code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
198
'''simple docstring''' import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class UpperCAmelCase ( pl.LightningModule ): '''simple docstring''' def __init__( self , __lowerCAmelCase ) -> List[str]: super().__init__() lowercase__ : List[str] = model lowercase__ : Dict = 2 lowercase__ : Any = nn.Linear(self.model.config.hidden_size , self.num_labels ) def _lowerCAmelCase( self ) -> str: pass def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): # load longformer model from model identifier lowercase__ : Dict = LongformerModel.from_pretrained(UpperCAmelCase ) lowercase__ : List[str] = LightningModel(UpperCAmelCase ) lowercase__ : List[Any] = torch.load(UpperCAmelCase , map_location=torch.device('''cpu''' ) ) lightning_model.load_state_dict(ckpt['''state_dict'''] ) # init longformer question answering model lowercase__ : Optional[int] = LongformerForQuestionAnswering.from_pretrained(UpperCAmelCase ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(UpperCAmelCase ) print(F"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" ) if __name__ == "__main__": __a: List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--longformer_model""", default=None, type=str, required=True, help="""model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.""", ) parser.add_argument( """--longformer_question_answering_ckpt_path""", default=None, type=str, required=True, help="""Path the official PyTorch Lightning Checkpoint.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __a: Tuple = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
198
1
from __future__ import annotations from math import pi, sqrt def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): if inductance <= 0: raise ValueError('Inductance cannot be 0 or negative') elif capacitance <= 0: raise ValueError('Capacitance cannot be 0 or negative') else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance)))), ) if __name__ == "__main__": import doctest doctest.testmod()
327
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(_UpperCAmelCase , _UpperCAmelCase) def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = emb.weight.shape SCREAMING_SNAKE_CASE = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase) SCREAMING_SNAKE_CASE = emb.weight.data return lin_layer def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = torch.load(_UpperCAmelCase , map_location='cpu') SCREAMING_SNAKE_CASE = mam_aaa['args'] or mam_aaa['cfg']['model'] SCREAMING_SNAKE_CASE = mam_aaa['model'] remove_ignore_keys_(_UpperCAmelCase) SCREAMING_SNAKE_CASE = state_dict['encoder.embed_tokens.weight'].shape[0] SCREAMING_SNAKE_CASE = MaMaaaConfig( vocab_size=_UpperCAmelCase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , ) SCREAMING_SNAKE_CASE = state_dict['decoder.embed_tokens.weight'] SCREAMING_SNAKE_CASE = MaMaaaForConditionalGeneration(_UpperCAmelCase) model.model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase) SCREAMING_SNAKE_CASE = make_linear_from_emb(model.model.shared) return model if __name__ == "__main__": a_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') a_ : List[str] = parser.parse_args() a_ : Dict = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
327
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer __lowercase = logging.get_logger(__name__) __lowercase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __lowercase = { """vocab_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/vocab.txt""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/vocab.txt""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt""" ), """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt""" ), """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt""", """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json""" ), """bert-base-multilingual-cased""": ( """https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json""" ), """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-cased""": ( """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json""" ), }, } __lowercase = { """bert-base-uncased""": 512, """bert-large-uncased""": 512, """bert-base-cased""": 512, """bert-large-cased""": 512, """bert-base-multilingual-uncased""": 512, """bert-base-multilingual-cased""": 512, """bert-base-chinese""": 512, """bert-base-german-cased""": 512, """bert-large-uncased-whole-word-masking""": 512, """bert-large-cased-whole-word-masking""": 512, """bert-large-uncased-whole-word-masking-finetuned-squad""": 512, """bert-large-cased-whole-word-masking-finetuned-squad""": 512, """bert-base-cased-finetuned-mrpc""": 512, """bert-base-german-dbmdz-cased""": 512, """bert-base-german-dbmdz-uncased""": 512, """TurkuNLP/bert-base-finnish-cased-v1""": 512, """TurkuNLP/bert-base-finnish-uncased-v1""": 512, """wietsedv/bert-base-dutch-cased""": 512, } __lowercase = { """bert-base-uncased""": {"""do_lower_case""": True}, """bert-large-uncased""": {"""do_lower_case""": True}, """bert-base-cased""": {"""do_lower_case""": False}, """bert-large-cased""": {"""do_lower_case""": False}, """bert-base-multilingual-uncased""": {"""do_lower_case""": True}, """bert-base-multilingual-cased""": {"""do_lower_case""": False}, """bert-base-chinese""": {"""do_lower_case""": False}, """bert-base-german-cased""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": False}, """bert-base-cased-finetuned-mrpc""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-cased""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-uncased""": {"""do_lower_case""": True}, """TurkuNLP/bert-base-finnish-cased-v1""": {"""do_lower_case""": False}, """TurkuNLP/bert-base-finnish-uncased-v1""": {"""do_lower_case""": True}, """wietsedv/bert-base-dutch-cased""": {"""do_lower_case""": False}, } class _A ( _a ): """simple docstring""" UpperCAmelCase : List[Any] = VOCAB_FILES_NAMES UpperCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : Tuple = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase : List[str] = BertTokenizer def __init__( self : Dict , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : Any=None , __UpperCAmelCase : Any=True , __UpperCAmelCase : Tuple="[UNK]" , __UpperCAmelCase : Union[str, Any]="[SEP]" , __UpperCAmelCase : List[Any]="[PAD]" , __UpperCAmelCase : int="[CLS]" , __UpperCAmelCase : List[str]="[MASK]" , __UpperCAmelCase : Tuple=True , __UpperCAmelCase : int=None , **__UpperCAmelCase : Optional[Any] , ): super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) a : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("lowercase" , __UpperCAmelCase) != do_lower_case or normalizer_state.get("strip_accents" , __UpperCAmelCase) != strip_accents or normalizer_state.get("handle_chinese_chars" , __UpperCAmelCase) != tokenize_chinese_chars ): a : Tuple = getattr(__UpperCAmelCase , normalizer_state.pop("type")) a : Optional[int] = do_lower_case a : Optional[int] = strip_accents a : Union[str, Any] = tokenize_chinese_chars a : Union[str, Any] = normalizer_class(**__UpperCAmelCase) a : Optional[Any] = do_lower_case def __snake_case ( self : Dict , __UpperCAmelCase : str , __UpperCAmelCase : Any=None): a : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __snake_case ( self : List[Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None): a : Tuple = [self.sep_token_id] a : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def __snake_case ( self : List[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None): a : Dict = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase) return tuple(__UpperCAmelCase)
40
"""simple docstring""" __lowercase = { """Pillow""": """Pillow<10.0.0""", """accelerate""": """accelerate>=0.20.3""", """av""": """av==9.2.0""", """beautifulsoup4""": """beautifulsoup4""", """black""": """black~=23.1""", """codecarbon""": """codecarbon==1.2.0""", """cookiecutter""": """cookiecutter==1.7.3""", """dataclasses""": """dataclasses""", """datasets""": """datasets!=2.5.0""", """decord""": """decord==0.6.0""", """deepspeed""": """deepspeed>=0.9.3""", """diffusers""": """diffusers""", """dill""": """dill<0.3.5""", """evaluate""": """evaluate>=0.2.0""", """fairscale""": """fairscale>0.3""", """faiss-cpu""": """faiss-cpu""", """fastapi""": """fastapi""", """filelock""": """filelock""", """flax""": """flax>=0.4.1,<=0.7.0""", """ftfy""": """ftfy""", """fugashi""": """fugashi>=1.0""", """GitPython""": """GitPython<3.1.19""", """hf-doc-builder""": """hf-doc-builder>=0.3.0""", """huggingface-hub""": """huggingface-hub>=0.14.1,<1.0""", """importlib_metadata""": """importlib_metadata""", """ipadic""": """ipadic>=1.0.0,<2.0""", """isort""": """isort>=5.5.4""", """jax""": """jax>=0.2.8,!=0.3.2,<=0.4.13""", """jaxlib""": """jaxlib>=0.1.65,<=0.4.13""", """jieba""": """jieba""", """kenlm""": """kenlm""", """keras-nlp""": """keras-nlp>=0.3.1""", """librosa""": """librosa""", """nltk""": """nltk""", """natten""": """natten>=0.14.6""", """numpy""": """numpy>=1.17""", """onnxconverter-common""": """onnxconverter-common""", """onnxruntime-tools""": """onnxruntime-tools>=1.4.2""", """onnxruntime""": """onnxruntime>=1.4.0""", """opencv-python""": """opencv-python""", """optuna""": """optuna""", """optax""": """optax>=0.0.8,<=0.1.4""", """packaging""": """packaging>=20.0""", """parameterized""": """parameterized""", """phonemizer""": """phonemizer""", """protobuf""": """protobuf""", """psutil""": """psutil""", """pyyaml""": """pyyaml>=5.1""", """pydantic""": """pydantic<2""", """pytest""": """pytest>=7.2.0""", """pytest-timeout""": """pytest-timeout""", """pytest-xdist""": """pytest-xdist""", """python""": """python>=3.8.0""", """ray[tune]""": """ray[tune]""", """regex""": """regex!=2019.12.17""", """requests""": """requests""", """rhoknp""": """rhoknp>=1.1.0,<1.3.1""", """rjieba""": """rjieba""", """rouge-score""": """rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1""", """ruff""": """ruff>=0.0.241,<=0.0.259""", """sacrebleu""": """sacrebleu>=1.4.12,<2.0.0""", """sacremoses""": """sacremoses""", """safetensors""": """safetensors>=0.3.1""", """sagemaker""": """sagemaker>=2.31.0""", """scikit-learn""": """scikit-learn""", """sentencepiece""": """sentencepiece>=0.1.91,!=0.1.92""", """sigopt""": """sigopt""", """starlette""": """starlette""", """sudachipy""": """sudachipy>=0.6.6""", """sudachidict_core""": """sudachidict_core>=20220729""", """tensorflow-cpu""": """tensorflow-cpu>=2.6,<2.14""", """tensorflow""": """tensorflow>=2.6,<2.14""", """tensorflow-text""": """tensorflow-text<2.14""", """tf2onnx""": """tf2onnx""", """timeout-decorator""": """timeout-decorator""", """timm""": """timm""", """tokenizers""": """tokenizers>=0.11.1,!=0.11.3,<0.14""", """torch""": """torch>=1.9,!=1.12.0""", """torchaudio""": """torchaudio""", """torchvision""": """torchvision""", """pyctcdecode""": """pyctcdecode>=0.4.0""", """tqdm""": """tqdm>=4.27""", """unidic""": """unidic>=1.0.2""", """unidic_lite""": """unidic_lite>=1.0.7""", """urllib3""": """urllib3<2.0.0""", """uvicorn""": """uvicorn""", }
40
1
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class A ( pl.LightningModule ): def __init__(self , lowerCAmelCase ): super().__init__() __lowercase= model __lowercase= 2 __lowercase= nn.Linear(self.model.config.hidden_size , self.num_labels ) def _A (self ): pass def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ ) -> Union[str, Any]: '''simple docstring''' __lowercase= LongformerModel.from_pretrained(lowerCAmelCase_ ) __lowercase= LightningModel(lowerCAmelCase_ ) __lowercase= torch.load(lowerCAmelCase_ , map_location=torch.device('cpu' ) ) lightning_model.load_state_dict(ckpt['state_dict'] ) # init longformer question answering model __lowercase= LongformerForQuestionAnswering.from_pretrained(lowerCAmelCase_ ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(lowerCAmelCase_ ) print(F'Conversion successful. Model saved under {pytorch_dump_folder_path}' ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--longformer_model''', default=None, type=str, required=True, help='''model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.''', ) parser.add_argument( '''--longformer_question_answering_ckpt_path''', default=None, type=str, required=True, help='''Path the official PyTorch Lightning Checkpoint.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCAmelCase = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
369
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , ) -> int: '''simple docstring''' __lowercase= {} if train_file is not None: __lowercase= [train_file] if eval_file is not None: __lowercase= [eval_file] if test_file is not None: __lowercase= [test_file] __lowercase= datasets.load_dataset('csv' , data_files=lowercase__ ) __lowercase= list(ds[list(files.keys() )[0]].features.keys() ) __lowercase= features_name.pop(lowercase__ ) __lowercase= list(set(ds[list(files.keys() )[0]][label_name] ) ) __lowercase= {label: i for i, label in enumerate(lowercase__ )} __lowercase= tokenizer.model_input_names __lowercase= {} if len(lowercase__ ) == 1: for k in files.keys(): __lowercase= ds[k].map( lambda lowercase__ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=lowercase__ , max_length=lowercase__ , padding='max_length' ) , batched=lowercase__ , ) elif len(lowercase__ ) == 2: for k in files.keys(): __lowercase= ds[k].map( lambda lowercase__ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=lowercase__ , max_length=lowercase__ , padding='max_length' , ) , batched=lowercase__ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __lowercase= {k: v for k, v in ex.items() if k in input_names} __lowercase= labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __lowercase= {k: v for k, v in ex.items() if k in input_names} __lowercase= labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __lowercase= {k: v for k, v in ex.items() if k in input_names} __lowercase= labelaid[ex[label_name]] yield (d, label) __lowercase= ( tf.data.Dataset.from_generator( lowercase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __lowercase= train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __lowercase= ( tf.data.Dataset.from_generator( lowercase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __lowercase= val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __lowercase= ( tf.data.Dataset.from_generator( lowercase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __lowercase= test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid lowerCAmelCase = logging.getLogger(__name__) @dataclass class A : UpperCamelCase_ : int =field(metadata={'''help''': '''Which column contains the label'''} ) UpperCamelCase_ : str =field(default=A_ , metadata={'''help''': '''The path of the training file'''} ) UpperCamelCase_ : Optional[str] =field(default=A_ , metadata={'''help''': '''The path of the development file'''} ) UpperCamelCase_ : Optional[str] =field(default=A_ , metadata={'''help''': '''The path of the test file'''} ) UpperCamelCase_ : int =field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCamelCase_ : bool =field( default=A_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class A : UpperCamelCase_ : str =field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCamelCase_ : Optional[str] =field( default=A_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase_ : Optional[str] =field( default=A_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase_ : bool =field(default=A_ , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. UpperCamelCase_ : Optional[str] =field( default=A_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def _lowerCamelCase( ) -> Optional[Any]: '''simple docstring''' __lowercase= HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __lowercase, __lowercase, __lowercase= parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.info( F'n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ' F'16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowercase= AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __lowercase, __lowercase, __lowercase, __lowercase= get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=lowercase__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) __lowercase= AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(lowercase__ ) , labelaid=lowercase__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='text-classification' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): __lowercase= TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('.bin' in model_args.model_name_or_path ) , config=lowercase__ , cache_dir=model_args.cache_dir , ) def compute_metrics(lowercase__ ) -> Dict: __lowercase= np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __lowercase= TFTrainer( model=lowercase__ , args=lowercase__ , train_dataset=lowercase__ , eval_dataset=lowercase__ , compute_metrics=lowercase__ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase= {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __lowercase= trainer.evaluate() __lowercase= os.path.join(training_args.output_dir , 'eval_results.txt' ) with open(lowercase__ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(F' {key} = {value}' ) writer.write(F'{key} = {value}\n' ) results.update(lowercase__ ) return results if __name__ == "__main__": main()
304
0
'''simple docstring''' from __future__ import annotations lowercase__ : Any = list[list[int]] # assigning initial values to the grid lowercase__ : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution lowercase__ : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def a__ ( lowercase : Matrix, lowercase : int, lowercase : int, lowercase : int ) -> bool: """simple docstring""" for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def a__ ( lowercase : Matrix ) -> tuple[int, int] | None: """simple docstring""" for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def a__ ( lowercase : Matrix ) -> Matrix | None: """simple docstring""" if location := find_empty_location(lowercase ): _UpperCamelCase , _UpperCamelCase = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1, 10 ): if is_safe(lowercase, lowercase, lowercase, lowercase ): _UpperCamelCase = digit if sudoku(lowercase ) is not None: return grid _UpperCamelCase = 0 return None def a__ ( lowercase : Matrix ) -> None: """simple docstring""" for row in grid: for cell in row: print(lowercase, end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('\nExample grid:\n' + '=' * 20) print_solution(example_grid) print('\nExample grid solution:') lowercase__ : Dict = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('Cannot find a solution.')
324
'''simple docstring''' import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging lowercase__ : Any = logging.get_logger(__name__) class __lowerCAmelCase : """simple docstring""" _snake_case : List[str] = None @experimental def a__ ( lowercase : Union[str, Any], lowercase : Optional[int], lowercase : Tuple, lowercase : List[Any], lowercase : Dict, lowercase : Union[str, Any], lowercase : Optional[Any] ) -> int: """simple docstring""" if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( lowercase, lowercase, lowercase, lowercase, lowercase, lowercase, lowercase ) return _map_with_joblib(lowercase, lowercase, lowercase, lowercase, lowercase, lowercase, lowercase ) def a__ ( lowercase : Dict, lowercase : str, lowercase : Union[str, Any], lowercase : Optional[Any], lowercase : Optional[int], lowercase : Optional[Any], lowercase : Optional[int] ) -> List[str]: """simple docstring""" _UpperCamelCase = num_proc if num_proc <= len(lowercase ) else len(lowercase ) _UpperCamelCase = [] # We organize the splits ourselve (contiguous splits) for index in range(lowercase ): _UpperCamelCase = len(lowercase ) // num_proc _UpperCamelCase = len(lowercase ) % num_proc _UpperCamelCase = div * index + min(lowercase, lowercase ) _UpperCamelCase = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(lowercase ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( F"""Error dividing inputs iterable among processes. """ F"""Total number of objects {len(lowercase )}, """ F"""length: {sum(len(i[1] ) for i in split_kwds )}""" ) logger.info( F"""Spawning {num_proc} processes for {len(lowercase )} objects in slices of {[len(i[1] ) for i in split_kwds]}""" ) _UpperCamelCase , _UpperCamelCase = None, None if not disable_tqdm: _UpperCamelCase , _UpperCamelCase = (RLock(),), tqdm.set_lock with Pool(lowercase, initargs=lowercase, initializer=lowercase ) as pool: _UpperCamelCase = pool.map(lowercase, lowercase ) logger.info(F"""Finished {num_proc} processes""" ) _UpperCamelCase = [obj for proc_res in mapped for obj in proc_res] logger.info(F"""Unpacked {len(lowercase )} objects""" ) return mapped def a__ ( lowercase : str, lowercase : Tuple, lowercase : List[str], lowercase : List[str], lowercase : Any, lowercase : int, lowercase : Optional[Any] ) -> Any: """simple docstring""" import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name, n_jobs=lowercase ): return joblib.Parallel()( joblib.delayed(lowercase )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def a__ ( lowercase : str ) -> Optional[int]: """simple docstring""" _UpperCamelCase = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: _UpperCamelCase = None
324
1
from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" snake_case = 42 snake_case = 42 if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
65
import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): return EnvironmentCommand() def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): return EnvironmentCommand(args.accelerate_config_file ) class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" @staticmethod def _snake_case ( _SCREAMING_SNAKE_CASE )->List[Any]: '''simple docstring''' A_ : str = parser.add_parser('''env''' ) download_parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) download_parser.add_argument( '''--accelerate-config_file''' , default=_SCREAMING_SNAKE_CASE , help='''The accelerate config file to use for the default values in the launching script.''' , ) download_parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) def __init__( self , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE )->None: '''simple docstring''' A_ : Optional[Any] = accelerate_config_file def _snake_case ( self )->Optional[int]: '''simple docstring''' A_ : Tuple = '''not installed''' if is_safetensors_available(): import safetensors A_ : Any = safetensors.__version__ elif importlib.util.find_spec('''safetensors''' ) is not None: import safetensors A_ : Optional[Any] = F'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' A_ : Union[str, Any] = '''not installed''' A_ : List[Any] = '''not found''' if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file A_ : int = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(_SCREAMING_SNAKE_CASE ): A_ : str = load_config_from_file(self._accelerate_config_file ).to_dict() A_ : List[Any] = ( '''\n'''.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else F'''\t{accelerate_config}''' ) A_ : Optional[int] = '''not installed''' A_ : str = '''NA''' if is_torch_available(): import torch A_ : Tuple = torch.__version__ A_ : List[Any] = torch.cuda.is_available() A_ : int = '''not installed''' A_ : Any = '''NA''' if is_tf_available(): import tensorflow as tf A_ : str = tf.__version__ try: # deprecated in v2.1 A_ : List[str] = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool A_ : Any = bool(tf.config.list_physical_devices('''GPU''' ) ) A_ : Union[str, Any] = '''not installed''' A_ : Tuple = '''not installed''' A_ : Tuple = '''not installed''' A_ : Union[str, Any] = '''NA''' if is_flax_available(): import flax import jax import jaxlib A_ : Tuple = flax.__version__ A_ : List[Any] = jax.__version__ A_ : List[Any] = jaxlib.__version__ A_ : Dict = jax.lib.xla_bridge.get_backend().platform A_ : Union[str, Any] = { '''`transformers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Huggingface_hub version''': huggingface_hub.__version__, '''Safetensors version''': F'''{safetensors_version}''', '''Accelerate version''': F'''{accelerate_version}''', '''Accelerate config''': F'''{accelerate_config_str}''', '''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''', '''Tensorflow version (GPU?)''': F'''{tf_version} ({tf_cuda_available})''', '''Flax version (CPU?/GPU?/TPU?)''': F'''{flax_version} ({jax_backend})''', '''Jax version''': F'''{jax_version}''', '''JaxLib version''': F'''{jaxlib_version}''', '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(_SCREAMING_SNAKE_CASE ) ) return info @staticmethod def _snake_case ( _SCREAMING_SNAKE_CASE )->Dict: '''simple docstring''' return "\n".join([F'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
65
1
"""simple docstring""" class __A : def __init__( self ): _lowerCAmelCase : List[Any] = """""" _lowerCAmelCase : Optional[int] = """""" _lowerCAmelCase : List[str] = [] def __A ( self , a__ , a__ ): if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: _lowerCAmelCase : str = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: _lowerCAmelCase : Dict = self.__min_dist_top_down_dp(a__ , n - 1 ) _lowerCAmelCase : int = self.__min_dist_top_down_dp(m - 1 , a__ ) _lowerCAmelCase : str = self.__min_dist_top_down_dp(m - 1 , n - 1 ) _lowerCAmelCase : Optional[int] = 1 + min(a__ , a__ , a__ ) return self.dp[m][n] def __A ( self , a__ , a__ ): _lowerCAmelCase : Optional[Any] = worda _lowerCAmelCase : Any = worda _lowerCAmelCase : List[Any] = [[-1 for _ in range(len(a__ ) )] for _ in range(len(a__ ) )] return self.__min_dist_top_down_dp(len(a__ ) - 1 , len(a__ ) - 1 ) def __A ( self , a__ , a__ ): _lowerCAmelCase : Dict = worda _lowerCAmelCase : Union[str, Any] = worda _lowerCAmelCase : Optional[Any] = len(a__ ) _lowerCAmelCase : Union[str, Any] = len(a__ ) _lowerCAmelCase : Tuple = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty _lowerCAmelCase : Any = j elif j == 0: # second string is empty _lowerCAmelCase : Tuple = i elif worda[i - 1] == worda[j - 1]: # last characters are equal _lowerCAmelCase : int = self.dp[i - 1][j - 1] else: _lowerCAmelCase : List[str] = self.dp[i][j - 1] _lowerCAmelCase : Tuple = self.dp[i - 1][j] _lowerCAmelCase : Dict = self.dp[i - 1][j - 1] _lowerCAmelCase : Optional[int] = 1 + min(a__ , a__ , a__ ) return self.dp[m][n] if __name__ == "__main__": _a : List[str] = EditDistance() print('****************** Testing Edit Distance DP Algorithm ******************') print() _a : List[Any] = input('Enter the first string: ').strip() _a : List[Any] = input('Enter the second string: ').strip() print() print(F"""The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}""") print(F"""The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}""") print() print('*************** End of Testing Edit Distance DP Algorithm ***************')
44
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal lowercase__ : Optional[int] = datasets.utils.logging.get_logger(__name__) lowercase__ : Optional[Any] = ["names", "prefix"] lowercase__ : List[Any] = ["warn_bad_lines", "error_bad_lines", "mangle_dupe_cols"] lowercase__ : Optional[Any] = ["encoding_errors", "on_bad_lines"] lowercase__ : List[str] = ["date_format"] @dataclass class SCREAMING_SNAKE_CASE__ ( datasets.BuilderConfig ): """simple docstring""" _snake_case = "," _snake_case = None _snake_case = "infer" _snake_case = None _snake_case = None _snake_case = None _snake_case = None _snake_case = None _snake_case = True _snake_case = None _snake_case = None _snake_case = None _snake_case = None _snake_case = False _snake_case = None _snake_case = None _snake_case = None _snake_case = True _snake_case = True _snake_case = False _snake_case = True _snake_case = None _snake_case = "." _snake_case = None _snake_case = '"' _snake_case = 0 _snake_case = None _snake_case = None _snake_case = None _snake_case = None _snake_case = True _snake_case = True _snake_case = 0 _snake_case = True _snake_case = False _snake_case = None _snake_case = 10000 _snake_case = None _snake_case = "strict" _snake_case = "error" _snake_case = None def A__ ( self )-> Any: '''simple docstring''' if self.delimiter is not None: __UpperCamelCase = self.delimiter if self.column_names is not None: __UpperCamelCase = self.column_names @property def A__ ( self )-> Any: '''simple docstring''' __UpperCamelCase = { '''sep''': self.sep, '''header''': self.header, '''names''': self.names, '''index_col''': self.index_col, '''usecols''': self.usecols, '''prefix''': self.prefix, '''mangle_dupe_cols''': self.mangle_dupe_cols, '''engine''': self.engine, '''converters''': self.converters, '''true_values''': self.true_values, '''false_values''': self.false_values, '''skipinitialspace''': self.skipinitialspace, '''skiprows''': self.skiprows, '''nrows''': self.nrows, '''na_values''': self.na_values, '''keep_default_na''': self.keep_default_na, '''na_filter''': self.na_filter, '''verbose''': self.verbose, '''skip_blank_lines''': self.skip_blank_lines, '''thousands''': self.thousands, '''decimal''': self.decimal, '''lineterminator''': self.lineterminator, '''quotechar''': self.quotechar, '''quoting''': self.quoting, '''escapechar''': self.escapechar, '''comment''': self.comment, '''encoding''': self.encoding, '''dialect''': self.dialect, '''error_bad_lines''': self.error_bad_lines, '''warn_bad_lines''': self.warn_bad_lines, '''skipfooter''': self.skipfooter, '''doublequote''': self.doublequote, '''memory_map''': self.memory_map, '''float_precision''': self.float_precision, '''chunksize''': self.chunksize, '''encoding_errors''': self.encoding_errors, '''on_bad_lines''': self.on_bad_lines, '''date_format''': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , SCREAMING_SNAKE_CASE_ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class SCREAMING_SNAKE_CASE__ ( datasets.ArrowBasedBuilder ): """simple docstring""" _snake_case = CsvConfig def A__ ( self )-> Any: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Optional[int]: '''simple docstring''' if not self.config.data_files: raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}" ) __UpperCamelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(SCREAMING_SNAKE_CASE_ , (str, list, tuple) ): __UpperCamelCase = data_files if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = [files] __UpperCamelCase = [dl_manager.iter_files(SCREAMING_SNAKE_CASE_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] __UpperCamelCase = [] for split_name, files in data_files.items(): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = [files] __UpperCamelCase = [dl_manager.iter_files(SCREAMING_SNAKE_CASE_ ) for file in files] splits.append(datasets.SplitGenerator(name=SCREAMING_SNAKE_CASE_ , gen_kwargs={'''files''': files} ) ) return splits def A__ ( self , SCREAMING_SNAKE_CASE_ )-> pa.Table: '''simple docstring''' if self.config.features is not None: __UpperCamelCase = self.config.features.arrow_schema if all(not require_storage_cast(SCREAMING_SNAKE_CASE_ ) for feature in self.config.features.values() ): # cheaper cast __UpperCamelCase = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=SCREAMING_SNAKE_CASE_ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example __UpperCamelCase = table_cast(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return pa_table def A__ ( self , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' __UpperCamelCase = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str __UpperCamelCase = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(SCREAMING_SNAKE_CASE_ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE_ ) ): __UpperCamelCase = pd.read_csv(SCREAMING_SNAKE_CASE_ , iterator=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = pa.Table.from_pandas(SCREAMING_SNAKE_CASE_ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(SCREAMING_SNAKE_CASE_ ) except ValueError as e: logger.error(F"Failed to read file '{file}' with error {type(SCREAMING_SNAKE_CASE_ )}: {e}" ) raise
