCase : List[Any] = 'convbert' def __init__(self , A=30_522 , A=768 , A=12 , A=12 , A=3_072 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=2 , A=0.02 , A=1E-12 , A=1 , A=0 , A=2 , A=768 , A=2 , A=9 , A=1 , A=None , **A , ) -> Any: """simple docstring""" super().__init__( pad_token_id=A , bos_token_id=A , eos_token_id=A , **A , ) _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = initializer_range _a = layer_norm_eps _a = embedding_size _a = head_ratio _a = conv_kernel_size _a = num_groups _a = classifier_dropout class __A ( A ): '''simple docstring''' @property def a__ (self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _a = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
211
'''simple docstring''' import math class __A : '''simple docstring''' def __init__(self , A=0 ) -> Dict: # a graph with Node 0,1,...,N-1 """simple docstring""" _a = n _a = [ [math.inf for j in range(0 , A )] for i in range(0 , A ) ] # adjacency matrix for weight _a = [ [math.inf for j in range(0 , A )] for i in range(0 , A ) ] # dp[i][j] stores minimum distance from i to j def a__ (self , A , A , A ) -> Tuple: """simple docstring""" _a = w def a__ (self ) -> List[Any]: """simple docstring""" for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): _a = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def a__ (self , A , A ) -> str: """simple docstring""" return self.dp[u][v] if __name__ == "__main__": lowercase_ = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
211
1
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class _a ( UpperCamelCase__ ): _lowercase : Optional[Any] = '''Wav2Vec2FeatureExtractor''' _lowercase : List[Any] = '''AutoTokenizer''' def __init__( self: Union[str, Any] , UpperCamelCase_: Optional[int] , UpperCamelCase_: List[str] ) -> Tuple: """simple docstring""" super().__init__(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = self.feature_extractor lowercase__ = False @classmethod def lowerCamelCase_ ( cls: int , UpperCamelCase_: Union[str, Any] , **UpperCamelCase_: Optional[int] ) -> Optional[int]: """simple docstring""" try: return super().from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) except OSError: warnings.warn( f'Loading a tokenizer inside {cls.__name__} from a config that does not' ''' include a `tokenizer_class` attribute is deprecated and will be ''' '''removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`''' ''' attribute to either your `config.json` or `tokenizer_config.json` ''' '''file to suppress this warning: ''' , UpperCamelCase_ , ) lowercase__ = WavaVecaFeatureExtractor.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) lowercase__ = WavaVecaCTCTokenizer.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) return cls(feature_extractor=UpperCamelCase_ , tokenizer=UpperCamelCase_ ) def __call__( self: Optional[int] , *UpperCamelCase_: Dict , **UpperCamelCase_: Dict ) -> List[Any]: """simple docstring""" if self._in_target_context_manager: return self.current_processor(*UpperCamelCase_ , **UpperCamelCase_ ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) lowercase__ = kwargs.pop('''raw_speech''' ) else: lowercase__ = kwargs.pop('''audio''' , UpperCamelCase_ ) lowercase__ = kwargs.pop('''sampling_rate''' , UpperCamelCase_ ) lowercase__ = kwargs.pop('''text''' , UpperCamelCase_ ) if len(UpperCamelCase_ ) > 0: lowercase__ = args[0] lowercase__ = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: lowercase__ = self.feature_extractor(UpperCamelCase_ , *UpperCamelCase_ , sampling_rate=UpperCamelCase_ , **UpperCamelCase_ ) if text is not None: lowercase__ = self.tokenizer(UpperCamelCase_ , **UpperCamelCase_ ) if text is None: return inputs elif audio is None: return encodings else: lowercase__ = encodings['''input_ids'''] return inputs def lowerCamelCase_ ( self: List[Any] , *UpperCamelCase_: str , **UpperCamelCase_: Optional[int] ) -> Optional[int]: """simple docstring""" if self._in_target_context_manager: return self.current_processor.pad(*UpperCamelCase_ , **UpperCamelCase_ ) lowercase__ = kwargs.pop('''input_features''' , UpperCamelCase_ ) lowercase__ = kwargs.pop('''labels''' , UpperCamelCase_ ) if len(UpperCamelCase_ ) > 0: lowercase__ = args[0] lowercase__ = args[1:] if input_features is not None: lowercase__ = self.feature_extractor.pad(UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ ) if labels is not None: lowercase__ = self.tokenizer.pad(UpperCamelCase_ , **UpperCamelCase_ ) if labels is None: return input_features elif input_features is None: return labels else: lowercase__ = labels['''input_ids'''] return input_features def lowerCamelCase_ ( self: List[str] , *UpperCamelCase_: Optional[Any] , **UpperCamelCase_: Union[str, Any] ) -> Optional[int]: """simple docstring""" return self.tokenizer.batch_decode(*UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase_ ( self: List[Any] , *UpperCamelCase_: List[Any] , **UpperCamelCase_: Dict ) -> str: """simple docstring""" return self.tokenizer.decode(*UpperCamelCase_ , **UpperCamelCase_ ) @contextmanager def lowerCamelCase_ ( self: Union[str, Any] ) -> Tuple: """simple docstring""" warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) lowercase__ = True lowercase__ = self.tokenizer yield lowercase__ = self.feature_extractor lowercase__ = False
93
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = len(SCREAMING_SNAKE_CASE ) lowercase__ = [] for i in range(len(SCREAMING_SNAKE_CASE ) - pat_len + 1 ): lowercase__ = True for j in range(SCREAMING_SNAKE_CASE ): if s[i + j] != pattern[j]: lowercase__ = False break if match_found: position.append(SCREAMING_SNAKE_CASE ) return position if __name__ == "__main__": assert naive_pattern_search('ABCDEFG', 'DE') == [3] print(naive_pattern_search('ABAAABCDBBABCDDEBCABC', 'ABC'))
93
1
from math import loga def UpperCamelCase_( lowerCamelCase_ ) -> int: if a < 0: raise ValueError('Input value must be a positive integer' ) elif isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise TypeError('Input value must be a \'int\' type' ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
21
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Union[str, Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE : Union[str, Any] = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE : Dict = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE : str = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE : Dict = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } SCREAMING_SNAKE_CASE : Optional[Any] = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } SCREAMING_SNAKE_CASE : Dict = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } SCREAMING_SNAKE_CASE : List[Any] = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } SCREAMING_SNAKE_CASE : Dict = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } SCREAMING_SNAKE_CASE : Dict = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class _lowerCamelCase( _a ): lowercase_ : Any = VOCAB_FILES_NAMES lowercase_ : Optional[int] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase_ : str = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : str = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class _lowerCamelCase( _a ): lowercase_ : Optional[int] = VOCAB_FILES_NAMES lowercase_ : Any = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase_ : str = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : Union[str, Any] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE : Optional[int] = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) SCREAMING_SNAKE_CASE : Any = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) SCREAMING_SNAKE_CASE : str = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(_a ) class _lowerCamelCase: def __call__( self, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = False, lowerCamelCase = False, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = None, **lowerCamelCase, ) -> BatchEncoding: """simple docstring""" if titles is None and texts is None: return super().__call__( lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase, max_length=lowerCamelCase, return_tensors=lowerCamelCase, return_attention_mask=lowerCamelCase, **lowerCamelCase, ) elif titles is None or texts is None: _lowercase : Dict = titles if texts is None else texts return super().__call__( lowerCamelCase, lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase, max_length=lowerCamelCase, return_tensors=lowerCamelCase, return_attention_mask=lowerCamelCase, **lowerCamelCase, ) _lowercase : Union[str, Any] = titles if not isinstance(lowerCamelCase, lowerCamelCase) else [titles] _lowercase : Tuple = texts if not isinstance(lowerCamelCase, lowerCamelCase) else [texts] _lowercase : Optional[Any] = len(lowerCamelCase) _lowercase : Any = questions if not isinstance(lowerCamelCase, lowerCamelCase) else [questions] * n_passages if len(lowerCamelCase) != len(lowerCamelCase): raise ValueError( F'''There should be as many titles than texts but got {len(lowerCamelCase)} titles and {len(lowerCamelCase)} texts.''') _lowercase : Any = super().__call__(lowerCamelCase, lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase)['input_ids'] _lowercase : Tuple = super().__call__(lowerCamelCase, add_special_tokens=lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase)['input_ids'] _lowercase : int = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCamelCase, lowerCamelCase) ] } if return_attention_mask is not False: _lowercase : Optional[Any] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids]) _lowercase : Union[str, Any] = attention_mask return self.pad(lowerCamelCase, padding=lowerCamelCase, max_length=lowerCamelCase, return_tensors=lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase = 16, lowerCamelCase = 64, lowerCamelCase = 4, ) -> List[DPRSpanPrediction]: """simple docstring""" _lowercase : Union[str, Any] = reader_input['input_ids'] _lowercase , _lowercase , _lowercase : Tuple = reader_output[:3] _lowercase : Tuple = len(lowerCamelCase) _lowercase : str = sorted(range(lowerCamelCase), reverse=lowerCamelCase, key=relevance_logits.__getitem__) _lowercase : List[DPRReaderOutput] = [] for doc_id in sorted_docs: _lowercase : str = list(input_ids[doc_id]) # assuming question & title information is at the beginning of the sequence _lowercase : Any = sequence_ids.index(self.sep_token_id, 2) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _lowercase : List[Any] = sequence_ids.index(self.pad_token_id) else: _lowercase : List[str] = len(lowerCamelCase) _lowercase : Tuple = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len], end_logits=end_logits[doc_id][passage_offset:sequence_len], max_answer_length=lowerCamelCase, top_spans=lowerCamelCase, ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index], relevance_score=relevance_logits[doc_id], doc_id=lowerCamelCase, start_index=lowerCamelCase, end_index=lowerCamelCase, text=self.decode(sequence_ids[start_index : end_index + 1]), )) if len(lowerCamelCase) >= num_spans: break return nbest_spans_predictions[:num_spans] def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) -> List[DPRSpanPrediction]: """simple docstring""" _lowercase : str = [] for start_index, start_score in enumerate(lowerCamelCase): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]): scores.append(((start_index, start_index + answer_length), start_score + end_score)) _lowercase : Dict = sorted(lowerCamelCase, key=lambda lowerCamelCase: x[1], reverse=lowerCamelCase) _lowercase : List[str] = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F'''Wrong span indices: [{start_index}:{end_index}]''') _lowercase : Dict = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F'''Span is too long: {length} > {max_answer_length}''') if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals): continue chosen_span_intervals.append((start_index, end_index)) if len(lowerCamelCase) == top_spans: break return chosen_span_intervals @add_end_docstrings(_a ) class _lowerCamelCase( _a, _a ): lowercase_ : Union[str, Any] = VOCAB_FILES_NAMES lowercase_ : Any = READER_PRETRAINED_VOCAB_FILES_MAP lowercase_ : Dict = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : Optional[int] = READER_PRETRAINED_INIT_CONFIGURATION lowercase_ : str = ["""input_ids""", """attention_mask"""]
21
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __snake_case : Union[str, Any] = logging.get_logger(__name__) class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = ['input_features', 'attention_mask'] def __init__( self : List[Any] , lowerCAmelCase_ : Union[str, Any]=80 , lowerCAmelCase_ : int=1_60_00 , lowerCAmelCase_ : Union[str, Any]=80 , lowerCAmelCase_ : Tuple=0.0 , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Dict=True , **lowerCAmelCase_ : Tuple , ) -> Optional[int]: '''simple docstring''' super().__init__(feature_size=lowerCAmelCase_ , sampling_rate=lowerCAmelCase_ , padding_value=lowerCAmelCase_ , **lowerCAmelCase_ ) A__ : Dict =num_mel_bins A__ : Optional[int] =do_ceptral_normalize A__ : Union[str, Any] =normalize_means A__ : Union[str, Any] =normalize_vars A__ : Any =True def lowercase__ ( self : List[str] , lowerCAmelCase_ : np.ndarray , ) -> np.ndarray: '''simple docstring''' A__ : int =waveform * (2**15) # Kaldi compliance: 16-bit signed integers A__ : Optional[int] =torch.from_numpy(lowerCAmelCase_ ).unsqueeze(0 ) A__ : List[str] =ta_kaldi.fbank(lowerCAmelCase_ , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def lowercase__ ( lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[bool] = True , lowerCAmelCase_ : Optional[bool] = True , lowerCAmelCase_ : float = 0.0 , ) -> np.ndarray: '''simple docstring''' # make sure we normalize float32 arrays if normalize_means: A__ : List[Any] =x[:input_length].mean(axis=0 ) A__ : int =np.subtract(lowerCAmelCase_ , lowerCAmelCase_ ) if normalize_vars: A__ : Union[str, Any] =x[:input_length].std(axis=0 ) A__ : str =np.divide(lowerCAmelCase_ , lowerCAmelCase_ ) if input_length < x.shape[0]: A__ : Dict =padding_value # make sure array is in float32 A__ : List[str] =x.astype(np.floataa ) return x def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : List[np.ndarray] , lowerCAmelCase_ : Optional[np.ndarray] = None ) -> List[np.ndarray]: '''simple docstring''' A__ : Union[str, Any] =attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(lowerCAmelCase_ , lowerCAmelCase_ , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(lowerCAmelCase_ , lowerCAmelCase_ ) ] def __call__( self : str , lowerCAmelCase_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowerCAmelCase_ : Union[bool, str, PaddingStrategy] = False , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[bool] = None , **lowerCAmelCase_ : int , ) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with" f" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) A__ : Dict =isinstance(lowerCAmelCase_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}" ) A__ : Union[str, Any] =is_batched_numpy or ( isinstance(lowerCAmelCase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: A__ : Tuple =[np.asarray(lowerCAmelCase_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase_ , np.ndarray ): A__ : int =np.asarray(lowerCAmelCase_ , dtype=np.floataa ) elif isinstance(lowerCAmelCase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): A__ : int =raw_speech.astype(np.floataa ) # always return batch if not is_batched: A__ : int =[raw_speech] # extract fbank features A__ : int =[self._extract_fbank_features(lowerCAmelCase_ ) for waveform in raw_speech] # convert into correct format for padding A__ : List[str] =BatchFeature({"""input_features""": features} ) A__ : int =self.pad( lowerCAmelCase_ , padding=lowerCAmelCase_ , max_length=lowerCAmelCase_ , truncation=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , **lowerCAmelCase_ , ) # make sure list is in array format A__ : Any =padded_inputs.get("""input_features""" ) if isinstance(input_features[0] , lowerCAmelCase_ ): A__ : List[str] =[np.asarray(lowerCAmelCase_ , dtype=np.floataa ) for feature in input_features] A__ : Dict =padded_inputs.get("""attention_mask""" ) if attention_mask is not None: A__ : List[str] =[np.asarray(lowerCAmelCase_ , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: A__ : Any =( np.array(lowerCAmelCase_ , dtype=np.intaa ) if self._get_padding_strategies(lowerCAmelCase_ , max_length=lowerCAmelCase_ ) is not PaddingStrategy.DO_NOT_PAD else None ) A__ : List[str] =self.normalize( padded_inputs["""input_features"""] , attention_mask=lowerCAmelCase_ ) if return_tensors is not None: A__ : Union[str, Any] =padded_inputs.convert_to_tensors(lowerCAmelCase_ ) return padded_inputs
368
'''simple docstring''' from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def __lowerCamelCase ( ) -> List[Any]: """simple docstring""" A__ : List[Any] =ArgumentParser("""Transformers CLI tool""", usage="""transformers-cli <command> [<args>]""" ) A__ : List[Any] =parser.add_subparsers(help="""transformers-cli command helpers""" ) # Register commands ConvertCommand.register_subcommand(__snake_case ) DownloadCommand.register_subcommand(__snake_case ) EnvironmentCommand.register_subcommand(__snake_case ) RunCommand.register_subcommand(__snake_case ) ServeCommand.register_subcommand(__snake_case ) UserCommands.register_subcommand(__snake_case ) AddNewModelCommand.register_subcommand(__snake_case ) AddNewModelLikeCommand.register_subcommand(__snake_case ) LfsCommands.register_subcommand(__snake_case ) PTtoTFCommand.register_subcommand(__snake_case ) # Let's go A__ : List[str] =parser.parse_args() if not hasattr(__snake_case, """func""" ): parser.print_help() exit(1 ) # Run A__ : Optional[Any] =args.func(__snake_case ) service.run() if __name__ == "__main__": main()
136
0
"""simple docstring""" import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class SCREAMING_SNAKE_CASE_ ( UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" __lowercase : Dict = XLMTokenizer __lowercase : Union[str, Any] = False def snake_case_ ( self): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __SCREAMING_SNAKE_CASE = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] __SCREAMING_SNAKE_CASE = dict(zip(snake_case__ , range(len(snake_case__)))) __SCREAMING_SNAKE_CASE = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""]) with open(self.vocab_file , """w""") as fp: fp.write(json.dumps(snake_case__)) with open(self.merges_file , """w""") as fp: fp.write("""\n""".join(snake_case__)) def snake_case_ ( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = """lower newer""" __SCREAMING_SNAKE_CASE = """lower newer""" return input_text, output_text def snake_case_ ( self): __SCREAMING_SNAKE_CASE = XLMTokenizer(self.vocab_file , self.merges_file) __SCREAMING_SNAKE_CASE = """lower""" __SCREAMING_SNAKE_CASE = ["""low""", """er</w>"""] __SCREAMING_SNAKE_CASE = tokenizer.tokenize(snake_case__) self.assertListEqual(snake_case__ , snake_case__) __SCREAMING_SNAKE_CASE = tokens + ["""<unk>"""] __SCREAMING_SNAKE_CASE = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__) , snake_case__) @slow def snake_case_ ( self): __SCREAMING_SNAKE_CASE = XLMTokenizer.from_pretrained("""xlm-mlm-en-2048""") __SCREAMING_SNAKE_CASE = tokenizer.encode("""sequence builders""" , add_special_tokens=snake_case__) __SCREAMING_SNAKE_CASE = tokenizer.encode("""multi-sequence build""" , add_special_tokens=snake_case__) __SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(snake_case__) __SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(snake_case__ , snake_case__) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
100
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_=True , snake_case_="pt" ): '''simple docstring''' _UpperCAmelCase = {"add_prefix_space": True} if isinstance(snake_case_ , snake_case_ ) and not line.startswith(" " ) else {} _UpperCAmelCase = padding_side return tokenizer( [line] , max_length=snake_case_ , padding="max_length" if pad_to_max_length else None , truncation=snake_case_ , return_tensors=snake_case_ , add_special_tokens=snake_case_ , **snake_case_ , ) def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , snake_case_=None , ): '''simple docstring''' _UpperCAmelCase = input_ids.ne(snake_case_ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCAmelCase ( UpperCAmelCase__ ): def __init__( self : Dict , snake_case__ : List[Any] , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : List[str]="train" , snake_case__ : List[str]=None , snake_case__ : Optional[Any]=None , snake_case__ : int=None , snake_case__ : List[str]="" , ): """simple docstring""" super().__init__() _UpperCAmelCase = Path(snake_case__ ).joinpath(type_path + ".source" ) _UpperCAmelCase = Path(snake_case__ ).joinpath(type_path + ".target" ) _UpperCAmelCase = self.get_char_lens(self.src_file ) _UpperCAmelCase = max_source_length _UpperCAmelCase = max_target_length assert min(self.src_lens ) > 0, F"""found empty line in {self.src_file}""" _UpperCAmelCase = tokenizer _UpperCAmelCase = prefix if n_obs is not None: _UpperCAmelCase = self.src_lens[:n_obs] _UpperCAmelCase = src_lang _UpperCAmelCase = tgt_lang def __len__( self : Optional[int] ): """simple docstring""" return len(self.src_lens ) def __getitem__( self : Optional[Any] , snake_case__ : str ): """simple docstring""" _UpperCAmelCase = index + 1 # linecache starts at 1 _UpperCAmelCase = self.prefix + linecache.getline(str(self.src_file ) , snake_case__ ).rstrip("\n" ) _UpperCAmelCase = linecache.getline(str(self.tgt_file ) , snake_case__ ).rstrip("\n" ) assert source_line, F"""empty source line for index {index}""" assert tgt_line, F"""empty tgt line for index {index}""" # Need to add eos token manually for T5 if isinstance(self.tokenizer , snake_case__ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _UpperCAmelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer ) _UpperCAmelCase = self.tokenizer.generator if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer _UpperCAmelCase = encode_line(snake_case__ , snake_case__ , self.max_source_length , "right" ) _UpperCAmelCase = encode_line(snake_case__ , snake_case__ , self.max_target_length , "right" ) _UpperCAmelCase = source_inputs["input_ids"].squeeze() _UpperCAmelCase = target_inputs["input_ids"].squeeze() _UpperCAmelCase = source_inputs["attention_mask"].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def UpperCamelCase ( snake_case__ : Optional[Any] ): """simple docstring""" return [len(snake_case__ ) for x in Path(snake_case__ ).open().readlines()] def UpperCamelCase ( self : Any , snake_case__ : List[Any] ): """simple docstring""" _UpperCAmelCase = torch.stack([x["input_ids"] for x in batch] ) _UpperCAmelCase = torch.stack([x["attention_mask"] for x in batch] ) _UpperCAmelCase = torch.stack([x["decoder_input_ids"] for x in batch] ) _UpperCAmelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer.pad_token_id ) _UpperCAmelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer.pad_token_id ) _UpperCAmelCase = trim_batch(snake_case__ , snake_case__ ) _UpperCAmelCase , _UpperCAmelCase = trim_batch(snake_case__ , snake_case__ , attention_mask=snake_case__ ) _UpperCAmelCase = { "input_ids": source_ids, "attention_mask": source_mask, "decoder_input_ids": y, } return batch lowercase_ : Dict = getLogger(__name__) def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' return list(itertools.chain.from_iterable(snake_case_ ) ) def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' _UpperCAmelCase = get_git_info() save_json(snake_case_ , os.path.join(snake_case_ , "git_log.json" ) ) def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , snake_case_=4 , **snake_case_ ): '''simple docstring''' with open(snake_case_ , "w" ) as f: json.dump(snake_case_ , snake_case_ , indent=snake_case_ , **snake_case_ ) def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' with open(snake_case_ ) as f: return json.load(snake_case_ ) def __SCREAMING_SNAKE_CASE ( ): '''simple docstring''' _UpperCAmelCase = git.Repo(search_parent_directories=snake_case_ ) _UpperCAmelCase = { "repo_id": str(snake_case_ ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), "hostname": str(socket.gethostname() ), } return repo_infos def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): '''simple docstring''' return list(map(snake_case_ , snake_case_ ) ) def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): '''simple docstring''' with open(snake_case_ , "wb" ) as f: return pickle.dump(snake_case_ , snake_case_ ) def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' def remove_articles(snake_case_ ): return re.sub(R"\b(a|an|the)\b" , " " , snake_case_ ) def white_space_fix(snake_case_ ): return " ".join(text.split() ) def remove_punc(snake_case_ ): _UpperCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(snake_case_ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(snake_case_ ) ) ) ) def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): '''simple docstring''' _UpperCAmelCase = normalize_answer(snake_case_ ).split() _UpperCAmelCase = normalize_answer(snake_case_ ).split() _UpperCAmelCase = Counter(snake_case_ ) & Counter(snake_case_ ) _UpperCAmelCase = sum(common.values() ) if num_same == 0: return 0 _UpperCAmelCase = 1.0 * num_same / len(snake_case_ ) _UpperCAmelCase = 1.0 * num_same / len(snake_case_ ) _UpperCAmelCase = (2 * precision * recall) / (precision + recall) return fa def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): '''simple docstring''' return normalize_answer(snake_case_ ) == normalize_answer(snake_case_ ) def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): '''simple docstring''' assert len(snake_case_ ) == len(snake_case_ ) _UpperCAmelCase = 0 for hypo, pred in zip(snake_case_ , snake_case_ ): em += exact_match_score(snake_case_ , snake_case_ ) if len(snake_case_ ) > 0: em /= len(snake_case_ ) return {"em": em} def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' return model_prefix.startswith("rag" ) def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' _UpperCAmelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _UpperCAmelCase = "dropout_rate" for p in extra_params: if getattr(snake_case_ , snake_case_ , snake_case_ ): if not hasattr(snake_case_ , snake_case_ ) and not hasattr(snake_case_ , equivalent_param[p] ): logger.info("config doesn't have a `{}` attribute".format(snake_case_ ) ) delattr(snake_case_ , snake_case_ ) continue _UpperCAmelCase = p if hasattr(snake_case_ , snake_case_ ) else equivalent_param[p] setattr(snake_case_ , snake_case_ , getattr(snake_case_ , snake_case_ ) ) delattr(snake_case_ , snake_case_ ) return hparams, config
133
0
"""simple docstring""" import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class A__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = ComputeEnvironment.AMAZON_SAGEMAKER SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = 'ml.p3.2xlarge' SCREAMING_SNAKE_CASE = 'accelerate_sagemaker_execution_role' SCREAMING_SNAKE_CASE = 'hf-sm' SCREAMING_SNAKE_CASE = 'us-east-1' SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 'accelerate-sagemaker-1' SCREAMING_SNAKE_CASE = '1.6' SCREAMING_SNAKE_CASE = '4.4' SCREAMING_SNAKE_CASE = 'train.py' SCREAMING_SNAKE_CASE = [ '--model_name_or_path', 'bert', '--do_train', 'False', '--epochs', '3', '--learning_rate', '5e-5', '--max_steps', '50.5', ] SCREAMING_SNAKE_CASE = [ '--model_name_or_path', 'bert', '--do_train', '--do_test', 'False', '--do_predict', '--epochs', '3', '--learning_rate', '5e-5', '--max_steps', '50.5', ] class A__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self: Dict) -> List[Any]: """simple docstring""" __lowerCAmelCase : int = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args) assert isinstance(converted_args["model_name_or_path"] , _SCREAMING_SNAKE_CASE) assert isinstance(converted_args["do_train"] , _SCREAMING_SNAKE_CASE) assert isinstance(converted_args["epochs"] , _SCREAMING_SNAKE_CASE) assert isinstance(converted_args["learning_rate"] , _SCREAMING_SNAKE_CASE) assert isinstance(converted_args["max_steps"] , _SCREAMING_SNAKE_CASE) with pytest.raises(_SCREAMING_SNAKE_CASE): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args)
364
"""simple docstring""" from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING __snake_case : List[str] = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self: List[str] , **_SCREAMING_SNAKE_CASE: Union[str, Any]) -> Optional[Any]: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE) if self.framework == "tf": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""") requires_backends(self , "vision") self.check_model_type(_SCREAMING_SNAKE_CASE) def __call__( self: str , _SCREAMING_SNAKE_CASE: Union[str, "Image.Image", List[Dict[str, Any]]] , _SCREAMING_SNAKE_CASE: Union[str, List[str]] = None , **_SCREAMING_SNAKE_CASE: Optional[Any] , ) -> int: """simple docstring""" if "text_queries" in kwargs: __lowerCAmelCase : List[str] = kwargs.pop("text_queries") if isinstance(_SCREAMING_SNAKE_CASE , (str, Image.Image)): __lowerCAmelCase : Any = {"image": image, "candidate_labels": candidate_labels} else: __lowerCAmelCase : Dict = image __lowerCAmelCase : Optional[int] = super().__call__(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) return results def _SCREAMING_SNAKE_CASE ( self: Any , **_SCREAMING_SNAKE_CASE: Tuple) -> Tuple: """simple docstring""" __lowerCAmelCase : Optional[int] = {} if "threshold" in kwargs: __lowerCAmelCase : Optional[int] = kwargs["threshold"] if "top_k" in kwargs: __lowerCAmelCase : int = kwargs["top_k"] return {}, {}, postprocess_params def _SCREAMING_SNAKE_CASE ( self: List[Any] , _SCREAMING_SNAKE_CASE: Dict) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : List[str] = load_image(inputs["image"]) __lowerCAmelCase : Union[str, Any] = inputs["candidate_labels"] if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE): __lowerCAmelCase : Optional[int] = candidate_labels.split(",") __lowerCAmelCase : Union[str, Any] = torch.tensor([[image.height, image.width]] , dtype=torch.intaa) for i, candidate_label in enumerate(_SCREAMING_SNAKE_CASE): __lowerCAmelCase : Optional[Any] = self.tokenizer(_SCREAMING_SNAKE_CASE , return_tensors=self.framework) __lowerCAmelCase : Dict = self.image_processor(_SCREAMING_SNAKE_CASE , return_tensors=self.framework) yield { "is_last": i == len(_SCREAMING_SNAKE_CASE) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: List[str]) -> List[str]: """simple docstring""" __lowerCAmelCase : Optional[Any] = model_inputs.pop("target_size") __lowerCAmelCase : Any = model_inputs.pop("candidate_label") __lowerCAmelCase : List[str] = model_inputs.pop("is_last") __lowerCAmelCase : Dict = self.model(**_SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = {"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs} return model_outputs def _SCREAMING_SNAKE_CASE ( self: List[Any] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: str=0.1 , _SCREAMING_SNAKE_CASE: Optional[int]=None) -> List[Any]: """simple docstring""" __lowerCAmelCase : int = [] for model_output in model_outputs: __lowerCAmelCase : Dict = model_output["candidate_label"] __lowerCAmelCase : int = BaseModelOutput(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = self.image_processor.post_process_object_detection( outputs=_SCREAMING_SNAKE_CASE , threshold=_SCREAMING_SNAKE_CASE , target_sizes=model_output["target_size"])[0] for index in outputs["scores"].nonzero(): __lowerCAmelCase : Any = outputs["scores"][index].item() __lowerCAmelCase : int = self._get_bounding_box(outputs["boxes"][index][0]) __lowerCAmelCase : List[str] = {"score": score, "label": label, "box": box} results.append(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE: x["score"] , reverse=_SCREAMING_SNAKE_CASE) if top_k: __lowerCAmelCase : str = results[:top_k] return results def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: "torch.Tensor") -> Dict[str, int]: """simple docstring""" if self.framework != "pt": raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch.") __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : int = box.int().tolist() __lowerCAmelCase : Any = { "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
58
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCamelCase_ : List[str] = {'configuration_swin': ['SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwinConfig', 'SwinOnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Any = [ 'SWIN_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwinForImageClassification', 'SwinForMaskedImageModeling', 'SwinModel', 'SwinPreTrainedModel', 'SwinBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : int = [ 'TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFSwinForImageClassification', 'TFSwinForMaskedImageModeling', 'TFSwinModel', 'TFSwinPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys lowerCamelCase_ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
286
"""simple docstring""" from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' lowercase_ : List[str] = CustomTokenizer pass
286
1
def lowerCAmelCase( __lowerCamelCase = 100_0000 ): __a = limit + 1 __a = [0] * limit for first_term in range(1 , __lowerCamelCase ): for n in range(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __a = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a __a = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F'''{solution() = }''')
197
from __future__ import annotations import numpy as np def lowerCAmelCase( __lowerCamelCase ): return np.maximum(0 , __lowerCamelCase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
197
1
def lowerCamelCase_ ( UpperCamelCase__ : list[list[int | float]] ) -> int: """simple docstring""" __lowerCamelCase = len(UpperCamelCase__ ) __lowerCamelCase = len(matrix[0] ) __lowerCamelCase = min(UpperCamelCase__ , UpperCamelCase__ ) for row in range(UpperCamelCase__ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , UpperCamelCase__ ): __lowerCamelCase = matrix[col][row] / matrix[row][row] for i in range(UpperCamelCase__ , UpperCamelCase__ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows __lowerCamelCase = True for i in range(row + 1 , UpperCamelCase__ ): if matrix[i][row] != 0: __lowerCamelCase , __lowerCamelCase = matrix[i], matrix[row] __lowerCamelCase = False break if reduce: rank -= 1 for i in range(UpperCamelCase__ ): __lowerCamelCase = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
90
'''simple docstring''' import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase_ (__a : Optional[Any] , __a : str , __a : Optional[Any]=None ): """simple docstring""" assert torch_layer.weight.shape == weight.shape, f"""{torch_layer} layer.weight does not match""" _a : str = nn.Parameter(__a ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f"""{torch_layer} layer.bias does not match""" _a : Any = nn.Parameter(__a ) def UpperCAmelCase_ (__a : int , __a : Optional[Any] , __a : int ): """simple docstring""" _a : Tuple = np.asarray(weights[0] ) _a : Union[str, Any] = np.asarray(weights[1] ) _a : Dict = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(__a ).transpose(1 , 2 ).contiguous().view(-1 , __a ) , ) set_param( torch_layer.self_attention.value , torch.tensor(__a ).transpose(1 , 2 ).contiguous().view(-1 , __a ) , ) set_param( torch_layer.output.dense , torch.tensor(__a ).view(-1 , __a ).contiguous().transpose(0 , 1 ) , ) def UpperCAmelCase_ (__a : Optional[Any] , __a : Optional[int] , __a : List[str] ): """simple docstring""" _a : Dict = np.asarray(weights[0] ) _a : Union[str, Any] = np.asarray(weights[1] ) _a : str = np.asarray(weights[2] ) _a : int = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(__a ).transpose(1 , 2 ).contiguous().view(-1 , __a ) , ) set_param( torch_layer.self_attention.key , torch.tensor(__a ).transpose(1 , 2 ).contiguous().view(-1 , __a ) , ) set_param( torch_layer.self_attention.value , torch.tensor(__a ).transpose(1 , 2 ).contiguous().view(-1 , __a ) , ) set_param( torch_layer.output.dense , torch.tensor(__a ).view(-1 , __a ).contiguous().transpose(0 , 1 ) , ) def UpperCAmelCase_ (__a : Any , __a : Any , __a : Optional[Any] ): """simple docstring""" _a : List[str] = weights[0][0][0] _a : List[Any] = np.asarray(layer_norm_a[0] ) _a : List[str] = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(__a ) , torch.tensor(__a ) , ) # lsh weights + output _a : List[str] = weights[0][1] if len(__a ) < 4: set_layer_weights_in_torch_lsh(__a , torch_block.attention , __a ) else: set_layer_weights_in_torch_local(__a , torch_block.attention , __a ) # intermediate weighs _a : Optional[Any] = weights[2][0][1][2] # Chunked Feed Forward if len(__a ) == 4: _a : Union[str, Any] = intermediate_weights[2] # layernorm 2 _a : Any = np.asarray(intermediate_weights[0][0] ) _a : List[Any] = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(__a ) , torch.tensor(__a ) , ) # intermediate dense _a : Any = np.asarray(intermediate_weights[1][0] ) _a : Any = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(__a ).transpose(0 , 1 ).contiguous() , torch.tensor(__a ) , ) # intermediate out _a : Optional[int] = np.asarray(intermediate_weights[4][0] ) _a : int = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(__a ).transpose(0 , 1 ).contiguous() , torch.tensor(__a ) , ) def UpperCAmelCase_ (__a : Dict , __a : Dict , __a : List[Any] ): """simple docstring""" _a : Optional[int] = torch_model.reformer # word embeds _a : Tuple = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(__a ) , ) if isinstance(weights[3] , __a ): _a : Any = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): _a : List[Any] = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f"""{position_embeddings[emb_idx]} emb does not match""" _a : Any = nn.Parameter(torch.tensor(__a ) ) _a : List[str] = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( __a ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): _a : Tuple = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(__a , __a , __a ) # output layer norm _a : Optional[Any] = np.asarray(weights[7][0] ) _a : int = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(__a ) , torch.tensor(__a ) , ) # output embeddings _a : List[str] = np.asarray(weights[9][0] ) _a : int = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(__a ).transpose(0 , 1 ).contiguous() , torch.tensor(__a ) , ) def UpperCAmelCase_ (__a : Tuple , __a : Optional[Any] , __a : Dict ): """simple docstring""" _a : List[Any] = ReformerConfig.from_json_file(__a ) print(f"""Building PyTorch model from configuration: {config}""" ) _a : int = ReformerModelWithLMHead(__a ) with open(__a , 'rb' ) as f: _a : Optional[Any] = pickle.load(__a )['weights'] set_model_weights_in_torch(__a , __a , config.hidden_size ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , __a ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--trax_model_pkl_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained Reformer model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __lowerCAmelCase = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
271
0
import pickle import numpy as np from matplotlib import pyplot as plt class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a , _a , _a , _a , _a=0.2 , _a=0.2 ): __a = bp_numa __a = bp_numa __a = bp_numa __a = conva_get[:2] __a = conva_get[2] __a = size_pa __a = rate_w __a = rate_t __a = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] __a = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) __a = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) __a = -2 * np.random.rand(self.conva[1] ) + 1 __a = -2 * np.random.rand(self.num_bpa ) + 1 __a = -2 * np.random.rand(self.num_bpa ) + 1 def __UpperCAmelCase ( self , _a ): # save model dict with pickle __a = { '''num_bp1''': self.num_bpa, '''num_bp2''': self.num_bpa, '''num_bp3''': self.num_bpa, '''conv1''': self.conva, '''step_conv1''': self.step_conva, '''size_pooling1''': self.size_poolinga, '''rate_weight''': self.rate_weight, '''rate_thre''': self.rate_thre, '''w_conv1''': self.w_conva, '''wkj''': self.wkj, '''vji''': self.vji, '''thre_conv1''': self.thre_conva, '''thre_bp2''': self.thre_bpa, '''thre_bp3''': self.thre_bpa, } with open(_a , '''wb''' ) as f: pickle.dump(_a , _a ) print(f'''Model saved: {save_path}''' ) @classmethod def __UpperCAmelCase ( cls , _a ): # read saved model with open(_a , '''rb''' ) as f: __a = pickle.load(_a ) # noqa: S301 __a = model_dic.get('''conv1''' ) conv_get.append(model_dic.get('''step_conv1''' ) ) __a = model_dic.get('''size_pooling1''' ) __a = model_dic.get('''num_bp1''' ) __a = model_dic.get('''num_bp2''' ) __a = model_dic.get('''num_bp3''' ) __a = model_dic.get('''rate_weight''' ) __a = model_dic.get('''rate_thre''' ) # create model instance __a = CNN(_a , _a , _a , _a , _a , _a , _a ) # modify model parameter __a = model_dic.get('''w_conv1''' ) __a = model_dic.get('''wkj''' ) __a = model_dic.get('''vji''' ) __a = model_dic.get('''thre_conv1''' ) __a = model_dic.get('''thre_bp2''' ) __a = model_dic.get('''thre_bp3''' ) return conv_ins def __UpperCAmelCase ( self , _a ): return 1 / (1 + np.exp(-1 * x )) def __UpperCAmelCase ( self , _a ): return round(_a , 3 ) def __UpperCAmelCase ( self , _a , _a , _a , _a , _a ): # convolution process __a = convs[0] __a = convs[1] __a = np.shape(_a )[0] # get the data slice of original image data, data_focus __a = [] for i_focus in range(0 , size_data - size_conv + 1 , _a ): for j_focus in range(0 , size_data - size_conv + 1 , _a ): __a = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(_a ) # calculate the feature map of every single kernel, and saved as list of matrix __a = [] __a = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(_a ): __a = [] for i_focus in range(len(_a ) ): __a = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(_a ) ) __a = np.asmatrix(_a ).reshape( _a , _a ) data_featuremap.append(_a ) # expanding the data slice to One dimenssion __a = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(_a ) ) __a = np.asarray(_a ) return focus_list, data_featuremap def __UpperCAmelCase ( self , _a , _a , _a="average_pool" ): # pooling process __a = len(featuremaps[0] ) __a = int(size_map / size_pooling ) __a = [] for i_map in range(len(_a ) ): __a = featuremaps[i_map] __a = [] for i_focus in range(0 , _a , _a ): for j_focus in range(0 , _a , _a ): __a = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(_a ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(_a ) ) __a = np.asmatrix(_a ).reshape(_a , _a ) featuremap_pooled.append(_a ) return featuremap_pooled def __UpperCAmelCase ( self , _a ): # expanding three dimension data to one dimension list __a = [] for i in range(len(_a ) ): __a = np.shape(data[i] ) __a = data[i].reshape(1 , shapes[0] * shapes[1] ) __a = data_listed.getA().tolist()[0] data_expanded.extend(_a ) __a = np.asarray(_a ) return data_expanded def __UpperCAmelCase ( self , _a ): # expanding matrix to one dimension list __a = np.asarray(_a ) __a = np.shape(_a ) __a = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def __UpperCAmelCase ( self , _a , _a , _a , _a , _a ): __a = [] __a = 0 for i_map in range(_a ): __a = np.ones((size_map, size_map) ) for i in range(0 , _a , _a ): for j in range(0 , _a , _a ): __a = pd_pool[ i_pool ] __a = i_pool + 1 __a = np.multiply( _a , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(_a ) return pd_all def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , _a=bool ): # model traning print('''----------------------Start Training-------------------------''' ) print((''' - - Shape: Train_Data ''', np.shape(_a )) ) print((''' - - Shape: Teach_Data ''', np.shape(_a )) ) __a = 0 __a = [] __a = 10_000 while rp < n_repeat and mse >= error_accuracy: __a = 0 print(f'''-------------Learning Time {rp}--------------''' ) for p in range(len(_a ) ): # print('------------Learning Image: %d--------------'%p) __a = np.asmatrix(datas_train[p] ) __a = np.asarray(datas_teach[p] ) __a , __a = self.convolute( _a , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) __a = self.pooling(_a , self.size_poolinga ) __a = np.shape(_a ) __a = self._expand(_a ) __a = data_bp_input __a = np.dot(_a , self.vji.T ) - self.thre_bpa __a = self.sig(_a ) __a = np.dot(_a , self.wkj.T ) - self.thre_bpa __a = self.sig(_a ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- __a = np.multiply( (data_teach - bp_outa) , np.multiply(_a , (1 - bp_outa) ) ) __a = np.multiply( np.dot(_a , self.wkj ) , np.multiply(_a , (1 - bp_outa) ) ) __a = np.dot(_a , self.vji ) __a = pd_i_all / (self.size_poolinga * self.size_poolinga) __a = pd_conva_pooled.T.getA().tolist() __a = self._calculate_gradient_from_pool( _a , _a , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): __a = self._expand_mat(pd_conva_all[k_conv] ) __a = self.rate_weight * np.dot(_a , _a ) __a = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) __a = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer __a = self.wkj + pd_k_all.T * bp_outa * self.rate_weight __a = self.vji + pd_j_all.T * bp_outa * self.rate_weight __a = self.thre_bpa - pd_k_all * self.rate_thre __a = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image __a = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) __a = rp + 1 __a = error_count / patterns all_mse.append(_a ) def draw_error(): __a = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(_a , '''+-''' ) plt.plot(_a , '''r--''' ) plt.xlabel('''Learning Times''' ) plt.ylabel('''All_mse''' ) plt.grid(_a , alpha=0.5 ) plt.show() print('''------------------Training Complished---------------------''' ) print((''' - - Training epoch: ''', rp, f''' - - Mse: {mse:.6f}''') ) if draw_e: draw_error() return mse def __UpperCAmelCase ( self , _a ): # model predict __a = [] print('''-------------------Start Testing-------------------------''' ) print((''' - - Shape: Test_Data ''', np.shape(_a )) ) for p in range(len(_a ) ): __a = np.asmatrix(datas_test[p] ) __a , __a = self.convolute( _a , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) __a = self.pooling(_a , self.size_poolinga ) __a = self._expand(_a ) __a = data_bp_input __a = bp_outa * self.vji.T - self.thre_bpa __a = self.sig(_a ) __a = bp_outa * self.wkj.T - self.thre_bpa __a = self.sig(_a ) produce_out.extend(bp_outa.getA().tolist() ) __a = [list(map(self.do_round , _a ) ) for each in produce_out] return np.asarray(_a ) def __UpperCAmelCase ( self , _a ): # return the data of image after convoluting process so we can check it out __a = np.asmatrix(_a ) __a , __a = self.convolute( _a , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) __a = self.pooling(_a , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
368
"""simple docstring""" import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def lowercase ( lowerCAmelCase__ : Dict ) -> Optional[int]: __a , __a = image.size __a , __a = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 __a = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) __a = np.array(lowerCAmelCase__ ).astype(np.floataa ) / 2_55.0 __a = image[None].transpose(0 , 3 , 1 , 2 ) __a = torch.from_numpy(lowerCAmelCase__ ) return 2.0 * image - 1.0 class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _a , _a , _a , ): super().__init__() self.register_modules(vqvae=_a , unet=_a , scheduler=_a ) @torch.no_grad() def __call__( self , _a = None , _a = 1 , _a = 100 , _a = 0.0 , _a = None , _a = "pil" , _a = True , ): if isinstance(_a , PIL.Image.Image ): __a = 1 elif isinstance(_a , torch.Tensor ): __a = image.shape[0] else: raise ValueError(f'''`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(_a )}''' ) if isinstance(_a , PIL.Image.Image ): __a = preprocess(_a ) __a , __a = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image __a = (batch_size, self.unet.config.in_channels // 2, height, width) __a = next(self.unet.parameters() ).dtype __a = randn_tensor(_a , generator=_a , device=self.device , dtype=_a ) __a = image.to(device=self.device , dtype=_a ) # set timesteps and move to the correct device self.scheduler.set_timesteps(_a , device=self.device ) __a = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler __a = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __a = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __a = {} if accepts_eta: __a = eta for t in self.progress_bar(_a ): # concat latents and low resolution image in the channel dimension. __a = torch.cat([latents, image] , dim=1 ) __a = self.scheduler.scale_model_input(_a , _a ) # predict the noise residual __a = self.unet(_a , _a ).sample # compute the previous noisy sample x_t -> x_t-1 __a = self.scheduler.step(_a , _a , _a , **_a ).prev_sample # decode the image latents with the VQVAE __a = self.vqvae.decode(_a ).sample __a = torch.clamp(_a , -1.0 , 1.0 ) __a = image / 2 + 0.5 __a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __a = self.numpy_to_pil(_a ) if not return_dict: return (image,) return ImagePipelineOutput(images=_a )
11
0
from collections.abc import Callable import numpy as np def lowercase__ ( __snake_case : Callable , __snake_case : float , __snake_case : float , __snake_case : float , __snake_case : float ): '''simple docstring''' UpperCAmelCase_ : str = int(np.ceil((x_end - xa) / step_size ) ) UpperCAmelCase_ : Optional[Any] = np.zeros((n + 1,) ) UpperCAmelCase_ : Union[str, Any] = ya UpperCAmelCase_ : List[Any] = xa for k in range(__snake_case ): UpperCAmelCase_ : Any = y[k] + step_size * ode_func(__snake_case , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
29
def lowercase__ ( __snake_case : int , __snake_case : int ): '''simple docstring''' if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) UpperCAmelCase_ : Tuple = str(bin(__snake_case ) )[2:] # remove the leading "0b" UpperCAmelCase_ : Union[str, Any] = str(bin(__snake_case ) )[2:] # remove the leading "0b" UpperCAmelCase_ : List[Any] = max(len(__snake_case ) , len(__snake_case ) ) return "0b" + "".join( str(int(char_a == '1' and char_b == '1' ) ) for char_a, char_b in zip(a_binary.zfill(__snake_case ) , b_binary.zfill(__snake_case ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
29
1
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: if exponent == 1: return base if exponent % 2 == 0: a = _modexpt(lowerCamelCase_ , exponent // 2 , lowerCamelCase_ ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(lowerCamelCase_ , exponent - 1 , lowerCamelCase_ )) % modulo_value def __A ( __lowerCamelCase = 1777 , __lowerCamelCase = 1855 , __lowerCamelCase = 8 ) -> Dict: a = base for _ in range(1 , lowerCamelCase_ ): a = _modexpt(lowerCamelCase_ , lowerCamelCase_ , 10**digits ) return result if __name__ == "__main__": print(F'{solution() = }')
358
import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters __UpperCamelCase : Union[str, Any] = (720, 1_280) # Height, Width __UpperCamelCase : Any = (0.4, 0.6) # if height or width lower than this scale, drop it. __UpperCamelCase : str = 1 / 100 __UpperCamelCase : Optional[int] = "" __UpperCamelCase : List[Any] = "" __UpperCamelCase : Union[str, Any] = "" __UpperCamelCase : Tuple = 250 def __A ( ) -> None: a , a = get_dataset(__lowerCamelCase , __lowerCamelCase ) for index in range(__lowerCamelCase ): a = random.sample(range(len(__lowerCamelCase ) ) , 4 ) a , a , a = update_image_and_anno( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , filter_scale=__lowerCamelCase , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' a = random_chars(32 ) a = path.split(os.sep )[-1].rsplit(""".""" , 1 )[0] a = f'{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}' cva.imwrite(f'{file_root}.jpg' , __lowerCamelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f'Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}' ) a = [] for anno in new_annos: a = anno[3] - anno[1] a = anno[4] - anno[2] a = anno[1] + width / 2 a = anno[2] + height / 2 a = f'{anno[0]} {x_center} {y_center} {width} {height}' annos_list.append(__lowerCamelCase ) with open(f'{file_root}.txt' , """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def __A ( __lowerCamelCase , __lowerCamelCase ) -> tuple[list, list]: a = [] a = [] for label_file in glob.glob(os.path.join(__lowerCamelCase , """*.txt""" ) ): a = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0] with open(__lowerCamelCase ) as in_file: a = in_file.readlines() a = os.path.join(__lowerCamelCase , f'{label_name}.jpg' ) a = [] for obj_list in obj_lists: a = obj_list.rstrip("""\n""" ).split(""" """ ) a = float(obj[1] ) - float(obj[3] ) / 2 a = float(obj[2] ) - float(obj[4] ) / 2 a = float(obj[1] ) + float(obj[3] ) / 2 a = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(__lowerCamelCase ) labels.append(__lowerCamelCase ) return img_paths, labels def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = 0.0 , ) -> tuple[list, list, str]: a = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) a = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) a = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) a = int(scale_x * output_size[1] ) a = int(scale_y * output_size[0] ) a = [] a = [] for i, index in enumerate(__lowerCamelCase ): a = all_img_list[index] path_list.append(__lowerCamelCase ) a = all_annos[index] a = cva.imread(__lowerCamelCase ) if i == 0: # top-left a = cva.resize(__lowerCamelCase , (divid_point_x, divid_point_y) ) a = img for bbox in img_annos: a = bbox[1] * scale_x a = bbox[2] * scale_y a = bbox[3] * scale_x a = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right a = cva.resize(__lowerCamelCase , (output_size[1] - divid_point_x, divid_point_y) ) a = img for bbox in img_annos: a = scale_x + bbox[1] * (1 - scale_x) a = bbox[2] * scale_y a = scale_x + bbox[3] * (1 - scale_x) a = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left a = cva.resize(__lowerCamelCase , (divid_point_x, output_size[0] - divid_point_y) ) a = img for bbox in img_annos: a = bbox[1] * scale_x a = scale_y + bbox[2] * (1 - scale_y) a = bbox[3] * scale_x a = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right a = cva.resize( __lowerCamelCase , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) a = img for bbox in img_annos: a = scale_x + bbox[1] * (1 - scale_x) a = scale_y + bbox[2] * (1 - scale_y) a = scale_x + bbox[3] * (1 - scale_x) a = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: a = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def __A ( __lowerCamelCase ) -> str: assert number_char > 1, "The number of character should greater than 1" a = ascii_lowercase + digits return "".join(random.choice(__lowerCamelCase ) for _ in range(__lowerCamelCase ) ) if __name__ == "__main__": main() print("DONE ✅")
347
0
'''simple docstring''' class a__( lowerCAmelCase_ ): pass class a__( lowerCAmelCase_ ): pass class a__: def __init__( self : List[Any] ): a : Tuple = [ [], [], [], ] def lowercase_ ( self : List[str] , __snake_case : int , __snake_case : int ): try: if len(self.queues[priority] ) >= 1_00: raise OverflowError('Maximum queue size is 100' ) self.queues[priority].append(lowerCamelCase__ ) except IndexError: raise ValueError('Valid priorities are 0, 1, and 2' ) def lowercase_ ( self : str ): for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError('All queues are empty' ) def __str__( self : Tuple ): return "\n".join(F"""Priority {i}: {q}""" for i, q in enumerate(self.queues ) ) class a__: def __init__( self : int ): a : List[str] = [] def lowercase_ ( self : str , __snake_case : int ): if len(self.queue ) == 1_00: raise OverFlowError('Maximum queue size is 100' ) self.queue.append(lowerCamelCase__ ) def lowercase_ ( self : List[str] ): if not self.queue: raise UnderFlowError('The queue is empty' ) else: a : Tuple = min(self.queue ) self.queue.remove(lowerCamelCase__ ) return data def __str__( self : List[str] ): return str(self.queue ) def lowerCamelCase__ ( ): a : Optional[Any] = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 100 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 128 ) print(_SCREAMING_SNAKE_CASE ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(_SCREAMING_SNAKE_CASE ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def lowerCamelCase__ ( ): a : int = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(_SCREAMING_SNAKE_CASE ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(_SCREAMING_SNAKE_CASE ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
297