328
0
import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# UpperCAmelCase : Tuple = [ # (stable-diffusion, HF Diffusers) ("time_embed.0.weight", "time_embedding.linear_1.weight"), ("time_embed.0.bias", "time_embedding.linear_1.bias"), ("time_embed.2.weight", "time_embedding.linear_2.weight"), ("time_embed.2.bias", "time_embedding.linear_2.bias"), ("input_blocks.0.0.weight", "conv_in.weight"), ("input_blocks.0.0.bias", "conv_in.bias"), ("out.0.weight", "conv_norm_out.weight"), ("out.0.bias", "conv_norm_out.bias"), ("out.2.weight", "conv_out.weight"), ("out.2.bias", "conv_out.bias"), ] UpperCAmelCase : Dict = [ # (stable-diffusion, HF Diffusers) ("in_layers.0", "norm1"), ("in_layers.2", "conv1"), ("out_layers.0", "norm2"), ("out_layers.3", "conv2"), ("emb_layers.1", "time_emb_proj"), ("skip_connection", "conv_shortcut"), ] UpperCAmelCase : List[str] = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks UpperCAmelCase : Optional[Any] = f"""down_blocks.{i}.resnets.{j}.""" UpperCAmelCase : str = f"""input_blocks.{3*i + j + 1}.0.""" unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 UpperCAmelCase : str = f"""down_blocks.{i}.attentions.{j}.""" UpperCAmelCase : Any = f"""input_blocks.{3*i + j + 1}.1.""" unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks UpperCAmelCase : str = f"""up_blocks.{i}.resnets.{j}.""" UpperCAmelCase : Any = f"""output_blocks.{3*i + j}.0.""" unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 UpperCAmelCase : Optional[Any] = f"""up_blocks.{i}.attentions.{j}.""" UpperCAmelCase : Any = f"""output_blocks.{3*i + j}.1.""" unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 UpperCAmelCase : Optional[Any] = f"""down_blocks.{i}.downsamplers.0.conv.""" UpperCAmelCase : Dict = f"""input_blocks.{3*(i+1)}.0.op.""" unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 UpperCAmelCase : Optional[Any] = f"""up_blocks.{i}.upsamplers.0.""" UpperCAmelCase : Dict = f"""output_blocks.{3*i + 2}.{1 if i == 0 else 2}.""" unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) UpperCAmelCase : str = "mid_block.attentions.0." UpperCAmelCase : Dict = "middle_block.1." unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): UpperCAmelCase : Optional[int] = f"""mid_block.resnets.{j}.""" UpperCAmelCase : str = f"""middle_block.{2*j}.""" unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def __lowerCamelCase ( lowerCamelCase__ : Dict ): '''simple docstring''' lowerCamelCase = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: lowerCamelCase = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: lowerCamelCase = v.replace(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: lowerCamelCase = v.replace(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase = v lowerCamelCase = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# UpperCAmelCase : Optional[Any] = [ # (stable-diffusion, HF Diffusers) ("nin_shortcut", "conv_shortcut"), ("norm_out", "conv_norm_out"), ("mid.attn_1.", "mid_block.attentions.0."), ] for i in range(4): # down_blocks have two resnets for j in range(2): UpperCAmelCase : List[str] = f"""encoder.down_blocks.{i}.resnets.{j}.""" UpperCAmelCase : int = f"""encoder.down.{i}.block.{j}.""" vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: UpperCAmelCase : List[str] = f"""down_blocks.{i}.downsamplers.0.""" UpperCAmelCase : Union[str, Any] = f"""down.{i}.downsample.""" vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) UpperCAmelCase : Dict = f"""up_blocks.{i}.upsamplers.0.""" UpperCAmelCase : Dict = f"""up.{3-i}.upsample.""" vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): UpperCAmelCase : Dict = f"""decoder.up_blocks.{i}.resnets.{j}.""" UpperCAmelCase : Tuple = f"""decoder.up.{3-i}.block.{j}.""" vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): UpperCAmelCase : Tuple = f"""mid_block.resnets.{i}.""" UpperCAmelCase : int = f"""mid.block_{i+1}.""" vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) UpperCAmelCase : Union[str, Any] = [ # (stable-diffusion, HF Diffusers) ("norm.", "group_norm."), ("q.", "query."), ("k.", "key."), ("v.", "value."), ("proj_out.", "proj_attn."), ] def __lowerCamelCase ( lowerCamelCase__ : Optional[Any] ): '''simple docstring''' return w.reshape(*w.shape , 1 , 1 ) def __lowerCamelCase ( lowerCamelCase__ : List[Any] ): '''simple docstring''' lowerCamelCase = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: lowerCamelCase = v.replace(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: lowerCamelCase = v.replace(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase = v lowerCamelCase = {v: vae_state_dict[k] for k, v in mapping.items()} lowerCamelCase = ["""q""", """k""", """v""", """proj_out"""] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if f'mid.attn_1.{weight_name}.weight' in k: print(f'Reshaping {k} for SD format' ) lowerCamelCase = reshape_weight_for_sd(lowerCamelCase__ ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# UpperCAmelCase : List[str] = [ # (stable-diffusion, HF Diffusers) ("resblocks.", "text_model.encoder.layers."), ("ln_1", "layer_norm1"), ("ln_2", "layer_norm2"), (".c_fc.", ".fc1."), (".c_proj.", ".fc2."), (".attn", ".self_attn"), ("ln_final.", "transformer.text_model.final_layer_norm."), ("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"), ("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"), ] UpperCAmelCase : Any = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} UpperCAmelCase : Optional[int] = re.compile("|".join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp UpperCAmelCase : Optional[Any] = {"q": 0, "k": 1, "v": 2} def __lowerCamelCase ( lowerCamelCase__ : Any ): '''simple docstring''' lowerCamelCase = {} lowerCamelCase = {} lowerCamelCase = {} for k, v in text_enc_dict.items(): if ( k.endswith(""".self_attn.q_proj.weight""" ) or k.endswith(""".self_attn.k_proj.weight""" ) or k.endswith(""".self_attn.v_proj.weight""" ) ): lowerCamelCase = k[: -len(""".q_proj.weight""" )] lowerCamelCase = k[-len("""q_proj.weight""" )] if k_pre not in capture_qkv_weight: lowerCamelCase = [None, None, None] lowerCamelCase = v continue if ( k.endswith(""".self_attn.q_proj.bias""" ) or k.endswith(""".self_attn.k_proj.bias""" ) or k.endswith(""".self_attn.v_proj.bias""" ) ): lowerCamelCase = k[: -len(""".q_proj.bias""" )] lowerCamelCase = k[-len("""q_proj.bias""" )] if k_pre not in capture_qkv_bias: lowerCamelCase = [None, None, None] lowerCamelCase = v continue lowerCamelCase = textenc_pattern.sub(lambda lowerCamelCase__ : protected[re.escape(m.group(0 ) )] , lowerCamelCase__ ) lowerCamelCase = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception("""CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing""" ) lowerCamelCase = textenc_pattern.sub(lambda lowerCamelCase__ : protected[re.escape(m.group(0 ) )] , lowerCamelCase__ ) lowerCamelCase = torch.cat(lowerCamelCase__ ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception("""CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing""" ) lowerCamelCase = textenc_pattern.sub(lambda lowerCamelCase__ : protected[re.escape(m.group(0 ) )] , lowerCamelCase__ ) lowerCamelCase = torch.cat(lowerCamelCase__ ) return new_state_dict def __lowerCamelCase ( lowerCamelCase__ : Optional[Any] ): '''simple docstring''' return text_enc_dict if __name__ == "__main__": UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("--model_path", default=None, type=str, required=True, help="Path to the model to convert.") parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument("--half", action="store_true", help="Save weights in half precision.") parser.add_argument( "--use_safetensors", action="store_true", help="Save weights use safetensors, default is ckpt." ) UpperCAmelCase : Dict = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors UpperCAmelCase : List[str] = osp.join(args.model_path, "unet", "diffusion_pytorch_model.safetensors") UpperCAmelCase : str = osp.join(args.model_path, "vae", "diffusion_pytorch_model.safetensors") UpperCAmelCase : Dict = osp.join(args.model_path, "text_encoder", "model.safetensors") # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): UpperCAmelCase : int = load_file(unet_path, device="cpu") else: UpperCAmelCase : Union[str, Any] = osp.join(args.model_path, "unet", "diffusion_pytorch_model.bin") UpperCAmelCase : Tuple = torch.load(unet_path, map_location="cpu") if osp.exists(vae_path): UpperCAmelCase : Tuple = load_file(vae_path, device="cpu") else: UpperCAmelCase : str = osp.join(args.model_path, "vae", "diffusion_pytorch_model.bin") UpperCAmelCase : Any = torch.load(vae_path, map_location="cpu") if osp.exists(text_enc_path): UpperCAmelCase : Optional[int] = load_file(text_enc_path, device="cpu") else: UpperCAmelCase : int = osp.join(args.model_path, "text_encoder", "pytorch_model.bin") UpperCAmelCase : Optional[Any] = torch.load(text_enc_path, map_location="cpu") # Convert the UNet model UpperCAmelCase : List[Any] = convert_unet_state_dict(unet_state_dict) UpperCAmelCase : List[str] = {"model.diffusion_model." + k: v for k, v in unet_state_dict.items()} # Convert the VAE model UpperCAmelCase : List[Any] = convert_vae_state_dict(vae_state_dict) UpperCAmelCase : Union[str, Any] = {"first_stage_model." + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper UpperCAmelCase : str = "text_model.encoder.layers.22.layer_norm2.bias" in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm UpperCAmelCase : str = {"transformer." + k: v for k, v in text_enc_dict.items()} UpperCAmelCase : Union[str, Any] = convert_text_enc_state_dict_vaa(text_enc_dict) UpperCAmelCase : Optional[Any] = {"cond_stage_model.model." + k: v for k, v in text_enc_dict.items()} else: UpperCAmelCase : Dict = convert_text_enc_state_dict(text_enc_dict) UpperCAmelCase : Dict = {"cond_stage_model.transformer." + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint UpperCAmelCase : List[Any] = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: UpperCAmelCase : str = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: UpperCAmelCase : Any = {"state_dict": state_dict} torch.save(state_dict, args.checkpoint_path)
66
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("""socket.socket""" ) @patch("""builtins.open""" ) def __lowerCamelCase ( lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Dict ): '''simple docstring''' lowerCamelCase = Mock() lowerCamelCase = conn, Mock() lowerCamelCase = iter([1, None] ) lowerCamelCase = lambda lowerCamelCase__ : next(lowerCamelCase__ ) # ===== invoke ===== send_file(filename="""mytext.txt""" , testing=lowerCamelCase__ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
66
1
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase : int = logging.get_logger(__name__) _UpperCamelCase : str = [ ("bert.bert", "visual_bert"), ("bert.cls", "cls"), ("bert.classifier", "cls"), ("token_type_embeddings_visual", "visual_token_type_embeddings"), ("position_embeddings_visual", "visual_position_embeddings"), ("projection", "visual_projection"), ] _UpperCamelCase : Dict = [ "nlvr2_coco_pre_trained.th", "nlvr2_fine_tuned.th", "nlvr2_pre_trained.th", "vcr_coco_pre_train.th", "vcr_fine_tune.th", "vcr_pre_train.th", "vqa_coco_pre_trained.th", "vqa_fine_tuned.th", "vqa_pre_trained.th", ] def a_ ( _lowerCAmelCase : Optional[Any] ): '''simple docstring''' lowercase__ : Dict = torch.load(_lowerCAmelCase , map_location='cpu' ) return sd def a_ ( _lowerCAmelCase : int , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str=rename_keys_prefix ): '''simple docstring''' lowercase__ : Union[str, Any] = OrderedDict() lowercase__ : List[str] = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue lowercase__ : List[str] = key for name_pair in rename_keys_prefix: lowercase__ : List[Any] = new_key.replace(name_pair[0] , name_pair[1] ) lowercase__ : List[str] = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately lowercase__ : str = new_d['cls.predictions.bias'] return new_d @torch.no_grad() def a_ ( _lowerCAmelCase : int , _lowerCAmelCase : str ): '''simple docstring''' assert ( checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS ), f"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.""" # Get Config if "pre" in checkpoint_path: lowercase__ : List[Any] = 'pretraining' if "vcr" in checkpoint_path: lowercase__ : int = {'visual_embedding_dim': 512} elif "vqa_advanced" in checkpoint_path: lowercase__ : Tuple = {'visual_embedding_dim': 2048} elif "vqa" in checkpoint_path: lowercase__ : Union[str, Any] = {'visual_embedding_dim': 2048} elif "nlvr" in checkpoint_path: lowercase__ : List[str] = {'visual_embedding_dim': 1024} else: raise NotImplementedError(f"""No implementation found for `{checkpoint_path}`.""" ) else: if "vcr" in checkpoint_path: lowercase__ : Optional[Any] = {'visual_embedding_dim': 512} lowercase__ : int = 'multichoice' elif "vqa_advanced" in checkpoint_path: lowercase__ : int = {'visual_embedding_dim': 2048} lowercase__ : Tuple = 'vqa_advanced' elif "vqa" in checkpoint_path: lowercase__ : Union[str, Any] = {'visual_embedding_dim': 2048, 'num_labels': 3129} lowercase__ : int = 'vqa' elif "nlvr" in checkpoint_path: lowercase__ : Tuple = { 'visual_embedding_dim': 1024, 'num_labels': 2, } lowercase__ : List[str] = 'nlvr' lowercase__ : Optional[Any] = VisualBertConfig(**_lowerCAmelCase ) # Load State Dict lowercase__ : List[Any] = load_state_dict(_lowerCAmelCase ) lowercase__ : str = get_new_dict(_lowerCAmelCase , _lowerCAmelCase ) if model_type == "pretraining": lowercase__ : Optional[Any] = VisualBertForPreTraining(_lowerCAmelCase ) elif model_type == "vqa": lowercase__ : Optional[Any] = VisualBertForQuestionAnswering(_lowerCAmelCase ) elif model_type == "nlvr": lowercase__ : Dict = VisualBertForVisualReasoning(_lowerCAmelCase ) elif model_type == "multichoice": lowercase__ : List[Any] = VisualBertForMultipleChoice(_lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) # Save Checkpoints Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": _UpperCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument("orig_checkpoint_path", type=str, help="A path to .th on local filesystem.") parser.add_argument("pytorch_dump_folder_path", type=str, help="Path to the output PyTorch model.") _UpperCamelCase : int = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
77
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase_ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): A__ : Any = DanceDiffusionPipeline A__ : Any = UNCONDITIONAL_AUDIO_GENERATION_PARAMS A__ : List[Any] = PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } A__ : Dict = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS A__ : str = False A__ : Any = False def lowerCamelCase_ ( self ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase_ = UNetaDModel( block_out_channels=(3_2, 3_2, 6_4) , extra_in_channels=1_6 , sample_size=5_1_2 , sample_rate=1_6_0_0_0 , in_channels=2 , out_channels=2 , flip_sin_to_cos=__UpperCamelCase , use_timestep_embedding=__UpperCamelCase , time_embedding_type="""fourier""" , mid_block_type="""UNetMidBlock1D""" , down_block_types=("""DownBlock1DNoSkip""", """DownBlock1D""", """AttnDownBlock1D""") , up_block_types=("""AttnUpBlock1D""", """UpBlock1D""", """UpBlock1DNoSkip""") , ) UpperCamelCase_ = IPNDMScheduler() UpperCamelCase_ = { """unet""": unet, """scheduler""": scheduler, } return components def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase=0 ): """simple docstring""" if str(__UpperCamelCase ).startswith("""mps""" ): UpperCamelCase_ = torch.manual_seed(__UpperCamelCase ) else: UpperCamelCase_ = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) UpperCamelCase_ = { """batch_size""": 1, """generator""": generator, """num_inference_steps""": 4, } return inputs def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase_ = self.get_dummy_components() UpperCamelCase_ = DanceDiffusionPipeline(**__UpperCamelCase ) UpperCamelCase_ = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCamelCase_ = self.get_dummy_inputs(__UpperCamelCase ) UpperCamelCase_ = pipe(**__UpperCamelCase ) UpperCamelCase_ = output.audios UpperCamelCase_ = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) UpperCamelCase_ = np.array([-0.7_265, 1.0_000, -0.8_388, 0.1_175, 0.9_498, -1.0_000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def lowerCamelCase_ ( self ): """simple docstring""" return super().test_save_load_local() @skip_mps def lowerCamelCase_ ( self ): """simple docstring""" return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def lowerCamelCase_ ( self ): """simple docstring""" return super().test_save_load_optional_components() @skip_mps def lowerCamelCase_ ( self ): """simple docstring""" return super().test_attention_slicing_forward_pass() def lowerCamelCase_ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowercase_ ( unittest.TestCase ): def lowerCamelCase_ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = torch_device UpperCamelCase_ = DanceDiffusionPipeline.from_pretrained("""harmonai/maestro-150k""" ) UpperCamelCase_ = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = pipe(generator=__UpperCamelCase , num_inference_steps=1_0_0 , audio_length_in_s=4.096 ) UpperCamelCase_ = output.audios UpperCamelCase_ = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) UpperCamelCase_ = np.array([-0.0_192, -0.0_231, -0.0_318, -0.0_059, 0.0_002, -0.0_020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = torch_device UpperCamelCase_ = DanceDiffusionPipeline.from_pretrained("""harmonai/maestro-150k""" , torch_dtype=torch.floataa ) UpperCamelCase_ = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = pipe(generator=__UpperCamelCase , num_inference_steps=1_0_0 , audio_length_in_s=4.096 ) UpperCamelCase_ = output.audios UpperCamelCase_ = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) UpperCamelCase_ = np.array([-0.0_367, -0.0_488, -0.0_771, -0.0_525, -0.0_444, -0.0_341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
122
0
"""simple docstring""" import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home __snake_case : Optional[Any] = HUGGINGFACE_HUB_CACHE __snake_case : str = 'config.json' __snake_case : Tuple = 'diffusion_pytorch_model.bin' __snake_case : int = 'diffusion_flax_model.msgpack' __snake_case : List[str] = 'model.onnx' __snake_case : List[str] = 'diffusion_pytorch_model.safetensors' __snake_case : int = 'weights.pb' __snake_case : Dict = 'https://huggingface.co' __snake_case : Optional[int] = default_cache_path __snake_case : str = 'diffusers_modules' __snake_case : Optional[int] = os.getenv('HF_MODULES_CACHE', os.path.join(hf_cache_home, 'modules')) __snake_case : Tuple = ['fp16', 'non-ema'] __snake_case : Dict = '.self_attn'
58
"""simple docstring""" from ....utils import logging __snake_case : Optional[Any] = logging.get_logger(__name__) class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self: str , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any]=None , _SCREAMING_SNAKE_CASE: int=2048) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Any = config.__dict__ __lowerCAmelCase : Dict = modal_hidden_size if num_labels: __lowerCAmelCase : Optional[int] = num_labels
58
1
import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class _A : def __init__( self : Any , __SCREAMING_SNAKE_CASE : Union[str, Any]): '''simple docstring''' if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden __a = deepcopy(_SCREAMING_SNAKE_CASE) elif os.path.exists(_SCREAMING_SNAKE_CASE): with io.open(_SCREAMING_SNAKE_CASE , '''r''' , encoding='''utf-8''') as f: __a = json.load(_SCREAMING_SNAKE_CASE) else: try: __a = baseaa.urlsafe_baadecode(_SCREAMING_SNAKE_CASE).decode('''utf-8''') __a = json.loads(_SCREAMING_SNAKE_CASE) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( F'Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}') __a = config self.set_stage_and_offload() def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a = self.get_value('''zero_optimization.stage''' , -1) # offload __a = False if self.is_zeroa() or self.is_zeroa(): __a = set(['''cpu''', '''nvme''']) __a = set( [ self.get_value('''zero_optimization.offload_optimizer.device'''), self.get_value('''zero_optimization.offload_param.device'''), ]) if len(offload_devices & offload_devices_valid) > 0: __a = True def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : Any): '''simple docstring''' __a = self.config # find the config node of interest if it exists __a = ds_key_long.split('''.''') __a = nodes.pop() for node in nodes: __a = config.get(_SCREAMING_SNAKE_CASE) if config is None: return None, ds_key return config, ds_key def _lowerCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Dict=None): '''simple docstring''' __a = self.find_config_node(_SCREAMING_SNAKE_CASE) if config is None: return default return config.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : str , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[Any]=False): '''simple docstring''' __a = self.config # find the config node of interest if it exists __a = ds_key_long.split('''.''') for node in nodes: __a = config __a = config.get(_SCREAMING_SNAKE_CASE) if config is None: if must_exist: raise ValueError(F'Can\'t find {ds_key_long} entry in the config: {self.config}') else: return # if found remove it if parent_config is not None: parent_config.pop(_SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : List[str]): '''simple docstring''' __a = self.get_value(_SCREAMING_SNAKE_CASE) return False if value is None else bool(_SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple): '''simple docstring''' __a = self.get_value(_SCREAMING_SNAKE_CASE) return False if value is None else not bool(_SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : int): '''simple docstring''' return self._stage == 2 def _lowerCamelCase ( self : Tuple): '''simple docstring''' return self._stage == 3 def _lowerCamelCase ( self : Any): '''simple docstring''' return self._offload class _A : def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int): '''simple docstring''' __a = engine def _lowerCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int , **__SCREAMING_SNAKE_CASE : int): '''simple docstring''' self.engine.backward(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class _A ( __UpperCAmelCase ): def __init__( self : int , __SCREAMING_SNAKE_CASE : str): '''simple docstring''' super().__init__(_SCREAMING_SNAKE_CASE , device_placement=_SCREAMING_SNAKE_CASE , scaler=_SCREAMING_SNAKE_CASE) __a = hasattr(self.optimizer , '''overflow''') def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : List[str]=None): '''simple docstring''' pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def _lowerCamelCase ( self : int): '''simple docstring''' pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' if self.__has_overflow__: return self.optimizer.overflow return False class _A ( __UpperCAmelCase ): def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]): '''simple docstring''' super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class _A : def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any]=0.0_01 , __SCREAMING_SNAKE_CASE : Any=0 , **__SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' __a = params __a = lr __a = weight_decay __a = kwargs class _A : def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : List[Any]=0 , **__SCREAMING_SNAKE_CASE : Any): '''simple docstring''' __a = optimizer __a = total_num_steps __a = warmup_num_steps __a = kwargs
49
import os import numpy import onnx def A_ ( a , a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = a.name SCREAMING_SNAKE_CASE_ : Dict = b.name SCREAMING_SNAKE_CASE_ : Optional[int] = '' SCREAMING_SNAKE_CASE_ : int = '' SCREAMING_SNAKE_CASE_ : Tuple = a == b SCREAMING_SNAKE_CASE_ : Dict = name_a SCREAMING_SNAKE_CASE_ : List[Any] = name_b return res def A_ ( a , a , a ): """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(a , a ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , a , a ) _graph_replace_input_with(node_proto.attribute[1].g , a , a ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , a , a ) def A_ ( a , a , a ): """simple docstring""" for n in graph_proto.node: _node_replace_input_with(a , a , a ) def A_ ( a , a , a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = list(model.graph.initializer ) SCREAMING_SNAKE_CASE_ : int = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i SCREAMING_SNAKE_CASE_ : List[Any] = inits[i].name SCREAMING_SNAKE_CASE_ : int = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , a , a ) def A_ ( a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = os.path.dirname(a ) SCREAMING_SNAKE_CASE_ : Tuple = os.path.basename(a ) SCREAMING_SNAKE_CASE_ : str = onnx.load(os.path.join(a , a ) ) SCREAMING_SNAKE_CASE_ : Dict = list(model.graph.initializer ) SCREAMING_SNAKE_CASE_ : str = set() SCREAMING_SNAKE_CASE_ : Optional[Any] = {} SCREAMING_SNAKE_CASE_ : Dict = [] SCREAMING_SNAKE_CASE_ : Dict = 0 for i in range(len(a ) ): if i in dup_set: continue for j in range(i + 1 , len(a ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(a ) dup_set.add(a ) SCREAMING_SNAKE_CASE_ : Optional[int] = inits[j].data_type SCREAMING_SNAKE_CASE_ : List[Any] = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 1_1: mem_size *= 8 else: print('unexpected data type: ' , a ) total_reduced_size += mem_size SCREAMING_SNAKE_CASE_ : Any = inits[i].name SCREAMING_SNAKE_CASE_ : Tuple = inits[j].name if name_i in dup_map: dup_map[name_i].append(a ) else: SCREAMING_SNAKE_CASE_ : Tuple = [name_j] ind_to_replace.append((j, i) ) print('total reduced size: ' , total_reduced_size / 1_0_2_4 / 1_0_2_4 / 1_0_2_4 , 'GB' ) SCREAMING_SNAKE_CASE_ : Tuple = sorted(a ) _remove_dup_initializers_from_model(a , a , a ) SCREAMING_SNAKE_CASE_ : List[Any] = 'optimized_' + model_file_name SCREAMING_SNAKE_CASE_ : Any = os.path.join(a , a ) onnx.save(a , a ) return new_model
253
0
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowerCAmelCase ( UpperCamelCase__ , unittest.TestCase): _lowercase : str = DDIMPipeline _lowercase : List[Any] = UNCONDITIONAL_IMAGE_GENERATION_PARAMS _lowercase : List[str] = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """latents""", """callback""", """callback_steps""", } _lowercase : Union[str, Any] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS _lowercase : Union[str, Any] = False def _lowercase ( self ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) a__ : List[str] =UNetaDModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) a__ : Any =DDIMScheduler() a__ : List[Any] ={"unet": unet, "scheduler": scheduler} return components def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__=0 ) -> List[Any]: '''simple docstring''' if str(lowerCAmelCase__ ).startswith("mps" ): a__ : List[str] =torch.manual_seed(lowerCAmelCase__ ) else: a__ : Optional[int] =torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) a__ : Union[str, Any] ={ "batch_size": 1, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def _lowercase ( self ) -> Any: '''simple docstring''' a__ : int ="cpu" a__ : Union[str, Any] =self.get_dummy_components() a__ : int =self.pipeline_class(**lowerCAmelCase__ ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) a__ : Any =self.get_dummy_inputs(lowerCAmelCase__ ) a__ : Tuple =pipe(**lowerCAmelCase__ ).images a__ : Tuple =image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 3_2, 3_2, 3) ) a__ : str =np.array( [1.000E00, 5.717E-01, 4.717E-01, 1.000E00, 0.000E00, 1.000E00, 3.000E-04, 0.000E00, 9.000E-04] ) a__ : List[Any] =np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCAmelCase__ , 1E-3 ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def _lowercase ( self ) -> Tuple: '''simple docstring''' super().test_save_load_local(expected_max_difference=3E-3 ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=3E-3 ) def _lowercase ( self ) -> List[str]: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase): def _lowercase ( self ) -> Any: '''simple docstring''' a__ : List[str] ="google/ddpm-cifar10-32" a__ : str =UNetaDModel.from_pretrained(lowerCAmelCase__ ) a__ : List[str] =DDIMScheduler() a__ : Any =DDIMPipeline(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) ddim.to(lowerCAmelCase__ ) ddim.set_progress_bar_config(disable=lowerCAmelCase__ ) a__ : Any =torch.manual_seed(0 ) a__ : Optional[int] =ddim(generator=lowerCAmelCase__ , eta=0.0 , output_type="numpy" ).images a__ : int =image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) a__ : List[Any] =np.array([0.17_23, 0.16_17, 0.16_00, 0.16_26, 0.14_97, 0.15_13, 0.15_05, 0.14_42, 0.14_53] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' a__ : Union[str, Any] ="google/ddpm-ema-bedroom-256" a__ : Dict =UNetaDModel.from_pretrained(lowerCAmelCase__ ) a__ : Any =DDIMScheduler.from_pretrained(lowerCAmelCase__ ) a__ : Union[str, Any] =DDIMPipeline(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) ddpm.to(lowerCAmelCase__ ) ddpm.set_progress_bar_config(disable=lowerCAmelCase__ ) a__ : Any =torch.manual_seed(0 ) a__ : List[str] =ddpm(generator=lowerCAmelCase__ , output_type="numpy" ).images a__ : Union[str, Any] =image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) a__ : Optional[Any] =np.array([0.00_60, 0.02_01, 0.03_44, 0.00_24, 0.00_18, 0.00_02, 0.00_22, 0.00_00, 0.00_69] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
148
from __future__ import annotations class __lowerCAmelCase : def __init__( self , lowerCAmelCase__ ) -> str: '''simple docstring''' a__ : int =TypeError( "Matrices must be formed from a list of zero or more lists containing at " "least one and the same number of values, each of which must be of type " "int or float." ) if len(lowerCAmelCase__ ) != 0: a__ : List[str] =len(rows[0] ) if cols == 0: raise error for row in rows: if len(lowerCAmelCase__ ) != cols: raise error for value in row: if not isinstance(lowerCAmelCase__ , (int, float) ): raise error a__ : List[Any] =rows else: a__ : str =[] def _lowercase ( self ) -> list[list[int]]: '''simple docstring''' return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def _lowercase ( self ) -> int: '''simple docstring''' return len(self.rows ) @property def _lowercase ( self ) -> int: '''simple docstring''' return len(self.rows[0] ) @property def _lowercase ( self ) -> tuple[int, int]: '''simple docstring''' return (self.num_rows, self.num_columns) @property def _lowercase ( self ) -> bool: '''simple docstring''' return self.order[0] == self.order[1] def _lowercase ( self ) -> Matrix: '''simple docstring''' a__ : str =[ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(lowerCAmelCase__ ) def _lowercase ( self ) -> int: '''simple docstring''' if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def _lowercase ( self ) -> bool: '''simple docstring''' return bool(self.determinant() ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: '''simple docstring''' a__ : List[str] =[ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(lowerCAmelCase__ ).determinant() def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: '''simple docstring''' if (row + column) % 2 == 0: return self.get_minor(lowerCAmelCase__ , lowerCAmelCase__ ) return -1 * self.get_minor(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowercase ( self ) -> Matrix: '''simple docstring''' return Matrix( [ [self.get_minor(lowerCAmelCase__ , lowerCAmelCase__ ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def _lowercase ( self ) -> Matrix: '''simple docstring''' return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def _lowercase ( self ) -> Matrix: '''simple docstring''' a__ : Dict =[ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(lowerCAmelCase__ ) def _lowercase ( self ) -> Matrix: '''simple docstring''' a__ : Union[str, Any] =self.determinant() if not determinant: raise TypeError("Only matrices with a non-zero determinant have an inverse" ) return self.adjugate() * (1 / determinant) def __repr__( self ) -> str: '''simple docstring''' return str(self.rows ) def __str__( self ) -> str: '''simple docstring''' if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ "[" + ". ".join([str(lowerCAmelCase__ ) for value in row] ) + ".]" for row in self.rows ] ) + "]" ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> None: '''simple docstring''' a__ : List[str] =TypeError("Row must be a list containing all ints and/or floats" ) if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise type_error for value in row: if not isinstance(lowerCAmelCase__ , (int, float) ): raise type_error if len(lowerCAmelCase__ ) != self.num_columns: raise ValueError( "Row must be equal in length to the other rows in the matrix" ) if position is None: self.rows.append(lowerCAmelCase__ ) else: a__ : Tuple =self.rows[0:position] + [row] + self.rows[position:] def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> None: '''simple docstring''' a__ : str =TypeError( "Column must be a list containing all ints and/or floats" ) if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise type_error for value in column: if not isinstance(lowerCAmelCase__ , (int, float) ): raise type_error if len(lowerCAmelCase__ ) != self.num_rows: raise ValueError( "Column must be equal in length to the other columns in the matrix" ) if position is None: a__ : Optional[Any] =[self.rows[i] + [column[i]] for i in range(self.num_rows )] else: a__ : Any =[ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self , lowerCAmelCase__ ) -> bool: '''simple docstring''' if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): return NotImplemented return self.rows == other.rows def __ne__( self , lowerCAmelCase__ ) -> bool: '''simple docstring''' return not self == other def __neg__( self ) -> Matrix: '''simple docstring''' return self * -1 def __add__( self , lowerCAmelCase__ ) -> Matrix: '''simple docstring''' if self.order != other.order: raise ValueError("Addition requires matrices of the same order" ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self , lowerCAmelCase__ ) -> Matrix: '''simple docstring''' if self.order != other.order: raise ValueError("Subtraction requires matrices of the same order" ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self , lowerCAmelCase__ ) -> Matrix: '''simple docstring''' if isinstance(lowerCAmelCase__ , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): if self.num_columns != other.num_rows: raise ValueError( "The number of columns in the first matrix must " "be equal to the number of rows in the second" ) return Matrix( [ [Matrix.dot_product(lowerCAmelCase__ , lowerCAmelCase__ ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( "A Matrix can only be multiplied by an int, float, or another matrix" ) def __pow__( self , lowerCAmelCase__ ) -> Matrix: '''simple docstring''' if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError("A Matrix can only be raised to the power of an int" ) if not self.is_square: raise ValueError("Only square matrices can be raised to a power" ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( "Only invertable matrices can be raised to a negative power" ) a__ : Tuple =self for _ in range(other - 1 ): result *= self return result @classmethod def _lowercase ( cls , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: '''simple docstring''' return sum(row[i] * column[i] for i in range(len(lowerCAmelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
148
1
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class A__ : '''simple docstring''' SCREAMING_SNAKE_CASE = 42 # setable values SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = None @classmethod def _SCREAMING_SNAKE_CASE ( cls: int , _SCREAMING_SNAKE_CASE: CommonSchedulerState , _SCREAMING_SNAKE_CASE: jnp.ndarray , _SCREAMING_SNAKE_CASE: jnp.ndarray) -> Optional[Any]: """simple docstring""" return cls(common=_SCREAMING_SNAKE_CASE , init_noise_sigma=_SCREAMING_SNAKE_CASE , timesteps=_SCREAMING_SNAKE_CASE) @dataclass class A__ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE = 42 class A__ ( _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE = [e.name for e in FlaxKarrasDiffusionSchedulers] SCREAMING_SNAKE_CASE = 42 @property def _SCREAMING_SNAKE_CASE ( self: List[str]) -> Any: """simple docstring""" return True @register_to_config def __init__( self: str , _SCREAMING_SNAKE_CASE: int = 1000 , _SCREAMING_SNAKE_CASE: float = 0.0001 , _SCREAMING_SNAKE_CASE: float = 0.02 , _SCREAMING_SNAKE_CASE: str = "linear" , _SCREAMING_SNAKE_CASE: Optional[jnp.ndarray] = None , _SCREAMING_SNAKE_CASE: str = "fixed_small" , _SCREAMING_SNAKE_CASE: bool = True , _SCREAMING_SNAKE_CASE: str = "epsilon" , _SCREAMING_SNAKE_CASE: jnp.dtype = jnp.floataa , ) -> Any: """simple docstring""" __lowerCAmelCase : List[str] = dtype def _SCREAMING_SNAKE_CASE ( self: int , _SCREAMING_SNAKE_CASE: Optional[CommonSchedulerState] = None) -> DDPMSchedulerState: """simple docstring""" if common is None: __lowerCAmelCase : str = CommonSchedulerState.create(self) # standard deviation of the initial noise distribution __lowerCAmelCase : Tuple = jnp.array(1.0 , dtype=self.dtype) __lowerCAmelCase : List[str] = jnp.arange(0 , self.config.num_train_timesteps).round()[::-1] return DDPMSchedulerState.create( common=_SCREAMING_SNAKE_CASE , init_noise_sigma=_SCREAMING_SNAKE_CASE , timesteps=_SCREAMING_SNAKE_CASE , ) def _SCREAMING_SNAKE_CASE ( self: List[str] , _SCREAMING_SNAKE_CASE: DDPMSchedulerState , _SCREAMING_SNAKE_CASE: jnp.ndarray , _SCREAMING_SNAKE_CASE: Optional[int] = None) -> jnp.ndarray: """simple docstring""" return sample def _SCREAMING_SNAKE_CASE ( self: Dict , _SCREAMING_SNAKE_CASE: DDPMSchedulerState , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Tuple = ()) -> DDPMSchedulerState: """simple docstring""" __lowerCAmelCase : Optional[int] = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 __lowerCAmelCase : Tuple = (jnp.arange(0 , _SCREAMING_SNAKE_CASE) * step_ratio).round()[::-1] return state.replace( num_inference_steps=_SCREAMING_SNAKE_CASE , timesteps=_SCREAMING_SNAKE_CASE , ) def _SCREAMING_SNAKE_CASE ( self: int , _SCREAMING_SNAKE_CASE: DDPMSchedulerState , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Optional[int]=None , _SCREAMING_SNAKE_CASE: Any=None) -> List[Any]: """simple docstring""" __lowerCAmelCase : Optional[Any] = state.common.alphas_cumprod[t] __lowerCAmelCase : int = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype)) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __lowerCAmelCase : int = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: __lowerCAmelCase : str = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": __lowerCAmelCase : Dict = jnp.clip(_SCREAMING_SNAKE_CASE , a_min=1e-20) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": __lowerCAmelCase : Union[str, Any] = jnp.log(jnp.clip(_SCREAMING_SNAKE_CASE , a_min=1e-20)) elif variance_type == "fixed_large": __lowerCAmelCase : Any = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log __lowerCAmelCase : Tuple = jnp.log(state.common.betas[t]) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": __lowerCAmelCase : Union[str, Any] = variance __lowerCAmelCase : Optional[Any] = state.common.betas[t] __lowerCAmelCase : List[Any] = (predicted_variance + 1) / 2 __lowerCAmelCase : Optional[int] = frac * max_log + (1 - frac) * min_log return variance def _SCREAMING_SNAKE_CASE ( self: List[Any] , _SCREAMING_SNAKE_CASE: DDPMSchedulerState , _SCREAMING_SNAKE_CASE: jnp.ndarray , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: jnp.ndarray , _SCREAMING_SNAKE_CASE: Optional[jax.random.KeyArray] = None , _SCREAMING_SNAKE_CASE: bool = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]: """simple docstring""" __lowerCAmelCase : Any = timestep if key is None: __lowerCAmelCase : str = jax.random.PRNGKey(0) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: __lowerCAmelCase : Tuple = jnp.split(_SCREAMING_SNAKE_CASE , sample.shape[1] , axis=1) else: __lowerCAmelCase : Optional[int] = None # 1. compute alphas, betas __lowerCAmelCase : Union[str, Any] = state.common.alphas_cumprod[t] __lowerCAmelCase : int = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype)) __lowerCAmelCase : Union[str, Any] = 1 - alpha_prod_t __lowerCAmelCase : Tuple = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __lowerCAmelCase : List[str] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __lowerCAmelCase : Dict = model_output elif self.config.prediction_type == "v_prediction": __lowerCAmelCase : List[str] = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` """ " for the FlaxDDPMScheduler.") # 3. Clip "predicted x_0" if self.config.clip_sample: __lowerCAmelCase : List[str] = jnp.clip(_SCREAMING_SNAKE_CASE , -1 , 1) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowerCAmelCase : Dict = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t __lowerCAmelCase : List[str] = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowerCAmelCase : Tuple = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): __lowerCAmelCase : str = jax.random.split(_SCREAMING_SNAKE_CASE , num=1) __lowerCAmelCase : List[Any] = jax.random.normal(_SCREAMING_SNAKE_CASE , shape=model_output.shape , dtype=self.dtype) return (self._get_variance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , predicted_variance=_SCREAMING_SNAKE_CASE) ** 0.5) * noise __lowerCAmelCase : int = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype)) __lowerCAmelCase : Union[str, Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=_SCREAMING_SNAKE_CASE , state=_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: int , _SCREAMING_SNAKE_CASE: DDPMSchedulerState , _SCREAMING_SNAKE_CASE: jnp.ndarray , _SCREAMING_SNAKE_CASE: jnp.ndarray , _SCREAMING_SNAKE_CASE: jnp.ndarray , ) -> jnp.ndarray: """simple docstring""" return add_noise_common(state.common , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Dict , _SCREAMING_SNAKE_CASE: DDPMSchedulerState , _SCREAMING_SNAKE_CASE: jnp.ndarray , _SCREAMING_SNAKE_CASE: jnp.ndarray , _SCREAMING_SNAKE_CASE: jnp.ndarray , ) -> jnp.ndarray: """simple docstring""" return get_velocity_common(state.common , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) def __len__( self: List[Any]) -> Union[str, Any]: """simple docstring""" return self.config.num_train_timesteps
269
"""simple docstring""" from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
33
0
"""simple docstring""" import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class __A (snake_case_): '''simple docstring''' __lowercase: Union[str, Any] = ComputeEnvironment.AMAZON_SAGEMAKER __lowercase: List[Any] = True __lowercase: Dict = "ml.p3.2xlarge" __lowercase: Dict = "accelerate_sagemaker_execution_role" __lowercase: Union[str, Any] = "hf-sm" __lowercase: str = "us-east-1" __lowercase: Optional[Any] = 1 __lowercase: Any = "accelerate-sagemaker-1" __lowercase: str = "1.6" __lowercase: List[str] = "4.4" __lowercase: Optional[Any] = "train.py" __lowercase: Any = [ "--model_name_or_path", "bert", "--do_train", "False", "--epochs", "3", "--learning_rate", "5e-5", "--max_steps", "50.5", ] __lowercase: List[str] = [ "--model_name_or_path", "bert", "--do_train", "--do_test", "False", "--do_predict", "--epochs", "3", "--learning_rate", "5e-5", "--max_steps", "50.5", ] class __A (unittest.TestCase): '''simple docstring''' def lowerCAmelCase ( self : Any ) ->int: """simple docstring""" snake_case_ = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args["""model_name_or_path"""] , _A ) assert isinstance(converted_args["""do_train"""] , _A ) assert isinstance(converted_args["""epochs"""] , _A ) assert isinstance(converted_args["""learning_rate"""] , _A ) assert isinstance(converted_args["""max_steps"""] , _A ) with pytest.raises(_A ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
350
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __SCREAMING_SNAKE_CASE : Tuple = 16 __SCREAMING_SNAKE_CASE : int = 32 def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 16 , _SCREAMING_SNAKE_CASE = "bert-base-cased" ) -> Optional[Any]: snake_case_ = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) snake_case_ = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(_SCREAMING_SNAKE_CASE ): # max_length=None => use the model max length (it's actually the default) snake_case_ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset snake_case_ = datasets.map( _SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=_SCREAMING_SNAKE_CASE ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case_ = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(_SCREAMING_SNAKE_CASE ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_SCREAMING_SNAKE_CASE , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(_SCREAMING_SNAKE_CASE , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. snake_case_ = DataLoader( tokenized_datasets["""train"""] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) snake_case_ = DataLoader( tokenized_datasets["""validation"""] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: # Initialize accelerator snake_case_ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case_ = config["""lr"""] snake_case_ = int(config["""num_epochs"""] ) snake_case_ = int(config["""seed"""] ) snake_case_ = int(config["""batch_size"""] ) snake_case_ = args.model_name_or_path set_seed(_SCREAMING_SNAKE_CASE ) snake_case_ , snake_case_ = get_dataloaders(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case_ = AutoModelForSequenceClassification.from_pretrained(_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE ) # Instantiate optimizer snake_case_ = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) snake_case_ = optimizer_cls(params=model.parameters() , lr=_SCREAMING_SNAKE_CASE ) if accelerator.state.deepspeed_plugin is not None: snake_case_ = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: snake_case_ = 1 snake_case_ = (len(_SCREAMING_SNAKE_CASE ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): snake_case_ = get_linear_schedule_with_warmup( optimizer=_SCREAMING_SNAKE_CASE , num_warmup_steps=0 , num_training_steps=_SCREAMING_SNAKE_CASE , ) else: snake_case_ = DummyScheduler(_SCREAMING_SNAKE_CASE , total_num_steps=_SCREAMING_SNAKE_CASE , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ = accelerator.prepare( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # We need to keep track of how many total steps we have iterated over snake_case_ = 0 # We also need to keep track of the stating epoch so files are named properly snake_case_ = 0 # Now we train the model snake_case_ = evaluate.load("""glue""" , """mrpc""" ) snake_case_ = 0 snake_case_ = {} for epoch in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): model.train() for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): snake_case_ = model(**_SCREAMING_SNAKE_CASE ) snake_case_ = outputs.loss snake_case_ = loss / gradient_accumulation_steps accelerator.backward(_SCREAMING_SNAKE_CASE ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() snake_case_ = 0 for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case_ = model(**_SCREAMING_SNAKE_CASE ) snake_case_ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times snake_case_ , snake_case_ = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(_SCREAMING_SNAKE_CASE ) - 1: snake_case_ = predictions[: len(eval_dataloader.dataset ) - samples_seen] snake_case_ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE , ) snake_case_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , _SCREAMING_SNAKE_CASE ) snake_case_ = eval_metric["""accuracy"""] if best_performance < eval_metric["accuracy"]: snake_case_ = eval_metric["""accuracy"""] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f"""Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}""" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , """all_results.json""" ) , """w""" ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _a ( ) -> int: snake_case_ = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=_SCREAMING_SNAKE_CASE , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=_SCREAMING_SNAKE_CASE , ) parser.add_argument( """--output_dir""" , type=_SCREAMING_SNAKE_CASE , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--performance_lower_bound""" , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help="""Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.""" , ) parser.add_argument( """--num_epochs""" , type=_SCREAMING_SNAKE_CASE , default=3 , help="""Number of train epochs.""" , ) snake_case_ = parser.parse_args() snake_case_ = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
233
0
'''simple docstring''' import os import time import numpy as np import onnxruntime as ort lowerCamelCase : List[str] = '''1''' lowerCamelCase : List[str] = '''0''' lowerCamelCase : Optional[Any] = '''1''' lowerCamelCase : List[Any] = ort.SessionOptions() lowerCamelCase : Optional[Any] = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print('Create inference session...') lowerCamelCase : List[str] = ['''TensorrtExecutionProvider''', '''CUDAExecutionProvider'''] lowerCamelCase : Optional[Any] = ort.InferenceSession('model.onnx', sess_options=sess_opt, providers=execution_provider) lowerCamelCase : Any = ort.RunOptions() lowerCamelCase : int = 128 lowerCamelCase : Optional[Any] = 1 lowerCamelCase : Dict = np.ones((batch, sequence), dtype=np.intaa) lowerCamelCase : str = np.ones((batch, sequence), dtype=np.intaa) lowerCamelCase : Tuple = np.ones((batch, sequence), dtype=np.intaa) print('Warm up phase...') sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('Start inference...') lowerCamelCase : Union[str, Any] = time.time() lowerCamelCase : List[Any] = 2_000 lowerCamelCase : Any = {} for iter in range(max_iters): lowerCamelCase : List[str] = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('Average Inference Time = {:.3f} ms'.format((time.time() - start_time) * 1_000 / max_iters))
2
def lowerCAmelCase_ ( A_ ,A_): if b == 0: return 1 if (b % 2) == 0: return actual_power(A_ ,int(b / 2)) * actual_power(A_ ,int(b / 2)) else: return a * actual_power(A_ ,int(b / 2)) * actual_power(A_ ,int(b / 2)) def lowerCAmelCase_ ( A_ ,A_): if b < 0: return 1 / actual_power(A_ ,A_) return actual_power(A_ ,A_) if __name__ == "__main__": print(power(-2, -3))
149
0
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class _lowerCamelCase ( unittest.TestCase ): def __init__( self : List[str] , UpperCamelCase : int , UpperCamelCase : Optional[int]=7 , UpperCamelCase : str=3 , UpperCamelCase : List[str]=30 , UpperCamelCase : Any=4_00 , UpperCamelCase : List[Any]=True , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : List[Any]=True , UpperCamelCase : List[str]=[0.5, 0.5, 0.5] , UpperCamelCase : List[Any]=[0.5, 0.5, 0.5] , UpperCamelCase : Dict=True , UpperCamelCase : str=1 / 2_55 , UpperCamelCase : Dict=True , ) -> Union[str, Any]: """simple docstring""" # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowerCAmelCase__ : List[str] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 13_33} lowerCAmelCase__ : int = parent lowerCAmelCase__ : Optional[int] = batch_size lowerCAmelCase__ : Tuple = num_channels lowerCAmelCase__ : str = min_resolution lowerCAmelCase__ : Dict = max_resolution lowerCAmelCase__ : Tuple = do_resize lowerCAmelCase__ : Optional[Any] = size lowerCAmelCase__ : int = do_normalize lowerCAmelCase__ : List[Any] = image_mean lowerCAmelCase__ : Union[str, Any] = image_std lowerCAmelCase__ : Optional[int] = do_rescale lowerCAmelCase__ : Union[str, Any] = rescale_factor lowerCAmelCase__ : List[str] = do_pad def _lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowerCAmelCase ( self : Optional[Any] , UpperCamelCase : str , UpperCamelCase : List[Any]=False ) -> Optional[Any]: """simple docstring""" if not batched: lowerCAmelCase__ : Dict = image_inputs[0] if isinstance(UpperCamelCase , Image.Image ): lowerCAmelCase__ , lowerCAmelCase__ : Dict = image.size else: lowerCAmelCase__ , lowerCAmelCase__ : Dict = image.shape[1], image.shape[2] if w < h: lowerCAmelCase__ : Any = int(self.size["""shortest_edge"""] * h / w ) lowerCAmelCase__ : Dict = self.size["""shortest_edge"""] elif w > h: lowerCAmelCase__ : Union[str, Any] = self.size["""shortest_edge"""] lowerCAmelCase__ : Union[str, Any] = int(self.size["""shortest_edge"""] * w / h ) else: lowerCAmelCase__ : Any = self.size["""shortest_edge"""] lowerCAmelCase__ : List[Any] = self.size["""shortest_edge"""] else: lowerCAmelCase__ : List[str] = [] for image in image_inputs: lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase__ : Optional[Any] = max(UpperCamelCase , key=lambda UpperCamelCase : item[0] )[0] lowerCAmelCase__ : Optional[Any] = max(UpperCamelCase , key=lambda UpperCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _lowerCamelCase ( a_ , unittest.TestCase ): _lowerCamelCase :Tuple = ConditionalDetrImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : Optional[Any] = ConditionalDetrImageProcessingTester(self ) @property def _lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" lowerCAmelCase__ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(UpperCamelCase , """image_std""" ) ) self.assertTrue(hasattr(UpperCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(UpperCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(UpperCamelCase , """size""" ) ) def _lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 13_33} ) self.assertEqual(image_processor.do_pad , UpperCamelCase ) lowerCAmelCase__ : Tuple = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCamelCase ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , UpperCamelCase ) def _lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" pass def _lowerCAmelCase ( self : List[Any] ) -> int: """simple docstring""" # Initialize image_processing lowerCAmelCase__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , Image.Image ) # Test not batched input lowerCAmelCase__ : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = self.image_processor_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = self.image_processor_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) lowerCAmelCase__ : str = image_processing(UpperCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" # Initialize image_processing lowerCAmelCase__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , numpify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , np.ndarray ) # Test not batched input lowerCAmelCase__ : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase__ , lowerCAmelCase__ : Tuple = self.image_processor_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase__ : Dict = image_processing(UpperCamelCase , return_tensors="""pt""" ).pixel_values lowerCAmelCase__ , lowerCAmelCase__ : Tuple = self.image_processor_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" # Initialize image_processing lowerCAmelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , torch.Tensor ) # Test not batched input lowerCAmelCase__ : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase__ , lowerCAmelCase__ : Any = self.image_processor_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase__ : Optional[int] = image_processing(UpperCamelCase , return_tensors="""pt""" ).pixel_values lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self.image_processor_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" # prepare image and target lowerCAmelCase__ : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: lowerCAmelCase__ : List[str] = json.loads(f.read() ) lowerCAmelCase__ : Tuple = {"""image_id""": 3_97_69, """annotations""": target} # encode them lowerCAmelCase__ : int = ConditionalDetrImageProcessor.from_pretrained("""microsoft/conditional-detr-resnet-50""" ) lowerCAmelCase__ : List[Any] = image_processing(images=UpperCamelCase , annotations=UpperCamelCase , return_tensors="""pt""" ) # verify pixel values lowerCAmelCase__ : Dict = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["""pixel_values"""].shape , UpperCamelCase ) lowerCAmelCase__ : List[str] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , UpperCamelCase , atol=1E-4 ) ) # verify area lowerCAmelCase__ : Any = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , UpperCamelCase ) ) # verify boxes lowerCAmelCase__ : List[str] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , UpperCamelCase ) lowerCAmelCase__ : Optional[int] = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , UpperCamelCase , atol=1E-3 ) ) # verify image_id lowerCAmelCase__ : Tuple = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , UpperCamelCase ) ) # verify is_crowd lowerCAmelCase__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , UpperCamelCase ) ) # verify class_labels lowerCAmelCase__ : List[str] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , UpperCamelCase ) ) # verify orig_size lowerCAmelCase__ : List[Any] = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , UpperCamelCase ) ) # verify size lowerCAmelCase__ : Any = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , UpperCamelCase ) ) @slow def _lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" # prepare image, target and masks_path lowerCAmelCase__ : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: lowerCAmelCase__ : Optional[int] = json.loads(f.read() ) lowerCAmelCase__ : Optional[Any] = {"""file_name""": """000000039769.png""", """image_id""": 3_97_69, """segments_info""": target} lowerCAmelCase__ : Any = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them lowerCAmelCase__ : Optional[int] = ConditionalDetrImageProcessor(format="""coco_panoptic""" ) lowerCAmelCase__ : Optional[int] = image_processing(images=UpperCamelCase , annotations=UpperCamelCase , masks_path=UpperCamelCase , return_tensors="""pt""" ) # verify pixel values lowerCAmelCase__ : Optional[int] = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["""pixel_values"""].shape , UpperCamelCase ) lowerCAmelCase__ : List[str] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , UpperCamelCase , atol=1E-4 ) ) # verify area lowerCAmelCase__ : Union[str, Any] = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , UpperCamelCase ) ) # verify boxes lowerCAmelCase__ : Optional[Any] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , UpperCamelCase ) lowerCAmelCase__ : List[str] = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , UpperCamelCase , atol=1E-3 ) ) # verify image_id lowerCAmelCase__ : List[str] = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , UpperCamelCase ) ) # verify is_crowd lowerCAmelCase__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , UpperCamelCase ) ) # verify class_labels lowerCAmelCase__ : Optional[int] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , UpperCamelCase ) ) # verify masks lowerCAmelCase__ : Tuple = 82_28_73 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , UpperCamelCase ) # verify orig_size lowerCAmelCase__ : List[str] = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , UpperCamelCase ) ) # verify size lowerCAmelCase__ : Dict = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , UpperCamelCase ) )
212
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=a_ ) class _lowerCamelCase ( a_ ): _lowerCamelCase :str = field(default="audio-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) _lowerCamelCase :ClassVar[Features] = Features({"audio": Audio()} ) _lowerCamelCase :ClassVar[Features] = Features({"labels": ClassLabel} ) _lowerCamelCase :str = "audio" _lowerCamelCase :str = "labels" def _lowerCAmelCase ( self : str , UpperCamelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" if self.label_column not in features: raise ValueError(f"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , UpperCamelCase ): raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""" ) lowerCAmelCase__ : str = copy.deepcopy(self ) lowerCAmelCase__ : Optional[int] = self.label_schema.copy() lowerCAmelCase__ : List[Any] = features[self.label_column] lowerCAmelCase__ : Optional[int] = label_schema return task_template @property def _lowerCAmelCase ( self : List[Any] ) -> Dict[str, str]: """simple docstring""" return { self.audio_column: "audio", self.label_column: "labels", }
212