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { """microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""", } class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : Dict = "git_vision_model" def __init__( self : List[Any] ,lowerCamelCase__ : Dict=768 ,lowerCamelCase__ : Union[str, Any]=3072 ,lowerCamelCase__ : Optional[int]=12 ,lowerCamelCase__ : Tuple=12 ,lowerCamelCase__ : Tuple=3 ,lowerCamelCase__ : Optional[Any]=224 ,lowerCamelCase__ : Union[str, Any]=16 ,lowerCamelCase__ : List[Any]="quick_gelu" ,lowerCamelCase__ : Optional[Any]=1e-5 ,lowerCamelCase__ : str=0.0 ,lowerCamelCase__ : Optional[int]=0.02 ,**lowerCamelCase__ : Union[str, Any] ,) -> Optional[int]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = hidden_act @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Tuple ,lowerCamelCase__ : Union[str, os.PathLike] ,**lowerCamelCase__ : int ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(lowerCamelCase__ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = cls.get_config_dict(lowerCamelCase__ ,**lowerCamelCase__ ) # get the vision config dict if we are loading from GITConfig if config_dict.get("""model_type""" ) == "git": SCREAMING_SNAKE_CASE = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowerCamelCase__ ,**lowerCamelCase__ ) class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : Dict = "git" def __init__( self : Optional[int] ,lowerCamelCase__ : int=None ,lowerCamelCase__ : str=30522 ,lowerCamelCase__ : Tuple=768 ,lowerCamelCase__ : Union[str, Any]=6 ,lowerCamelCase__ : str=12 ,lowerCamelCase__ : List[str]=3072 ,lowerCamelCase__ : Dict="gelu" ,lowerCamelCase__ : Tuple=0.1 ,lowerCamelCase__ : Any=0.1 ,lowerCamelCase__ : List[str]=1024 ,lowerCamelCase__ : List[str]=0.02 ,lowerCamelCase__ : str=1e-1_2 ,lowerCamelCase__ : Optional[int]=0 ,lowerCamelCase__ : Optional[int]="absolute" ,lowerCamelCase__ : Optional[Any]=True ,lowerCamelCase__ : str=False ,lowerCamelCase__ : int=101 ,lowerCamelCase__ : int=102 ,lowerCamelCase__ : Dict=None ,**lowerCamelCase__ : List[Any] ,) -> Optional[Any]: '''simple docstring''' super().__init__(bos_token_id=lowerCamelCase__ ,eos_token_id=lowerCamelCase__ ,pad_token_id=lowerCamelCase__ ,**lowerCamelCase__ ) if vision_config is None: SCREAMING_SNAKE_CASE = {} logger.info("""vision_config is None. initializing the GitVisionConfig with default values.""" ) SCREAMING_SNAKE_CASE = GitVisionConfig(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = position_embedding_type SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = tie_word_embeddings SCREAMING_SNAKE_CASE = num_image_with_embedding SCREAMING_SNAKE_CASE = bos_token_id SCREAMING_SNAKE_CASE = eos_token_id def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE = self.vision_config.to_dict() SCREAMING_SNAKE_CASE = self.__class__.model_type return output
296
0
from __future__ import annotations lowerCAmelCase__ : str =1.6021E-19 # units = C def __lowercase ( a__ , a__ , a__ , ) -> tuple[str, float]: if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif conductivity < 0: raise ValueError('Conductivity cannot be negative' ) elif electron_conc < 0: raise ValueError('Electron concentration cannot be negative' ) elif mobility < 0: raise ValueError('mobility cannot be negative' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
118
from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class UpperCAmelCase_ : '''simple docstring''' UpperCamelCase__ : str = field( metadata={'''help''': '''The output directory where the model will be written.'''} , ) UpperCamelCase__ : str = field( metadata={ '''help''': ( '''The encoder model checkpoint for weights initialization.''' '''Don\'t set if you want to train an encoder model from scratch.''' ) } , ) UpperCamelCase__ : str = field( metadata={ '''help''': ( '''The decoder model checkpoint for weights initialization.''' '''Don\'t set if you want to train a decoder model from scratch.''' ) } , ) UpperCamelCase__ : Optional[str] = field( default=UpperCamelCase_ , metadata={'''help''': '''Pretrained encoder config name or path if not the same as encoder_model_name'''} ) UpperCamelCase__ : Optional[str] = field( default=UpperCamelCase_ , metadata={'''help''': '''Pretrained decoder config name or path if not the same as decoder_model_name'''} ) def __lowercase ( ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments,) ) ((__SCREAMING_SNAKE_CASE) , ) = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=a__ , decoder_config=a__ , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens __SCREAMING_SNAKE_CASE = decoder_config.decoder_start_token_id __SCREAMING_SNAKE_CASE = decoder_config.pad_token_id if decoder_start_token_id is None: __SCREAMING_SNAKE_CASE = decoder_config.bos_token_id if pad_token_id is None: __SCREAMING_SNAKE_CASE = decoder_config.eos_token_id # This is necessary to make Flax's generate() work __SCREAMING_SNAKE_CASE = decoder_config.eos_token_id __SCREAMING_SNAKE_CASE = decoder_start_token_id __SCREAMING_SNAKE_CASE = pad_token_id __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) __SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
118
1
from __future__ import annotations from random import random class __lowercase : """simple docstring""" def __init__( self , A = None ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = value lowerCamelCase = random() lowerCamelCase = None lowerCamelCase = None def __repr__( self ) -> str: '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return F'\'{self.value}: {self.prior:.5}\'' else: return pformat( {F'{self.value}: {self.prior:.5}': (self.left, self.right)} , indent=1 ) def __str__( self ) -> str: '''simple docstring''' lowerCamelCase = str(self.value ) + """ """ lowerCamelCase = str(self.left or """""" ) lowerCamelCase = str(self.right or """""" ) return value + left + right def __lowerCamelCase ( lowerCamelCase__ : Node | None , lowerCamelCase__ : int ): '''simple docstring''' if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: lowerCamelCase , lowerCamelCase = split(root.left , lowerCamelCase__ ) return left, root else: lowerCamelCase , lowerCamelCase = split(root.right , lowerCamelCase__ ) return root, right def __lowerCamelCase ( lowerCamelCase__ : Node | None , lowerCamelCase__ : Node | None ): '''simple docstring''' if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: lowerCamelCase = merge(left.right , lowerCamelCase__ ) return left else: lowerCamelCase = merge(lowerCamelCase__ , right.left ) return right def __lowerCamelCase ( lowerCamelCase__ : Node | None , lowerCamelCase__ : int ): '''simple docstring''' lowerCamelCase = Node(lowerCamelCase__ ) lowerCamelCase , lowerCamelCase = split(lowerCamelCase__ , lowerCamelCase__ ) return merge(merge(lowerCamelCase__ , lowerCamelCase__ ) , lowerCamelCase__ ) def __lowerCamelCase ( lowerCamelCase__ : Node | None , lowerCamelCase__ : int ): '''simple docstring''' lowerCamelCase , lowerCamelCase = split(lowerCamelCase__ , value - 1 ) lowerCamelCase , lowerCamelCase = split(lowerCamelCase__ , lowerCamelCase__ ) return merge(lowerCamelCase__ , lowerCamelCase__ ) def __lowerCamelCase ( lowerCamelCase__ : Node | None ): '''simple docstring''' if not root: # None return else: inorder(root.left ) print(root.value , end=""",""" ) inorder(root.right ) def __lowerCamelCase ( lowerCamelCase__ : Node | None , lowerCamelCase__ : str ): '''simple docstring''' for arg in args.split(): if arg[0] == "+": lowerCamelCase = insert(lowerCamelCase__ , int(arg[1:] ) ) elif arg[0] == "-": lowerCamelCase = erase(lowerCamelCase__ , int(arg[1:] ) ) else: print("""Unknown command""" ) return root def __lowerCamelCase ( ): '''simple docstring''' lowerCamelCase = None print( """enter numbers to create a tree, + value to add value into treap, """ """- value to erase all nodes with value. 'q' to quit. """ ) lowerCamelCase = input() while args != "q": lowerCamelCase = interact_treap(lowerCamelCase__ , lowerCamelCase__ ) print(lowerCamelCase__ ) lowerCamelCase = input() print("""good by!""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
252
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowercase ( a_ ): """simple docstring""" UpperCamelCase : Any = ["image_processor", "tokenizer"] UpperCamelCase : Dict = "BridgeTowerImageProcessor" UpperCamelCase : List[Any] = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self , A , A ) -> Optional[int]: '''simple docstring''' super().__init__(A , A ) def __call__( self , A , A = None , A = True , A = False , A = None , A = None , A = 0 , A = None , A = None , A = None , A = False , A = False , A = False , A = False , A = True , A = None , **A , ) -> BatchEncoding: '''simple docstring''' lowerCamelCase = self.tokenizer( text=A , add_special_tokens=A , padding=A , truncation=A , max_length=A , stride=A , pad_to_multiple_of=A , return_token_type_ids=A , return_attention_mask=A , return_overflowing_tokens=A , return_special_tokens_mask=A , return_offsets_mapping=A , return_length=A , verbose=A , return_tensors=A , **A , ) # add pixel_values + pixel_mask lowerCamelCase = self.image_processor( A , return_tensors=A , do_normalize=A , do_center_crop=A , **A ) encoding.update(A ) return encoding def __A ( self , *A , **A ) -> Optional[int]: '''simple docstring''' return self.tokenizer.batch_decode(*A , **A ) def __A ( self , *A , **A ) -> Optional[int]: '''simple docstring''' return self.tokenizer.decode(*A , **A ) @property def __A ( self ) -> Dict: '''simple docstring''' lowerCamelCase = self.tokenizer.model_input_names lowerCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
252
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { '''uclanlp/visualbert-vqa''': '''https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json''', '''uclanlp/visualbert-vqa-pre''': '''https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json''', '''uclanlp/visualbert-vqa-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-vcr''': '''https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json''', '''uclanlp/visualbert-vcr-pre''': '''https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json''', '''uclanlp/visualbert-vcr-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-nlvr2''': '''https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-pre''': '''https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json''' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class lowercase( __a ): '''simple docstring''' lowercase__ = "visual_bert" def __init__( self: Any, a_: Tuple=30_522, a_: Dict=768, a_: Optional[Any]=512, a_: Optional[Any]=12, a_: str=12, a_: Union[str, Any]=3_072, a_: int="gelu", a_: Dict=0.1, a_: Optional[int]=0.1, a_: str=512, a_: int=2, a_: List[Any]=0.02, a_: Tuple=1E-12, a_: Any=False, a_: Dict=True, a_: List[Any]=1, a_: str=0, a_: Dict=2, **a_: Dict, ): '''simple docstring''' super().__init__(pad_token_id=__UpperCAmelCase, bos_token_id=__UpperCAmelCase, eos_token_id=__UpperCAmelCase, **__UpperCAmelCase ) _snake_case : List[Any] = vocab_size _snake_case : Tuple = max_position_embeddings _snake_case : int = hidden_size _snake_case : Tuple = visual_embedding_dim _snake_case : Tuple = num_hidden_layers _snake_case : List[str] = num_attention_heads _snake_case : Tuple = intermediate_size _snake_case : Dict = hidden_act _snake_case : int = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : Dict = initializer_range _snake_case : List[Any] = type_vocab_size _snake_case : List[str] = layer_norm_eps _snake_case : Tuple = bypass_transformer _snake_case : List[Any] = special_visual_initialize
354
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A_ = { '''configuration_maskformer''': ['''MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MaskFormerConfig'''], '''configuration_maskformer_swin''': ['''MaskFormerSwinConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ['''MaskFormerFeatureExtractor'''] A_ = ['''MaskFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MaskFormerForInstanceSegmentation''', '''MaskFormerModel''', '''MaskFormerPreTrainedModel''', ] A_ = [ '''MaskFormerSwinBackbone''', '''MaskFormerSwinModel''', '''MaskFormerSwinPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
132
0
'''simple docstring''' import math from collections.abc import Iterator from itertools import takewhile def UpperCAmelCase_ ( __lowercase : int ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase_ ( ) -> Iterator[int]: '''simple docstring''' _UpperCAmelCase = 2 while True: if is_prime(__lowercase ): yield num num += 1 def UpperCAmelCase_ ( __lowercase : int = 200_0000 ) -> int: '''simple docstring''' return sum(takewhile(lambda __lowercase : x < n , prime_generator() ) ) if __name__ == "__main__": print(F"{solution() = }")
22
"""simple docstring""" from maths.prime_factors import prime_factors def __magic_name__ ( lowercase ): if not isinstance(lowercase , lowercase ): SCREAMING_SNAKE_CASE_: int =f'''Input value of [number={number}] must be an integer''' raise TypeError(lowercase ) if number < 1: raise ValueError("""Input must be a positive integer""" ) return -1 if len(prime_factors(lowercase ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
173
0
"""simple docstring""" from __future__ import annotations def _A ( lowercase ): """simple docstring""" a =[True] * limit a =False a =False a =True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): a =i * 2 while index < limit: a =False a =index + i a =[2] for i in range(3 , lowercase , 2 ): if is_prime[i]: primes.append(lowercase ) return primes def _A ( lowercase = 1_00_00_00 ): """simple docstring""" a =prime_sieve(lowercase ) a =0 a =0 for i in range(len(lowercase ) ): for j in range(i + length , len(lowercase ) ): a =sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: a =j - i a =sol return largest if __name__ == "__main__": print(F'{solution() = }')
356
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class __A : """simple docstring""" __lowerCAmelCase = 42 # setable values __lowerCAmelCase = 42 __lowerCAmelCase = 42 __lowerCAmelCase = None @classmethod def SCREAMING_SNAKE_CASE ( cls , __A , __A , __A ) -> List[str]: return cls(common=__A , init_noise_sigma=__A , timesteps=__A ) @dataclass class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = 42 class __A ( _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = [e.name for e in FlaxKarrasDiffusionSchedulers] __lowerCAmelCase = 42 @property def SCREAMING_SNAKE_CASE ( self ) -> str: return True @register_to_config def __init__( self , __A = 1000 , __A = 0.0_001 , __A = 0.02 , __A = "linear" , __A = None , __A = "fixed_small" , __A = True , __A = "epsilon" , __A = jnp.floataa , ) -> List[Any]: a =dtype def SCREAMING_SNAKE_CASE ( self , __A = None ) -> DDPMSchedulerState: if common is None: a =CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution a =jnp.array(1.0 , dtype=self.dtype ) a =jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=__A , init_noise_sigma=__A , timesteps=__A , ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A = None ) -> jnp.ndarray: return sample def SCREAMING_SNAKE_CASE ( self , __A , __A , __A = () ) -> DDPMSchedulerState: a =self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 a =(jnp.arange(0 , __A ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=__A , timesteps=__A , ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A=None , __A=None ) -> str: a =state.common.alphas_cumprod[t] a =jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample a =(1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: a =self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": a =jnp.clip(__A , a_min=1E-2_0 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": a =jnp.log(jnp.clip(__A , a_min=1E-2_0 ) ) elif variance_type == "fixed_large": a =state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log a =jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": a =variance a =state.common.betas[t] a =(predicted_variance + 1) / 2 a =frac * max_log + (1 - frac) * min_log return variance def SCREAMING_SNAKE_CASE ( self , __A , __A , __A , __A , __A = None , __A = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]: a =timestep if key is None: a =jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: a , a =jnp.split(__A , sample.shape[1] , axis=1 ) else: a =None # 1. compute alphas, betas a =state.common.alphas_cumprod[t] a =jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) a =1 - alpha_prod_t a =1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": a =(sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": a =model_output elif self.config.prediction_type == "v_prediction": a =(alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ''' ''' for the FlaxDDPMScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: a =jnp.clip(__A , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf a =(alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t a =state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf a =pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): a =jax.random.split(__A , num=1 ) a =jax.random.normal(__A , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(__A , __A , predicted_variance=__A ) ** 0.5) * noise a =jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) a =pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=__A , state=__A ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A , __A , ) -> jnp.ndarray: return add_noise_common(state.common , __A , __A , __A ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A , __A , ) -> jnp.ndarray: return get_velocity_common(state.common , __A , __A , __A ) def __len__( self ) -> Optional[int]: return self.config.num_train_timesteps
215
0
import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = AudioLDMPipeline __lowerCAmelCase = TEXT_TO_AUDIO_PARAMS __lowerCAmelCase = TEXT_TO_AUDIO_BATCH_PARAMS __lowerCAmelCase = frozenset( [ """num_inference_steps""", """num_waveforms_per_prompt""", """generator""", """latents""", """output_type""", """return_dict""", """callback""", """callback_steps""", ] ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=(32, 64) , class_embed_type="""simple_projection""" , projection_class_embeddings_input_dim=32 , class_embeddings_concat=lowerCamelCase_ , ) UpperCamelCase = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=lowerCamelCase_ , set_alpha_to_one=lowerCamelCase_ , ) torch.manual_seed(0 ) UpperCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCamelCase = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , projection_dim=32 , ) UpperCamelCase = ClapTextModelWithProjection(lowerCamelCase_ ) UpperCamelCase = RobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-roberta""" , model_max_length=77 ) UpperCamelCase = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_6000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=lowerCamelCase_ , ) UpperCamelCase = SpeechTaHifiGan(lowerCamelCase_ ) UpperCamelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """vocoder""": vocoder, } return components def lowerCamelCase_ ( self : int , lowerCamelCase_ : Tuple , lowerCamelCase_ : Union[str, Any]=0 ): """simple docstring""" if str(lowerCamelCase_ ).startswith("""mps""" ): UpperCamelCase = torch.manual_seed(lowerCamelCase_ ) else: UpperCamelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) UpperCamelCase = { """prompt""": """A hammer hitting a wooden surface""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, } return inputs def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.get_dummy_components() UpperCamelCase = AudioLDMPipeline(**lowerCamelCase_ ) UpperCamelCase = audioldm_pipe.to(lowerCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase = self.get_dummy_inputs(lowerCamelCase_ ) UpperCamelCase = audioldm_pipe(**lowerCamelCase_ ) UpperCamelCase = output.audios[0] assert audio.ndim == 1 assert len(lowerCamelCase_ ) == 256 UpperCamelCase = audio[:10] UpperCamelCase = np.array( [-0.0_0_5_0, 0.0_0_5_0, -0.0_0_6_0, 0.0_0_3_3, -0.0_0_2_6, 0.0_0_3_3, -0.0_0_2_7, 0.0_0_3_3, -0.0_0_2_8, 0.0_0_3_3] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = self.get_dummy_components() UpperCamelCase = AudioLDMPipeline(**lowerCamelCase_ ) UpperCamelCase = audioldm_pipe.to(lowerCamelCase_ ) UpperCamelCase = audioldm_pipe.to(lowerCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase = self.get_dummy_inputs(lowerCamelCase_ ) UpperCamelCase = 3 * [inputs["""prompt"""]] # forward UpperCamelCase = audioldm_pipe(**lowerCamelCase_ ) UpperCamelCase = output.audios[0] UpperCamelCase = self.get_dummy_inputs(lowerCamelCase_ ) UpperCamelCase = 3 * [inputs.pop("""prompt""" )] UpperCamelCase = audioldm_pipe.tokenizer( lowerCamelCase_ , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=lowerCamelCase_ , return_tensors="""pt""" , ) UpperCamelCase = text_inputs["""input_ids"""].to(lowerCamelCase_ ) UpperCamelCase = audioldm_pipe.text_encoder( lowerCamelCase_ , ) UpperCamelCase = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state UpperCamelCase = F.normalize(lowerCamelCase_ , dim=-1 ) UpperCamelCase = prompt_embeds # forward UpperCamelCase = audioldm_pipe(**lowerCamelCase_ ) UpperCamelCase = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = self.get_dummy_components() UpperCamelCase = AudioLDMPipeline(**lowerCamelCase_ ) UpperCamelCase = audioldm_pipe.to(lowerCamelCase_ ) UpperCamelCase = audioldm_pipe.to(lowerCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase = self.get_dummy_inputs(lowerCamelCase_ ) UpperCamelCase = 3 * ["""this is a negative prompt"""] UpperCamelCase = negative_prompt UpperCamelCase = 3 * [inputs["""prompt"""]] # forward UpperCamelCase = audioldm_pipe(**lowerCamelCase_ ) UpperCamelCase = output.audios[0] UpperCamelCase = self.get_dummy_inputs(lowerCamelCase_ ) UpperCamelCase = 3 * [inputs.pop("""prompt""" )] UpperCamelCase = [] for p in [prompt, negative_prompt]: UpperCamelCase = audioldm_pipe.tokenizer( lowerCamelCase_ , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=lowerCamelCase_ , return_tensors="""pt""" , ) UpperCamelCase = text_inputs["""input_ids"""].to(lowerCamelCase_ ) UpperCamelCase = audioldm_pipe.text_encoder( lowerCamelCase_ , ) UpperCamelCase = text_embeds.text_embeds # additional L_2 normalization over each hidden-state UpperCamelCase = F.normalize(lowerCamelCase_ , dim=-1 ) embeds.append(lowerCamelCase_ ) UpperCamelCase , UpperCamelCase = embeds # forward UpperCamelCase = audioldm_pipe(**lowerCamelCase_ ) UpperCamelCase = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.get_dummy_components() UpperCamelCase = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) UpperCamelCase = AudioLDMPipeline(**lowerCamelCase_ ) UpperCamelCase = audioldm_pipe.to(lowerCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase = self.get_dummy_inputs(lowerCamelCase_ ) UpperCamelCase = """egg cracking""" UpperCamelCase = audioldm_pipe(**lowerCamelCase_ , negative_prompt=lowerCamelCase_ ) UpperCamelCase = output.audios[0] assert audio.ndim == 1 assert len(lowerCamelCase_ ) == 256 UpperCamelCase = audio[:10] UpperCamelCase = np.array( [-0.0_0_5_1, 0.0_0_5_0, -0.0_0_6_0, 0.0_0_3_4, -0.0_0_2_6, 0.0_0_3_3, -0.0_0_2_7, 0.0_0_3_3, -0.0_0_2_8, 0.0_0_3_2] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.get_dummy_components() UpperCamelCase = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) UpperCamelCase = AudioLDMPipeline(**lowerCamelCase_ ) UpperCamelCase = audioldm_pipe.to(lowerCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase = """A hammer hitting a wooden surface""" # test num_waveforms_per_prompt=1 (default) UpperCamelCase = audioldm_pipe(lowerCamelCase_ , num_inference_steps=2 ).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts UpperCamelCase = 2 UpperCamelCase = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt UpperCamelCase = 2 UpperCamelCase = audioldm_pipe(lowerCamelCase_ , num_inference_steps=2 , num_waveforms_per_prompt=lowerCamelCase_ ).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts UpperCamelCase = 2 UpperCamelCase = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=lowerCamelCase_ ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.get_dummy_components() UpperCamelCase = AudioLDMPipeline(**lowerCamelCase_ ) UpperCamelCase = audioldm_pipe.to(lowerCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase = audioldm_pipe.vocoder.config.sampling_rate UpperCamelCase = self.get_dummy_inputs(lowerCamelCase_ ) UpperCamelCase = audioldm_pipe(audio_length_in_s=0.0_1_6 , **lowerCamelCase_ ) UpperCamelCase = output.audios[0] assert audio.ndim == 1 assert len(lowerCamelCase_ ) / vocoder_sampling_rate == 0.0_1_6 UpperCamelCase = audioldm_pipe(audio_length_in_s=0.0_3_2 , **lowerCamelCase_ ) UpperCamelCase = output.audios[0] assert audio.ndim == 1 assert len(lowerCamelCase_ ) / vocoder_sampling_rate == 0.0_3_2 def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = self.get_dummy_components() UpperCamelCase = AudioLDMPipeline(**lowerCamelCase_ ) UpperCamelCase = audioldm_pipe.to(lowerCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase = ["""hey"""] UpperCamelCase = audioldm_pipe(lowerCamelCase_ , num_inference_steps=1 ) UpperCamelCase = output.audios.shape assert audio_shape == (1, 256) UpperCamelCase = audioldm_pipe.vocoder.config config.model_in_dim *= 2 UpperCamelCase = SpeechTaHifiGan(lowerCamelCase_ ).to(lowerCamelCase_ ) UpperCamelCase = audioldm_pipe(lowerCamelCase_ , num_inference_steps=1 ) UpperCamelCase = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def lowerCamelCase_ ( self : Any ): """simple docstring""" self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" self._test_inference_batch_single_identical(test_mean_pixel_difference=lowerCamelCase_ ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCamelCase_ ( self : int ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowerCamelCase_ ) @slow class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def lowerCamelCase_ ( self : List[str] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[Any]="cpu" , lowerCamelCase_ : List[str]=torch.floataa , lowerCamelCase_ : Tuple=0 ): """simple docstring""" UpperCamelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) UpperCamelCase = np.random.RandomState(lowerCamelCase_ ).standard_normal((1, 8, 128, 16) ) UpperCamelCase = torch.from_numpy(lowerCamelCase_ ).to(device=lowerCamelCase_ , dtype=lowerCamelCase_ ) UpperCamelCase = { """prompt""": """A hammer hitting a wooden surface""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 2.5, } return inputs def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) UpperCamelCase = audioldm_pipe.to(lowerCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase = self.get_inputs(lowerCamelCase_ ) UpperCamelCase = 25 UpperCamelCase = audioldm_pipe(**lowerCamelCase_ ).audios[0] assert audio.ndim == 1 assert len(lowerCamelCase_ ) == 8_1920 UpperCamelCase = audio[7_7230:7_7240] UpperCamelCase = np.array( [-0.4_8_8_4, -0.4_6_0_7, 0.0_0_2_3, 0.5_0_0_7, 0.5_8_9_6, 0.5_1_5_1, 0.3_8_1_3, -0.0_2_0_8, -0.3_6_8_7, -0.4_3_1_5] ) UpperCamelCase = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1E-2 def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) UpperCamelCase = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) UpperCamelCase = audioldm_pipe.to(lowerCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase = self.get_inputs(lowerCamelCase_ ) UpperCamelCase = audioldm_pipe(**lowerCamelCase_ ).audios[0] assert audio.ndim == 1 assert len(lowerCamelCase_ ) == 8_1920 UpperCamelCase = audio[2_7780:2_7790] UpperCamelCase = np.array([-0.2_1_3_1, -0.0_8_7_3, -0.0_1_2_4, -0.0_1_8_9, 0.0_5_6_9, 0.1_3_7_3, 0.1_8_8_3, 0.2_8_8_6, 0.3_2_9_7, 0.2_2_1_2] ) UpperCamelCase = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3E-2
343
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def lowercase( UpperCamelCase_ ) -> List[Any]: '''simple docstring''' # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X2_0000 and cp <= 0X2_A6DF) # or (cp >= 0X2_A700 and cp <= 0X2_B73F) # or (cp >= 0X2_B740 and cp <= 0X2_B81F) # or (cp >= 0X2_B820 and cp <= 0X2_CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2_F800 and cp <= 0X2_FA1F) # ): # return True return False def lowercase( UpperCamelCase_ ) -> Dict: '''simple docstring''' # word like '180' or '身高' or '神' for char in word: UpperCamelCase = ord(UpperCamelCase_ ) if not _is_chinese_char(UpperCamelCase_ ): return 0 return 1 def lowercase( UpperCamelCase_ ) -> List[Any]: '''simple docstring''' UpperCamelCase = set() for token in tokens: UpperCamelCase = len(UpperCamelCase_ ) > 1 and is_chinese(UpperCamelCase_ ) if chinese_word: word_set.add(UpperCamelCase_ ) UpperCamelCase = list(UpperCamelCase_ ) return word_list def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: '''simple docstring''' if not chinese_word_set: return bert_tokens UpperCamelCase = max([len(UpperCamelCase_ ) for w in chinese_word_set] ) UpperCamelCase = bert_tokens UpperCamelCase , UpperCamelCase = 0, len(UpperCamelCase_ ) while start < end: UpperCamelCase = True if is_chinese(bert_word[start] ): UpperCamelCase = min(end - start , UpperCamelCase_ ) for i in range(UpperCamelCase_ , 1 , -1 ): UpperCamelCase = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): UpperCamelCase = """##""" + bert_word[j] UpperCamelCase = start + i UpperCamelCase = False break if single_word: start += 1 return bert_word def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> str: '''simple docstring''' UpperCamelCase = [] for i in range(0 , len(UpperCamelCase_ ) , 100 ): UpperCamelCase = ltp_tokenizer.seg(lines[i : i + 100] )[0] UpperCamelCase = [get_chinese_word(UpperCamelCase_ ) for r in res] ltp_res.extend(UpperCamelCase_ ) assert len(UpperCamelCase_ ) == len(UpperCamelCase_ ) UpperCamelCase = [] for i in range(0 , len(UpperCamelCase_ ) , 100 ): UpperCamelCase = bert_tokenizer(lines[i : i + 100] , add_special_tokens=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=512 ) bert_res.extend(res["""input_ids"""] ) assert len(UpperCamelCase_ ) == len(UpperCamelCase_ ) UpperCamelCase = [] for input_ids, chinese_word in zip(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase = [] for id in input_ids: UpperCamelCase = bert_tokenizer._convert_id_to_token(UpperCamelCase_ ) input_tokens.append(UpperCamelCase_ ) UpperCamelCase = add_sub_symbol(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(UpperCamelCase_ ): if token[:2] == "##": UpperCamelCase = token[2:] # save chinese tokens' pos if len(UpperCamelCase_ ) == 1 and _is_chinese_char(ord(UpperCamelCase_ ) ): ref_id.append(UpperCamelCase_ ) ref_ids.append(UpperCamelCase_ ) assert len(UpperCamelCase_ ) == len(UpperCamelCase_ ) return ref_ids def lowercase( UpperCamelCase_ ) -> List[Any]: '''simple docstring''' # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , """r""" , encoding="""utf-8""" ) as f: UpperCamelCase = f.readlines() UpperCamelCase = [line.strip() for line in data if len(UpperCamelCase_ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' UpperCamelCase = LTP(args.ltp ) # faster in GPU device UpperCamelCase = BertTokenizer.from_pretrained(args.bert ) UpperCamelCase = prepare_ref(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) with open(args.save_path , """w""" , encoding="""utf-8""" ) as f: UpperCamelCase = [json.dumps(UpperCamelCase_ ) + """\n""" for ref in ref_ids] f.writelines(UpperCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""" ) parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""") parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""") _SCREAMING_SNAKE_CASE = parser.parse_args() main(args)
343
1
from __future__ import annotations from typing import Any class __a ( __UpperCamelCase ): pass class __a : def __init__( self , lowerCAmelCase__ ) -> None: '''simple docstring''' lowercase__: Any = data lowercase__: Node | None = None def __iter__( self ) -> Union[str, Any]: '''simple docstring''' lowercase__: Tuple = self lowercase__: Tuple = [] while node: if node in visited: raise ContainsLoopError visited.append(lowerCAmelCase__ ) yield node.data lowercase__: Optional[int] = node.next_node @property def SCREAMING_SNAKE_CASE__ ( self ) -> bool: '''simple docstring''' try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": __lowerCAmelCase = Node(1) __lowerCAmelCase = Node(2) __lowerCAmelCase = Node(3) __lowerCAmelCase = Node(4) print(root_node.has_loop) # False __lowerCAmelCase = root_node.next_node print(root_node.has_loop) # True __lowerCAmelCase = Node(5) __lowerCAmelCase = Node(6) __lowerCAmelCase = Node(5) __lowerCAmelCase = Node(6) print(root_node.has_loop) # False __lowerCAmelCase = Node(1) print(root_node.has_loop) # False
353
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { '''google/pegasus-large''': '''https://huggingface.co/google/pegasus-large/resolve/main/config.json''', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class __a ( __UpperCamelCase ): __lowercase : Any = 'pegasus' __lowercase : Union[str, Any] = ['past_key_values'] __lowercase : Any = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , lowerCAmelCase__=50_265 , lowerCAmelCase__=1_024 , lowerCAmelCase__=12 , lowerCAmelCase__=4_096 , lowerCAmelCase__=16 , lowerCAmelCase__=12 , lowerCAmelCase__=4_096 , lowerCAmelCase__=16 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__="gelu" , lowerCAmelCase__=1_024 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=0 , lowerCAmelCase__=False , lowerCAmelCase__=0 , lowerCAmelCase__=1 , lowerCAmelCase__=1 , **lowerCAmelCase__ , ) -> Union[str, Any]: '''simple docstring''' lowercase__: int = vocab_size lowercase__: Optional[int] = max_position_embeddings lowercase__: List[str] = d_model lowercase__: Optional[Any] = encoder_ffn_dim lowercase__: Optional[Any] = encoder_layers lowercase__: Union[str, Any] = encoder_attention_heads lowercase__: Optional[int] = decoder_ffn_dim lowercase__: Tuple = decoder_layers lowercase__: Union[str, Any] = decoder_attention_heads lowercase__: Dict = dropout lowercase__: List[str] = attention_dropout lowercase__: List[str] = activation_dropout lowercase__: Optional[int] = activation_function lowercase__: Dict = init_std lowercase__: Optional[Any] = encoder_layerdrop lowercase__: List[str] = decoder_layerdrop lowercase__: Union[str, Any] = use_cache lowercase__: Any = encoder_layers lowercase__: List[str] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , is_encoder_decoder=lowerCAmelCase__ , decoder_start_token_id=lowerCAmelCase__ , forced_eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ , ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' return self.d_model
288
0
lowerCAmelCase : dict[str, float] = { "joule": 1.0, "kilojoule": 10_00, "megajoule": 1_00_00_00, "gigajoule": 10_00_00_00_00, "wattsecond": 1.0, "watthour": 36_00, "kilowatthour": 3_60_00_00, "newtonmeter": 1.0, "calorie_nutr": 41_86.8, "kilocalorie_nutr": 4_18_68_00.00, "electronvolt": 1.6_02_17_66_34e-19, "britishthermalunit_it": 10_55.0_55_85, "footpound": 1.355_818, } def A_ ( a , a , a ): """simple docstring""" if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: SCREAMING_SNAKE_CASE_ : Optional[int] = ( f"Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n" f"Valid values are: {', '.join(a )}" ) raise ValueError(a ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
253
import math def A_ ( a , a = 0 , a = 0 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = end or len(a ) for i in range(a , a ): SCREAMING_SNAKE_CASE_ : List[Any] = i SCREAMING_SNAKE_CASE_ : Optional[Any] = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: SCREAMING_SNAKE_CASE_ : Tuple = array[temp_index - 1] temp_index -= 1 SCREAMING_SNAKE_CASE_ : str = temp_index_value return array def A_ ( a , a , a ): # Max Heap """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = index SCREAMING_SNAKE_CASE_ : str = 2 * index + 1 # Left Node SCREAMING_SNAKE_CASE_ : Union[str, Any] = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: SCREAMING_SNAKE_CASE_ : Dict = left_index if right_index < heap_size and array[largest] < array[right_index]: SCREAMING_SNAKE_CASE_ : Any = right_index if largest != index: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = array[largest], array[index] heapify(a , a , a ) def A_ ( a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = len(a ) for i in range(n // 2 , -1 , -1 ): heapify(a , a , a ) for i in range(n - 1 , 0 , -1 ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = array[0], array[i] heapify(a , 0 , a ) return array def A_ ( a , a , a , a ): """simple docstring""" if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def A_ ( a , a , a , a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = low SCREAMING_SNAKE_CASE_ : Tuple = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = array[j], array[i] i += 1 def A_ ( a ): """simple docstring""" if len(a ) == 0: return array SCREAMING_SNAKE_CASE_ : Any = 2 * math.ceil(math.loga(len(a ) ) ) SCREAMING_SNAKE_CASE_ : int = 1_6 return intro_sort(a , 0 , len(a ) , a , a ) def A_ ( a , a , a , a , a ): """simple docstring""" while end - start > size_threshold: if max_depth == 0: return heap_sort(a ) max_depth -= 1 SCREAMING_SNAKE_CASE_ : Optional[int] = median_of_a(a , a , start + ((end - start) // 2) + 1 , end - 1 ) SCREAMING_SNAKE_CASE_ : Dict = partition(a , a , a , a ) intro_sort(a , a , a , a , a ) SCREAMING_SNAKE_CASE_ : List[Any] = p return insertion_sort(a , a , a ) if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase : List[str] = input('Enter numbers separated by a comma : ').strip() lowerCAmelCase : Optional[Any] = [float(item) for item in user_input.split(',')] print(sort(unsorted))
253
1
"""simple docstring""" from __future__ import annotations __UpperCamelCase : Dict = [True] * 1_0_0_0_0_0_1 __UpperCamelCase : Optional[int] = 2 while i * i <= 1_0_0_0_0_0_0: if seive[i]: for j in range(i * i, 1_0_0_0_0_0_1, i): __UpperCamelCase : Tuple = False i += 1 def __SCREAMING_SNAKE_CASE ( A_ ): return seive[n] def __SCREAMING_SNAKE_CASE ( A_ ): return any(digit in '''02468''' for digit in str(A_ ) ) def __SCREAMING_SNAKE_CASE ( A_ = 1_00_00_00 ): lowerCAmelCase__ : List[str] = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(A_ ) and not contains_an_even_digit(A_ ): lowerCAmelCase__ : List[Any] = str(A_ ) lowerCAmelCase__ : Optional[Any] = [int(str_num[j:] + str_num[:j] ) for j in range(len(A_ ) )] if all(is_prime(A_ ) for i in list_nums ): result.append(A_ ) return result def __SCREAMING_SNAKE_CASE ( ): return len(find_circular_primes() ) if __name__ == "__main__": print(F'''{len(find_circular_primes()) = }''')
74
"""simple docstring""" from __future__ import annotations import math __UpperCamelCase : Dict = '''2020.9.26''' __UpperCamelCase : Tuple = '''xcodz-dot, cclaus, dhruvmanila''' def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_ , A_ ): if not all(isinstance(A_ , (float, int) ) for val in locals().values() ): lowerCAmelCase__ : Optional[Any] = f'Input values must either be float or int: {list(locals().values() )}' raise TypeError(A_ ) lowerCAmelCase__ : Optional[Any] = ((x * distance) / (z + distance)) * scale lowerCAmelCase__ : Optional[int] = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_ , A_ ): if not isinstance(A_ , A_ ): raise TypeError('''Axis must be a str''' ) lowerCAmelCase__ : str = locals() del input_variables["axis"] if not all(isinstance(A_ , (float, int) ) for val in input_variables.values() ): lowerCAmelCase__ : int = ( '''Input values except axis must either be float or int: ''' f'{list(input_variables.values() )}' ) raise TypeError(A_ ) lowerCAmelCase__ : Any = (angle % 3_60) / 4_50 * 1_80 / math.pi if axis == "z": lowerCAmelCase__ : Tuple = x * math.cos(A_ ) - y * math.sin(A_ ) lowerCAmelCase__ : List[str] = y * math.cos(A_ ) + x * math.sin(A_ ) lowerCAmelCase__ : Optional[Any] = z elif axis == "x": lowerCAmelCase__ : List[str] = y * math.cos(A_ ) - z * math.sin(A_ ) lowerCAmelCase__ : str = z * math.cos(A_ ) + y * math.sin(A_ ) lowerCAmelCase__ : Union[str, Any] = x elif axis == "y": lowerCAmelCase__ : Optional[int] = x * math.cos(A_ ) - z * math.sin(A_ ) lowerCAmelCase__ : Tuple = z * math.cos(A_ ) + x * math.sin(A_ ) lowerCAmelCase__ : Optional[int] = y else: raise ValueError('''not a valid axis, choose one of \'x\', \'y\', \'z\'''' ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(F'''{convert_to_ad(1.0, 2.0, 3.0, 1_0.0, 1_0.0) = }''') print(F'''{rotate(1.0, 2.0, 3.0, 'y', 9_0.0) = }''')
74
1
"""simple docstring""" from math import factorial, radians def A_ ( _lowercase, _lowercase = 18, _lowercase = 10 ): '''simple docstring''' snake_case_ :Tuple = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians snake_case_ :Tuple = radians(_lowercase ) snake_case_ :Dict = angle_in_radians snake_case_ :Any = 3 snake_case_ :Dict = -1 for _ in range(_lowercase ): result += (b * (angle_in_radians**a)) / factorial(_lowercase ) snake_case_ :Dict = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(_lowercase, _lowercase ) if __name__ == "__main__": __import__("doctest").testmod()
66
'''simple docstring''' def UpperCamelCase_ ( _UpperCAmelCase : str , _UpperCAmelCase : str ) -> float: """simple docstring""" def get_matched_characters(_UpperCAmelCase : str , _UpperCAmelCase : str ) -> str: _UpperCAmelCase : Tuple = [] _UpperCAmelCase : Dict = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): _UpperCAmelCase : int = int(max(0 , i - limit ) ) _UpperCAmelCase : Any = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(_UpperCAmelCase ) _UpperCAmelCase : List[Any] = F"""{_stra[0:_stra.index(_UpperCAmelCase )]} {_stra[_stra.index(_UpperCAmelCase ) + 1:]}""" return "".join(_UpperCAmelCase ) # matching characters _UpperCAmelCase : Union[str, Any] = get_matched_characters(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase : Tuple = get_matched_characters(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase : Tuple = len(_UpperCAmelCase ) # transposition _UpperCAmelCase : Optional[Any] = ( len([(ca, ca) for ca, ca in zip(_UpperCAmelCase , _UpperCAmelCase ) if ca != ca] ) // 2 ) if not match_count: _UpperCAmelCase : Dict = 0.0 else: _UpperCAmelCase : Optional[int] = ( 1 / 3 * ( match_count / len(_UpperCAmelCase ) + match_count / len(_UpperCAmelCase ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters _UpperCAmelCase : str = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("""hello""", """world"""))
31
0
from pathlib import Path import numpy as np from PIL import Image def lowerCamelCase__ ( A : np.ndarray ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2_989 * r + 0.5_870 * g + 0.1_140 * b def lowerCamelCase__ ( A : np.ndarray ): '''simple docstring''' return (gray > 1_27) & (gray <= 2_55) def lowerCamelCase__ ( A : np.ndarray , A : np.ndarray ): '''simple docstring''' UpperCAmelCase = np.zeros_like(A ) UpperCAmelCase = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image UpperCAmelCase = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): UpperCAmelCase = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() UpperCAmelCase = int(summation > 0 ) return output if __name__ == "__main__": # read original image _lowercase : Dict = Path(__file__).resolve().parent / """image_data""" / """lena.jpg""" _lowercase : str = np.array(Image.open(lena_path)) # kernel to be applied _lowercase : str = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) _lowercase : List[Any] = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image _lowercase : List[str] = Image.fromarray(output).convert("""RGB""") pil_img.save("""result_dilation.png""")
355
'''simple docstring''' # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( """pipelines_utils""", """0.22.0""", """Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.""", standard_warn=False, stacklevel=3, )
91
0
'''simple docstring''' import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) set_seed(770) lowercase_ = { """c_attn""": """att_proj""", """c_proj""": """out_proj""", """c_fc""": """in_proj""", """transformer.""": """""", """h.""": """layers.""", """ln_1""": """layernorm_1""", """ln_2""": """layernorm_2""", """ln_f""": """layernorm_final""", """wpe""": """position_embeds_layer""", """wte""": """input_embeds_layer""", } lowercase_ = { """text_small""": { """repo_id""": """suno/bark""", """file_name""": """text.pt""", }, """coarse_small""": { """repo_id""": """suno/bark""", """file_name""": """coarse.pt""", }, """fine_small""": { """repo_id""": """suno/bark""", """file_name""": """fine.pt""", }, """text""": { """repo_id""": """suno/bark""", """file_name""": """text_2.pt""", }, """coarse""": { """repo_id""": """suno/bark""", """file_name""": """coarse_2.pt""", }, """fine""": { """repo_id""": """suno/bark""", """file_name""": """fine_2.pt""", }, } lowercase_ = os.path.dirname(os.path.abspath(__file__)) lowercase_ = os.path.join(os.path.expanduser("""~"""), """.cache""") lowercase_ = os.path.join(os.getenv("""XDG_CACHE_HOME""", default_cache_dir), """suno""", """bark_v0""") def lowerCamelCase ( __lowerCamelCase : int , __lowerCamelCase : Tuple=False ) ->Any: _SCREAMING_SNAKE_CASE = model_type if use_small: key += "_small" return os.path.join(__lowerCamelCase , REMOTE_MODEL_PATHS[key]["""file_name"""] ) def lowerCamelCase ( __lowerCamelCase : Any , __lowerCamelCase : int ) ->Any: os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) hf_hub_download(repo_id=__lowerCamelCase , filename=__lowerCamelCase , local_dir=__lowerCamelCase ) def lowerCamelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : Dict=False , __lowerCamelCase : Optional[int]="text" ) ->Optional[int]: if model_type == "text": _SCREAMING_SNAKE_CASE = BarkSemanticModel _SCREAMING_SNAKE_CASE = BarkSemanticConfig _SCREAMING_SNAKE_CASE = BarkSemanticGenerationConfig elif model_type == "coarse": _SCREAMING_SNAKE_CASE = BarkCoarseModel _SCREAMING_SNAKE_CASE = BarkCoarseConfig _SCREAMING_SNAKE_CASE = BarkCoarseGenerationConfig elif model_type == "fine": _SCREAMING_SNAKE_CASE = BarkFineModel _SCREAMING_SNAKE_CASE = BarkFineConfig _SCREAMING_SNAKE_CASE = BarkFineGenerationConfig else: raise NotImplementedError() _SCREAMING_SNAKE_CASE = F'{model_type}_small' if use_small else model_type _SCREAMING_SNAKE_CASE = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(__lowerCamelCase ): logger.info(F'{model_type} model not found, downloading into `{CACHE_DIR}`.' ) _download(model_info["""repo_id"""] , model_info["""file_name"""] ) _SCREAMING_SNAKE_CASE = torch.load(__lowerCamelCase , map_location=__lowerCamelCase ) # this is a hack _SCREAMING_SNAKE_CASE = checkpoint["""model_args"""] if "input_vocab_size" not in model_args: _SCREAMING_SNAKE_CASE = model_args["""vocab_size"""] _SCREAMING_SNAKE_CASE = model_args["""vocab_size"""] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments _SCREAMING_SNAKE_CASE = model_args.pop("""n_head""" ) _SCREAMING_SNAKE_CASE = model_args.pop("""n_embd""" ) _SCREAMING_SNAKE_CASE = model_args.pop("""n_layer""" ) _SCREAMING_SNAKE_CASE = ConfigClass(**checkpoint["""model_args"""] ) _SCREAMING_SNAKE_CASE = ModelClass(config=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = GenerationConfigClass() _SCREAMING_SNAKE_CASE = model_generation_config _SCREAMING_SNAKE_CASE = checkpoint["""model"""] # fixup checkpoint _SCREAMING_SNAKE_CASE = """_orig_mod.""" for k, v in list(state_dict.items() ): if k.startswith(__lowerCamelCase ): # replace part of the key with corresponding layer name in HF implementation _SCREAMING_SNAKE_CASE = k[len(__lowerCamelCase ) :] for old_layer_name in new_layer_name_dict: _SCREAMING_SNAKE_CASE = new_k.replace(__lowerCamelCase , new_layer_name_dict[old_layer_name] ) _SCREAMING_SNAKE_CASE = state_dict.pop(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = set(state_dict.keys() ) - set(model.state_dict().keys() ) _SCREAMING_SNAKE_CASE = {k for k in extra_keys if not k.endswith(""".attn.bias""" )} _SCREAMING_SNAKE_CASE = set(model.state_dict().keys() ) - set(state_dict.keys() ) _SCREAMING_SNAKE_CASE = {k for k in missing_keys if not k.endswith(""".attn.bias""" )} if len(__lowerCamelCase ) != 0: raise ValueError(F'extra keys found: {extra_keys}' ) if len(__lowerCamelCase ) != 0: raise ValueError(F'missing keys: {missing_keys}' ) model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = model.num_parameters(exclude_embeddings=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = checkpoint["""best_val_loss"""].item() logger.info(F'model loaded: {round(n_params/1e6 , 1 )}M params, {round(__lowerCamelCase , 3 )} loss' ) model.eval() model.to(__lowerCamelCase ) del checkpoint, state_dict return model def lowerCamelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any=False , __lowerCamelCase : Union[str, Any]="text" ) ->Tuple: if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() _SCREAMING_SNAKE_CASE = """cpu""" # do conversion on cpu _SCREAMING_SNAKE_CASE = _get_ckpt_path(__lowerCamelCase , use_small=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = _load_model(__lowerCamelCase , __lowerCamelCase , model_type=__lowerCamelCase , use_small=__lowerCamelCase ) # load bark initial model _SCREAMING_SNAKE_CASE = _bark_load_model(__lowerCamelCase , """cpu""" , model_type=__lowerCamelCase , use_small=__lowerCamelCase ) if model_type == "text": _SCREAMING_SNAKE_CASE = bark_model["""model"""] if model.num_parameters(exclude_embeddings=__lowerCamelCase ) != bark_model.get_num_params(): raise ValueError("""initial and new models don't have the same number of parameters""" ) # check if same output as the bark model _SCREAMING_SNAKE_CASE = 5 _SCREAMING_SNAKE_CASE = 10 if model_type in ["text", "coarse"]: _SCREAMING_SNAKE_CASE = torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int ) _SCREAMING_SNAKE_CASE = bark_model(__lowerCamelCase )[0] _SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) # take last logits _SCREAMING_SNAKE_CASE = output_new_model_total.logits[:, [-1], :] else: _SCREAMING_SNAKE_CASE = 3 _SCREAMING_SNAKE_CASE = 8 _SCREAMING_SNAKE_CASE = torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) _SCREAMING_SNAKE_CASE = model(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = bark_model(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError("""initial and new outputs don't have the same shape""" ) if (output_new_model - output_old_model).abs().max().item() > 1e-3: raise ValueError("""initial and new outputs are not equal""" ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) def lowerCamelCase ( __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] , ) ->List[str]: _SCREAMING_SNAKE_CASE = os.path.join(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = BarkSemanticConfig.from_pretrained(os.path.join(__lowerCamelCase , """config.json""" ) ) _SCREAMING_SNAKE_CASE = BarkCoarseConfig.from_pretrained(os.path.join(__lowerCamelCase , """config.json""" ) ) _SCREAMING_SNAKE_CASE = BarkFineConfig.from_pretrained(os.path.join(__lowerCamelCase , """config.json""" ) ) _SCREAMING_SNAKE_CASE = EncodecConfig.from_pretrained("""facebook/encodec_24khz""" ) _SCREAMING_SNAKE_CASE = BarkSemanticModel.from_pretrained(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = BarkCoarseModel.from_pretrained(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = BarkFineModel.from_pretrained(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = EncodecModel.from_pretrained("""facebook/encodec_24khz""" ) _SCREAMING_SNAKE_CASE = BarkConfig.from_sub_model_configs( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) _SCREAMING_SNAKE_CASE = BarkModel(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = semantic _SCREAMING_SNAKE_CASE = coarseAcoustic _SCREAMING_SNAKE_CASE = fineAcoustic _SCREAMING_SNAKE_CASE = codec _SCREAMING_SNAKE_CASE = bark_generation_config Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) bark.save_pretrained(__lowerCamelCase , repo_id=__lowerCamelCase , push_to_hub=__lowerCamelCase ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument("""model_type""", type=str, help="""text, coarse or fine.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--is_small""", action="""store_true""", help="""convert the small version instead of the large.""") lowercase_ = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
58
'''simple docstring''' import re from filelock import FileLock try: import nltk __UpperCAmelCase =True except (ImportError, ModuleNotFoundError): __UpperCAmelCase =False if NLTK_AVAILABLE: with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) def __lowerCAmelCase ( UpperCamelCase__ ) -> str: re.sub('''<n>''' , '''''' , UpperCamelCase__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(UpperCamelCase__ ) )
67
0
'''simple docstring''' import string def a__ ( lowerCAmelCase__ ) -> str: UpperCAmelCase__ : Any = '''''' for i in sequence: UpperCAmelCase__ : List[Any] = ord(lowerCAmelCase__ ) if 65 <= extract <= 90: output += chr(1_55 - extract ) elif 97 <= extract <= 1_22: output += chr(2_19 - extract ) else: output += i return output def a__ ( lowerCAmelCase__ ) -> str: UpperCAmelCase__ : List[Any] = string.ascii_letters UpperCAmelCase__ : Tuple = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(lowerCAmelCase__ )] if c in letters else c for c in sequence ) def a__ ( ) -> None: from timeit import timeit print('''Running performance benchmarks...''' ) UpperCAmelCase__ : Dict = '''from string import printable ; from __main__ import atbash, atbash_slow''' print(F"""> atbash_slow(): {timeit("atbash_slow(printable)" , setup=lowerCAmelCase__ )} seconds""" ) print(F"""> atbash(): {timeit("atbash(printable)" , setup=lowerCAmelCase__ )} seconds""" ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(F"""{example} encrypted in atbash: {atbash(example)}""") benchmark()
299
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self : int , *_A : Tuple , **_A : Union[str, Any] ): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : Union[str, Any] , *_A : List[Any] , **_A : Any ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : int , *_A : Union[str, Any] , **_A : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self : Any , *_A : List[str] , **_A : Tuple ): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : Tuple , *_A : Tuple , **_A : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : List[Any] , *_A : List[str] , **_A : Dict ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self : Dict , *_A : Any , **_A : int ): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : List[Any] , *_A : List[Any] , **_A : Optional[int] ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : int , *_A : Dict , **_A : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any] , *_A : Optional[int] , **_A : Optional[Any] ): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : Dict , *_A : Any , **_A : Tuple ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : int , *_A : Union[str, Any] , **_A : Dict ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any] , *_A : Optional[int] , **_A : Dict ): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : Dict , *_A : str , **_A : Dict ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : Union[str, Any] , *_A : Optional[int] , **_A : int ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self : Optional[Any] , *_A : Union[str, Any] , **_A : Dict ): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : List[str] , *_A : str , **_A : List[str] ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : Dict , *_A : str , **_A : Any ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
299
1
"""simple docstring""" import argparse import importlib from pathlib import Path # Test all the extensions added in the setup _UpperCamelCase : Any = [ "kernels/rwkv/wkv_cuda.cu", "kernels/rwkv/wkv_op.cpp", "kernels/deformable_detr/ms_deform_attn.h", "kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh", "models/graphormer/algos_graphormer.pyx", ] def a_ ( _lowerCAmelCase : Union[str, Any] ): '''simple docstring''' for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": _UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--check_lib", action="store_true", help="Whether to check the build or the actual package.") _UpperCamelCase : str = parser.parse_args() if args.check_lib: _UpperCamelCase : List[Any] = importlib.import_module("transformers") _UpperCamelCase : str = Path(transformers_module.__file__).parent else: _UpperCamelCase : List[str] = Path.cwd() / "build/lib/transformers" if not test_custom_files_are_present(transformers_path): raise ValueError("The built release does not contain the custom files. Fix this before going further!")