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/config.json''', # See all XGLM models at https://huggingface.co/models?filter=xglm } class lowercase( __a ): '''simple docstring''' lowercase__ = "xglm" lowercase__ = ["past_key_values"] lowercase__ = { "num_attention_heads": "attention_heads", "hidden_size": "d_model", "num_hidden_layers": "num_layers", } def __init__( self: Dict, a_: int=256_008, a_: List[str]=2_048, a_: Dict=1_024, a_: int=4_096, a_: List[Any]=24, a_: Any=16, a_: Dict="gelu", a_: Optional[Any]=0.1, a_: str=0.1, a_: Union[str, Any]=0.0, a_: List[str]=0.0, a_: List[Any]=0.02, a_: Dict=True, a_: int=True, a_: List[Any]=2, a_: str=1, a_: Optional[int]=0, a_: Tuple=2, **a_: Tuple, ): '''simple docstring''' _snake_case : Union[str, Any] = vocab_size _snake_case : Optional[int] = max_position_embeddings _snake_case : Union[str, Any] = d_model _snake_case : Optional[int] = ffn_dim _snake_case : List[Any] = num_layers _snake_case : int = attention_heads _snake_case : int = activation_function _snake_case : List[str] = dropout _snake_case : List[Any] = attention_dropout _snake_case : Any = activation_dropout _snake_case : Union[str, Any] = layerdrop _snake_case : int = init_std _snake_case : Optional[Any] = scale_embedding # scale factor will be sqrt(d_model) if True _snake_case : Union[str, Any] = use_cache super().__init__( pad_token_id=a_, bos_token_id=a_, eos_token_id=a_, decoder_start_token_id=a_, **a_, )
64
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin _A : int = """ Hugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning. In March 2021, Hugging Face raised $40 million in a Series B funding round.[3] On April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5] """ class a__ ( unittest.TestCase, a_ ): def __magic_name__ ( self ): lowercase : Tuple = load_tool("text-question-answering" ) self.tool.setup() lowercase : Dict = load_tool("text-question-answering" , remote=_a ) def __magic_name__ ( self ): lowercase : str = self.tool(_a , "What did Hugging Face do in April 2021?" ) self.assertEqual(_a , "launched the BigScience Research Workshop" ) def __magic_name__ ( self ): lowercase : Union[str, Any] = self.remote_tool(_a , "What did Hugging Face do in April 2021?" ) self.assertEqual(_a , "launched the BigScience Research Workshop" ) def __magic_name__ ( self ): lowercase : int = self.tool(text=_a , question="What did Hugging Face do in April 2021?" ) self.assertEqual(_a , "launched the BigScience Research Workshop" ) def __magic_name__ ( self ): lowercase : Optional[Any] = self.remote_tool(text=_a , question="What did Hugging Face do in April 2021?" ) self.assertEqual(_a , "launched the BigScience Research Workshop" )
202
0
def lowerCamelCase_ ( _a , _a ): """simple docstring""" lowerCAmelCase__ : str = [0 for i in range(r + 1 )] # nc0 = 1 lowerCAmelCase__ : str = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. lowerCAmelCase__ : Union[str, Any] = min(_a , _a ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
211
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def lowerCamelCase_ ( _a , _a ): """simple docstring""" lowerCAmelCase__ : List[Any] = k_size // 2 lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = mgrid[0 - center : k_size - center, 0 - center : k_size - center] lowerCAmelCase__ : str = 1 / (2 * pi * sigma) * exp(-(square(_a ) + square(_a )) / (2 * square(_a )) ) return g def lowerCamelCase_ ( _a , _a , _a ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : int = image.shape[0], image.shape[1] # dst image height and width lowerCAmelCase__ : Any = height - k_size + 1 lowerCAmelCase__ : Tuple = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows lowerCAmelCase__ : int = zeros((dst_height * dst_width, k_size * k_size) ) lowerCAmelCase__ : List[str] = 0 for i, j in product(range(_a ) , range(_a ) ): lowerCAmelCase__ : Union[str, Any] = ravel(image[i : i + k_size, j : j + k_size] ) lowerCAmelCase__ : List[Any] = window row += 1 # turn the kernel into shape(k*k, 1) lowerCAmelCase__ : List[Any] = gen_gaussian_kernel(_a , _a ) lowerCAmelCase__ : str = ravel(_a ) # reshape and get the dst image lowerCAmelCase__ : int = dot(_a , _a ).reshape(_a , _a ).astype(_a ) return dst if __name__ == "__main__": # read original image lowerCamelCase = imread(R'''../image_data/lena.jpg''') # turn image in gray scale value lowerCamelCase = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size lowerCamelCase = gaussian_filter(gray, 3, sigma=1) lowerCamelCase = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow('''gaussian filter with 3x3 mask''', gaussianaxa) imshow('''gaussian filter with 5x5 mask''', gaussianaxa) waitKey()
211
1
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position a_ :str = "2.13.1" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( "To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip a_ :Any = concatenate_datasets a_ :Optional[Any] = DownloadConfig a_ :int = DownloadManager a_ :Optional[Any] = DownloadMode a_ :Dict = DownloadConfig a_ :Any = DownloadMode a_ :Optional[int] = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
277
def lowerCAmelCase_ ( snake_case_ ): if n_term == "": return [] _A : list = [] for temp in range(int(snake_case_ ) ): series.append(f'''1/{temp + 1}''' if series else """1""" ) return series if __name__ == "__main__": _snake_case = input("Enter the last number (nth term) of the Harmonic Series") print("Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n") print(harmonic_series(nth_term))
26
0
"""simple docstring""" from __future__ import annotations A: Optional[int] = list[tuple[int, int]] A: str = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] A: Dict = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class SCREAMING_SNAKE_CASE__ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> int: '''simple docstring''' UpperCAmelCase : Optional[Any] = pos_x UpperCAmelCase : Tuple = pos_y UpperCAmelCase : Optional[int] = (pos_y, pos_x) UpperCAmelCase : Tuple = goal_x UpperCAmelCase : Tuple = goal_y UpperCAmelCase : Tuple = g_cost UpperCAmelCase : Any = parent UpperCAmelCase : int = self.calculate_heuristic() def SCREAMING_SNAKE_CASE ( self ) -> float: '''simple docstring''' UpperCAmelCase : Any = abs(self.pos_x - self.goal_x ) UpperCAmelCase : Optional[Any] = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self , _SCREAMING_SNAKE_CASE ) -> bool: '''simple docstring''' return self.f_cost < other.f_cost class SCREAMING_SNAKE_CASE__ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : List[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Dict = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99999 , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : int = [self.start] UpperCAmelCase : list[Node] = [] UpperCAmelCase : Tuple = False def SCREAMING_SNAKE_CASE ( self ) -> Path | None: '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() UpperCAmelCase : Optional[Any] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: UpperCAmelCase : Any = True return self.retrace_path(_SCREAMING_SNAKE_CASE ) self.closed_nodes.append(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[Any] = self.get_successors(_SCREAMING_SNAKE_CASE ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_SCREAMING_SNAKE_CASE ) else: # retrieve the best current path UpperCAmelCase : Tuple = self.open_nodes.pop(self.open_nodes.index(_SCREAMING_SNAKE_CASE ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_SCREAMING_SNAKE_CASE ) else: self.open_nodes.append(_SCREAMING_SNAKE_CASE ) if not self.reached: return [self.start.pos] return None def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> list[Node]: '''simple docstring''' UpperCAmelCase : int = [] for action in delta: UpperCAmelCase : Optional[int] = parent.pos_x + action[1] UpperCAmelCase : Union[str, Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_SCREAMING_SNAKE_CASE ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _SCREAMING_SNAKE_CASE , ) ) return successors def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> Path: '''simple docstring''' UpperCAmelCase : Dict = node UpperCAmelCase : str = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) UpperCAmelCase : str = current_node.parent path.reverse() return path if __name__ == "__main__": A: str = (0, 0) A: str = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("------") A: Any = GreedyBestFirst(init, goal) A: Optional[Any] = greedy_bf.search() if path: for pos_x, pos_y in path: A: Optional[int] = 2 for elem in grid: print(elem)
76
"""simple docstring""" import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def _snake_case ( UpperCamelCase : np.ndarray ): return input_array.reshape((input_array.size, 1) ) def _snake_case ( UpperCamelCase : np.ndarray , UpperCamelCase : np.ndarray , UpperCamelCase : int ): UpperCAmelCase : Optional[int] = np.nan for i in range(UpperCamelCase ): UpperCAmelCase : int = features[:, labels == i] UpperCAmelCase : List[Any] = data.mean(1 ) # Centralize the data of class i UpperCAmelCase : Dict = data - column_reshape(UpperCamelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(UpperCamelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) UpperCAmelCase : Optional[Any] = np.dot(UpperCamelCase , centered_data.T ) return covariance_sum / features.shape[1] def _snake_case ( UpperCamelCase : np.ndarray , UpperCamelCase : np.ndarray , UpperCamelCase : int ): UpperCAmelCase : Tuple = features.mean(1 ) UpperCAmelCase : Union[str, Any] = np.nan for i in range(UpperCamelCase ): UpperCAmelCase : int = features[:, labels == i] UpperCAmelCase : List[str] = data.shape[1] UpperCAmelCase : Optional[int] = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(UpperCamelCase ) - column_reshape(UpperCamelCase ) , (column_reshape(UpperCamelCase ) - column_reshape(UpperCamelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) UpperCAmelCase : Optional[Any] = device_data * np.dot( column_reshape(UpperCamelCase ) - column_reshape(UpperCamelCase ) , (column_reshape(UpperCamelCase ) - column_reshape(UpperCamelCase )).T , ) return covariance_sum / features.shape[1] def _snake_case ( UpperCamelCase : np.ndarray , UpperCamelCase : int ): # Check if the features have been loaded if features.any(): UpperCAmelCase : Tuple = features.mean(1 ) # Center the dataset UpperCAmelCase : List[str] = features - np.reshape(UpperCamelCase , (data_mean.size, 1) ) UpperCAmelCase : str = np.dot(UpperCamelCase , centered_data.T ) / features.shape[1] UpperCAmelCase , UpperCAmelCase : int = np.linalg.eigh(UpperCamelCase ) # Take all the columns in the reverse order (-1), and then takes only the first UpperCAmelCase : List[Any] = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space UpperCAmelCase : int = np.dot(filtered_eigenvectors.T , UpperCamelCase ) logging.info("""Principal Component Analysis computed""" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="""%(message)s""" , force=UpperCamelCase ) logging.error("""Dataset empty""" ) raise AssertionError def _snake_case ( UpperCamelCase : np.ndarray , UpperCamelCase : np.ndarray , UpperCamelCase : int , UpperCamelCase : int ): assert classes > dimensions # Check if features have been already loaded if features.any: UpperCAmelCase , UpperCAmelCase : Dict = eigh( covariance_between_classes(UpperCamelCase , UpperCamelCase , UpperCamelCase ) , covariance_within_classes(UpperCamelCase , UpperCamelCase , UpperCamelCase ) , ) UpperCAmelCase : Any = eigenvectors[:, ::-1][:, :dimensions] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple = np.linalg.svd(UpperCamelCase ) UpperCAmelCase : Tuple = svd_matrix[:, 0:dimensions] UpperCAmelCase : Tuple = np.dot(filtered_svd_matrix.T , UpperCamelCase ) logging.info("""Linear Discriminant Analysis computed""" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="""%(message)s""" , force=UpperCamelCase ) logging.error("""Dataset empty""" ) raise AssertionError def _snake_case ( ): # Create dummy dataset with 2 classes and 3 features UpperCAmelCase : Dict = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) UpperCAmelCase : List[Any] = np.array([0, 0, 0, 1, 1] ) UpperCAmelCase : List[str] = 2 UpperCAmelCase : int = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(UpperCamelCase ) as error_info: UpperCAmelCase : Union[str, Any] = linear_discriminant_analysis( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) if isinstance(UpperCamelCase , np.ndarray ): raise AssertionError( """Did not raise AssertionError for dimensions > classes""" ) assert error_info.type is AssertionError def _snake_case ( ): UpperCAmelCase : List[Any] = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) UpperCAmelCase : Optional[int] = 2 UpperCAmelCase : Any = np.array([[6.92820323, 8.66025404, 10.39230485], [3.0, 3.0, 3.0]] ) with pytest.raises(UpperCamelCase ) as error_info: UpperCAmelCase : Tuple = principal_component_analysis(UpperCamelCase , UpperCamelCase ) if not np.allclose(UpperCamelCase , UpperCamelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
76
1
"""simple docstring""" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Any: '''simple docstring''' if b == 0: return 1 if (b % 2) == 0: return actual_power(__lowerCAmelCase , int(b / 2 ) ) * actual_power(__lowerCAmelCase , int(b / 2 ) ) else: return a * actual_power(__lowerCAmelCase , int(b / 2 ) ) * actual_power(__lowerCAmelCase , int(b / 2 ) ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> float: '''simple docstring''' if b < 0: return 1 / actual_power(__lowerCAmelCase , __lowerCAmelCase ) return actual_power(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": print(power(-2, -3))
136
"""simple docstring""" import argparse import collections import json import os import re import string import sys import numpy as np UpperCAmelCase : Union[str, Any] = re.compile(r"\b(a|an|the)\b", re.UNICODE) UpperCAmelCase : Optional[Any] = None def _SCREAMING_SNAKE_CASE () -> List[Any]: '''simple docstring''' lowercase_ = argparse.ArgumentParser("""Official evaluation script for SQuAD version 2.0.""" ) parser.add_argument("""data_file""" , metavar="""data.json""" , help="""Input data JSON file.""" ) parser.add_argument("""pred_file""" , metavar="""pred.json""" , help="""Model predictions.""" ) parser.add_argument( """--out-file""" , """-o""" , metavar="""eval.json""" , help="""Write accuracy metrics to file (default is stdout).""" ) parser.add_argument( """--na-prob-file""" , """-n""" , metavar="""na_prob.json""" , help="""Model estimates of probability of no answer.""" ) parser.add_argument( """--na-prob-thresh""" , """-t""" , type=__lowerCAmelCase , default=1.0 , help="""Predict \"\" if no-answer probability exceeds this (default = 1.0).""" , ) parser.add_argument( """--out-image-dir""" , """-p""" , metavar="""out_images""" , default=__lowerCAmelCase , help="""Save precision-recall curves to directory.""" ) parser.add_argument("""--verbose""" , """-v""" , action="""store_true""" ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowercase_ = bool(qa["""answers"""]["""text"""] ) return qid_to_has_ans def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Optional[int]: '''simple docstring''' def remove_articles(__lowerCAmelCase ): return ARTICLES_REGEX.sub(""" """ , __lowerCAmelCase ) def white_space_fix(__lowerCAmelCase ): return " ".join(text.split() ) def remove_punc(__lowerCAmelCase ): lowercase_ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__lowerCAmelCase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__lowerCAmelCase ) ) ) ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[Any]: '''simple docstring''' if not s: return [] return normalize_answer(__lowerCAmelCase ).split() def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: '''simple docstring''' return int(normalize_answer(__lowerCAmelCase ) == normalize_answer(__lowerCAmelCase ) ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ = get_tokens(__lowerCAmelCase ) lowercase_ = get_tokens(__lowerCAmelCase ) lowercase_ = collections.Counter(__lowerCAmelCase ) & collections.Counter(__lowerCAmelCase ) lowercase_ = sum(common.values() ) if len(__lowerCAmelCase ) == 0 or len(__lowerCAmelCase ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 lowercase_ = 1.0 * num_same / len(__lowerCAmelCase ) lowercase_ = 1.0 * num_same / len(__lowerCAmelCase ) lowercase_ = (2 * precision * recall) / (precision + recall) return fa def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Any: '''simple docstring''' lowercase_ = {} lowercase_ = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowercase_ = qa["""id"""] lowercase_ = [t for t in qa["""answers"""]["""text"""] if normalize_answer(__lowerCAmelCase )] if not gold_answers: # For unanswerable questions, only correct answer is empty string lowercase_ = [""""""] if qid not in preds: print(F'''Missing prediction for {qid}''' ) continue lowercase_ = preds[qid] # Take max over all gold answers lowercase_ = max(compute_exact(__lowerCAmelCase , __lowerCAmelCase ) for a in gold_answers ) lowercase_ = max(compute_fa(__lowerCAmelCase , __lowerCAmelCase ) for a in gold_answers ) return exact_scores, fa_scores def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Any: '''simple docstring''' lowercase_ = {} for qid, s in scores.items(): lowercase_ = na_probs[qid] > na_prob_thresh if pred_na: lowercase_ = float(not qid_to_has_ans[qid] ) else: lowercase_ = s return new_scores def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None ) -> List[str]: '''simple docstring''' if not qid_list: lowercase_ = len(__lowerCAmelCase ) return collections.OrderedDict( [ ("""exact""", 100.0 * sum(exact_scores.values() ) / total), ("""f1""", 100.0 * sum(fa_scores.values() ) / total), ("""total""", total), ] ) else: lowercase_ = len(__lowerCAmelCase ) return collections.OrderedDict( [ ("""exact""", 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ("""f1""", 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ("""total""", total), ] ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Any: '''simple docstring''' for k in new_eval: lowercase_ = new_eval[k] def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[str]: '''simple docstring''' plt.step(__lowerCAmelCase , __lowerCAmelCase , color="""b""" , alpha=0.2 , where="""post""" ) plt.fill_between(__lowerCAmelCase , __lowerCAmelCase , step="""post""" , alpha=0.2 , color="""b""" ) plt.xlabel("""Recall""" ) plt.ylabel("""Precision""" ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(__lowerCAmelCase ) plt.savefig(__lowerCAmelCase ) plt.clf() def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None ) -> List[Any]: '''simple docstring''' lowercase_ = sorted(__lowerCAmelCase , key=lambda __lowerCAmelCase : na_probs[k] ) lowercase_ = 0.0 lowercase_ = 1.0 lowercase_ = 0.0 lowercase_ = [1.0] lowercase_ = [0.0] lowercase_ = 0.0 for i, qid in enumerate(__lowerCAmelCase ): if qid_to_has_ans[qid]: true_pos += scores[qid] lowercase_ = true_pos / float(i + 1 ) lowercase_ = true_pos / float(__lowerCAmelCase ) if i == len(__lowerCAmelCase ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(__lowerCAmelCase ) recalls.append(__lowerCAmelCase ) if out_image: plot_pr_curve(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return {"ap": 100.0 * avg_prec} def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Dict: '''simple docstring''' if out_image_dir and not os.path.exists(__lowerCAmelCase ): os.makedirs(__lowerCAmelCase ) lowercase_ = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return lowercase_ = make_precision_recall_eval( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , out_image=os.path.join(__lowerCAmelCase , """pr_exact.png""" ) , title="""Precision-Recall curve for Exact Match score""" , ) lowercase_ = make_precision_recall_eval( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , out_image=os.path.join(__lowerCAmelCase , """pr_f1.png""" ) , title="""Precision-Recall curve for F1 score""" , ) lowercase_ = {k: float(__lowerCAmelCase ) for k, v in qid_to_has_ans.items()} lowercase_ = make_precision_recall_eval( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , out_image=os.path.join(__lowerCAmelCase , """pr_oracle.png""" ) , title="""Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)""" , ) merge_eval(__lowerCAmelCase , __lowerCAmelCase , """pr_exact""" ) merge_eval(__lowerCAmelCase , __lowerCAmelCase , """pr_f1""" ) merge_eval(__lowerCAmelCase , __lowerCAmelCase , """pr_oracle""" ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[str]: '''simple docstring''' if not qid_list: return lowercase_ = [na_probs[k] for k in qid_list] lowercase_ = np.ones_like(__lowerCAmelCase ) / float(len(__lowerCAmelCase ) ) plt.hist(__lowerCAmelCase , weights=__lowerCAmelCase , bins=20 , range=(0.0, 1.0) ) plt.xlabel("""Model probability of no-answer""" ) plt.ylabel("""Proportion of dataset""" ) plt.title(F'''Histogram of no-answer probability: {name}''' ) plt.savefig(os.path.join(__lowerCAmelCase , F'''na_prob_hist_{name}.png''' ) ) plt.clf() def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) lowercase_ = num_no_ans lowercase_ = cur_score lowercase_ = 0.0 lowercase_ = sorted(__lowerCAmelCase , key=lambda __lowerCAmelCase : na_probs[k] ) for i, qid in enumerate(__lowerCAmelCase ): if qid not in scores: continue if qid_to_has_ans[qid]: lowercase_ = scores[qid] else: if preds[qid]: lowercase_ = -1 else: lowercase_ = 0 cur_score += diff if cur_score > best_score: lowercase_ = cur_score lowercase_ = na_probs[qid] return 100.0 * best_score / len(__lowerCAmelCase ), best_thresh def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: '''simple docstring''' lowercase_ , lowercase_ = find_best_thresh(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowercase_ , lowercase_ = find_best_thresh(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowercase_ = best_exact lowercase_ = exact_thresh lowercase_ = best_fa lowercase_ = fa_thresh def _SCREAMING_SNAKE_CASE () -> int: '''simple docstring''' with open(OPTS.data_file ) as f: lowercase_ = json.load(__lowerCAmelCase ) lowercase_ = dataset_json["""data"""] with open(OPTS.pred_file ) as f: lowercase_ = json.load(__lowerCAmelCase ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: lowercase_ = json.load(__lowerCAmelCase ) else: lowercase_ = {k: 0.0 for k in preds} lowercase_ = make_qid_to_has_ans(__lowerCAmelCase ) # maps qid to True/False lowercase_ = [k for k, v in qid_to_has_ans.items() if v] lowercase_ = [k for k, v in qid_to_has_ans.items() if not v] lowercase_ , lowercase_ = get_raw_scores(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = apply_no_ans_threshold(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , OPTS.na_prob_thresh ) lowercase_ = apply_no_ans_threshold(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , OPTS.na_prob_thresh ) lowercase_ = make_eval_dict(__lowerCAmelCase , __lowerCAmelCase ) if has_ans_qids: lowercase_ = make_eval_dict(__lowerCAmelCase , __lowerCAmelCase , qid_list=__lowerCAmelCase ) merge_eval(__lowerCAmelCase , __lowerCAmelCase , """HasAns""" ) if no_ans_qids: lowercase_ = make_eval_dict(__lowerCAmelCase , __lowerCAmelCase , qid_list=__lowerCAmelCase ) merge_eval(__lowerCAmelCase , __lowerCAmelCase , """NoAns""" ) if OPTS.na_prob_file: find_all_best_thresh(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , OPTS.out_image_dir ) histogram_na_prob(__lowerCAmelCase , __lowerCAmelCase , OPTS.out_image_dir , """hasAns""" ) histogram_na_prob(__lowerCAmelCase , __lowerCAmelCase , OPTS.out_image_dir , """noAns""" ) if OPTS.out_file: with open(OPTS.out_file , """w""" ) as f: json.dump(__lowerCAmelCase , __lowerCAmelCase ) else: print(json.dumps(__lowerCAmelCase , indent=2 ) ) if __name__ == "__main__": UpperCAmelCase : Union[str, Any] = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt main()
136
1
"""simple docstring""" import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase_ : def __init__( self : Optional[int] , snake_case_ : str , snake_case_ : Any=13 , snake_case_ : Tuple=30 , snake_case_ : List[Any]=2 , snake_case_ : str=3 , snake_case_ : List[Any]=True , snake_case_ : List[Any]=True , snake_case_ : str=32 , snake_case_ : str=5 , snake_case_ : List[Any]=4 , snake_case_ : str=37 , snake_case_ : int="gelu" , snake_case_ : Any=0.1 , snake_case_ : Union[str, Any]=0.1 , snake_case_ : Union[str, Any]=10 , snake_case_ : Tuple=0.02 , snake_case_ : List[str]=3 , snake_case_ : Any=0.6 , snake_case_ : Dict=None , ) -> Tuple: '''simple docstring''' A__ = parent A__ = batch_size A__ = image_size A__ = patch_size A__ = num_channels A__ = is_training A__ = use_labels A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = type_sequence_label_size A__ = initializer_range A__ = mask_ratio A__ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) A__ = (image_size // patch_size) ** 2 A__ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def __magic_name__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = self.get_config() return config, pixel_values, labels def __magic_name__ ( self : int ) -> Dict: '''simple docstring''' return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __magic_name__ ( self : Any , snake_case_ : List[str] , snake_case_ : Any , snake_case_ : str ) -> Tuple: '''simple docstring''' A__ = ViTMAEModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A__ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self : Any , snake_case_ : str , snake_case_ : int , snake_case_ : Tuple ) -> Optional[Any]: '''simple docstring''' A__ = ViTMAEForPreTraining(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A__ = model(_SCREAMING_SNAKE_CASE ) A__ = (self.image_size // self.patch_size) ** 2 A__ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images A__ = 1 A__ = ViTMAEForPreTraining(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A__ = model(_SCREAMING_SNAKE_CASE ) A__ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def __magic_name__ ( self : Optional[Any] ) -> int: '''simple docstring''' A__ = self.prepare_config_and_inputs() A__, A__, A__ = config_and_inputs A__ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _UpperCamelCase, _UpperCamelCase, unittest.TestCase ): lowercase__ = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () lowercase__ = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def __magic_name__ ( self : Any ) -> Any: '''simple docstring''' A__ = ViTMAEModelTester(self ) A__ = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def __magic_name__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def __magic_name__ ( self : Any ) -> int: '''simple docstring''' pass def __magic_name__ ( self : Union[str, Any] ) -> int: '''simple docstring''' A__, A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def __magic_name__ ( self : Union[str, Any] ) -> int: '''simple docstring''' A__, A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(_SCREAMING_SNAKE_CASE ) A__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def __magic_name__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def __magic_name__ ( self : int ) -> Optional[int]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_SCREAMING_SNAKE_CASE ) def __magic_name__ ( self : Optional[int] , snake_case_ : Optional[Any] , snake_case_ : Dict , snake_case_ : Any ) -> int: '''simple docstring''' np.random.seed(2 ) A__ = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) A__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) A__ = torch.from_numpy(_SCREAMING_SNAKE_CASE ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument A__ = pt_noise super().check_pt_tf_models(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __magic_name__ ( self : List[str] ) -> str: '''simple docstring''' A__, A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): A__ = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) A__ = outputs[0].cpu().numpy() A__ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_SCREAMING_SNAKE_CASE ) A__ = model_class.from_pretrained(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): A__ = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # Make sure we don't have nans A__ = after_outputs[0].cpu().numpy() A__ = 0 A__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1e-5 ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def __magic_name__ ( self : Any ) -> List[str]: '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def __magic_name__ ( self : Optional[int] ) -> Dict: '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def __magic_name__ ( self : Any ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def __magic_name__ ( self : List[str] ) -> str: '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __magic_name__ ( self : int ) -> Union[str, Any]: '''simple docstring''' pass @slow def __magic_name__ ( self : Optional[int] ) -> Dict: '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = ViTMAEModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( ) -> Dict: A__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): @cached_property def __magic_name__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def __magic_name__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' np.random.seed(2 ) A__ = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ).to(_SCREAMING_SNAKE_CASE ) A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt" ).to(_SCREAMING_SNAKE_CASE ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) A__ = ViTMAEConfig() A__ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) A__ = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): A__ = model(**_SCREAMING_SNAKE_CASE , noise=torch.from_numpy(_SCREAMING_SNAKE_CASE ).to(device=_SCREAMING_SNAKE_CASE ) ) # verify the logits A__ = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) A__ = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(_SCREAMING_SNAKE_CASE ) , atol=1e-4 ) )
368
"""simple docstring""" import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: A__ = model.config A__ = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=1_28 , ) A__ = MBartConfig( is_decoder=lowercase_ , is_encoder_decoder=lowercase_ , add_cross_attention=lowercase_ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=lowercase_ , add_final_layer_norm=lowercase_ , ) return encoder_config, decoder_config def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: if "encoder.model" in name: A__ = name.replace("encoder.model" , "encoder" ) if "decoder.model" in name: A__ = name.replace("decoder.model" , "decoder" ) if "patch_embed.proj" in name: A__ = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: A__ = name.replace("patch_embed.norm" , "embeddings.norm" ) if name.startswith("encoder" ): if "layers" in name: A__ = "encoder." + name if "attn.proj" in name: A__ = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name and "mask" not in name: A__ = name.replace("attn" , "attention.self" ) if "norm1" in name: A__ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: A__ = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: A__ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: A__ = name.replace("mlp.fc2" , "output.dense" ) if name == "encoder.norm.weight": A__ = "encoder.layernorm.weight" if name == "encoder.norm.bias": A__ = "encoder.layernorm.bias" return name def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Any: for key in orig_state_dict.copy().keys(): A__ = orig_state_dict.pop(lowercase_ ) if "qkv" in key: A__ = key.split("." ) A__ = int(key_split[3] ) A__ = int(key_split[5] ) A__ = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: A__ = val[:dim, :] A__ = val[dim : dim * 2, :] A__ = val[-dim:, :] else: A__ = val[:dim] A__ = val[dim : dim * 2] A__ = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: A__ = val return orig_state_dict def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=None , lowercase_=False ) -> Dict: # load original model A__ = DonutModel.from_pretrained(lowercase_ ).eval() # load HuggingFace model A__, A__ = get_configs(lowercase_ ) A__ = DonutSwinModel(lowercase_ ) A__ = MBartForCausalLM(lowercase_ ) A__ = VisionEncoderDecoderModel(encoder=lowercase_ , decoder=lowercase_ ) model.eval() A__ = original_model.state_dict() A__ = convert_state_dict(lowercase_ , lowercase_ ) model.load_state_dict(lowercase_ ) # verify results on scanned document A__ = load_dataset("hf-internal-testing/example-documents" ) A__ = dataset["test"][0]["image"].convert("RGB" ) A__ = XLMRobertaTokenizerFast.from_pretrained(lowercase_ , from_slow=lowercase_ ) A__ = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) A__ = DonutProcessor(lowercase_ , lowercase_ ) A__ = processor(lowercase_ , return_tensors="pt" ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": A__ = "<s_docvqa><s_question>{user_input}</s_question><s_answer>" A__ = "When is the coffee break?" A__ = task_prompt.replace("{user_input}" , lowercase_ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": A__ = "<s_rvlcdip>" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: A__ = "<s_cord>" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": A__ = "s_cord-v2>" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": A__ = "<s_zhtrainticket>" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt A__ = "hello world" else: raise ValueError("Model name not supported" ) A__ = original_model.decoder.tokenizer(lowercase_ , add_special_tokens=lowercase_ , return_tensors="pt" )[ "input_ids" ] A__ = original_model.encoder.model.patch_embed(lowercase_ ) A__, A__ = model.encoder.embeddings(lowercase_ ) assert torch.allclose(lowercase_ , lowercase_ , atol=1E-3 ) # verify encoder hidden states A__ = original_model.encoder(lowercase_ ) A__ = model.encoder(lowercase_ ).last_hidden_state assert torch.allclose(lowercase_ , lowercase_ , atol=1E-2 ) # verify decoder hidden states A__ = original_model(lowercase_ , lowercase_ , lowercase_ ).logits A__ = model(lowercase_ , decoder_input_ids=lowercase_ ).logits assert torch.allclose(lowercase_ , lowercase_ , atol=1E-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase_ ) processor.save_pretrained(lowercase_ ) if push_to_hub: model.push_to_hub("nielsr/" + model_name.split("/" )[-1] , commit_message="Update model" ) processor.push_to_hub("nielsr/" + model_name.split("/" )[-1] , commit_message="Update model" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="naver-clova-ix/donut-base-finetuned-docvqa", required=False, type=str, help="Name of the original model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, required=False, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub.", ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
230
0
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params SCREAMING_SNAKE_CASE_ : Optional[Any] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['memory_attention', 'encoder_attn'], ['attention', 'attn'], ['/', '.'], ['.LayerNorm.gamma', '_layer_norm.weight'], ['.LayerNorm.beta', '_layer_norm.bias'], ['r.layer_', 'r.layers.'], ['output_proj', 'out_proj'], ['ffn.dense_1.', 'fc2.'], ['ffn.dense.', 'fc1.'], ['ffn_layer_norm', 'final_layer_norm'], ['kernel', 'weight'], ['encoder_layer_norm.', 'encoder.layer_norm.'], ['decoder_layer_norm.', 'decoder.layer_norm.'], ['embeddings.weights', 'shared.weight'], ] def _snake_case ( UpperCAmelCase_ : Dict ): for pegasus_name, hf_name in PATTERNS: A__ = k.replace(UpperCAmelCase_ , UpperCAmelCase_ ) return k def _snake_case ( UpperCAmelCase_ : dict , UpperCAmelCase_ : dict ): A__ = DEFAULTS.copy() cfg_kwargs.update(UpperCAmelCase_ ) A__ = PegasusConfig(**UpperCAmelCase_ ) A__ = PegasusForConditionalGeneration(UpperCAmelCase_ ) A__ = torch_model.model.state_dict() A__ = {} for k, v in tf_weights.items(): A__ = rename_state_dict_key(UpperCAmelCase_ ) if new_k not in sd: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: A__ = v.T A__ = torch.tensor(UpperCAmelCase_ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected A__ = torch.zeros_like(mapping["""shared.weight"""][cfg.pad_token_id + 1] ) A__ = mapping["""shared.weight"""] A__ = mapping["""shared.weight"""] A__ = {k: torch.zeros_like(UpperCAmelCase_ ) for k, v in sd.items() if k.endswith("""bias""" ) and k not in mapping} mapping.update(**UpperCAmelCase_ ) A__ , A__ = torch_model.model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) A__ = [ k for k in missing if k not in ["""encoder.embed_positions.weight""", """decoder.embed_positions.weight"""] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def _snake_case ( UpperCAmelCase_ : Optional[int]="./ckpt/aeslc/model.ckpt-32000" ): A__ = tf.train.list_variables(UpperCAmelCase_ ) A__ = {} A__ = ["""Adafactor""", """global_step"""] for name, shape in tqdm(UpperCAmelCase_ , desc="""converting tf checkpoint to dict""" ): A__ = any(pat in name for pat in ignore_name ) if skip_key: continue A__ = tf.train.load_variable(UpperCAmelCase_ , UpperCAmelCase_ ) A__ = array return tf_weights def _snake_case ( UpperCAmelCase_ : str , UpperCAmelCase_ : str ): # save tokenizer first A__ = Path(UpperCAmelCase_ ).parent.name A__ = task_specific_params[F"""summarization_{dataset}"""]["""max_position_embeddings"""] A__ = PegasusTokenizer.from_pretrained("""sshleifer/pegasus""" , model_max_length=UpperCAmelCase_ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(UpperCAmelCase_ ) # convert model A__ = get_tf_weights_as_numpy(UpperCAmelCase_ ) A__ = task_specific_params[F"""summarization_{dataset}"""] if dataset == "large": A__ = task_specific_params A__ = convert_pegasus(UpperCAmelCase_ , UpperCAmelCase_ ) torch_model.save_pretrained(UpperCAmelCase_ ) A__ = torch_model.state_dict() sd.pop("""model.decoder.embed_positions.weight""" ) sd.pop("""model.encoder.embed_positions.weight""" ) torch.save(UpperCAmelCase_ , Path(UpperCAmelCase_ ) / """pytorch_model.bin""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('save_dir', default=None, type=str, help='Path to the output PyTorch model.') SCREAMING_SNAKE_CASE_ : str = parser.parse_args() if args.save_dir is None: SCREAMING_SNAKE_CASE_ : int = Path(args.tf_ckpt_path).parent.name SCREAMING_SNAKE_CASE_ : Any = os.path.join('pegasus', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
335
"""simple docstring""" import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class a ( _lowerCamelCase ): """simple docstring""" def __init__( self: Optional[int] , *UpperCamelCase: Optional[Any] , UpperCamelCase: Tuple=None , UpperCamelCase: Tuple=None , **UpperCamelCase: Dict ): """simple docstring""" super().__init__(*UpperCamelCase , **UpperCamelCase ) A__ = eval_examples A__ = post_process_function def UpperCamelCase ( self: Optional[Any] , UpperCamelCase: Optional[Dataset] = None , UpperCamelCase: List[Any]=None , UpperCamelCase: Optional[List[str]] = None , UpperCamelCase: str = "eval" , **UpperCamelCase: Optional[int] , ): """simple docstring""" A__ = gen_kwargs.copy() A__ = ( gen_kwargs["""max_length"""] if gen_kwargs.get("""max_length""" ) is not None else self.args.generation_max_length ) A__ = ( gen_kwargs["""num_beams"""] if gen_kwargs.get("""num_beams""" ) is not None else self.args.generation_num_beams ) A__ = gen_kwargs A__ = self.eval_dataset if eval_dataset is None else eval_dataset A__ = self.get_eval_dataloader(UpperCamelCase ) A__ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. A__ = self.compute_metrics A__ = None A__ = time.time() A__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: A__ = eval_loop( UpperCamelCase , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase , metric_key_prefix=UpperCamelCase , ) finally: A__ = compute_metrics A__ = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( UpperCamelCase , UpperCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default A__ = self.post_process_function(UpperCamelCase , UpperCamelCase , UpperCamelCase ) A__ = self.compute_metrics(UpperCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): A__ = metrics.pop(UpperCamelCase ) metrics.update(output.metrics ) else: A__ = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(UpperCamelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) A__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCamelCase ) return metrics def UpperCamelCase ( self: List[Any] , UpperCamelCase: Dict , UpperCamelCase: List[str] , UpperCamelCase: Dict=None , UpperCamelCase: str = "test" , **UpperCamelCase: Optional[int] ): """simple docstring""" A__ = gen_kwargs.copy() A__ = self.get_test_dataloader(UpperCamelCase ) # Temporarily disable metric computation, we will do it in the loop here. A__ = self.compute_metrics A__ = None A__ = time.time() A__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: A__ = eval_loop( UpperCamelCase , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase , metric_key_prefix=UpperCamelCase , ) finally: A__ = compute_metrics A__ = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( UpperCamelCase , UpperCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output A__ = self.post_process_function(UpperCamelCase , UpperCamelCase , UpperCamelCase , """predict""" ) A__ = self.compute_metrics(UpperCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): A__ = metrics.pop(UpperCamelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCamelCase )
335
1
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _lowerCamelCase ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" snake_case = DiTPipeline snake_case = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS snake_case = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } snake_case = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS snake_case = False def _snake_case ( self )->Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) A_ : List[Any] = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=__a , activation_fn='''gelu-approximate''' , num_embeds_ada_norm=1000 , norm_type='''ada_norm_zero''' , norm_elementwise_affine=__a , ) A_ : Dict = AutoencoderKL() A_ : Tuple = DDIMScheduler() A_ : int = {'transformer': transformer.eval(), 'vae': vae.eval(), 'scheduler': scheduler} return components def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 )->Union[str, Any]: '''simple docstring''' if str(__a ).startswith('''mps''' ): A_ : Dict = torch.manual_seed(__a ) else: A_ : Any = torch.Generator(device=__a ).manual_seed(__a ) A_ : int = { 'class_labels': [1], 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def _snake_case ( self )->Optional[int]: '''simple docstring''' A_ : Optional[Any] = 'cpu' A_ : Union[str, Any] = self.get_dummy_components() A_ : List[Any] = self.pipeline_class(**__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) A_ : List[Any] = self.get_dummy_inputs(__a ) A_ : Optional[int] = pipe(**__a ).images A_ : Optional[Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) A_ : Union[str, Any] = np.array([0.2_9_4_6, 0.6_6_0_1, 0.4_3_2_9, 0.3_2_9_6, 0.4_1_4_4, 0.5_3_1_9, 0.7_2_7_3, 0.5_0_1_3, 0.4_4_5_7] ) A_ : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__a , 1e-3 ) def _snake_case ( self )->List[str]: '''simple docstring''' self._test_inference_batch_single_identical(relax_max_difference=__a , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def _snake_case ( self )->int: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self )->int: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self )->Any: '''simple docstring''' A_ : Optional[int] = torch.manual_seed(0 ) A_ : int = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-256''' ) pipe.to('''cuda''' ) A_ : Dict = ['vase', 'umbrella', 'white shark', 'white wolf'] A_ : Any = pipe.get_label_ids(__a ) A_ : str = pipe(__a , generator=__a , num_inference_steps=40 , output_type='''np''' ).images for word, image in zip(__a , __a ): A_ : List[str] = load_numpy( F'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-2 def _snake_case ( self )->str: '''simple docstring''' A_ : List[Any] = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-512''' ) A_ : Tuple = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('''cuda''' ) A_ : List[str] = ['vase', 'umbrella'] A_ : int = pipe.get_label_ids(__a ) A_ : Dict = torch.manual_seed(0 ) A_ : Dict = pipe(__a , generator=__a , num_inference_steps=25 , output_type='''np''' ).images for word, image in zip(__a , __a ): A_ : str = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' F'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-1
350
from bisect import bisect from itertools import accumulate def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : List[Any] = sorted(zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , key=lambda SCREAMING_SNAKE_CASE : x[0] / x[1] , reverse=SCREAMING_SNAKE_CASE ) A_ , A_ : str = [i[0] for i in r], [i[1] for i in r] A_ : Tuple = list(accumulate(SCREAMING_SNAKE_CASE ) ) A_ : Optional[int] = bisect(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
65
0
import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def lowerCamelCase__ ( __lowerCAmelCase : ndarray ): """simple docstring""" return np.dot(__lowerCAmelCase , __lowerCAmelCase ) class _lowerCAmelCase : def __init__( self , *, _UpperCamelCase = np.inf , _UpperCamelCase = "linear" , _UpperCamelCase = 0.0 , ) -> None: lowerCAmelCase_ = regularization lowerCAmelCase_ = gamma if kernel == "linear": lowerCAmelCase_ = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError("rbf kernel requires gamma" ) if not isinstance(self.gamma , (float, int) ): raise ValueError("gamma must be float or int" ) if not self.gamma > 0: raise ValueError("gamma must be > 0" ) lowerCAmelCase_ = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: lowerCAmelCase_ = f"""Unknown kernel: {kernel}""" raise ValueError(_UpperCamelCase ) def __a ( self , _UpperCamelCase , _UpperCamelCase ) -> float: return np.dot(_UpperCamelCase , _UpperCamelCase ) def __a ( self , _UpperCamelCase , _UpperCamelCase ) -> float: return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def __a ( self , _UpperCamelCase , _UpperCamelCase ) -> None: lowerCAmelCase_ = observations lowerCAmelCase_ = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((lowerCAmelCase_) , ) = np.shape(_UpperCamelCase ) def to_minimize(_UpperCamelCase ) -> float: lowerCAmelCase_ = 0 ((lowerCAmelCase_) , ) = np.shape(_UpperCamelCase ) for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(_UpperCamelCase ) lowerCAmelCase_ = LinearConstraint(_UpperCamelCase , 0 , 0 ) lowerCAmelCase_ = Bounds(0 , self.regularization ) lowerCAmelCase_ = minimize( _UpperCamelCase , np.ones(_UpperCamelCase ) , bounds=_UpperCamelCase , constraints=[ly_contraint] ).x lowerCAmelCase_ = l_star # calculating mean offset of separation plane to points lowerCAmelCase_ = 0 for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) lowerCAmelCase_ = s / n def __a ( self , _UpperCamelCase ) -> int: lowerCAmelCase_ = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , _UpperCamelCase ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
231
from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def lowerCamelCase__ ( ): """simple docstring""" lowerCAmelCase_ = ArgumentParser("Transformers CLI tool" , usage="transformers-cli <command> [<args>]" ) lowerCAmelCase_ = parser.add_subparsers(help="transformers-cli command helpers" ) # Register commands ConvertCommand.register_subcommand(__lowerCAmelCase ) DownloadCommand.register_subcommand(__lowerCAmelCase ) EnvironmentCommand.register_subcommand(__lowerCAmelCase ) RunCommand.register_subcommand(__lowerCAmelCase ) ServeCommand.register_subcommand(__lowerCAmelCase ) UserCommands.register_subcommand(__lowerCAmelCase ) AddNewModelCommand.register_subcommand(__lowerCAmelCase ) AddNewModelLikeCommand.register_subcommand(__lowerCAmelCase ) LfsCommands.register_subcommand(__lowerCAmelCase ) PTtoTFCommand.register_subcommand(__lowerCAmelCase ) # Let's go lowerCAmelCase_ = parser.parse_args() if not hasattr(__lowerCAmelCase , "func" ): parser.print_help() exit(1 ) # Run lowerCAmelCase_ = args.func(__lowerCAmelCase ) service.run() if __name__ == "__main__": main()
231
1
'''simple docstring''' from math import pi, sqrt def lowercase_ ( lowerCAmelCase__ : float ): """simple docstring""" if num <= 0: raise ValueError("""math domain error""" ) if num > 171.5: raise OverflowError("""math range error""" ) elif num - int(lowerCAmelCase__ ) not in (0, 0.5): raise NotImplementedError("""num must be an integer or a half-integer""" ) elif num == 0.5: return sqrt(lowerCAmelCase__ ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def lowercase_ ( ): """simple docstring""" assert gamma(0.5 ) == sqrt(lowerCAmelCase__ ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() _UpperCamelCase = 1.0 while num: _UpperCamelCase = float(input('''Gamma of: ''')) print(F'gamma({num}) = {gamma(num)}') print('''\nEnter 0 to exit...''')
16
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _UpperCamelCase = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
16
1
from ...configuration_utils import PretrainedConfig lowercase__ : Any = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class lowercase_ ( UpperCamelCase_ ): """simple docstring""" UpperCAmelCase_ : str = """tapas""" def __init__( self , __SCREAMING_SNAKE_CASE=30522 , __SCREAMING_SNAKE_CASE=768 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=3072 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=1024 , __SCREAMING_SNAKE_CASE=[3, 256, 256, 2, 256, 256, 10] , __SCREAMING_SNAKE_CASE=0.0_2 , __SCREAMING_SNAKE_CASE=1e-12 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=1_0.0 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=1.0 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=1.0 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=1.0 , __SCREAMING_SNAKE_CASE=1.0 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE="ratio" , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=64 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ) ->str: super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_sizes lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps # Fine-tuning task hyperparameters lowerCAmelCase = positive_label_weight lowerCAmelCase = num_aggregation_labels lowerCAmelCase = aggregation_loss_weight lowerCAmelCase = use_answer_as_supervision lowerCAmelCase = answer_loss_importance lowerCAmelCase = use_normalized_answer_loss lowerCAmelCase = huber_loss_delta lowerCAmelCase = temperature lowerCAmelCase = aggregation_temperature lowerCAmelCase = use_gumbel_for_cells lowerCAmelCase = use_gumbel_for_aggregation lowerCAmelCase = average_approximation_function lowerCAmelCase = cell_selection_preference lowerCAmelCase = answer_loss_cutoff lowerCAmelCase = max_num_rows lowerCAmelCase = max_num_columns lowerCAmelCase = average_logits_per_cell lowerCAmelCase = select_one_column lowerCAmelCase = allow_empty_column_selection lowerCAmelCase = init_cell_selection_weights_to_zero lowerCAmelCase = reset_position_index_per_cell lowerCAmelCase = disable_per_token_loss # Aggregation hyperparameters lowerCAmelCase = aggregation_labels lowerCAmelCase = no_aggregation_label_index if isinstance(self.aggregation_labels , __SCREAMING_SNAKE_CASE ): lowerCAmelCase = {int(__SCREAMING_SNAKE_CASE ): v for k, v in aggregation_labels.items()}
338
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowercase__ : List[Any] = logging.get_logger(__name__) lowercase__ : Optional[Any] = {'''vocab_file''': '''spiece.model'''} lowercase__ : Optional[int] = { '''vocab_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''', } } lowercase__ : Any = { '''albert-base-v1''': 5_1_2, '''albert-large-v1''': 5_1_2, '''albert-xlarge-v1''': 5_1_2, '''albert-xxlarge-v1''': 5_1_2, '''albert-base-v2''': 5_1_2, '''albert-large-v2''': 5_1_2, '''albert-xlarge-v2''': 5_1_2, '''albert-xxlarge-v2''': 5_1_2, } lowercase__ : Tuple = '''▁''' class lowercase_ ( UpperCamelCase_ ): """simple docstring""" UpperCAmelCase_ : Dict = VOCAB_FILES_NAMES UpperCAmelCase_ : Tuple = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE="[CLS]" , __SCREAMING_SNAKE_CASE="[SEP]" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="[SEP]" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="[CLS]" , __SCREAMING_SNAKE_CASE="[MASK]" , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ) ->None: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. lowerCAmelCase = ( AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE , normalized=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token ) lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__SCREAMING_SNAKE_CASE , remove_space=__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) lowerCAmelCase = do_lower_case lowerCAmelCase = remove_space lowerCAmelCase = keep_accents lowerCAmelCase = vocab_file lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__SCREAMING_SNAKE_CASE ) @property def SCREAMING_SNAKE_CASE_ ( self ) ->Any: return len(self.sp_model ) def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]: lowerCAmelCase = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) ->int: lowerCAmelCase = self.__dict__.copy() lowerCAmelCase = None return state def __setstate__( self , __SCREAMING_SNAKE_CASE ) ->Tuple: lowerCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowerCAmelCase = {} lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->Any: if self.remove_space: lowerCAmelCase = ''' '''.join(inputs.strip().split() ) else: lowerCAmelCase = inputs lowerCAmelCase = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: lowerCAmelCase = unicodedata.normalize('''NFKD''' , __SCREAMING_SNAKE_CASE ) lowerCAmelCase = ''''''.join([c for c in outputs if not unicodedata.combining(__SCREAMING_SNAKE_CASE )] ) if self.do_lower_case: lowerCAmelCase = outputs.lower() return outputs def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->List[str]: lowerCAmelCase = self.preprocess_text(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE ) lowerCAmelCase = [] for piece in pieces: if len(__SCREAMING_SNAKE_CASE ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): lowerCAmelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(__SCREAMING_SNAKE_CASE , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowerCAmelCase = cur_pieces[1:] else: lowerCAmelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__SCREAMING_SNAKE_CASE ) else: new_pieces.append(__SCREAMING_SNAKE_CASE ) return new_pieces def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->int: return self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->int: return self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->Optional[int]: lowerCAmelCase = [] lowerCAmelCase = '''''' lowerCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) + token lowerCAmelCase = True lowerCAmelCase = [] else: current_sub_tokens.append(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = False out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) return out_string.strip() def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) ->List[int]: lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False ) ->List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE ) if token_ids_a is not None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) ->List[int]: lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) ->Tuple[str]: if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return lowerCAmelCase = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
338
1
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging lowerCamelCase__ = ['''bart.large''', '''bart.large.mnli''', '''bart.large.cnn''', '''bart_xsum/model.pt'''] lowerCamelCase__ = {'''bart.large''': BartModel, '''bart.large.mnli''': BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse('''0.9.0'''): raise Exception('''requires fairseq >= 0.9.0''') logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = ''' Hello world! cécé herlolip''' lowerCamelCase__ = [ ('''model.classification_heads.mnli.dense.weight''', '''classification_head.dense.weight'''), ('''model.classification_heads.mnli.dense.bias''', '''classification_head.dense.bias'''), ('''model.classification_heads.mnli.out_proj.weight''', '''classification_head.out_proj.weight'''), ('''model.classification_heads.mnli.out_proj.bias''', '''classification_head.out_proj.bias'''), ] def A(__a: Any ): lowerCAmelCase_ = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "_float_tensor", ] for k in ignore_keys: state_dict.pop(__a , __a ) def A(__a: Optional[int] , __a: List[Any] , __a: Union[str, Any] ): lowerCAmelCase_ = dct.pop(__a ) lowerCAmelCase_ = val def A(__a: Tuple ): lowerCAmelCase_ = torch.load(__a , map_location="cpu" ) lowerCAmelCase_ = torch.hub.load("pytorch/fairseq" , "bart.large.cnn" ).eval() hub_interface.model.load_state_dict(sd["model"] ) return hub_interface def A(__a: List[str] ): lowerCAmelCase_ , lowerCAmelCase_ = emb.weight.shape lowerCAmelCase_ = nn.Linear(__a , __a , bias=__a ) lowerCAmelCase_ = emb.weight.data return lin_layer @torch.no_grad() def A(__a: Tuple , __a: Union[str, Any] , __a: str=None ): if not os.path.exists(__a ): lowerCAmelCase_ = torch.hub.load("pytorch/fairseq" , __a ).eval() else: lowerCAmelCase_ = load_xsum_checkpoint(__a ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: lowerCAmelCase_ = checkpoint_path.replace("." , "-" ) lowerCAmelCase_ = BartConfig.from_pretrained(__a ) lowerCAmelCase_ = bart.encode(__a ).unsqueeze(0 ) lowerCAmelCase_ = BartTokenizer.from_pretrained(__a ).encode(__a , return_tensors="pt" ).unsqueeze(0 ) if not torch.eq(__a , __a ).all(): raise ValueError( F"converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}" ) if checkpoint_path == "bart.large.mnli": lowerCAmelCase_ = bart.state_dict() remove_ignore_keys_(__a ) lowerCAmelCase_ = state_dict["model.decoder.embed_tokens.weight"] for src, dest in mnli_rename_keys: rename_key(__a , __a , __a ) lowerCAmelCase_ = BartForSequenceClassification(__a ).eval() model.load_state_dict(__a ) lowerCAmelCase_ = bart.predict("mnli" , __a , return_logits=__a ) lowerCAmelCase_ = model(__a )[0] # logits else: # no classification heads to worry about lowerCAmelCase_ = bart.model.state_dict() remove_ignore_keys_(__a ) lowerCAmelCase_ = state_dict["decoder.embed_tokens.weight"] lowerCAmelCase_ = bart.extract_features(__a ) if hf_checkpoint_name == "facebook/bart-large": lowerCAmelCase_ = BartModel(__a ).eval() model.load_state_dict(__a ) lowerCAmelCase_ = model(__a ).model[0] else: lowerCAmelCase_ = BartForConditionalGeneration(__a ).eval() # an existing summarization ckpt model.model.load_state_dict(__a ) if hasattr(__a , "lm_head" ): lowerCAmelCase_ = make_linear_from_emb(model.model.shared ) lowerCAmelCase_ = model.model(__a )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F"`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}" ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError("Some values in `fairseq_output` are different from `new_model_outputs`" ) Path(__a ).mkdir(exist_ok=__a ) model.save_pretrained(__a ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default=None, type=str, help='''Which huggingface architecture to use: bart-large-xsum''' ) lowerCamelCase__ = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
22
def A(__a: Tuple ): lowerCAmelCase_ = len(__a ) while cur > 1: # Find the maximum number in arr lowerCAmelCase_ = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi lowerCAmelCase_ = arr[mi::-1] + arr[mi + 1 : len(__a )] # Reverse whole list lowerCAmelCase_ = arr[cur - 1 :: -1] + arr[cur : len(__a )] cur -= 1 return arr if __name__ == "__main__": lowerCamelCase__ = input('''Enter numbers separated by a comma:\n''').strip() lowerCamelCase__ = [int(item) for item in user_input.split(''',''')] print(pancake_sort(unsorted))
22
1
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo snake_case : Optional[Any] = '''\ @misc{wu2016googles, title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } ''' snake_case : Dict = '''\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the \'GLEU score\'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score\'s range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. ''' snake_case : Union[str, Any] = '''\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: \'google_bleu\': google_bleu score Examples: Example 1: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.44 Example 2: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.61 Example 3: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results["google_bleu"], 2)) 0.53 Example 4: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results["google_bleu"], 2)) 0.4 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def SCREAMING_SNAKE_CASE__ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 , _lowerCamelCase = 4 , ): return { "google_bleu": gleu_score.corpus_gleu( list_of_references=_lowerCamelCase , hypotheses=_lowerCamelCase , min_len=_lowerCamelCase , max_len=_lowerCamelCase ) }
94