77
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. A__ = abspath(join(dirname(dirname(dirname(__file__))), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def _lowerCAmelCase ( __lowerCAmelCase ) -> str: """simple docstring""" from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(__lowerCAmelCase ) def _lowerCAmelCase ( __lowerCAmelCase ) -> List[Any]: """simple docstring""" from transformers.testing_utils import pytest_terminal_summary_main snake_case__ : Dict = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(__lowerCAmelCase , id=__lowerCAmelCase )
230
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A = { '''configuration_mgp_str''': ['''MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MgpstrConfig'''], '''processing_mgp_str''': ['''MgpstrProcessor'''], '''tokenization_mgp_str''': ['''MgpstrTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MgpstrModel''', '''MgpstrPreTrainedModel''', '''MgpstrForSceneTextRecognition''', ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
369
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''openai/whisper-base''' __lowerCAmelCase = ( '''This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the ''' '''transcribed text.''' ) __lowerCAmelCase = '''transcriber''' __lowerCAmelCase = WhisperProcessor __lowerCAmelCase = WhisperForConditionalGeneration __lowerCAmelCase = ['''audio'''] __lowerCAmelCase = ['''text'''] def _lowerCamelCase ( self , _UpperCAmelCase ): return self.pre_processor(_UpperCAmelCase , return_tensors='''pt''' ).input_features def _lowerCamelCase ( self , _UpperCAmelCase ): return self.model.generate(inputs=_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase ): return self.pre_processor.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )[0]
188
0
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=lowerCamelCase__ ) class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : str = field(default='automatic-speech-recognition' , metadata={'include_in_asdict_even_if_is_default': True} ) SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({'audio': Audio()} ) SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({'transcription': Value('string' )} ) SCREAMING_SNAKE_CASE : str = "audio" SCREAMING_SNAKE_CASE : str = "transcription" def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : Optional[Any] ): if self.audio_column not in features: raise ValueError(F"Column {self.audio_column} is not present in features." ) if not isinstance(features[self.audio_column] ,lowercase__ ): raise ValueError(F"Column {self.audio_column} is not an Audio type." ) __lowercase = copy.deepcopy(self ) __lowercase = self.input_schema.copy() __lowercase = features[self.audio_column] __lowercase = input_schema return task_template @property def SCREAMING_SNAKE_CASE ( self : List[str] ): return {self.audio_column: "audio", self.transcription_column: "transcription"}
104
import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version UpperCAmelCase__ = version.parse(importlib_metadata.version("nltk")) if NLTK_VERSION >= version.Version("3.6.4"): from nltk import word_tokenize UpperCAmelCase__ = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n" UpperCAmelCase__ = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n" UpperCAmelCase__ = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): def _lowerCamelCase ( self : List[Any]) -> List[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence'), 'references': datasets.Value('string' , id='sequence'), }) , codebase_urls=['https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'] , reference_urls=[ 'https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score', 'https://en.wikipedia.org/wiki/METEOR', ] , ) def _lowerCamelCase ( self : Optional[Any] , A : List[str]) -> List[Any]: """simple docstring""" import nltk nltk.download('wordnet') if NLTK_VERSION >= version.Version('3.6.5'): nltk.download('punkt') if NLTK_VERSION >= version.Version('3.6.6'): nltk.download('omw-1.4') def _lowerCamelCase ( self : Optional[Any] , A : Tuple , A : Optional[int] , A : List[Any]=0.9 , A : Optional[Any]=3 , A : Optional[int]=0.5) -> Any: """simple docstring""" if NLTK_VERSION >= version.Version('3.6.5'): _UpperCAmelCase = [ meteor_score.single_meteor_score( word_tokenize(A) , word_tokenize(A) , alpha=A , beta=A , gamma=A) for ref, pred in zip(A , A) ] else: _UpperCAmelCase = [ meteor_score.single_meteor_score(A , A , alpha=A , beta=A , gamma=A) for ref, pred in zip(A , A) ] return {"meteor": np.mean(A)}
339
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _SCREAMING_SNAKE_CASE = { 'configuration_gpt_bigcode': ['GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTBigCodeConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ 'GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTBigCodeForSequenceClassification', 'GPTBigCodeForTokenClassification', 'GPTBigCodeForCausalLM', 'GPTBigCodeModel', 'GPTBigCodePreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
81
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :torch.FloatTensor lowerCamelCase :torch.FloatTensor class a ( __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowerCamelCase :int = 1 @register_to_config def __init__( self , lowerCAmelCase_ = 20_00 , lowerCAmelCase_ = 0.15 , lowerCAmelCase_ = 0.01 , lowerCAmelCase_ = 1348.0 , lowerCAmelCase_ = 1E-5 , lowerCAmelCase_ = 1 , ) -> Tuple: # standard deviation of the initial noise distribution _A = sigma_max # setable values _A = None self.set_sigmas(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> torch.FloatTensor: return sample def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None ) -> Tuple: _A = sampling_eps if sampling_eps is not None else self.config.sampling_eps _A = torch.linspace(1 , lowerCAmelCase_ , lowerCAmelCase_ , device=lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None ) -> Any: _A = sigma_min if sigma_min is not None else self.config.sigma_min _A = sigma_max if sigma_max is not None else self.config.sigma_max _A = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(lowerCAmelCase_ , lowerCAmelCase_ ) _A = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) _A = torch.exp(torch.linspace(math.log(lowerCAmelCase_ ) , math.log(lowerCAmelCase_ ) , lowerCAmelCase_ ) ) _A = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> int: return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = True , ) -> Union[SdeVeOutput, Tuple]: if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) _A = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) _A = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda _A = timesteps.to(self.discrete_sigmas.device ) _A = self.discrete_sigmas[timesteps].to(sample.device ) _A = self.get_adjacent_sigma(lowerCAmelCase_ , lowerCAmelCase_ ).to(sample.device ) _A = torch.zeros_like(lowerCAmelCase_ ) _A = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods _A = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): _A = diffusion.unsqueeze(-1 ) _A = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of _A = randn_tensor( sample.shape , layout=sample.layout , generator=lowerCAmelCase_ , device=sample.device , dtype=sample.dtype ) _A = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? _A = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=lowerCAmelCase_ , prev_sample_mean=lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = True , ) -> Union[SchedulerOutput, Tuple]: if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction _A = randn_tensor(sample.shape , layout=sample.layout , generator=lowerCAmelCase_ ).to(sample.device ) # compute step size from the model_output, the noise, and the snr _A = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() _A = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() _A = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 _A = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term _A = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): _A = step_size.unsqueeze(-1 ) _A = sample + step_size * model_output _A = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples _A = timesteps.to(original_samples.device ) _A = self.discrete_sigmas.to(original_samples.device )[timesteps] _A = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(lowerCAmelCase_ ) * sigmas[:, None, None, None] ) _A = noise + original_samples return noisy_samples def __len__( self ) -> List[str]: return self.config.num_train_timesteps
81
1
def a__ ( A_, A_ ): '''simple docstring''' return base * power(A_, (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print('Raise base to the power of exponent using recursion...') __lowerCAmelCase : int = int(input('Enter the base: ').strip()) __lowerCAmelCase : Optional[int] = int(input('Enter the exponent: ').strip()) __lowerCAmelCase : Dict = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents __lowerCAmelCase : Union[str, Any] = 1 / result print(F'''{base} to the power of {exponent} is {result}''')
88
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowerCAmelCase : List[str] = { 'configuration_xlm': ['XLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMConfig', 'XLMOnnxConfig'], 'tokenization_xlm': ['XLMTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = [ 'XLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMForMultipleChoice', 'XLMForQuestionAnswering', 'XLMForQuestionAnsweringSimple', 'XLMForSequenceClassification', 'XLMForTokenClassification', 'XLMModel', 'XLMPreTrainedModel', 'XLMWithLMHeadModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Dict = [ 'TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMForMultipleChoice', 'TFXLMForQuestionAnsweringSimple', 'TFXLMForSequenceClassification', 'TFXLMForTokenClassification', 'TFXLMMainLayer', 'TFXLMModel', 'TFXLMPreTrainedModel', 'TFXLMWithLMHeadModel', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys __lowerCAmelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
88
1
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
357
import requests from bsa import BeautifulSoup def UpperCamelCase ( __lowerCamelCase : str = "AAPL" ): snake_case : List[Any] = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" snake_case : Tuple = BeautifulSoup(requests.get(__lowerCamelCase ).text , "html.parser" ) snake_case : Dict = "My(6px) Pos(r) smartphone_Mt(6px)" return soup.find("div" , class_=class_ ).find("span" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'Current {symbol:<4} stock price is {stock_price(symbol):>8}')
10
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _a ( unittest.TestCase ): @property def A ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def A ( self : Dict ): '''simple docstring''' UpperCAmelCase = self.dummy_uncond_unet UpperCAmelCase = KarrasVeScheduler() UpperCAmelCase = KarrasVePipeline(unet=lowercase , scheduler=lowercase ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = pipe(num_inference_steps=2 , generator=lowercase , output_type='''numpy''' ).images UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = pipe(num_inference_steps=2 , generator=lowercase , output_type='''numpy''' , return_dict=lowercase )[0] UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class _a ( unittest.TestCase ): def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = '''google/ncsnpp-celebahq-256''' UpperCAmelCase = UNetaDModel.from_pretrained(lowercase ) UpperCAmelCase = KarrasVeScheduler() UpperCAmelCase = KarrasVePipeline(unet=lowercase , scheduler=lowercase ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = pipe(num_inference_steps=20 , generator=lowercase , output_type='''numpy''' ).images UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
34
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _a ( __a ): __a : int = ["""image_processor""", """tokenizer"""] __a : Union[str, Any] = """ChineseCLIPImageProcessor""" __a : List[Any] = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : Dict , lowercase : Union[str, Any]=None , lowercase : Dict=None , **lowercase : Optional[Any] ): '''simple docstring''' UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowercase , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowercase , lowercase ) UpperCAmelCase = self.image_processor def __call__( self : Tuple , lowercase : Optional[Any]=None , lowercase : Union[str, Any]=None , lowercase : int=None , **lowercase : Dict ): '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: UpperCAmelCase = self.tokenizer(lowercase , return_tensors=lowercase , **lowercase ) if images is not None: UpperCAmelCase = self.image_processor(lowercase , return_tensors=lowercase , **lowercase ) if text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase ) , tensor_type=lowercase ) def A ( self : int , *lowercase : Tuple , **lowercase : List[str] ): '''simple docstring''' return self.tokenizer.batch_decode(*lowercase , **lowercase ) def A ( self : Optional[Any] , *lowercase : int , **lowercase : Optional[int] ): '''simple docstring''' return self.tokenizer.decode(*lowercase , **lowercase ) @property def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = self.tokenizer.model_input_names UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def A ( self : List[Any] ): '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowercase , ) return self.image_processor_class
34
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor lowerCamelCase__ = logging.get_logger(__name__) class A__ ( __magic_name__ ): def __init__( self : str , *a : Dict , **a : int ): '''simple docstring''' warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , __lowerCAmelCase , ) super().__init__(*__lowerCAmelCase , **__lowerCAmelCase )
360
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> str: return "".join([hex(SCREAMING_SNAKE_CASE_ )[2:].zfill(2 ).upper() for byte in list(SCREAMING_SNAKE_CASE_ )] ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(SCREAMING_SNAKE_CASE_ ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(SCREAMING_SNAKE_CASE_ ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
307
0
import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def a ( _UpperCAmelCase : List[Any] ): '''simple docstring''' __UpperCAmelCase : Any = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(_UpperCAmelCase , _UpperCAmelCase ) def a ( _UpperCAmelCase : List[Any] ): '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : int = emb.weight.shape __UpperCAmelCase : str = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase ) __UpperCAmelCase : Any = emb.weight.data return lin_layer def a ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any="facebook/mbart-large-en-ro" , _UpperCAmelCase : str=False , _UpperCAmelCase : Optional[int]=False ): '''simple docstring''' __UpperCAmelCase : int = torch.load(_UpperCAmelCase , map_location='''cpu''' )['''model'''] remove_ignore_keys_(_UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = state_dict['''encoder.embed_tokens.weight'''].shape[0] __UpperCAmelCase : List[Any] = MBartConfig.from_pretrained(_UpperCAmelCase , vocab_size=_UpperCAmelCase ) if mbart_aa and finetuned: __UpperCAmelCase : Optional[int] = '''relu''' __UpperCAmelCase : Optional[int] = state_dict['''decoder.embed_tokens.weight'''] __UpperCAmelCase : int = MBartForConditionalGeneration(_UpperCAmelCase ) model.model.load_state_dict(_UpperCAmelCase ) if finetuned: __UpperCAmelCase : Dict = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": __A =argparse.ArgumentParser() # Required parameters parser.add_argument( "fairseq_path", type=str, help="bart.large, bart.large.cnn or a path to a model.pt on local filesystem." ) parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--hf_config", default="facebook/mbart-large-cc25", type=str, help="Which huggingface architecture to use: mbart-large", ) parser.add_argument("--mbart_50", action="store_true", help="whether the model is mMART-50 checkpoint") parser.add_argument("--finetuned", action="store_true", help="whether the model is a fine-tuned checkpoint") __A =parser.parse_args() __A =convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
226
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class UpperCAmelCase__ : '''simple docstring''' UpperCamelCase = None def snake_case__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) __UpperCAmelCase : Optional[int] = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , a_ ) def snake_case__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Union[str, Any] = os.path.join(a_ , '''feat_extract.json''' ) feat_extract_first.to_json_file(a_ ) __UpperCAmelCase : Any = self.feature_extraction_class.from_json_file(a_ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def snake_case__ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : List[str] = feat_extract_first.save_pretrained(a_ )[0] check_json_file_has_correct_format(a_ ) __UpperCAmelCase : Optional[Any] = self.feature_extraction_class.from_pretrained(a_ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def snake_case__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : int = self.feature_extraction_class() self.assertIsNotNone(a_ )
226
1
from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class SCREAMING_SNAKE_CASE__ : def __init__(self : List[str] , a__ : Tuple , ): """simple docstring""" __snake_case = parent __snake_case = 13 __snake_case = 7 __snake_case = 30 __snake_case = self.seq_length + self.mem_len __snake_case = 15 __snake_case = True __snake_case = True __snake_case = 99 __snake_case = [10, 50, 80] __snake_case = 32 __snake_case = 32 __snake_case = 4 __snake_case = 8 __snake_case = 128 __snake_case = 2 __snake_case = 2 __snake_case = None __snake_case = 1 __snake_case = 0 __snake_case = 3 __snake_case = self.vocab_size - 1 __snake_case = 0.0_1 def a (self : Dict ): """simple docstring""" __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def a (self : List[Any] ): """simple docstring""" random.seed(self.seed ) tf.random.set_seed(self.seed ) def a (self : List[Any] , a__ : List[Any] , a__ : Tuple , a__ : str , a__ : List[Any] ): """simple docstring""" __snake_case = TFTransfoXLModel(a__ ) __snake_case , __snake_case = model(a__ ).to_tuple() __snake_case = {'''input_ids''': input_ids_a, '''mems''': mems_a} __snake_case , __snake_case = model(a__ ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def a (self : List[Any] , a__ : List[Any] , a__ : int , a__ : Dict , a__ : int ): """simple docstring""" __snake_case = TFTransfoXLLMHeadModel(a__ ) __snake_case , __snake_case = model(a__ ).to_tuple() __snake_case = {'''input_ids''': input_ids_a, '''labels''': lm_labels} __snake_case , __snake_case = model(a__ ).to_tuple() __snake_case , __snake_case = model([input_ids_a, mems_a] ).to_tuple() __snake_case = {'''input_ids''': input_ids_a, '''mems''': mems_a, '''labels''': lm_labels} __snake_case , __snake_case = model(a__ ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def a (self : Dict , a__ : List[str] , a__ : Optional[Any] , a__ : str , a__ : Tuple ): """simple docstring""" __snake_case = TFTransfoXLForSequenceClassification(a__ ) __snake_case = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a (self : Optional[int] ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() ((__snake_case) , (__snake_case) , (__snake_case) , (__snake_case)) = config_and_inputs __snake_case = {'''input_ids''': input_ids_a} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): A_ : Optional[Any] = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) A_ : Tuple = () if is_tf_available() else () A_ : Tuple = ( { 'feature-extraction': TFTransfoXLModel, 'text-classification': TFTransfoXLForSequenceClassification, 'text-generation': TFTransfoXLLMHeadModel, 'zero-shot': TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented A_ : List[str] = False A_ : Optional[int] = False A_ : Optional[int] = False A_ : Optional[Any] = False def a (self : Optional[Any] , a__ : Any , a__ : List[str] , a__ : List[str] , a__ : str , a__ : Union[str, Any] ): """simple docstring""" if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def a (self : Dict ): """simple docstring""" __snake_case = TFTransfoXLModelTester(self ) __snake_case = ConfigTester(self , config_class=a__ , d_embed=37 ) def a (self : str ): """simple docstring""" self.config_tester.run_common_tests() def a (self : Union[str, Any] ): """simple docstring""" self.model_tester.set_seed() __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*a__ ) def a (self : str ): """simple docstring""" self.model_tester.set_seed() __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*a__ ) def a (self : Dict ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*a__ ) def a (self : Any ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: __snake_case = model_class(a__ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: __snake_case = model.get_output_embeddings() assert isinstance(a__ , tf.keras.layers.Layer ) __snake_case = model.get_bias() assert name is None else: __snake_case = model.get_output_embeddings() assert x is None __snake_case = model.get_bias() assert name is None def a (self : Any ): """simple docstring""" pass @slow def a (self : Dict ): """simple docstring""" for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = TFTransfoXLModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @unittest.skip(reason='''This model doesn\'t play well with fit() due to not returning a single loss.''' ) def a (self : Tuple ): """simple docstring""" pass @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @unittest.skip('''Skip test until #12651 is resolved.''' ) @slow def a (self : Dict ): """simple docstring""" __snake_case = TFTransfoXLLMHeadModel.from_pretrained('''transfo-xl-wt103''' ) # fmt: off __snake_case = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off __snake_case = [33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0,33,1,1857,2,1,1009,4,1109,1_1739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> __snake_case = model.generate(a__ , max_length=200 , do_sample=a__ ) self.assertListEqual(output_ids[0].numpy().tolist() , a__ )
355
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): A_ : Optional[int] = CycleDiffusionPipeline A_ : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'negative_prompt', 'height', 'width', 'negative_prompt_embeds', } A_ : List[str] = PipelineTesterMixin.required_optional_params - {'latents'} A_ : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'source_prompt'} ) A_ : List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS A_ : Any = IMAGE_TO_IMAGE_IMAGE_PARAMS def a (self : Dict ): """simple docstring""" torch.manual_seed(0 ) __snake_case = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) __snake_case = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , num_train_timesteps=1000 , clip_sample=a__ , set_alpha_to_one=a__ , ) torch.manual_seed(0 ) __snake_case = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) __snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) __snake_case = CLIPTextModel(a__ ) __snake_case = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __snake_case = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def a (self : List[str] , a__ : Tuple , a__ : Optional[Any]=0 ): """simple docstring""" __snake_case = floats_tensor((1, 3, 32, 32) , rng=random.Random(a__ ) ).to(a__ ) __snake_case = image / 2 + 0.5 if str(a__ ).startswith('''mps''' ): __snake_case = torch.manual_seed(a__ ) else: __snake_case = torch.Generator(device=a__ ).manual_seed(a__ ) __snake_case = { '''prompt''': '''An astronaut riding an elephant''', '''source_prompt''': '''An astronaut riding a horse''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''eta''': 0.1, '''strength''': 0.8, '''guidance_scale''': 3, '''source_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def a (self : str ): """simple docstring""" __snake_case = '''cpu''' # ensure determinism for the device-dependent torch.Generator __snake_case = self.get_dummy_components() __snake_case = CycleDiffusionPipeline(**a__ ) __snake_case = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = self.get_dummy_inputs(a__ ) __snake_case = pipe(**a__ ) __snake_case = output.images __snake_case = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __snake_case = np.array([0.4_4_5_9, 0.4_9_4_3, 0.4_5_4_4, 0.6_6_4_3, 0.5_4_7_4, 0.4_3_2_7, 0.5_7_0_1, 0.5_9_5_9, 0.5_1_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def a (self : List[str] ): """simple docstring""" __snake_case = self.get_dummy_components() for name, module in components.items(): if hasattr(a__ , '''half''' ): __snake_case = module.half() __snake_case = CycleDiffusionPipeline(**a__ ) __snake_case = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = self.get_dummy_inputs(a__ ) __snake_case = pipe(**a__ ) __snake_case = output.images __snake_case = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __snake_case = np.array([0.3_5_0_6, 0.4_5_4_3, 0.4_4_6, 0.4_5_7_5, 0.5_1_9_5, 0.4_1_5_5, 0.5_2_7_3, 0.5_1_8, 0.4_1_1_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def a (self : Any ): """simple docstring""" return super().test_save_load_local() @unittest.skip('''non-deterministic pipeline''' ) def a (self : Any ): """simple docstring""" return super().test_inference_batch_single_identical() @skip_mps def a (self : Any ): """simple docstring""" return super().test_dict_tuple_outputs_equivalent() @skip_mps def a (self : str ): """simple docstring""" return super().test_save_load_optional_components() @skip_mps def a (self : Dict ): """simple docstring""" return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def a (self : Union[str, Any] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def a (self : Tuple ): """simple docstring""" __snake_case = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) __snake_case = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy''' ) __snake_case = init_image.resize((512, 512) ) __snake_case = '''CompVis/stable-diffusion-v1-4''' __snake_case = DDIMScheduler.from_pretrained(a__ , subfolder='''scheduler''' ) __snake_case = CycleDiffusionPipeline.from_pretrained( a__ , scheduler=a__ , safety_checker=a__ , torch_dtype=torch.floataa , revision='''fp16''' ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing() __snake_case = '''A black colored car''' __snake_case = '''A blue colored car''' __snake_case = torch.manual_seed(0 ) __snake_case = pipe( prompt=a__ , source_prompt=a__ , image=a__ , num_inference_steps=100 , eta=0.1 , strength=0.8_5 , guidance_scale=3 , source_guidance_scale=1 , generator=a__ , output_type='''np''' , ) __snake_case = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def a (self : Tuple ): """simple docstring""" __snake_case = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) __snake_case = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy''' ) __snake_case = init_image.resize((512, 512) ) __snake_case = '''CompVis/stable-diffusion-v1-4''' __snake_case = DDIMScheduler.from_pretrained(a__ , subfolder='''scheduler''' ) __snake_case = CycleDiffusionPipeline.from_pretrained(a__ , scheduler=a__ , safety_checker=a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing() __snake_case = '''A black colored car''' __snake_case = '''A blue colored car''' __snake_case = torch.manual_seed(0 ) __snake_case = pipe( prompt=a__ , source_prompt=a__ , image=a__ , num_inference_steps=100 , eta=0.1 , strength=0.8_5 , guidance_scale=3 , source_guidance_scale=1 , generator=a__ , output_type='''np''' , ) __snake_case = output.images assert np.abs(image - expected_image ).max() < 2E-2
238
0
'''simple docstring''' class __snake_case : """simple docstring""" def __init__( self : int , lowerCamelCase : int , lowerCamelCase : int=None , lowerCamelCase : int=None ) -> str: lowerCAmelCase_ : str = data lowerCAmelCase_ : Optional[Any] = previous lowerCAmelCase_ : int = next_node def __str__( self : Any ) -> str: return F'{self.data}' def __lowercase ( self : Optional[Any] ) -> int: return self.data def __lowercase ( self : str ) -> List[str]: return self.next def __lowercase ( self : int ) -> Optional[int]: return self.previous class __snake_case : """simple docstring""" def __init__( self : Union[str, Any] , lowerCamelCase : Optional[int] ) -> Optional[Any]: lowerCAmelCase_ : Optional[Any] = head def __iter__( self : str ) -> Optional[Any]: return self def __lowercase ( self : Union[str, Any] ) -> Dict: if not self.current: raise StopIteration else: lowerCAmelCase_ : Dict = self.current.get_data() lowerCAmelCase_ : Tuple = self.current.get_next() return value class __snake_case : """simple docstring""" def __init__( self : Union[str, Any] ) -> Any: lowerCAmelCase_ : Optional[Any] = None # First node in list lowerCAmelCase_ : Optional[Any] = None # Last node in list def __str__( self : Optional[int] ) -> Dict: lowerCAmelCase_ : str = self.head lowerCAmelCase_ : Tuple = [] while current is not None: nodes.append(current.get_data() ) lowerCAmelCase_ : str = current.get_next() return " ".join(str(lowerCamelCase ) for node in nodes ) def __contains__( self : List[Any] , lowerCamelCase : int ) -> List[str]: lowerCAmelCase_ : List[str] = self.head while current: if current.get_data() == value: return True lowerCAmelCase_ : List[Any] = current.get_next() return False def __iter__( self : str ) -> Optional[Any]: return LinkedListIterator(self.head ) def __lowercase ( self : Dict ) -> Optional[int]: if self.head: return self.head.get_data() return None def __lowercase ( self : List[str] ) -> Optional[Any]: if self.tail: return self.tail.get_data() return None def __lowercase ( self : Optional[Any] , lowerCamelCase : Node ) -> None: if self.head is None: lowerCAmelCase_ : Union[str, Any] = node lowerCAmelCase_ : List[str] = node else: self.insert_before_node(self.head , lowerCamelCase ) def __lowercase ( self : Tuple , lowerCamelCase : Node ) -> None: if self.head is None: self.set_head(lowerCamelCase ) else: self.insert_after_node(self.tail , lowerCamelCase ) def __lowercase ( self : Union[str, Any] , lowerCamelCase : int ) -> None: lowerCAmelCase_ : int = Node(lowerCamelCase ) if self.head is None: self.set_head(lowerCamelCase ) else: self.set_tail(lowerCamelCase ) def __lowercase ( self : Optional[Any] , lowerCamelCase : Node , lowerCamelCase : Node ) -> None: lowerCAmelCase_ : Optional[int] = node lowerCAmelCase_ : List[Any] = node.previous if node.get_previous() is None: lowerCAmelCase_ : Tuple = node_to_insert else: lowerCAmelCase_ : Dict = node_to_insert lowerCAmelCase_ : Optional[int] = node_to_insert def __lowercase ( self : Union[str, Any] , lowerCamelCase : Node , lowerCamelCase : Node ) -> None: lowerCAmelCase_ : Optional[int] = node lowerCAmelCase_ : Tuple = node.next if node.get_next() is None: lowerCAmelCase_ : Tuple = node_to_insert else: lowerCAmelCase_ : Tuple = node_to_insert lowerCAmelCase_ : Optional[Any] = node_to_insert def __lowercase ( self : Dict , lowerCamelCase : int , lowerCamelCase : int ) -> None: lowerCAmelCase_ : List[str] = 1 lowerCAmelCase_ : Tuple = Node(lowerCamelCase ) lowerCAmelCase_ : List[Any] = self.head while node: if current_position == position: self.insert_before_node(lowerCamelCase , lowerCamelCase ) return current_position += 1 lowerCAmelCase_ : str = node.next self.insert_after_node(self.tail , lowerCamelCase ) def __lowercase ( self : int , lowerCamelCase : int ) -> Node: lowerCAmelCase_ : List[Any] = self.head while node: if node.get_data() == item: return node lowerCAmelCase_ : List[Any] = node.get_next() raise Exception("""Node not found""" ) def __lowercase ( self : str , lowerCamelCase : str ) -> int: if (node := self.get_node(lowerCamelCase )) is not None: if node == self.head: lowerCAmelCase_ : Any = self.head.get_next() if node == self.tail: lowerCAmelCase_ : Optional[int] = self.tail.get_previous() self.remove_node_pointers(lowerCamelCase ) @staticmethod def __lowercase ( lowerCamelCase : Node ) -> None: if node.get_next(): lowerCAmelCase_ : Tuple = node.previous if node.get_previous(): lowerCAmelCase_ : Any = node.next lowerCAmelCase_ : List[Any] = None lowerCAmelCase_ : Any = None def __lowercase ( self : str ) -> Optional[Any]: return self.head is None def UpperCamelCase_ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
120
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __A : List[Any] = logging.get_logger(__name__) __A : Optional[Any] = { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json", # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" lowercase = 'gpt_neox' def __init__( self : Optional[int] , lowerCamelCase : Tuple=5_04_32 , lowerCamelCase : Optional[int]=61_44 , lowerCamelCase : Tuple=44 , lowerCamelCase : Any=64 , lowerCamelCase : List[Any]=2_45_76 , lowerCamelCase : List[Any]="gelu" , lowerCamelCase : Optional[Any]=0.25 , lowerCamelCase : Any=1_00_00 , lowerCamelCase : Any=0.0 , lowerCamelCase : str=0.0 , lowerCamelCase : Optional[int]=0.1 , lowerCamelCase : List[Any]=20_48 , lowerCamelCase : List[Any]=0.02 , lowerCamelCase : Any=1E-5 , lowerCamelCase : Dict=True , lowerCamelCase : Optional[int]=0 , lowerCamelCase : List[str]=2 , lowerCamelCase : Dict=False , lowerCamelCase : Tuple=True , lowerCamelCase : Optional[int]=None , **lowerCamelCase : int , ) -> Optional[Any]: super().__init__(bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , **lowerCamelCase ) lowerCAmelCase_ : Tuple = vocab_size lowerCAmelCase_ : Union[str, Any] = max_position_embeddings lowerCAmelCase_ : Any = hidden_size lowerCAmelCase_ : List[Any] = num_hidden_layers lowerCAmelCase_ : Optional[int] = num_attention_heads lowerCAmelCase_ : str = intermediate_size lowerCAmelCase_ : int = hidden_act lowerCAmelCase_ : List[Any] = rotary_pct lowerCAmelCase_ : Any = rotary_emb_base lowerCAmelCase_ : List[str] = attention_dropout lowerCAmelCase_ : Union[str, Any] = hidden_dropout lowerCAmelCase_ : Tuple = classifier_dropout lowerCAmelCase_ : Union[str, Any] = initializer_range lowerCAmelCase_ : Any = layer_norm_eps lowerCAmelCase_ : str = use_cache lowerCAmelCase_ : str = tie_word_embeddings lowerCAmelCase_ : str = use_parallel_residual lowerCAmelCase_ : Any = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( """The hidden size is not divisble by the number of attention heads! Make sure to update them!""" ) def __lowercase ( self : List[str] ) -> List[str]: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowerCamelCase ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ F'got {self.rope_scaling}' ) lowerCAmelCase_ : Optional[Any] = self.rope_scaling.get("""type""" , lowerCamelCase ) lowerCAmelCase_ : int = self.rope_scaling.get("""factor""" , lowerCamelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}' ) if rope_scaling_factor is None or not isinstance(lowerCamelCase , lowerCamelCase ) or rope_scaling_factor <= 1.0: raise ValueError(F'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}' )
120
1
import math def _a ( SCREAMING_SNAKE_CASE_ : Optional[Any] ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowercase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _a ( SCREAMING_SNAKE_CASE_ : Any = 0.1 ): __lowerCAmelCase = 3 __lowerCAmelCase = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(lowercase_ ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
362
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class a__ ( nn.Module ): def __init__( self , _A , _A , _A , _A=0.0 , _A = None , _A = "geglu" , _A = None , _A = False , _A = False , _A = False , _A = False , _A = True , _A = "layer_norm" , _A = False , ): """simple docstring""" super().__init__() __lowerCAmelCase = only_cross_attention __lowerCAmelCase = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" __lowerCAmelCase = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f"""`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to""" f""" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.""" ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: __lowerCAmelCase = AdaLayerNorm(_A , _A ) elif self.use_ada_layer_norm_zero: __lowerCAmelCase = AdaLayerNormZero(_A , _A ) else: __lowerCAmelCase = nn.LayerNorm(_A , elementwise_affine=_A ) __lowerCAmelCase = Attention( query_dim=_A , heads=_A , dim_head=_A , dropout=_A , bias=_A , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=_A , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. __lowerCAmelCase = ( AdaLayerNorm(_A , _A ) if self.use_ada_layer_norm else nn.LayerNorm(_A , elementwise_affine=_A ) ) __lowerCAmelCase = Attention( query_dim=_A , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=_A , dim_head=_A , dropout=_A , bias=_A , upcast_attention=_A , ) # is self-attn if encoder_hidden_states is none else: __lowerCAmelCase = None __lowerCAmelCase = None # 3. Feed-forward __lowerCAmelCase = nn.LayerNorm(_A , elementwise_affine=_A ) __lowerCAmelCase = FeedForward(_A , dropout=_A , activation_fn=_A , final_dropout=_A ) # let chunk size default to None __lowerCAmelCase = None __lowerCAmelCase = 0 def __SCREAMING_SNAKE_CASE( self , _A , _A ): """simple docstring""" __lowerCAmelCase = chunk_size __lowerCAmelCase = dim def __SCREAMING_SNAKE_CASE( self , _A , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , ): """simple docstring""" if self.use_ada_layer_norm: __lowerCAmelCase = self.norma(_A , _A ) elif self.use_ada_layer_norm_zero: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self.norma( _A , _A , _A , hidden_dtype=hidden_states.dtype ) else: __lowerCAmelCase = self.norma(_A ) __lowerCAmelCase = cross_attention_kwargs if cross_attention_kwargs is not None else {} __lowerCAmelCase = self.attna( _A , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=_A , **_A , ) if self.use_ada_layer_norm_zero: __lowerCAmelCase = gate_msa.unsqueeze(1 ) * attn_output __lowerCAmelCase = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: __lowerCAmelCase = ( self.norma(_A , _A ) if self.use_ada_layer_norm else self.norma(_A ) ) __lowerCAmelCase = self.attna( _A , encoder_hidden_states=_A , attention_mask=_A , **_A , ) __lowerCAmelCase = attn_output + hidden_states # 3. Feed-forward __lowerCAmelCase = self.norma(_A ) if self.use_ada_layer_norm_zero: __lowerCAmelCase = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f"""`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.""" ) __lowerCAmelCase = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size __lowerCAmelCase = torch.cat( [self.ff(_A ) for hid_slice in norm_hidden_states.chunk(_A , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: __lowerCAmelCase = self.ff(_A ) if self.use_ada_layer_norm_zero: __lowerCAmelCase = gate_mlp.unsqueeze(1 ) * ff_output __lowerCAmelCase = ff_output + hidden_states return hidden_states class a__ ( nn.Module ): def __init__( self , _A , _A = None , _A = 4 , _A = 0.0 , _A = "geglu" , _A = False , ): """simple docstring""" super().__init__() __lowerCAmelCase = int(dim * mult ) __lowerCAmelCase = dim_out if dim_out is not None else dim if activation_fn == "gelu": __lowerCAmelCase = GELU(_A , _A ) if activation_fn == "gelu-approximate": __lowerCAmelCase = GELU(_A , _A , approximate="tanh" ) elif activation_fn == "geglu": __lowerCAmelCase = GEGLU(_A , _A ) elif activation_fn == "geglu-approximate": __lowerCAmelCase = ApproximateGELU(_A , _A ) __lowerCAmelCase = nn.ModuleList([] ) # project in self.net.append(_A ) # project dropout self.net.append(nn.Dropout(_A ) ) # project out self.net.append(nn.Linear(_A , _A ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(_A ) ) def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" for module in self.net: __lowerCAmelCase = module(_A ) return hidden_states class a__ ( nn.Module ): def __init__( self , _A , _A , _A = "none" ): """simple docstring""" super().__init__() __lowerCAmelCase = nn.Linear(_A , _A ) __lowerCAmelCase = approximate def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" if gate.device.type != "mps": return F.gelu(_A , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" __lowerCAmelCase = self.proj(_A ) __lowerCAmelCase = self.gelu(_A ) return hidden_states class a__ ( nn.Module ): def __init__( self , _A , _A ): """simple docstring""" super().__init__() __lowerCAmelCase = nn.Linear(_A , dim_out * 2 ) def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" if gate.device.type != "mps": return F.gelu(_A ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.proj(_A ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(_A ) class a__ ( nn.Module ): def __init__( self , _A , _A ): """simple docstring""" super().__init__() __lowerCAmelCase = nn.Linear(_A , _A ) def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" __lowerCAmelCase = self.proj(_A ) return x * torch.sigmoid(1.7_02 * x ) class a__ ( nn.Module ): def __init__( self , _A , _A ): """simple docstring""" super().__init__() __lowerCAmelCase = nn.Embedding(_A , _A ) __lowerCAmelCase = nn.SiLU() __lowerCAmelCase = nn.Linear(_A , embedding_dim * 2 ) __lowerCAmelCase = nn.LayerNorm(_A , elementwise_affine=_A ) def __SCREAMING_SNAKE_CASE( self , _A , _A ): """simple docstring""" __lowerCAmelCase = self.linear(self.silu(self.emb(_A ) ) ) __lowerCAmelCase , __lowerCAmelCase = torch.chunk(_A , 2 ) __lowerCAmelCase = self.norm(_A ) * (1 + scale) + shift return x class a__ ( nn.Module ): def __init__( self , _A , _A ): """simple docstring""" super().__init__() __lowerCAmelCase = CombinedTimestepLabelEmbeddings(_A , _A ) __lowerCAmelCase = nn.SiLU() __lowerCAmelCase = nn.Linear(_A , 6 * embedding_dim , bias=_A ) __lowerCAmelCase = nn.LayerNorm(_A , elementwise_affine=_A , eps=1E-6 ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A=None ): """simple docstring""" __lowerCAmelCase = self.linear(self.silu(self.emb(_A , _A , hidden_dtype=_A ) ) ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = emb.chunk(6 , dim=1 ) __lowerCAmelCase = self.norm(_A ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class a__ ( nn.Module ): def __init__( self , _A , _A , _A , _A = None , _A = 1E-5 ): """simple docstring""" super().__init__() __lowerCAmelCase = num_groups __lowerCAmelCase = eps if act_fn is None: __lowerCAmelCase = None else: __lowerCAmelCase = get_activation(_A ) __lowerCAmelCase = nn.Linear(_A , out_dim * 2 ) def __SCREAMING_SNAKE_CASE( self , _A , _A ): """simple docstring""" if self.act: __lowerCAmelCase = self.act(_A ) __lowerCAmelCase = self.linear(_A ) __lowerCAmelCase = emb[:, :, None, None] __lowerCAmelCase , __lowerCAmelCase = emb.chunk(2 , dim=1 ) __lowerCAmelCase = F.group_norm(_A , self.num_groups , eps=self.eps ) __lowerCAmelCase = x * (1 + scale) + shift return x
102
0
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def a__ ( lowercase : Optional[Any] ) -> Tuple: """simple docstring""" _UpperCamelCase = filter(lambda lowercase : p.requires_grad, model.parameters() ) _UpperCamelCase = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowercase__ : Tuple = logging.getLogger(__name__) def a__ ( lowercase : Union[str, Any], lowercase : Optional[Any] ) -> Any: """simple docstring""" if metric == "rouge2": _UpperCamelCase = '''{val_avg_rouge2:.4f}-{step_count}''' elif metric == "bleu": _UpperCamelCase = '''{val_avg_bleu:.4f}-{step_count}''' elif metric == "em": _UpperCamelCase = '''{val_avg_em:.4f}-{step_count}''' else: raise NotImplementedError( F"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" ''' function.''' ) _UpperCamelCase = ModelCheckpoint( dirpath=_UpperCAmelCase, filename=_UpperCAmelCase, monitor=F"""val_{metric}""", mode='''max''', save_top_k=3, every_n_epochs=1, ) return checkpoint_callback def a__ ( lowercase : Tuple, lowercase : Optional[int] ) -> str: """simple docstring""" return EarlyStopping( monitor=F"""val_{metric}""", mode='''min''' if '''loss''' in metric else '''max''', patience=_UpperCAmelCase, verbose=_UpperCAmelCase, ) class __lowerCAmelCase ( pl.Callback ): """simple docstring""" def snake_case__ ( self : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Any] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = {f"""lr_group_{i}""": param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(lowerCAmelCase__ ) @rank_zero_only def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Any=True ) -> None: '''simple docstring''' logger.info(f"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) _UpperCamelCase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} ) # Log results _UpperCamelCase = Path(pl_module.hparams.output_dir ) if type_path == "test": _UpperCamelCase = od / '''test_results.txt''' _UpperCamelCase = od / '''test_generations.txt''' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _UpperCamelCase = od / f"""{type_path}_results/{trainer.global_step:05d}.txt""" _UpperCamelCase = od / f"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=lowerCAmelCase__ ) generations_file.parent.mkdir(exist_ok=lowerCAmelCase__ ) with open(lowerCAmelCase__ , '''a+''' ) as writer: for key in sorted(lowerCAmelCase__ ): if key in ["log", "progress_bar", "preds"]: continue _UpperCamelCase = metrics[key] if isinstance(lowerCAmelCase__ , torch.Tensor ): _UpperCamelCase = val.item() _UpperCamelCase = f"""{key}: {val:.6f}\n""" writer.write(lowerCAmelCase__ ) if not save_generations: return if "preds" in metrics: _UpperCamelCase = '''\n'''.join(metrics['''preds'''] ) generations_file.open('''w+''' ).write(lowerCAmelCase__ ) @rank_zero_only def snake_case__ ( self : Dict , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[Any] ) -> int: '''simple docstring''' try: _UpperCamelCase = pl_module.model.model.num_parameters() except AttributeError: _UpperCamelCase = pl_module.model.num_parameters() _UpperCamelCase = count_trainable_parameters(lowerCAmelCase__ ) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1e6, '''grad_mp''': n_trainable_pars / 1e6} ) @rank_zero_only def snake_case__ ( self : str , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(lowerCAmelCase__ , lowerCAmelCase__ , '''test''' ) @rank_zero_only def snake_case__ ( self : Any , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : int ) -> Tuple: '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
324
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def lowerCamelCase__ (_UpperCAmelCase=None): if subparsers is not None: SCREAMING_SNAKE_CASE = subparsers.add_parser('env') else: SCREAMING_SNAKE_CASE = argparse.ArgumentParser('Accelerate env command') parser.add_argument( '--config_file' , default=_UpperCAmelCase , help='The config file to use for the default values in the launching script.') if subparsers is not None: parser.set_defaults(func=_UpperCAmelCase) return parser def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = torch.__version__ SCREAMING_SNAKE_CASE = torch.cuda.is_available() SCREAMING_SNAKE_CASE = is_xpu_available() SCREAMING_SNAKE_CASE = is_npu_available() SCREAMING_SNAKE_CASE = 'Not found' # Get the default from the config file. if args.config_file is not None or os.path.isfile(_UpperCAmelCase): SCREAMING_SNAKE_CASE = load_config_from_file(args.config_file).to_dict() SCREAMING_SNAKE_CASE = { '`Accelerate` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'Numpy version': np.__version__, 'PyTorch version (GPU?)': F'''{pt_version} ({pt_cuda_available})''', 'PyTorch XPU available': str(_UpperCAmelCase), 'PyTorch NPU available': str(_UpperCAmelCase), 'System RAM': F'''{psutil.virtual_memory().total / 1024 ** 3:.2f} GB''', } if pt_cuda_available: SCREAMING_SNAKE_CASE = torch.cuda.get_device_name() print('\nCopy-and-paste the text below in your GitHub issue\n') print('\n'.join([F'''- {prop}: {val}''' for prop, val in info.items()])) print('- `Accelerate` default config:' if args.config_file is None else '- `Accelerate` config passed:') SCREAMING_SNAKE_CASE = ( '\n'.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()]) if isinstance(_UpperCAmelCase , _UpperCAmelCase) else F'''\t{accelerate_config}''' ) print(_UpperCAmelCase) SCREAMING_SNAKE_CASE = accelerate_config return info def lowerCamelCase__ (): SCREAMING_SNAKE_CASE = env_command_parser() SCREAMING_SNAKE_CASE = parser.parse_args() env_command(_UpperCAmelCase) return 0 if __name__ == "__main__": raise SystemExit(main())
137
0
'''simple docstring''' def __A ( lowerCAmelCase_ ): _UpperCAmelCase : Any = len(lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = len(matrix[0] ) _UpperCAmelCase : str = min(lowerCAmelCase_ , lowerCAmelCase_ ) for row in range(lowerCAmelCase_ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , lowerCAmelCase_ ): _UpperCAmelCase : int = matrix[col][row] / matrix[row][row] for i in range(lowerCAmelCase_ , lowerCAmelCase_ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows _UpperCAmelCase : List[str] = True for i in range(row + 1 , lowerCAmelCase_ ): if matrix[i][row] != 0: _UpperCAmelCase : List[str] = matrix[i], matrix[row] _UpperCAmelCase : Optional[int] = False break if reduce: rank -= 1 for i in range(lowerCAmelCase_ ): _UpperCAmelCase : int = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
356
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: lowerCAmelCase_ : List[Any] = None lowerCAmelCase_ : Any = logging.get_logger(__name__) lowerCAmelCase_ : Optional[Any] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase_ : List[str] = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase_ : Tuple = { '''moussaKam/mbarthez''': 1024, '''moussaKam/barthez''': 1024, '''moussaKam/barthez-orangesum-title''': 1024, } lowerCAmelCase_ : str = '''▁''' class __lowerCAmelCase ( __a ): snake_case : List[str] = VOCAB_FILES_NAMES snake_case : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP snake_case : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case : str = ["""input_ids""", """attention_mask"""] snake_case : List[Any] = BarthezTokenizer def __init__(self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , **lowerCAmelCase__ , ): # Mask token behave like a normal word, i.e. include the space before it _UpperCAmelCase : Union[str, Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , **lowerCAmelCase__ , ) _UpperCAmelCase : List[str] = vocab_file _UpperCAmelCase : Tuple = False if not self.vocab_file else True def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCAmelCase : int = [self.cls_token_id] _UpperCAmelCase : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ = None ): _UpperCAmelCase : str = [self.sep_token_id] _UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(lowerCAmelCase__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return _UpperCAmelCase : Union[str, Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ): copyfile(self.vocab_file , lowerCAmelCase__ ) return (out_vocab_file,)
170
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase : List[Any] ={ '''configuration_luke''': ['''LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LukeConfig'''], '''tokenization_luke''': ['''LukeTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[Any] =[ '''LUKE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LukeForEntityClassification''', '''LukeForEntityPairClassification''', '''LukeForEntitySpanClassification''', '''LukeForMultipleChoice''', '''LukeForQuestionAnswering''', '''LukeForSequenceClassification''', '''LukeForTokenClassification''', '''LukeForMaskedLM''', '''LukeModel''', '''LukePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys lowerCamelCase : int =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
189
'''simple docstring''' def a ( __a ) -> "list[int]": '''simple docstring''' if upper_limit < 0: raise ValueError('''Limit for the Catalan sequence must be ≥ 0''' ) UpperCamelCase__ :Optional[Any] = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 UpperCamelCase__ :int = 1 if upper_limit > 0: UpperCamelCase__ :int = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(__a ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print('''\n********* Catalan Numbers Using Dynamic Programming ************\n''') print('''\n*** Enter -1 at any time to quit ***''') print('''\nEnter the upper limit (≥ 0) for the Catalan number sequence: ''', end='''''') try: while True: __snake_case = int(input().strip()) if N < 0: print('''\n********* Goodbye!! ************''') break else: print(F"""The Catalan numbers from 0 through {N} are:""") print(catalan_numbers(N)) print('''Try another upper limit for the sequence: ''', end='''''') except (NameError, ValueError): print('''\n********* Invalid input, goodbye! ************\n''') import doctest doctest.testmod()
97
0
"""simple docstring""" import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): A: Optional[int] = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right A: Dict = 1_2_8_0_2_2 A: str = 1_2_8_0_2_8 @require_sentencepiece class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ , unittest.TestCase ): __lowerCAmelCase : Any = MaMaaaTokenizer __lowerCAmelCase : Any = False __lowerCAmelCase : Optional[int] = False __lowerCAmelCase : Optional[Any] = True def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' super().setUp() UpperCAmelCase : int = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] UpperCAmelCase : Optional[int] = dict(zip(_SCREAMING_SNAKE_CASE , range(len(_SCREAMING_SNAKE_CASE ) ) ) ) UpperCAmelCase : str = Path(self.tmpdirname ) save_json(_SCREAMING_SNAKE_CASE , save_dir / VOCAB_FILES_NAMES["""vocab_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(_SCREAMING_SNAKE_CASE , save_dir / VOCAB_FILES_NAMES["""spm_file"""] ) UpperCAmelCase : Union[str, Any] = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return ( "This is a test", "This is a test", ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : Tuple = """</s>""" UpperCAmelCase : Optional[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : int = self.get_tokenizer() UpperCAmelCase : Dict = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<s>""" ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip("""Skip this test while all models are still to be uploaded.""" ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : Optional[int] = self.get_tokenizer() UpperCAmelCase : str = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_SCREAMING_SNAKE_CASE , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , [2, 3, 4, 5, 6] , ) UpperCAmelCase : int = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(_SCREAMING_SNAKE_CASE , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) UpperCAmelCase : Dict = tokenizer.convert_tokens_to_string(_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , """This is a test""" ) @slow def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Any = {"""input_ids""": [[128022, 110108, 397, 11, 38272, 2247, 124811, 285, 18105, 1586, 207, 7, 39534, 4428, 397, 1019, 18105, 1586, 207, 7, 41337, 16786, 241, 7, 20214, 17, 125690, 10398, 7, 44378, 58069, 68342, 7798, 7343, 11, 299, 33310, 4, 158, 37350, 94077, 4569, 299, 33310, 90, 4, 52840, 290, 4, 31270, 112, 299, 682, 4, 52840, 39953, 14079, 193, 52519, 90894, 17894, 120697, 11, 40445, 551, 17, 1019, 52519, 90894, 17756, 963, 11, 40445, 480, 17, 9792, 1120, 5173, 1393, 6240, 16786, 241, 120996, 28, 1245, 1393, 118240, 11123, 1019, 93612, 2691, 10618, 98058, 120409, 1928, 279, 4, 40683, 367, 178, 207, 1019, 103, 103121, 506, 65296, 5, 2], [128022, 21217, 367, 117, 125450, 128, 719, 7, 7308, 40, 93612, 12669, 1116, 16704, 71, 17785, 3699, 15592, 35, 144, 9584, 241, 11943, 713, 950, 799, 2247, 88427, 150, 149, 118813, 120706, 1019, 106906, 81518, 28, 1224, 22799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128022, 1658, 123311, 5155, 5578, 4722, 279, 14947, 2366, 1120, 1197, 14, 1348, 9232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_SCREAMING_SNAKE_CASE , model_name="""facebook/m2m100_418M""" , revision="""c168bae485c864188cf9aa0e4108b0b6934dc91e""" , ) @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): __lowerCAmelCase : Tuple = 'facebook/m2m100_418M' __lowerCAmelCase : List[Any] = [ 'In my opinion, there are two levels of response from the French government.', 'NSA Affair Emphasizes Complete Lack of Debate on Intelligence', ] __lowerCAmelCase : Optional[Any] = [ 'Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.', 'L\'affaire NSA souligne l\'absence totale de débat sur le renseignement', ] # fmt: off __lowerCAmelCase : Union[str, Any] = [EN_CODE, 593, 1_949, 115_781, 4, 71_586, 4_234, 60_633, 126_233, 432, 123_808, 15_592, 1_197, 117_132, 120_618, 5, 2] @classmethod def SCREAMING_SNAKE_CASE ( cls ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : MaMaaaTokenizer = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en""" , tgt_lang="""fr""" ) UpperCAmelCase : Optional[int] = 1 return cls def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.get_lang_id("""ar""" ) , 128006 ) self.assertEqual(self.tokenizer.get_lang_id("""en""" ) , 128022 ) self.assertEqual(self.tokenizer.get_lang_id("""ro""" ) , 128076 ) self.assertEqual(self.tokenizer.get_lang_id("""mr""" ) , 128063 ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : str = self.tokenizer.get_vocab() self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , self.tokenizer.vocab_size ) self.assertEqual(vocab["""<unk>"""] , 3 ) self.assertIn(self.tokenizer.get_lang_token("""en""" ) , _SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Any = """en""" UpperCAmelCase : List[Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' self.assertIn(_SCREAMING_SNAKE_CASE , self.tokenizer.all_special_ids ) # fmt: off UpperCAmelCase : List[Any] = [FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 14028, 136, 3286, 9706, 6, 90797, 6, 144012, 162, 88128, 30061, 5, 2] # fmt: on UpperCAmelCase : List[str] = self.tokenizer.decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[int] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertNotIn(self.tokenizer.eos_token , _SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : str = tempfile.mkdtemp() UpperCAmelCase : Union[str, Any] = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : str = MaMaaaTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertDictEqual(new_tok.lang_token_to_id , _SCREAMING_SNAKE_CASE ) @require_torch def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : List[Any] = """en""" UpperCAmelCase : Dict = """fr""" UpperCAmelCase : Optional[int] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) UpperCAmelCase : Tuple = shift_tokens_right( batch["""labels"""] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: UpperCAmelCase : int = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Optional[Any] = """mr""" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""mr""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) UpperCAmelCase : int = """zh""" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""zh""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : Optional[Any] = """mr""" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""mr""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) UpperCAmelCase : Union[str, Any] = """zh""" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""zh""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : Dict = self.tokenizer._build_translation_inputs("""A test""" , return_tensors="""pt""" , src_lang="""en""" , tgt_lang="""ar""" ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE ) , { # en_XX, A, test, EOS """input_ids""": [[128022, 58, 4183, 2]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 128006, } , )
76
"""simple docstring""" from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): @slow @require_torch def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : Any = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" , """prajjwal1/bert-tiny""" ) UpperCAmelCase : Optional[int] = BertTokenizer.from_pretrained("""bert-base-uncased""" ) UpperCAmelCase : Tuple = bertabert.config.encoder.vocab_size UpperCAmelCase : int = tokenizer.sep_token_id UpperCAmelCase : Dict = tokenizer.cls_token_id UpperCAmelCase : int = 128 UpperCAmelCase : List[str] = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""train[:1%]""" ) UpperCAmelCase : Union[str, Any] = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""validation[:1%]""" ) UpperCAmelCase : Optional[int] = train_dataset.select(range(32 ) ) UpperCAmelCase : int = val_dataset.select(range(16 ) ) UpperCAmelCase : List[str] = 4 def _map_to_encoder_decoder_inputs(_SCREAMING_SNAKE_CASE ): # Tokenizer will automatically set [BOS] <text> [EOS] UpperCAmelCase : str = tokenizer(batch["""article"""] , padding="""max_length""" , truncation=_SCREAMING_SNAKE_CASE , max_length=512 ) UpperCAmelCase : str = tokenizer(batch["""highlights"""] , padding="""max_length""" , truncation=_SCREAMING_SNAKE_CASE , max_length=128 ) UpperCAmelCase : Optional[Any] = inputs.input_ids UpperCAmelCase : Union[str, Any] = inputs.attention_mask UpperCAmelCase : Union[str, Any] = outputs.input_ids UpperCAmelCase : Any = outputs.input_ids.copy() UpperCAmelCase : Tuple = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] UpperCAmelCase : List[Any] = outputs.attention_mask assert all(len(_SCREAMING_SNAKE_CASE ) == 512 for x in inputs.input_ids ) assert all(len(_SCREAMING_SNAKE_CASE ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_SCREAMING_SNAKE_CASE ): UpperCAmelCase : Optional[Any] = pred.label_ids UpperCAmelCase : Tuple = pred.predictions # all unnecessary tokens are removed UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : str = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[Any] = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_SCREAMING_SNAKE_CASE ) )] ) / len(_SCREAMING_SNAKE_CASE ) return {"accuracy": accuracy} # map train dataset UpperCAmelCase : List[Any] = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , remove_columns=["""article""", """highlights"""] , ) train_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) # same for validation dataset UpperCAmelCase : List[str] = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , remove_columns=["""article""", """highlights"""] , ) val_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) UpperCAmelCase : Dict = self.get_auto_remove_tmp_dir() UpperCAmelCase : Dict = SeqaSeqTrainingArguments( output_dir=_SCREAMING_SNAKE_CASE , per_device_train_batch_size=_SCREAMING_SNAKE_CASE , per_device_eval_batch_size=_SCREAMING_SNAKE_CASE , predict_with_generate=_SCREAMING_SNAKE_CASE , evaluation_strategy="""steps""" , do_train=_SCREAMING_SNAKE_CASE , do_eval=_SCREAMING_SNAKE_CASE , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer UpperCAmelCase : List[str] = SeqaSeqTrainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , compute_metrics=_compute_metrics , train_dataset=_SCREAMING_SNAKE_CASE , eval_dataset=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , ) # start training trainer.train()
76
1
import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input __lowerCamelCase : Any = '''Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine''' def __SCREAMING_SNAKE_CASE ( ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = _ask_options( """In which compute environment are you running?""" , ["""This machine""", """AWS (Amazon SageMaker)"""] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: SCREAMING_SNAKE_CASE__ = get_sagemaker_input() else: SCREAMING_SNAKE_CASE__ = get_cluster_input() return config def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict=None ) -> List[str]: """simple docstring""" if subparsers is not None: SCREAMING_SNAKE_CASE__ = subparsers.add_parser("""config""" , description=_lowerCAmelCase ) else: SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser("""Accelerate config command""" , description=_lowerCAmelCase ) parser.add_argument( """--config_file""" , default=_lowerCAmelCase , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have """ """such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed """ """with \'huggingface\'.""" ) , ) if subparsers is not None: parser.set_defaults(func=_lowerCAmelCase ) return parser def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = get_user_input() if args.config_file is not None: SCREAMING_SNAKE_CASE__ = args.config_file else: if not os.path.isdir(_lowerCAmelCase ): os.makedirs(_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = default_yaml_config_file if config_file.endswith(""".json""" ): config.to_json_file(_lowerCAmelCase ) else: config.to_yaml_file(_lowerCAmelCase ) print(f"""accelerate configuration saved at {config_file}""" ) def __SCREAMING_SNAKE_CASE ( ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = config_command_parser() SCREAMING_SNAKE_CASE__ = parser.parse_args() config_command(_lowerCAmelCase ) if __name__ == "__main__": main()