import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any]="attention" ): """simple docstring""" a :Optional[int] = params[F'''{prefix}/layers_{i}/{layer_name}/key/kernel'''] a :Optional[Any] = params[F'''{prefix}/layers_{i}/{layer_name}/out/kernel'''] a :int = params[F'''{prefix}/layers_{i}/{layer_name}/query/kernel'''] a :Optional[Any] = params[F'''{prefix}/layers_{i}/{layer_name}/value/kernel'''] return k, o, q, v def __lowerCamelCase ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int=False ): """simple docstring""" if split_mlp_wi: a :int = params[F'''{prefix}/layers_{i}/mlp/wi_0/kernel'''] a :Optional[Any] = params[F'''{prefix}/layers_{i}/mlp/wi_1/kernel'''] a :Dict = (wi_a, wi_a) else: a :Optional[Any] = params[F'''{prefix}/layers_{i}/mlp/wi/kernel'''] a :Dict = params[F'''{prefix}/layers_{i}/mlp/wo/kernel'''] return wi, wo def __lowerCamelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] ): """simple docstring""" return params[F'''{prefix}/layers_{i}/{layer_name}/scale'''] def __lowerCamelCase ( UpperCAmelCase_ : dict , *, UpperCAmelCase_ : int , UpperCAmelCase_ : bool ): """simple docstring""" a :str = traverse_util.flatten_dict(variables['''target'''] ) a :Any = {'''/'''.join(UpperCAmelCase_ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi a :Any = '''encoder/layers_0/mlp/wi_0/kernel''' in old print('''Split MLP:''' , UpperCAmelCase_ ) a :Optional[Any] = collections.OrderedDict() # Shared embeddings. a :Union[str, Any] = old['''token_embedder/embedding'''] # Encoder. for i in range(UpperCAmelCase_ ): # Block i, layer 0 (Self Attention). a :Optional[Any] = tax_layer_norm_lookup(UpperCAmelCase_ , UpperCAmelCase_ , '''encoder''' , '''pre_attention_layer_norm''' ) a , a , a , a :Optional[int] = tax_attention_lookup(UpperCAmelCase_ , UpperCAmelCase_ , '''encoder''' , '''attention''' ) a :List[Any] = layer_norm a :str = k.T a :Dict = o.T a :int = q.T a :Optional[Any] = v.T # Block i, layer 1 (MLP). a :Tuple = tax_layer_norm_lookup(UpperCAmelCase_ , UpperCAmelCase_ , '''encoder''' , '''pre_mlp_layer_norm''' ) a , a :List[Any] = tax_mlp_lookup(UpperCAmelCase_ , UpperCAmelCase_ , '''encoder''' , UpperCAmelCase_ ) a :Any = layer_norm if split_mlp_wi: a :Any = wi[0].T a :Tuple = wi[1].T else: a :List[str] = wi.T a :List[Any] = wo.T a :Union[str, Any] = old[ '''encoder/relpos_bias/rel_embedding''' ].T a :Optional[Any] = old['''encoder/encoder_norm/scale'''] if not is_encoder_only: # Decoder. for i in range(UpperCAmelCase_ ): # Block i, layer 0 (Self Attention). a :List[str] = tax_layer_norm_lookup(UpperCAmelCase_ , UpperCAmelCase_ , '''decoder''' , '''pre_self_attention_layer_norm''' ) a , a , a , a :List[Any] = tax_attention_lookup(UpperCAmelCase_ , UpperCAmelCase_ , '''decoder''' , '''self_attention''' ) a :List[Any] = layer_norm a :Tuple = k.T a :int = o.T a :Any = q.T a :Optional[int] = v.T # Block i, layer 1 (Cross Attention). a :str = tax_layer_norm_lookup(UpperCAmelCase_ , UpperCAmelCase_ , '''decoder''' , '''pre_cross_attention_layer_norm''' ) a , a , a , a :Any = tax_attention_lookup(UpperCAmelCase_ , UpperCAmelCase_ , '''decoder''' , '''encoder_decoder_attention''' ) a :str = layer_norm a :Optional[Any] = k.T a :Any = o.T a :Dict = q.T a :Optional[Any] = v.T # Block i, layer 2 (MLP). a :Optional[int] = tax_layer_norm_lookup(UpperCAmelCase_ , UpperCAmelCase_ , '''decoder''' , '''pre_mlp_layer_norm''' ) a , a :List[Any] = tax_mlp_lookup(UpperCAmelCase_ , UpperCAmelCase_ , '''decoder''' , UpperCAmelCase_ ) a :Optional[int] = layer_norm if split_mlp_wi: a :int = wi[0].T a :Tuple = wi[1].T else: a :str = wi.T a :Dict = wo.T a :Any = old['''decoder/decoder_norm/scale'''] a :Optional[Any] = old[ '''decoder/relpos_bias/rel_embedding''' ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: a :Union[str, Any] = old['''decoder/logits_dense/kernel'''].T return new def __lowerCamelCase ( UpperCAmelCase_ : Any , UpperCAmelCase_ : bool ): """simple docstring""" a :List[Any] = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: a :Optional[Any] = state_dict['''shared.weight'''] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: a :Tuple = state_dict['''shared.weight'''] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('''Using shared word embeddings as lm_head.''' ) a :Optional[Any] = state_dict['''shared.weight'''] return state_dict def __lowerCamelCase ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] ): """simple docstring""" a :Tuple = checkpoints.load_tax_checkpoint(UpperCAmelCase_ ) a :Optional[int] = convert_tax_to_pytorch(UpperCAmelCase_ , num_layers=config.num_layers , is_encoder_only=UpperCAmelCase_ ) a :Tuple = make_state_dict(UpperCAmelCase_ , UpperCAmelCase_ ) model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) def __lowerCamelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : bool = False ): """simple docstring""" a :List[Any] = TaConfig.from_json_file(UpperCAmelCase_ ) print(F'''Building PyTorch model from configuration: {config}''' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: a :Any = TaEncoderModel(UpperCAmelCase_ ) else: a :List[str] = TaForConditionalGeneration(UpperCAmelCase_ ) # Load weights from tf checkpoint load_tax_weights_in_ta(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(UpperCAmelCase_ ) # Verify that we can load the checkpoint. model.from_pretrained(UpperCAmelCase_ ) print('''Done''' ) if __name__ == "__main__": snake_case : Any = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) snake_case : Optional[Any] = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
94
1
"""simple docstring""" import operator as op UpperCAmelCase : List[Any] = "scaler.pt" UpperCAmelCase : List[str] = "pytorch_model" UpperCAmelCase : int = "random_states" UpperCAmelCase : Tuple = "optimizer" UpperCAmelCase : Dict = "scheduler" UpperCAmelCase : Any = "pytorch_model.bin" UpperCAmelCase : List[Any] = "pytorch_model.bin.index.json" UpperCAmelCase : Dict = "model.safetensors" UpperCAmelCase : Any = "model.safetensors.index.json" UpperCAmelCase : List[str] = "1.10.2" UpperCAmelCase : Any = "py38" UpperCAmelCase : str = "4.17.0" UpperCAmelCase : Optional[Any] = ["ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.p4dn.24xlarge"] UpperCAmelCase : Tuple = ["FULL_SHARD", "SHARD_GRAD_OP", "NO_SHARD", "HYBRID_SHARD", "HYBRID_SHARD_ZERO2"] UpperCAmelCase : List[Any] = ["TRANSFORMER_BASED_WRAP", "SIZE_BASED_WRAP", "NO_WRAP"] UpperCAmelCase : List[str] = ["BACKWARD_PRE", "BACKWARD_POST", "NO_PREFETCH"] UpperCAmelCase : Dict = ["FULL_STATE_DICT", "LOCAL_STATE_DICT", "SHARDED_STATE_DICT"] UpperCAmelCase : str = "2.0.1" UpperCAmelCase : Dict = ["pdsh", "standard", "openmpi", "mvapich"] UpperCAmelCase : str = ["default", "reduce-overhead", "max-autotune"] UpperCAmelCase : Optional[Any] = {">": op.gt, ">=": op.ge, "==": op.eq, "!=": op.ne, "<=": op.le, "<": op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 UpperCAmelCase : str = [ "nnodes", "nproc_per_node", "rdzv_backend", "rdzv_endpoint", "rdzv_id", "rdzv_conf", "standalone", "max_restarts", "monitor_interval", "start_method", "role", "module", "m", "no_python", "run_path", "log_dir", "r", "redirects", "t", "tee", "node_rank", "master_addr", "master_port", ] UpperCAmelCase : Any = ["DEEPSPEED", "MULTI_GPU", "FSDP", "MEGATRON_LM"] UpperCAmelCase : List[Any] = ["DEEPSPEED", "MULTI_XPU", "FSDP"]
313
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = 0 if start < end: lowercase_ = randint(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = a[end] lowercase_ = a[pivot] lowercase_ = temp lowercase_ , lowercase_ = _in_place_partition(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) count += _in_place_quick_sort(__lowerCAmelCase , __lowerCAmelCase , p - 1 ) count += _in_place_quick_sort(__lowerCAmelCase , p + 1 , __lowerCAmelCase ) return count def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: '''simple docstring''' lowercase_ = 0 lowercase_ = randint(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = a[end] lowercase_ = a[pivot] lowercase_ = temp lowercase_ = start - 1 for index in range(__lowerCAmelCase , __lowerCAmelCase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value lowercase_ = new_pivot_index + 1 lowercase_ = a[new_pivot_index] lowercase_ = a[index] lowercase_ = temp lowercase_ = a[new_pivot_index + 1] lowercase_ = a[end] lowercase_ = temp return new_pivot_index + 1, count UpperCAmelCase : Union[str, Any] = TemporaryFile() UpperCAmelCase : Optional[int] = 100 # 1000 elements are to be sorted UpperCAmelCase , UpperCAmelCase : List[str] = 0, 1 # mean and standard deviation UpperCAmelCase : Optional[Any] = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array UpperCAmelCase : List[str] = np.load(outfile) UpperCAmelCase : List[Any] = len(M) - 1 UpperCAmelCase : Optional[int] = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
313
1
'''simple docstring''' import sys from collections import defaultdict class __a : def __init__( self : Union[str, Any] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Optional[int] = [] def UpperCAmelCase__ ( self : str , __magic_name__ : Optional[int] ) -> str: """simple docstring""" return self.node_position[vertex] def UpperCAmelCase__ ( self : Dict , __magic_name__ : str , __magic_name__ : Dict ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : List[str] = pos def UpperCAmelCase__ ( self : Any , __magic_name__ : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] ) -> int: """simple docstring""" if start > size // 2 - 1: return else: if 2 * start + 2 >= size: UpperCAmelCase_ : str = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: UpperCAmelCase_ : Tuple = 2 * start + 1 else: UpperCAmelCase_ : str = 2 * start + 2 if heap[smallest_child] < heap[start]: UpperCAmelCase_ : List[Any] = heap[smallest_child], positions[smallest_child] UpperCAmelCase_ : str = ( heap[start], positions[start], ) UpperCAmelCase_ : Optional[int] = temp, tempa UpperCAmelCase_ : int = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , UpperCAmelCase__ ) self.top_to_bottom(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def UpperCAmelCase__ ( self : Tuple , __magic_name__ : List[Any] , __magic_name__ : Any , __magic_name__ : Optional[Any] , __magic_name__ : Tuple ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Any = position[index] while index != 0: UpperCAmelCase_ : Optional[int] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: UpperCAmelCase_ : str = heap[parent] UpperCAmelCase_ : Any = position[parent] self.set_position(position[parent] , UpperCAmelCase__ ) else: UpperCAmelCase_ : Optional[Any] = val UpperCAmelCase_ : Optional[Any] = temp self.set_position(UpperCAmelCase__ , UpperCAmelCase__ ) break UpperCAmelCase_ : List[Any] = parent else: UpperCAmelCase_ : List[Any] = val UpperCAmelCase_ : List[Any] = temp self.set_position(UpperCAmelCase__ , 0 ) def UpperCAmelCase__ ( self : Any , __magic_name__ : Dict , __magic_name__ : Dict ) -> List[str]: """simple docstring""" UpperCAmelCase_ : int = len(UpperCAmelCase__ ) // 2 - 1 for i in range(UpperCAmelCase__ , -1 , -1 ): self.top_to_bottom(UpperCAmelCase__ , UpperCAmelCase__ , len(UpperCAmelCase__ ) , UpperCAmelCase__ ) def UpperCAmelCase__ ( self : List[str] , __magic_name__ : List[Any] , __magic_name__ : List[str] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = positions[0] UpperCAmelCase_ : Optional[int] = sys.maxsize self.top_to_bottom(UpperCAmelCase__ , 0 , len(UpperCAmelCase__ ) , UpperCAmelCase__ ) return temp def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Any ) -> Optional[int]: UpperCAmelCase_ : Any = Heap() UpperCAmelCase_ : List[Any] = [0] * len(_A ) UpperCAmelCase_ : List[str] = [-1] * len(_A ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph UpperCAmelCase_ : int = [] # Heap of Distance of vertices from their neighboring vertex UpperCAmelCase_ : List[Any] = [] for vertex in range(len(_A ) ): distance_tv.append(sys.maxsize ) positions.append(_A ) heap.node_position.append(_A ) UpperCAmelCase_ : Union[str, Any] = [] UpperCAmelCase_ : List[Any] = 1 UpperCAmelCase_ : Optional[Any] = sys.maxsize for neighbor, distance in adjacency_list[0]: UpperCAmelCase_ : Optional[Any] = 0 UpperCAmelCase_ : Dict = distance heap.heapify(_A, _A ) for _ in range(1, len(_A ) ): UpperCAmelCase_ : Optional[Any] = heap.delete_minimum(_A, _A ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) UpperCAmelCase_ : int = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(_A )] ): UpperCAmelCase_ : List[Any] = distance heap.bottom_to_top( _A, heap.get_position(_A ), _A, _A ) UpperCAmelCase_ : Dict = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > snake_case_ : Union[str, Any] = int(input("Enter number of edges: ").strip()) snake_case_ : Union[str, Any] = defaultdict(list) for _ in range(edges_number): snake_case_ : str = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
125
import argparse import hashlib # hashlib is only used inside the Test class import struct class a__ : """simple docstring""" def __init__( self : Tuple , UpperCAmelCase__ : Optional[int] ) ->str: """simple docstring""" SCREAMING_SNAKE_CASE : str = data SCREAMING_SNAKE_CASE : str = [0X67_45_23_01, 0XEF_CD_AB_89, 0X98_BA_DC_FE, 0X10_32_54_76, 0XC3_D2_E1_F0] @staticmethod def _lowercase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[Any] ) ->Tuple: """simple docstring""" return ((n << b) | (n >> (3_2 - b))) & 0XFF_FF_FF_FF def _lowercase ( self : List[Any] ) ->int: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = B"""\x80""" + B"""\x00""" * (6_3 - (len(self.data ) + 8) % 6_4) SCREAMING_SNAKE_CASE : List[str] = self.data + padding + struct.pack(""">Q""" , 8 * len(self.data ) ) return padded_data def _lowercase ( self : Dict ) ->List[Any]: """simple docstring""" return [ self.padded_data[i : i + 6_4] for i in range(0 , len(self.padded_data ) , 6_4 ) ] def _lowercase ( self : int , UpperCAmelCase__ : Any ) ->Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = list(struct.unpack(""">16L""" , UpperCAmelCase__ ) ) + [0] * 6_4 for i in range(1_6 , 8_0 ): SCREAMING_SNAKE_CASE : Optional[Any] = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 1_4] ^ w[i - 1_6]) , 1 ) return w def _lowercase ( self : Any ) ->List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = self.padding() SCREAMING_SNAKE_CASE : Any = self.split_blocks() for block in self.blocks: SCREAMING_SNAKE_CASE : str = self.expand_block(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.h for i in range(0 , 8_0 ): if 0 <= i < 2_0: SCREAMING_SNAKE_CASE : List[str] = (b & c) | ((~b) & d) SCREAMING_SNAKE_CASE : str = 0X5A_82_79_99 elif 2_0 <= i < 4_0: SCREAMING_SNAKE_CASE : List[Any] = b ^ c ^ d SCREAMING_SNAKE_CASE : Any = 0X6E_D9_EB_A1 elif 4_0 <= i < 6_0: SCREAMING_SNAKE_CASE : Union[str, Any] = (b & c) | (b & d) | (c & d) SCREAMING_SNAKE_CASE : List[str] = 0X8F_1B_BC_DC elif 6_0 <= i < 8_0: SCREAMING_SNAKE_CASE : Dict = b ^ c ^ d SCREAMING_SNAKE_CASE : int = 0XCA_62_C1_D6 SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = ( self.rotate(UpperCAmelCase__ , 5 ) + f + e + k + expanded_block[i] & 0XFF_FF_FF_FF, a, self.rotate(UpperCAmelCase__ , 3_0 ), c, d, ) SCREAMING_SNAKE_CASE : Union[str, Any] = ( self.h[0] + a & 0XFF_FF_FF_FF, self.h[1] + b & 0XFF_FF_FF_FF, self.h[2] + c & 0XFF_FF_FF_FF, self.h[3] + d & 0XFF_FF_FF_FF, self.h[4] + e & 0XFF_FF_FF_FF, ) return ("{:08x}" * 5).format(*self.h ) def __lowercase ( ) -> Optional[Any]: SCREAMING_SNAKE_CASE : Optional[int] = B"""Test String""" assert SHAaHash(_A ).final_hash() == hashlib.shaa(_A ).hexdigest() # noqa: S324 def __lowercase ( ) -> Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser(description="""Process some strings or files""" ) parser.add_argument( """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument("""--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args() SCREAMING_SNAKE_CASE : Dict = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: SCREAMING_SNAKE_CASE : List[str] = f.read() else: SCREAMING_SNAKE_CASE : Tuple = bytes(_A , """utf-8""" ) print(SHAaHash(_A ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
245
0
"""simple docstring""" import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __lowerCAmelCase : List[str] =logging.getLogger(__name__) __lowerCAmelCase : Dict =tf.data.AUTOTUNE def UpperCAmelCase__ ( ) -> List[str]: '''simple docstring''' lowercase = argparse.ArgumentParser(description="""Train a masked language model on TPU.""" ) parser.add_argument( """--pretrained_model_config""" , type=lowerCAmelCase__ , default="""roberta-base""" , help="""The model config to use. Note that we don't copy the model's weights, only the config!""" , ) parser.add_argument( """--tokenizer""" , type=lowerCAmelCase__ , default="""unigram-tokenizer-wikitext""" , help="""The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.""" , ) parser.add_argument( """--per_replica_batch_size""" , type=lowerCAmelCase__ , default=8 , help="""Batch size per TPU core.""" , ) parser.add_argument( """--no_tpu""" , action="""store_true""" , help="""If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.""" , ) parser.add_argument( """--tpu_name""" , type=lowerCAmelCase__ , help="""Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.""" , default="""local""" , ) parser.add_argument( """--tpu_zone""" , type=lowerCAmelCase__ , help="""Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.""" , ) parser.add_argument( """--gcp_project""" , type=lowerCAmelCase__ , help="""Google cloud project name. Only used for non-Colab TPU nodes.""" ) parser.add_argument( """--bfloat16""" , action="""store_true""" , help="""Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.""" , ) parser.add_argument( """--train_dataset""" , type=lowerCAmelCase__ , help="""Path to training dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""" , ) parser.add_argument( """--shuffle_buffer_size""" , type=lowerCAmelCase__ , default=2**1_8 , help="""Size of the shuffle buffer (in samples)""" , ) parser.add_argument( """--eval_dataset""" , type=lowerCAmelCase__ , help="""Path to evaluation dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""" , ) parser.add_argument( """--num_epochs""" , type=lowerCAmelCase__ , default=1 , help="""Number of epochs to train for.""" , ) parser.add_argument( """--learning_rate""" , type=lowerCAmelCase__ , default=1e-4 , help="""Learning rate to use for training.""" , ) parser.add_argument( """--weight_decay_rate""" , type=lowerCAmelCase__ , default=1e-3 , help="""Weight decay rate to use for training.""" , ) parser.add_argument( """--max_length""" , type=lowerCAmelCase__ , default=5_1_2 , help="""Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py""" , ) parser.add_argument( """--mlm_probability""" , type=lowerCAmelCase__ , default=0.15 , help="""Fraction of tokens to mask during training.""" , ) parser.add_argument("""--output_dir""" , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to save model checkpoints to.""" ) parser.add_argument("""--hub_model_id""" , type=lowerCAmelCase__ , help="""Model ID to upload to on the Hugging Face Hub.""" ) lowercase = parser.parse_args() return args def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> List[Any]: '''simple docstring''' try: if args.tpu_name: lowercase = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: lowercase = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( """Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or """ """--gcp_project. When running on a TPU VM, use --tpu_name local.""" ) tf.config.experimental_connect_to_cluster(lowerCAmelCase__ ) tf.tpu.experimental.initialize_tpu_system(lowerCAmelCase__ ) return tpu def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase = 0 for file in file_list: lowercase = file.split("""/""" )[-1] lowercase = re.search(R"""-\d+-(\d+)\.tfrecord""" , lowerCAmelCase__ ).group(1 ) lowercase = int(lowerCAmelCase__ ) num_samples += sample_count return num_samples def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any]=None ) -> List[Any]: '''simple docstring''' lowercase = count_samples(lowerCAmelCase__ ) lowercase = tf.data.Dataset.from_tensor_slices(lowerCAmelCase__ ) if shuffle: lowercase = dataset.shuffle(len(lowerCAmelCase__ ) ) lowercase = tf.data.TFRecordDataset(lowerCAmelCase__ , num_parallel_reads=lowerCAmelCase__ ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here lowercase = dataset.apply(tf.data.experimental.assert_cardinality(lowerCAmelCase__ ) ) lowercase = dataset.map(lowerCAmelCase__ , num_parallel_calls=lowerCAmelCase__ ) if shuffle: assert shuffle_buffer_size is not None lowercase = dataset.shuffle(args.shuffle_buffer_size ) lowercase = dataset.batch(lowerCAmelCase__ , drop_remainder=lowerCAmelCase__ ) lowercase = dataset.map(lowerCAmelCase__ , num_parallel_calls=lowerCAmelCase__ ) lowercase = dataset.prefetch(lowerCAmelCase__ ) return dataset def UpperCAmelCase__ ( lowerCAmelCase__ :Any ) -> Optional[int]: '''simple docstring''' if not args.no_tpu: lowercase = initialize_tpu(lowerCAmelCase__ ) lowercase = tf.distribute.TPUStrategy(lowerCAmelCase__ ) else: lowercase = tf.distribute.OneDeviceStrategy(device="""/gpu:0""" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("""mixed_bfloat16""" ) lowercase = AutoTokenizer.from_pretrained(args.tokenizer ) lowercase = AutoConfig.from_pretrained(args.pretrained_model_config ) lowercase = tokenizer.vocab_size lowercase = tf.io.gfile.glob(os.path.join(args.train_dataset , """*.tfrecord""" ) ) if not training_records: raise ValueError(f'No .tfrecord files found in {args.train_dataset}.' ) lowercase = tf.io.gfile.glob(os.path.join(args.eval_dataset , """*.tfrecord""" ) ) if not eval_records: raise ValueError(f'No .tfrecord files found in {args.eval_dataset}.' ) lowercase = count_samples(lowerCAmelCase__ ) lowercase = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) lowercase = steps_per_epoch * args.num_epochs with strategy.scope(): lowercase = TFAutoModelForMaskedLM.from_config(lowerCAmelCase__ ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built lowercase , lowercase = create_optimizer( num_train_steps=lowerCAmelCase__ , num_warmup_steps=total_train_steps // 2_0 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=lowerCAmelCase__ , metrics=["""accuracy"""] ) def decode_fn(lowerCAmelCase__ :Any ): lowercase = { """input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), """attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(lowerCAmelCase__ , lowerCAmelCase__ ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. lowercase = DataCollatorForLanguageModeling( tokenizer=lowerCAmelCase__ , mlm_probability=args.mlm_probability , mlm=lowerCAmelCase__ , return_tensors="""tf""" ) def mask_with_collator(lowerCAmelCase__ :Dict ): # TF really needs an isin() function lowercase = ( ~tf.cast(batch["""attention_mask"""] , tf.bool ) | (batch["""input_ids"""] == tokenizer.cls_token_id) | (batch["""input_ids"""] == tokenizer.sep_token_id) ) lowercase , lowercase = data_collator.tf_mask_tokens( batch["""input_ids"""] , vocab_size=len(lowerCAmelCase__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=lowerCAmelCase__ , ) return batch lowercase = args.per_replica_batch_size * strategy.num_replicas_in_sync lowercase = prepare_dataset( lowerCAmelCase__ , decode_fn=lowerCAmelCase__ , mask_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , shuffle=lowerCAmelCase__ , shuffle_buffer_size=args.shuffle_buffer_size , ) lowercase = prepare_dataset( lowerCAmelCase__ , decode_fn=lowerCAmelCase__ , mask_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , shuffle=lowerCAmelCase__ , ) lowercase = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=lowerCAmelCase__ ) ) model.fit( lowerCAmelCase__ , validation_data=lowerCAmelCase__ , epochs=args.num_epochs , callbacks=lowerCAmelCase__ , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __lowerCAmelCase : Optional[int] =parse_args() main(args)
32
"""simple docstring""" import enum import shutil import sys __lowerCAmelCase , __lowerCAmelCase : List[str] =shutil.get_terminal_size() __lowerCAmelCase : Union[str, Any] ={"""UP""": """A""", """DOWN""": """B""", """RIGHT""": """C""", """LEFT""": """D"""} class _A ( enum.Enum ): snake_case__ : Tuple = 0 snake_case__ : List[str] = 1 def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Union[str, Any]="" ) -> List[Any]: '''simple docstring''' sys.stdout.write(str(lowerCAmelCase__ ) + end ) sys.stdout.flush() def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Optional[Any]="" ) -> Optional[Any]: '''simple docstring''' forceWrite(f'\u001b[{color}m{content}\u001b[0m' , lowerCAmelCase__ ) def UpperCAmelCase__ ( ) -> Dict: '''simple docstring''' forceWrite("""\r""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :str ) -> List[Any]: '''simple docstring''' forceWrite(f'\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}' ) def UpperCAmelCase__ ( ) -> int: '''simple docstring''' forceWrite(""" """ * TERMINAL_WIDTH ) reset_cursor() def UpperCAmelCase__ ( ) -> Dict: '''simple docstring''' reset_cursor() forceWrite("""-""" * TERMINAL_WIDTH )
32
1
"""simple docstring""" from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract UpperCAmelCase = logging.get_logger(__name__) def lowercase ( a__ : List[str] , a__ : Optional[Any] , a__ : Dict ) -> Any: return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def lowercase ( a__ : List[str] , a__ : Optional[Any] , a__ : Dict = None ) -> List[Any]: _UpperCamelCase = tesseract_config if tesseract_config is not None else '''''' # apply OCR _UpperCamelCase = to_pil_image(UpperCamelCase__ ) _UpperCamelCase , _UpperCamelCase = pil_image.size _UpperCamelCase = pytesseract.image_to_data(UpperCamelCase__ , lang=UpperCamelCase__ , output_type='''dict''' , config=UpperCamelCase__ ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates _UpperCamelCase = [idx for idx, word in enumerate(UpperCamelCase__ ) if not word.strip()] _UpperCamelCase = [word for idx, word in enumerate(UpperCamelCase__ ) if idx not in irrelevant_indices] _UpperCamelCase = [coord for idx, coord in enumerate(UpperCamelCase__ ) if idx not in irrelevant_indices] _UpperCamelCase = [coord for idx, coord in enumerate(UpperCamelCase__ ) if idx not in irrelevant_indices] _UpperCamelCase = [coord for idx, coord in enumerate(UpperCamelCase__ ) if idx not in irrelevant_indices] _UpperCamelCase = [coord for idx, coord in enumerate(UpperCamelCase__ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format _UpperCamelCase = [] for x, y, w, h in zip(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): _UpperCamelCase = [x, y, x + w, y + h] actual_boxes.append(UpperCamelCase__ ) # finally, normalize the bounding boxes _UpperCamelCase = [] for box in actual_boxes: normalized_boxes.append(normalize_box(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) assert len(UpperCamelCase__ ) == len(UpperCamelCase__ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class UpperCAmelCase_ ( lowercase_): snake_case__ = ['''pixel_values'''] def __init__( self : Any , __UpperCamelCase : str = True , __UpperCamelCase : Any = None , __UpperCamelCase : Optional[int] = PILImageResampling.BILINEAR , __UpperCamelCase : Union[str, Any] = True , __UpperCamelCase : List[str] = None , __UpperCamelCase : int = "" , **__UpperCamelCase : Optional[Any] , ) -> Any: super().__init__(**__UpperCamelCase ) _UpperCamelCase = size if size is not None else {'''height''': 224, '''width''': 224} _UpperCamelCase = get_size_dict(__UpperCamelCase ) _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = resample _UpperCamelCase = apply_ocr _UpperCamelCase = ocr_lang _UpperCamelCase = tesseract_config def _UpperCamelCase ( self : List[str] , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : int = PILImageResampling.BILINEAR , __UpperCamelCase : int = None , **__UpperCamelCase : List[Any] , ) -> List[str]: _UpperCamelCase = get_size_dict(__UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) _UpperCamelCase = (size['''height'''], size['''width''']) return resize(__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def _UpperCamelCase ( self : str , __UpperCamelCase : List[Any] , __UpperCamelCase : int = None , __UpperCamelCase : int = None , __UpperCamelCase : Union[str, Any] = None , __UpperCamelCase : Any = None , __UpperCamelCase : List[Any] = None , __UpperCamelCase : int = None , __UpperCamelCase : int = None , __UpperCamelCase : List[Any] = ChannelDimension.FIRST , **__UpperCamelCase : str , ) -> Any: _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(__UpperCamelCase ) _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = apply_ocr if apply_ocr is not None else self.apply_ocr _UpperCamelCase = ocr_lang if ocr_lang is not None else self.ocr_lang _UpperCamelCase = tesseract_config if tesseract_config is not None else self.tesseract_config _UpperCamelCase = make_list_of_images(__UpperCamelCase ) if not valid_images(__UpperCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) # All transformations expect numpy arrays. _UpperCamelCase = [to_numpy_array(__UpperCamelCase ) for image in images] if apply_ocr: requires_backends(self , '''pytesseract''' ) _UpperCamelCase = [] _UpperCamelCase = [] for image in images: _UpperCamelCase , _UpperCamelCase = apply_tesseract(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) words_batch.append(__UpperCamelCase ) boxes_batch.append(__UpperCamelCase ) if do_resize: _UpperCamelCase = [self.resize(image=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) _UpperCamelCase = [flip_channel_order(__UpperCamelCase ) for image in images] _UpperCamelCase = [to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) for image in images] _UpperCamelCase = BatchFeature(data={'''pixel_values''': images} , tensor_type=__UpperCamelCase ) if apply_ocr: _UpperCamelCase = words_batch _UpperCamelCase = boxes_batch return data
256
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch _UpperCAmelCase : Dict = logging.get_logger(__name__) class lowercase : def __init__( self , snake_case = None , snake_case = None , snake_case=None , snake_case=None ): if not conversation_id: snake_case_ = uuid.uuida() if past_user_inputs is None: snake_case_ = [] if generated_responses is None: snake_case_ = [] snake_case_ = conversation_id snake_case_ = past_user_inputs snake_case_ = generated_responses snake_case_ = text def __eq__( self , snake_case ): if not isinstance(snake_case , snake_case ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def a ( self , snake_case , snake_case = False ): if self.new_user_input: if overwrite: logger.warning( F'''User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ''' F'''with: "{text}".''' ) snake_case_ = text else: logger.warning( F'''User input added while unprocessed input was existing: "{self.new_user_input}" new input ''' F'''ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input''' ) else: snake_case_ = text def a ( self ): if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) snake_case_ = None def a ( self , snake_case ): self.generated_responses.append(snake_case ) def a ( self ): for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self ): snake_case_ = F'''Conversation id: {self.uuid} \n''' for is_user, text in self.iter_texts(): snake_case_ = 'user' if is_user else 'bot' output += F'''{name} >> {text} \n''' return output @add_end_docstrings( lowercase_ , R''' min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. ''' , ) class lowercase ( lowercase_ ): def __init__( self , *snake_case , **snake_case ): super().__init__(*snake_case , **snake_case ) if self.tokenizer.pad_token_id is None: snake_case_ = self.tokenizer.eos_token def a ( self , snake_case=None , snake_case=None , snake_case=None , **snake_case ): snake_case_ = {} snake_case_ = {} snake_case_ = {} if min_length_for_response is not None: snake_case_ = min_length_for_response if minimum_tokens is not None: snake_case_ = minimum_tokens if "max_length" in generate_kwargs: snake_case_ = generate_kwargs['max_length'] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: snake_case_ = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(snake_case ) return preprocess_params, forward_params, postprocess_params def __call__( self , snake_case , snake_case=0 , **snake_case ): snake_case_ = super().__call__(snake_case , num_workers=snake_case , **snake_case ) if isinstance(snake_case , snake_case ) and len(snake_case ) == 1: return outputs[0] return outputs def a ( self , snake_case , snake_case=32 ): if not isinstance(snake_case , snake_case ): raise ValueError('ConversationalPipeline, expects Conversation as inputs' ) if conversation.new_user_input is None: raise ValueError( F'''Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ''' 'Add user inputs with the conversation\'s `add_user_input` method' ) if hasattr(self.tokenizer , '_build_conversation_input_ids' ): snake_case_ = self.tokenizer._build_conversation_input_ids(snake_case ) else: # If the tokenizer cannot handle conversations, we default to only the old version snake_case_ = self._legacy_parse_and_tokenize(snake_case ) if self.framework == "pt": snake_case_ = torch.LongTensor([input_ids] ) elif self.framework == "tf": snake_case_ = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def a ( self , snake_case , snake_case=10 , **snake_case ): snake_case_ = generate_kwargs.get('max_length' , self.model.config.max_length ) snake_case_ = model_inputs['input_ids'].shape[1] if max_length - minimum_tokens < n: logger.warning(F'''Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})''' ) snake_case_ = max_length - minimum_tokens snake_case_ = model_inputs['input_ids'][:, -trim:] if "attention_mask" in model_inputs: snake_case_ = model_inputs['attention_mask'][:, -trim:] snake_case_ = model_inputs.pop('conversation' ) snake_case_ = max_length snake_case_ = self.model.generate(**snake_case , **snake_case ) if self.model.config.is_encoder_decoder: snake_case_ = 1 else: snake_case_ = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def a ( self , snake_case , snake_case=True ): snake_case_ = model_outputs['output_ids'] snake_case_ = self.tokenizer.decode( output_ids[0] , skip_special_tokens=snake_case , clean_up_tokenization_spaces=snake_case , ) snake_case_ = model_outputs['conversation'] conversation.mark_processed() conversation.append_response(snake_case ) return conversation def a ( self , snake_case ): snake_case_ = self.tokenizer.eos_token_id snake_case_ = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(snake_case , add_special_tokens=snake_case ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(snake_case , add_special_tokens=snake_case ) ) if len(snake_case ) > self.tokenizer.model_max_length: snake_case_ = input_ids[-self.tokenizer.model_max_length :] return input_ids