219
'''simple docstring''' from __future__ import annotations def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =[True] * limit __lowercase =False __lowercase =False __lowercase =True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): __lowercase =i * 2 while index < limit: __lowercase =False __lowercase =index + i __lowercase =[2] for i in range(3 , _lowerCAmelCase , 2 ): if is_prime[i]: primes.append(_lowerCAmelCase ) return primes def _A ( _lowerCAmelCase = 1_000_000 ): """simple docstring""" __lowercase =prime_sieve(_lowerCAmelCase ) __lowercase =0 __lowercase =0 for i in range(len(_lowerCAmelCase ) ): for j in range(i + length , len(_lowerCAmelCase ) ): __lowercase =sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: __lowercase =j - i __lowercase =sol return largest if __name__ == "__main__": print(f"{solution() = }")
166
0
"""simple docstring""" import itertools import string from collections.abc import Generator, Iterable def __UpperCAmelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple ) -> Generator[tuple[str, ...], None, None]: '''simple docstring''' __snake_case : Union[str, Any] = iter(_lowerCamelCase ) while True: __snake_case : str = tuple(itertools.islice(_lowerCamelCase , _lowerCamelCase ) ) if not chunk: return yield chunk def __UpperCAmelCase ( UpperCAmelCase_ : Optional[int] ) -> str: '''simple docstring''' __snake_case : Optional[int] = """""".join([c.upper() for c in dirty if c in string.ascii_letters] ) __snake_case : List[Any] = """""" if len(_lowerCamelCase ) < 2: return dirty for i in range(len(_lowerCamelCase ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(_lowerCamelCase ) & 1: clean += "X" return clean def __UpperCAmelCase ( UpperCAmelCase_ : str ) -> list[str]: '''simple docstring''' __snake_case : List[str] = """ABCDEFGHIKLMNOPQRSTUVWXYZ""" # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler __snake_case : Optional[Any] = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(_lowerCamelCase ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(_lowerCamelCase ) return table def __UpperCAmelCase ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str ) -> str: '''simple docstring''' __snake_case : Dict = generate_table(_lowerCamelCase ) __snake_case : int = prepare_input(_lowerCamelCase ) __snake_case : List[Any] = """""" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(_lowerCamelCase , 2 ): __snake_case : Union[str, Any] = divmod(table.index(_lowerCamelCase ) , 5 ) __snake_case : Optional[Any] = divmod(table.index(_lowerCamelCase ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def __UpperCAmelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple ) -> str: '''simple docstring''' __snake_case : Optional[Any] = generate_table(_lowerCamelCase ) __snake_case : Tuple = """""" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(_lowerCamelCase , 2 ): __snake_case : List[str] = divmod(table.index(_lowerCamelCase ) , 5 ) __snake_case : List[str] = divmod(table.index(_lowerCamelCase ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
363
"""simple docstring""" import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() _a : Optional[int]= logging.get_logger() @dataclass class UpperCamelCase : UpperCAmelCase : nn.Module UpperCAmelCase : List[nn.Module] = field(default_factory=lowercase ) UpperCAmelCase : list = field(default_factory=lowercase ) def _lowercase (self : str , _A : Optional[Any] , _A : Tensor , _A : Tensor) -> Any: __snake_case : str = len(list(m.modules())) == 1 or isinstance(_A , nn.Convad) or isinstance(_A , nn.BatchNormad) if has_not_submodules: self.traced.append(_A) def __call__(self : Dict , _A : Tensor) -> Optional[Any]: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook)) self.module(_A) [x.remove() for x in self.handles] return self @property def _lowercase (self : Union[str, Any]) -> List[str]: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda _A: len(list(x.state_dict().keys())) > 0 , self.traced)) @dataclass class UpperCamelCase : UpperCAmelCase : nn.Module UpperCAmelCase : nn.Module UpperCAmelCase : int = 0 UpperCAmelCase : List = field(default_factory=lowercase ) UpperCAmelCase : List = field(default_factory=lowercase ) def __call__(self : List[str] , _A : Tensor) -> List[Any]: __snake_case : Any = Tracker(self.dest)(_A).parametrized __snake_case : int = Tracker(self.src)(_A).parametrized __snake_case : List[Any] = list(filter(lambda _A: type(_A) not in self.src_skip , _A)) __snake_case : Any = list(filter(lambda _A: type(_A) not in self.dest_skip , _A)) if len(_A) != len(_A): raise Exception( f"Numbers of operations are different. Source module has {len(_A)} operations while" f" destination module has {len(_A)}.") for dest_m, src_m in zip(_A , _A): dest_m.load_state_dict(src_m.state_dict()) if self.verbose == 1: print(f"Transfered from={src_m} to={dest_m}") def __UpperCAmelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : ResNetConfig , UpperCAmelCase_ : Path , UpperCAmelCase_ : bool = True ) -> List[str]: '''simple docstring''' print(F"Converting {name}..." ) with torch.no_grad(): __snake_case : Dict = timm.create_model(UpperCAmelCase_ , pretrained=UpperCAmelCase_ ).eval() __snake_case : List[Any] = ResNetForImageClassification(UpperCAmelCase_ ).eval() __snake_case : int = ModuleTransfer(src=UpperCAmelCase_ , dest=UpperCAmelCase_ ) __snake_case : Optional[Any] = torch.randn((1, 3, 2_24, 2_24) ) module_transfer(UpperCAmelCase_ ) assert torch.allclose(from_model(UpperCAmelCase_ ) , our_model(UpperCAmelCase_ ).logits ), "The model logits don't match the original one." __snake_case : str = F"resnet{'-'.join(name.split('resnet' ) )}" print(UpperCAmelCase_ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add model' , use_temp_dir=UpperCAmelCase_ , ) # we can use the convnext one __snake_case : int = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add image processor' , use_temp_dir=UpperCAmelCase_ , ) print(F"Pushed {checkpoint_name}" ) def __UpperCAmelCase ( UpperCAmelCase_ : Path , UpperCAmelCase_ : str = None , UpperCAmelCase_ : bool = True ) -> Union[str, Any]: '''simple docstring''' __snake_case : str = 'imagenet-1k-id2label.json' __snake_case : Optional[Any] = 10_00 __snake_case : Any = (1, num_labels) __snake_case : List[Any] = 'huggingface/label-files' __snake_case : Dict = num_labels __snake_case : Any = json.load(open(hf_hub_download(UpperCAmelCase_ , UpperCAmelCase_ , repo_type='dataset' ) , 'r' ) ) __snake_case : Any = {int(UpperCAmelCase_ ): v for k, v in idalabel.items()} __snake_case : Optional[Any] = idalabel __snake_case : Optional[Any] = {v: k for k, v in idalabel.items()} __snake_case : Optional[int] = partial(UpperCAmelCase_ , num_labels=UpperCAmelCase_ , idalabel=UpperCAmelCase_ , labelaid=UpperCAmelCase_ ) __snake_case : str = { 'resnet18': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type='basic' ), 'resnet26': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='bottleneck' ), 'resnet34': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type='basic' ), 'resnet50': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='bottleneck' ), 'resnet101': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='bottleneck' ), 'resnet152': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='bottleneck' ), } if model_name: convert_weight_and_push(UpperCAmelCase_ , names_to_config[model_name] , UpperCAmelCase_ , UpperCAmelCase_ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return config, expected_shape if __name__ == "__main__": _a : Optional[Any]= argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported resnet* architecture," " currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) _a : Union[str, Any]= parser.parse_args() _a : Path= args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
95
0
def _UpperCAmelCase (UpperCamelCase__ : str ): return "".join(chr(ord(UpperCamelCase__ ) - 32 ) if "a" <= char <= "z" else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
11
def _UpperCAmelCase (UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] ): # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) _A : int = (boundary[1] - boundary[0]) / steps _A : Any = boundary[0] _A : List[Any] = boundary[1] _A : str = make_points(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) _A : str = 0.0 y += (h / 2.0) * f(UpperCamelCase__ ) for i in x_i: # print(i) y += h * f(UpperCamelCase__ ) y += (h / 2.0) * f(UpperCamelCase__ ) return y def _UpperCAmelCase (UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any ): _A : Optional[int] = a + h while x < (b - h): yield x _A : Dict = x + h def _UpperCAmelCase (UpperCamelCase__ : Optional[int] ): # enter your function here _A : Any = (x - 0) * (x - 0) return y def _UpperCAmelCase (): _A : Optional[Any] = 0.0 # Lower bound of integration _A : Optional[int] = 1.0 # Upper bound of integration _A : List[Any] = 10.0 # define number of steps or resolution _A : Any = [a, b] # define boundary of integration _A : Tuple = method_a(UpperCamelCase__ , UpperCamelCase__ ) print(f"y = {y}" ) if __name__ == "__main__": main()
11
1
"""simple docstring""" A__ : Optional[int] = 65_521 def _snake_case ( lowerCamelCase__ : str ) -> int: lowerCamelCase_ : Optional[Any] =1 lowerCamelCase_ : Union[str, Any] =0 for plain_chr in plain_text: lowerCamelCase_ : int =(a + ord(lowerCamelCase__ )) % MOD_ADLER lowerCamelCase_ : List[str] =(b + a) % MOD_ADLER return (b << 16) | a
209
"""simple docstring""" def _snake_case ( lowerCamelCase__ : int ) -> int: if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): raise TypeError("only integers accepted as input" ) else: lowerCamelCase_ : str =str(abs(lowerCamelCase__ ) ) lowerCamelCase_ : Tuple =[list(lowerCamelCase__ ) for char in range(len(lowerCamelCase__ ) )] for index in range(len(lowerCamelCase__ ) ): num_transpositions[index].pop(lowerCamelCase__ ) return max( int("".join(list(lowerCamelCase__ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('doctest').testmod()
209
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ = { """configuration_clipseg""": [ """CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CLIPSegConfig""", """CLIPSegTextConfig""", """CLIPSegVisionConfig""", ], """processing_clipseg""": ["""CLIPSegProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST""", """CLIPSegModel""", """CLIPSegPreTrainedModel""", """CLIPSegTextModel""", """CLIPSegVisionModel""", """CLIPSegForImageSegmentation""", ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
150
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowercase : List[Any] =StableDiffusionInstructPixaPixPipeline lowercase : List[Any] =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width', 'cross_attention_kwargs'} lowercase : Optional[Any] =TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowercase : Union[str, Any] =IMAGE_TO_IMAGE_IMAGE_PARAMS lowercase : List[Any] =IMAGE_TO_IMAGE_IMAGE_PARAMS def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ =UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=8, out_channels=4, down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D'''), up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D'''), cross_attention_dim=32, ) lowerCamelCase_ =PNDMScheduler(skip_prk_steps=lowerCAmelCase ) torch.manual_seed(0 ) lowerCamelCase_ =AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], latent_channels=4, ) torch.manual_seed(0 ) lowerCamelCase_ =CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, ) lowerCamelCase_ =CLIPTextModel(lowerCAmelCase ) lowerCamelCase_ =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowerCamelCase_ ={ '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=0 ): """simple docstring""" lowerCamelCase_ =floats_tensor((1, 3, 32, 32), rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) lowerCamelCase_ =image.cpu().permute(0, 2, 3, 1 )[0] lowerCamelCase_ =Image.fromarray(np.uinta(lowerCAmelCase ) ).convert('''RGB''' ) if str(lowerCAmelCase ).startswith('''mps''' ): lowerCamelCase_ =torch.manual_seed(lowerCAmelCase ) else: lowerCamelCase_ =torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) lowerCamelCase_ ={ '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''image_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ='''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ =self.get_dummy_components() lowerCamelCase_ =StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase ) lowerCamelCase_ =sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowerCamelCase_ =self.get_dummy_inputs(lowerCAmelCase ) lowerCamelCase_ =sd_pipe(**lowerCAmelCase ).images lowerCamelCase_ =image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCamelCase_ =np.array([0.7_5_2_6, 0.3_7_5_0, 0.4_5_4_7, 0.6_1_1_7, 0.5_8_6_6, 0.5_0_1_6, 0.4_3_2_7, 0.5_6_4_2, 0.4_8_1_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ='''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ =self.get_dummy_components() lowerCamelCase_ =StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase ) lowerCamelCase_ =sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowerCamelCase_ =self.get_dummy_inputs(lowerCAmelCase ) lowerCamelCase_ ='''french fries''' lowerCamelCase_ =sd_pipe(**lowerCAmelCase, negative_prompt=lowerCAmelCase ) lowerCamelCase_ =output.images lowerCamelCase_ =image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCamelCase_ =np.array([0.7_5_1_1, 0.3_6_4_2, 0.4_5_5_3, 0.6_2_3_6, 0.5_7_9_7, 0.5_0_1_3, 0.4_3_4_3, 0.5_6_1_1, 0.4_8_3_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ='''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ =self.get_dummy_components() lowerCamelCase_ =StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase ) lowerCamelCase_ =sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowerCamelCase_ =self.get_dummy_inputs(lowerCAmelCase ) lowerCamelCase_ =[inputs['''prompt''']] * 2 lowerCamelCase_ =np.array(inputs['''image'''] ).astype(np.floataa ) / 2_5_5.0 lowerCamelCase_ =torch.from_numpy(lowerCAmelCase ).unsqueeze(0 ).to(lowerCAmelCase ) lowerCamelCase_ =image / 2 + 0.5 lowerCamelCase_ =image.permute(0, 3, 1, 2 ) lowerCamelCase_ =image.repeat(2, 1, 1, 1 ) lowerCamelCase_ =sd_pipe(**lowerCAmelCase ).images lowerCamelCase_ =image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) lowerCamelCase_ =np.array([0.5_8_1_2, 0.5_7_4_8, 0.5_2_2_2, 0.5_9_0_8, 0.5_6_9_5, 0.7_1_7_4, 0.6_8_0_4, 0.5_5_2_3, 0.5_5_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ='''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ =self.get_dummy_components() lowerCamelCase_ =EulerAncestralDiscreteScheduler( beta_start=0.0_0_0_8_5, beta_end=0.0_1_2, beta_schedule='''scaled_linear''' ) lowerCamelCase_ =StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase ) lowerCamelCase_ =sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowerCamelCase_ =self.get_dummy_inputs(lowerCAmelCase ) lowerCamelCase_ =sd_pipe(**lowerCAmelCase ).images lowerCamelCase_ =image[0, -3:, -3:, -1] lowerCamelCase_ =[round(lowerCAmelCase, 4 ) for x in image_slice.flatten().tolist()] print(''','''.join([str(lowerCAmelCase ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) lowerCamelCase_ =np.array([0.7_4_1_7, 0.3_8_4_2, 0.4_7_3_2, 0.5_7_7_6, 0.5_8_9_1, 0.5_1_3_9, 0.4_0_5_2, 0.5_6_7_3, 0.4_9_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase__ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_dummy_components() lowerCamelCase_ =StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase ) lowerCamelCase_ =VaeImageProcessor(do_resize=lowerCAmelCase, do_normalize=lowerCAmelCase ) lowerCamelCase_ =pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowerCamelCase_ =pipe(**self.get_dummy_inputs_by_type(lowerCAmelCase, input_image_type='''pt''' ) )[0] lowerCamelCase_ =components['''vae'''] lowerCamelCase_ =self.get_dummy_inputs_by_type(lowerCAmelCase, input_image_type='''pt''' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): lowerCamelCase_ =vae.encode(inputs[image_param] ).latent_dist.mode() lowerCamelCase_ =pipe(**lowerCAmelCase )[0] lowerCamelCase_ =np.abs(out - out_latents_inputs ).max() self.assertLess(lowerCAmelCase, 1e-4, '''passing latents as image input generate different result from passing image''' ) @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def lowercase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self, lowerCAmelCase=0 ): """simple docstring""" lowerCamelCase_ =torch.manual_seed(lowerCAmelCase ) lowerCamelCase_ =load_image( '''https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg''' ) lowerCamelCase_ ={ '''prompt''': '''turn him into a cyborg''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''image_guidance_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''', safety_checker=lowerCAmelCase ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) pipe.enable_attention_slicing() lowerCamelCase_ =self.get_inputs() lowerCamelCase_ =pipe(**lowerCAmelCase ).images lowerCamelCase_ =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowerCamelCase_ =np.array([0.5_9_0_2, 0.6_0_1_5, 0.6_0_2_7, 0.5_9_8_3, 0.6_0_9_2, 0.6_0_6_1, 0.5_7_6_5, 0.5_7_8_5, 0.5_5_5_5] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''', safety_checker=lowerCAmelCase ) lowerCamelCase_ =LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) pipe.enable_attention_slicing() lowerCamelCase_ =self.get_inputs() lowerCamelCase_ =pipe(**lowerCAmelCase ).images lowerCamelCase_ =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowerCamelCase_ =np.array([0.6_5_7_8, 0.6_8_1_7, 0.6_9_7_2, 0.6_7_6_1, 0.6_8_5_6, 0.6_9_1_6, 0.6_4_2_8, 0.6_5_1_6, 0.6_3_0_1] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''', safety_checker=lowerCAmelCase ) lowerCamelCase_ =DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) pipe.enable_attention_slicing() lowerCamelCase_ =self.get_inputs() lowerCamelCase_ =pipe(**lowerCAmelCase ).images lowerCamelCase_ =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowerCamelCase_ =np.array([0.3_8_2_8, 0.3_8_3_4, 0.3_8_1_8, 0.3_7_9_2, 0.3_8_6_5, 0.3_7_5_2, 0.3_7_9_2, 0.3_8_4_7, 0.3_7_5_3] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =0 def callback_fn(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) -> None: lowerCamelCase_ =True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowerCamelCase_ =latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) lowerCamelCase_ =latents[0, -3:, -3:, -1] lowerCamelCase_ =np.array([-0.2_4_6_3, -0.4_6_4_4, -0.9_7_5_6, 1.5_1_7_6, 1.4_4_1_4, 0.7_8_6_6, 0.9_8_9_7, 0.8_5_2_1, 0.7_9_8_3] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: lowerCamelCase_ =latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) lowerCamelCase_ =latents[0, -3:, -3:, -1] lowerCamelCase_ =np.array([-0.2_6_4_4, -0.4_6_2_6, -0.9_6_5_3, 1.5_1_7_6, 1.4_5_5_1, 0.7_6_8_6, 0.9_8_0_5, 0.8_4_5_2, 0.8_1_1_5] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 lowerCamelCase_ =False lowerCamelCase_ =StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''', safety_checker=lowerCAmelCase, torch_dtype=torch.floataa ) lowerCamelCase_ =pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) pipe.enable_attention_slicing() lowerCamelCase_ =self.get_inputs() pipe(**lowerCAmelCase, callback=lowerCAmelCase, callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def lowercase__ ( self ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCamelCase_ =StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''', safety_checker=lowerCAmelCase, torch_dtype=torch.floataa ) lowerCamelCase_ =pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowerCamelCase_ =self.get_inputs() lowerCamelCase_ =pipe(**lowerCAmelCase ) lowerCamelCase_ =torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 lowerCamelCase_ =inputs['''image'''].resize((504, 504) ) lowerCamelCase_ ='''timbrooks/instruct-pix2pix''' lowerCamelCase_ =StableDiffusionInstructPixaPixPipeline.from_pretrained( lowerCAmelCase, safety_checker=lowerCAmelCase, ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) pipe.enable_attention_slicing() lowerCamelCase_ =pipe(**lowerCAmelCase ) lowerCamelCase_ =output.images[0] lowerCamelCase_ =image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) lowerCamelCase_ =np.array([0.2_7_2_6, 0.2_5_2_9, 0.2_6_6_4, 0.2_6_5_5, 0.2_6_4_1, 0.2_6_4_2, 0.2_5_9_1, 0.2_6_4_9, 0.2_5_9_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
75
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { 'unc-nlp/lxmert-base-uncased': 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json', } class snake_case_ ( __lowercase ): A_ = 'lxmert' A_ = {} def __init__( self : Any , _snake_case : List[str]=30522 , _snake_case : Dict=768 , _snake_case : Tuple=12 , _snake_case : List[str]=9500 , _snake_case : Any=1600 , _snake_case : Union[str, Any]=400 , _snake_case : Optional[int]=3072 , _snake_case : Tuple="gelu" , _snake_case : List[str]=0.1 , _snake_case : List[Any]=0.1 , _snake_case : int=512 , _snake_case : Dict=2 , _snake_case : List[Any]=0.02 , _snake_case : List[Any]=1E-12 , _snake_case : str=9 , _snake_case : List[str]=5 , _snake_case : List[Any]=5 , _snake_case : Any=2048 , _snake_case : Tuple=4 , _snake_case : int=6.67 , _snake_case : Optional[Any]=True , _snake_case : Optional[int]=True , _snake_case : Optional[Any]=True , _snake_case : Optional[Any]=True , _snake_case : List[Any]=True , _snake_case : Optional[Any]=True , _snake_case : Optional[Any]=True , **_snake_case : Optional[int] , )->Optional[int]: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = vocab_size __lowerCAmelCase : str = hidden_size __lowerCAmelCase : str = num_attention_heads __lowerCAmelCase : Union[str, Any] = hidden_act __lowerCAmelCase : int = intermediate_size __lowerCAmelCase : Any = hidden_dropout_prob __lowerCAmelCase : Tuple = attention_probs_dropout_prob __lowerCAmelCase : List[str] = max_position_embeddings __lowerCAmelCase : Dict = type_vocab_size __lowerCAmelCase : str = initializer_range __lowerCAmelCase : List[Any] = layer_norm_eps __lowerCAmelCase : Dict = num_qa_labels __lowerCAmelCase : List[str] = num_object_labels __lowerCAmelCase : Optional[int] = num_attr_labels __lowerCAmelCase : Dict = l_layers __lowerCAmelCase : Union[str, Any] = x_layers __lowerCAmelCase : Dict = r_layers __lowerCAmelCase : Tuple = visual_feat_dim __lowerCAmelCase : str = visual_pos_dim __lowerCAmelCase : str = visual_loss_normalizer __lowerCAmelCase : Optional[int] = task_matched __lowerCAmelCase : str = task_mask_lm __lowerCAmelCase : Union[str, Any] = task_obj_predict __lowerCAmelCase : Any = task_qa __lowerCAmelCase : Dict = visual_obj_loss __lowerCAmelCase : Optional[int] = visual_attr_loss __lowerCAmelCase : List[str] = visual_feat_loss __lowerCAmelCase : Any = {"""vision""": r_layers, """cross_encoder""": x_layers, """language""": l_layers} super().__init__(**_snake_case )
232
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets _UpperCAmelCase = '\\n@inproceedings{snover-etal-2006-study,\n title = "A Study of Translation Edit Rate with Targeted Human Annotation",\n author = "Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John",\n booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers",\n month = aug # " 8-12",\n year = "2006",\n address = "Cambridge, Massachusetts, USA",\n publisher = "Association for Machine Translation in the Americas",\n url = "https://aclanthology.org/2006.amta-papers.25",\n pages = "223--231",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' _UpperCAmelCase = '\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n' _UpperCAmelCase = '\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n \'score\' (float): TER score (num_edits / sum_ref_lengths * 100)\n \'num_edits\' (int): The cumulative number of edits\n \'ref_length\' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0}\n\n Example 2:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0}\n\n Example 3:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5}\n\n Example 4:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0}\n\n Example 5:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): def UpperCAmelCase__ ( self : Tuple )->str: '''simple docstring''' if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""http://www.cs.umd.edu/~snover/tercom/""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#ter"""] , reference_urls=[ """https://github.com/jhclark/tercom""", ] , ) def UpperCAmelCase__ ( self : Dict , _snake_case : List[Any] , _snake_case : int , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , )->str: '''simple docstring''' __lowerCAmelCase : List[str] = len(references[0] ) if any(len(_snake_case ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) __lowerCAmelCase : str = [[refs[i] for refs in references] for i in range(_snake_case )] __lowerCAmelCase : Tuple = TER( normalized=_snake_case , no_punct=_snake_case , asian_support=_snake_case , case_sensitive=_snake_case , ) __lowerCAmelCase : List[Any] = sb_ter.corpus_score(_snake_case , _snake_case ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
232
1
"""simple docstring""" def lowercase ( ) ->List[Any]: """simple docstring""" __snake_case : int = 0 for i in range(1 , 1_001 ): total += i**i return str(_snake_case )[-10:] if __name__ == "__main__": print(solution())
102
"""simple docstring""" import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_=13 , a_=32 , a_=3 , a_=4 , a_=[10, 20, 30, 40] , a_=[2, 2, 3, 2] , a_=True , a_=True , a_=37 , a_="gelu" , a_=10 , a_=0.02 , a_=["stage2", "stage3", "stage4"] , a_=[2, 3, 4] , a_=None , ): '''simple docstring''' __snake_case : List[str] = parent __snake_case : str = batch_size __snake_case : List[Any] = image_size __snake_case : List[Any] = num_channels __snake_case : str = num_stages __snake_case : Any = hidden_sizes __snake_case : Optional[int] = depths __snake_case : Dict = is_training __snake_case : Tuple = use_labels __snake_case : str = intermediate_size __snake_case : Optional[int] = hidden_act __snake_case : Dict = num_labels __snake_case : Tuple = initializer_range __snake_case : Dict = out_features __snake_case : Optional[int] = out_indices __snake_case : str = scope def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : str = None if self.use_labels: __snake_case : Any = ids_tensor([self.batch_size] , self.num_labels ) __snake_case : Dict = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=a_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Optional[int] = ConvNextVaModel(config=a_ ) model.to(a_ ) model.eval() __snake_case : Any = model(a_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Any = ConvNextVaForImageClassification(a_ ) model.to(a_ ) model.eval() __snake_case : Union[str, Any] = model(a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Dict = ConvNextVaBackbone(config=a_ ) model.to(a_ ) model.eval() __snake_case : Tuple = model(a_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __snake_case : str = None __snake_case : Optional[Any] = ConvNextVaBackbone(config=a_ ) model.to(a_ ) model.eval() __snake_case : Tuple = model(a_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case : Union[str, Any] = config_and_inputs __snake_case : Any = {'''pixel_values''': pixel_values} return config, inputs_dict def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case : Union[str, Any] = config_and_inputs __snake_case : Optional[int] = {'''pixel_values''': pixel_values, '''labels''': labels} return config, inputs_dict @require_torch class _UpperCAmelCase ( __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowerCamelCase__ =( {'feature-extraction': ConvNextVaModel, 'image-classification': ConvNextVaForImageClassification} if is_torch_available() else {} ) lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = ConvNextVaModelTester(self ) __snake_case : Union[str, Any] = ConfigTester(self , config_class=a_ , has_text_modality=a_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return @unittest.skip(reason='''ConvNextV2 does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip(reason='''ConvNextV2 does not support input and output embeddings''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip(reason='''ConvNextV2 does not use feedforward chunking''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: __snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_with_labels() __snake_case : int = True if model_class.__name__ in [ *get_values(a_ ), *get_values(a_ ), ]: continue __snake_case : Dict = model_class(a_ ) model.to(a_ ) model.train() __snake_case : Tuple = self._prepare_for_class(a_ , a_ , return_labels=a_ ) __snake_case : List[str] = model(**a_ ).loss loss.backward() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: __snake_case , __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_with_labels() __snake_case : Optional[Any] = False __snake_case : Tuple = True if ( model_class.__name__ in [*get_values(a_ ), *get_values(a_ )] or not model_class.supports_gradient_checkpointing ): continue __snake_case : Union[str, Any] = model_class(a_ ) model.to(a_ ) model.gradient_checkpointing_enable() model.train() __snake_case : str = self._prepare_for_class(a_ , a_ , return_labels=a_ ) __snake_case : Union[str, Any] = model(**a_ ).loss loss.backward() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Optional[Any] = model_class(a_ ) __snake_case : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : int = [*signature.parameters.keys()] __snake_case : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' def check_hidden_states_output(a_ , a_ , a_ ): __snake_case : Tuple = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): __snake_case : Union[str, Any] = model(**self._prepare_for_class(a_ , a_ ) ) __snake_case : Union[str, Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __snake_case : List[Any] = self.model_tester.num_stages self.assertEqual(len(a_ ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __snake_case , __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : str = True check_hidden_states_output(a_ , a_ , a_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : str = True check_hidden_states_output(a_ , a_ , a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : str = ConvNextVaModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def lowercase ( ) ->Any: """simple docstring""" __snake_case : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return AutoImageProcessor.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = ConvNextVaForImageClassification.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ).to(a_ ) __snake_case : Dict = self.default_image_processor __snake_case : Tuple = prepare_img() __snake_case : Tuple = preprocessor(images=a_ , return_tensors='''pt''' ).to(a_ ) # forward pass with torch.no_grad(): __snake_case : Union[str, Any] = model(**a_ ) # verify the logits __snake_case : Tuple = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , a_ ) __snake_case : Any = torch.tensor([0.9996, 0.1966, -0.4386] ).to(a_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a_ , atol=1E-4 ) )
102
1
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case__ : """simple docstring""" def __init__( self , __lowercase , __lowercase=1_3 , __lowercase=7 , __lowercase=True , __lowercase=True , __lowercase=True , __lowercase=True , __lowercase=9_9 , __lowercase=1_6 , __lowercase=3_6 , __lowercase=6 , __lowercase=6 , __lowercase=6 , __lowercase=3_7 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=5_1_2 , __lowercase=1_6 , __lowercase=2 , __lowercase=0.0_2 , __lowercase=3 , __lowercase=4 , __lowercase=None , ) -> List[Any]: """simple docstring""" a__ : Any = parent a__ : str = batch_size a__ : List[str] = seq_length a__ : str = is_training a__ : Optional[int] = use_input_mask a__ : Optional[Any] = use_token_type_ids a__ : Optional[Any] = use_labels a__ : str = vocab_size a__ : int = embedding_size a__ : Any = hidden_size a__ : List[Any] = num_hidden_layers a__ : Tuple = num_hidden_groups a__ : List[str] = num_attention_heads a__ : List[str] = intermediate_size a__ : Dict = hidden_act a__ : Optional[int] = hidden_dropout_prob a__ : int = attention_probs_dropout_prob a__ : Any = max_position_embeddings a__ : List[str] = type_vocab_size a__ : List[Any] = type_sequence_label_size a__ : List[Any] = initializer_range a__ : Tuple = num_labels a__ : Tuple = num_choices a__ : Dict = scope def SCREAMING_SNAKE_CASE__( self ) -> int: """simple docstring""" a__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a__ : List[str] = None if self.use_input_mask: a__ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) a__ : List[Any] = None if self.use_token_type_ids: a__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a__ : List[Any] = None a__ : Optional[Any] = None a__ : Optional[Any] = None if self.use_labels: a__ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a__ : str = ids_tensor([self.batch_size] , self.num_choices ) a__ : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__( self ) -> List[str]: """simple docstring""" return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> Union[str, Any]: """simple docstring""" a__ : List[Any] = AlbertModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() a__ : Any = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) a__ : List[Any] = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) a__ : Tuple = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> int: """simple docstring""" a__ : Union[str, Any] = AlbertForPreTraining(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() a__ : Optional[int] = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , sentence_order_label=_lowerCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> List[str]: """simple docstring""" a__ : Union[str, Any] = AlbertForMaskedLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() a__ : Union[str, Any] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> List[Any]: """simple docstring""" a__ : Tuple = AlbertForQuestionAnswering(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() a__ : Dict = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> Any: """simple docstring""" a__ : Dict = self.num_labels a__ : Optional[Any] = AlbertForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() a__ : Any = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> List[Any]: """simple docstring""" a__ : List[str] = self.num_labels a__ : Dict = AlbertForTokenClassification(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() a__ : List[str] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> Union[str, Any]: """simple docstring""" a__ : Optional[Any] = self.num_choices a__ : Union[str, Any] = AlbertForMultipleChoice(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() a__ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a__ : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a__ : int = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a__ : List[Any] = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" a__ : int = self.prepare_config_and_inputs() ( a__ ) : Any = config_and_inputs a__ : Any = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class snake_case__ (__UpperCamelCase , __UpperCamelCase , unittest.TestCase ): """simple docstring""" __lowerCAmelCase :List[str] = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) __lowerCAmelCase :Any = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) __lowerCAmelCase :Tuple = True def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase=False ) -> int: """simple docstring""" a__ : Union[str, Any] = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class in get_values(_lowerCAmelCase ): a__ : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_lowerCAmelCase ) a__ : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase ) return inputs_dict def SCREAMING_SNAKE_CASE__( self ) -> Any: """simple docstring""" a__ : Dict = AlbertModelTester(self ) a__ : Union[str, Any] = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=3_7 ) def SCREAMING_SNAKE_CASE__( self ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__( self ) -> str: """simple docstring""" a__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def SCREAMING_SNAKE_CASE__( self ) -> str: """simple docstring""" a__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowerCAmelCase ) def SCREAMING_SNAKE_CASE__( self ) -> Union[str, Any]: """simple docstring""" a__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase ) def SCREAMING_SNAKE_CASE__( self ) -> str: """simple docstring""" a__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowerCAmelCase ) def SCREAMING_SNAKE_CASE__( self ) -> Union[str, Any]: """simple docstring""" a__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" a__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" a__ : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a__ : List[str] = type self.model_tester.create_and_check_model(*_lowerCAmelCase ) @slow def SCREAMING_SNAKE_CASE__( self ) -> Dict: """simple docstring""" for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : Optional[Any] = AlbertModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @require_torch class snake_case__ (unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" a__ : str = AlbertModel.from_pretrained("""albert-base-v2""" ) a__ : Optional[Any] = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) a__ : Optional[int] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): a__ : Any = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0] a__ : Tuple = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , _lowerCAmelCase ) a__ : List[str] = torch.tensor( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _lowerCAmelCase , atol=1E-4 ) )
370
from __future__ import annotations import math def lowerCAmelCase_ ( _lowercase : int) -> list[int]: """simple docstring""" if num <= 0: a__ : Tuple = F'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(_lowercase) a__ : List[Any] = [True] * (num + 1) a__ : List[str] = [] a__ : List[Any] = 2 a__ : Optional[int] = int(math.sqrt(_lowercase)) while start <= end: # If start is a prime if sieve[start] is True: prime.append(_lowercase) # Set multiples of start be False for i in range(start * start , num + 1 , _lowercase): if sieve[i] is True: a__ : Optional[int] = False start += 1 for j in range(end + 1 , num + 1): if sieve[j] is True: prime.append(_lowercase) return prime if __name__ == "__main__": print(prime_sieve(int(input("Enter a positive integer: ").strip())))
266
0
'''simple docstring''' def __lowercase ( __lowercase ) -> list: '''simple docstring''' if len(__lowercase ) <= 1: return [tuple(__lowercase )] _A = [] def generate(__lowercase , __lowercase ): _A = [0] * n res.append(tuple(__lowercase ) ) _A = 0 while i < n: if c[i] < i: if i % 2 == 0: _A , _A = arr[i], arr[0] else: _A , _A = arr[i], arr[c[i]] res.append(tuple(__lowercase ) ) c[i] += 1 _A = 0 else: _A = 0 i += 1 generate(len(__lowercase ) , __lowercase ) return res if __name__ == "__main__": lowerCamelCase_ = input('''Enter numbers separated by a comma:\n''').strip() lowerCamelCase_ = [int(item) for item in user_input.split(''',''')] print(heaps(arr))
79
'''simple docstring''' def __lowercase ( __lowercase ) -> int: '''simple docstring''' assert isinstance(__lowercase , __lowercase ), F'''The input value of [n={number}] is not an integer''' if number == 1: return 2 elif number < 1: _A = F'''The input value of [n={number}] has to be > 0''' raise ValueError(__lowercase ) else: _A = sylvester(number - 1 ) _A = num - 1 _A = num return lower * upper + 1 if __name__ == "__main__": print(F"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
79
1
def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = generate_pascal_triangle(_lowerCamelCase ) for row_idx in range(_lowerCamelCase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=" " ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=" " ) else: print(triangle[row_idx][col_idx] , end="" ) print() def A ( _lowerCamelCase ): '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) _lowerCAmelCase : list[list[int]] = [] for current_row_idx in range(_lowerCamelCase ): _lowerCAmelCase : Dict = populate_current_row(_lowerCamelCase , _lowerCamelCase ) triangle.append(_lowerCamelCase ) return triangle def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 _lowerCAmelCase , _lowerCAmelCase : Tuple = 1, 1 for current_col_idx in range(1 , _lowerCamelCase ): calculate_current_element( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return current_row def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase : Tuple = triangle[current_row_idx - 1][current_col_idx - 1] _lowerCAmelCase : str = triangle[current_row_idx - 1][current_col_idx] _lowerCAmelCase : List[Any] = above_to_left_elt + above_to_right_elt def A ( _lowerCamelCase ): '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) _lowerCAmelCase : list[list[int]] = [[1]] for row_index in range(1 , _lowerCamelCase ): _lowerCAmelCase : Optional[Any] = [0] + result[-1] + [0] _lowerCAmelCase : Optional[Any] = row_index + 1 # Calculate the number of distinct elements in a row _lowerCAmelCase : int = sum(divmod(_lowerCamelCase , 2 ) ) _lowerCAmelCase : List[Any] = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] _lowerCAmelCase : List[str] = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() _lowerCAmelCase : Optional[int] = row_first_half + row_second_half result.append(_lowerCamelCase ) return result def A ( ): '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(_lowerCamelCase , _lowerCamelCase ) -> None: _lowerCAmelCase : List[Any] = F"{func.__name__}({value})" _lowerCAmelCase : Tuple = timeit(F"__main__.{call}" , setup="import __main__" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F"{call:38} -- {timing:.4f} seconds" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(_lowerCamelCase , _lowerCamelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
300
from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCAmelCase_ ( a): @staticmethod @abstractmethod def snake_case__ ( __a): '''simple docstring''' raise NotImplementedError() @abstractmethod def snake_case__ ( self): '''simple docstring''' raise NotImplementedError()
300
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _A : int ={ '''configuration_mobilebert''': [ '''MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileBertConfig''', '''MobileBertOnnxConfig''', ], '''tokenization_mobilebert''': ['''MobileBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : str =['''MobileBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : List[Any] =[ '''MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileBertForMaskedLM''', '''MobileBertForMultipleChoice''', '''MobileBertForNextSentencePrediction''', '''MobileBertForPreTraining''', '''MobileBertForQuestionAnswering''', '''MobileBertForSequenceClassification''', '''MobileBertForTokenClassification''', '''MobileBertLayer''', '''MobileBertModel''', '''MobileBertPreTrainedModel''', '''load_tf_weights_in_mobilebert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : str =[ '''TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileBertForMaskedLM''', '''TFMobileBertForMultipleChoice''', '''TFMobileBertForNextSentencePrediction''', '''TFMobileBertForPreTraining''', '''TFMobileBertForQuestionAnswering''', '''TFMobileBertForSequenceClassification''', '''TFMobileBertForTokenClassification''', '''TFMobileBertMainLayer''', '''TFMobileBertModel''', '''TFMobileBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys _A : Tuple =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
41
'''simple docstring''' def SCREAMING_SNAKE_CASE_ (UpperCamelCase = 1000 ) -> int: lowerCamelCase__ : str = -1 lowerCamelCase__ : Dict = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c lowerCamelCase__ : Dict = (n * n - 2 * a * n) // (2 * n - 2 * a) lowerCamelCase__ : Any = n - a - b if c * c == (a * a + b * b): lowerCamelCase__ : Dict = a * b * c if candidate >= product: lowerCamelCase__ : Union[str, Any] = candidate return product if __name__ == "__main__": print(F'{solution() = }')
41
1
"""simple docstring""" from scipy.stats import spearmanr import datasets UpperCamelCase_ = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n' UpperCamelCase_ = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n' UpperCamelCase_ = R'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case ( datasets.Metric ): def UpperCAmelCase__ ( self) ->Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("float"), "references": datasets.Value("float"), }) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"] , ) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False) ->Optional[int]: a_ = spearmanr(__UpperCAmelCase , __UpperCAmelCase) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
303
"""simple docstring""" from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize("repo_id" , ["canonical_dataset_name", "org-name/dataset-name"] ) @pytest.mark.parametrize("path" , ["filename.csv", "filename with blanks.csv"] ) @pytest.mark.parametrize("revision" , [None, "v2"] ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" a_ = hf_hub_url(repo_id=UpperCAmelCase , path=UpperCAmelCase , revision=UpperCAmelCase ) assert url == F'''https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(UpperCAmelCase )}'''
303
1
'''simple docstring''' import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class _A ( unittest.TestCase ): def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Any = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertTrue(is_safetensors_compatible(__UpperCAmelCase ) ) def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = [ """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertTrue(is_safetensors_compatible(__UpperCAmelCase ) ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : List[Any] = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", """unet/diffusion_pytorch_model.bin""", # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(__UpperCAmelCase ) ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[Any] = [ """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", ] self.assertTrue(is_safetensors_compatible(__UpperCAmelCase ) ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Tuple = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", # Removed: 'text_encoder/model.safetensors', """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertFalse(is_safetensors_compatible(__UpperCAmelCase ) ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Any = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] __UpperCAmelCase : Optional[int] = """fp16""" self.assertTrue(is_safetensors_compatible(__UpperCAmelCase , variant=__UpperCAmelCase ) ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : int = [ """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] __UpperCAmelCase : Dict = """fp16""" self.assertTrue(is_safetensors_compatible(__UpperCAmelCase , variant=__UpperCAmelCase ) ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' # pass variant but use the non-variant filenames __UpperCAmelCase : str = [ """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] __UpperCAmelCase : str = """fp16""" self.assertTrue(is_safetensors_compatible(__UpperCAmelCase , variant=__UpperCAmelCase ) ) def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", """unet/diffusion_pytorch_model.fp16.bin""", # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] __UpperCAmelCase : int = """fp16""" self.assertFalse(is_safetensors_compatible(__UpperCAmelCase , variant=__UpperCAmelCase ) ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = [ """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", ] __UpperCAmelCase : List[str] = """fp16""" self.assertTrue(is_safetensors_compatible(__UpperCAmelCase , variant=__UpperCAmelCase ) ) def __A ( self ) -> List[str]: '''simple docstring''' # pass variant but use the non-variant filenames __UpperCAmelCase : int = [ """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", ] __UpperCAmelCase : List[str] = """fp16""" self.assertTrue(is_safetensors_compatible(__UpperCAmelCase , variant=__UpperCAmelCase ) ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[str] = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", # 'text_encoder/model.fp16.safetensors', """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] __UpperCAmelCase : Dict = """fp16""" self.assertFalse(is_safetensors_compatible(__UpperCAmelCase , variant=__UpperCAmelCase ) )
254
'''simple docstring''' import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Dict ): """simple docstring""" return params[f'{prefix}/{prefix}/relpos_bias/rel_embedding'][:, i, :] def lowercase_ ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any="attention" ): """simple docstring""" __UpperCAmelCase : int = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/key/kernel'][:, i, :, :] ) __UpperCAmelCase : Tuple = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) __UpperCAmelCase : Tuple = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/out/kernel'][:, i, :, :] ) __UpperCAmelCase : List[str] = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) __UpperCAmelCase : List[str] = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/query/kernel'][:, i, :, :] ) __UpperCAmelCase : List[str] = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) __UpperCAmelCase : Optional[Any] = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/value/kernel'][:, i, :, :] ) __UpperCAmelCase : Dict = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[Any]=False ): """simple docstring""" if split_mlp_wi: __UpperCAmelCase : List[str] = params[f'{prefix}/{prefix}/mlp/wi_0/kernel'][:, i, :] __UpperCAmelCase : Union[str, Any] = params[f'{prefix}/{prefix}/mlp/wi_1/kernel'][:, i, :] __UpperCAmelCase : Dict = (wi_a, wi_a) else: __UpperCAmelCase : Union[str, Any] = params[f'{prefix}/{prefix}/mlp/wi/kernel'][:, i, :] __UpperCAmelCase : Tuple = params[f'{prefix}/{prefix}/mlp/wo/kernel'][:, i, :] return wi, wo def lowercase_ ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] ): """simple docstring""" return params[f'{prefix}/{prefix}/{layer_name}/scale'][:, i] def lowercase_ ( lowerCAmelCase__ : dict , *, lowerCAmelCase__ : int , lowerCAmelCase__ : bool , lowerCAmelCase__ : bool = False ): """simple docstring""" __UpperCAmelCase : Tuple = traverse_util.flatten_dict(variables["""target"""] ) __UpperCAmelCase : Union[str, Any] = {"""/""".join(lowerCAmelCase__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi __UpperCAmelCase : Any = """encoder/encoder/mlp/wi_0/kernel""" in old print("""Split MLP:""" , lowerCAmelCase__ ) __UpperCAmelCase : Any = collections.OrderedDict() # Shared embeddings. __UpperCAmelCase : int = old["""token_embedder/embedding"""] # Encoder. for i in range(lowerCAmelCase__ ): # Block i, layer 0 (Self Attention). __UpperCAmelCase : Union[str, Any] = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """encoder""" , """pre_attention_layer_norm""" ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = tax_attention_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """encoder""" , """attention""" ) __UpperCAmelCase : Any = layer_norm __UpperCAmelCase : List[Any] = k.T __UpperCAmelCase : Optional[int] = o.T __UpperCAmelCase : str = q.T __UpperCAmelCase : Any = v.T # Block i, layer 1 (MLP). __UpperCAmelCase : List[str] = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """encoder""" , """pre_mlp_layer_norm""" ) __UpperCAmelCase , __UpperCAmelCase : int = tax_mlp_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """encoder""" , lowerCAmelCase__ ) __UpperCAmelCase : Optional[int] = layer_norm if split_mlp_wi: __UpperCAmelCase : List[Any] = wi[0].T __UpperCAmelCase : Any = wi[1].T else: __UpperCAmelCase : Tuple = wi.T __UpperCAmelCase : Tuple = wo.T if scalable_attention: # convert the rel_embedding of each layer __UpperCAmelCase : Dict = tax_relpos_bias_lookup( lowerCAmelCase__ , lowerCAmelCase__ , """encoder""" ).T __UpperCAmelCase : Optional[int] = old["""encoder/encoder_norm/scale"""] if not scalable_attention: __UpperCAmelCase : Any = tax_relpos_bias_lookup( lowerCAmelCase__ , 0 , """encoder""" ).T __UpperCAmelCase : Dict = tax_relpos_bias_lookup( lowerCAmelCase__ , 0 , """decoder""" ).T if not is_encoder_only: # Decoder. for i in range(lowerCAmelCase__ ): # Block i, layer 0 (Self Attention). __UpperCAmelCase : str = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """decoder""" , """pre_self_attention_layer_norm""" ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Dict = tax_attention_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """decoder""" , """self_attention""" ) __UpperCAmelCase : int = layer_norm __UpperCAmelCase : Optional[Any] = k.T __UpperCAmelCase : Dict = o.T __UpperCAmelCase : int = q.T __UpperCAmelCase : List[str] = v.T # Block i, layer 1 (Cross Attention). __UpperCAmelCase : Any = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """decoder""" , """pre_cross_attention_layer_norm""" ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = tax_attention_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """decoder""" , """encoder_decoder_attention""" ) __UpperCAmelCase : Union[str, Any] = layer_norm __UpperCAmelCase : List[Any] = k.T __UpperCAmelCase : int = o.T __UpperCAmelCase : Optional[int] = q.T __UpperCAmelCase : Optional[int] = v.T # Block i, layer 2 (MLP). __UpperCAmelCase : Tuple = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """decoder""" , """pre_mlp_layer_norm""" ) __UpperCAmelCase , __UpperCAmelCase : Any = tax_mlp_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """decoder""" , lowerCAmelCase__ ) __UpperCAmelCase : Optional[int] = layer_norm if split_mlp_wi: __UpperCAmelCase : Optional[Any] = wi[0].T __UpperCAmelCase : Optional[int] = wi[1].T else: __UpperCAmelCase : str = wi.T __UpperCAmelCase : int = wo.T if scalable_attention: # convert the rel_embedding of each layer __UpperCAmelCase : Union[str, Any] = tax_relpos_bias_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """decoder""" ).T __UpperCAmelCase : Dict = old["""decoder/decoder_norm/scale"""] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: __UpperCAmelCase : List[str] = old["""decoder/logits_dense/kernel"""].T return new def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : bool ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: __UpperCAmelCase : str = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: __UpperCAmelCase : List[str] = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) __UpperCAmelCase : Union[str, Any] = state_dict["""shared.weight"""] return state_dict def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Any ): """simple docstring""" __UpperCAmelCase : Tuple = checkpoints.load_tax_checkpoint(lowerCAmelCase__ ) __UpperCAmelCase : Any = convert_tax_to_pytorch( lowerCAmelCase__ , num_layers=config.num_layers , is_encoder_only=lowerCAmelCase__ , scalable_attention=lowerCAmelCase__ ) __UpperCAmelCase : str = make_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = False , ): """simple docstring""" __UpperCAmelCase : Optional[int] = MTaConfig.from_json_file(lowerCAmelCase__ ) print(f'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: __UpperCAmelCase : List[Any] = UMTaEncoderModel(lowerCAmelCase__ ) else: __UpperCAmelCase : Dict = UMTaForConditionalGeneration(lowerCAmelCase__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(lowerCAmelCase__ ) # Verify that we can load the checkpoint. model.from_pretrained(lowerCAmelCase__ ) print("""Done""" ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) parser.add_argument( '''--scalable_attention''', action='''store_true''', help='''Whether the model uses scaled attention (umt5 model)''', default=False, ) _UpperCamelCase = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
254
1
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class __UpperCAmelCase : '''simple docstring''' __lowerCAmelCase = 42 __lowerCAmelCase = None __lowerCAmelCase = None def __a ( ) ->Node | None: """simple docstring""" A = Node(1 ) A = Node(2 ) A = Node(3 ) A = Node(4 ) A = Node(5 ) return tree def __a ( UpperCAmelCase ) ->list[int]: """simple docstring""" return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def __a ( UpperCAmelCase ) ->list[int]: """simple docstring""" return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def __a ( UpperCAmelCase ) ->list[int]: """simple docstring""" return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def __a ( UpperCAmelCase ) ->int: """simple docstring""" return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def __a ( UpperCAmelCase ) ->Sequence[Node | None]: """simple docstring""" A = [] if root is None: return output A = deque([root] ) while process_queue: A = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def __a ( UpperCAmelCase , UpperCAmelCase ) ->Sequence[Node | None]: """simple docstring""" A = [] def populate_output(UpperCAmelCase , UpperCAmelCase ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(UpperCAmelCase , UpperCAmelCase ) return output def __a ( UpperCAmelCase , UpperCAmelCase ) ->Sequence[Node | None]: """simple docstring""" A = [] def populate_output(UpperCAmelCase , UpperCAmelCase ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(UpperCAmelCase , UpperCAmelCase ) return output def __a ( UpperCAmelCase ) ->Sequence[Node | None] | list[Any]: """simple docstring""" if root is None: return [] A = [] A = 0 A = height(UpperCAmelCase ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(UpperCAmelCase , UpperCAmelCase ) ) A = 1 else: output.append(get_nodes_from_right_to_left(UpperCAmelCase , UpperCAmelCase ) ) A = 0 return output def __a ( ) ->None: # Main function for testing. """simple docstring""" A = make_tree() print(f"""In-order Traversal: {inorder(UpperCAmelCase )}""" ) print(f"""Pre-order Traversal: {preorder(UpperCAmelCase )}""" ) print(f"""Post-order Traversal: {postorder(UpperCAmelCase )}""" , """\n""" ) print(f"""Height of Tree: {height(UpperCAmelCase )}""" , """\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(UpperCAmelCase ) , """\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1 , height(UpperCAmelCase ) + 1 ): print(f"""Level {level}:""" , get_nodes_from_left_to_right(UpperCAmelCase , level=UpperCAmelCase ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(UpperCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
337
'''simple docstring''' import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def __a ( ) ->str: """simple docstring""" A = argparse.ArgumentParser() parser.add_argument("""--model_ckpt""" , type=UpperCAmelCase , default="""microsoft/unixcoder-base-nine""" ) parser.add_argument("""--num_epochs""" , type=UpperCAmelCase , default=5 ) parser.add_argument("""--batch_size""" , type=UpperCAmelCase , default=6 ) parser.add_argument("""--gradient_accumulation_steps""" , type=UpperCAmelCase , default=1 ) parser.add_argument("""--freeze""" , type=UpperCAmelCase , default=UpperCAmelCase ) parser.add_argument("""--learning_rate""" , type=UpperCAmelCase , default=5E-4 ) parser.add_argument("""--seed""" , type=UpperCAmelCase , default=0 ) parser.add_argument("""--lr_scheduler_type""" , type=UpperCAmelCase , default="""cosine""" ) parser.add_argument("""--num_warmup_steps""" , type=UpperCAmelCase , default=10 ) parser.add_argument("""--weight_decay""" , type=UpperCAmelCase , default=0.01 ) parser.add_argument("""--output_dir""" , type=UpperCAmelCase , default="""./results""" ) return parser.parse_args() _lowerCamelCase : Optional[Any] = load('accuracy') def __a ( UpperCAmelCase ) ->Any: """simple docstring""" A , A = eval_pred A = np.argmax(UpperCAmelCase , axis=1 ) return metric.compute(predictions=UpperCAmelCase , references=UpperCAmelCase ) class __UpperCAmelCase ( A__ ): '''simple docstring''' def __init__(self : Union[str, Any] , _lowerCAmelCase : Any ): super().__init__() A = trainer def A (self : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any , **_lowerCAmelCase : List[Any] ): if control.should_evaluate: A = deepcopy(_lowerCAmelCase ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="""train""" ) return control_copy def __a ( ) ->Optional[int]: """simple docstring""" A = get_args() set_seed(args.seed ) A = load_dataset("""codeparrot/codecomplex""" , split="""train""" ) A = dataset.train_test_split(test_size=0.2 ) A = train_test["""test"""].train_test_split(test_size=0.5 ) A = DatasetDict( { """train""": train_test["""train"""], """test""": test_validation["""train"""], """valid""": test_validation["""test"""], } ) print("""Loading tokenizer and model""" ) A = AutoTokenizer.from_pretrained(args.model_ckpt ) A = tokenizer.eos_token A = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) A = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): A = False A = ClassLabel(num_classes=7 , names=list(set(train_test_validation["""train"""]["""complexity"""] ) ) ) def tokenize(UpperCAmelCase ): A = tokenizer(example["""src"""] , truncation=UpperCAmelCase , max_length=1024 ) A = labels.straint(example["""complexity"""] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } A = train_test_validation.map( UpperCAmelCase , batched=UpperCAmelCase , remove_columns=train_test_validation["""train"""].column_names , ) A = DataCollatorWithPadding(tokenizer=UpperCAmelCase ) A = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy="""epoch""" , save_strategy="""epoch""" , logging_strategy="""epoch""" , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model="""accuracy""" , run_name="""complexity-java""" , report_to="""wandb""" , ) A = Trainer( model=UpperCAmelCase , args=UpperCAmelCase , train_dataset=tokenized_datasets["""train"""] , eval_dataset=tokenized_datasets["""valid"""] , tokenizer=UpperCAmelCase , data_collator=UpperCAmelCase , compute_metrics=UpperCAmelCase , ) print("""Training...""" ) trainer.add_callback(CustomCallback(UpperCAmelCase ) ) trainer.train() if __name__ == "__main__": main()
337
1