285
0
import datasets from .evaluate import evaluate lowerCAmelCase : List[Any] = "\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n" lowerCAmelCase : Tuple = "\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n" lowerCAmelCase : Union[str, Any] = "\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the SQuAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}]\n >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}]\n >>> squad_metric = datasets.load_metric(\"squad\")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : str): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": {"id": datasets.Value("string"), "prediction_text": datasets.Value("string")}, "references": { "id": datasets.Value("string"), "answers": datasets.features.Sequence( { "text": datasets.Value("string"), "answer_start": datasets.Value("int32"), }), }, }) , codebase_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , reference_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , ) def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[int]): SCREAMING_SNAKE_CASE_: int = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} SCREAMING_SNAKE_CASE_: Tuple = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] SCREAMING_SNAKE_CASE_: Union[str, Any] = evaluate(dataset=a__ , predictions=a__) return score
354
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class __lowercase ( unittest.TestCase ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any]=7 , lowerCAmelCase__ : Tuple=3 , lowerCAmelCase__ : Optional[int]=30 , lowerCAmelCase__ : Dict=400 , lowerCAmelCase__ : int=True , lowerCAmelCase__ : Dict=None , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : Any=[0.5, 0.5, 0.5] , lowerCAmelCase__ : Optional[Any]=[0.5, 0.5, 0.5] , lowerCAmelCase__ : List[Any]=True , lowerCAmelCase__ : Tuple=1 / 255 , lowerCAmelCase__ : int=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p SCREAMING_SNAKE_CASE_: Optional[Any] = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333} SCREAMING_SNAKE_CASE_: str = parent SCREAMING_SNAKE_CASE_: Tuple = batch_size SCREAMING_SNAKE_CASE_: Tuple = num_channels SCREAMING_SNAKE_CASE_: Union[str, Any] = min_resolution SCREAMING_SNAKE_CASE_: Tuple = max_resolution SCREAMING_SNAKE_CASE_: List[Any] = do_resize SCREAMING_SNAKE_CASE_: Optional[int] = size SCREAMING_SNAKE_CASE_: Optional[int] = do_normalize SCREAMING_SNAKE_CASE_: Any = image_mean SCREAMING_SNAKE_CASE_: Dict = image_std SCREAMING_SNAKE_CASE_: Tuple = do_rescale SCREAMING_SNAKE_CASE_: int = rescale_factor SCREAMING_SNAKE_CASE_: int = do_pad def _SCREAMING_SNAKE_CASE ( self : Optional[int]): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int=False): if not batched: SCREAMING_SNAKE_CASE_: List[str] = image_inputs[0] if isinstance(lowerCAmelCase__ , Image.Image): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = image.size else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE_: List[Any] = int(self.size["shortest_edge"] * h / w) SCREAMING_SNAKE_CASE_: Union[str, Any] = self.size["shortest_edge"] elif w > h: SCREAMING_SNAKE_CASE_: Any = self.size["shortest_edge"] SCREAMING_SNAKE_CASE_: Union[str, Any] = int(self.size["shortest_edge"] * w / h) else: SCREAMING_SNAKE_CASE_: int = self.size["shortest_edge"] SCREAMING_SNAKE_CASE_: Dict = self.size["shortest_edge"] else: SCREAMING_SNAKE_CASE_: int = [] for image in image_inputs: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) SCREAMING_SNAKE_CASE_: Tuple = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__: item[0])[0] SCREAMING_SNAKE_CASE_: Optional[Any] = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__: item[1])[1] return expected_height, expected_width @require_torch @require_vision class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Any = DeformableDetrImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: int = DeformableDetrImageProcessingTester(self) @property def _SCREAMING_SNAKE_CASE ( self : Optional[int]): return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Dict = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowerCAmelCase__ , "image_mean")) self.assertTrue(hasattr(lowerCAmelCase__ , "image_std")) self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize")) self.assertTrue(hasattr(lowerCAmelCase__ , "do_resize")) self.assertTrue(hasattr(lowerCAmelCase__ , "do_rescale")) self.assertTrue(hasattr(lowerCAmelCase__ , "do_pad")) self.assertTrue(hasattr(lowerCAmelCase__ , "size")) def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Dict = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1333}) self.assertEqual(image_processor.do_pad , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowerCAmelCase__) self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84}) self.assertEqual(image_processor.do_pad , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): pass def _SCREAMING_SNAKE_CASE ( self : List[Any]): # Initialize image_processing SCREAMING_SNAKE_CASE_: List[Any] = self.image_processing_class(**self.image_processor_dict) # create random PIL images SCREAMING_SNAKE_CASE_: Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image) # Test not batched input SCREAMING_SNAKE_CASE_: Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt").pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = image_processing(lowerCAmelCase__ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _SCREAMING_SNAKE_CASE ( self : str): # Initialize image_processing SCREAMING_SNAKE_CASE_: Optional[Any] = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors SCREAMING_SNAKE_CASE_: List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray) # Test not batched input SCREAMING_SNAKE_CASE_: str = image_processing(image_inputs[0] , return_tensors="pt").pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE_: Any = image_processing(lowerCAmelCase__ , return_tensors="pt").pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _SCREAMING_SNAKE_CASE ( self : List[Any]): # Initialize image_processing SCREAMING_SNAKE_CASE_: List[Any] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors SCREAMING_SNAKE_CASE_: int = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor) # Test not batched input SCREAMING_SNAKE_CASE_: Dict = image_processing(image_inputs[0] , return_tensors="pt").pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = self.image_processor_tester.get_expected_values(lowerCAmelCase__) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE_: Optional[Any] = image_processing(lowerCAmelCase__ , return_tensors="pt").pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple): # prepare image and target SCREAMING_SNAKE_CASE_: Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r") as f: SCREAMING_SNAKE_CASE_: str = json.loads(f.read()) SCREAMING_SNAKE_CASE_: Optional[int] = {"image_id": 3_9769, "annotations": target} # encode them SCREAMING_SNAKE_CASE_: str = DeformableDetrImageProcessor() SCREAMING_SNAKE_CASE_: Dict = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , return_tensors="pt") # verify pixel values SCREAMING_SNAKE_CASE_: Optional[Any] = torch.Size([1, 3, 800, 1066]) self.assertEqual(encoding["pixel_values"].shape , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , lowerCAmelCase__ , atol=1E-4)) # verify area SCREAMING_SNAKE_CASE_: int = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438]) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , lowerCAmelCase__)) # verify boxes SCREAMING_SNAKE_CASE_: str = torch.Size([6, 4]) self.assertEqual(encoding["labels"][0]["boxes"].shape , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215]) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , lowerCAmelCase__ , atol=1E-3)) # verify image_id SCREAMING_SNAKE_CASE_: str = torch.tensor([3_9769]) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , lowerCAmelCase__)) # verify is_crowd SCREAMING_SNAKE_CASE_: int = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , lowerCAmelCase__)) # verify class_labels SCREAMING_SNAKE_CASE_: Tuple = torch.tensor([75, 75, 63, 65, 17, 17]) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , lowerCAmelCase__)) # verify orig_size SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , lowerCAmelCase__)) # verify size SCREAMING_SNAKE_CASE_: str = torch.tensor([800, 1066]) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , lowerCAmelCase__)) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple): # prepare image, target and masks_path SCREAMING_SNAKE_CASE_: Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r") as f: SCREAMING_SNAKE_CASE_: List[Any] = json.loads(f.read()) SCREAMING_SNAKE_CASE_: Optional[Any] = {"file_name": "000000039769.png", "image_id": 3_9769, "segments_info": target} SCREAMING_SNAKE_CASE_: int = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic") # encode them SCREAMING_SNAKE_CASE_: Any = DeformableDetrImageProcessor(format="coco_panoptic") SCREAMING_SNAKE_CASE_: Optional[Any] = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , masks_path=lowerCAmelCase__ , return_tensors="pt") # verify pixel values SCREAMING_SNAKE_CASE_: Dict = torch.Size([1, 3, 800, 1066]) self.assertEqual(encoding["pixel_values"].shape , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , lowerCAmelCase__ , atol=1E-4)) # verify area SCREAMING_SNAKE_CASE_: Optional[Any] = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147]) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , lowerCAmelCase__)) # verify boxes SCREAMING_SNAKE_CASE_: List[str] = torch.Size([6, 4]) self.assertEqual(encoding["labels"][0]["boxes"].shape , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625]) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , lowerCAmelCase__ , atol=1E-3)) # verify image_id SCREAMING_SNAKE_CASE_: Any = torch.tensor([3_9769]) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , lowerCAmelCase__)) # verify is_crowd SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , lowerCAmelCase__)) # verify class_labels SCREAMING_SNAKE_CASE_: List[Any] = torch.tensor([17, 17, 63, 75, 75, 93]) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , lowerCAmelCase__)) # verify masks SCREAMING_SNAKE_CASE_: Tuple = 82_2873 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , lowerCAmelCase__) # verify orig_size SCREAMING_SNAKE_CASE_: str = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , lowerCAmelCase__)) # verify size SCREAMING_SNAKE_CASE_: Optional[int] = torch.tensor([800, 1066]) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , lowerCAmelCase__))
127
0
"""simple docstring""" from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def a_ ( lowerCamelCase ): return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) lowerCAmelCase__ : List[Any] = '\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n' class snake_case ( __UpperCAmelCase ): """simple docstring""" @staticmethod def __lowerCAmelCase ( lowerCamelCase__ : ArgumentParser ): UpperCAmelCase__ = parser.add_parser( 'convert' ,help='CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.' ,) train_parser.add_argument('--model_type' ,type=lowerCamelCase__ ,required=lowerCamelCase__ ,help='Model\'s type.' ) train_parser.add_argument( '--tf_checkpoint' ,type=lowerCamelCase__ ,required=lowerCamelCase__ ,help='TensorFlow checkpoint path or folder.' ) train_parser.add_argument( '--pytorch_dump_output' ,type=lowerCamelCase__ ,required=lowerCamelCase__ ,help='Path to the PyTorch saved model output.' ) train_parser.add_argument('--config' ,type=lowerCamelCase__ ,default='' ,help='Configuration file path or folder.' ) train_parser.add_argument( '--finetuning_task_name' ,type=lowerCamelCase__ ,default=lowerCamelCase__ ,help='Optional fine-tuning task name if the TF model was a finetuned model.' ,) train_parser.set_defaults(func=lowerCamelCase__ ) def __init__( self : List[Any] ,lowerCamelCase__ : str ,lowerCamelCase__ : str ,lowerCamelCase__ : str ,lowerCamelCase__ : str ,lowerCamelCase__ : str ,*lowerCamelCase__ : Any ,): UpperCAmelCase__ = logging.get_logger('transformers-cli/converting' ) self._logger.info(f'''Loading model {model_type}''' ) UpperCAmelCase__ = model_type UpperCAmelCase__ = tf_checkpoint UpperCAmelCase__ = pytorch_dump_output UpperCAmelCase__ = config UpperCAmelCase__ = finetuning_task_name def __lowerCAmelCase ( self : str ): if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowerCamelCase__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowerCamelCase__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowerCamelCase__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(lowerCamelCase__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowerCamelCase__ ) if "ckpt" in self._tf_checkpoint.lower(): UpperCAmelCase__ = self._tf_checkpoint UpperCAmelCase__ = '' else: UpperCAmelCase__ = self._tf_checkpoint UpperCAmelCase__ = '' convert_transfo_xl_checkpoint_to_pytorch( lowerCamelCase__ ,self._config ,self._pytorch_dump_output ,lowerCamelCase__ ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowerCamelCase__ ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowerCamelCase__ ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint ,self._config ,self._pytorch_dump_output ,self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint ,self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint ,self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) else: raise ValueError( '--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]' )
98
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch lowerCamelCase = logging.get_logger(__name__) class _a ( _lowercase): _a : Optional[Any] = ['''pixel_values'''] def __init__( self : List[Any] , _SCREAMING_SNAKE_CASE : bool = True , _SCREAMING_SNAKE_CASE : Optional[Dict[str, int]] = None , _SCREAMING_SNAKE_CASE : PILImageResampling = PILImageResampling.BILINEAR , _SCREAMING_SNAKE_CASE : bool = True , _SCREAMING_SNAKE_CASE : Dict[str, int] = None , _SCREAMING_SNAKE_CASE : bool = True , _SCREAMING_SNAKE_CASE : Union[int, float] = 1 / 255 , _SCREAMING_SNAKE_CASE : bool = True , _SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , _SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , **_SCREAMING_SNAKE_CASE : int , )-> None: super().__init__(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Dict = size if size is not None else {'''shortest_edge''': 256} lowerCAmelCase__ : Tuple = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowerCAmelCase__ : Optional[Any] = get_size_dict(_SCREAMING_SNAKE_CASE , param_name='''crop_size''' ) lowerCAmelCase__ : List[str] = do_resize lowerCAmelCase__ : Optional[Any] = size lowerCAmelCase__ : Any = resample lowerCAmelCase__ : str = do_center_crop lowerCAmelCase__ : Dict = crop_size lowerCAmelCase__ : str = do_rescale lowerCAmelCase__ : List[str] = rescale_factor lowerCAmelCase__ : int = do_normalize lowerCAmelCase__ : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase__ : Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase__( self : List[Any] , _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : Dict[str, int] , _SCREAMING_SNAKE_CASE : PILImageResampling = PILImageResampling.BICUBIC , _SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **_SCREAMING_SNAKE_CASE : Dict , )-> np.ndarray: lowerCAmelCase__ : str = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) lowerCAmelCase__ : List[str] = get_resize_output_image_size(_SCREAMING_SNAKE_CASE , size=size['''shortest_edge'''] , default_to_square=_SCREAMING_SNAKE_CASE ) return resize(_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : List[str] , _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : Dict[str, int] , _SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **_SCREAMING_SNAKE_CASE : List[str] , )-> np.ndarray: lowerCAmelCase__ : Dict = get_size_dict(_SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(_SCREAMING_SNAKE_CASE , size=(size['''height'''], size['''width''']) , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : int , _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **_SCREAMING_SNAKE_CASE : Optional[int] )-> np.ndarray: return rescale(_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Optional[int] , _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : Union[float, List[float]] , _SCREAMING_SNAKE_CASE : Union[float, List[float]] , _SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **_SCREAMING_SNAKE_CASE : str , )-> np.ndarray: return normalize(_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Any , _SCREAMING_SNAKE_CASE : ImageInput , _SCREAMING_SNAKE_CASE : Optional[bool] = None , _SCREAMING_SNAKE_CASE : Dict[str, int] = None , _SCREAMING_SNAKE_CASE : PILImageResampling = None , _SCREAMING_SNAKE_CASE : bool = None , _SCREAMING_SNAKE_CASE : Dict[str, int] = None , _SCREAMING_SNAKE_CASE : Optional[bool] = None , _SCREAMING_SNAKE_CASE : Optional[float] = None , _SCREAMING_SNAKE_CASE : Optional[bool] = None , _SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , _SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , _SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , _SCREAMING_SNAKE_CASE : Union[str, ChannelDimension] = ChannelDimension.FIRST , **_SCREAMING_SNAKE_CASE : Tuple , )-> Optional[Any]: lowerCAmelCase__ : List[str] = do_resize if do_resize is not None else self.do_resize lowerCAmelCase__ : List[str] = size if size is not None else self.size lowerCAmelCase__ : Any = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : str = resample if resample is not None else self.resample lowerCAmelCase__ : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase__ : Dict = crop_size if crop_size is not None else self.crop_size lowerCAmelCase__ : Any = get_size_dict(_SCREAMING_SNAKE_CASE , param_name='''crop_size''' ) lowerCAmelCase__ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase__ : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase__ : str = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase__ : List[Any] = image_mean if image_mean is not None else self.image_mean lowerCAmelCase__ : List[str] = image_std if image_std is not None else self.image_std lowerCAmelCase__ : Optional[int] = make_list_of_images(_SCREAMING_SNAKE_CASE ) if not valid_images(_SCREAMING_SNAKE_CASE ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. lowerCAmelCase__ : List[Any] = [to_numpy_array(_SCREAMING_SNAKE_CASE ) for image in images] if do_resize: lowerCAmelCase__ : Dict = [self.resize(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE ) for image in images] if do_center_crop: lowerCAmelCase__ : Dict = [self.center_crop(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: lowerCAmelCase__ : List[Any] = [self.rescale(image=_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: lowerCAmelCase__ : Tuple = [self.normalize(image=_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE ) for image in images] lowerCAmelCase__ : Dict = [to_channel_dimension_format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for image in images] lowerCAmelCase__ : Dict = {'''pixel_values''': images} return BatchFeature(data=_SCREAMING_SNAKE_CASE , tensor_type=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : int , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[Tuple] = None )-> List[Any]: lowerCAmelCase__ : Union[str, Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(_SCREAMING_SNAKE_CASE ): lowerCAmelCase__ : Tuple = target_sizes.numpy() lowerCAmelCase__ : Tuple = [] for idx in range(len(_SCREAMING_SNAKE_CASE ) ): lowerCAmelCase__ : int = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : str = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_SCREAMING_SNAKE_CASE ) else: lowerCAmelCase__ : Any = logits.argmax(dim=1 ) lowerCAmelCase__ : Dict = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
131
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class snake_case ( __snake_case ): SCREAMING_SNAKE_CASE_ : List[str] = """markuplm""" def __init__( self : Dict , UpperCamelCase__ : Optional[Any]=3_0_5_2_2 , UpperCamelCase__ : Dict=7_6_8 , UpperCamelCase__ : Any=1_2 , UpperCamelCase__ : Optional[Any]=1_2 , UpperCamelCase__ : Union[str, Any]=3_0_7_2 , UpperCamelCase__ : Any="gelu" , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : Tuple=5_1_2 , UpperCamelCase__ : str=2 , UpperCamelCase__ : Optional[int]=0.02 , UpperCamelCase__ : Tuple=1e-12 , UpperCamelCase__ : Dict=0 , UpperCamelCase__ : int=0 , UpperCamelCase__ : int=2 , UpperCamelCase__ : Optional[Any]=2_5_6 , UpperCamelCase__ : Optional[Any]=1_0_2_4 , UpperCamelCase__ : Optional[int]=2_1_6 , UpperCamelCase__ : Union[str, Any]=1_0_0_1 , UpperCamelCase__ : int=3_2 , UpperCamelCase__ : Union[str, Any]=5_0 , UpperCamelCase__ : List[Any]="absolute" , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : Dict=None , **UpperCamelCase__ : List[str] , )-> Dict: '''simple docstring''' super().__init__( pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ , ) __lowerCAmelCase: List[Any] = vocab_size __lowerCAmelCase: int = hidden_size __lowerCAmelCase: Any = num_hidden_layers __lowerCAmelCase: str = num_attention_heads __lowerCAmelCase: List[Any] = hidden_act __lowerCAmelCase: Optional[int] = intermediate_size __lowerCAmelCase: Tuple = hidden_dropout_prob __lowerCAmelCase: List[str] = attention_probs_dropout_prob __lowerCAmelCase: Tuple = max_position_embeddings __lowerCAmelCase: Optional[int] = type_vocab_size __lowerCAmelCase: Any = initializer_range __lowerCAmelCase: Dict = layer_norm_eps __lowerCAmelCase: str = position_embedding_type __lowerCAmelCase: Tuple = use_cache __lowerCAmelCase: Union[str, Any] = classifier_dropout # additional properties __lowerCAmelCase: Optional[int] = max_depth __lowerCAmelCase: List[Any] = max_xpath_tag_unit_embeddings __lowerCAmelCase: int = max_xpath_subs_unit_embeddings __lowerCAmelCase: Any = tag_pad_id __lowerCAmelCase: Tuple = subs_pad_id __lowerCAmelCase: List[Any] = xpath_unit_hidden_size
369
"""simple docstring""" import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class snake_case ( __snake_case, unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Tuple = PriorTransformer SCREAMING_SNAKE_CASE_ : List[str] = """hidden_states""" @property def lowercase_ ( self : Dict)-> str: '''simple docstring''' __lowerCAmelCase: str = 4 __lowerCAmelCase: int = 8 __lowerCAmelCase: int = 7 __lowerCAmelCase: str = floats_tensor((batch_size, embedding_dim)).to(UpperCamelCase__) __lowerCAmelCase: Optional[Any] = floats_tensor((batch_size, embedding_dim)).to(UpperCamelCase__) __lowerCAmelCase: Any = floats_tensor((batch_size, num_embeddings, embedding_dim)).to(UpperCamelCase__) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def lowercase_ ( self : Optional[int] , UpperCamelCase__ : str=0)-> str: '''simple docstring''' torch.manual_seed(UpperCamelCase__) __lowerCAmelCase: List[Any] = 4 __lowerCAmelCase: Dict = 8 __lowerCAmelCase: int = 7 __lowerCAmelCase: List[str] = torch.randn((batch_size, embedding_dim)).to(UpperCamelCase__) __lowerCAmelCase: Tuple = torch.randn((batch_size, embedding_dim)).to(UpperCamelCase__) __lowerCAmelCase: List[Any] = torch.randn((batch_size, num_embeddings, embedding_dim)).to(UpperCamelCase__) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def lowercase_ ( self : Dict)-> List[Any]: '''simple docstring''' return (4, 8) @property def lowercase_ ( self : Optional[int])-> int: '''simple docstring''' return (4, 8) def lowercase_ ( self : Optional[int])-> Tuple: '''simple docstring''' __lowerCAmelCase: str = { "num_attention_heads": 2, "attention_head_dim": 4, "num_layers": 2, "embedding_dim": 8, "num_embeddings": 7, "additional_embeddings": 4, } __lowerCAmelCase: Any = self.dummy_input return init_dict, inputs_dict def lowercase_ ( self : List[Any])-> int: '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase: Optional[int] = PriorTransformer.from_pretrained( "hf-internal-testing/prior-dummy" , output_loading_info=UpperCamelCase__) self.assertIsNotNone(UpperCamelCase__) self.assertEqual(len(loading_info["missing_keys"]) , 0) model.to(UpperCamelCase__) __lowerCAmelCase: Dict = model(**self.dummy_input)[0] assert hidden_states is not None, "Make sure output is not None" def lowercase_ ( self : List[str])-> Tuple: '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = self.prepare_init_args_and_inputs_for_common() __lowerCAmelCase: Tuple = self.model_class(**UpperCamelCase__) __lowerCAmelCase: List[str] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase: List[Any] = [*signature.parameters.keys()] __lowerCAmelCase: Any = ["hidden_states", "timestep"] self.assertListEqual(arg_names[:2] , UpperCamelCase__) def lowercase_ ( self : Optional[int])-> List[str]: '''simple docstring''' __lowerCAmelCase: int = PriorTransformer.from_pretrained("hf-internal-testing/prior-dummy") __lowerCAmelCase: Union[str, Any] = model.to(UpperCamelCase__) if hasattr(UpperCamelCase__ , "set_default_attn_processor"): model.set_default_attn_processor() __lowerCAmelCase: str = self.get_dummy_seed_input() with torch.no_grad(): __lowerCAmelCase: Dict = model(**UpperCamelCase__)[0] __lowerCAmelCase: Dict = output[0, :5].flatten().cpu() print(UpperCamelCase__) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. __lowerCAmelCase: List[str] = torch.tensor([-1.3436, -0.2870, 0.7538, 0.4368, -0.0239]) self.assertTrue(torch_all_close(UpperCamelCase__ , UpperCamelCase__ , rtol=1e-2)) @slow class snake_case ( unittest.TestCase ): def lowercase_ ( self : int , UpperCamelCase__ : Dict=1 , UpperCamelCase__ : str=7_6_8 , UpperCamelCase__ : int=7_7 , UpperCamelCase__ : Any=0)-> Union[str, Any]: '''simple docstring''' torch.manual_seed(UpperCamelCase__) __lowerCAmelCase: List[Any] = batch_size __lowerCAmelCase: Any = embedding_dim __lowerCAmelCase: Dict = num_embeddings __lowerCAmelCase: Dict = torch.randn((batch_size, embedding_dim)).to(UpperCamelCase__) __lowerCAmelCase: str = torch.randn((batch_size, embedding_dim)).to(UpperCamelCase__) __lowerCAmelCase: int = torch.randn((batch_size, num_embeddings, embedding_dim)).to(UpperCamelCase__) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def lowercase_ ( self : List[Any])-> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [1_3, [-0.5861, 0.1283, -0.0931, 0.0882, 0.4476, 0.1329, -0.0498, 0.0640]], [3_7, [-0.4913, 0.0110, -0.0483, 0.0541, 0.4954, -0.0170, 0.0354, 0.1651]], # fmt: on ]) def lowercase_ ( self : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : int)-> List[Any]: '''simple docstring''' __lowerCAmelCase: List[str] = PriorTransformer.from_pretrained("kandinsky-community/kandinsky-2-1-prior" , subfolder="prior") model.to(UpperCamelCase__) __lowerCAmelCase: Dict = self.get_dummy_seed_input(seed=UpperCamelCase__) with torch.no_grad(): __lowerCAmelCase: Optional[Any] = model(**UpperCamelCase__)[0] assert list(sample.shape) == [1, 7_6_8] __lowerCAmelCase: Dict = sample[0, :8].flatten().cpu() print(UpperCamelCase__) __lowerCAmelCase: Union[str, Any] = torch.tensor(UpperCamelCase__) assert torch_all_close(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3)
108
0