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated a : Dict = collections.namedtuple("_Datasets", ["train", "validation", "test"]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ a : Optional[int] = "https://storage.googleapis.com/cvdf-datasets/mnist/" def lowerCamelCase__ ( __lowerCamelCase : Dict ): __UpperCAmelCase : Dict = numpy.dtype(numpy.uintaa ).newbyteorder(""">""" ) return numpy.frombuffer(bytestream.read(4 ) , dtype=_a )[0] @deprecated(_a , """Please use tf.data to implement this functionality.""" ) def lowerCamelCase__ ( __lowerCamelCase : Optional[int] ): print("""Extracting""" , f.name ) with gzip.GzipFile(fileobj=_a ) as bytestream: __UpperCAmelCase : Any = _readaa(_a ) if magic != 2051: raise ValueError( """Invalid magic number %d in MNIST image file: %s""" % (magic, f.name) ) __UpperCAmelCase : Any = _readaa(_a ) __UpperCAmelCase : Tuple = _readaa(_a ) __UpperCAmelCase : List[Any] = _readaa(_a ) __UpperCAmelCase : Union[str, Any] = bytestream.read(rows * cols * num_images ) __UpperCAmelCase : List[Any] = numpy.frombuffer(_a , dtype=numpy.uinta ) __UpperCAmelCase : int = data.reshape(_a , _a , _a , 1 ) return data @deprecated(_a , """Please use tf.one_hot on tensors.""" ) def lowerCamelCase__ ( __lowerCamelCase : int , __lowerCamelCase : Tuple ): __UpperCAmelCase : List[Any] = labels_dense.shape[0] __UpperCAmelCase : Optional[Any] = numpy.arange(_a ) * num_classes __UpperCAmelCase : str = numpy.zeros((num_labels, num_classes) ) __UpperCAmelCase : Optional[Any] = 1 return labels_one_hot @deprecated(_a , """Please use tf.data to implement this functionality.""" ) def lowerCamelCase__ ( __lowerCamelCase : List[str] , __lowerCamelCase : List[str]=False , __lowerCamelCase : Tuple=10 ): print("""Extracting""" , f.name ) with gzip.GzipFile(fileobj=_a ) as bytestream: __UpperCAmelCase : Optional[int] = _readaa(_a ) if magic != 2049: raise ValueError( """Invalid magic number %d in MNIST label file: %s""" % (magic, f.name) ) __UpperCAmelCase : Union[str, Any] = _readaa(_a ) __UpperCAmelCase : Tuple = bytestream.read(_a ) __UpperCAmelCase : Dict = numpy.frombuffer(_a , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(_a , _a ) return labels class a : """simple docstring""" @deprecated( _SCREAMING_SNAKE_CASE , """Please use alternatives such as official/mnist/_DataSet.py""" """ from tensorflow/models.""" , ) def __init__( self : Dict , __lowercase : Dict , __lowercase : Optional[int] , __lowercase : Tuple=False , __lowercase : Any=False , __lowercase : Optional[Any]=dtypes.floataa , __lowercase : List[str]=True , __lowercase : List[str]=None , ) -> List[Any]: __UpperCAmelCase : List[Any] = random_seed.get_seed(_SCREAMING_SNAKE_CASE ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) __UpperCAmelCase : Optional[int] = dtypes.as_dtype(_SCREAMING_SNAKE_CASE ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError("""Invalid image dtype %r, expected uint8 or float32""" % dtype ) if fake_data: __UpperCAmelCase : int = 10000 __UpperCAmelCase : List[Any] = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f"""images.shape: {images.shape} labels.shape: {labels.shape}""" __UpperCAmelCase : List[Any] = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 __UpperCAmelCase : Tuple = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. __UpperCAmelCase : Any = images.astype(numpy.floataa ) __UpperCAmelCase : Any = numpy.multiply(_SCREAMING_SNAKE_CASE , 1.0 / 255.0 ) __UpperCAmelCase : Tuple = images __UpperCAmelCase : Tuple = labels __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : Tuple = 0 @property def UpperCAmelCase ( self : Tuple ) -> Dict: return self._images @property def UpperCAmelCase ( self : Tuple ) -> Optional[int]: return self._labels @property def UpperCAmelCase ( self : Tuple ) -> Dict: return self._num_examples @property def UpperCAmelCase ( self : Tuple ) -> Any: return self._epochs_completed def UpperCAmelCase ( self : List[Any] , __lowercase : List[Any] , __lowercase : Dict=False , __lowercase : Optional[int]=True ) -> List[str]: if fake_data: __UpperCAmelCase : Dict = [1] * 784 __UpperCAmelCase : Union[str, Any] = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(_SCREAMING_SNAKE_CASE )], [fake_label for _ in range(_SCREAMING_SNAKE_CASE )], ) __UpperCAmelCase : str = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: __UpperCAmelCase : Union[str, Any] = numpy.arange(self._num_examples ) numpy.random.shuffle(_SCREAMING_SNAKE_CASE ) __UpperCAmelCase : List[Any] = self.images[perma] __UpperCAmelCase : Tuple = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch __UpperCAmelCase : Any = self._num_examples - start __UpperCAmelCase : List[str] = self._images[start : self._num_examples] __UpperCAmelCase : Tuple = self._labels[start : self._num_examples] # Shuffle the data if shuffle: __UpperCAmelCase : Union[str, Any] = numpy.arange(self._num_examples ) numpy.random.shuffle(_SCREAMING_SNAKE_CASE ) __UpperCAmelCase : str = self.images[perm] __UpperCAmelCase : List[Any] = self.labels[perm] # Start next epoch __UpperCAmelCase : Dict = 0 __UpperCAmelCase : Union[str, Any] = batch_size - rest_num_examples __UpperCAmelCase : Any = self._index_in_epoch __UpperCAmelCase : Optional[Any] = self._images[start:end] __UpperCAmelCase : Optional[Any] = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size __UpperCAmelCase : Dict = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(_a , """Please write your own downloading logic.""" ) def lowerCamelCase__ ( __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : Dict ): if not gfile.Exists(_a ): gfile.MakeDirs(_a ) __UpperCAmelCase : str = os.path.join(_a , _a ) if not gfile.Exists(_a ): urllib.request.urlretrieve(_a , _a ) # noqa: S310 with gfile.GFile(_a ) as f: __UpperCAmelCase : Optional[Any] = f.size() print("""Successfully downloaded""" , _a , _a , """bytes.""" ) return filepath @deprecated( _a , """Please use alternatives such as:""" """ tensorflow_datasets.load(\'mnist\')""" ) def lowerCamelCase__ ( __lowerCamelCase : List[str] , __lowerCamelCase : Dict=False , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : List[Any]=dtypes.floataa , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Optional[int]=5000 , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : Tuple=DEFAULT_SOURCE_URL , ): if fake_data: def fake(): return _DataSet( [] , [] , fake_data=_a , one_hot=_a , dtype=_a , seed=_a ) __UpperCAmelCase : Tuple = fake() __UpperCAmelCase : Union[str, Any] = fake() __UpperCAmelCase : Tuple = fake() return _Datasets(train=_a , validation=_a , test=_a ) if not source_url: # empty string check __UpperCAmelCase : Optional[Any] = DEFAULT_SOURCE_URL __UpperCAmelCase : Tuple = '''train-images-idx3-ubyte.gz''' __UpperCAmelCase : Dict = '''train-labels-idx1-ubyte.gz''' __UpperCAmelCase : List[str] = '''t10k-images-idx3-ubyte.gz''' __UpperCAmelCase : Optional[int] = '''t10k-labels-idx1-ubyte.gz''' __UpperCAmelCase : Optional[Any] = _maybe_download( _a , _a , source_url + train_images_file ) with gfile.Open(_a , """rb""" ) as f: __UpperCAmelCase : Optional[Any] = _extract_images(_a ) __UpperCAmelCase : Any = _maybe_download( _a , _a , source_url + train_labels_file ) with gfile.Open(_a , """rb""" ) as f: __UpperCAmelCase : Any = _extract_labels(_a , one_hot=_a ) __UpperCAmelCase : Any = _maybe_download( _a , _a , source_url + test_images_file ) with gfile.Open(_a , """rb""" ) as f: __UpperCAmelCase : str = _extract_images(_a ) __UpperCAmelCase : Dict = _maybe_download( _a , _a , source_url + test_labels_file ) with gfile.Open(_a , """rb""" ) as f: __UpperCAmelCase : int = _extract_labels(_a , one_hot=_a ) if not 0 <= validation_size <= len(_a ): __UpperCAmelCase : Dict = ( '''Validation size should be between 0 and ''' f"""{len(_a )}. Received: {validation_size}.""" ) raise ValueError(_a ) __UpperCAmelCase : List[str] = train_images[:validation_size] __UpperCAmelCase : Any = train_labels[:validation_size] __UpperCAmelCase : Optional[Any] = train_images[validation_size:] __UpperCAmelCase : Optional[int] = train_labels[validation_size:] __UpperCAmelCase : Optional[Any] = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed} __UpperCAmelCase : List[str] = _DataSet(_a , _a , **_a ) __UpperCAmelCase : Dict = _DataSet(_a , _a , **_a ) __UpperCAmelCase : Dict = _DataSet(_a , _a , **_a ) return _Datasets(train=_a , validation=_a , test=_a )
114
import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class _a ( _lowercase): def UpperCAmelCase__( self : int )-> Union[str, Any]: lowerCAmelCase__ : Optional[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''hidden_sizes''' ) ) self.parent.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''num_attention_heads''' ) ) self.parent.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''num_encoder_blocks''' ) ) class _a : def __init__( self : str , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Any=13 , _SCREAMING_SNAKE_CASE : List[Any]=64 , _SCREAMING_SNAKE_CASE : str=3 , _SCREAMING_SNAKE_CASE : Union[str, Any]=4 , _SCREAMING_SNAKE_CASE : Optional[int]=[2, 2, 2, 2] , _SCREAMING_SNAKE_CASE : Tuple=[8, 4, 2, 1] , _SCREAMING_SNAKE_CASE : Dict=[16, 32, 64, 128] , _SCREAMING_SNAKE_CASE : Dict=[1, 4, 8, 16] , _SCREAMING_SNAKE_CASE : str=[1, 2, 4, 8] , _SCREAMING_SNAKE_CASE : Dict=True , _SCREAMING_SNAKE_CASE : List[Any]=True , _SCREAMING_SNAKE_CASE : Tuple="gelu" , _SCREAMING_SNAKE_CASE : str=0.1 , _SCREAMING_SNAKE_CASE : List[str]=0.1 , _SCREAMING_SNAKE_CASE : List[Any]=0.02 , _SCREAMING_SNAKE_CASE : Any=3 , _SCREAMING_SNAKE_CASE : Optional[int]=None , )-> List[str]: lowerCAmelCase__ : int = parent lowerCAmelCase__ : Dict = batch_size lowerCAmelCase__ : Dict = image_size lowerCAmelCase__ : Union[str, Any] = num_channels lowerCAmelCase__ : Optional[Any] = num_encoder_blocks lowerCAmelCase__ : Union[str, Any] = sr_ratios lowerCAmelCase__ : int = depths lowerCAmelCase__ : Optional[int] = hidden_sizes lowerCAmelCase__ : Optional[Any] = downsampling_rates lowerCAmelCase__ : Tuple = num_attention_heads lowerCAmelCase__ : Dict = is_training lowerCAmelCase__ : Optional[int] = use_labels lowerCAmelCase__ : Tuple = hidden_act lowerCAmelCase__ : Tuple = hidden_dropout_prob lowerCAmelCase__ : List[Any] = attention_probs_dropout_prob lowerCAmelCase__ : Optional[Any] = initializer_range lowerCAmelCase__ : List[str] = num_labels lowerCAmelCase__ : Union[str, Any] = scope def UpperCAmelCase__( self : Tuple )-> Optional[Any]: lowerCAmelCase__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ : Optional[int] = None if self.use_labels: lowerCAmelCase__ : List[str] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowerCAmelCase__ : Any = self.get_config() return config, pixel_values, labels def UpperCAmelCase__( self : List[str] )-> Optional[int]: return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def UpperCAmelCase__( self : List[Any] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Union[str, Any] )-> Any: lowerCAmelCase__ : Union[str, Any] = SegformerModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase__ : Optional[int] = model(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Any = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def UpperCAmelCase__( self : str , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] )-> Any: lowerCAmelCase__ : Optional[Any] = self.num_labels lowerCAmelCase__ : Tuple = SegformerForSemanticSegmentation(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase__ : Dict = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) lowerCAmelCase__ : Tuple = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def UpperCAmelCase__( self : List[Any] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : int )-> Tuple: lowerCAmelCase__ : Union[str, Any] = 1 lowerCAmelCase__ : Tuple = SegformerForSemanticSegmentation(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase__ : Any = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Tuple = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertGreater(result.loss , 0.0 ) def UpperCAmelCase__( self : Union[str, Any] )-> List[str]: lowerCAmelCase__ : Tuple = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : str = config_and_inputs lowerCAmelCase__ : List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _a ( _lowercase , _lowercase , unittest.TestCase): _a : Dict = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) _a : Any = ( { '''feature-extraction''': SegformerModel, '''image-classification''': SegformerForImageClassification, '''image-segmentation''': SegformerForSemanticSegmentation, } if is_torch_available() else {} ) _a : List[Any] = True _a : int = False _a : List[str] = False _a : Union[str, Any] = False def UpperCAmelCase__( self : Optional[int] )-> Dict: lowerCAmelCase__ : List[Any] = SegformerModelTester(self ) lowerCAmelCase__ : Optional[Any] = SegformerConfigTester(self , config_class=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Tuple )-> Optional[int]: self.config_tester.run_common_tests() def UpperCAmelCase__( self : Optional[int] )-> Any: lowerCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Any )-> Dict: lowerCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : List[str] )-> Tuple: lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*_SCREAMING_SNAKE_CASE ) @unittest.skip('''SegFormer does not use inputs_embeds''' ) def UpperCAmelCase__( self : int )-> Dict: pass @unittest.skip('''SegFormer does not have get_input_embeddings method and get_output_embeddings methods''' ) def UpperCAmelCase__( self : str )-> str: pass def UpperCAmelCase__( self : str )-> Any: lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : Any = model_class(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ : int = [*signature.parameters.keys()] lowerCAmelCase__ : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : List[str] )-> Dict: lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Any = True for model_class in self.all_model_classes: lowerCAmelCase__ : List[Any] = True lowerCAmelCase__ : Optional[Any] = False lowerCAmelCase__ : Union[str, Any] = True lowerCAmelCase__ : Union[str, Any] = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowerCAmelCase__ : Tuple = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) lowerCAmelCase__ : Union[str, Any] = outputs.attentions lowerCAmelCase__ : List[str] = sum(self.model_tester.depths ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCAmelCase__ : Union[str, Any] = True lowerCAmelCase__ : int = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowerCAmelCase__ : Dict = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) lowerCAmelCase__ : str = outputs.attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # verify the first attentions (first block, first layer) lowerCAmelCase__ : str = (self.model_tester.image_size // 4) ** 2 lowerCAmelCase__ : Optional[int] = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) lowerCAmelCase__ : str = (self.model_tester.image_size // 32) ** 2 lowerCAmelCase__ : Optional[int] = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) lowerCAmelCase__ : int = len(_SCREAMING_SNAKE_CASE ) # Check attention is always last and order is fine lowerCAmelCase__ : Dict = True lowerCAmelCase__ : List[Any] = True lowerCAmelCase__ : Optional[int] = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowerCAmelCase__ : int = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) self.assertEqual(out_len + 1 , len(_SCREAMING_SNAKE_CASE ) ) lowerCAmelCase__ : Optional[int] = outputs.attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # verify the first attentions (first block, first layer) lowerCAmelCase__ : List[Any] = (self.model_tester.image_size // 4) ** 2 lowerCAmelCase__ : Union[str, Any] = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def UpperCAmelCase__( self : List[str] )-> List[Any]: def check_hidden_states_output(_SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Union[str, Any] ): lowerCAmelCase__ : str = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowerCAmelCase__ : Union[str, Any] = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) lowerCAmelCase__ : Union[str, Any] = outputs.hidden_states lowerCAmelCase__ : Optional[Any] = self.model_tester.num_encoder_blocks self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : Dict = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ : Optional[int] = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Tuple )-> Dict: if not self.model_tester.is_training: return lowerCAmelCase__ , lowerCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Optional[Any] = True for model_class in self.all_model_classes: if model_class in get_values(_SCREAMING_SNAKE_CASE ): continue lowerCAmelCase__ : Tuple = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.train() lowerCAmelCase__ : Any = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : str = model(**_SCREAMING_SNAKE_CASE ).loss loss.backward() @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCAmelCase__( self : Union[str, Any] )-> Dict: pass @slow def UpperCAmelCase__( self : Union[str, Any] )-> List[Any]: for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ : Union[str, Any] = SegformerModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( ): """simple docstring""" lowerCAmelCase__ : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch class _a ( unittest.TestCase): @slow def UpperCAmelCase__( self : str )-> Any: # only resize + normalize lowerCAmelCase__ : Optional[Any] = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=_SCREAMING_SNAKE_CASE , align=_SCREAMING_SNAKE_CASE , do_random_crop=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : str = SegformerForSemanticSegmentation.from_pretrained('''nvidia/segformer-b0-finetuned-ade-512-512''' ).to( _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Optional[int] = prepare_img() lowerCAmelCase__ : Union[str, Any] = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) lowerCAmelCase__ : Optional[int] = encoded_inputs.pixel_values.to(_SCREAMING_SNAKE_CASE ) with torch.no_grad(): lowerCAmelCase__ : Union[str, Any] = model(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Optional[Any] = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Tuple = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) ) @slow def UpperCAmelCase__( self : Optional[Any] )-> Any: # only resize + normalize lowerCAmelCase__ : Union[str, Any] = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=_SCREAMING_SNAKE_CASE , align=_SCREAMING_SNAKE_CASE , do_random_crop=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Optional[int] = SegformerForSemanticSegmentation.from_pretrained( '''nvidia/segformer-b1-finetuned-cityscapes-1024-1024''' ).to(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : int = prepare_img() lowerCAmelCase__ : Optional[int] = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) lowerCAmelCase__ : Dict = encoded_inputs.pixel_values.to(_SCREAMING_SNAKE_CASE ) with torch.no_grad(): lowerCAmelCase__ : List[Any] = model(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[Any] = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[Any] = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-1 ) ) @slow def UpperCAmelCase__( self : Any )-> Optional[Any]: # only resize + normalize lowerCAmelCase__ : Dict = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=_SCREAMING_SNAKE_CASE , align=_SCREAMING_SNAKE_CASE , do_random_crop=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[str] = SegformerForSemanticSegmentation.from_pretrained('''nvidia/segformer-b0-finetuned-ade-512-512''' ).to( _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Optional[Any] = prepare_img() lowerCAmelCase__ : str = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) lowerCAmelCase__ : Any = encoded_inputs.pixel_values.to(_SCREAMING_SNAKE_CASE ) with torch.no_grad(): lowerCAmelCase__ : Tuple = model(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Union[str, Any] = outputs.logits.detach().cpu() lowerCAmelCase__ : Union[str, Any] = image_processor.post_process_semantic_segmentation(outputs=_SCREAMING_SNAKE_CASE , target_sizes=[(500, 300)] ) lowerCAmelCase__ : Any = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Dict = image_processor.post_process_semantic_segmentation(outputs=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : int = torch.Size((128, 128) ) self.assertEqual(segmentation[0].shape , _SCREAMING_SNAKE_CASE )
131
0
"""simple docstring""" import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class snake_case : def __init__( self : int , A : Union[str, Any] , A : Optional[int]=sys.maxsize ): '''simple docstring''' a : str = 'bilinear' a : List[str] = max_size a : Tuple = short_edge_length def __call__( self : Optional[int] , A : Tuple ): '''simple docstring''' a : Tuple = [] for img in imgs: a, a : Optional[int] = img.shape[:2] # later: provide list and randomly choose index for resize a : Optional[Any] = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img a : int = size * 1.0 / min(A , A ) if h < w: a, a : str = size, scale * w else: a, a : Optional[Any] = scale * h, size if max(A , A ) > self.max_size: a : Optional[int] = self.max_size * 1.0 / max(A , A ) a : Optional[int] = newh * scale a : Optional[Any] = neww * scale a : List[Any] = int(neww + 0.5 ) a : Optional[Any] = int(newh + 0.5 ) if img.dtype == np.uinta: a : Union[str, Any] = Image.fromarray(A ) a : str = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) a : List[str] = np.asarray(A ) else: a : Any = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw a : str = nn.functional.interpolate( A , (newh, neww) , mode=self.interp_method , align_corners=A ).squeeze(0 ) img_augs.append(A ) return img_augs class snake_case : def __init__( self : Union[str, Any] , A : List[str] ): '''simple docstring''' a : Optional[Any] = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) a : List[Any] = cfg.INPUT.FORMAT a : List[str] = cfg.SIZE_DIVISIBILITY a : Dict = cfg.PAD_VALUE a : Any = cfg.INPUT.MAX_SIZE_TEST a : List[Any] = cfg.MODEL.DEVICE a : Optional[Any] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) a : str = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) a : List[str] = lambda A : (x - self.pixel_mean) / self.pixel_std def lowerCamelCase__ ( self : Optional[int] , A : Tuple ): '''simple docstring''' a : Tuple = tuple(max(A ) for s in zip(*[img.shape for img in images] ) ) a : Optional[Any] = [im.shape[-2:] for im in images] a : Optional[Any] = [ nn.functional.pad( A , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(A , A ) ] return torch.stack(A ), torch.tensor(A ) def __call__( self : Optional[int] , A : Dict , A : int=False ): '''simple docstring''' with torch.no_grad(): if not isinstance(A , A ): a : Optional[int] = [images] if single_image: assert len(A ) == 1 for i in range(len(A ) ): if isinstance(images[i] , torch.Tensor ): images.insert(A , images.pop(A ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( A , torch.as_tensor(img_tensorize(images.pop(A ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge a : Any = torch.tensor([im.shape[:2] for im in images] ) a : Tuple = self.aug(A ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic a : str = [self.normalizer(A ) for x in images] # now pad them to do the following operations a, a : Union[str, Any] = self.pad(A ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad a : Dict = torch.true_divide(A , A ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def snake_case (A_ :Any , A_ :Tuple ): '''simple docstring''' boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def snake_case (A_ :Dict , A_ :Tuple[int, int] ): '''simple docstring''' assert torch.isfinite(A_ ).all(), "Box tensor contains infinite or NaN!" a, a : List[Any] = box_size tensor[:, 0].clamp_(min=0 , max=A_ ) tensor[:, 1].clamp_(min=0 , max=A_ ) tensor[:, 2].clamp_(min=0 , max=A_ ) tensor[:, 3].clamp_(min=0 , max=A_ )
186
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html _UpperCamelCase : int = 'platform' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class snake_case : __magic_name__ = PegasusConfig __magic_name__ = {} __magic_name__ = '''gelu''' def __init__( self : int , A : Optional[int] , A : Dict=1_3 , A : Tuple=7 , A : Union[str, Any]=True , A : Union[str, Any]=False , A : int=9_9 , A : Any=3_2 , A : str=5 , A : Optional[int]=4 , A : List[Any]=3_7 , A : Optional[Any]=0.1 , A : Tuple=0.1 , A : List[Any]=2_0 , A : Optional[int]=2 , A : Dict=1 , A : List[Any]=0 , ): '''simple docstring''' a : Dict = parent a : Optional[Any] = batch_size a : Any = seq_length a : Dict = is_training a : Optional[Any] = use_labels a : List[str] = vocab_size a : Optional[Any] = hidden_size a : Union[str, Any] = num_hidden_layers a : Any = num_attention_heads a : Any = intermediate_size a : Optional[Any] = hidden_dropout_prob a : Tuple = attention_probs_dropout_prob a : Dict = max_position_embeddings a : Dict = eos_token_id a : Tuple = pad_token_id a : str = bos_token_id def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' a : str = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) a : Dict = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) a : List[str] = np.concatenate([input_ids, eos_tensor] , axis=1 ) a : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a : int = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) a : Union[str, Any] = prepare_pegasus_inputs_dict(A , A , A ) return config, inputs_dict def lowerCamelCase__ ( self : Optional[Any] , A : List[Any] , A : Optional[Any] , A : Dict ): '''simple docstring''' a : List[Any] = 2_0 a : int = model_class_name(A ) a : Union[str, Any] = model.encode(inputs_dict['input_ids'] ) a, a : List[Any] = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) a : Any = model.init_cache(decoder_input_ids.shape[0] , A , A ) a : Optional[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) a : Optional[Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) a : Optional[int] = model.decode( decoder_input_ids[:, :-1] , A , decoder_attention_mask=A , past_key_values=A , decoder_position_ids=A , ) a : Optional[int] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) a : Optional[int] = model.decode( decoder_input_ids[:, -1:] , A , decoder_attention_mask=A , past_key_values=outputs_cache.past_key_values , decoder_position_ids=A , ) a : Union[str, Any] = model.decode(A , A ) a : List[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) def lowerCamelCase__ ( self : Optional[int] , A : Tuple , A : str , A : str ): '''simple docstring''' a : Optional[Any] = 2_0 a : int = model_class_name(A ) a : Any = model.encode(inputs_dict['input_ids'] ) a, a : Dict = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) a : int = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) a : Tuple = model.init_cache(decoder_input_ids.shape[0] , A , A ) a : str = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) a : str = model.decode( decoder_input_ids[:, :-1] , A , decoder_attention_mask=A , past_key_values=A , decoder_position_ids=A , ) a : Union[str, Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) a : str = model.decode( decoder_input_ids[:, -1:] , A , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=A , decoder_position_ids=A , ) a : List[Any] = model.decode(A , A , decoder_attention_mask=A ) a : int = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) def snake_case (A_ :List[Any] , A_ :Tuple , A_ :List[str] , A_ :List[Any]=None , A_ :Any=None , ): '''simple docstring''' if attention_mask is None: a : Optional[Any] = np.not_equal(A_ , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: a : List[str] = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class snake_case ( UpperCAmelCase , unittest.TestCase ): __magic_name__ = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) __magic_name__ = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () __magic_name__ = True __magic_name__ = False __magic_name__ = False __magic_name__ = False def lowerCamelCase__ ( self : int ): '''simple docstring''' a : str = FlaxPegasusModelTester(self ) a : str = ConfigTester(self , config_class=A ) def lowerCamelCase__ ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase__ ( self : Any ): '''simple docstring''' a, a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(A , A , A ) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' a, a : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(A , A , A ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' a, a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): a : List[Any] = self._prepare_for_class(A , A ) a : str = model_class(A ) @jax.jit def encode_jitted(A : str , A : List[Any]=None , **A : str ): return model.encode(input_ids=A , attention_mask=A ) with self.subTest('JIT Enabled' ): a : Optional[int] = encode_jitted(**A ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): a : Optional[int] = encode_jitted(**A ).to_tuple() self.assertEqual(len(A ) , len(A ) ) for jitted_output, output in zip(A , A ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' a, a : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): a : str = model_class(A ) a : Union[str, Any] = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) a : int = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(A : Optional[int] , A : Tuple , A : Dict ): return model.decode( decoder_input_ids=A , decoder_attention_mask=A , encoder_outputs=A , ) with self.subTest('JIT Enabled' ): a : Any = decode_jitted(**A ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): a : Optional[Any] = decode_jitted(**A ).to_tuple() self.assertEqual(len(A ) , len(A ) ) for jitted_output, output in zip(A , A ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: a : Dict = model_class_name.from_pretrained('google/pegasus-large' , from_pt=A ) a : Dict = np.ones((1, 1) ) a : List[Any] = model(A ) self.assertIsNotNone(A ) @slow def lowerCamelCase__ ( self : Any ): '''simple docstring''' a : List[Any] = FlaxPegasusForConditionalGeneration.from_pretrained('google/pegasus-xsum' ) a : Tuple = PegasusTokenizer.from_pretrained('google/pegasus-xsum' ) a : Any = [ ' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.', ' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ', ] a : Tuple = [ 'California\'s largest electricity provider has turned off power to hundreds of thousands of customers.', 'Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.', ] a : List[Any] = tokenizer(A , return_tensors='np' , truncation=A , max_length=5_1_2 , padding=A ) a : Any = model.generate(**A , num_beams=2 ).sequences a : Optional[Any] = tokenizer.batch_decode(A , skip_special_tokens=A ) assert tgt_text == decoded
186
1
"""simple docstring""" import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = StableUnCLIPPipeline __UpperCamelCase = TEXT_TO_IMAGE_PARAMS __UpperCamelCase = TEXT_TO_IMAGE_BATCH_PARAMS __UpperCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS __UpperCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false __UpperCamelCase = False def UpperCAmelCase__ ( self :List[Any] ) -> Any: UpperCAmelCase = 32 UpperCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) UpperCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=lowercase_ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) UpperCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=lowercase_ , num_layers=1 , ) torch.manual_seed(0 ) UpperCAmelCase = DDPMScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=10_00 , clip_sample=lowercase_ , clip_sample_range=5.0 , beta_schedule='squaredcos_cap_v2' , ) # regular denoising components torch.manual_seed(0 ) UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=lowercase_ ) UpperCAmelCase = DDPMScheduler(beta_schedule='squaredcos_cap_v2' ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='projection' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase_ , layers_per_block=1 , upcast_attention=lowercase_ , use_linear_projection=lowercase_ , ) torch.manual_seed(0 ) UpperCAmelCase = DDIMScheduler( beta_schedule='scaled_linear' , beta_start=0.0_0085 , beta_end=0.012 , prediction_type='v_prediction' , set_alpha_to_one=lowercase_ , steps_offset=1 , ) torch.manual_seed(0 ) UpperCAmelCase = AutoencoderKL() UpperCAmelCase = { # prior components 'prior_tokenizer': prior_tokenizer, 'prior_text_encoder': prior_text_encoder, 'prior': prior, 'prior_scheduler': prior_scheduler, # image noising components 'image_normalizer': image_normalizer, 'image_noising_scheduler': image_noising_scheduler, # regular denoising components 'tokenizer': tokenizer, 'text_encoder': text_encoder, 'unet': unet, 'scheduler': scheduler, 'vae': vae, } return components def UpperCAmelCase__ ( self :Union[str, Any] , lowercase_ :str , lowercase_ :Dict=0 ) -> List[str]: if str(lowercase_ ).startswith('mps' ): UpperCAmelCase = torch.manual_seed(lowercase_ ) else: UpperCAmelCase = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) UpperCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'prior_num_inference_steps': 2, 'output_type': 'numpy', } return inputs def UpperCAmelCase__ ( self :Optional[Any] ) -> int: UpperCAmelCase = torch_device == 'cpu' self._test_attention_slicing_forward_pass(test_max_difference=lowercase_ ) def UpperCAmelCase__ ( self :Union[str, Any] ) -> int: UpperCAmelCase = torch_device in ['cpu', 'mps'] self._test_inference_batch_single_identical(test_max_difference=lowercase_ ) @slow @require_torch_gpu class A_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self :Any ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self :Tuple ) -> Union[str, Any]: UpperCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy' ) UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCAmelCase = pipe('anime turle' , generator=lowercase_ , output_type='np' ) UpperCAmelCase = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(lowercase_ , lowercase_ ) def UpperCAmelCase__ ( self :Tuple ) -> Tuple: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa ) UpperCAmelCase = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase = pipe( 'anime turtle' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='np' , ) UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
78
"""simple docstring""" from __future__ import annotations from functools import lru_cache from math import ceil lowerCAmelCase__ = 100 lowerCAmelCase__ = set(range(3, NUM_PRIMES, 2)) primes.add(2) lowerCAmelCase__ = 42 for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_0_0 ) def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} lowerCAmelCase : set[int] = set() lowerCAmelCase : int lowerCAmelCase : int for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def a__ ( SCREAMING_SNAKE_CASE : int = 5_0_0_0 ): '''simple docstring''' for number_to_partition in range(1 , SCREAMING_SNAKE_CASE ): if len(partition(SCREAMING_SNAKE_CASE ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F"{solution() = }")
108
0
"""simple docstring""" import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class _A : """simple docstring""" def __init__( self : List[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Tuple=2 , __UpperCAmelCase : Optional[int]=8 , __UpperCAmelCase : Dict=True , __UpperCAmelCase : Dict=True , __UpperCAmelCase : str=True , __UpperCAmelCase : Optional[Any]=True , __UpperCAmelCase : Tuple=99 , __UpperCAmelCase : Union[str, Any]=16 , __UpperCAmelCase : Any=5 , __UpperCAmelCase : str=2 , __UpperCAmelCase : Optional[Any]=36 , __UpperCAmelCase : List[str]="gelu" , __UpperCAmelCase : Optional[int]=0.0 , __UpperCAmelCase : Union[str, Any]=0.0 , __UpperCAmelCase : Dict=512 , __UpperCAmelCase : List[str]=16 , __UpperCAmelCase : Union[str, Any]=2 , __UpperCAmelCase : str=0.02 , __UpperCAmelCase : Tuple=3 , __UpperCAmelCase : int=4 , __UpperCAmelCase : Union[str, Any]=None , ): a : Dict = parent a : List[str] = batch_size a : Any = seq_length a : Dict = is_training a : List[Any] = use_input_mask a : List[str] = use_token_type_ids a : Union[str, Any] = use_labels a : Union[str, Any] = vocab_size a : Optional[int] = hidden_size a : Optional[Any] = num_hidden_layers a : List[str] = num_attention_heads a : Any = intermediate_size a : Tuple = hidden_act a : Dict = hidden_dropout_prob a : Union[str, Any] = attention_probs_dropout_prob a : Union[str, Any] = max_position_embeddings a : Optional[Any] = type_vocab_size a : Optional[Any] = type_sequence_label_size a : Optional[Any] = initializer_range a : int = num_labels a : Union[str, Any] = num_choices a : Optional[Any] = scope def __snake_case ( self : Union[str, Any]): a : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a : str = None if self.use_input_mask: a : Dict = random_attention_mask([self.batch_size, self.seq_length]) a : int = None if self.use_token_type_ids: a : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) a : List[str] = None a : Dict = None a : Optional[Any] = None if self.use_labels: a : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) a : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) a : Dict = ids_tensor([self.batch_size] , self.num_choices) a : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __snake_case ( self : Dict): return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def __snake_case ( self : Dict): a : Union[str, Any] = self.get_config() a : str = 300 return config def __snake_case ( self : List[Any]): ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) : Dict = self.prepare_config_and_inputs() a : Tuple = True a : List[str] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) a : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __snake_case ( self : int , __UpperCAmelCase : int , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any]): a : Tuple = MraModel(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase) a : Union[str, Any] = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase) a : List[str] = model(__UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __snake_case ( self : int , __UpperCAmelCase : Any , __UpperCAmelCase : str , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple , ): a : Any = True a : str = MraModel(__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a : List[Any] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) a : Dict = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) a : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __snake_case ( self : Union[str, Any] , __UpperCAmelCase : str , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Union[str, Any]): a : Optional[int] = MraForMaskedLM(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a : List[str] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def __snake_case ( self : str , __UpperCAmelCase : Any , __UpperCAmelCase : Any , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : List[str]): a : str = MraForQuestionAnswering(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a : Optional[int] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def __snake_case ( self : List[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : int , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Any): a : str = self.num_labels a : Union[str, Any] = MraForSequenceClassification(__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def __snake_case ( self : Union[str, Any] , __UpperCAmelCase : int , __UpperCAmelCase : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any]): a : Optional[int] = self.num_labels a : int = MraForTokenClassification(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def __snake_case ( self : Any , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : int , __UpperCAmelCase : Tuple , __UpperCAmelCase : str , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : List[str]): a : Any = self.num_choices a : Optional[int] = MraForMultipleChoice(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a : Tuple = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a : Optional[int] = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a : List[Any] = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a : List[Any] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def __snake_case ( self : Optional[int]): a : Tuple = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) : str = config_and_inputs a : List[str] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _A ( _a ,unittest.TestCase ): """simple docstring""" UpperCAmelCase : Any = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) UpperCAmelCase : Tuple = False UpperCAmelCase : int = False UpperCAmelCase : List[str] = False UpperCAmelCase : str = False UpperCAmelCase : Optional[Any] = () def __snake_case ( self : Optional[Any]): a : int = MraModelTester(self) a : int = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37) def __snake_case ( self : Tuple): self.config_tester.run_common_tests() def __snake_case ( self : List[str]): a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase) def __snake_case ( self : Any): a : Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a : int = type self.model_tester.create_and_check_model(*__UpperCAmelCase) def __snake_case ( self : Tuple): a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase) def __snake_case ( self : List[str]): a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCAmelCase) def __snake_case ( self : int): a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase) def __snake_case ( self : Optional[int]): a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase) def __snake_case ( self : Optional[Any]): a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase) @slow def __snake_case ( self : List[Any]): for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a : Tuple = MraModel.from_pretrained(__UpperCAmelCase) self.assertIsNotNone(__UpperCAmelCase) @unittest.skip(reason="MRA does not output attentions") def __snake_case ( self : str): return @require_torch class _A ( unittest.TestCase ): """simple docstring""" @slow def __snake_case ( self : Any): a : Optional[int] = MraModel.from_pretrained("uw-madison/mra-base-512-4") a : Dict = torch.arange(256).unsqueeze(0) with torch.no_grad(): a : Optional[Any] = model(__UpperCAmelCase)[0] a : Any = torch.Size((1, 256, 768)) self.assertEqual(output.shape , __UpperCAmelCase) a : List[Any] = torch.tensor( [[[-0.0_140, 0.0_830, -0.0_381], [0.1_546, 0.1_402, 0.0_220], [0.1_162, 0.0_851, 0.0_165]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1e-4)) @slow def __snake_case ( self : Union[str, Any]): a : List[Any] = MraForMaskedLM.from_pretrained("uw-madison/mra-base-512-4") a : Optional[Any] = torch.arange(256).unsqueeze(0) with torch.no_grad(): a : Tuple = model(__UpperCAmelCase)[0] a : Tuple = 50265 a : List[Any] = torch.Size((1, 256, vocab_size)) self.assertEqual(output.shape , __UpperCAmelCase) a : int = torch.tensor( [[[9.2_595, -3.6_038, 11.8_819], [9.3_869, -3.2_693, 11.0_956], [11.8_524, -3.4_938, 13.1_210]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1e-4)) @slow def __snake_case ( self : List[Any]): a : Optional[Any] = MraForMaskedLM.from_pretrained("uw-madison/mra-base-4096-8-d3") a : str = torch.arange(4096).unsqueeze(0) with torch.no_grad(): a : List[str] = model(__UpperCAmelCase)[0] a : List[Any] = 50265 a : Tuple = torch.Size((1, 4096, vocab_size)) self.assertEqual(output.shape , __UpperCAmelCase) a : Any = torch.tensor( [[[5.4_789, -2.3_564, 7.5_064], [7.9_067, -1.3_369, 9.9_668], [9.0_712, -1.8_106, 7.0_380]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1e-4))
226
"""simple docstring""" import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch __lowercase = True except ImportError: __lowercase = False try: from torch.hub import _get_torch_home __lowercase = _get_torch_home() except ImportError: __lowercase = os.path.expanduser( os.getenv("""TORCH_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """torch""")) ) __lowercase = os.path.join(torch_cache_home, """transformers""") __lowercase = """https://cdn.huggingface.co""" __lowercase = """https://s3.amazonaws.com/models.huggingface.co/bert""" __lowercase = """/""".join(str(Path(__file__).resolve()).split("""/""")[:-1]) __lowercase = os.path.join(PATH, """config.yaml""") __lowercase = os.path.join(PATH, """attributes.txt""") __lowercase = os.path.join(PATH, """objects.txt""") __lowercase = os.getenv("""PYTORCH_PRETRAINED_BERT_CACHE""", default_cache_path) __lowercase = os.getenv("""PYTORCH_TRANSFORMERS_CACHE""", PYTORCH_PRETRAINED_BERT_CACHE) __lowercase = os.getenv("""TRANSFORMERS_CACHE""", PYTORCH_TRANSFORMERS_CACHE) __lowercase = """pytorch_model.bin""" __lowercase = """config.yaml""" def lowercase ( A_=OBJECTS , A_=ATTRIBUTES )-> Union[str, Any]: '''simple docstring''' a : Optional[Any] = [] with open(A_ ) as f: for object in f.readlines(): vg_classes.append(object.split("," )[0].lower().strip() ) a : Union[str, Any] = [] with open(A_ ) as f: for object in f.readlines(): vg_attrs.append(object.split("," )[0].lower().strip() ) return vg_classes, vg_attrs def lowercase ( A_ )-> Optional[Any]: '''simple docstring''' a : Dict = OrderedDict() with open(A_ , "rb" ) as f: a : Optional[Any] = pkl.load(A_ )["model"] for k in copy.deepcopy(list(ckp.keys() ) ): a : Dict = ckp.pop(A_ ) if isinstance(A_ , np.ndarray ): a : Optional[Any] = torch.tensor(A_ ) else: assert isinstance(A_ , torch.tensor ), type(A_ ) a : int = v return r class _A : """simple docstring""" UpperCAmelCase : int = {} def __init__( self : Any , __UpperCAmelCase : dict , __UpperCAmelCase : str = "root" , __UpperCAmelCase : Optional[int]=0): a : List[str] = name a : Tuple = level a : int = {} for k, v in dictionary.items(): if v is None: raise ValueError() a : List[Any] = copy.deepcopy(__UpperCAmelCase) a : int = copy.deepcopy(__UpperCAmelCase) if isinstance(__UpperCAmelCase , __UpperCAmelCase): a : Union[str, Any] = Config(__UpperCAmelCase , name=__UpperCAmelCase , level=level + 1) a : Dict = v setattr(self , __UpperCAmelCase , __UpperCAmelCase) a : Tuple = d def __repr__( self : List[str]): return str(list((self._pointer.keys()))) def __setattr__( self : Dict , __UpperCAmelCase : str , __UpperCAmelCase : Tuple): a : Optional[Any] = val a : Tuple = val a : Dict = key.split(".") a : Union[str, Any] = len(__UpperCAmelCase) - 1 a : Optional[int] = self._pointer if len(__UpperCAmelCase) > 1: for i, l in enumerate(__UpperCAmelCase): if hasattr(self , __UpperCAmelCase) and isinstance(getattr(self , __UpperCAmelCase) , __UpperCAmelCase): setattr(getattr(self , __UpperCAmelCase) , ".".join(levels[i:]) , __UpperCAmelCase) if l == last_level: a : int = val else: a : str = pointer[l] def __snake_case ( self : str): return self._pointer def __snake_case ( self : int , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[Any]): with open(f'''{file_name}''' , "w") as stream: dump(__UpperCAmelCase , __UpperCAmelCase) def __snake_case ( self : int , __UpperCAmelCase : Dict , __UpperCAmelCase : int): with open(f'''{file_name}''' , "w") as stream: json.dump(__UpperCAmelCase , __UpperCAmelCase) @staticmethod def __snake_case ( __UpperCAmelCase : Dict): with open(__UpperCAmelCase) as stream: a : List[str] = load(__UpperCAmelCase , Loader=__UpperCAmelCase) return data def __str__( self : Tuple): a : str = " " if self._name != "root": a : List[str] = f'''{t * (self._level-1)}{self._name}:\n''' else: a : Optional[Any] = "" a : List[Any] = self._level for i, (k, v) in enumerate(self._pointer.items()): if isinstance(__UpperCAmelCase , __UpperCAmelCase): r += f'''{t * (self._level)}{v}\n''' self._level += 1 else: r += f'''{t * (self._level)}{k}: {v} ({type(__UpperCAmelCase).__name__})\n''' a : Tuple = level return r[:-1] @classmethod def __snake_case ( cls : str , __UpperCAmelCase : str , **__UpperCAmelCase : List[Any]): a , a : Tuple = cls.get_config_dict(__UpperCAmelCase , **__UpperCAmelCase) return cls(__UpperCAmelCase) @classmethod def __snake_case ( cls : Union[str, Any] , __UpperCAmelCase : str , **__UpperCAmelCase : List[str]): a : int = kwargs.pop("cache_dir" , __UpperCAmelCase) a : List[Any] = kwargs.pop("force_download" , __UpperCAmelCase) a : Optional[int] = kwargs.pop("resume_download" , __UpperCAmelCase) a : Tuple = kwargs.pop("proxies" , __UpperCAmelCase) a : int = kwargs.pop("local_files_only" , __UpperCAmelCase) if os.path.isdir(__UpperCAmelCase): a : Union[str, Any] = os.path.join(__UpperCAmelCase , __UpperCAmelCase) elif os.path.isfile(__UpperCAmelCase) or is_remote_url(__UpperCAmelCase): a : List[Any] = pretrained_model_name_or_path else: a : int = hf_bucket_url(__UpperCAmelCase , filename=__UpperCAmelCase , use_cdn=__UpperCAmelCase) try: # Load from URL or cache if already cached a : Optional[Any] = cached_path( __UpperCAmelCase , cache_dir=__UpperCAmelCase , force_download=__UpperCAmelCase , proxies=__UpperCAmelCase , resume_download=__UpperCAmelCase , local_files_only=__UpperCAmelCase , ) # Load config dict if resolved_config_file is None: raise EnvironmentError a : Union[str, Any] = Config.load_yaml(__UpperCAmelCase) except EnvironmentError: a : str = "Can't load config for" raise EnvironmentError(__UpperCAmelCase) if resolved_config_file == config_file: print("loading configuration file from path") else: print("loading configuration file cache") return Config.load_yaml(__UpperCAmelCase), kwargs def lowercase ( A_ )-> str: '''simple docstring''' a : Tuple = torch.load("dump.pt" , map_location=in_tensor.device ) a : Any = in_tensor.numpy() a : Optional[int] = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(A_ , A_ , rtol=0.0_1 , atol=0.1 ), ( F'''{sum([1 for x in np.isclose(A_ , A_ , rtol=0.0_1 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %''' " element-wise mismatch" ) raise Exception("tensors are all good" ) # Hugging face functions below def lowercase ( A_ )-> Optional[Any]: '''simple docstring''' a : Optional[Any] = urlparse(A_ ) return parsed.scheme in ("http", "https") def lowercase ( A_ , A_ , A_=True )-> str: '''simple docstring''' a : List[Any] = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX a : str = "/" not in model_id if legacy_format: return F'''{endpoint}/{model_id}-{filename}''' else: return F'''{endpoint}/{model_id}/{filename}''' def lowercase ( A_ , A_ , A_=None , A_=0 , A_=None , )-> List[str]: '''simple docstring''' a : Optional[int] = "python/{}".format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(A_ , A_ ): ua += "; " + "; ".join("{}/{}".format(A_ , A_ ) for k, v in user_agent.items() ) elif isinstance(A_ , A_ ): ua += "; " + user_agent a : str = {"user-agent": ua} if resume_size > 0: a : List[Any] = "bytes=%d-" % (resume_size,) a : str = requests.get(A_ , stream=A_ , proxies=A_ , headers=A_ ) if response.status_code == 416: # Range not satisfiable return a : Optional[int] = response.headers.get("Content-Length" ) a : List[Any] = resume_size + int(A_ ) if content_length is not None else None a : List[Any] = tqdm( unit="B" , unit_scale=A_ , total=A_ , initial=A_ , desc="Downloading" , ) for chunk in response.iter_content(chunk_size=1_024 ): if chunk: # filter out keep-alive new chunks progress.update(len(A_ ) ) temp_file.write(A_ ) progress.close() def lowercase ( A_ , A_=None , A_=False , A_=None , A_=10 , A_=False , A_=None , A_=False , )-> str: '''simple docstring''' if cache_dir is None: a : List[Any] = TRANSFORMERS_CACHE if isinstance(A_ , A_ ): a : Tuple = str(A_ ) os.makedirs(A_ , exist_ok=A_ ) a : Optional[Any] = None if not local_files_only: try: a : Dict = requests.head(A_ , allow_redirects=A_ , proxies=A_ , timeout=A_ ) if response.status_code == 200: a : int = response.headers.get("ETag" ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass a : List[str] = url_to_filename(A_ , A_ ) # get cache path to put the file a : List[str] = os.path.join(A_ , A_ ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(A_ ): return cache_path else: a : Any = [ file for file in fnmatch.filter(os.listdir(A_ ) , filename + ".*" ) if not file.endswith(".json" ) and not file.endswith(".lock" ) ] if len(A_ ) > 0: return os.path.join(A_ , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( "Cannot find the requested files in the cached path and outgoing traffic has been" " disabled. To enable model look-ups and downloads online, set 'local_files_only'" " to False." ) return None # From now on, etag is not None. if os.path.exists(A_ ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. a : Dict = cache_path + ".lock" with FileLock(A_ ): # If the download just completed while the lock was activated. if os.path.exists(A_ ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: a : Optional[Any] = cache_path + ".incomplete" @contextmanager def _resumable_file_manager(): with open(A_ , "a+b" ) as f: yield f a : Tuple = _resumable_file_manager if os.path.exists(A_ ): a : Optional[Any] = os.stat(A_ ).st_size else: a : Optional[int] = 0 else: a : Union[str, Any] = partial(tempfile.NamedTemporaryFile , dir=A_ , delete=A_ ) a : Dict = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( "%s not found in cache or force_download set to True, downloading to %s" , A_ , temp_file.name , ) http_get( A_ , A_ , proxies=A_ , resume_size=A_ , user_agent=A_ , ) os.replace(temp_file.name , A_ ) a : List[str] = {"url": url, "etag": etag} a : Tuple = cache_path + ".json" with open(A_ , "w" ) as meta_file: json.dump(A_ , A_ ) return cache_path def lowercase ( A_ , A_=None )-> Any: '''simple docstring''' a : Dict = url.encode("utf-8" ) a : Optional[Any] = shaaaa(A_ ) a : Any = url_hash.hexdigest() if etag: a : Union[str, Any] = etag.encode("utf-8" ) a : Tuple = shaaaa(A_ ) filename += "." + etag_hash.hexdigest() if url.endswith(".h5" ): filename += ".h5" return filename def lowercase ( A_ , A_=None , A_=False , A_=None , A_=False , A_=None , A_=False , A_=False , A_=False , )-> Tuple: '''simple docstring''' if cache_dir is None: a : Union[str, Any] = TRANSFORMERS_CACHE if isinstance(A_ , A_ ): a : List[Any] = str(A_ ) if isinstance(A_ , A_ ): a : int = str(A_ ) if is_remote_url(A_ ): # URL, so get it from the cache (downloading if necessary) a : Optional[Any] = get_from_cache( A_ , cache_dir=A_ , force_download=A_ , proxies=A_ , resume_download=A_ , user_agent=A_ , local_files_only=A_ , ) elif os.path.exists(A_ ): # File, and it exists. a : Union[str, Any] = url_or_filename elif urlparse(A_ ).scheme == "": # File, but it doesn't exist. raise EnvironmentError("file {} not found".format(A_ ) ) else: # Something unknown raise ValueError("unable to parse {} as a URL or as a local path".format(A_ ) ) if extract_compressed_file: if not is_zipfile(A_ ) and not tarfile.is_tarfile(A_ ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" a , a : Dict = os.path.split(A_ ) a : List[str] = output_file.replace("." , "-" ) + "-extracted" a : Optional[Any] = os.path.join(A_ , A_ ) if os.path.isdir(A_ ) and os.listdir(A_ ) and not force_extract: return output_path_extracted # Prevent parallel extractions a : Tuple = output_path + ".lock" with FileLock(A_ ): shutil.rmtree(A_ , ignore_errors=A_ ) os.makedirs(A_ ) if is_zipfile(A_ ): with ZipFile(A_ , "r" ) as zip_file: zip_file.extractall(A_ ) zip_file.close() elif tarfile.is_tarfile(A_ ): a : List[str] = tarfile.open(A_ ) tar_file.extractall(A_ ) tar_file.close() else: raise EnvironmentError("Archive format of {} could not be identified".format(A_ ) ) return output_path_extracted return output_path def lowercase ( A_ , A_="," )-> Union[str, Any]: '''simple docstring''' assert isinstance(A_ , A_ ) if os.path.isfile(A_ ): with open(A_ ) as f: a : str = eval(f.read() ) else: a : List[Any] = requests.get(A_ ) try: a : Any = requests.json() except Exception: a : Any = req.content.decode() assert data is not None, "could not connect" try: a : Optional[Any] = eval(A_ ) except Exception: a : Any = data.split("\n" ) req.close() return data def lowercase ( A_ )-> str: '''simple docstring''' a : Optional[int] = requests.get(A_ ) a : List[str] = np.array(Image.open(BytesIO(response.content ) ) ) return img def lowercase ( A_ )-> Any: '''simple docstring''' a : List[Any] = url.split("/" )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(A_ ) with open(A_ , "rb" ) as stream: a : Any = pkl.load(A_ ) a : List[str] = weights.pop("model" ) a : Dict = {} for k, v in model.items(): a : List[str] = torch.from_numpy(A_ ) if "running_var" in k: a : Dict = torch.tensor([0] ) a : Any = k.replace("running_var" , "num_batches_tracked" ) a : List[Any] = zero return new def lowercase ( )-> Optional[int]: '''simple docstring''' print(F'''{os.path.abspath(os.path.join(A_ , os.pardir ) )}/demo.ipynb''' ) def lowercase ( A_ , A_="RGB" )-> Any: '''simple docstring''' assert isinstance(A_ , A_ ) if os.path.isfile(A_ ): a : Dict = cva.imread(A_ ) else: a : Union[str, Any] = get_image_from_url(A_ ) assert img is not None, F'''could not connect to: {im}''' a : int = cva.cvtColor(A_ , cva.COLOR_BGR2RGB ) if input_format == "RGB": a : List[str] = img[:, :, ::-1] return img def lowercase ( A_ , A_=1 )-> int: '''simple docstring''' return (images[i : i + batch] for i in range(0 , len(A_ ) , A_ ))
226
1
def lowerCamelCase__ ( __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any] ): __UpperCAmelCase : Tuple = [1] for i in range(2 , __lowerCamelCase ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" __UpperCAmelCase : Optional[Any] = [] __UpperCAmelCase : str = list(range(__lowerCamelCase ) ) # Find permutation while factorials: __UpperCAmelCase : Any = factorials.pop() __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = divmod(__lowerCamelCase , __lowerCamelCase ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
114
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class a ( lowercase__ , unittest.TestCase ): """simple docstring""" a : int = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def UpperCAmelCase ( self : List[str] , __lowercase : Optional[Any]=0 ) -> Any: __UpperCAmelCase : Any = floats_tensor((1, 3, 128, 128) , rng=random.Random(__lowercase ) ) __UpperCAmelCase : int = np.random.RandomState(__lowercase ) __UpperCAmelCase : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """strength""": 0.75, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: __UpperCAmelCase : List[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=__lowercase ) __UpperCAmelCase : int = self.get_dummy_inputs() __UpperCAmelCase : Optional[Any] = pipe(**__lowercase ).images __UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) __UpperCAmelCase : List[str] = np.array([0.69_643, 0.58_484, 0.50_314, 0.58_760, 0.55_368, 0.59_643, 0.51_529, 0.41_217, 0.49_087] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def UpperCAmelCase ( self : Optional[Any] ) -> List[str]: __UpperCAmelCase : Dict = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __UpperCAmelCase : int = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __UpperCAmelCase : Any = self.get_dummy_inputs() __UpperCAmelCase : Tuple = pipe(**__lowercase ).images __UpperCAmelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __UpperCAmelCase : str = np.array([0.61_737, 0.54_642, 0.53_183, 0.54_465, 0.52_742, 0.60_525, 0.49_969, 0.40_655, 0.48_154] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def UpperCAmelCase ( self : str ) -> Tuple: __UpperCAmelCase : Tuple = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __UpperCAmelCase : int = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowercase ) # warmup pass to apply optimizations __UpperCAmelCase : Optional[int] = pipe(**self.get_dummy_inputs() ) __UpperCAmelCase : Tuple = self.get_dummy_inputs() __UpperCAmelCase : Any = pipe(**__lowercase ).images __UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __UpperCAmelCase : Optional[int] = np.array([0.52_761, 0.59_977, 0.49_033, 0.49_619, 0.54_282, 0.50_311, 0.47_600, 0.40_918, 0.45_203] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def UpperCAmelCase ( self : Optional[Any] ) -> str: __UpperCAmelCase : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __UpperCAmelCase : Union[str, Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowercase ) __UpperCAmelCase : List[str] = self.get_dummy_inputs() __UpperCAmelCase : int = pipe(**__lowercase ).images __UpperCAmelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __UpperCAmelCase : Tuple = np.array([0.52_911, 0.60_004, 0.49_229, 0.49_805, 0.54_502, 0.50_680, 0.47_777, 0.41_028, 0.45_304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def UpperCAmelCase ( self : int ) -> Any: __UpperCAmelCase : Any = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __UpperCAmelCase : List[Any] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowercase ) __UpperCAmelCase : Union[str, Any] = self.get_dummy_inputs() __UpperCAmelCase : int = pipe(**__lowercase ).images __UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __UpperCAmelCase : List[str] = np.array([0.52_911, 0.60_004, 0.49_229, 0.49_805, 0.54_502, 0.50_680, 0.47_777, 0.41_028, 0.45_304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def UpperCAmelCase ( self : Tuple ) -> str: __UpperCAmelCase : Dict = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __UpperCAmelCase : str = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowercase ) __UpperCAmelCase : Optional[Any] = self.get_dummy_inputs() __UpperCAmelCase : int = pipe(**__lowercase ).images __UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __UpperCAmelCase : Union[str, Any] = np.array([0.65_331, 0.58_277, 0.48_204, 0.56_059, 0.53_665, 0.56_235, 0.50_969, 0.40_009, 0.46_552] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class a ( unittest.TestCase ): """simple docstring""" @property def UpperCAmelCase ( self : Dict ) -> List[Any]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCAmelCase ( self : Tuple ) -> Tuple: __UpperCAmelCase : Optional[int] = ort.SessionOptions() __UpperCAmelCase : List[Any] = False return options def UpperCAmelCase ( self : List[str] ) -> Tuple: __UpperCAmelCase : List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) __UpperCAmelCase : Dict = init_image.resize((768, 512) ) # using the PNDM scheduler by default __UpperCAmelCase : Any = OnnxStableDiffusionImgaImgPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=__lowercase , feature_extractor=__lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__lowercase ) __UpperCAmelCase : Dict = """A fantasy landscape, trending on artstation""" __UpperCAmelCase : str = np.random.RandomState(0 ) __UpperCAmelCase : Optional[Any] = pipe( prompt=__lowercase , image=__lowercase , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=__lowercase , output_type="""np""" , ) __UpperCAmelCase : str = output.images __UpperCAmelCase : int = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __UpperCAmelCase : Union[str, Any] = np.array([0.4_909, 0.5_059, 0.5_372, 0.4_623, 0.4_876, 0.5_049, 0.4_820, 0.4_956, 0.5_019] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def UpperCAmelCase ( self : Optional[Any] ) -> str: __UpperCAmelCase : Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) __UpperCAmelCase : int = init_image.resize((768, 512) ) __UpperCAmelCase : Tuple = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) __UpperCAmelCase : Tuple = OnnxStableDiffusionImgaImgPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=__lowercase , safety_checker=__lowercase , feature_extractor=__lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__lowercase ) __UpperCAmelCase : Dict = """A fantasy landscape, trending on artstation""" __UpperCAmelCase : int = np.random.RandomState(0 ) __UpperCAmelCase : Optional[int] = pipe( prompt=__lowercase , image=__lowercase , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=__lowercase , output_type="""np""" , ) __UpperCAmelCase : Union[str, Any] = output.images __UpperCAmelCase : Union[str, Any] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __UpperCAmelCase : str = np.array([0.8_043, 0.926, 0.9_581, 0.8_119, 0.8_954, 0.913, 0.7_209, 0.7_463, 0.7_431] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
114
1
from ..utils import DummyObject, requires_backends class A( metaclass=UpperCamelCase ): '''simple docstring''' UpperCamelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : Dict , *A_ : int , **A_ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def a__ ( cls : Optional[Any] , *A_ : Dict , **A_ : Union[str, Any] ) -> str: """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def a__ ( cls : Dict , *A_ : Tuple , **A_ : List[str] ) -> List[Any]: """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A( metaclass=UpperCamelCase ): '''simple docstring''' UpperCamelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : Optional[Any] , *A_ : Any , **A_ : Optional[Any] ) -> List[str]: """simple docstring""" requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def a__ ( cls : Union[str, Any] , *A_ : int , **A_ : str ) -> Dict: """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def a__ ( cls : str , *A_ : Any , **A_ : Tuple ) -> int: """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A( metaclass=UpperCamelCase ): '''simple docstring''' UpperCamelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : Optional[int] , *A_ : int , **A_ : List[str] ) -> List[Any]: """simple docstring""" requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def a__ ( cls : List[str] , *A_ : Dict , **A_ : Optional[int] ) -> Tuple: """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def a__ ( cls : Tuple , *A_ : List[Any] , **A_ : int ) -> List[str]: """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A( metaclass=UpperCamelCase ): '''simple docstring''' UpperCamelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : Union[str, Any] , *A_ : Tuple , **A_ : str ) -> Dict: """simple docstring""" requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def a__ ( cls : Dict , *A_ : str , **A_ : Any ) -> Tuple: """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def a__ ( cls : Union[str, Any] , *A_ : List[str] , **A_ : List[str] ) -> int: """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A( metaclass=UpperCamelCase ): '''simple docstring''' UpperCamelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : str , *A_ : str , **A_ : Optional[Any] ) -> List[str]: """simple docstring""" requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def a__ ( cls : Union[str, Any] , *A_ : Optional[int] , **A_ : Union[str, Any] ) -> str: """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def a__ ( cls : Any , *A_ : Union[str, Any] , **A_ : List[str] ) -> Dict: """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A( metaclass=UpperCamelCase ): '''simple docstring''' UpperCamelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : Optional[Any] , *A_ : str , **A_ : str ) -> Any: """simple docstring""" requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def a__ ( cls : Tuple , *A_ : Optional[int] , **A_ : str ) -> List[Any]: """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def a__ ( cls : Tuple , *A_ : List[str] , **A_ : Dict ) -> Tuple: """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] )
208
def _SCREAMING_SNAKE_CASE ( lowercase : Tuple , lowercase : Dict , lowercase : List[str] , lowercase : Dict , lowercase : Dict , lowercase : List[str] ): '''simple docstring''' if index == r: for j in range(lowercase ): print(data[j] , end=' ' ) print(' ' ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location lowerCamelCase_ = arr[i] combination_util(lowercase , lowercase , lowercase , index + 1 , lowercase , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(lowercase , lowercase , lowercase , lowercase , lowercase , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : Any , lowercase : Tuple ): '''simple docstring''' lowerCamelCase_ = [0] * r # Print all combination using temporary array 'data[]' combination_util(lowercase , lowercase , lowercase , 0 , lowercase , 0 ) if __name__ == "__main__": # Driver code to check the function above lowerCamelCase : int = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
208
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase_ = { '''vocab_file''': { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase_ = { '''yjernite/retribert-base-uncased''': 5_1_2, } lowerCAmelCase_ = { '''yjernite/retribert-base-uncased''': {'''do_lower_case''': True}, } class __lowerCAmelCase ( _a ): lowerCamelCase_ : List[Any] = VOCAB_FILES_NAMES lowerCamelCase_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ : Dict = PRETRAINED_INIT_CONFIGURATION lowerCamelCase_ : Optional[Any] = RetriBertTokenizer lowerCamelCase_ : Dict = ['''input_ids''', '''attention_mask'''] def __init__(self , __magic_name__=None , __magic_name__=None , __magic_name__=True , __magic_name__="[UNK]" , __magic_name__="[SEP]" , __magic_name__="[PAD]" , __magic_name__="[CLS]" , __magic_name__="[MASK]" , __magic_name__=True , __magic_name__=None , **__magic_name__ , ) -> Optional[Any]: '''simple docstring''' super().__init__( __magic_name__ , tokenizer_file=__magic_name__ , do_lower_case=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , pad_token=__magic_name__ , cls_token=__magic_name__ , mask_token=__magic_name__ , tokenize_chinese_chars=__magic_name__ , strip_accents=__magic_name__ , **__magic_name__ , ) snake_case_ : Union[str, Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , __magic_name__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , __magic_name__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , __magic_name__ ) != tokenize_chinese_chars ): snake_case_ : int = getattr(__magic_name__ , normalizer_state.pop('''type''' ) ) snake_case_ : Union[str, Any] = do_lower_case snake_case_ : Union[str, Any] = strip_accents snake_case_ : int = tokenize_chinese_chars snake_case_ : Tuple = normalizer_class(**__magic_name__ ) snake_case_ : Dict = do_lower_case def lowerCamelCase (self , __magic_name__ , __magic_name__=None ) -> Any: '''simple docstring''' snake_case_ : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase (self , __magic_name__ , __magic_name__ = None ) -> List[int]: '''simple docstring''' snake_case_ : Optional[int] = [self.sep_token_id] snake_case_ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase (self , __magic_name__ , __magic_name__ = None ) -> Tuple[str]: '''simple docstring''' snake_case_ : Any = self._tokenizer.model.save(__magic_name__ , name=__magic_name__ ) return tuple(__magic_name__ )
279
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __lowerCAmelCase ( _a, unittest.TestCase ): lowerCamelCase_ : Any = BioGptTokenizer lowerCamelCase_ : Optional[Any] = False def lowerCamelCase (self ) -> List[Any]: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case_ : Optional[Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] snake_case_ : Union[str, Any] = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) ) snake_case_ : Union[str, Any] = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] snake_case_ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(__magic_name__ ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(__magic_name__ ) ) def lowerCamelCase (self , __magic_name__ ) -> int: '''simple docstring''' snake_case_ : str = '''lower newer''' snake_case_ : Dict = '''lower newer''' return input_text, output_text def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Optional[int] = BioGptTokenizer(self.vocab_file , self.merges_file ) snake_case_ : Union[str, Any] = '''lower''' snake_case_ : Optional[int] = ['''low''', '''er</w>'''] snake_case_ : Any = tokenizer.tokenize(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) snake_case_ : Optional[int] = tokens + ['''<unk>'''] snake_case_ : List[str] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ ) @slow def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' snake_case_ : Optional[int] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) snake_case_ : List[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=__magic_name__ ) snake_case_ : str = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__magic_name__ ) snake_case_ : str = tokenizer.build_inputs_with_special_tokens(__magic_name__ ) snake_case_ : List[str] = tokenizer.build_inputs_with_special_tokens(__magic_name__ , __magic_name__ ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
279
1
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class __snake_case : '''simple docstring''' @staticmethod def UpperCAmelCase__ ( *A : str , **A : List[Any] ): pass def A__ ( SCREAMING_SNAKE_CASE__) -> Optional[Any]: return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. __UpperCAmelCase : Tuple = ( "https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png" ) @is_pipeline_test @require_torch @require_vision class __snake_case ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def UpperCAmelCase__ ( self : Optional[int] , A : Union[str, Any] , A : Tuple , A : str ): __snake_case: str = pipeline( """document-question-answering""" , model=A , tokenizer=A , image_processor=A ) __snake_case: Dict = INVOICE_URL __snake_case: Optional[Any] = list(zip(*apply_tesseract(load_image(A ) , A , """""" ) ) ) __snake_case: Optional[int] = """What is the placebo?""" __snake_case: Optional[Any] = [ { """image""": load_image(A ), """question""": question, }, { """image""": image, """question""": question, }, { """image""": image, """question""": question, """word_boxes""": word_boxes, }, ] return dqa_pipeline, examples def UpperCAmelCase__ ( self : int , A : Optional[Any] , A : Tuple ): __snake_case: Tuple = dqa_pipeline(A , top_k=2 ) self.assertEqual( A , [ [ {"""score""": ANY(A ), """answer""": ANY(A ), """start""": ANY(A ), """end""": ANY(A )}, {"""score""": ANY(A ), """answer""": ANY(A ), """start""": ANY(A ), """end""": ANY(A )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def UpperCAmelCase__ ( self : Union[str, Any] ): __snake_case: Optional[Any] = pipeline("""document-question-answering""" , model="""hf-internal-testing/tiny-random-layoutlmv2""" ) __snake_case: Optional[int] = INVOICE_URL __snake_case: List[str] = """How many cats are there?""" __snake_case: Any = [ {"""score""": 0.0001, """answer""": """oy 2312/2019""", """start""": 38, """end""": 39}, {"""score""": 0.0001, """answer""": """oy 2312/2019 DUE""", """start""": 38, """end""": 40}, ] __snake_case: Dict = dqa_pipeline(image=A , question=A , top_k=2 ) self.assertEqual(nested_simplify(A , decimals=4 ) , A ) __snake_case: Tuple = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual(nested_simplify(A , decimals=4 ) , A ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably __snake_case: List[Any] = """./tests/fixtures/tests_samples/COCO/000000039769.png""" __snake_case: Union[str, Any] = dqa_pipeline(image=A , question=A , top_k=2 ) self.assertEqual(A , [] ) # We can optionnally pass directly the words and bounding boxes __snake_case: Optional[int] = """./tests/fixtures/tests_samples/COCO/000000039769.png""" __snake_case: int = [] __snake_case: int = [] __snake_case: str = dqa_pipeline(image=A , question=A , words=A , boxes=A , top_k=2 ) self.assertEqual(A , [] ) @slow @require_torch @require_detectrona @require_pytesseract def UpperCAmelCase__ ( self : List[Any] ): __snake_case: int = pipeline( """document-question-answering""" , model="""tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa""" , revision="""9977165""" , ) __snake_case: Tuple = INVOICE_URL __snake_case: List[str] = """What is the invoice number?""" __snake_case: int = dqa_pipeline(image=A , question=A , top_k=2 ) self.assertEqual( nested_simplify(A , decimals=4 ) , [ {"""score""": 0.9944, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0009, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) __snake_case: Optional[Any] = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(A , decimals=4 ) , [ {"""score""": 0.9944, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0009, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) __snake_case: Any = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(A , decimals=4 ) , [ [ {"""score""": 0.9944, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0009, """answer""": """us-001""", """start""": 16, """end""": 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def UpperCAmelCase__ ( self : str ): __snake_case: Dict = pipeline( """document-question-answering""" , model="""tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa""" , revision="""9977165""" , max_seq_len=50 , ) __snake_case: int = INVOICE_URL __snake_case: int = """What is the invoice number?""" __snake_case: Dict = dqa_pipeline(image=A , question=A , top_k=2 ) self.assertEqual( nested_simplify(A , decimals=4 ) , [ {"""score""": 0.9974, """answer""": """1110212019""", """start""": 23, """end""": 23}, {"""score""": 0.9948, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) __snake_case: Any = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(A , decimals=4 ) , [ {"""score""": 0.9974, """answer""": """1110212019""", """start""": 23, """end""": 23}, {"""score""": 0.9948, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) __snake_case: Any = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(A , decimals=4 ) , [ [ {"""score""": 0.9974, """answer""": """1110212019""", """start""": 23, """end""": 23}, {"""score""": 0.9948, """answer""": """us-001""", """start""": 16, """end""": 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def UpperCAmelCase__ ( self : Any ): __snake_case: Tuple = AutoTokenizer.from_pretrained( """impira/layoutlm-document-qa""" , revision="""3dc6de3""" , add_prefix_space=A ) __snake_case: Optional[Any] = pipeline( """document-question-answering""" , model="""impira/layoutlm-document-qa""" , tokenizer=A , revision="""3dc6de3""" , ) __snake_case: List[str] = INVOICE_URL __snake_case: Dict = """What is the invoice number?""" __snake_case: Tuple = dqa_pipeline(image=A , question=A , top_k=2 ) self.assertEqual( nested_simplify(A , decimals=4 ) , [ {"""score""": 0.4251, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0819, """answer""": """1110212019""", """start""": 23, """end""": 23}, ] , ) __snake_case: Tuple = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(A , decimals=4 ) , [ {"""score""": 0.4251, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0819, """answer""": """1110212019""", """start""": 23, """end""": 23}, ] , ) __snake_case: Any = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(A , decimals=4 ) , [ [ {"""score""": 0.4251, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0819, """answer""": """1110212019""", """start""": 23, """end""": 23}, ] ] * 2 , ) __snake_case: int = list(zip(*apply_tesseract(load_image(A ) , A , """""" ) ) ) # This model should also work if `image` is set to None __snake_case: Optional[Any] = dqa_pipeline({"""image""": None, """word_boxes""": word_boxes, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(A , decimals=4 ) , [ {"""score""": 0.4251, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0819, """answer""": """1110212019""", """start""": 23, """end""": 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def UpperCAmelCase__ ( self : List[str] ): __snake_case: Union[str, Any] = AutoTokenizer.from_pretrained( """impira/layoutlm-document-qa""" , revision="""3dc6de3""" , add_prefix_space=A ) __snake_case: Dict = pipeline( """document-question-answering""" , model="""impira/layoutlm-document-qa""" , tokenizer=A , revision="""3dc6de3""" , max_seq_len=50 , ) __snake_case: Tuple = INVOICE_URL __snake_case: Optional[Any] = """What is the invoice number?""" __snake_case: Optional[int] = dqa_pipeline(image=A , question=A , top_k=2 ) self.assertEqual( nested_simplify(A , decimals=4 ) , [ {"""score""": 0.9999, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.9998, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) __snake_case: str = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(A , decimals=4 ) , [ [ {"""score""": 0.9999, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.9998, """answer""": """us-001""", """start""": 16, """end""": 16}, ] ] * 2 , ) __snake_case: Optional[Any] = list(zip(*apply_tesseract(load_image(A ) , A , """""" ) ) ) # This model should also work if `image` is set to None __snake_case: Optional[int] = dqa_pipeline({"""image""": None, """word_boxes""": word_boxes, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(A , decimals=4 ) , [ {"""score""": 0.9999, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.9998, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) @slow @require_torch def UpperCAmelCase__ ( self : Tuple ): __snake_case: Tuple = pipeline( """document-question-answering""" , model="""naver-clova-ix/donut-base-finetuned-docvqa""" , tokenizer=AutoTokenizer.from_pretrained("""naver-clova-ix/donut-base-finetuned-docvqa""" ) , feature_extractor="""naver-clova-ix/donut-base-finetuned-docvqa""" , ) __snake_case: str = INVOICE_URL __snake_case: Optional[Any] = """What is the invoice number?""" __snake_case: Optional[int] = dqa_pipeline(image=A , question=A , top_k=2 ) self.assertEqual(nested_simplify(A , decimals=4 ) , [{"""answer""": """us-001"""}] ) @require_tf @unittest.skip("""Document question answering not implemented in TF""" ) def UpperCAmelCase__ ( self : str ): pass
357
import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
293
0
import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class __snake_case : '''simple docstring''' def __init__( self : Any , A : Optional[Any] , A : List[Any]=13 , A : str=7 , A : Dict=True , A : Dict=True , A : str=True , A : Any=True , A : Optional[int]=99 , A : Dict=64 , A : Optional[Any]=32 , A : Union[str, Any]=5 , A : Any=4 , A : List[str]=37 , A : List[Any]="gelu" , A : Tuple=0.1 , A : str=0.1 , A : Optional[Any]=512 , A : Union[str, Any]=16 , A : List[str]=2 , A : Optional[Any]=0.02 , A : Union[str, Any]=3 , A : Any=4 , A : str=None , ): __snake_case: List[Any] = parent __snake_case: Any = batch_size __snake_case: List[Any] = seq_length __snake_case: Optional[Any] = is_training __snake_case: List[Any] = use_input_mask __snake_case: Optional[int] = use_token_type_ids __snake_case: List[str] = use_labels __snake_case: Dict = vocab_size __snake_case: Optional[Any] = hidden_size __snake_case: Optional[int] = embedding_size __snake_case: Optional[Any] = num_hidden_layers __snake_case: List[str] = num_attention_heads __snake_case: Any = intermediate_size __snake_case: Any = hidden_act __snake_case: Tuple = hidden_dropout_prob __snake_case: Dict = attention_probs_dropout_prob __snake_case: Optional[int] = max_position_embeddings __snake_case: Optional[Any] = type_vocab_size __snake_case: Union[str, Any] = type_sequence_label_size __snake_case: List[Any] = initializer_range __snake_case: Any = num_labels __snake_case: List[Any] = num_choices __snake_case: Optional[int] = scope def UpperCAmelCase__ ( self : List[str] ): __snake_case: List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case: Any = None if self.use_input_mask: __snake_case: Any = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case: Optional[int] = None if self.use_token_type_ids: __snake_case: Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case: Tuple = None __snake_case: Union[str, Any] = None __snake_case: Optional[Any] = None if self.use_labels: __snake_case: List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case: Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case: int = ids_tensor([self.batch_size] , self.num_choices ) __snake_case: int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : Optional[Any] ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self : List[str] , A : int , A : List[str] , A : Optional[Any] , A : Union[str, Any] , A : Any , A : Any , A : List[Any] ): __snake_case: Optional[Any] = MobileBertModel(config=A ) model.to(A ) model.eval() __snake_case: Dict = model(A , attention_mask=A , token_type_ids=A ) __snake_case: Dict = model(A , token_type_ids=A ) __snake_case: List[str] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase__ ( self : Dict , A : str , A : Dict , A : List[str] , A : Optional[int] , A : Union[str, Any] , A : Union[str, Any] , A : str ): __snake_case: Dict = MobileBertForMaskedLM(config=A ) model.to(A ) model.eval() __snake_case: Union[str, Any] = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self : int , A : Dict , A : Tuple , A : Tuple , A : List[str] , A : Any , A : str , A : int ): __snake_case: str = MobileBertForNextSentencePrediction(config=A ) model.to(A ) model.eval() __snake_case: Union[str, Any] = model( A , attention_mask=A , token_type_ids=A , labels=A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def UpperCAmelCase__ ( self : str , A : List[Any] , A : Optional[Any] , A : List[str] , A : Dict , A : int , A : str , A : Union[str, Any] ): __snake_case: Dict = MobileBertForPreTraining(config=A ) model.to(A ) model.eval() __snake_case: List[Any] = model( A , attention_mask=A , token_type_ids=A , labels=A , next_sentence_label=A , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def UpperCAmelCase__ ( self : Dict , A : Union[str, Any] , A : str , A : int , A : Dict , A : Dict , A : Any , A : List[str] ): __snake_case: List[str] = MobileBertForQuestionAnswering(config=A ) model.to(A ) model.eval() __snake_case: Tuple = model( A , attention_mask=A , token_type_ids=A , start_positions=A , end_positions=A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase__ ( self : Tuple , A : List[str] , A : Any , A : List[Any] , A : Union[str, Any] , A : Dict , A : int , A : Optional[int] ): __snake_case: Dict = self.num_labels __snake_case: List[str] = MobileBertForSequenceClassification(A ) model.to(A ) model.eval() __snake_case: List[str] = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self : Union[str, Any] , A : Dict , A : str , A : Tuple , A : int , A : List[Any] , A : List[str] , A : int ): __snake_case: Optional[int] = self.num_labels __snake_case: Dict = MobileBertForTokenClassification(config=A ) model.to(A ) model.eval() __snake_case: Optional[Any] = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase__ ( self : int , A : Any , A : Any , A : Optional[Any] , A : str , A : int , A : str , A : Dict ): __snake_case: Any = self.num_choices __snake_case: List[str] = MobileBertForMultipleChoice(config=A ) model.to(A ) model.eval() __snake_case: Tuple = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case: Optional[int] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case: Any = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case: Optional[Any] = model( A , attention_mask=A , token_type_ids=A , labels=A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase__ ( self : str ): __snake_case: List[str] = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ): Any = config_and_inputs __snake_case: List[Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __snake_case ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase__ = ( { """feature-extraction""": MobileBertModel, """fill-mask""": MobileBertForMaskedLM, """question-answering""": MobileBertForQuestionAnswering, """text-classification""": MobileBertForSequenceClassification, """token-classification""": MobileBertForTokenClassification, """zero-shot""": MobileBertForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ = True def UpperCAmelCase__ ( self : List[Any] , A : str , A : Tuple , A : Union[str, Any]=False ): __snake_case: Union[str, Any] = super()._prepare_for_class(A , A , return_labels=A ) if return_labels: if model_class in get_values(A ): __snake_case: List[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=A ) __snake_case: List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A ) return inputs_dict def UpperCAmelCase__ ( self : int ): __snake_case: int = MobileBertModelTester(self ) __snake_case: Tuple = ConfigTester(self , config_class=A , hidden_size=37 ) def UpperCAmelCase__ ( self : Optional[Any] ): self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : Tuple ): __snake_case: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*A ) def UpperCAmelCase__ ( self : List[str] ): __snake_case: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*A ) def UpperCAmelCase__ ( self : Any ): __snake_case: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*A ) def UpperCAmelCase__ ( self : Dict ): __snake_case: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*A ) def UpperCAmelCase__ ( self : List[str] ): __snake_case: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*A ) def UpperCAmelCase__ ( self : Union[str, Any] ): __snake_case: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*A ) def UpperCAmelCase__ ( self : Dict ): __snake_case: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*A ) def UpperCAmelCase__ ( self : int ): __snake_case: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*A ) def A__ ( SCREAMING_SNAKE_CASE__) -> str: return torch.tensor( SCREAMING_SNAKE_CASE__ , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ , ) __UpperCAmelCase : Any = 1e-3 @require_torch @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase__ ( self : Any ): __snake_case: Union[str, Any] = MobileBertModel.from_pretrained("""google/mobilebert-uncased""" ).to(A ) __snake_case: List[Any] = _long_tensor([[101, 7_110, 1_005, 1_056, 2_023, 11_333, 17_413, 1_029, 102]] ) with torch.no_grad(): __snake_case: Dict = model(A )[0] __snake_case: str = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , A ) __snake_case: str = torch.tensor( [ [ [-2.4_73_65_26E07, 8.2_69_16_56E04, 1.6_52_18_38E05], [-5.7_54_17_04E-01, 3.9_05_60_22E00, 4.4_01_15_07E00], [2.6_04_73_59E00, 1.5_67_76_52E00, -1.7_32_41_88E-01], ] ] , device=A , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE __snake_case: str = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) __snake_case: int = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
111
def A__ ( SCREAMING_SNAKE_CASE__ = 200) -> int: __snake_case: Optional[int] = [1, 2, 5, 10, 20, 50, 100, 200] __snake_case: List[Any] = [0] * (pence + 1) __snake_case: int = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(SCREAMING_SNAKE_CASE__ , pence + 1 , 1): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 73_682
111
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCamelCase : List[str] = logging.get_logger(__name__) __lowerCamelCase : List[Any] = { """facebook/xmod-base""": """https://huggingface.co/facebook/xmod-base/resolve/main/config.json""", """facebook/xmod-large-prenorm""": """https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json""", """facebook/xmod-base-13-125k""": """https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json""", """facebook/xmod-base-30-125k""": """https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json""", """facebook/xmod-base-30-195k""": """https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json""", """facebook/xmod-base-60-125k""": """https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json""", """facebook/xmod-base-60-265k""": """https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json""", """facebook/xmod-base-75-125k""": """https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json""", """facebook/xmod-base-75-269k""": """https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "xmod" def __init__( self : List[str] , __A : List[str]=3_0_5_2_2 , __A : Tuple=7_6_8 , __A : str=1_2 , __A : List[Any]=1_2 , __A : List[str]=3_0_7_2 , __A : List[str]="gelu" , __A : List[Any]=0.1 , __A : Tuple=0.1 , __A : str=5_1_2 , __A : Union[str, Any]=2 , __A : List[Any]=0.0_2 , __A : List[str]=1e-1_2 , __A : Tuple=1 , __A : List[Any]=0 , __A : Optional[Any]=2 , __A : Optional[int]="absolute" , __A : Optional[int]=True , __A : Dict=None , __A : Optional[int]=False , __A : Dict=2 , __A : List[str]=False , __A : Dict=True , __A : Union[str, Any]=True , __A : Tuple=("en_XX",) , __A : Optional[Any]=None , **__A : Tuple , ): super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) snake_case__ : Tuple = vocab_size snake_case__ : Union[str, Any] = hidden_size snake_case__ : int = num_hidden_layers snake_case__ : str = num_attention_heads snake_case__ : Tuple = hidden_act snake_case__ : Optional[Any] = intermediate_size snake_case__ : List[str] = hidden_dropout_prob snake_case__ : Optional[int] = attention_probs_dropout_prob snake_case__ : Union[str, Any] = max_position_embeddings snake_case__ : str = type_vocab_size snake_case__ : List[str] = initializer_range snake_case__ : Dict = layer_norm_eps snake_case__ : str = position_embedding_type snake_case__ : List[str] = use_cache snake_case__ : Tuple = classifier_dropout snake_case__ : Any = pre_norm snake_case__ : List[str] = adapter_reduction_factor snake_case__ : List[Any] = adapter_layer_norm snake_case__ : str = adapter_reuse_layer_norm snake_case__ : Union[str, Any] = ln_before_adapter snake_case__ : Tuple = list(__A ) snake_case__ : int = default_language class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" @property def _lowercase ( self : int ): if self.task == "multiple-choice": snake_case__ : Any = {0: "batch", 1: "choice", 2: "sequence"} else: snake_case__ : Any = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
286
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCamelCase : Optional[int] = logging.get_logger(__name__) __lowerCamelCase : str = { """andreasmadsen/efficient_mlm_m0.40""": ( """https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json""" ), } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "roberta-prelayernorm" def __init__( self : Tuple , __A : Any=5_0_2_6_5 , __A : Optional[int]=7_6_8 , __A : Dict=1_2 , __A : Union[str, Any]=1_2 , __A : List[Any]=3_0_7_2 , __A : Optional[Any]="gelu" , __A : Optional[int]=0.1 , __A : Tuple=0.1 , __A : Optional[Any]=5_1_2 , __A : List[str]=2 , __A : Optional[int]=0.0_2 , __A : Tuple=1e-1_2 , __A : Any=1 , __A : str=0 , __A : int=2 , __A : List[str]="absolute" , __A : Optional[Any]=True , __A : List[Any]=None , **__A : Optional[Any] , ): super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) snake_case__ : Tuple = vocab_size snake_case__ : Optional[Any] = hidden_size snake_case__ : List[Any] = num_hidden_layers snake_case__ : List[Any] = num_attention_heads snake_case__ : Dict = hidden_act snake_case__ : Union[str, Any] = intermediate_size snake_case__ : List[Any] = hidden_dropout_prob snake_case__ : Any = attention_probs_dropout_prob snake_case__ : int = max_position_embeddings snake_case__ : Tuple = type_vocab_size snake_case__ : Optional[int] = initializer_range snake_case__ : int = layer_norm_eps snake_case__ : Dict = position_embedding_type snake_case__ : int = use_cache snake_case__ : Dict = classifier_dropout class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" @property def _lowercase ( self : Optional[int] ): if self.task == "multiple-choice": snake_case__ : List[str] = {0: "batch", 1: "choice", 2: "sequence"} else: snake_case__ : Tuple = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
286
1
'''simple docstring''' # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path __lowercase : List[Any] = Path(__file__).resolve().parents[3] / 'src' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) __lowercase : Dict = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'} __lowercase : int = 'zero2' __lowercase : Dict = 'zero3' __lowercase : List[Any] = [ZEROa, ZEROa] def lowerCamelCase (_SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Any ): # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param __a : Dict = parameterized.to_safe_name('_'.join(str(_SCREAMING_SNAKE_CASE ) for x in param.args ) ) return F"""{func.__name__}_{param_based_name}""" # Cartesian-product of zero stages with models to test __lowercase : List[Any] = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class __UpperCamelCase ( lowerCAmelCase_ ): @parameterized.expand(__a , name_func=__a ) def __UpperCAmelCase ( self , __a , __a ): '''simple docstring''' self.run_and_check( stage=__a , model=__a , distributed=__a , fpaa=__a , ) @require_torch_multi_gpu @parameterized.expand(__a , name_func=__a ) def __UpperCAmelCase ( self , __a , __a ): '''simple docstring''' self.run_and_check( stage=__a , model=__a , distributed=__a , fpaa=__a , ) @parameterized.expand(__a , name_func=__a ) def __UpperCAmelCase ( self , __a , __a ): '''simple docstring''' self.run_and_check( stage=__a , model=__a , distributed=__a , fpaa=__a , ) @require_torch_multi_gpu @parameterized.expand(__a , name_func=__a ) def __UpperCAmelCase ( self , __a , __a ): '''simple docstring''' self.run_and_check( stage=__a , model=__a , distributed=__a , fpaa=__a , ) def __UpperCAmelCase ( self , __a ): '''simple docstring''' pass def __UpperCAmelCase ( self , __a , __a , __a = 10 , __a = True , __a = True , __a = True , ): '''simple docstring''' __a : Any = models[model] __a : Union[str, Any] = self.run_trainer( stage=__a , model_name=__a , eval_steps=__a , num_train_epochs=1 , distributed=__a , fpaa=__a , ) self.do_checks(__a ) return output_dir def __UpperCAmelCase ( self , __a , __a , __a = 10 , __a = 1 , __a = True , __a = True , ): '''simple docstring''' __a : Tuple = self.get_auto_remove_tmp_dir('./xxx' , after=__a ) __a : Optional[Any] = f""" --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(__a )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none """.split() if fpaa: args.extend(['--fp16'] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files __a : int = f"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split() __a : Union[str, Any] = [f"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""] __a : Dict = self.get_launcher(__a ) __a : Tuple = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(__a , env=self.get_env() ) return output_dir def __UpperCAmelCase ( self , __a=False ): '''simple docstring''' __a : int = min(2 , get_gpu_count() ) if distributed else 1 return f"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
27
"""simple docstring""" import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class lowercase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : int ): _A = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) _A = Vector() def lowerCAmelCase_ ( self : Optional[Any] ): _A = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(_UpperCAmelCase ) , '(0,0,0,0,0,1)' ) def lowerCAmelCase_ ( self : Optional[int] ): _A = Vector([1, 2, 3, 4] ) self.assertEqual(len(_UpperCAmelCase ) , 4 ) def lowerCAmelCase_ ( self : int ): _A = Vector([1, 2] ) _A = Vector([1, 2, 3, 4, 5] ) _A = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) _A = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def lowerCAmelCase_ ( self : str ): _A = Vector([1, 2, 3] ) _A = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = Vector([1, 2, 3] ) _A = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def lowerCAmelCase_ ( self : int ): _A = Vector([1, 2, 3] ) _A = Vector([2, -1, 4] ) # for test of dot product _A = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , '(3.0,6.0,9.0)' ) self.assertEqual((a * b) , 0 ) def lowerCAmelCase_ ( self : Dict ): self.assertEqual(str(zero_vector(10 ) ).count('0' ) , 10 ) def lowerCAmelCase_ ( self : Tuple ): self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '(0,1,0)' ) def lowerCAmelCase_ ( self : Union[str, Any] ): _A = Vector([1, 2, 3] ) _A = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , _UpperCAmelCase , _UpperCAmelCase ) ) , '(3,4,7)' ) def lowerCAmelCase_ ( self : Union[str, Any] ): _A = Vector([1, 0, 0, 0, 0, 0] ) _A = x.copy() self.assertEqual(str(_UpperCAmelCase ) , str(_UpperCAmelCase ) ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(_UpperCAmelCase ) , '(0,1,0)' ) def lowerCAmelCase_ ( self : Any ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual('|1,2,3|\n|2,4,5|\n|6,7,8|\n' , str(_UpperCAmelCase ) ) def lowerCAmelCase_ ( self : Any ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _A = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(_UpperCAmelCase , _UpperCAmelCase ) ) def lowerCAmelCase_ ( self : Any ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _A = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(_UpperCAmelCase , _UpperCAmelCase ) ) def lowerCAmelCase_ ( self : str ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def lowerCAmelCase_ ( self : Tuple ): _A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) _A = Vector([1, 2, 3] ) self.assertEqual('(14,32,50)' , str(a * x ) ) self.assertEqual('|2,4,6|\n|8,10,12|\n|14,16,18|\n' , str(a * 2 ) ) def lowerCAmelCase_ ( self : Any ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual('|1,2,5|\n|2,4,5|\n|6,7,8|\n' , str(_UpperCAmelCase ) ) def lowerCAmelCase_ ( self : List[Any] ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def lowerCAmelCase_ ( self : Tuple ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _A = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('|2,4,10|\n|4,8,10|\n|12,14,18|\n' , str(a + b ) ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _A = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('|0,0,-4|\n|0,0,0|\n|0,0,-2|\n' , str(a - b ) ) def lowerCAmelCase_ ( self : int ): self.assertEqual( '|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n' , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
315
0
'''simple docstring''' from __future__ import annotations from collections.abc import Callable lowerCamelCase__ = list[list[float | int]] def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : int = len(__lowerCAmelCase ) _UpperCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : float for row in range(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = matrix[row][col] _UpperCAmelCase : Optional[int] = vector[row][0] _UpperCAmelCase : int = 0 _UpperCAmelCase : Union[str, Any] = 0 while row < size and col < size: # pivoting _UpperCAmelCase : Optional[Any] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__lowerCAmelCase , __lowerCAmelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _UpperCAmelCase , _UpperCAmelCase : str = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __lowerCAmelCase ): _UpperCAmelCase : Dict = augmented[rowa][col] / augmented[row][col] _UpperCAmelCase : Optional[Any] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __lowerCAmelCase ): for row in range(__lowerCAmelCase ): _UpperCAmelCase : Dict = augmented[row][col] / augmented[col][col] for cola in range(__lowerCAmelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__lowerCAmelCase ) ] def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : int = len(__lowerCAmelCase ) _UpperCAmelCase : Matrix = [[0 for _ in range(__lowerCAmelCase )] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : Matrix = [[0] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : Matrix _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int for x_val, y_val in enumerate(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): _UpperCAmelCase : Dict = (x_val + 1) ** (size - col - 1) _UpperCAmelCase : int = y_val _UpperCAmelCase : List[str] = solve(__lowerCAmelCase , __lowerCAmelCase ) def interpolated_func(__lowerCAmelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__lowerCAmelCase ) ) return interpolated_func def __lowerCAmelCase (__lowerCAmelCase ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def __lowerCAmelCase (__lowerCAmelCase = question_function , __lowerCAmelCase = 10 ): _UpperCAmelCase : list[int] = [func(__lowerCAmelCase ) for x_val in range(1 , order + 1 )] _UpperCAmelCase : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _UpperCAmelCase : int = 0 _UpperCAmelCase : Callable[[int], int] _UpperCAmelCase : int for poly in polynomials: _UpperCAmelCase : int = 1 while func(__lowerCAmelCase ) == poly(__lowerCAmelCase ): x_val += 1 ret += poly(__lowerCAmelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
322
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : Optional[Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str]=13 , lowerCamelCase__ : Optional[Any]=7 , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : Any=True , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Any=True , lowerCamelCase__ : int=99 , lowerCamelCase__ : int=32 , lowerCamelCase__ : List[str]=5 , lowerCamelCase__ : Optional[Any]=4 , lowerCamelCase__ : Optional[int]=37 , lowerCamelCase__ : Tuple="gelu" , lowerCamelCase__ : Any=0.1 , lowerCamelCase__ : Union[str, Any]=0.1 , lowerCamelCase__ : Optional[int]=5_12 , lowerCamelCase__ : Optional[int]=16 , lowerCamelCase__ : str=2 , lowerCamelCase__ : Union[str, Any]=0.0_2 , lowerCamelCase__ : Tuple=4 , ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = parent _UpperCAmelCase : List[Any] = batch_size _UpperCAmelCase : Optional[int] = seq_length _UpperCAmelCase : int = is_training _UpperCAmelCase : Dict = use_attention_mask _UpperCAmelCase : Optional[Any] = use_token_type_ids _UpperCAmelCase : int = use_labels _UpperCAmelCase : Optional[int] = vocab_size _UpperCAmelCase : Any = hidden_size _UpperCAmelCase : Any = num_hidden_layers _UpperCAmelCase : List[Any] = num_attention_heads _UpperCAmelCase : Tuple = intermediate_size _UpperCAmelCase : int = hidden_act _UpperCAmelCase : int = hidden_dropout_prob _UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob _UpperCAmelCase : Union[str, Any] = max_position_embeddings _UpperCAmelCase : Tuple = type_vocab_size _UpperCAmelCase : List[Any] = type_sequence_label_size _UpperCAmelCase : Optional[int] = initializer_range _UpperCAmelCase : Dict = num_choices def lowerCAmelCase__ ( self : List[Any] ) ->Any: '''simple docstring''' _UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : Dict = None if self.use_attention_mask: _UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Union[str, Any] = None if self.use_token_type_ids: _UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase : int = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase__ ( self : Any ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Tuple = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[Any] = config_and_inputs _UpperCAmelCase : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): lowerCAmelCase : Optional[int] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase__ ( self : Optional[int] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : int = FlaxAlbertModelTester(self ) @slow def lowerCAmelCase__ ( self : Any ) ->List[str]: '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCAmelCase : List[str] = model_class_name.from_pretrained("albert-base-v2" ) _UpperCAmelCase : Optional[int] = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ ) @require_flax class lowerCAmelCase__ ( unittest.TestCase ): @slow def lowerCAmelCase__ ( self : Tuple ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : str = FlaxAlbertModel.from_pretrained("albert-base-v2" ) _UpperCAmelCase : List[Any] = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) _UpperCAmelCase : Optional[int] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _UpperCAmelCase : Dict = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ )[0] _UpperCAmelCase : List[Any] = (1, 11, 7_68) self.assertEqual(output.shape , lowerCamelCase__ ) _UpperCAmelCase : str = np.array( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCamelCase__ , atol=1E-4 ) )
322
1
"""simple docstring""" import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class a ( UpperCAmelCase__ , unittest.TestCase ): UpperCamelCase : Union[str, Any] = DownBlockaD # noqa F405 UpperCamelCase : str = 'down' def lowerCamelCase__ ( self : Dict ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Union[str, Any] =[-0.0_2_3_2, -0.9_8_6_9, 0.8_0_5_4, -0.0_6_3_7, -0.1_6_8_8, -1.4_2_6_4, 0.4_4_7_0, -1.3_3_9_4, 0.0_9_0_4] super().test_output(lowerCAmelCase ) class a ( UpperCAmelCase__ , unittest.TestCase ): UpperCamelCase : Optional[int] = ResnetDownsampleBlockaD # noqa F405 UpperCamelCase : Any = 'down' def lowerCamelCase__ ( self : Optional[int] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] =[0.0_7_1_0, 0.2_4_1_0, -0.7_3_2_0, -1.0_7_5_7, -1.1_3_4_3, 0.3_5_4_0, -0.0_1_3_3, -0.2_5_7_6, 0.0_9_4_8] super().test_output(lowerCAmelCase ) class a ( UpperCAmelCase__ , unittest.TestCase ): UpperCamelCase : Dict = AttnDownBlockaD # noqa F405 UpperCamelCase : List[str] = 'down' def lowerCamelCase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE_: Union[str, Any] =[0.0_6_3_6, 0.8_9_6_4, -0.6_2_3_4, -1.0_1_3_1, 0.0_8_4_4, 0.4_9_3_5, 0.3_4_3_7, 0.0_9_1_1, -0.2_9_5_7] super().test_output(lowerCAmelCase ) class a ( UpperCAmelCase__ , unittest.TestCase ): UpperCamelCase : Optional[Any] = CrossAttnDownBlockaD # noqa F405 UpperCamelCase : Dict = 'down' def lowerCamelCase__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] =super().prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE_: str =32 return init_dict, inputs_dict def lowerCamelCase__ ( self : List[Any] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[Any] =[0.2_2_3_8, -0.7_3_9_6, -0.2_2_5_5, -0.3_8_2_9, 0.1_9_2_5, 1.1_6_6_5, 0.0_6_0_3, -0.7_2_9_5, 0.1_9_8_3] super().test_output(lowerCAmelCase ) class a ( UpperCAmelCase__ , unittest.TestCase ): UpperCamelCase : Any = SimpleCrossAttnDownBlockaD # noqa F405 UpperCamelCase : Union[str, Any] = 'down' @property def lowerCamelCase__ ( self : Any ) -> int: '''simple docstring''' return super().get_dummy_input(include_encoder_hidden_states=lowerCAmelCase ) def lowerCamelCase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str =super().prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE_: Tuple =32 return init_dict, inputs_dict @unittest.skipIf(torch_device == """mps""" , """MPS result is not consistent""" ) def lowerCamelCase__ ( self : Tuple ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =[0.7_9_2_1, -0.0_9_9_2, -0.1_9_6_2, -0.7_6_9_5, -0.4_2_4_2, 0.7_8_0_4, 0.4_7_3_7, 0.2_7_6_5, 0.3_3_3_8] super().test_output(lowerCAmelCase ) class a ( UpperCAmelCase__ , unittest.TestCase ): UpperCamelCase : int = SkipDownBlockaD # noqa F405 UpperCamelCase : List[Any] = 'down' @property def lowerCamelCase__ ( self : int ) -> Dict: '''simple docstring''' return super().get_dummy_input(include_skip_sample=lowerCAmelCase ) def lowerCamelCase__ ( self : int ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[int] =[-0.0_8_4_5, -0.2_0_8_7, -0.2_4_6_5, 0.0_9_7_1, 0.1_9_0_0, -0.0_4_8_4, 0.2_6_6_4, 0.4_1_7_9, 0.5_0_6_9] super().test_output(lowerCAmelCase ) class a ( UpperCAmelCase__ , unittest.TestCase ): UpperCamelCase : Union[str, Any] = AttnSkipDownBlockaD # noqa F405 UpperCamelCase : Optional[Any] = 'down' @property def lowerCamelCase__ ( self : Any ) -> List[Any]: '''simple docstring''' return super().get_dummy_input(include_skip_sample=lowerCAmelCase ) def lowerCamelCase__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Any =[0.5_5_3_9, 0.1_6_0_9, 0.4_9_2_4, 0.0_5_3_7, -0.1_9_9_5, 0.4_0_5_0, 0.0_9_7_9, -0.2_7_2_1, -0.0_6_4_2] super().test_output(lowerCAmelCase ) class a ( UpperCAmelCase__ , unittest.TestCase ): UpperCamelCase : str = DownEncoderBlockaD # noqa F405 UpperCamelCase : Any = 'down' @property def lowerCamelCase__ ( self : List[str] ) -> int: '''simple docstring''' return super().get_dummy_input(include_temb=lowerCAmelCase ) def lowerCamelCase__ ( self : str ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Union[str, Any] ={ """in_channels""": 32, """out_channels""": 32, } SCREAMING_SNAKE_CASE_: Dict =self.dummy_input return init_dict, inputs_dict def lowerCamelCase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[Any] =[1.1_1_0_2, 0.5_3_0_2, 0.4_8_7_2, -0.0_0_2_3, -0.8_0_4_2, 0.0_4_8_3, -0.3_4_8_9, -0.5_6_3_2, 0.7_6_2_6] super().test_output(lowerCAmelCase ) class a ( UpperCAmelCase__ , unittest.TestCase ): UpperCamelCase : List[Any] = AttnDownEncoderBlockaD # noqa F405 UpperCamelCase : Optional[int] = 'down' @property def lowerCamelCase__ ( self : Any ) -> Optional[Any]: '''simple docstring''' return super().get_dummy_input(include_temb=lowerCAmelCase ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] ={ """in_channels""": 32, """out_channels""": 32, } SCREAMING_SNAKE_CASE_: int =self.dummy_input return init_dict, inputs_dict def lowerCamelCase__ ( self : Dict ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =[0.8_9_6_6, -0.1_4_8_6, 0.8_5_6_8, 0.8_1_4_1, -0.9_0_4_6, -0.1_3_4_2, -0.0_9_7_2, -0.7_4_1_7, 0.1_5_3_8] super().test_output(lowerCAmelCase ) class a ( UpperCAmelCase__ , unittest.TestCase ): UpperCamelCase : Optional[Any] = UNetMidBlockaD # noqa F405 UpperCamelCase : Any = 'mid' def lowerCamelCase__ ( self : Any ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: str ={ """in_channels""": 32, """temb_channels""": 128, } SCREAMING_SNAKE_CASE_: List[Any] =self.dummy_input return init_dict, inputs_dict def lowerCamelCase__ ( self : Tuple ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =[-0.1_0_6_2, 1.7_2_4_8, 0.3_4_9_4, 1.4_5_6_9, -0.0_9_1_0, -1.2_4_2_1, -0.9_9_8_4, 0.6_7_3_6, 1.0_0_2_8] super().test_output(lowerCAmelCase ) class a ( UpperCAmelCase__ , unittest.TestCase ): UpperCamelCase : Optional[Any] = UNetMidBlockaDCrossAttn # noqa F405 UpperCamelCase : List[Any] = 'mid' def lowerCamelCase__ ( self : Tuple ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] =super().prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE_: Dict =32 return init_dict, inputs_dict def lowerCamelCase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Any =[0.0_1_8_7, 2.4_2_2_0, 0.4_4_8_4, 1.1_2_0_3, -0.6_1_2_1, -1.5_1_2_2, -0.8_2_7_0, 0.7_8_5_1, 1.8_3_3_5] super().test_output(lowerCAmelCase ) class a ( UpperCAmelCase__ , unittest.TestCase ): UpperCamelCase : Union[str, Any] = UNetMidBlockaDSimpleCrossAttn # noqa F405 UpperCamelCase : Tuple = 'mid' @property def lowerCamelCase__ ( self : int ) -> int: '''simple docstring''' return super().get_dummy_input(include_encoder_hidden_states=lowerCAmelCase ) def lowerCamelCase__ ( self : int ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int =super().prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE_: Union[str, Any] =32 return init_dict, inputs_dict def lowerCamelCase__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =[0.7_1_4_3, 1.9_9_7_4, 0.5_4_4_8, 1.3_9_7_7, 0.1_2_8_2, -1.1_2_3_7, -1.4_2_3_8, 0.5_5_3_0, 0.8_8_8_0] super().test_output(lowerCAmelCase ) class a ( UpperCAmelCase__ , unittest.TestCase ): UpperCamelCase : Any = UpBlockaD # noqa F405 UpperCamelCase : int = 'up' @property def lowerCamelCase__ ( self : List[Any] ) -> Tuple: '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=lowerCAmelCase ) def lowerCamelCase__ ( self : Any ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =[-0.2_0_4_1, -0.4_1_6_5, -0.3_0_2_2, 0.0_0_4_1, -0.6_6_2_8, -0.7_0_5_3, 0.1_9_2_8, -0.0_3_2_5, 0.0_5_2_3] super().test_output(lowerCAmelCase ) class a ( UpperCAmelCase__ , unittest.TestCase ): UpperCamelCase : Optional[int] = ResnetUpsampleBlockaD # noqa F405 UpperCamelCase : Any = 'up' @property def lowerCamelCase__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=lowerCAmelCase ) def lowerCamelCase__ ( self : Any ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =[0.2_2_8_7, 0.3_5_4_9, -0.1_3_4_6, 0.4_7_9_7, -0.1_7_1_5, -0.9_6_4_9, 0.7_3_0_5, -0.5_8_6_4, -0.6_2_4_4] super().test_output(lowerCAmelCase ) class a ( UpperCAmelCase__ , unittest.TestCase ): UpperCamelCase : int = CrossAttnUpBlockaD # noqa F405 UpperCamelCase : List[str] = 'up' @property def lowerCamelCase__ ( self : Union[str, Any] ) -> int: '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=lowerCAmelCase ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any =super().prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE_: Tuple =32 return init_dict, inputs_dict def lowerCamelCase__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =[-0.1_4_0_3, -0.3_5_1_5, -0.0_4_2_0, -0.1_4_2_5, 0.3_1_6_7, 0.5_0_9_4, -0.2_1_8_1, 0.5_9_3_1, 0.5_5_8_2] super().test_output(lowerCAmelCase ) class a ( UpperCAmelCase__ , unittest.TestCase ): UpperCamelCase : Union[str, Any] = SimpleCrossAttnUpBlockaD # noqa F405 UpperCamelCase : Tuple = 'up' @property def lowerCamelCase__ ( self : int ) -> Optional[int]: '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=lowerCAmelCase , include_encoder_hidden_states=lowerCAmelCase ) def lowerCamelCase__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] =super().prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE_: Tuple =32 return init_dict, inputs_dict def lowerCamelCase__ ( self : List[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =[0.2_6_4_5, 0.1_4_8_0, 0.0_9_0_9, 0.8_0_4_4, -0.9_7_5_8, -0.9_0_8_3, 0.0_9_9_4, -1.1_4_5_3, -0.7_4_0_2] super().test_output(lowerCAmelCase ) class a ( UpperCAmelCase__ , unittest.TestCase ): UpperCamelCase : Dict = AttnUpBlockaD # noqa F405 UpperCamelCase : Dict = 'up' @property def lowerCamelCase__ ( self : Tuple ) -> List[str]: '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=lowerCAmelCase ) @unittest.skipIf(torch_device == """mps""" , """MPS result is not consistent""" ) def lowerCamelCase__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =[0.0_9_7_9, 0.1_3_2_6, 0.0_0_2_1, 0.0_6_5_9, 0.2_2_4_9, 0.0_0_5_9, 0.1_1_3_2, 0.5_9_5_2, 0.1_0_3_3] super().test_output(lowerCAmelCase ) class a ( UpperCAmelCase__ , unittest.TestCase ): UpperCamelCase : List[Any] = SkipUpBlockaD # noqa F405 UpperCamelCase : int = 'up' @property def lowerCamelCase__ ( self : int ) -> Tuple: '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=lowerCAmelCase ) def lowerCamelCase__ ( self : List[str] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =[-0.0_8_9_3, -0.1_2_3_4, -0.1_5_0_6, -0.0_3_3_2, 0.0_1_2_3, -0.0_2_1_1, 0.0_5_6_6, 0.0_1_4_3, 0.0_3_6_2] super().test_output(lowerCAmelCase ) class a ( UpperCAmelCase__ , unittest.TestCase ): UpperCamelCase : Dict = AttnSkipUpBlockaD # noqa F405 UpperCamelCase : str = 'up' @property def lowerCamelCase__ ( self : Optional[Any] ) -> int: '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=lowerCAmelCase ) def lowerCamelCase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =[0.0_3_6_1, 0.0_6_1_7, 0.2_7_8_7, -0.0_3_5_0, 0.0_3_4_2, 0.3_4_2_1, -0.0_8_4_3, 0.0_9_1_3, 0.3_0_1_5] super().test_output(lowerCAmelCase ) class a ( UpperCAmelCase__ , unittest.TestCase ): UpperCamelCase : Optional[Any] = UpDecoderBlockaD # noqa F405 UpperCamelCase : Dict = 'up' @property def lowerCamelCase__ ( self : Tuple ) -> Dict: '''simple docstring''' return super().get_dummy_input(include_temb=lowerCAmelCase ) def lowerCamelCase__ ( self : Any ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] ={"""in_channels""": 32, """out_channels""": 32} SCREAMING_SNAKE_CASE_: Tuple =self.dummy_input return init_dict, inputs_dict def lowerCamelCase__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =[0.4_4_0_4, 0.1_9_9_8, -0.9_8_8_6, -0.3_3_2_0, -0.3_1_2_8, -0.7_0_3_4, -0.6_9_5_5, -0.2_3_3_8, -0.3_1_3_7] super().test_output(lowerCAmelCase ) class a ( UpperCAmelCase__ , unittest.TestCase ): UpperCamelCase : str = AttnUpDecoderBlockaD # noqa F405 UpperCamelCase : int = 'up' @property def lowerCamelCase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' return super().get_dummy_input(include_temb=lowerCAmelCase ) def lowerCamelCase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE_: str ={"""in_channels""": 32, """out_channels""": 32} SCREAMING_SNAKE_CASE_: int =self.dummy_input return init_dict, inputs_dict def lowerCamelCase__ ( self : int ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =[0.6_7_3_8, 0.4_4_9_1, 0.1_0_5_5, 1.0_7_1_0, 0.7_3_1_6, 0.3_3_3_9, 0.3_3_5_2, 0.1_0_2_3, 0.3_5_6_8] super().test_output(lowerCAmelCase )
173
"""simple docstring""" from __future__ import annotations import numpy as np def __magic_name__ ( lowercase ): return np.maximum(0 , lowercase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
173
1
from __future__ import annotations lowercase_ = list[list[int]] # assigning initial values to the grid lowercase_ = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution lowercase_ = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): if location := find_empty_location(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : int = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Tuple = digit if sudoku(SCREAMING_SNAKE_CASE__ ) is not None: return grid __lowerCamelCase : Optional[int] = 0 return None def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): for row in grid: for cell in row: print(SCREAMING_SNAKE_CASE__ , end=' ' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('\nExample grid:\n' + '=' * 2_0) print_solution(example_grid) print('\nExample grid solution:') lowercase_ = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('Cannot find a solution.')
351
import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor lowercase_ = logging.get_logger(__name__) class A_ ( __UpperCamelCase ): '''simple docstring''' def __init__( self: List[str] , *a: List[Any] , **a: Optional[Any] ): warnings.warn( 'The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ChineseCLIPImageProcessor instead.' , a , ) super().__init__(*a , **a )
194
0
'''simple docstring''' def __lowerCamelCase ( A__ , A__ , A__ ) -> Any: """simple docstring""" if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(A__ , n - 1 , A__ ) * a) % mod else: UpperCamelCase = binary_exponentiation(A__ , n / 2 , A__ ) return (b * b) % mod # a prime number _lowerCamelCase : Dict = 701 _lowerCamelCase : Dict = 10_0000_0000 _lowerCamelCase : Tuple = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
28
'''simple docstring''' import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Any=1_3 , UpperCamelCase__ : Optional[int]=3_2 , UpperCamelCase__ : Any=3 , UpperCamelCase__ : Tuple=4 , UpperCamelCase__ : str=[1_0, 2_0, 3_0, 4_0] , UpperCamelCase__ : str=[2, 2, 3, 2] , UpperCamelCase__ : Dict=True , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : str=3_7 , UpperCamelCase__ : Union[str, Any]="gelu" , UpperCamelCase__ : Dict=1_0 , UpperCamelCase__ : Union[str, Any]=0.0_2 , UpperCamelCase__ : int=["stage2", "stage3", "stage4"] , UpperCamelCase__ : List[str]=[2, 3, 4] , UpperCamelCase__ : Any=None , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = num_channels UpperCamelCase = num_stages UpperCamelCase = hidden_sizes UpperCamelCase = depths UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = num_labels UpperCamelCase = initializer_range UpperCamelCase = out_features UpperCamelCase = out_indices UpperCamelCase = scope def A ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase = self.get_config() return config, pixel_values, labels def A ( self : List[str] ): """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def A ( self : Union[str, Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : str ): """simple docstring""" UpperCamelCase = ConvNextModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model(UpperCamelCase__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def A ( self : List[str] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int ): """simple docstring""" UpperCamelCase = ConvNextForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Tuple , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : str ): """simple docstring""" UpperCamelCase = ConvNextBackbone(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model(UpperCamelCase__ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCamelCase = None UpperCamelCase = ConvNextBackbone(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model(UpperCamelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def A ( self : Any ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( _a , _a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE = ( {"""feature-extraction""": ConvNextModel, """image-classification""": ConvNextForImageClassification} if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def A ( self : Tuple ): """simple docstring""" UpperCamelCase = ConvNextModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=3_7 ) def A ( self : List[str] ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A ( self : Optional[int] ): """simple docstring""" return @unittest.skip(reason='ConvNext does not use inputs_embeds' ) def A ( self : List[str] ): """simple docstring""" pass @unittest.skip(reason='ConvNext does not support input and output embeddings' ) def A ( self : List[Any] ): """simple docstring""" pass @unittest.skip(reason='ConvNext does not use feedforward chunking' ) def A ( self : Optional[int] ): """simple docstring""" pass def A ( self : Any ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(UpperCamelCase__ ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def A ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def A ( self : Tuple ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCamelCase__ ) def A ( self : Optional[Any] ): """simple docstring""" def check_hidden_states_output(UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple ): UpperCamelCase = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): UpperCamelCase = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase = self.model_tester.num_stages self.assertEqual(len(UpperCamelCase__ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def A ( self : Dict ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) @slow def A ( self : Dict ): """simple docstring""" for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = ConvNextModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def __lowerCamelCase ( ) -> Any: """simple docstring""" UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @cached_property def A ( self : Optional[Any] ): """simple docstring""" return AutoImageProcessor.from_pretrained('facebook/convnext-tiny-224' ) if is_vision_available() else None @slow def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = ConvNextForImageClassification.from_pretrained('facebook/convnext-tiny-224' ).to(UpperCamelCase__ ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=UpperCamelCase__ , return_tensors='pt' ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**UpperCamelCase__ ) # verify the logits UpperCamelCase = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) UpperCamelCase = torch.tensor([-0.0_2_6_0, -0.4_7_3_9, 0.1_9_1_1] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1E-4 ) ) @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase , _a ): """simple docstring""" _SCREAMING_SNAKE_CASE = (ConvNextBackbone,) if is_torch_available() else () _SCREAMING_SNAKE_CASE = ConvNextConfig _SCREAMING_SNAKE_CASE = False def A ( self : Tuple ): """simple docstring""" UpperCamelCase = ConvNextModelTester(self )
28
1
import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging a__ : Dict = logging.get_logger(__name__) a__ : Union[str, Any] = R'\n Args:\n input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax\n or scores for each vocabulary token after SoftMax.\n kwargs (`Dict[str, Any]`, *optional*):\n Additional stopping criteria specific kwargs.\n\n Return:\n `bool`. `False` indicates we should continue, `True` indicates we should stop.\n\n' class UpperCAmelCase__ ( UpperCAmelCase_): @add_start_docstrings(lowercase ) def __call__( self , lowercase , lowercase , **lowercase ) -> bool: raise NotImplementedError("""StoppingCriteria needs to be subclassed""" ) class UpperCAmelCase__ ( UpperCAmelCase_): def __init__( self , lowercase , lowercase = None ) -> Any: __UpperCamelCase = max_length __UpperCamelCase = max_position_embeddings @add_start_docstrings(lowercase ) def __call__( self , lowercase , lowercase , **lowercase ) -> bool: __UpperCamelCase = input_ids.shape[-1] __UpperCamelCase = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( """This is a friendly reminder - the current text generation call will exceed the model's predefined """ f"maximum length ({self.max_position_embeddings}). Depending on the model, you may observe " """exceptions, performance degradation, or nothing at all.""" ) return is_done class UpperCAmelCase__ ( UpperCAmelCase_): def __init__( self , lowercase , lowercase ) -> int: warnings.warn( """The class `MaxNewTokensCriteria` is deprecated. """ f"Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` " """with `max_length = start_length + max_new_tokens` instead.""" , lowercase , ) __UpperCamelCase = start_length __UpperCamelCase = max_new_tokens __UpperCamelCase = start_length + max_new_tokens @add_start_docstrings(lowercase ) def __call__( self , lowercase , lowercase , **lowercase ) -> bool: return input_ids.shape[-1] >= self.max_length class UpperCAmelCase__ ( UpperCAmelCase_): def __init__( self , lowercase , lowercase = None ) -> Optional[Any]: __UpperCamelCase = max_time __UpperCamelCase = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(lowercase ) def __call__( self , lowercase , lowercase , **lowercase ) -> bool: return time.time() - self.initial_timestamp > self.max_time class UpperCAmelCase__ ( UpperCAmelCase_): @add_start_docstrings(lowercase ) def __call__( self , lowercase , lowercase , **lowercase ) -> bool: return any(criteria(lowercase , lowercase ) for criteria in self ) @property def __lowerCamelCase ( self ) -> Optional[int]: for stopping_criterium in self: if isinstance(lowercase , lowercase ): return stopping_criterium.max_length elif isinstance(lowercase , lowercase ): return stopping_criterium.max_length return None def _lowercase ( __A ,__A ): '''simple docstring''' __UpperCamelCase = stopping_criteria.max_length __UpperCamelCase = deepcopy(__A ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn("""You set different `max_length` for stopping criteria and `max_length` parameter""" ,__A ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=__A ) ) return new_stopping_criteria
366
'''simple docstring''' import csv import tweepy # Twitter API credentials a__ : Dict = '' a__ : List[str] = '' a__ : Optional[Any] = '' a__ : Any = '' def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = tweepy.OAuthHandler(__A ,__A ) auth.set_access_token(__A ,__A ) __UpperCamelCase = tweepy.API(__A ) # initialize a list to hold all the tweepy Tweets __UpperCamelCase = [] # make initial request for most recent tweets (200 is the maximum allowed count) __UpperCamelCase = api.user_timeline(screen_name=__A ,count=200 ) # save most recent tweets alltweets.extend(__A ) # save the id of the oldest tweet less one __UpperCamelCase = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(__A ) > 0: print(f"getting tweets before {oldest}" ) # all subsequent requests use the max_id param to prevent duplicates __UpperCamelCase = api.user_timeline( screen_name=__A ,count=200 ,max_id=__A ) # save most recent tweets alltweets.extend(__A ) # update the id of the oldest tweet less one __UpperCamelCase = alltweets[-1].id - 1 print(f"...{len(__A )} tweets downloaded so far" ) # transform the tweepy tweets into a 2D array that will populate the csv __UpperCamelCase = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(f"new_{screen_name}_tweets.csv" ,"""w""" ) as f: __UpperCamelCase = csv.writer(__A ) writer.writerow(["""id""", """created_at""", """text"""] ) writer.writerows(__A ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets('FirePing32')
243
0
'''simple docstring''' import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "artists_file": "artists.json", "lyrics_file": "lyrics.json", "genres_file": "genres.json", } UpperCamelCase_ = { "artists_file": { "jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json", }, "genres_file": { "jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json", }, "lyrics_file": { "jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json", }, } UpperCamelCase_ = { "jukebox": 5_1_2, } class _a ( A__ ): '''simple docstring''' A : List[str] = VOCAB_FILES_NAMES A : Tuple = PRETRAINED_VOCAB_FILES_MAP A : Optional[Any] = PRETRAINED_LYRIC_TOKENS_SIZES A : Any = ["input_ids", "attention_mask"] def __init__( self, A, A, A, A=["v3", "v2", "v2"], A=512, A=5, A="<|endoftext|>", **A, ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = AddedToken(__lowercase, lstrip=__lowercase, rstrip=__lowercase ) if isinstance(__lowercase, __lowercase ) else unk_token super().__init__( unk_token=__lowercase, n_genres=__lowercase, version=__lowercase, max_n_lyric_tokens=__lowercase, **__lowercase, ) SCREAMING_SNAKE_CASE : int = version SCREAMING_SNAKE_CASE : List[Any] = max_n_lyric_tokens SCREAMING_SNAKE_CASE : Tuple = n_genres with open(__lowercase, encoding='utf-8' ) as vocab_handle: SCREAMING_SNAKE_CASE : Union[str, Any] = json.load(__lowercase ) with open(__lowercase, encoding='utf-8' ) as vocab_handle: SCREAMING_SNAKE_CASE : Optional[int] = json.load(__lowercase ) with open(__lowercase, encoding='utf-8' ) as vocab_handle: SCREAMING_SNAKE_CASE : Optional[int] = json.load(__lowercase ) SCREAMING_SNAKE_CASE : List[str] = r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: SCREAMING_SNAKE_CASE : Tuple = oov.replace(r'\-\'', r'\-+\'' ) SCREAMING_SNAKE_CASE : Optional[int] = regex.compile(__lowercase ) SCREAMING_SNAKE_CASE : Tuple = {v: k for k, v in self.artists_encoder.items()} SCREAMING_SNAKE_CASE : List[str] = {v: k for k, v in self.genres_encoder.items()} SCREAMING_SNAKE_CASE : List[str] = {v: k for k, v in self.lyrics_encoder.items()} @property def UpperCamelCase_ ( self ): '''simple docstring''' return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def UpperCamelCase_ ( self ): '''simple docstring''' return dict(self.artists_encoder, self.genres_encoder, self.lyrics_encoder ) def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = [self.artists_encoder.get(__lowercase, 0 ) for artist in list_artists] for genres in range(len(__lowercase ) ): SCREAMING_SNAKE_CASE : List[str] = [self.genres_encoder.get(__lowercase, 0 ) for genre in list_genres[genres]] SCREAMING_SNAKE_CASE : List[str] = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) SCREAMING_SNAKE_CASE : Tuple = [[self.lyrics_encoder.get(__lowercase, 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def UpperCamelCase_ ( self, A ): '''simple docstring''' return list(__lowercase ) def UpperCamelCase_ ( self, A, A, A, **A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.prepare_for_tokenization(__lowercase, __lowercase, __lowercase ) SCREAMING_SNAKE_CASE : Optional[Any] = self._tokenize(__lowercase ) return artist, genre, lyrics def UpperCamelCase_ ( self, A, A, A, A = False ): '''simple docstring''' for idx in range(len(self.version ) ): if self.version[idx] == "v3": SCREAMING_SNAKE_CASE : Dict = artists[idx].lower() SCREAMING_SNAKE_CASE : Optional[Any] = [genres[idx].lower()] else: SCREAMING_SNAKE_CASE : str = self._normalize(artists[idx] ) + """.v2""" SCREAMING_SNAKE_CASE : str = [ self._normalize(__lowercase ) + """.v2""" for genre in genres[idx].split('_' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": SCREAMING_SNAKE_CASE : Any = regex.compile(r'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' ) SCREAMING_SNAKE_CASE : Tuple = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n""" SCREAMING_SNAKE_CASE : str = {vocab[index]: index + 1 for index in range(len(__lowercase ) )} SCREAMING_SNAKE_CASE : Optional[Any] = 0 SCREAMING_SNAKE_CASE : int = len(__lowercase ) + 1 SCREAMING_SNAKE_CASE : str = self.vocab SCREAMING_SNAKE_CASE : Any = {v: k for k, v in self.vocab.items()} SCREAMING_SNAKE_CASE : Union[str, Any] = """""" else: SCREAMING_SNAKE_CASE : Tuple = regex.compile(r'[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+' ) SCREAMING_SNAKE_CASE : str = self._run_strip_accents(__lowercase ) SCREAMING_SNAKE_CASE : Tuple = lyrics.replace('\\', '\n' ) SCREAMING_SNAKE_CASE : int = self.out_of_vocab.sub('', __lowercase ), [], [] return artists, genres, lyrics def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = unicodedata.normalize('NFD', __lowercase ) SCREAMING_SNAKE_CASE : int = [] for char in text: SCREAMING_SNAKE_CASE : List[Any] = unicodedata.category(__lowercase ) if cat == "Mn": continue output.append(__lowercase ) return "".join(__lowercase ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = ( [chr(__lowercase ) for i in range(ord('a' ), ord('z' ) + 1 )] + [chr(__lowercase ) for i in range(ord('A' ), ord('Z' ) + 1 )] + [chr(__lowercase ) for i in range(ord('0' ), ord('9' ) + 1 )] + ["""."""] ) SCREAMING_SNAKE_CASE : Any = frozenset(__lowercase ) SCREAMING_SNAKE_CASE : Dict = re.compile(r'_+' ) SCREAMING_SNAKE_CASE : Union[str, Any] = """""".join([c if c in accepted else '_' for c in text.lower()] ) SCREAMING_SNAKE_CASE : int = pattern.sub('_', __lowercase ).strip('_' ) return text def UpperCamelCase_ ( self, A ): '''simple docstring''' return " ".join(__lowercase ) def UpperCamelCase_ ( self, A, A = None, A = False ): '''simple docstring''' if not isinstance(__lowercase, __lowercase ): SCREAMING_SNAKE_CASE : List[Any] = TensorType(__lowercase ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( 'Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.' ) import tensorflow as tf SCREAMING_SNAKE_CASE : List[str] = tf.constant SCREAMING_SNAKE_CASE : Tuple = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('Unable to convert output to PyTorch tensors format, PyTorch is not installed.' ) import torch SCREAMING_SNAKE_CASE : Dict = torch.tensor SCREAMING_SNAKE_CASE : Dict = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('Unable to convert output to JAX tensors format, JAX is not installed.' ) import jax.numpy as jnp # noqa: F811 SCREAMING_SNAKE_CASE : int = jnp.array SCREAMING_SNAKE_CASE : List[Any] = _is_jax else: SCREAMING_SNAKE_CASE : Tuple = np.asarray SCREAMING_SNAKE_CASE : Union[str, Any] = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: SCREAMING_SNAKE_CASE : Tuple = [inputs] if not is_tensor(__lowercase ): SCREAMING_SNAKE_CASE : Dict = as_tensor(__lowercase ) except: # noqa E722 raise ValueError( 'Unable to create tensor, you should probably activate truncation and/or padding ' 'with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.' ) return inputs def __call__( self, A, A, A="", A="pt" ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = [0, 0, 0] SCREAMING_SNAKE_CASE : Any = [artist] * len(self.version ) SCREAMING_SNAKE_CASE : str = [genres] * len(self.version ) SCREAMING_SNAKE_CASE : List[str] = self.tokenize(__lowercase, __lowercase, __lowercase ) SCREAMING_SNAKE_CASE : Dict = self._convert_token_to_id(__lowercase, __lowercase, __lowercase ) SCREAMING_SNAKE_CASE : List[Any] = [-INFINITY] * len(full_tokens[-1] ) SCREAMING_SNAKE_CASE : Dict = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]], tensor_type=__lowercase ) for i in range(len(self.version ) ) ] return BatchEncoding({'input_ids': input_ids, 'attention_masks': attention_masks} ) def UpperCamelCase_ ( self, A, A = None ): '''simple docstring''' if not os.path.isdir(__lowercase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE : List[Any] = os.path.join( __lowercase, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['artists_file'] ) with open(__lowercase, 'w', encoding='utf-8' ) as f: f.write(json.dumps(self.artists_encoder, ensure_ascii=__lowercase ) ) SCREAMING_SNAKE_CASE : Tuple = os.path.join( __lowercase, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['genres_file'] ) with open(__lowercase, 'w', encoding='utf-8' ) as f: f.write(json.dumps(self.genres_encoder, ensure_ascii=__lowercase ) ) SCREAMING_SNAKE_CASE : Optional[int] = os.path.join( __lowercase, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['lyrics_file'] ) with open(__lowercase, 'w', encoding='utf-8' ) as f: f.write(json.dumps(self.lyrics_encoder, ensure_ascii=__lowercase ) ) return (artists_file, genres_file, lyrics_file) def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.artists_decoder.get(__lowercase ) SCREAMING_SNAKE_CASE : List[str] = [self.genres_decoder.get(__lowercase ) for genre in genres_index] SCREAMING_SNAKE_CASE : Any = [self.lyrics_decoder.get(__lowercase ) for character in lyric_index] return artist, genres, lyrics
251
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class snake_case__ (datasets.BuilderConfig ): """simple docstring""" __lowerCAmelCase :Optional[datasets.Features] = None class snake_case__ (datasets.ArrowBasedBuilder ): """simple docstring""" __lowerCAmelCase :Dict = PandasConfig def SCREAMING_SNAKE_CASE__( self ) -> Tuple: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Tuple: """simple docstring""" if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) a__ : str = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__lowercase , (str, list, tuple) ): a__ : Optional[int] = data_files if isinstance(__lowercase , __lowercase ): a__ : List[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive a__ : str = [dl_manager.iter_files(__lowercase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] a__ : List[str] = [] for split_name, files in data_files.items(): if isinstance(__lowercase , __lowercase ): a__ : Union[str, Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive a__ : Dict = [dl_manager.iter_files(__lowercase ) for file in files] splits.append(datasets.SplitGenerator(name=__lowercase , gen_kwargs={"""files""": files} ) ) return splits def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> pa.Table: """simple docstring""" if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example a__ : Tuple = table_cast(__lowercase , self.config.features.arrow_schema ) return pa_table def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> List[Any]: """simple docstring""" for i, file in enumerate(itertools.chain.from_iterable(__lowercase ) ): with open(__lowercase , """rb""" ) as f: a__ : str = pa.Table.from_pandas(pd.read_pickle(__lowercase ) ) yield i, self._cast_table(__lowercase )
170
0
"""simple docstring""" import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def UpperCamelCase ( UpperCAmelCase ) ->str: """simple docstring""" a_ = [] for line in lines: a_ = re.sub(r"#.*" , "" , UpperCAmelCase ) # remove comments if line: filtered_lines.append(UpperCAmelCase ) a_ = "\n".join(UpperCAmelCase ) # Make a hash from all this code a_ = full_str.encode("utf-8" ) return shaaaa(UpperCAmelCase ).hexdigest() # get importable module names and hash for caching UpperCamelCase_ = { 'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), 'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), 'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), 'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), 'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), 'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), 'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), 'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions UpperCamelCase_ = { '.csv': ('csv', {}), '.tsv': ('csv', {'sep': '\t'}), '.json': ('json', {}), '.jsonl': ('json', {}), '.parquet': ('parquet', {}), '.arrow': ('arrow', {}), '.txt': ('text', {}), } _EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) UpperCamelCase_ = {'imagefolder', 'audiofolder'} # Used to filter data files based on extensions given a module name UpperCamelCase_ = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('.zip') _MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
303
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=24 , __UpperCAmelCase=2 , __UpperCAmelCase=6 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=None , __UpperCAmelCase=10_00 , ) ->List[str]: a_ = parent a_ = batch_size a_ = seq_length a_ = is_training a_ = use_input_mask a_ = use_token_type_ids a_ = use_labels a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = type_sequence_label_size a_ = initializer_range a_ = num_labels a_ = scope a_ = range_bbox def UpperCAmelCase__ ( self) ->int: a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a_ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox) # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: a_ = bbox[i, j, 3] a_ = bbox[i, j, 1] a_ = t if bbox[i, j, 2] < bbox[i, j, 0]: a_ = bbox[i, j, 2] a_ = bbox[i, j, 0] a_ = t a_ = None if self.use_input_mask: a_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) a_ = None if self.use_token_type_ids: a_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) a_ = None a_ = None if self.use_labels: a_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) a_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) a_ = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def UpperCAmelCase__ ( self) ->List[str]: return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) ->Any: a_ = LiltModel(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model(__UpperCAmelCase , bbox=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase) a_ = model(__UpperCAmelCase , bbox=__UpperCAmelCase , token_type_ids=__UpperCAmelCase) a_ = model(__UpperCAmelCase , bbox=__UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) ->Union[str, Any]: a_ = self.num_labels a_ = LiltForTokenClassification(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model( __UpperCAmelCase , bbox=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) ->Dict: a_ = LiltForQuestionAnswering(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model( __UpperCAmelCase , bbox=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase__ ( self) ->str: a_ = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = config_and_inputs a_ = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class snake_case ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : List[Any] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) a_ : List[str] = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) a_ : Any = False a_ : Dict = False def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->int: return True def UpperCAmelCase__ ( self) ->str: a_ = LiltModelTester(self) a_ = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37) def UpperCAmelCase__ ( self) ->List[Any]: self.config_tester.run_common_tests() def UpperCAmelCase__ ( self) ->Tuple: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Dict: a_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a_ = type self.model_tester.create_and_check_model(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->List[str]: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->str: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase) @slow def UpperCAmelCase__ ( self) ->List[Any]: for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ = LiltModel.from_pretrained(__UpperCAmelCase) self.assertIsNotNone(__UpperCAmelCase) @require_torch @slow class snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self) ->List[Any]: a_ = LiltModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base").to(__UpperCAmelCase) a_ = torch.tensor([[1, 2]] , device=__UpperCAmelCase) a_ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=__UpperCAmelCase) # forward pass with torch.no_grad(): a_ = model(input_ids=__UpperCAmelCase , bbox=__UpperCAmelCase) a_ = torch.Size([1, 2, 7_68]) a_ = torch.tensor( [[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]] , device=__UpperCAmelCase , ) self.assertTrue(outputs.last_hidden_state.shape , __UpperCAmelCase) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , __UpperCAmelCase , atol=1E-3))
303
1
import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class UpperCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] ,A : Tuple ,A : Union[str, Any]=13 ,A : List[Any]=7 ,A : List[Any]=True ,A : List[str]=True ,A : List[str]=True ,A : Tuple=True ,A : Optional[Any]=99 ,A : Union[str, Any]=64 ,A : str=32 ,A : int=5 ,A : Union[str, Any]=4 ,A : Union[str, Any]=37 ,A : List[Any]="gelu" ,A : Any=0.1 ,A : Any=0.1 ,A : Any=5_12 ,A : Optional[Any]=16 ,A : int=2 ,A : Union[str, Any]=0.02 ,A : Any=3 ,A : Union[str, Any]=4 ,A : Union[str, Any]=None ,): __A = parent __A = batch_size __A = seq_length __A = is_training __A = use_input_mask __A = use_token_type_ids __A = use_labels __A = vocab_size __A = hidden_size __A = embedding_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = type_vocab_size __A = type_sequence_label_size __A = initializer_range __A = num_labels __A = num_choices __A = scope def UpperCamelCase_ ( self : Optional[int] ): __A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __A = None if self.use_input_mask: __A = random_attention_mask([self.batch_size, self.seq_length] ) __A = None if self.use_token_type_ids: __A = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) __A = None __A = None __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __A = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) __A = ids_tensor([self.batch_size] ,self.num_choices ) __A = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self : int ): return MobileBertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,embedding_size=self.embedding_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=A ,initializer_range=self.initializer_range ,) def UpperCamelCase_ ( self : Dict ,A : int ,A : Tuple ,A : Optional[int] ,A : List[Any] ,A : Optional[int] ,A : Optional[int] ,A : Optional[Any] ): __A = MobileBertModel(config=A ) model.to(A ) model.eval() __A = model(A ,attention_mask=A ,token_type_ids=A ) __A = model(A ,token_type_ids=A ) __A = model(A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def UpperCamelCase_ ( self : Tuple ,A : Tuple ,A : Union[str, Any] ,A : Tuple ,A : Union[str, Any] ,A : Union[str, Any] ,A : int ,A : Optional[int] ): __A = MobileBertForMaskedLM(config=A ) model.to(A ) model.eval() __A = model(A ,attention_mask=A ,token_type_ids=A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self : Optional[int] ,A : str ,A : Any ,A : Optional[int] ,A : Optional[Any] ,A : List[Any] ,A : Tuple ,A : Dict ): __A = MobileBertForNextSentencePrediction(config=A ) model.to(A ) model.eval() __A = model( A ,attention_mask=A ,token_type_ids=A ,labels=A ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) ) def UpperCamelCase_ ( self : str ,A : Optional[Any] ,A : Optional[int] ,A : Optional[Any] ,A : Tuple ,A : List[str] ,A : Optional[int] ,A : Dict ): __A = MobileBertForPreTraining(config=A ) model.to(A ) model.eval() __A = model( A ,attention_mask=A ,token_type_ids=A ,labels=A ,next_sentence_label=A ,) self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) ) def UpperCamelCase_ ( self : Optional[Any] ,A : Any ,A : List[str] ,A : List[str] ,A : Optional[int] ,A : Dict ,A : Optional[int] ,A : Any ): __A = MobileBertForQuestionAnswering(config=A ) model.to(A ) model.eval() __A = model( A ,attention_mask=A ,token_type_ids=A ,start_positions=A ,end_positions=A ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self : str ,A : int ,A : Tuple ,A : Optional[Any] ,A : int ,A : Union[str, Any] ,A : List[Any] ,A : Dict ): __A = self.num_labels __A = MobileBertForSequenceClassification(A ) model.to(A ) model.eval() __A = model(A ,attention_mask=A ,token_type_ids=A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : Optional[int] ,A : Optional[Any] ,A : List[str] ,A : List[str] ,A : Optional[int] ,A : int ,A : Any ,A : Any ): __A = self.num_labels __A = MobileBertForTokenClassification(config=A ) model.to(A ) model.eval() __A = model(A ,attention_mask=A ,token_type_ids=A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self : int ,A : Dict ,A : List[str] ,A : List[str] ,A : List[Any] ,A : Optional[Any] ,A : str ,A : Any ): __A = self.num_choices __A = MobileBertForMultipleChoice(config=A ) model.to(A ) model.eval() __A = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __A = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __A = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __A = model( A ,attention_mask=A ,token_type_ids=A ,labels=A ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def UpperCamelCase_ ( self : Any ): __A = self.prepare_config_and_inputs() ( ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ) = config_and_inputs __A = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' snake_case_ = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) snake_case_ = ( { "feature-extraction": MobileBertModel, "fill-mask": MobileBertForMaskedLM, "question-answering": MobileBertForQuestionAnswering, "text-classification": MobileBertForSequenceClassification, "token-classification": MobileBertForTokenClassification, "zero-shot": MobileBertForSequenceClassification, } if is_torch_available() else {} ) snake_case_ = True def UpperCamelCase_ ( self : int ,A : Dict ,A : Optional[int] ,A : int=False ): __A = super()._prepare_for_class(A ,A ,return_labels=A ) if return_labels: if model_class in get_values(A ): __A = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=A ) __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) return inputs_dict def UpperCamelCase_ ( self : List[str] ): __A = MobileBertModelTester(self ) __A = ConfigTester(self ,config_class=A ,hidden_size=37 ) def UpperCamelCase_ ( self : List[str] ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : Optional[int] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*A ) def UpperCamelCase_ ( self : List[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*A ) def UpperCamelCase_ ( self : int ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*A ) def UpperCamelCase_ ( self : List[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*A ) def UpperCamelCase_ ( self : Any ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*A ) def UpperCamelCase_ ( self : Dict ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*A ) def UpperCamelCase_ ( self : Tuple ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*A ) def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" return torch.tensor( __lowerCAmelCase , dtype=torch.long , device=__lowerCAmelCase , ) SCREAMING_SNAKE_CASE :Union[str, Any] = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self : Optional[Any] ): __A = MobileBertModel.from_pretrained("google/mobilebert-uncased" ).to(A ) __A = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]] ) with torch.no_grad(): __A = model(A )[0] __A = torch.Size((1, 9, 5_12) ) self.assertEqual(output.shape ,A ) __A = torch.tensor( [ [ [-2.4736526E07, 8.2691656E04, 1.6521838E05], [-5.7541704E-01, 3.9056022E00, 4.4011507E00], [2.6047359E00, 1.5677652E00, -1.7324188E-01], ] ] ,device=A ,) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE __A = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) __A = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
15
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _a = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class __lowerCamelCase ( unittest.TestCase): """simple docstring""" UpperCamelCase__ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCamelCase__ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: UpperCamelCase__ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: UpperCamelCase__ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = ZeroShotClassificationPipeline( model=UpperCAmelCase , tokenizer=UpperCAmelCase , candidate_labels=['polics', 'health'] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = classifier('Who are you voting for in 2020?' , candidate_labels='politics' ) self.assertEqual(UpperCAmelCase , {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase )]} ) # No kwarg _UpperCAmelCase = classifier('Who are you voting for in 2020?' , ['politics'] ) self.assertEqual(UpperCAmelCase , {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase )]} ) _UpperCAmelCase = classifier('Who are you voting for in 2020?' , candidate_labels=['politics'] ) self.assertEqual(UpperCAmelCase , {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase )]} ) _UpperCAmelCase = classifier('Who are you voting for in 2020?' , candidate_labels='politics, public health' ) self.assertEqual( UpperCAmelCase , {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 ) _UpperCAmelCase = classifier('Who are you voting for in 2020?' , candidate_labels=['politics', 'public health'] ) self.assertEqual( UpperCAmelCase , {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 ) _UpperCAmelCase = classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='This text is about {}' ) self.assertEqual(UpperCAmelCase , {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase )]} ) # https://github.com/huggingface/transformers/issues/13846 _UpperCAmelCase = classifier(['I am happy'] , ['positive', 'negative'] ) self.assertEqual( UpperCAmelCase , [ {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )]} for i in range(1 ) ] , ) _UpperCAmelCase = classifier(['I am happy', 'I am sad'] , ['positive', 'negative'] ) self.assertEqual( UpperCAmelCase , [ {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )]} for i in range(2 ) ] , ) with self.assertRaises(UpperCAmelCase ): classifier('' , candidate_labels='politics' ) with self.assertRaises(UpperCAmelCase ): classifier(UpperCAmelCase , candidate_labels='politics' ) with self.assertRaises(UpperCAmelCase ): classifier('Who are you voting for in 2020?' , candidate_labels='' ) with self.assertRaises(UpperCAmelCase ): classifier('Who are you voting for in 2020?' , candidate_labels=UpperCAmelCase ) with self.assertRaises(UpperCAmelCase ): classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='Not formatting template' , ) with self.assertRaises(UpperCAmelCase ): classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template=UpperCAmelCase , ) self.run_entailment_id(UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = zero_shot_classifier.model.config _UpperCAmelCase = config.labelaid _UpperCAmelCase = zero_shot_classifier.entailment_id _UpperCAmelCase = {'LABEL_0': 0, 'LABEL_1': 1, 'LABEL_2': 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) _UpperCAmelCase = {'entailment': 0, 'neutral': 1, 'contradiction': 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) _UpperCAmelCase = {'ENTAIL': 0, 'NON-ENTAIL': 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) _UpperCAmelCase = {'ENTAIL': 2, 'NEUTRAL': 1, 'CONTR': 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) _UpperCAmelCase = original_labelaid self.assertEqual(UpperCAmelCase , zero_shot_classifier.entailment_id ) @require_torch def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( 'Who are you voting for in 2020?' * 100 , candidate_labels=['politics', 'public health', 'science'] ) @require_torch def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , ) _UpperCAmelCase = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.3_33, 0.3_33, 0.3_33], } , ) @require_tf def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='tf' , ) _UpperCAmelCase = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.3_33, 0.3_33, 0.3_33], } , ) @slow @require_torch def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='pt' ) _UpperCAmelCase = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.9_76, 0.0_15, 0.0_09], } , ) _UpperCAmelCase = zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=UpperCAmelCase , ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.8_17, 0.7_13, 0.0_18, 0.0_18], } , ) @slow @require_tf def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='tf' ) _UpperCAmelCase = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.9_76, 0.0_15, 0.0_09], } , ) _UpperCAmelCase = zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=UpperCAmelCase , ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.8_17, 0.7_13, 0.0_18, 0.0_18], } , )
39
0
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = DanceDiffusionPipeline __SCREAMING_SNAKE_CASE : Optional[int] = UNCONDITIONAL_AUDIO_GENERATION_PARAMS __SCREAMING_SNAKE_CASE : Union[str, Any] = PipelineTesterMixin.required_optional_params - { 'callback', 'latents', 'callback_steps', 'output_type', 'num_images_per_prompt', } __SCREAMING_SNAKE_CASE : Tuple = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS __SCREAMING_SNAKE_CASE : Any = False __SCREAMING_SNAKE_CASE : int = False def __lowerCAmelCase ( self ) ->Optional[int]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=1_6000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=_lowerCamelCase , use_timestep_embedding=_lowerCamelCase , time_embedding_type='''fourier''' , mid_block_type='''UNetMidBlock1D''' , down_block_types=('''DownBlock1DNoSkip''', '''DownBlock1D''', '''AttnDownBlock1D''') , up_block_types=('''AttnUpBlock1D''', '''UpBlock1D''', '''UpBlock1DNoSkip''') , ) SCREAMING_SNAKE_CASE : Optional[int] = IPNDMScheduler() SCREAMING_SNAKE_CASE : Optional[int] = { '''unet''': unet, '''scheduler''': scheduler, } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->Optional[int]: if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 4, } return inputs def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : List[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Optional[Any] = DanceDiffusionPipeline(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = self.get_dummy_inputs(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = pipe(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = output.audios SCREAMING_SNAKE_CASE : Optional[Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) SCREAMING_SNAKE_CASE : Optional[int] = np.array([-0.7_2_6_5, 1.0_0_0_0, -0.8_3_8_8, 0.1_1_7_5, 0.9_4_9_8, -1.0_0_0_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def __lowerCAmelCase ( self ) ->List[str]: return super().test_save_load_local() @skip_mps def __lowerCAmelCase ( self ) ->Optional[Any]: return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def __lowerCAmelCase ( self ) ->Dict: return super().test_save_load_optional_components() @skip_mps def __lowerCAmelCase ( self ) ->Any: return super().test_attention_slicing_forward_pass() def __lowerCAmelCase ( self ) ->List[str]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Tuple = torch_device SCREAMING_SNAKE_CASE : Optional[Any] = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' ) SCREAMING_SNAKE_CASE : int = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = pipe(generator=_lowerCamelCase , num_inference_steps=100 , audio_length_in_s=4.0_9_6 ) SCREAMING_SNAKE_CASE : List[str] = output.audios SCREAMING_SNAKE_CASE : Union[str, Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) SCREAMING_SNAKE_CASE : Optional[int] = np.array([-0.0_1_9_2, -0.0_2_3_1, -0.0_3_1_8, -0.0_0_5_9, 0.0_0_0_2, -0.0_0_2_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Tuple = torch_device SCREAMING_SNAKE_CASE : Optional[Any] = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : Tuple = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = pipe(generator=_lowerCamelCase , num_inference_steps=100 , audio_length_in_s=4.0_9_6 ) SCREAMING_SNAKE_CASE : List[Any] = output.audios SCREAMING_SNAKE_CASE : Optional[Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) SCREAMING_SNAKE_CASE : List[Any] = np.array([-0.0_3_6_7, -0.0_4_8_8, -0.0_7_7_1, -0.0_5_2_5, -0.0_4_4_4, -0.0_3_4_1] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
19
import math from collections.abc import Iterator from itertools import takewhile def UpperCAmelCase_( a__ ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : str = 2 while True: if is_prime(a__ ): yield num num += 1 def UpperCAmelCase_( a__ = 2_000_000 ): """simple docstring""" return sum(takewhile(lambda a__ : x < n , prime_generator() ) ) if __name__ == "__main__": print(F"{solution() = }")
19
1
"""simple docstring""" import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.txt"} __A = { "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } __A = { "facebook/esm2_t6_8M_UR50D": 1_024, "facebook/esm2_t12_35M_UR50D": 1_024, } def UpperCamelCase__ ( lowercase__ : Dict ): with open(lowercase__ , "r" ) as f: snake_case : Dict = f.read().splitlines() return [l.strip() for l in lines] class lowerCamelCase__ ( lowerCamelCase_ ): a__ : List[str] = VOCAB_FILES_NAMES a__ : int = PRETRAINED_VOCAB_FILES_MAP a__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : List[str] = ["""input_ids""", """attention_mask"""] def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="<unk>" , SCREAMING_SNAKE_CASE="<cls>" , SCREAMING_SNAKE_CASE="<pad>" , SCREAMING_SNAKE_CASE="<mask>" , SCREAMING_SNAKE_CASE="<eos>" , **SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE ) snake_case : Tuple = load_vocab_file(SCREAMING_SNAKE_CASE ) snake_case : Any = dict(enumerate(self.all_tokens ) ) snake_case : Any = {tok: ind for ind, tok in enumerate(self.all_tokens )} snake_case : List[Any] = unk_token snake_case : str = cls_token snake_case : List[Any] = pad_token snake_case : str = mask_token snake_case : Any = eos_token snake_case : Dict = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE ): """simple docstring""" return self._id_to_token.get(SCREAMING_SNAKE_CASE , self.unk_token ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE ): """simple docstring""" return self._token_to_id.get(SCREAMING_SNAKE_CASE , self._token_to_id.get(self.unk_token ) ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" return text.split() def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE=False ): """simple docstring""" return len(self._id_to_token ) def lowerCamelCase_ ( self ): """simple docstring""" return {token: i for i, token in enumerate(self.all_tokens )} def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE ): """simple docstring""" return self._token_to_id.get(SCREAMING_SNAKE_CASE , self._token_to_id.get(self.unk_token ) ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE ): """simple docstring""" return self._id_to_token.get(SCREAMING_SNAKE_CASE , self.unk_token ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ): """simple docstring""" snake_case : List[Any] = [self.cls_token_id] snake_case : Tuple = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError("Cannot tokenize multiple sequences when EOS token is not set!" ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] snake_case : List[Any] = [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1] if token_ids_a is not None: mask += [0] * len(SCREAMING_SNAKE_CASE ) + [1] return mask def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : int = os.path.join(SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + "vocab.txt" ) with open(SCREAMING_SNAKE_CASE , "w" ) as f: f.write("\n".join(self.all_tokens ) ) return (vocab_file,) @property def lowerCamelCase_ ( self ): """simple docstring""" return self.get_vocab_size(with_added_tokens=SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False ): """simple docstring""" return super()._add_tokens(SCREAMING_SNAKE_CASE , special_tokens=SCREAMING_SNAKE_CASE )
148
"""simple docstring""" import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowerCamelCase__ ( lowerCamelCase_ ): def __init__( self , *SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) snake_case : Optional[Any] = eval_examples snake_case : Any = post_process_function def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = "eval" , **SCREAMING_SNAKE_CASE , ): """simple docstring""" snake_case : Optional[int] = gen_kwargs.copy() snake_case : Optional[int] = ( gen_kwargs["max_length"] if gen_kwargs.get("max_length" ) is not None else self.args.generation_max_length ) snake_case : Any = ( gen_kwargs["num_beams"] if gen_kwargs.get("num_beams" ) is not None else self.args.generation_num_beams ) snake_case : Optional[int] = gen_kwargs snake_case : List[Any] = self.eval_dataset if eval_dataset is None else eval_dataset snake_case : List[Any] = self.get_eval_dataloader(SCREAMING_SNAKE_CASE ) snake_case : Any = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. snake_case : List[str] = self.compute_metrics snake_case : Tuple = None snake_case : str = time.time() snake_case : str = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: snake_case : List[Any] = eval_loop( SCREAMING_SNAKE_CASE , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=SCREAMING_SNAKE_CASE , metric_key_prefix=SCREAMING_SNAKE_CASE , ) finally: snake_case : List[str] = compute_metrics snake_case : str = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default snake_case : Tuple = self.post_process_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) snake_case : List[Any] = self.compute_metrics(SCREAMING_SNAKE_CASE ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): snake_case : Any = metrics.pop(SCREAMING_SNAKE_CASE ) metrics.update(output.metrics ) else: snake_case : List[str] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(SCREAMING_SNAKE_CASE ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) snake_case : Any = self.callback_handler.on_evaluate(self.args , self.state , self.control , SCREAMING_SNAKE_CASE ) return metrics def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE = "test" , **SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : Optional[int] = gen_kwargs.copy() snake_case : int = self.get_test_dataloader(SCREAMING_SNAKE_CASE ) # Temporarily disable metric computation, we will do it in the loop here. snake_case : Optional[int] = self.compute_metrics snake_case : Dict = None snake_case : int = time.time() snake_case : Optional[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: snake_case : Dict = eval_loop( SCREAMING_SNAKE_CASE , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=SCREAMING_SNAKE_CASE , metric_key_prefix=SCREAMING_SNAKE_CASE , ) finally: snake_case : Optional[int] = compute_metrics snake_case : Dict = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output snake_case : int = self.post_process_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , "predict" ) snake_case : Any = self.compute_metrics(SCREAMING_SNAKE_CASE ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): snake_case : List[str] = metrics.pop(SCREAMING_SNAKE_CASE ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=SCREAMING_SNAKE_CASE )
148
1
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def _a ( ): """simple docstring""" print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
360
import argparse from collections import defaultdict import yaml lowerCAmelCase = 'docs/source/en/_toctree.yml' def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = defaultdict(SCREAMING_SNAKE_CASE ) lowercase__ = [] lowercase__ = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'''local''': doc['''local'''], '''title''': doc['''title''']} ) else: new_doc_list.append(SCREAMING_SNAKE_CASE ) lowercase__ = new_doc_list lowercase__ = [key for key, value in counts.items() if value > 1] lowercase__ = [] for duplicate_key in duplicates: lowercase__ = list({doc['''title'''] for doc in doc_list if doc['''local'''] == duplicate_key} ) if len(SCREAMING_SNAKE_CASE ) > 1: raise ValueError( f'{duplicate_key} is present several times in the documentation table of content at ' '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if '''local''' not in counts or counts[doc['''local''']] == 1] ) lowercase__ = sorted(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : s["title"].lower() ) # "overview" gets special treatment and is always first if len(SCREAMING_SNAKE_CASE ) > 1: raise ValueError('''{doc_list} has two \'overview\' docs which is not allowed.''' ) overview_doc.extend(SCREAMING_SNAKE_CASE ) # Sort return overview_doc def _a ( SCREAMING_SNAKE_CASE=False ): """simple docstring""" with open(SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as f: lowercase__ = yaml.safe_load(f.read() ) # Get to the API doc lowercase__ = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowercase__ = content[api_idx]['''sections'''] # Then to the model doc lowercase__ = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 lowercase__ = api_doc[scheduler_idx]['''sections'''] lowercase__ = clean_doc_toc(SCREAMING_SNAKE_CASE ) lowercase__ = False if new_scheduler_doc != scheduler_doc: lowercase__ = True if overwrite: lowercase__ = new_scheduler_doc if diff: if overwrite: lowercase__ = api_doc with open(SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(SCREAMING_SNAKE_CASE , allow_unicode=SCREAMING_SNAKE_CASE ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) def _a ( SCREAMING_SNAKE_CASE=False ): """simple docstring""" with open(SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as f: lowercase__ = yaml.safe_load(f.read() ) # Get to the API doc lowercase__ = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowercase__ = content[api_idx]['''sections'''] # Then to the model doc lowercase__ = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 lowercase__ = False lowercase__ = api_doc[pipeline_idx]['''sections'''] lowercase__ = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: lowercase__ = pipeline_doc['''section'''] lowercase__ = clean_doc_toc(SCREAMING_SNAKE_CASE ) if overwrite: lowercase__ = new_sub_pipeline_doc new_pipeline_docs.append(SCREAMING_SNAKE_CASE ) # sort overall pipeline doc lowercase__ = clean_doc_toc(SCREAMING_SNAKE_CASE ) if new_pipeline_docs != pipeline_docs: lowercase__ = True if overwrite: lowercase__ = new_pipeline_docs if diff: if overwrite: lowercase__ = api_doc with open(SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(SCREAMING_SNAKE_CASE , allow_unicode=SCREAMING_SNAKE_CASE ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') lowerCAmelCase = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
93
0
import math class _SCREAMING_SNAKE_CASE : def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase ) -> int: lowerCamelCase_ = 0.0 lowerCamelCase_ = 0.0 for i in range(len(lowercase ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase ) -> list[list[int | float]]: for i in range(len(lowercase ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def lowerCamelCase_ ( ): # Training Examples ( m, n ) lowerCamelCase_ = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) lowerCamelCase_ = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training lowerCamelCase_ = SelfOrganizingMap() lowerCamelCase_ = 3 lowerCamelCase_ = 0.5 for _ in range(lowerCamelCase__ ): for j in range(len(lowerCamelCase__ ) ): # training sample lowerCamelCase_ = training_samples[j] # Compute the winning vector lowerCamelCase_ = self_organizing_map.get_winner(lowerCamelCase__ , lowerCamelCase__ ) # Update the winning vector lowerCamelCase_ = self_organizing_map.update(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # classify test sample lowerCamelCase_ = [0, 0, 0, 1] lowerCamelCase_ = self_organizing_map.get_winner(lowerCamelCase__ , lowerCamelCase__ ) # results print(F'Clusters that the test sample belongs to : {winner}' ) print(F'Weights that have been trained : {weights}' ) # running the main() function if __name__ == "__main__": main()
19
"""simple docstring""" import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=3 , lowerCAmelCase__=18 , lowerCAmelCase__=30 , lowerCAmelCase__=400 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , ) -> int: SCREAMING_SNAKE_CASE = size if size is not None else {'height': 18, 'width': 18} SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = min_resolution SCREAMING_SNAKE_CASE = max_resolution SCREAMING_SNAKE_CASE = do_resize SCREAMING_SNAKE_CASE = size SCREAMING_SNAKE_CASE = do_normalize def __A ( self ) -> Optional[Any]: return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.88_66_44_36_34_03_32_03, 0.66_18_82_93_69_54_49_83, 0.38_91_74_64_01_78_68_04], [-0.60_42_55_91_46_88_11_04, -0.0_22_95_00_88_60_52_84_69, 0.54_23_79_73_69_00_32_96], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowerCAmelCase ( lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = ImageGPTImageProcessor if is_vision_available() else None def __A ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE = ImageGPTImageProcessingTester(self ) @property def __A ( self ) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def __A ( self ) -> List[Any]: SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , 'clusters' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'do_resize' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'size' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'do_normalize' ) ) def __A ( self ) -> Tuple: SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def __A ( self ) -> List[Any]: SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) SCREAMING_SNAKE_CASE = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowerCAmelCase__ , obj[key] ) ) else: self.assertEqual(obj[key] , lowerCAmelCase__ ) def __A ( self ) -> List[str]: SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE = os.path.join(lowerCAmelCase__ , 'image_processor.json' ) image_processor_first.to_json_file(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self.image_processing_class.from_json_file(lowerCAmelCase__ ).to_dict() SCREAMING_SNAKE_CASE = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowerCAmelCase__ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowerCAmelCase__ ) def __A ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self.image_processing_class.from_pretrained(lowerCAmelCase__ ).to_dict() SCREAMING_SNAKE_CASE = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowerCAmelCase__ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowerCAmelCase__ ) @unittest.skip('ImageGPT requires clusters at initialization' ) def __A ( self ) -> Optional[Any]: pass def lowercase () -> Union[str, Any]: SCREAMING_SNAKE_CASE = load_dataset('hf-internal-testing/fixtures_image_utils' , split='test' ) SCREAMING_SNAKE_CASE = Image.open(dataset[4]['file'] ) SCREAMING_SNAKE_CASE = Image.open(dataset[5]['file'] ) SCREAMING_SNAKE_CASE = [imagea, imagea] return images @require_vision @require_torch class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __A ( self ) -> List[Any]: SCREAMING_SNAKE_CASE = ImageGPTImageProcessor.from_pretrained('openai/imagegpt-small' ) SCREAMING_SNAKE_CASE = prepare_images() # test non-batched SCREAMING_SNAKE_CASE = image_processing(images[0] , return_tensors='pt' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1_024) ) SCREAMING_SNAKE_CASE = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , lowerCAmelCase__ ) # test batched SCREAMING_SNAKE_CASE = image_processing(lowerCAmelCase__ , return_tensors='pt' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1_024) ) SCREAMING_SNAKE_CASE = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowerCAmelCase__ )
113
0
"""simple docstring""" def lowerCamelCase_ (UpperCamelCase__ : str ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
357
"""simple docstring""" from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def lowerCamelCase_ (UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : float = 1 / sqrt(2 ) ): _UpperCAmelCase : str = tau * frequency / samplerate _UpperCAmelCase : int = sin(UpperCamelCase__ ) _UpperCAmelCase : Optional[Any] = cos(UpperCamelCase__ ) _UpperCAmelCase : Any = _sin / (2 * q_factor) _UpperCAmelCase : Any = (1 - _cos) / 2 _UpperCAmelCase : Tuple = 1 - _cos _UpperCAmelCase : List[str] = 1 + alpha _UpperCAmelCase : Union[str, Any] = -2 * _cos _UpperCAmelCase : Optional[Any] = 1 - alpha _UpperCAmelCase : Optional[int] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowerCamelCase_ (UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : float = 1 / sqrt(2 ) ): _UpperCAmelCase : List[str] = tau * frequency / samplerate _UpperCAmelCase : Dict = sin(UpperCamelCase__ ) _UpperCAmelCase : Dict = cos(UpperCamelCase__ ) _UpperCAmelCase : Union[str, Any] = _sin / (2 * q_factor) _UpperCAmelCase : Dict = (1 + _cos) / 2 _UpperCAmelCase : Dict = -1 - _cos _UpperCAmelCase : Optional[Any] = 1 + alpha _UpperCAmelCase : str = -2 * _cos _UpperCAmelCase : Union[str, Any] = 1 - alpha _UpperCAmelCase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowerCamelCase_ (UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : float = 1 / sqrt(2 ) ): _UpperCAmelCase : List[Any] = tau * frequency / samplerate _UpperCAmelCase : Optional[int] = sin(UpperCamelCase__ ) _UpperCAmelCase : Dict = cos(UpperCamelCase__ ) _UpperCAmelCase : str = _sin / (2 * q_factor) _UpperCAmelCase : Tuple = _sin / 2 _UpperCAmelCase : Optional[int] = 0 _UpperCAmelCase : Dict = -ba _UpperCAmelCase : str = 1 + alpha _UpperCAmelCase : List[str] = -2 * _cos _UpperCAmelCase : str = 1 - alpha _UpperCAmelCase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowerCamelCase_ (UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : float = 1 / sqrt(2 ) ): _UpperCAmelCase : Tuple = tau * frequency / samplerate _UpperCAmelCase : Dict = sin(UpperCamelCase__ ) _UpperCAmelCase : List[Any] = cos(UpperCamelCase__ ) _UpperCAmelCase : Optional[Any] = _sin / (2 * q_factor) _UpperCAmelCase : Optional[Any] = 1 - alpha _UpperCAmelCase : Optional[int] = -2 * _cos _UpperCAmelCase : str = 1 + alpha _UpperCAmelCase : Tuple = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def lowerCamelCase_ (UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : float , UpperCamelCase__ : float = 1 / sqrt(2 ) , ): _UpperCAmelCase : List[str] = tau * frequency / samplerate _UpperCAmelCase : Union[str, Any] = sin(UpperCamelCase__ ) _UpperCAmelCase : int = cos(UpperCamelCase__ ) _UpperCAmelCase : Dict = _sin / (2 * q_factor) _UpperCAmelCase : int = 10 ** (gain_db / 40) _UpperCAmelCase : Union[str, Any] = 1 + alpha * big_a _UpperCAmelCase : int = -2 * _cos _UpperCAmelCase : Any = 1 - alpha * big_a _UpperCAmelCase : Dict = 1 + alpha / big_a _UpperCAmelCase : str = -2 * _cos _UpperCAmelCase : Union[str, Any] = 1 - alpha / big_a _UpperCAmelCase : int = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowerCamelCase_ (UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : float , UpperCamelCase__ : float = 1 / sqrt(2 ) , ): _UpperCAmelCase : str = tau * frequency / samplerate _UpperCAmelCase : List[Any] = sin(UpperCamelCase__ ) _UpperCAmelCase : Union[str, Any] = cos(UpperCamelCase__ ) _UpperCAmelCase : Dict = _sin / (2 * q_factor) _UpperCAmelCase : List[str] = 10 ** (gain_db / 40) _UpperCAmelCase : int = (big_a + 1) - (big_a - 1) * _cos _UpperCAmelCase : List[str] = (big_a + 1) + (big_a - 1) * _cos _UpperCAmelCase : List[Any] = (big_a - 1) - (big_a + 1) * _cos _UpperCAmelCase : Tuple = (big_a - 1) + (big_a + 1) * _cos _UpperCAmelCase : Optional[int] = 2 * sqrt(UpperCamelCase__ ) * alpha _UpperCAmelCase : Optional[Any] = big_a * (pmc + aaa) _UpperCAmelCase : List[Any] = 2 * big_a * mpc _UpperCAmelCase : Any = big_a * (pmc - aaa) _UpperCAmelCase : Union[str, Any] = ppmc + aaa _UpperCAmelCase : Dict = -2 * pmpc _UpperCAmelCase : str = ppmc - aaa _UpperCAmelCase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowerCamelCase_ (UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : float , UpperCamelCase__ : float = 1 / sqrt(2 ) , ): _UpperCAmelCase : Tuple = tau * frequency / samplerate _UpperCAmelCase : Dict = sin(UpperCamelCase__ ) _UpperCAmelCase : str = cos(UpperCamelCase__ ) _UpperCAmelCase : Optional[Any] = _sin / (2 * q_factor) _UpperCAmelCase : str = 10 ** (gain_db / 40) _UpperCAmelCase : Any = (big_a + 1) - (big_a - 1) * _cos _UpperCAmelCase : Dict = (big_a + 1) + (big_a - 1) * _cos _UpperCAmelCase : Union[str, Any] = (big_a - 1) - (big_a + 1) * _cos _UpperCAmelCase : Dict = (big_a - 1) + (big_a + 1) * _cos _UpperCAmelCase : Union[str, Any] = 2 * sqrt(UpperCamelCase__ ) * alpha _UpperCAmelCase : str = big_a * (ppmc + aaa) _UpperCAmelCase : List[str] = -2 * big_a * pmpc _UpperCAmelCase : Any = big_a * (ppmc - aaa) _UpperCAmelCase : str = pmc + aaa _UpperCAmelCase : Any = 2 * mpc _UpperCAmelCase : Tuple = pmc - aaa _UpperCAmelCase : Dict = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
68
0
import re def lowerCamelCase_ ( _UpperCamelCase ) -> bool: """simple docstring""" snake_case_ : int = re.compile( R'''^(?:0|94|\+94|0{2}94)''' R'''7(0|1|2|4|5|6|7|8)''' R'''(-| |)''' R'''\d{7}$''' ) return bool(re.search(_UpperCamelCase , _UpperCamelCase ) ) if __name__ == "__main__": lowerCAmelCase_ = '''0094702343221''' print(is_sri_lankan_phone_number(phone))
279
import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration lowerCAmelCase_ = { '''tiny.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt''', '''tiny''': '''https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt''', '''base.en''': '''https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt''', '''base''': '''https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt''', '''small.en''': '''https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt''', '''small''': '''https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt''', '''medium.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt''', '''medium''': '''https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt''', '''large''': '''https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt''', '''large-v2''': '''https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt''', } def lowerCamelCase_ ( _UpperCamelCase ) -> List[Any]: """simple docstring""" snake_case_ : List[str] = ['''layers''', '''blocks'''] for k in ignore_keys: state_dict.pop(_UpperCamelCase , _UpperCamelCase ) lowerCAmelCase_ = { '''blocks''': '''layers''', '''mlp.0''': '''fc1''', '''mlp.2''': '''fc2''', '''mlp_ln''': '''final_layer_norm''', '''.attn.query''': '''.self_attn.q_proj''', '''.attn.key''': '''.self_attn.k_proj''', '''.attn.value''': '''.self_attn.v_proj''', '''.attn_ln''': '''.self_attn_layer_norm''', '''.attn.out''': '''.self_attn.out_proj''', '''.cross_attn.query''': '''.encoder_attn.q_proj''', '''.cross_attn.key''': '''.encoder_attn.k_proj''', '''.cross_attn.value''': '''.encoder_attn.v_proj''', '''.cross_attn_ln''': '''.encoder_attn_layer_norm''', '''.cross_attn.out''': '''.encoder_attn.out_proj''', '''decoder.ln.''': '''decoder.layer_norm.''', '''encoder.ln.''': '''encoder.layer_norm.''', '''token_embedding''': '''embed_tokens''', '''encoder.positional_embedding''': '''encoder.embed_positions.weight''', '''decoder.positional_embedding''': '''decoder.embed_positions.weight''', '''ln_post''': '''layer_norm''', } def lowerCamelCase_ ( _UpperCamelCase ) -> int: """simple docstring""" snake_case_ : str = list(s_dict.keys() ) for key in keys: snake_case_ : Optional[int] = key for k, v in WHISPER_MAPPING.items(): if k in key: snake_case_ : List[str] = new_key.replace(_UpperCamelCase , _UpperCamelCase ) print(f'''{key} -> {new_key}''' ) snake_case_ : Tuple = s_dict.pop(_UpperCamelCase ) return s_dict def lowerCamelCase_ ( _UpperCamelCase ) -> int: """simple docstring""" snake_case_ , snake_case_ : Dict = emb.weight.shape snake_case_ : Tuple = nn.Linear(_UpperCamelCase , _UpperCamelCase , bias=_UpperCamelCase ) snake_case_ : Any = emb.weight.data return lin_layer def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> bytes: """simple docstring""" os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) snake_case_ : List[Any] = os.path.basename(_UpperCamelCase ) snake_case_ : Any = url.split('''/''' )[-2] snake_case_ : str = os.path.join(_UpperCamelCase , _UpperCamelCase ) if os.path.exists(_UpperCamelCase ) and not os.path.isfile(_UpperCamelCase ): raise RuntimeError(f'''{download_target} exists and is not a regular file''' ) if os.path.isfile(_UpperCamelCase ): snake_case_ : Union[str, Any] = open(_UpperCamelCase , '''rb''' ).read() if hashlib.shaaaa(_UpperCamelCase ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(f'''{download_target} exists, but the SHA256 checksum does not match; re-downloading the file''' ) with urllib.request.urlopen(_UpperCamelCase ) as source, open(_UpperCamelCase , '''wb''' ) as output: with tqdm( total=int(source.info().get('''Content-Length''' ) ) , ncols=80 , unit='''iB''' , unit_scale=_UpperCamelCase , unit_divisor=1_024 ) as loop: while True: snake_case_ : Dict = source.read(8_192 ) if not buffer: break output.write(_UpperCamelCase ) loop.update(len(_UpperCamelCase ) ) snake_case_ : Any = open(_UpperCamelCase , '''rb''' ).read() if hashlib.shaaaa(_UpperCamelCase ).hexdigest() != expected_shaaaa: raise RuntimeError( '''Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.''' ) return model_bytes def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> int: """simple docstring""" if ".pt" not in checkpoint_path: snake_case_ : str = _download(_MODELS[checkpoint_path] ) else: snake_case_ : Union[str, Any] = torch.load(_UpperCamelCase , map_location='''cpu''' ) snake_case_ : int = original_checkpoint['''dims'''] snake_case_ : List[str] = original_checkpoint['''model_state_dict'''] snake_case_ : str = state_dict['''decoder.token_embedding.weight'''] remove_ignore_keys_(_UpperCamelCase ) rename_keys(_UpperCamelCase ) snake_case_ : Optional[int] = True snake_case_ : int = state_dict['''decoder.layers.0.fc1.weight'''].shape[0] snake_case_ : List[str] = WhisperConfig( vocab_size=dimensions['''n_vocab'''] , encoder_ffn_dim=_UpperCamelCase , decoder_ffn_dim=_UpperCamelCase , num_mel_bins=dimensions['''n_mels'''] , d_model=dimensions['''n_audio_state'''] , max_target_positions=dimensions['''n_text_ctx'''] , encoder_layers=dimensions['''n_audio_layer'''] , encoder_attention_heads=dimensions['''n_audio_head'''] , decoder_layers=dimensions['''n_text_layer'''] , decoder_attention_heads=dimensions['''n_text_state'''] , max_source_positions=dimensions['''n_audio_ctx'''] , ) snake_case_ : Union[str, Any] = WhisperForConditionalGeneration(_UpperCamelCase ) snake_case_ , snake_case_ : List[Any] = model.model.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) if len(_UpperCamelCase ) > 0 and not set(_UpperCamelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' f''' but all the following weights are missing {missing}''' ) if tie_embeds: snake_case_ : List[str] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: snake_case_ : Any = proj_out_weights model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Patht to the downloaded checkpoints''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') lowerCAmelCase_ = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
279
1
'''simple docstring''' from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class A_ ( lowerCAmelCase_ , lowerCAmelCase_ ): _lowerCamelCase : Optional[int] = """pixel_values""" _lowerCamelCase : Tuple = False _lowerCamelCase : int = TimmBackboneConfig def __init__( self : Optional[Any] , snake_case_ : Dict , **snake_case_ : Tuple ): requires_backends(self , "timm" ) super().__init__(snake_case_ ) _UpperCAmelCase = config if config.backbone is None: raise ValueError("backbone is not set in the config. Please set it to a timm model name." ) if config.backbone not in timm.list_models(): raise ValueError(f'backbone {config.backbone} is not supported by timm.' ) if hasattr(snake_case_ , "out_features" ) and config.out_features is not None: raise ValueError("out_features is not supported by TimmBackbone. Please use out_indices instead." ) _UpperCAmelCase = getattr(snake_case_ , "use_pretrained_backbone" , snake_case_ ) if pretrained is None: raise ValueError("use_pretrained_backbone is not set in the config. Please set it to True or False." ) # We just take the final layer by default. This matches the default for the transformers models. _UpperCAmelCase = config.out_indices if getattr(snake_case_ , "out_indices" , snake_case_ ) is not None else (-1,) _UpperCAmelCase = timm.create_model( config.backbone , pretrained=snake_case_ , features_only=config.features_only , in_chans=config.num_channels , out_indices=snake_case_ , **snake_case_ , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. _UpperCAmelCase = self._backbone.return_layers _UpperCAmelCase = {layer["module"]: str(snake_case_ ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(snake_case_ ) @classmethod def lowercase ( cls : List[str] , snake_case_ : Any , *snake_case_ : Tuple , **snake_case_ : str ): requires_backends(cls , ["vision", "timm"] ) from ...models.timm_backbone import TimmBackboneConfig _UpperCAmelCase = kwargs.pop("config" , TimmBackboneConfig() ) _UpperCAmelCase = kwargs.pop("use_timm_backbone" , snake_case_ ) if not use_timm: raise ValueError("use_timm_backbone must be True for timm backbones" ) _UpperCAmelCase = kwargs.pop("num_channels" , config.num_channels ) _UpperCAmelCase = kwargs.pop("features_only" , config.features_only ) _UpperCAmelCase = kwargs.pop("use_pretrained_backbone" , config.use_pretrained_backbone ) _UpperCAmelCase = kwargs.pop("out_indices" , config.out_indices ) _UpperCAmelCase = TimmBackboneConfig( backbone=snake_case_ , num_channels=snake_case_ , features_only=snake_case_ , use_pretrained_backbone=snake_case_ , out_indices=snake_case_ , ) return super()._from_config(snake_case_ , **snake_case_ ) def lowercase ( self : Optional[int] , snake_case_ : str ): pass def lowercase ( self : Tuple , snake_case_ : int , snake_case_ : str=None , snake_case_ : str=None , snake_case_ : Union[str, Any]=None , **snake_case_ : List[Any] ): _UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("Cannot output attentions for timm backbones at the moment" ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone _UpperCAmelCase = self._all_layers _UpperCAmelCase = self._backbone(snake_case_ , **snake_case_ ) _UpperCAmelCase = self._return_layers _UpperCAmelCase = tuple(hidden_states[i] for i in self.out_indices ) else: _UpperCAmelCase = self._backbone(snake_case_ , **snake_case_ ) _UpperCAmelCase = None _UpperCAmelCase = tuple(snake_case_ ) _UpperCAmelCase = tuple(snake_case_ ) if hidden_states is not None else None if not return_dict: _UpperCAmelCase = (feature_maps,) if output_hidden_states: _UpperCAmelCase = output + (hidden_states,) return output return BackboneOutput(feature_maps=snake_case_ , hidden_states=snake_case_ , attentions=snake_case_ )
156
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __SCREAMING_SNAKE_CASE :Dict = { '''configuration_upernet''': ['''UperNetConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE :Optional[int] = [ '''UperNetForSemanticSegmentation''', '''UperNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys __SCREAMING_SNAKE_CASE :List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
156
1
'''simple docstring''' a__ : Union[str, Any] = 9.8_06_65 def _lowercase ( __A ,__A ,__A = g ): '''simple docstring''' if fluid_density <= 0: raise ValueError("""Impossible fluid density""" ) if volume < 0: raise ValueError("""Impossible Object volume""" ) if gravity <= 0: raise ValueError("""Impossible Gravity""" ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
349
'''simple docstring''' from datetime import datetime import requests def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = """https://downloadgram.net/wp-json/wppress/video-downloader/video?url=""" __UpperCamelCase = requests.get(base_url + url ).json()[0]["""urls"""][0]["""src"""] return requests.get(__A ).content if __name__ == "__main__": a__ : int = input('Enter Video/IGTV url: ').strip() a__ : int = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, 'wb') as fp: fp.write(download_video(url)) print(f'''Done. Video saved to disk as {file_name}.''')
349
1
"""simple docstring""" import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _snake_case ( a__ , unittest.TestCase ): snake_case__ = CodeGenTokenizer snake_case__ = CodeGenTokenizerFast snake_case__ = True snake_case__ = {"add_prefix_space": True} snake_case__ = False def lowerCamelCase__ ( self : int ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCamelCase : Tuple = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] __lowerCamelCase : Tuple = dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) __lowerCamelCase : Dict = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] __lowerCamelCase : str = {"unk_token": "<unk>"} __lowerCamelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) __lowerCamelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(UpperCAmelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(UpperCAmelCase ) ) def lowerCamelCase__ ( self : int , **UpperCAmelCase : Any ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def lowerCamelCase__ ( self : Dict , **UpperCAmelCase : Any ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def lowerCamelCase__ ( self : Any , UpperCAmelCase : Dict ): __lowerCamelCase : int = "lower newer" __lowerCamelCase : Any = "lower newer" return input_text, output_text def lowerCamelCase__ ( self : List[Any] ): __lowerCamelCase : Optional[Any] = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowerCamelCase : List[Any] = "lower newer" __lowerCamelCase : Optional[int] = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] __lowerCamelCase : int = tokenizer.tokenize(UpperCAmelCase , add_prefix_space=UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase : List[str] = tokens + [tokenizer.unk_token] __lowerCamelCase : Union[str, Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , UpperCAmelCase ) def lowerCamelCase__ ( self : Dict ): if not self.test_rust_tokenizer: return __lowerCamelCase : Dict = self.get_tokenizer() __lowerCamelCase : List[Any] = self.get_rust_tokenizer(add_prefix_space=UpperCAmelCase ) __lowerCamelCase : Tuple = "lower newer" # Testing tokenization __lowerCamelCase : str = tokenizer.tokenize(UpperCAmelCase , add_prefix_space=UpperCAmelCase ) __lowerCamelCase : Union[str, Any] = rust_tokenizer.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) # Testing conversion to ids without special tokens __lowerCamelCase : Dict = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase , add_prefix_space=UpperCAmelCase ) __lowerCamelCase : int = rust_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) # Testing conversion to ids with special tokens __lowerCamelCase : List[Any] = self.get_rust_tokenizer(add_prefix_space=UpperCAmelCase ) __lowerCamelCase : Union[str, Any] = tokenizer.encode(UpperCAmelCase , add_prefix_space=UpperCAmelCase ) __lowerCamelCase : int = rust_tokenizer.encode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) # Testing the unknown token __lowerCamelCase : Optional[Any] = tokens + [rust_tokenizer.unk_token] __lowerCamelCase : int = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , UpperCAmelCase ) def lowerCamelCase__ ( self : List[str] , *UpperCAmelCase : Dict , **UpperCAmelCase : Tuple ): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def lowerCamelCase__ ( self : Any , UpperCAmelCase : int=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __lowerCamelCase : str = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) # Simple input __lowerCamelCase : Tuple = "This is a simple input" __lowerCamelCase : int = ["This is a simple input 1", "This is a simple input 2"] __lowerCamelCase : Tuple = ("This is a simple input", "This is a pair") __lowerCamelCase : List[str] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(UpperCAmelCase , tokenizer_r.encode , UpperCAmelCase , max_length=UpperCAmelCase , padding="max_length" ) # Simple input self.assertRaises(UpperCAmelCase , tokenizer_r.encode_plus , UpperCAmelCase , max_length=UpperCAmelCase , padding="max_length" ) # Simple input self.assertRaises( UpperCAmelCase , tokenizer_r.batch_encode_plus , UpperCAmelCase , max_length=UpperCAmelCase , padding="max_length" , ) # Pair input self.assertRaises(UpperCAmelCase , tokenizer_r.encode , UpperCAmelCase , max_length=UpperCAmelCase , padding="max_length" ) # Pair input self.assertRaises(UpperCAmelCase , tokenizer_r.encode_plus , UpperCAmelCase , max_length=UpperCAmelCase , padding="max_length" ) # Pair input self.assertRaises( UpperCAmelCase , tokenizer_r.batch_encode_plus , UpperCAmelCase , max_length=UpperCAmelCase , padding="max_length" , ) def lowerCamelCase__ ( self : List[str] ): __lowerCamelCase : Optional[Any] = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token="<pad>" ) # Simple input __lowerCamelCase : Any = "This is a simple input" __lowerCamelCase : Optional[Any] = ["This is a simple input looooooooong", "This is a simple input"] __lowerCamelCase : List[Any] = ("This is a simple input", "This is a pair") __lowerCamelCase : List[str] = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] __lowerCamelCase : Any = tokenizer.pad_token_id __lowerCamelCase : Dict = tokenizer(UpperCAmelCase , padding="max_length" , max_length=30 , return_tensors="np" ) __lowerCamelCase : str = tokenizer(UpperCAmelCase , padding=UpperCAmelCase , truncate=UpperCAmelCase , return_tensors="np" ) __lowerCamelCase : Any = tokenizer(*UpperCAmelCase , padding="max_length" , max_length=60 , return_tensors="np" ) __lowerCamelCase : str = tokenizer(UpperCAmelCase , padding=UpperCAmelCase , truncate=UpperCAmelCase , return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def lowerCamelCase__ ( self : Union[str, Any] ): __lowerCamelCase : Dict = "$$$" __lowerCamelCase : List[Any] = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=UpperCAmelCase , add_bos_token=UpperCAmelCase ) __lowerCamelCase : List[str] = "This is a simple input" __lowerCamelCase : str = ["This is a simple input 1", "This is a simple input 2"] __lowerCamelCase : Dict = tokenizer.bos_token_id __lowerCamelCase : List[str] = tokenizer(UpperCAmelCase ) __lowerCamelCase : Union[str, Any] = tokenizer(UpperCAmelCase ) self.assertEqual(out_s.input_ids[0] , UpperCAmelCase ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) __lowerCamelCase : Optional[int] = tokenizer.decode(out_s.input_ids ) __lowerCamelCase : List[Any] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , UpperCAmelCase ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def lowerCamelCase__ ( self : Tuple ): __lowerCamelCase : List[Any] = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono" ) __lowerCamelCase : int = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" __lowerCamelCase : str = "\nif len_a > len_b: result = a\nelse: result = b" __lowerCamelCase : List[str] = tokenizer.encode(UpperCAmelCase ) __lowerCamelCase : Dict = ["^#", re.escape("<|endoftext|>" ), "^'''", "^\"\"\"", "\n\n\n"] __lowerCamelCase : str = tokenizer.decode(UpperCAmelCase , truncate_before_pattern=UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) def lowerCamelCase__ ( self : List[Any] ): pass
64
"""simple docstring""" from ...configuration_utils import PretrainedConfig class _snake_case ( a__ ): snake_case__ = "bert-generation" def __init__( self : Optional[int] , UpperCAmelCase : Dict=50358 , UpperCAmelCase : int=1024 , UpperCAmelCase : Optional[int]=24 , UpperCAmelCase : str=16 , UpperCAmelCase : str=4096 , UpperCAmelCase : List[Any]="gelu" , UpperCAmelCase : str=0.1 , UpperCAmelCase : Tuple=0.1 , UpperCAmelCase : Union[str, Any]=512 , UpperCAmelCase : Optional[Any]=0.0_2 , UpperCAmelCase : int=1E-12 , UpperCAmelCase : Tuple=0 , UpperCAmelCase : int=2 , UpperCAmelCase : Optional[int]=1 , UpperCAmelCase : Union[str, Any]="absolute" , UpperCAmelCase : Tuple=True , **UpperCAmelCase : Optional[Any] , ): super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) __lowerCamelCase : Union[str, Any] = vocab_size __lowerCamelCase : List[Any] = hidden_size __lowerCamelCase : Any = num_hidden_layers __lowerCamelCase : List[Any] = num_attention_heads __lowerCamelCase : int = hidden_act __lowerCamelCase : List[str] = intermediate_size __lowerCamelCase : Tuple = hidden_dropout_prob __lowerCamelCase : List[str] = attention_probs_dropout_prob __lowerCamelCase : Optional[Any] = max_position_embeddings __lowerCamelCase : List[Any] = initializer_range __lowerCamelCase : Union[str, Any] = layer_norm_eps __lowerCamelCase : List[str] = position_embedding_type __lowerCamelCase : Optional[Any] = use_cache
64
1
"""simple docstring""" from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _A : List[Any] = logging.get_logger(__name__) _A : List[str] = { """nielsr/canine-s""": 20_48, } # Unicode defines 1,114,112 total “codepoints” _A : List[str] = 1_11_41_12 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py _A : Optional[int] = 0 _A : Union[str, Any] = 0XE_000 _A : Optional[Any] = 0XE_001 _A : str = 0XE_002 _A : List[str] = 0XE_003 _A : str = 0XE_004 # Maps special codepoints to human-readable names. _A : Dict[int, str] = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. _A : Dict[str, int] = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class a__ ( a_ ): __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _a=chr(_a ) , _a=chr(_a ) , _a=chr(_a ) , _a=chr(_a ) , _a=chr(_a ) , _a=chr(_a ) , _a=False , _a=2_048 , **_a , ): lowercase : List[str] = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else bos_token lowercase : Dict = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else eos_token lowercase : int = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else sep_token lowercase : Dict = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else cls_token lowercase : Any = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase : List[Any] = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token super().__init__( bos_token=_a , eos_token=_a , sep_token=_a , cls_token=_a , pad_token=_a , mask_token=_a , add_prefix_space=_a , model_max_length=_a , **_a , ) # Creates a mapping for looking up the IDs of special symbols. lowercase : Dict[str, int] = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): lowercase : Dict = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. lowercase : Dict[int, str] = { codepoint: name for name, codepoint in self._special_codepoints.items() } lowercase : int = UNICODE_VOCAB_SIZE lowercase : Union[str, Any] = len(self._special_codepoints ) @property def __magic_name__ ( self ): return self._unicode_vocab_size def __magic_name__ ( self , _a ): return list(_a ) def __magic_name__ ( self , _a ): try: return ord(_a ) except TypeError: raise ValueError(f"""invalid token: '{token}'""" ) def __magic_name__ ( self , _a ): try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(_a ) except TypeError: raise ValueError(f"""invalid id: {index}""" ) def __magic_name__ ( self , _a ): return "".join(_a ) def __magic_name__ ( self , _a , _a = None ): lowercase : Optional[Any] = [self.sep_token_id] lowercase : Any = [self.cls_token_id] lowercase : int = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def __magic_name__ ( self , _a , _a = None , _a = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) lowercase : Union[str, Any] = [1] + ([0] * len(_a )) + [1] if token_ids_a is not None: result += ([0] * len(_a )) + [1] return result def __magic_name__ ( self , _a , _a = None ): lowercase : List[Any] = [self.sep_token_id] lowercase : Tuple = [self.cls_token_id] lowercase : int = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def __magic_name__ ( self , _a , _a = None ): return ()
202
"""simple docstring""" from __future__ import annotations def __magic_name__ ( __snake_case : list[int] ) -> list[int]: if len(__snake_case ) == 0: return array lowercase , lowercase : Tuple = min(__snake_case ), max(__snake_case ) # Compute the variables lowercase : Optional[Any] = _max - _min + 1 lowercase , lowercase : List[str] = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: lowercase : Tuple = i - _min lowercase : str = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. lowercase : Union[str, Any] = 0 for i in range(__snake_case ): while holes_repeat[i] > 0: lowercase : Tuple = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() _A : str = input("""Enter numbers separated by comma:\n""") _A : Optional[Any] = [int(x) for x in user_input.split(""",""")] print(pigeon_sort(unsorted))
202
1
'''simple docstring''' import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def a__ ( a__ , a__ ): """simple docstring""" assert isinstance(a__ , a__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def a__ ( a__ , a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = tmp_path / """cache""" __SCREAMING_SNAKE_CASE = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __SCREAMING_SNAKE_CASE = TextDatasetReader(a__ , cache_dir=a__ , keep_in_memory=a__ ).read() _check_text_dataset(a__ , a__ ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def a__ ( a__ , a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = tmp_path / """cache""" __SCREAMING_SNAKE_CASE = {"""text""": """string"""} __SCREAMING_SNAKE_CASE = features.copy() if features else default_expected_features __SCREAMING_SNAKE_CASE = ( Features({feature: Value(a__ ) for feature, dtype in features.items()} ) if features is not None else None ) __SCREAMING_SNAKE_CASE = TextDatasetReader(a__ , features=a__ , cache_dir=a__ ).read() _check_text_dataset(a__ , a__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def a__ ( a__ , a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = tmp_path / """cache""" __SCREAMING_SNAKE_CASE = {"""text""": """string"""} __SCREAMING_SNAKE_CASE = TextDatasetReader(a__ , cache_dir=a__ , split=a__ ).read() _check_text_dataset(a__ , a__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def a__ ( a__ , a__ , a__ ): """simple docstring""" if issubclass(a__ , a__ ): __SCREAMING_SNAKE_CASE = text_path elif issubclass(a__ , a__ ): __SCREAMING_SNAKE_CASE = [text_path] __SCREAMING_SNAKE_CASE = tmp_path / """cache""" __SCREAMING_SNAKE_CASE = {"""text""": """string"""} __SCREAMING_SNAKE_CASE = TextDatasetReader(a__ , cache_dir=a__ ).read() _check_text_dataset(a__ , a__ ) def a__ ( a__ , a__ , a__=("train",) ): """simple docstring""" assert isinstance(a__ , a__ ) for split in splits: __SCREAMING_SNAKE_CASE = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def a__ ( a__ , a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = tmp_path / """cache""" __SCREAMING_SNAKE_CASE = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __SCREAMING_SNAKE_CASE = TextDatasetReader({"""train""": text_path} , cache_dir=a__ , keep_in_memory=a__ ).read() _check_text_datasetdict(a__ , a__ ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def a__ ( a__ , a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = tmp_path / """cache""" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" __SCREAMING_SNAKE_CASE = {"""text""": """string"""} __SCREAMING_SNAKE_CASE = features.copy() if features else default_expected_features __SCREAMING_SNAKE_CASE = ( Features({feature: Value(a__ ) for feature, dtype in features.items()} ) if features is not None else None ) __SCREAMING_SNAKE_CASE = TextDatasetReader({"""train""": text_path} , features=a__ , cache_dir=a__ ).read() _check_text_datasetdict(a__ , a__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def a__ ( a__ , a__ , a__ ): """simple docstring""" if split: __SCREAMING_SNAKE_CASE = {split: text_path} else: __SCREAMING_SNAKE_CASE = """train""" __SCREAMING_SNAKE_CASE = {"""train""": text_path, """test""": text_path} __SCREAMING_SNAKE_CASE = tmp_path / """cache""" __SCREAMING_SNAKE_CASE = {"""text""": """string"""} __SCREAMING_SNAKE_CASE = TextDatasetReader(a__ , cache_dir=a__ ).read() _check_text_datasetdict(a__ , a__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
331
'''simple docstring''' from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar UpperCAmelCase : Dict = TypeVar('T') def a__ ( a__ ): """simple docstring""" return (position - 1) // 2 def a__ ( a__ ): """simple docstring""" return (2 * position) + 1 def a__ ( a__ ): """simple docstring""" return (2 * position) + 2 class lowerCAmelCase__ ( Generic[T] ): """simple docstring""" def __init__( self : List[str] ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = 0 def __len__( self : Optional[Any] ) -> int: """simple docstring""" return self.elements def __repr__( self : List[str] ) -> str: """simple docstring""" return str(self.heap ) def UpperCAmelCase__ ( self : Tuple ) -> bool: """simple docstring""" return self.elements == 0 def UpperCAmelCase__ ( self : int , __SCREAMING_SNAKE_CASE : T , __SCREAMING_SNAKE_CASE : int ) -> None: """simple docstring""" self.heap.append((elem, weight) ) __SCREAMING_SNAKE_CASE = self.elements self.elements += 1 self._bubble_up(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Any ) -> T: """simple docstring""" if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[0] self._bubble_down(__SCREAMING_SNAKE_CASE ) return elem def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : T , __SCREAMING_SNAKE_CASE : int ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = self.position_map[elem] __SCREAMING_SNAKE_CASE = (elem, weight) if position > 0: __SCREAMING_SNAKE_CASE = get_parent_position(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[parent_position] if parent_weight > weight: self._bubble_up(__SCREAMING_SNAKE_CASE ) else: self._bubble_down(__SCREAMING_SNAKE_CASE ) else: self._bubble_down(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : T ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = self.position_map[elem] if curr_pos == 0: return None __SCREAMING_SNAKE_CASE = get_parent_position(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[curr_pos] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return self._bubble_up(__SCREAMING_SNAKE_CASE ) return None def UpperCAmelCase__ ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : T ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = self.position_map[elem] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[curr_pos] __SCREAMING_SNAKE_CASE = get_child_left_position(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = get_child_right_position(__SCREAMING_SNAKE_CASE ) if child_left_position < self.elements and child_right_position < self.elements: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[child_left_position] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return self._bubble_down(__SCREAMING_SNAKE_CASE ) if child_left_position < self.elements: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return self._bubble_down(__SCREAMING_SNAKE_CASE ) else: return None if child_right_position < self.elements: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return self._bubble_down(__SCREAMING_SNAKE_CASE ) return None def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = self.heap[nodea_pos][0] __SCREAMING_SNAKE_CASE = self.heap[nodea_pos][0] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = ( self.heap[nodea_pos], self.heap[nodea_pos], ) __SCREAMING_SNAKE_CASE = nodea_pos __SCREAMING_SNAKE_CASE = nodea_pos class lowerCAmelCase__ ( Generic[T] ): """simple docstring""" def __init__( self : Union[str, Any] ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = 0 def __repr__( self : Dict ) -> str: """simple docstring""" return str(self.connections ) def __len__( self : Dict ) -> int: """simple docstring""" return self.nodes def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : T ) -> None: """simple docstring""" if node not in self.connections: __SCREAMING_SNAKE_CASE = {} self.nodes += 1 def UpperCAmelCase__ ( self : int , __SCREAMING_SNAKE_CASE : T , __SCREAMING_SNAKE_CASE : T , __SCREAMING_SNAKE_CASE : int ) -> None: """simple docstring""" self.add_node(__SCREAMING_SNAKE_CASE ) self.add_node(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = weight __SCREAMING_SNAKE_CASE = weight def a__ ( a__ , ): """simple docstring""" __SCREAMING_SNAKE_CASE = {node: maxsize for node in graph.connections} __SCREAMING_SNAKE_CASE = {node: None for node in graph.connections} __SCREAMING_SNAKE_CASE = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(a__ , a__ ) if priority_queue.is_empty(): return dist, parent # initialization __SCREAMING_SNAKE_CASE = priority_queue.extract_min() __SCREAMING_SNAKE_CASE = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __SCREAMING_SNAKE_CASE = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(a__ , dist[neighbour] ) __SCREAMING_SNAKE_CASE = node # running prim's algorithm while not priority_queue.is_empty(): __SCREAMING_SNAKE_CASE = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __SCREAMING_SNAKE_CASE = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(a__ , dist[neighbour] ) __SCREAMING_SNAKE_CASE = node return dist, parent
331
1
'''simple docstring''' from ....utils import logging a__ : Optional[Any] = logging.get_logger(__name__) class lowercase_ ( a__ ): def __init__( self , a , a=None , a=20_48 ): UpperCamelCase__ = config.__dict__ UpperCamelCase__ = modal_hidden_size if num_labels: UpperCamelCase__ = num_labels
80
"""simple docstring""" import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase_ ( UpperCamelCase , unittest.TestCase): """simple docstring""" snake_case__ : Any = CLIPTokenizer snake_case__ : Dict = CLIPTokenizerFast snake_case__ : List[Any] = True snake_case__ : Optional[Any] = {} snake_case__ : Dict = False def UpperCAmelCase_ ( self : Any ) -> Any: super().setUp() # fmt: off __SCREAMING_SNAKE_CASE = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on __SCREAMING_SNAKE_CASE = dict(zip(UpperCAmelCase__ , range(len(UpperCAmelCase__ ) ) ) ) __SCREAMING_SNAKE_CASE = ["#version: 0.2", "l o", "lo w</w>", "e r</w>"] __SCREAMING_SNAKE_CASE = {"unk_token": "<unk>"} __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(UpperCAmelCase__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(UpperCAmelCase__ ) ) def UpperCAmelCase_ ( self : List[Any] , **UpperCAmelCase__ : Tuple ) -> List[Any]: kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Any , **UpperCAmelCase__ : Optional[Any] ) -> List[str]: kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase__ ) def UpperCAmelCase_ ( self : List[Any] , UpperCAmelCase__ : int ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = "lower newer" __SCREAMING_SNAKE_CASE = "lower newer" return input_text, output_text def UpperCAmelCase_ ( self : int ) -> List[str]: __SCREAMING_SNAKE_CASE = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __SCREAMING_SNAKE_CASE = "lower newer" __SCREAMING_SNAKE_CASE = ["lo", "w", "er</w>", "n", "e", "w", "er</w>"] __SCREAMING_SNAKE_CASE = tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokens + [tokenizer.unk_token] __SCREAMING_SNAKE_CASE = [1_0, 2, 1_6, 9, 3, 2, 1_6, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , UpperCAmelCase__ ) @require_ftfy def UpperCAmelCase_ ( self : Optional[Any] ) -> int: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = "A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d." __SCREAMING_SNAKE_CASE = tokenizer_s.tokenize(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokenizer_r.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways __SCREAMING_SNAKE_CASE = "xa\u0303y" + " " + "x\xe3y" __SCREAMING_SNAKE_CASE = tokenizer_s.tokenize(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokenizer_r.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) # Test that the tokenization is identical on unicode of space type __SCREAMING_SNAKE_CASE = [ "\u0009", # (horizontal tab, '\t') "\u000B", # (vertical tab) "\u000C", # (form feed) "\u0020", # (space, ' ') "\u200E", # (left-to-right mark):w "\u200F", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: __SCREAMING_SNAKE_CASE = tokenizer_s.tokenize(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokenizer_r.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) # Test that the tokenization is identical on unicode of line break type __SCREAMING_SNAKE_CASE = [ "\u000A", # (line feed, '\n') "\r\n", # (carriage return and line feed, '\r\n') "\u000D", # (carriage return, '\r') "\r", # (carriage return, '\r') "\u000D", # (carriage return, '\r') "\u2028", # (line separator) "\u2029", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: __SCREAMING_SNAKE_CASE = tokenizer_s.tokenize(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokenizer_r.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __SCREAMING_SNAKE_CASE = "hello" # `hello` is a token in the vocabulary of `pretrained_name` __SCREAMING_SNAKE_CASE = F"""{text_of_1_token} {text_of_1_token}""" __SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase__ , use_fast=UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = tokenizer_r(UpperCAmelCase__ , return_offsets_mapping=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCAmelCase__ ) + 1, len(UpperCAmelCase__ ) + 1 + len(UpperCAmelCase__ )) , ) __SCREAMING_SNAKE_CASE = F""" {text}""" __SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase__ , use_fast=UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = tokenizer_r(UpperCAmelCase__ , return_offsets_mapping=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(UpperCAmelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCAmelCase__ ) + 1, 1 + len(UpperCAmelCase__ ) + 1 + len(UpperCAmelCase__ )) , ) def UpperCAmelCase_ ( self : str ) -> Optional[int]: # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(UpperCAmelCase__ ) as context: self.rust_tokenizer_class.from_pretrained("robot-test/old-clip-tokenizer" ) self.assertTrue( context.exception.args[0].startswith( "The `backend_tokenizer` provided does not match the expected format." ) ) @require_ftfy def UpperCAmelCase_ ( self : Optional[int] ) -> int: super().test_tokenization_python_rust_equals() def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[Any]: # CLIP always lower cases letters pass
54
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { '''ut/deta''': '''https://huggingface.co/ut/deta/resolve/main/config.json''', } class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' __A = '''deta''' __A = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self : Tuple , lowercase_ : int=None , lowercase_ : Union[str, Any]=900 , lowercase_ : Any=2048 , lowercase_ : Optional[int]=6 , lowercase_ : Optional[int]=2048 , lowercase_ : List[Any]=8 , lowercase_ : Union[str, Any]=6 , lowercase_ : Optional[Any]=1024 , lowercase_ : Dict=8 , lowercase_ : Any=0.0 , lowercase_ : str=True , lowercase_ : List[Any]="relu" , lowercase_ : Optional[int]=256 , lowercase_ : Optional[int]=0.1 , lowercase_ : Optional[Any]=0.0 , lowercase_ : Optional[int]=0.0 , lowercase_ : Dict=0.02 , lowercase_ : List[str]=1.0 , lowercase_ : List[str]=True , lowercase_ : Any=False , lowercase_ : int="sine" , lowercase_ : str=5 , lowercase_ : int=4 , lowercase_ : Any=4 , lowercase_ : Tuple=True , lowercase_ : List[Any]=300 , lowercase_ : Tuple=True , lowercase_ : Any=True , lowercase_ : str=1 , lowercase_ : List[str]=5 , lowercase_ : Union[str, Any]=2 , lowercase_ : Tuple=1 , lowercase_ : int=1 , lowercase_ : Tuple=5 , lowercase_ : Union[str, Any]=2 , lowercase_ : Dict=0.1 , lowercase_ : List[Any]=0.25 , **lowercase_ : Any , ) -> List[str]: """simple docstring""" if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.") _UpperCamelCase = CONFIG_MAPPING["resnet"](out_features=["stage2", "stage3", "stage4"]) else: if isinstance(lowercase_ , lowercase_): _UpperCamelCase = backbone_config.pop("model_type") _UpperCamelCase = CONFIG_MAPPING[backbone_model_type] _UpperCamelCase = config_class.from_dict(lowercase_) _UpperCamelCase = backbone_config _UpperCamelCase = num_queries _UpperCamelCase = max_position_embeddings _UpperCamelCase = d_model _UpperCamelCase = encoder_ffn_dim _UpperCamelCase = encoder_layers _UpperCamelCase = encoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = activation_function _UpperCamelCase = init_std _UpperCamelCase = init_xavier_std _UpperCamelCase = encoder_layerdrop _UpperCamelCase = auxiliary_loss _UpperCamelCase = position_embedding_type # deformable attributes _UpperCamelCase = num_feature_levels _UpperCamelCase = encoder_n_points _UpperCamelCase = decoder_n_points _UpperCamelCase = two_stage _UpperCamelCase = two_stage_num_proposals _UpperCamelCase = with_box_refine _UpperCamelCase = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True.") # Hungarian matcher _UpperCamelCase = class_cost _UpperCamelCase = bbox_cost _UpperCamelCase = giou_cost # Loss coefficients _UpperCamelCase = mask_loss_coefficient _UpperCamelCase = dice_loss_coefficient _UpperCamelCase = bbox_loss_coefficient _UpperCamelCase = giou_loss_coefficient _UpperCamelCase = eos_coefficient _UpperCamelCase = focal_alpha super().__init__(is_encoder_decoder=lowercase_ , **lowercase_) @property def __UpperCAmelCase ( self : List[str]) -> int: """simple docstring""" return self.encoder_attention_heads @property def __UpperCAmelCase ( self : Optional[Any]) -> int: """simple docstring""" return self.d_model def __UpperCAmelCase ( self : Any) -> str: """simple docstring""" _UpperCamelCase = copy.deepcopy(self.__dict__) _UpperCamelCase = self.backbone_config.to_dict() _UpperCamelCase = self.__class__.model_type return output
362
from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' def __init__( self : List[str] , lowercase_ : Optional[NestedDataStructureLike[PathLike]] = None , lowercase_ : Optional[NamedSplit] = None , lowercase_ : Optional[Features] = None , lowercase_ : str = None , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : Optional[int] = None , **lowercase_ : Dict , ) -> Tuple: """simple docstring""" _UpperCamelCase = path_or_paths _UpperCamelCase = split if split or isinstance(lowercase_ , lowercase_) else "train" _UpperCamelCase = features _UpperCamelCase = cache_dir _UpperCamelCase = keep_in_memory _UpperCamelCase = streaming _UpperCamelCase = num_proc _UpperCamelCase = kwargs @abstractmethod def __UpperCAmelCase ( self : Any) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: """simple docstring""" pass class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' def __init__( self : List[Any] , lowercase_ : Optional[Features] = None , lowercase_ : str = None , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : Optional[int] = None , **lowercase_ : Union[str, Any] , ) -> str: """simple docstring""" _UpperCamelCase = features _UpperCamelCase = cache_dir _UpperCamelCase = keep_in_memory _UpperCamelCase = streaming _UpperCamelCase = num_proc _UpperCamelCase = kwargs @abstractmethod def __UpperCAmelCase ( self : Any) -> Union[Dataset, IterableDataset]: """simple docstring""" pass
63
0
'''simple docstring''' import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin A__: Tuple = get_tests_dir('''fixtures/test_sentencepiece_with_bytefallback.model''') @require_sentencepiece @require_tokenizers class A__ ( _lowerCAmelCase , unittest.TestCase ): __UpperCamelCase : Optional[int] = GPTSwaTokenizer __UpperCamelCase : Optional[Any] = False __UpperCamelCase : List[Any] = True __UpperCamelCase : Dict = False def __UpperCAmelCase ( self :Tuple ) -> int: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _a : List[Any] =GPTSwaTokenizer(SCREAMING_SNAKE_CASE_ , eos_token="""<unk>""" , bos_token="""<unk>""" , pad_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCAmelCase ( self :str , SCREAMING_SNAKE_CASE :Optional[int] ) -> str: '''simple docstring''' _a : Optional[Any] ="""This is a test""" _a : List[Any] ="""This is a test""" return input_text, output_text def __UpperCAmelCase ( self :str ) -> Optional[Any]: '''simple docstring''' _a : Dict ="""<s>""" _a : Union[str, Any] =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def __UpperCAmelCase ( self :Optional[Any] ) -> int: '''simple docstring''' _a : Optional[int] =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 2_0_0_0 ) def __UpperCAmelCase ( self :Dict ) -> Any: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 2_0_0_0 ) def __UpperCAmelCase ( self :Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _a : str =GPTSwaTokenizer(SCREAMING_SNAKE_CASE_ ) _a : Tuple =tokenizer.tokenize("""This is a test""" ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [4_6_5, 2_8_7, 2_6_5, 6_3_1, 8_4_2] ) _a : Union[str, Any] =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) # fmt: off self.assertListEqual( SCREAMING_SNAKE_CASE_ , ["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] , ) # fmt: on _a : int =tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [2_6_2, 2_7_2, 1_5_2_5, 2_8_6, 2_7_1, 2_6_8, 6_0, 9_1_6, 6_3_3, 6_3_3, 6_3_3, 2_5_9, 2_6_6, 3_0_1, 2_8_7, 3_8_4, 3_6_7, 2_6_3, 1_9_8, 1_7_2, 2_6_0] , ) _a : Any =tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) # fmt: off self.assertListEqual( SCREAMING_SNAKE_CASE_ , ["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] ) # fmt: on def __UpperCAmelCase ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' _a : List[Any] =GPTSwaTokenizer(SCREAMING_SNAKE_CASE_ ) _a : Union[str, Any] =["""This is a test""", """I was born in 92000, and this is falsé."""] _a : Any =[ [4_6_5, 2_8_7, 2_6_5, 6_3_1, 8_4_2], [2_6_2, 2_7_2, 1_5_2_5, 2_8_6, 2_7_1, 2_6_8, 6_0, 9_1_6, 6_3_3, 6_3_3, 6_3_3, 2_5_9, 2_6_6, 3_0_1, 2_8_7, 3_8_4, 3_6_7, 2_6_3, 1_9_8, 1_7_2, 2_6_0], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertListEqual(tokenizer.encode_fast(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) # Test that decode_fast returns the input text for text, token_ids in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertEqual(tokenizer.decode_fast(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) @slow def __UpperCAmelCase ( self :Optional[int] ) -> List[Any]: '''simple docstring''' _a : List[Any] =[ """<|python|>def fibonacci(n)\n if n < 0:\n print('Incorrect input')""", """Hey there, how are you doing this fine day?""", """This is a text with a trailing spaces followed by a dot .""", """Häj sväjs lillebrör! =)""", """Det är inget fel på Mr. Cool""", ] # fmt: off _a : Any ={"""input_ids""": [[6_3_4_2_3, 5, 6_8_1_1, 1_4_9_5_4, 2_8_2, 8_1_6, 3_8_2_1, 6_3_4_6_6, 6_3_4_2_5, 6_3_4_6_2, 1_8, 6_3_9_7_8, 6_7_8, 3_0_1, 1_3_2_0, 6_3_4_2_3, 6_3_4_5_5, 6_3_4_5_8, 1_8, 6_3_9_8_2, 4_2_4_6, 3_9_4_0, 1_9_0_1, 4_7_7_8_9, 5_5_4_7, 1_8_9_9_4], [1_9_6_3_0, 1_1_0_0, 6_3_4_4_6, 1_3_4_2, 6_3_3, 5_4_4, 4_4_8_8, 5_9_3, 5_1_0_2, 2_4_1_6, 6_3_4_9_5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_6_5_2, 4_2_8, 2_6_8, 1_9_3_6, 5_1_5, 2_6_8, 5_8_5_9_3, 2_2_4_1_3, 9_1_0_6, 5_4_6, 2_6_8, 3_3_2_1_3, 6_3_9_7_9, 6_9_8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5_1_3_0, 6_3_4_5_0, 9_2_4, 6_3_4_4_9, 2_2_4_9, 4_0_6_2, 1_5_5_8, 3_1_8, 6_3_5_0_4, 2_1_4_9_8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_0_9, 3_7_7, 2_8_2_7, 2_5_5_9, 3_3_2, 6_5_7_5, 6_3_4_4_3, 2_6_8_0_1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE_ , model_name="""AI-Sweden/gpt-sw3-126m""" , sequences=SCREAMING_SNAKE_CASE_ , )
276
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : Optional[Any] = '▁' a : List[Any] = {'vocab_file': 'sentencepiece.bpe.model'} a : Optional[Any] = { 'vocab_file': { 'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model', } } a : Any = { 'facebook/xglm-564M': 2_048, } class _a ( _lowerCAmelCase ): A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = ['''input_ids''', '''attention_mask'''] def __init__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="<unk>", SCREAMING_SNAKE_CASE_="<pad>", SCREAMING_SNAKE_CASE_ = None, **SCREAMING_SNAKE_CASE_, ) -> None: UpperCAmelCase_: Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer UpperCAmelCase_: Optional[int] = 7 UpperCAmelCase_: Dict = [f'<madeupword{i}>' for i in range(self.num_madeup_words )] UpperCAmelCase_: List[Any] = kwargs.get("""additional_special_tokens""", [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=SCREAMING_SNAKE_CASE_, eos_token=SCREAMING_SNAKE_CASE_, unk_token=SCREAMING_SNAKE_CASE_, sep_token=SCREAMING_SNAKE_CASE_, cls_token=SCREAMING_SNAKE_CASE_, pad_token=SCREAMING_SNAKE_CASE_, sp_model_kwargs=self.sp_model_kwargs, **SCREAMING_SNAKE_CASE_, ) UpperCAmelCase_: Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(SCREAMING_SNAKE_CASE_ ) ) UpperCAmelCase_: List[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase_: Dict = 1 # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase_: Any = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} UpperCAmelCase_: Union[str, Any] = len(self.sp_model ) UpperCAmelCase_: Optional[int] = {f'<madeupword{i}>': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__(self ) -> Any: UpperCAmelCase_: List[Any] = self.__dict__.copy() UpperCAmelCase_: List[Any] = None UpperCAmelCase_: Union[str, Any] = self.sp_model.serialized_model_proto() return state def __setstate__(self, SCREAMING_SNAKE_CASE_ ) -> Dict: UpperCAmelCase_: List[Any] = d # for backward compatibility if not hasattr(self, """sp_model_kwargs""" ): UpperCAmelCase_: int = {} UpperCAmelCase_: List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]: if token_ids_a is None: return [self.sep_token_id] + token_ids_a UpperCAmelCase_: List[str] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_, token_ids_a=SCREAMING_SNAKE_CASE_, already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]: UpperCAmelCase_: str = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def __snake_case (self ) -> Tuple: return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def __snake_case (self ) -> Optional[int]: UpperCAmelCase_: Tuple = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> List[str]: return self.sp_model.encode(SCREAMING_SNAKE_CASE_, out_type=SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> int: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase_: str = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> List[Any]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCAmelCase_: int = """""".join(SCREAMING_SNAKE_CASE_ ).replace(SCREAMING_SNAKE_CASE_, """ """ ).strip() return out_string def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return UpperCAmelCase_: List[Any] = os.path.join( SCREAMING_SNAKE_CASE_, (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, SCREAMING_SNAKE_CASE_ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE_, """wb""" ) as fi: UpperCAmelCase_: Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
147
0
from __future__ import annotations _SCREAMING_SNAKE_CASE : Optional[int] = list[tuple[int, int]] _SCREAMING_SNAKE_CASE : List[Any] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _SCREAMING_SNAKE_CASE : int = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class A__ : """simple docstring""" def __init__( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ): snake_case = pos_x snake_case = pos_y snake_case = (pos_y, pos_x) snake_case = goal_x snake_case = goal_y snake_case = g_cost snake_case = parent snake_case = self.calculate_heuristic() def a_ ( self ): snake_case = abs(self.pos_x - self.goal_x ) snake_case = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self , __snake_case ): return self.f_cost < other.f_cost class A__ : """simple docstring""" def __init__( self , __snake_case , __snake_case ): snake_case = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , __snake_case ) snake_case = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9_9_9_9 , __snake_case ) snake_case = [self.start] snake_case = [] snake_case = False def a_ ( self ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() snake_case = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: snake_case = True return self.retrace_path(__snake_case ) self.closed_nodes.append(__snake_case ) snake_case = self.get_successors(__snake_case ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(__snake_case ) else: # retrieve the best current path snake_case = self.open_nodes.pop(self.open_nodes.index(__snake_case ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(__snake_case ) else: self.open_nodes.append(__snake_case ) if not self.reached: return [self.start.pos] return None def a_ ( self , __snake_case ): snake_case = [] for action in delta: snake_case = parent.pos_x + action[1] snake_case = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__snake_case ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( __snake_case , __snake_case , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , __snake_case , ) ) return successors def a_ ( self , __snake_case ): snake_case = node snake_case = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) snake_case = current_node.parent path.reverse() return path if __name__ == "__main__": _SCREAMING_SNAKE_CASE : int = (0, 0) _SCREAMING_SNAKE_CASE : Union[str, Any] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("------") _SCREAMING_SNAKE_CASE : Dict = GreedyBestFirst(init, goal) _SCREAMING_SNAKE_CASE : Dict = greedy_bf.search() if path: for pos_x, pos_y in path: _SCREAMING_SNAKE_CASE : str = 2 for elem in grid: print(elem)
213
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) class A__ ( enum.Enum ): """simple docstring""" __magic_name__ = 0 __magic_name__ = 1 @add_end_docstrings(snake_case__ ) class A__ ( snake_case__ ): """simple docstring""" __magic_name__ = 'generated' def __init__( self , *__snake_case , **__snake_case ): super().__init__(*__snake_case , **__snake_case ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def a_ ( self , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=None , **__snake_case , ): snake_case = {} if truncation is not None: snake_case = truncation snake_case = generate_kwargs snake_case = {} if return_tensors is not None and return_type is None: snake_case = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: snake_case = return_type if clean_up_tokenization_spaces is not None: snake_case = clean_up_tokenization_spaces if stop_sequence is not None: snake_case = self.tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) if len(__snake_case ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) snake_case = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def a_ ( self , __snake_case , __snake_case , __snake_case ): return True def a_ ( self , *__snake_case , __snake_case ): snake_case = self.model.config.prefix if self.model.config.prefix is not None else '''''' if isinstance(args[0] , __snake_case ): if self.tokenizer.pad_token_id is None: raise ValueError('''Please make sure that the tokenizer has a pad_token_id when using a batch input''' ) snake_case = ([prefix + arg for arg in args[0]],) snake_case = True elif isinstance(args[0] , __snake_case ): snake_case = (prefix + args[0],) snake_case = False else: raise ValueError( F''' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`''' ) snake_case = self.tokenizer(*__snake_case , padding=__snake_case , truncation=__snake_case , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self , *__snake_case , **__snake_case ): snake_case = super().__call__(*__snake_case , **__snake_case ) if ( isinstance(args[0] , __snake_case ) and all(isinstance(__snake_case , __snake_case ) for el in args[0] ) and all(len(__snake_case ) == 1 for res in result ) ): return [res[0] for res in result] return result def a_ ( self , __snake_case , __snake_case=TruncationStrategy.DO_NOT_TRUNCATE , **__snake_case ): snake_case = self._parse_and_tokenize(__snake_case , truncation=__snake_case , **__snake_case ) return inputs def a_ ( self , __snake_case , **__snake_case ): if self.framework == "pt": snake_case , snake_case = model_inputs['''input_ids'''].shape elif self.framework == "tf": snake_case , snake_case = tf.shape(model_inputs['''input_ids'''] ).numpy() snake_case = generate_kwargs.get('''min_length''' , self.model.config.min_length ) snake_case = generate_kwargs.get('''max_length''' , self.model.config.max_length ) self.check_inputs(__snake_case , generate_kwargs['''min_length'''] , generate_kwargs['''max_length'''] ) snake_case = self.model.generate(**__snake_case , **__snake_case ) snake_case = output_ids.shape[0] if self.framework == "pt": snake_case = output_ids.reshape(__snake_case , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": snake_case = tf.reshape(__snake_case , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def a_ ( self , __snake_case , __snake_case=ReturnType.TEXT , __snake_case=False ): snake_case = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: snake_case = {F'''{self.return_name}_token_ids''': output_ids} elif return_type == ReturnType.TEXT: snake_case = { F'''{self.return_name}_text''': self.tokenizer.decode( __snake_case , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case , ) } records.append(__snake_case ) return records @add_end_docstrings(snake_case__ ) class A__ ( snake_case__ ): """simple docstring""" __magic_name__ = 'summary' def __call__( self , *__snake_case , **__snake_case ): return super().__call__(*__snake_case , **__snake_case ) def a_ ( self , __snake_case , __snake_case , __snake_case ): if max_length < min_length: logger.warning(F'''Your min_length={min_length} must be inferior than your max_length={max_length}.''' ) if input_length < max_length: logger.warning( F'''Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is ''' '''a summarization task, where outputs shorter than the input are typically wanted, you might ''' F'''consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})''' ) @add_end_docstrings(snake_case__ ) class A__ ( snake_case__ ): """simple docstring""" __magic_name__ = 'translation' def a_ ( self , __snake_case , __snake_case , __snake_case ): if input_length > 0.9 * max_length: logger.warning( F'''Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider ''' '''increasing your max_length manually, e.g. translator(\'...\', max_length=400)''' ) return True def a_ ( self , *__snake_case , __snake_case=TruncationStrategy.DO_NOT_TRUNCATE , __snake_case=None , __snake_case=None ): if getattr(self.tokenizer , '''_build_translation_inputs''' , __snake_case ): return self.tokenizer._build_translation_inputs( *__snake_case , return_tensors=self.framework , truncation=__snake_case , src_lang=__snake_case , tgt_lang=__snake_case ) else: return super()._parse_and_tokenize(*__snake_case , truncation=__snake_case ) def a_ ( self , __snake_case=None , __snake_case=None , **__snake_case ): snake_case , snake_case , snake_case = super()._sanitize_parameters(**__snake_case ) if src_lang is not None: snake_case = src_lang if tgt_lang is not None: snake_case = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. snake_case = kwargs.get('''task''' , self.task ) snake_case = task.split('''_''' ) if task and len(__snake_case ) == 4: # translation, XX, to YY snake_case = items[1] snake_case = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self , *__snake_case , **__snake_case ): return super().__call__(*__snake_case , **__snake_case )
213
1
import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput lowerCAmelCase = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _a ( UpperCamelCase__ ): def __init__( self: str , *UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any]=None , UpperCamelCase_: Optional[int]=None , UpperCamelCase_: Tuple=None , **UpperCamelCase_: Any ) -> Union[str, Any]: """simple docstring""" super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) lowercase__ = eval_examples lowercase__ = post_process_function lowercase__ = quant_trainer_args lowercase__ = 128 # default number of calibration samples def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Optional[Any]=None ) -> Any: """simple docstring""" if calib_dataset is None and self.calib_dataset is None: raise ValueError('''Trainer: calibration requires an calib_dataset.''' ) lowercase__ = calib_dataset if calib_dataset is not None else self.calib_dataset lowercase__ = self._remove_unused_columns(UpperCamelCase_ , description='''Calibration''' ) return DataLoader( UpperCamelCase_ , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=UpperCamelCase_ , ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: str=None ) -> Dict: """simple docstring""" lowercase__ = self.train_dataset if calib_dataset is None else calib_dataset lowercase__ = self.get_calib_dataloader(UpperCamelCase_ ) lowercase__ = self.model quant_trainer.configure_model(UpperCamelCase_ , self.quant_trainer_args , calib=UpperCamelCase_ ) model.eval() quant_trainer.enable_calibration(UpperCamelCase_ ) logger.info('''***** Running calibration *****''' ) logger.info(f' Num examples = {self.calib_num}' ) logger.info(f' Batch size = {calib_dataloader.batch_size}' ) for step, inputs in enumerate(UpperCamelCase_ ): # Prediction step lowercase__ , lowercase__ , lowercase__ = self.prediction_step(UpperCamelCase_ , UpperCamelCase_ , prediction_loss_only=UpperCamelCase_ ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(UpperCamelCase_ , self.quant_trainer_args ) lowercase__ = model def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Union[str, Any]=None , UpperCamelCase_: List[Any]=None , UpperCamelCase_: List[str]=None , UpperCamelCase_: str = "eval" ) -> Tuple: """simple docstring""" lowercase__ = self.eval_dataset if eval_dataset is None else eval_dataset lowercase__ = self.get_eval_dataloader(UpperCamelCase_ ) lowercase__ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowercase__ = self.compute_metrics lowercase__ = None lowercase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowercase__ = eval_loop( UpperCamelCase_ , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , ) finally: lowercase__ = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: lowercase__ = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , output.predictions ) lowercase__ = self.compute_metrics(UpperCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowercase__ = metrics.pop(UpperCamelCase_ ) self.log(UpperCamelCase_ ) else: lowercase__ = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowercase__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCamelCase_ ) return metrics def lowerCamelCase_ ( self: int , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Tuple , UpperCamelCase_: List[Any]=None , UpperCamelCase_: str = "test" ) -> Optional[int]: """simple docstring""" lowercase__ = self.get_test_dataloader(UpperCamelCase_ ) # Temporarily disable metric computation, we will do it in the loop here. lowercase__ = self.compute_metrics lowercase__ = None lowercase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowercase__ = eval_loop( UpperCamelCase_ , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , ) finally: lowercase__ = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output lowercase__ = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , output.predictions , '''predict''' ) lowercase__ = self.compute_metrics(UpperCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowercase__ = metrics.pop(UpperCamelCase_ ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCamelCase_ ) def lowerCamelCase_ ( self: int , UpperCamelCase_: Tuple="./" ) -> str: """simple docstring""" lowercase__ = self.eval_dataset lowercase__ = self.get_eval_dataloader(UpperCamelCase_ ) lowercase__ = next(iter(UpperCamelCase_ ) ) # saving device - to make it consistent lowercase__ = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) # convert to tuple lowercase__ = tuple(v.to(UpperCamelCase_ ) for k, v in batch.items() ) logger.info('''Converting model to be onnx compatible''' ) from pytorch_quantization.nn import TensorQuantizer lowercase__ = True lowercase__ = self.model.to(UpperCamelCase_ ) model.eval() model.float() lowercase__ = model.module if hasattr(UpperCamelCase_ , '''module''' ) else model quant_trainer.configure_model(UpperCamelCase_ , self.quant_trainer_args ) lowercase__ = os.path.join(UpperCamelCase_ , '''model.onnx''' ) logger.info(f'exporting model to {output_model_file}' ) lowercase__ = {0: '''batch_size''', 1: '''seq_len'''} torch.onnx.export( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , export_params=UpperCamelCase_ , opset_version=13 , do_constant_folding=UpperCamelCase_ , input_names=['''input_ids''', '''attention_mask''', '''token_type_ids'''] , output_names=['''output_start_logits''', '''output_end_logits'''] , dynamic_axes={ '''input_ids''': axes, '''attention_mask''': axes, '''token_type_ids''': axes, '''output_start_logits''': axes, '''output_end_logits''': axes, } , verbose=UpperCamelCase_ , ) logger.info('''onnx export finished''' )
110
from __future__ import annotations from collections.abc import Iterator class _a : def __init__( self: List[str] , UpperCamelCase_: int ) -> None: """simple docstring""" lowercase__ = value lowercase__ = None lowercase__ = None class _a : def __init__( self: Union[str, Any] , UpperCamelCase_: Node ) -> None: """simple docstring""" lowercase__ = tree def lowerCamelCase_ ( self: Any , UpperCamelCase_: Node | None ) -> int: """simple docstring""" if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self: List[str] ) -> Iterator[int]: """simple docstring""" yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
110
1
"""simple docstring""" import os from math import logaa def snake_case_ ( A_ : str = "base_exp.txt" ): '''simple docstring''' _lowerCamelCase : float = 0 _lowerCamelCase : Tuple = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(_snake_case ), _snake_case ) ) ): _lowerCamelCase : List[str] = list(map(_snake_case, line.split(''',''' ) ) ) if x * logaa(_snake_case ) > largest: _lowerCamelCase : str = x * logaa(_snake_case ) _lowerCamelCase : int = i + 1 return result if __name__ == "__main__": print(solution())
369
"""simple docstring""" from maths.prime_factors import prime_factors def snake_case_ ( A_ : int ): '''simple docstring''' if not isinstance(A_, A_ ): _lowerCamelCase : str = F'''Input value of [number={number}] must be an integer''' raise TypeError(A_ ) if number < 1: raise ValueError('''Input must be a positive integer''' ) return -1 if len(prime_factors(A_ ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
175
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : List[Any] = logging.get_logger(__name__) UpperCAmelCase_ : str = { 'facebook/deit-base-distilled-patch16-224': ( 'https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json' ), # See all DeiT models at https://huggingface.co/models?filter=deit } class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : Tuple = '''deit''' def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : List[str]=7_6_8 , SCREAMING_SNAKE_CASE__ : List[Any]=1_2 , SCREAMING_SNAKE_CASE__ : List[str]=1_2 , SCREAMING_SNAKE_CASE__ : Tuple=3_0_7_2 , SCREAMING_SNAKE_CASE__ : Tuple="gelu" , SCREAMING_SNAKE_CASE__ : Tuple=0.0 , SCREAMING_SNAKE_CASE__ : Tuple=0.0 , SCREAMING_SNAKE_CASE__ : Dict=0.02 , SCREAMING_SNAKE_CASE__ : Tuple=1E-12 , SCREAMING_SNAKE_CASE__ : Optional[int]=2_2_4 , SCREAMING_SNAKE_CASE__ : Tuple=1_6 , SCREAMING_SNAKE_CASE__ : Optional[Any]=3 , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=1_6 , **SCREAMING_SNAKE_CASE__ : List[Any] , ) -> int: super().__init__(**SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = hidden_size a_ : Dict = num_hidden_layers a_ : int = num_attention_heads a_ : Optional[Any] = intermediate_size a_ : Optional[int] = hidden_act a_ : int = hidden_dropout_prob a_ : Any = attention_probs_dropout_prob a_ : List[str] = initializer_range a_ : Optional[Any] = layer_norm_eps a_ : str = image_size a_ : Dict = patch_size a_ : Union[str, Any] = num_channels a_ : Tuple = qkv_bias a_ : int = encoder_stride class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : Any = version.parse('''1.11''' ) @property def SCREAMING_SNAKE_CASE ( self : str ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def SCREAMING_SNAKE_CASE ( self : int ) -> float: return 1E-4
32
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. UpperCAmelCase_ : Dict = {'LayoutLMv2Config', 'LayoutLMv3Config'} @is_pipeline_test class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): snake_case__ : List[str] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING snake_case__ : Optional[Any] = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: snake_case__ : str = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: snake_case__ : List[Any] = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: a_ : List[Any] = pipeline( task='text-classification' , model='hf-internal-testing/tiny-random-distilbert' , framework='pt' ) a_ : int = text_classifier('This is great !' ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{'label': 'LABEL_0', 'score': 0.504}] ) a_ : Tuple = text_classifier('This is great !' , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{'label': 'LABEL_0', 'score': 0.504}, {'label': 'LABEL_1', 'score': 0.496}] ) a_ : List[str] = text_classifier(['This is great !', 'This is bad'] , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , [ [{'label': 'LABEL_0', 'score': 0.504}, {'label': 'LABEL_1', 'score': 0.496}], [{'label': 'LABEL_0', 'score': 0.504}, {'label': 'LABEL_1', 'score': 0.496}], ] , ) a_ : Tuple = text_classifier('This is great !' , top_k=1 ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{'label': 'LABEL_0', 'score': 0.504}] ) # Legacy behavior a_ : Union[str, Any] = text_classifier('This is great !' , return_all_scores=SCREAMING_SNAKE_CASE__ ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{'label': 'LABEL_0', 'score': 0.504}] ) a_ : List[str] = text_classifier('This is great !' , return_all_scores=SCREAMING_SNAKE_CASE__ ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , [[{'label': 'LABEL_0', 'score': 0.504}, {'label': 'LABEL_1', 'score': 0.496}]] ) a_ : int = text_classifier(['This is great !', 'Something else'] , return_all_scores=SCREAMING_SNAKE_CASE__ ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , [ [{'label': 'LABEL_0', 'score': 0.504}, {'label': 'LABEL_1', 'score': 0.496}], [{'label': 'LABEL_0', 'score': 0.504}, {'label': 'LABEL_1', 'score': 0.496}], ] , ) a_ : str = text_classifier(['This is great !', 'Something else'] , return_all_scores=SCREAMING_SNAKE_CASE__ ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , [ {'label': 'LABEL_0', 'score': 0.504}, {'label': 'LABEL_0', 'score': 0.504}, ] , ) @require_torch def SCREAMING_SNAKE_CASE ( self : int ) -> Dict: import torch a_ : List[Any] = pipeline( task='text-classification' , model='hf-internal-testing/tiny-random-distilbert' , framework='pt' , device=torch.device('cpu' ) , ) a_ : Any = text_classifier('This is great !' ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{'label': 'LABEL_0', 'score': 0.504}] ) @require_tf def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: a_ : List[str] = pipeline( task='text-classification' , model='hf-internal-testing/tiny-random-distilbert' , framework='tf' ) a_ : Optional[int] = text_classifier('This is great !' ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{'label': 'LABEL_0', 'score': 0.504}] ) @slow @require_torch def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: a_ : List[str] = pipeline('text-classification' ) a_ : Dict = text_classifier('This is great !' ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{'label': 'POSITIVE', 'score': 1.0}] ) a_ : Union[str, Any] = text_classifier('This is bad !' ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{'label': 'NEGATIVE', 'score': 1.0}] ) a_ : Tuple = text_classifier('Birds are a type of animal' ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{'label': 'POSITIVE', 'score': 0.988}] ) @slow @require_tf def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: a_ : Dict = pipeline('text-classification' , framework='tf' ) a_ : Optional[Any] = text_classifier('This is great !' ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{'label': 'POSITIVE', 'score': 1.0}] ) a_ : int = text_classifier('This is bad !' ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{'label': 'NEGATIVE', 'score': 1.0}] ) a_ : Optional[int] = text_classifier('Birds are a type of animal' ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{'label': 'POSITIVE', 'score': 0.988}] ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Any: a_ : Optional[Any] = TextClassificationPipeline(model=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) return text_classifier, ["HuggingFace is in", "This is another test"] def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Union[str, Any]: a_ : List[str] = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 a_ : Union[str, Any] = 'HuggingFace is in' a_ : int = text_classifier(SCREAMING_SNAKE_CASE__ ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{'label': ANY(SCREAMING_SNAKE_CASE__ ), 'score': ANY(SCREAMING_SNAKE_CASE__ )}] ) self.assertTrue(outputs[0]['label'] in model.config.idalabel.values() ) a_ : Union[str, Any] = ['HuggingFace is in ', 'Paris is in France'] a_ : int = text_classifier(SCREAMING_SNAKE_CASE__ ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{'label': ANY(SCREAMING_SNAKE_CASE__ ), 'score': ANY(SCREAMING_SNAKE_CASE__ )}, {'label': ANY(SCREAMING_SNAKE_CASE__ ), 'score': ANY(SCREAMING_SNAKE_CASE__ )}] , ) self.assertTrue(outputs[0]['label'] in model.config.idalabel.values() ) self.assertTrue(outputs[1]['label'] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format a_ : List[Any] = text_classifier(SCREAMING_SNAKE_CASE__ , top_k=SCREAMING_SNAKE_CASE__ ) a_ : Dict = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , [[{'label': ANY(SCREAMING_SNAKE_CASE__ ), 'score': ANY(SCREAMING_SNAKE_CASE__ )}] * N, [{'label': ANY(SCREAMING_SNAKE_CASE__ ), 'score': ANY(SCREAMING_SNAKE_CASE__ )}] * N] , ) a_ : int = {'text': 'HuggingFace is in ', 'text_pair': 'Paris is in France'} a_ : Optional[int] = text_classifier(SCREAMING_SNAKE_CASE__ ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , {'label': ANY(SCREAMING_SNAKE_CASE__ ), 'score': ANY(SCREAMING_SNAKE_CASE__ )} , ) self.assertTrue(outputs['label'] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. a_ : Any = [['HuggingFace is in ', 'Paris is in France']] with self.assertRaises(SCREAMING_SNAKE_CASE__ ): text_classifier(SCREAMING_SNAKE_CASE__ ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility a_ : Tuple = text_classifier([[['HuggingFace is in ', 'Paris is in France']]] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{'label': ANY(SCREAMING_SNAKE_CASE__ ), 'score': ANY(SCREAMING_SNAKE_CASE__ )}] , ) self.assertTrue(outputs[0]['label'] in model.config.idalabel.values() )
32
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase : Optional[int] = logging.get_logger(__name__) _UpperCAmelCase : Tuple = { "microsoft/wavlm-base": "https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class __lowerCAmelCase ( lowerCAmelCase): _a = '''wavlm''' def __init__( self: Any , _lowerCAmelCase: Union[str, Any]=32 , _lowerCAmelCase: Dict=7_68 , _lowerCAmelCase: Union[str, Any]=12 , _lowerCAmelCase: Optional[int]=12 , _lowerCAmelCase: List[str]=30_72 , _lowerCAmelCase: int="gelu" , _lowerCAmelCase: Tuple=0.1 , _lowerCAmelCase: Any=0.1 , _lowerCAmelCase: Optional[int]=0.1 , _lowerCAmelCase: int=0.0 , _lowerCAmelCase: Optional[Any]=0.1 , _lowerCAmelCase: Tuple=0.1 , _lowerCAmelCase: Optional[Any]=0.02 , _lowerCAmelCase: List[str]=1e-5 , _lowerCAmelCase: Optional[int]="group" , _lowerCAmelCase: str="gelu" , _lowerCAmelCase: Optional[Any]=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , _lowerCAmelCase: Tuple=(5, 2, 2, 2, 2, 2, 2) , _lowerCAmelCase: int=(10, 3, 3, 3, 3, 2, 2) , _lowerCAmelCase: Optional[Any]=False , _lowerCAmelCase: str=1_28 , _lowerCAmelCase: Union[str, Any]=16 , _lowerCAmelCase: List[Any]=3_20 , _lowerCAmelCase: str=8_00 , _lowerCAmelCase: Optional[int]=False , _lowerCAmelCase: Any=True , _lowerCAmelCase: Any=0.05 , _lowerCAmelCase: Optional[Any]=10 , _lowerCAmelCase: Optional[int]=2 , _lowerCAmelCase: Dict=0.0 , _lowerCAmelCase: List[Any]=10 , _lowerCAmelCase: str=3_20 , _lowerCAmelCase: Union[str, Any]=2 , _lowerCAmelCase: Any=0.1 , _lowerCAmelCase: Dict=1_00 , _lowerCAmelCase: Any=2_56 , _lowerCAmelCase: Tuple=2_56 , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: Tuple="mean" , _lowerCAmelCase: Any=False , _lowerCAmelCase: Any=False , _lowerCAmelCase: Union[str, Any]=2_56 , _lowerCAmelCase: str=(5_12, 5_12, 5_12, 5_12, 15_00) , _lowerCAmelCase: List[str]=(5, 3, 3, 1, 1) , _lowerCAmelCase: List[Any]=(1, 2, 3, 1, 1) , _lowerCAmelCase: Optional[Any]=5_12 , _lowerCAmelCase: Tuple=80 , _lowerCAmelCase: List[str]=0 , _lowerCAmelCase: List[str]=1 , _lowerCAmelCase: Union[str, Any]=2 , _lowerCAmelCase: Tuple=False , _lowerCAmelCase: Dict=3 , _lowerCAmelCase: Dict=2 , _lowerCAmelCase: Any=3 , _lowerCAmelCase: str=None , **_lowerCAmelCase: List[str] , ): super().__init__(**_lowerCAmelCase , pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase ) lowercase :Optional[int] = hidden_size lowercase :List[Any] = feat_extract_norm lowercase :int = feat_extract_activation lowercase :str = list(_lowerCAmelCase ) lowercase :Dict = list(_lowerCAmelCase ) lowercase :Union[str, Any] = list(_lowerCAmelCase ) lowercase :Optional[int] = conv_bias lowercase :Union[str, Any] = num_buckets lowercase :str = max_bucket_distance lowercase :Any = num_conv_pos_embeddings lowercase :Tuple = num_conv_pos_embedding_groups lowercase :Optional[int] = len(self.conv_dim ) lowercase :Union[str, Any] = num_hidden_layers lowercase :Dict = intermediate_size lowercase :int = hidden_act lowercase :str = num_attention_heads lowercase :Union[str, Any] = hidden_dropout lowercase :List[str] = attention_dropout lowercase :str = activation_dropout lowercase :Optional[Any] = feat_proj_dropout lowercase :Optional[int] = final_dropout lowercase :List[Any] = layerdrop lowercase :str = layer_norm_eps lowercase :Any = initializer_range lowercase :Optional[Any] = num_ctc_classes lowercase :str = vocab_size lowercase :Dict = do_stable_layer_norm lowercase :Optional[Any] = use_weighted_layer_sum lowercase :Tuple = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," F" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase :int = apply_spec_augment lowercase :int = mask_time_prob lowercase :Optional[int] = mask_time_length lowercase :Optional[Any] = mask_time_min_masks lowercase :Dict = mask_feature_prob lowercase :Optional[Any] = mask_feature_length # parameters for pretraining with codevector quantized representations lowercase :List[Any] = num_codevectors_per_group lowercase :Union[str, Any] = num_codevector_groups lowercase :Any = contrastive_logits_temperature lowercase :Optional[int] = num_negatives lowercase :Union[str, Any] = codevector_dim lowercase :int = proj_codevector_dim lowercase :Optional[Any] = diversity_loss_weight # ctc loss lowercase :Union[str, Any] = ctc_loss_reduction lowercase :Any = ctc_zero_infinity # adapter lowercase :List[str] = add_adapter lowercase :List[str] = adapter_kernel_size lowercase :Optional[Any] = adapter_stride lowercase :List[Any] = num_adapter_layers lowercase :Tuple = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowercase :str = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowercase :int = list(_lowerCAmelCase ) lowercase :List[str] = list(_lowerCAmelCase ) lowercase :Any = list(_lowerCAmelCase ) lowercase :List[Any] = xvector_output_dim @property def SCREAMING_SNAKE_CASE ( self: Dict ): return functools.reduce(operator.mul , self.conv_stride , 1 )
158
import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed _UpperCAmelCase : Optional[Any] = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(f'''{bindir}/../../examples/pytorch/translation'''): from run_translation import main # noqa set_seed(42) _UpperCAmelCase : Union[str, Any] = "sshleifer/student_marian_en_ro_6_1" _UpperCAmelCase : Any = "sshleifer/tiny-mbart" @require_torch class __lowerCAmelCase ( lowerCAmelCase): def SCREAMING_SNAKE_CASE ( self: int , _lowerCAmelCase: int=False , _lowerCAmelCase: str=None , _lowerCAmelCase: Dict=True , _lowerCAmelCase: Dict=True , _lowerCAmelCase: Optional[int]=True , _lowerCAmelCase: Union[str, Any]=True , ): lowercase :Any = self.run_trainer( eval_steps=1 , max_len=12 , model_name=_lowerCAmelCase , num_train_epochs=1 , distributed=_lowerCAmelCase , extra_args_str=_lowerCAmelCase , predict_with_generate=_lowerCAmelCase , do_train=_lowerCAmelCase , do_eval=_lowerCAmelCase , do_predict=_lowerCAmelCase , ) lowercase :List[Any] = TrainerState.load_from_json(os.path.join(_lowerCAmelCase , "trainer_state.json" ) ).log_history if not do_eval: return lowercase :Union[str, Any] = [log for log in logs if "eval_loss" in log.keys()] lowercase :Any = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats lowercase :Optional[Any] = eval_metrics[-1] assert isinstance(last_step_stats["eval_bleu"] , _lowerCAmelCase ) assert not math.isnan(float(last_step_stats["eval_loss"] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def SCREAMING_SNAKE_CASE ( self: List[Any] ): self.run_seqaseq_quick() @require_torch_multi_gpu def SCREAMING_SNAKE_CASE ( self: str ): self.run_seqaseq_quick(distributed=_lowerCAmelCase ) @require_torch_multi_gpu def SCREAMING_SNAKE_CASE ( self: Tuple ): self.run_seqaseq_quick(distributed=_lowerCAmelCase ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def SCREAMING_SNAKE_CASE ( self: Optional[Any] ): self.run_seqaseq_quick(distributed=_lowerCAmelCase , extra_args_str="--sharded_ddp simple" ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def SCREAMING_SNAKE_CASE ( self: Optional[int] ): self.run_seqaseq_quick(distributed=_lowerCAmelCase , extra_args_str="--sharded_ddp simple --fp16" ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def SCREAMING_SNAKE_CASE ( self: Dict ): self.run_seqaseq_quick(distributed=_lowerCAmelCase , extra_args_str="--sharded_ddp zero_dp_2" , predict_with_generate=_lowerCAmelCase ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def SCREAMING_SNAKE_CASE ( self: Optional[Any] ): self.run_seqaseq_quick( distributed=_lowerCAmelCase , extra_args_str="--sharded_ddp zero_dp_2 --fp16" , predict_with_generate=_lowerCAmelCase ) @require_apex @require_torch_gpu def SCREAMING_SNAKE_CASE ( self: List[Any] ): # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=_lowerCAmelCase , extra_args_str="--fp16 --fp16_backend=apex" ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=_lowerCAmelCase , extra_args_str="--fp16 --fp16_backend=apex" ) @parameterized.expand(["base", "low", "high", "mixed"] ) @require_torch_multi_gpu def SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _lowerCAmelCase: Any ): # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout lowercase :List[Any] = { # test with the default log_level - should be info and thus log info once "base": {"extra_args_str": "", "n_matches": 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes "low": {"extra_args_str": "--log_level debug --log_level_replica debug", "n_matches": 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica "high": {"extra_args_str": "--log_level error --log_level_replica debug", "n_matches": 1}, # test with high log_level and log_level_replica - should be quiet on all processes "mixed": {"extra_args_str": "--log_level error --log_level_replica error", "n_matches": 0}, } lowercase :str = experiments[experiment_id] lowercase :Dict = {"distributed": True, "predict_with_generate": False, "do_eval": False, "do_predict": False} lowercase :List[str] = "Running training" with CaptureStderr() as cl: self.run_seqaseq_quick(**_lowerCAmelCase , extra_args_str=data["extra_args_str"] ) lowercase :Dict = len(re.findall(_lowerCAmelCase , cl.err ) ) self.assertEqual(_lowerCAmelCase , data["n_matches"] ) @slow def SCREAMING_SNAKE_CASE ( self: List[str] ): lowercase :Dict = self.run_trainer( eval_steps=2 , max_len=1_28 , model_name=_lowerCAmelCase , learning_rate=3e-4 , num_train_epochs=10 , distributed=_lowerCAmelCase , ) # Check metrics lowercase :List[str] = TrainerState.load_from_json(os.path.join(_lowerCAmelCase , "trainer_state.json" ) ).log_history lowercase :Dict = [log for log in logs if "eval_loss" in log.keys()] lowercase :str = eval_metrics[0] lowercase :Optional[int] = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats["eval_bleu"] , _lowerCAmelCase ) # test if do_predict saves generations and metrics lowercase :Optional[Any] = os.listdir(_lowerCAmelCase ) lowercase :List[str] = {os.path.basename(_lowerCAmelCase ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def SCREAMING_SNAKE_CASE ( self: Tuple ): from transformers.training_args import OptimizerNames def train_and_return_metrics(_lowerCAmelCase: str ) -> Tuple[int, float]: lowercase :Tuple = "--skip_memory_metrics 0" lowercase :List[str] = self.run_trainer( max_len=1_28 , model_name=_lowerCAmelCase , learning_rate=3e-4 , num_train_epochs=1 , optim=_lowerCAmelCase , distributed=_lowerCAmelCase , extra_args_str=_lowerCAmelCase , do_eval=_lowerCAmelCase , do_predict=_lowerCAmelCase , n_gpus_to_use=1 , ) # Check metrics lowercase :List[str] = TrainerState.load_from_json(Path(_lowerCAmelCase , "trainer_state.json" ) ).log_history lowercase :Dict = int(logs[0]["train_mem_gpu_peaked_delta"] / 2**20 ) lowercase :Any = int(logs[0]["train_mem_gpu_alloc_delta"] / 2**20 ) lowercase :List[str] = logs[0]["train_loss"] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss lowercase , lowercase , lowercase :Optional[Any] = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) lowercase , lowercase , lowercase :List[str] = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) lowercase :List[Any] = gpu_alloc_mem_orig - gpu_alloc_mem_bnb lowercase :List[str] = gpu_peak_mem_orig + gpu_alloc_mem_orig lowercase :List[str] = gpu_peak_mem_bnb + gpu_alloc_mem_bnb lowercase :Tuple = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings lowercase :Union[str, Any] = 1_20 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( _lowerCAmelCase , _lowerCAmelCase , "should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got" F" a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and" F" gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB" , ) self.assertGreater( _lowerCAmelCase , _lowerCAmelCase , "should use ~150MB less total gpu memory with BNB, compared to without it for this model but got" F" a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and" F" gpu_total_mem_bnb={gpu_total_mem_bnb}MB" , ) self.assertEqual( _lowerCAmelCase , _lowerCAmelCase , F"loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}" ) def SCREAMING_SNAKE_CASE ( self: Dict , _lowerCAmelCase: int , _lowerCAmelCase: str , _lowerCAmelCase: int , _lowerCAmelCase: float = 3e-3 , _lowerCAmelCase: str = "adafactor" , _lowerCAmelCase: bool = False , _lowerCAmelCase: str = None , _lowerCAmelCase: int = 0 , _lowerCAmelCase: bool = True , _lowerCAmelCase: bool = True , _lowerCAmelCase: bool = True , _lowerCAmelCase: bool = True , _lowerCAmelCase: int = None , ): lowercase :Optional[int] = self.test_file_dir / "../fixtures/tests_samples/wmt_en_ro" lowercase :Optional[Any] = self.get_auto_remove_tmp_dir() lowercase :Tuple = F"\n --model_name_or_path {model_name}\n --train_file {data_dir}/train.json\n --validation_file {data_dir}/val.json\n --test_file {data_dir}/test.json\n --output_dir {output_dir}\n --overwrite_output_dir\n --max_train_samples 8\n --max_source_length {max_len}\n --max_target_length {max_len}\n --do_train\n --num_train_epochs {str(_lowerCAmelCase )}\n --per_device_train_batch_size 4\n --learning_rate {learning_rate}\n --warmup_steps 8\n --logging_steps 0\n --logging_strategy no\n --save_steps {str(_lowerCAmelCase )}\n --group_by_length\n --label_smoothing_factor 0.1\n --target_lang ro_RO\n --source_lang en_XX\n ".split() lowercase :Union[str, Any] = F"\n --do_eval\n --per_device_eval_batch_size 4\n --max_eval_samples 8\n --val_max_target_length {max_len}\n --evaluation_strategy steps\n --eval_steps {str(_lowerCAmelCase )}\n ".split() lowercase :str = "\n --do_predict\n ".split() lowercase :Union[str, Any] = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += F"--optim {optim}".split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: lowercase :Optional[int] = get_gpu_count() lowercase :str = get_torch_dist_unique_port() lowercase :Union[str, Any] = F"\n -m torch.distributed.run\n --nproc_per_node={n_gpus_to_use}\n --master_port={master_port}\n {self.examples_dir_str}/pytorch/translation/run_translation.py\n ".split() lowercase :Optional[int] = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(_lowerCAmelCase , env=self.get_env() ) else: lowercase :Tuple = ["run_translation.py"] + args with patch.object(_lowerCAmelCase , "argv" , _lowerCAmelCase ): main() return output_dir
158
1