'''simple docstring''' import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() lowerCamelCase :int = logging.get_logger(__name__) lowerCamelCase :str = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } lowerCamelCase :Optional[int] = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' for attribute in key.split(""".""" ): A_ : List[Any] = getattr(__snake_case , __snake_case ) if weight_type is not None: A_ : List[str] = getattr(__snake_case , __snake_case ).shape else: A_ : Dict = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": A_ : Union[str, Any] = value elif weight_type == "weight_g": A_ : str = value elif weight_type == "weight_v": A_ : int = value elif weight_type == "bias": A_ : Any = value else: A_ : Tuple = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : List[str] = [] A_ : str = fairseq_model.state_dict() A_ : Optional[int] = hf_model.feature_extractor A_ : Optional[Any] = hf_model.adapter for name, value in fairseq_dict.items(): A_ : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( __snake_case , __snake_case , __snake_case , __snake_case , hf_model.config.feat_extract_norm == """group""" , ) A_ : Optional[Any] = True elif any(x in name for x in ["""adaptor""", """w2v_encoder.proj.""", """w2v_proj_ln."""] ): load_adapter(__snake_case , __snake_case , __snake_case , __snake_case ) A_ : List[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: A_ : Union[str, Any] = True if "*" in mapped_key: A_ : Any = name.split(__snake_case )[0].split(""".""" )[-2] A_ : str = mapped_key.replace("""*""" , __snake_case ) if "weight_g" in name: A_ : List[Any] = """weight_g""" elif "weight_v" in name: A_ : Optional[Any] = """weight_v""" elif "bias" in name: A_ : List[str] = """bias""" elif "weight" in name: A_ : List[Any] = """weight""" else: A_ : str = None set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(f'Unused weights: {unused_weights}' ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : str = full_name.split("""conv_layers.""" )[-1] A_ : int = name.split(""".""" ) A_ : Optional[int] = int(items[0] ) A_ : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) A_ : List[Any] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) A_ : Optional[int] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) A_ : Dict = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) A_ : int = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__snake_case ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : str = full_name.split("""adaptor.""" )[-1] A_ : Tuple = name.split(""".""" ) if items[1].isdigit(): A_ : Tuple = int(items[1] ) else: A_ : List[str] = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), f'{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.' A_ : Union[str, Any] = value logger.info(f'Adapter proj layer norm bias was initialized from {full_name}.' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), f'{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.' A_ : Optional[int] = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), f'{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.' A_ : Union[str, Any] = value logger.info(f'Adapter proj layer bias was initialized from {full_name}.' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), f'{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.' A_ : Optional[int] = value logger.info(f'Adapter proj layer weight was initialized from {full_name}.' ) elif isinstance(__snake_case , __snake_case ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), f'{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.' A_ : List[str] = value logger.info(f'Adapter layer {layer_id} bias was initialized from {full_name}.' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), f'{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.' A_ : Optional[Any] = value logger.info(f'Adapter layer {layer_id} bias was initialized from {full_name}.' ) else: unused_weights.append(__snake_case ) def a ( lowerCamelCase__ ): '''simple docstring''' A_, A_ : Tuple = emb.weight.shape A_ : str = nn.Linear(__snake_case , __snake_case , bias=__snake_case ) A_ : int = emb.weight.data return lin_layer @torch.no_grad() def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ): '''simple docstring''' A_ : Tuple = WavaVecaConfig.from_pretrained( __snake_case , add_adapter=__snake_case , adapter_stride=__snake_case , adapter_kernel_size=__snake_case , use_auth_token=__snake_case , output_hidden_size=__snake_case , ) A_ : Union[str, Any] = MBartConfig.from_pretrained(__snake_case ) # load model A_, A_, A_ : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ """config_yaml""": config_yaml_path, """data""": """/""".join(dict_path.split("""/""" )[:-1] ), """w2v_path""": checkpoint_path, """load_pretrained_decoder_from""": None, } , ) A_ : str = model[0].eval() # load feature extractor A_ : Tuple = WavaVecaFeatureExtractor.from_pretrained(__snake_case , use_auth_token=__snake_case ) # set weights for wav2vec2 encoder A_ : List[str] = WavaVecaModel(__snake_case ) recursively_load_weights_wavaveca(model.encoder , __snake_case ) # load decoder weights A_ : Any = MBartForCausalLM(__snake_case ) A_, A_ : Any = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=__snake_case ) logger.warning(f'The following keys are missing when loading the decoder weights: {missing_keys}' ) logger.warning(f'The following keys are unexpected when loading the decoder weights: {unexpected_keys}' ) A_ : Any = SpeechEncoderDecoderModel(encoder=__snake_case , decoder=__snake_case ) A_ : Any = False A_ : str = MBartaaTokenizer(__snake_case ) tokenizer.save_pretrained(__snake_case ) A_ : Optional[int] = hf_wavavec.config.to_dict() A_ : str = tokenizer.pad_token_id A_ : int = tokenizer.bos_token_id A_ : str = tokenizer.eos_token_id A_ : int = """mbart50""" A_ : List[str] = """wav2vec2""" A_ : Optional[int] = tokenizer.eos_token_id A_ : List[Any] = 25_00_04 A_ : Optional[Any] = tokenizer.eos_token_id A_ : Union[str, Any] = SpeechEncoderDecoderConfig.from_dict(__snake_case ) hf_wavavec.save_pretrained(__snake_case ) feature_extractor.save_pretrained(__snake_case ) if __name__ == "__main__": lowerCamelCase :Tuple = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_yaml_path''', default=None, type=str, help='''Path to yaml file of fine-tuned model''') parser.add_argument( '''--encoder_config_path''', default='''facebook/wav2vec2-xls-r-1b''', type=str, help='''Path to hf encoder wav2vec2 checkpoint config''', ) parser.add_argument( '''--decoder_config_path''', default='''facebook/mbart-large-50-one-to-many-mmt''', type=str, help='''Path to hf decoder checkpoint config''', ) parser.add_argument('''--add_adapter''', default=True, type=bool, help='''whethere to add model adapter layers''') parser.add_argument('''--adapter_stride''', default=2, type=int, help='''stride of adapter layers''') parser.add_argument('''--adapter_kernel_size''', default=3, type=int, help='''kernel size of adapter layers''') parser.add_argument('''--encoder_output_dim''', default=1_0_2_4, type=int, help='''encoder output dim''') parser.add_argument('''--start_token_id''', default=2_5_0_0_0_4, type=int, help='''`decoder_start_token_id` of model config''') lowerCamelCase :List[str] = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
206
"""simple docstring""" from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline _a = logging.get_logger(__name__) class _UpperCAmelCase( lowerCamelCase ): def UpperCAmelCase ( self , __a) -> Tuple: '''simple docstring''' if isinstance(__a , __a): _UpperCamelCase = [label.strip() for label in labels.split(''',''') if label.strip()] return labels def __call__( self , __a , __a , __a) -> Optional[int]: '''simple docstring''' if len(__a) == 0 or len(__a) == 0: raise ValueError('''You must include at least one label and at least one sequence.''') if hypothesis_template.format(labels[0]) == hypothesis_template: raise ValueError( ( '''The provided hypothesis_template "{}" was not able to be formatted with the target labels. ''' '''Make sure the passed template includes formatting syntax such as {{}} where the label should go.''' ).format(__a)) if isinstance(__a , __a): _UpperCamelCase = [sequences] _UpperCamelCase = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(__a)] for label in labels]) return sequence_pairs, sequences @add_end_docstrings(lowerCamelCase ) class _UpperCAmelCase( lowerCamelCase ): def __init__( self , __a=ZeroShotClassificationArgumentHandler() , *__a , **__a) -> List[str]: '''simple docstring''' _UpperCamelCase = args_parser super().__init__(*__a , **__a) if self.entailment_id == -1: logger.warning( '''Failed to determine \'entailment\' label id from the label2id mapping in the model config. Setting to ''' '''-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.''') @property def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' for label, ind in self.model.config.labelaid.items(): if label.lower().startswith('''entail'''): return ind return -1 def UpperCAmelCase ( self , __a , __a=True , __a=True , __a=TruncationStrategy.ONLY_FIRST , **__a) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( '''Tokenizer was not supporting padding necessary for zero-shot, attempting to use ''' ''' `pad_token=eos_token`''') _UpperCamelCase = self.tokenizer.eos_token try: _UpperCamelCase = self.tokenizer( __a , add_special_tokens=__a , return_tensors=__a , padding=__a , truncation=__a , ) except Exception as e: if "too short" in str(__a): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. _UpperCamelCase = self.tokenizer( __a , add_special_tokens=__a , return_tensors=__a , padding=__a , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def UpperCAmelCase ( self , **__a) -> Any: '''simple docstring''' if kwargs.get('''multi_class''' , __a) is not None: _UpperCamelCase = kwargs['''multi_class'''] logger.warning( '''The `multi_class` argument has been deprecated and renamed to `multi_label`. ''' '''`multi_class` will be removed in a future version of Transformers.''') _UpperCamelCase = {} if "candidate_labels" in kwargs: _UpperCamelCase = self._args_parser._parse_labels(kwargs['''candidate_labels''']) if "hypothesis_template" in kwargs: _UpperCamelCase = kwargs['''hypothesis_template'''] _UpperCamelCase = {} if "multi_label" in kwargs: _UpperCamelCase = kwargs['''multi_label'''] return preprocess_params, {}, postprocess_params def __call__( self , __a , *__a , **__a , ) -> int: '''simple docstring''' if len(__a) == 0: pass elif len(__a) == 1 and "candidate_labels" not in kwargs: _UpperCamelCase = args[0] else: raise ValueError(F'''Unable to understand extra arguments {args}''') return super().__call__(__a , **__a) def UpperCAmelCase ( self , __a , __a=None , __a="This example is {}.") -> Dict: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self._args_parser(__a , __a , __a) for i, (candidate_label, sequence_pair) in enumerate(zip(__a , __a)): _UpperCamelCase = self._parse_and_tokenize([sequence_pair]) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(__a) - 1, **model_input, } def UpperCAmelCase ( self , __a) -> List[Any]: '''simple docstring''' _UpperCamelCase = inputs['''candidate_label'''] _UpperCamelCase = inputs['''sequence'''] _UpperCamelCase = {k: inputs[k] for k in self.tokenizer.model_input_names} _UpperCamelCase = self.model(**__a) _UpperCamelCase = { '''candidate_label''': candidate_label, '''sequence''': sequence, '''is_last''': inputs['''is_last'''], **outputs, } return model_outputs def UpperCAmelCase ( self , __a , __a=False) -> Dict: '''simple docstring''' _UpperCamelCase = [outputs['''candidate_label'''] for outputs in model_outputs] _UpperCamelCase = [outputs['''sequence'''] for outputs in model_outputs] _UpperCamelCase = np.concatenate([output['''logits'''].numpy() for output in model_outputs]) _UpperCamelCase = logits.shape[0] _UpperCamelCase = len(__a) _UpperCamelCase = N // n _UpperCamelCase = logits.reshape((num_sequences, n, -1)) if multi_label or len(__a) == 1: # softmax over the entailment vs. contradiction dim for each label independently _UpperCamelCase = self.entailment_id _UpperCamelCase = -1 if entailment_id == 0 else 0 _UpperCamelCase = reshaped_outputs[..., [contradiction_id, entailment_id]] _UpperCamelCase = np.exp(__a) / np.exp(__a).sum(-1 , keepdims=__a) _UpperCamelCase = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels _UpperCamelCase = reshaped_outputs[..., self.entailment_id] _UpperCamelCase = np.exp(__a) / np.exp(__a).sum(-1 , keepdims=__a) _UpperCamelCase = list(reversed(scores[0].argsort())) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
194
0
"""simple docstring""" import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig UpperCAmelCase__ = logging.get_logger(__name__) class lowerCAmelCase__ : def __init__( self : str , _lowerCamelCase : Any , _lowerCamelCase : Any ): _snake_case = question_encoder _snake_case = generator _snake_case = self.question_encoder def lowercase ( self : List[Any] , _lowerCamelCase : Union[str, Any] ): if os.path.isfile(_lowerCamelCase ): raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) _snake_case = os.path.join(_lowerCamelCase , '''question_encoder_tokenizer''' ) _snake_case = os.path.join(_lowerCamelCase , '''generator_tokenizer''' ) self.question_encoder.save_pretrained(_lowerCamelCase ) self.generator.save_pretrained(_lowerCamelCase ) @classmethod def lowercase ( cls : List[Any] , _lowerCamelCase : Union[str, Any] , **_lowerCamelCase : Any ): # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer _snake_case = kwargs.pop('''config''' , _lowerCamelCase ) if config is None: _snake_case = RagConfig.from_pretrained(_lowerCamelCase ) _snake_case = AutoTokenizer.from_pretrained( _lowerCamelCase , config=config.question_encoder , subfolder='''question_encoder_tokenizer''' ) _snake_case = AutoTokenizer.from_pretrained( _lowerCamelCase , config=config.generator , subfolder='''generator_tokenizer''' ) return cls(question_encoder=_lowerCamelCase , generator=_lowerCamelCase ) def __call__( self : Any , *_lowerCamelCase : Any , **_lowerCamelCase : int ): return self.current_tokenizer(*_lowerCamelCase , **_lowerCamelCase ) def lowercase ( self : int , *_lowerCamelCase : int , **_lowerCamelCase : int ): return self.generator.batch_decode(*_lowerCamelCase , **_lowerCamelCase ) def lowercase ( self : str , *_lowerCamelCase : Any , **_lowerCamelCase : Any ): return self.generator.decode(*_lowerCamelCase , **_lowerCamelCase ) def lowercase ( self : Any ): _snake_case = self.question_encoder def lowercase ( self : List[Any] ): _snake_case = self.generator def lowercase ( self : Optional[int] , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[List[str]] = None , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : str = "longest" , _lowerCamelCase : str = None , _lowerCamelCase : bool = True , **_lowerCamelCase : str , ): warnings.warn( '''`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ''' '''regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ''' '''context manager to prepare your targets. See the documentation of your specific tokenizer for more ''' '''details''' , _lowerCamelCase , ) if max_length is None: _snake_case = self.current_tokenizer.model_max_length _snake_case = self( _lowerCamelCase , add_special_tokens=_lowerCamelCase , return_tensors=_lowerCamelCase , max_length=_lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase , **_lowerCamelCase , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: _snake_case = self.current_tokenizer.model_max_length _snake_case = self( text_target=_lowerCamelCase , add_special_tokens=_lowerCamelCase , return_tensors=_lowerCamelCase , padding=_lowerCamelCase , max_length=_lowerCamelCase , truncation=_lowerCamelCase , **_lowerCamelCase , ) _snake_case = labels['''input_ids'''] return model_inputs
40
"""simple docstring""" import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase__ : def __init__( self : str , _lowerCamelCase : List[Any] , _lowerCamelCase : Tuple=13 , _lowerCamelCase : int=32 , _lowerCamelCase : List[str]=3 , _lowerCamelCase : List[str]=4 , _lowerCamelCase : Optional[int]=[10, 20, 30, 40] , _lowerCamelCase : Dict=[2, 2, 3, 2] , _lowerCamelCase : Dict=True , _lowerCamelCase : Tuple=True , _lowerCamelCase : Tuple=37 , _lowerCamelCase : Optional[Any]="gelu" , _lowerCamelCase : Optional[Any]=10 , _lowerCamelCase : Any=0.0_2 , _lowerCamelCase : Optional[Any]=["stage2", "stage3", "stage4"] , _lowerCamelCase : Any=[2, 3, 4] , _lowerCamelCase : Any=None , ): _snake_case = parent _snake_case = batch_size _snake_case = image_size _snake_case = num_channels _snake_case = num_stages _snake_case = hidden_sizes _snake_case = depths _snake_case = is_training _snake_case = use_labels _snake_case = intermediate_size _snake_case = hidden_act _snake_case = num_labels _snake_case = initializer_range _snake_case = out_features _snake_case = out_indices _snake_case = scope def lowercase ( self : Dict ): _snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.num_labels ) _snake_case = self.get_config() return config, pixel_values, labels def lowercase ( self : str ): return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def lowercase ( self : Tuple , _lowerCamelCase : Tuple , _lowerCamelCase : int , _lowerCamelCase : List[str] ): _snake_case = ConvNextVaModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _snake_case = model(_lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowercase ( self : Dict , _lowerCamelCase : List[str] , _lowerCamelCase : Tuple , _lowerCamelCase : Union[str, Any] ): _snake_case = ConvNextVaForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _snake_case = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : Optional[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : List[Any] , _lowerCamelCase : Tuple ): _snake_case = ConvNextVaBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _snake_case = model(_lowerCamelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _snake_case = None _snake_case = ConvNextVaBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _snake_case = model(_lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowercase ( self : str ): _snake_case = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case = config_and_inputs _snake_case = {'''pixel_values''': pixel_values} return config, inputs_dict def lowercase ( self : int ): _snake_case = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case = config_and_inputs _snake_case = {'''pixel_values''': pixel_values, '''labels''': labels} return config, inputs_dict @require_torch class lowerCAmelCase__ ( A_ , A_ , unittest.TestCase ): __a = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) __a = ( {"""feature-extraction""": ConvNextVaModel, """image-classification""": ConvNextVaForImageClassification} if is_torch_available() else {} ) __a = False __a = False __a = False __a = False __a = False def lowercase ( self : str ): _snake_case = ConvNextVaModelTester(self ) _snake_case = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def lowercase ( self : List[str] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : Dict ): return @unittest.skip(reason='''ConvNextV2 does not use inputs_embeds''' ) def lowercase ( self : Dict ): pass @unittest.skip(reason='''ConvNextV2 does not support input and output embeddings''' ) def lowercase ( self : int ): pass @unittest.skip(reason='''ConvNextV2 does not use feedforward chunking''' ) def lowercase ( self : int ): pass def lowercase ( self : Union[str, Any] ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_with_labels() _snake_case = True if model_class.__name__ in [ *get_values(_lowerCamelCase ), *get_values(_lowerCamelCase ), ]: continue _snake_case = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() _snake_case = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) _snake_case = model(**_lowerCamelCase ).loss loss.backward() def lowercase ( self : Dict ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_with_labels() _snake_case = False _snake_case = True if ( model_class.__name__ in [*get_values(_lowerCamelCase ), *get_values(_lowerCamelCase )] or not model_class.supports_gradient_checkpointing ): continue _snake_case = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.gradient_checkpointing_enable() model.train() _snake_case = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) _snake_case = model(**_lowerCamelCase ).loss loss.backward() def lowercase ( self : Optional[Any] ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(_lowerCamelCase ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def lowercase ( self : Optional[Any] ): _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def lowercase ( self : Optional[int] ): def check_hidden_states_output(_lowerCamelCase : Any , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[int] ): _snake_case = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) _snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def lowercase ( self : List[str] ): _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @slow def lowercase ( self : str ): for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = ConvNextVaModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def _UpperCAmelCase ( ) -> Optional[Any]: _snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def lowercase ( self : List[Any] ): return AutoImageProcessor.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ) if is_vision_available() else None @slow def lowercase ( self : Optional[Any] ): _snake_case = ConvNextVaForImageClassification.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ).to(_lowerCamelCase ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = preprocessor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): _snake_case = model(**_lowerCamelCase ) # verify the logits _snake_case = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) _snake_case = torch.tensor([0.9_9_9_6, 0.1_9_6_6, -0.4_3_8_6] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) )
40
1
'''simple docstring''' import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available _UpperCAmelCase : Optional[int] = logging.getLogger(__name__) @dataclass class a__ : """simple docstring""" __UpperCamelCase : str __UpperCamelCase : List[str] __UpperCamelCase : Optional[List[str]] @dataclass class a__ : """simple docstring""" __UpperCamelCase : List[int] __UpperCamelCase : List[int] __UpperCamelCase : Optional[List[int]] = None __UpperCamelCase : Optional[List[int]] = None class a__ ( __A ): """simple docstring""" __UpperCamelCase : Union[str, Any] = 'train' __UpperCamelCase : Optional[Any] = 'dev' __UpperCamelCase : Dict = 'test' class a__ : """simple docstring""" @staticmethod def _snake_case (__lowercase , __lowercase ): raise NotImplementedError @staticmethod def _snake_case (__lowercase ): raise NotImplementedError @staticmethod def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase , __lowercase=False , __lowercase="[CLS]" , __lowercase=1 , __lowercase="[SEP]" , __lowercase=False , __lowercase=False , __lowercase=0 , __lowercase=0 , __lowercase=-1_00 , __lowercase=0 , __lowercase=True , ): __lowerCAmelCase = {label: i for i, label in enumerate(__lowercase )} __lowerCAmelCase = [] for ex_index, example in enumerate(__lowercase ): if ex_index % 1_00_00 == 0: logger.info('''Writing example %d of %d''' , __lowercase , len(__lowercase ) ) __lowerCAmelCase = [] __lowerCAmelCase = [] for word, label in zip(example.words , example.labels ): __lowerCAmelCase = tokenizer.tokenize(__lowercase ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(__lowercase ) > 0: tokens.extend(__lowercase ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(__lowercase ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. __lowerCAmelCase = tokenizer.num_special_tokens_to_add() if len(__lowercase ) > max_seq_length - special_tokens_count: __lowerCAmelCase = tokens[: (max_seq_length - special_tokens_count)] __lowerCAmelCase = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] __lowerCAmelCase = [sequence_a_segment_id] * len(__lowercase ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: __lowerCAmelCase = [cls_token] + tokens __lowerCAmelCase = [pad_token_label_id] + label_ids __lowerCAmelCase = [cls_token_segment_id] + segment_ids __lowerCAmelCase = tokenizer.convert_tokens_to_ids(__lowercase ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. __lowerCAmelCase = [1 if mask_padding_with_zero else 0] * len(__lowercase ) # Zero-pad up to the sequence length. __lowerCAmelCase = max_seq_length - len(__lowercase ) if pad_on_left: __lowerCAmelCase = ([pad_token] * padding_length) + input_ids __lowerCAmelCase = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask __lowerCAmelCase = ([pad_token_segment_id] * padding_length) + segment_ids __lowerCAmelCase = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(__lowercase ) == max_seq_length assert len(__lowercase ) == max_seq_length assert len(__lowercase ) == max_seq_length assert len(__lowercase ) == max_seq_length if ex_index < 5: logger.info('''*** Example ***''' ) logger.info('''guid: %s''' , example.guid ) logger.info('''tokens: %s''' , ''' '''.join([str(__lowercase ) for x in tokens] ) ) logger.info('''input_ids: %s''' , ''' '''.join([str(__lowercase ) for x in input_ids] ) ) logger.info('''input_mask: %s''' , ''' '''.join([str(__lowercase ) for x in input_mask] ) ) logger.info('''segment_ids: %s''' , ''' '''.join([str(__lowercase ) for x in segment_ids] ) ) logger.info('''label_ids: %s''' , ''' '''.join([str(__lowercase ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: __lowerCAmelCase = None features.append( InputFeatures( input_ids=__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , label_ids=__lowercase ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class a__ ( __A ): """simple docstring""" __UpperCamelCase : List[InputFeatures] __UpperCamelCase : int = nn.CrossEntropyLoss().ignore_index def __init__(self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = None , __lowercase=False , __lowercase = Split.train , ): # Load data features from cache or dataset file __lowerCAmelCase = os.path.join( __lowercase , '''cached_{}_{}_{}'''.format(mode.value , tokenizer.__class__.__name__ , str(__lowercase ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowerCAmelCase = cached_features_file + '''.lock''' with FileLock(__lowercase ): if os.path.exists(__lowercase ) and not overwrite_cache: logger.info(F"""Loading features from cached file {cached_features_file}""" ) __lowerCAmelCase = torch.load(__lowercase ) else: logger.info(F"""Creating features from dataset file at {data_dir}""" ) __lowerCAmelCase = token_classification_task.read_examples_from_file(__lowercase , __lowercase ) # TODO clean up all this to leverage built-in features of tokenizers __lowerCAmelCase = token_classification_task.convert_examples_to_features( __lowercase , __lowercase , __lowercase , __lowercase , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=__lowercase , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(F"""Saving features into cached file {cached_features_file}""" ) torch.save(self.features , __lowercase ) def __len__(self ): return len(self.features ) def __getitem__(self , __lowercase ): return self.features[i] if is_tf_available(): import tensorflow as tf class a__ : """simple docstring""" __UpperCamelCase : List[InputFeatures] __UpperCamelCase : int = -100 def __init__(self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = None , __lowercase=False , __lowercase = Split.train , ): __lowerCAmelCase = token_classification_task.read_examples_from_file(__lowercase , __lowercase ) # TODO clean up all this to leverage built-in features of tokenizers __lowerCAmelCase = token_classification_task.convert_examples_to_features( __lowercase , __lowercase , __lowercase , __lowercase , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=__lowercase , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: __lowerCAmelCase = tf.data.Dataset.from_generator( __lowercase , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa}, tf.intaa) , ( {'''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: __lowerCAmelCase = tf.data.Dataset.from_generator( __lowercase , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa}, tf.intaa) , ( { '''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] ), '''token_type_ids''': tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def _snake_case (self ): __lowerCAmelCase = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__(self ): return len(self.features ) def __getitem__(self , __lowercase ): return self.features[i]
174
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a__ ( __A , __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Union[str, Any] = StableDiffusionXLImgaImgPipeline __UpperCamelCase : str = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'} __UpperCamelCase : List[str] = PipelineTesterMixin.required_optional_params - {'latents'} __UpperCamelCase : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __UpperCamelCase : Union[str, Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS __UpperCamelCase : int = IMAGE_TO_IMAGE_IMAGE_PARAMS def _snake_case (self ): torch.manual_seed(0 ) __lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , attention_head_dim=(2, 4) , use_linear_projection=__lowercase , addition_embed_type='''text_time''' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) __lowerCAmelCase = EulerDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , steps_offset=1 , beta_schedule='''scaled_linear''' , timestep_spacing='''leading''' , ) torch.manual_seed(0 ) __lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) __lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=32 , ) __lowerCAmelCase = CLIPTextModel(__lowercase ) __lowerCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=__lowercase ) __lowerCAmelCase = CLIPTextModelWithProjection(__lowercase ) __lowerCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=__lowercase ) __lowerCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''text_encoder_2''': text_encoder_a, '''tokenizer_2''': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def _snake_case (self , __lowercase , __lowercase=0 ): __lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowercase ) ).to(__lowercase ) __lowerCAmelCase = image / 2 + 0.5 if str(__lowercase ).startswith('''mps''' ): __lowerCAmelCase = torch.manual_seed(__lowercase ) else: __lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowerCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 5.0, '''output_type''': '''numpy''', '''strength''': 0.7_5, } return inputs def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = StableDiffusionXLImgaImgPipeline(**__lowercase ) __lowerCAmelCase = sd_pipe.to(__lowercase ) sd_pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = sd_pipe(**__lowercase ).images __lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = np.array([0.4_6_5_6, 0.4_8_4_0, 0.4_4_3_9, 0.6_6_9_8, 0.5_5_7_4, 0.4_5_2_4, 0.5_7_9_9, 0.5_9_4_3, 0.5_1_6_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case (self ): super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def _snake_case (self ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def _snake_case (self ): pass def _snake_case (self ): __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = StableDiffusionXLImgaImgPipeline(**__lowercase ) __lowerCAmelCase = sd_pipe.to(__lowercase ) __lowerCAmelCase = sd_pipe.to(__lowercase ) sd_pipe.set_progress_bar_config(disable=__lowercase ) # forward without prompt embeds __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 3 * ['''this is a negative prompt'''] __lowerCAmelCase = negative_prompt __lowerCAmelCase = 3 * [inputs['''prompt''']] __lowerCAmelCase = sd_pipe(**__lowercase ) __lowerCAmelCase = output.images[0, -3:, -3:, -1] # forward with prompt embeds __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 3 * ['''this is a negative prompt'''] __lowerCAmelCase = 3 * [inputs.pop('''prompt''' )] ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = sd_pipe.encode_prompt(__lowercase , negative_prompt=__lowercase ) __lowerCAmelCase = sd_pipe( **__lowercase , prompt_embeds=__lowercase , negative_prompt_embeds=__lowercase , pooled_prompt_embeds=__lowercase , negative_pooled_prompt_embeds=__lowercase , ) __lowerCAmelCase = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @slow @require_torch_gpu class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case (self , __lowercase , __lowercase="cpu" , __lowercase=torch.floataa , __lowercase=0 ): __lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowerCAmelCase = np.random.RandomState(__lowercase ).standard_normal((1, 4, 64, 64) ) __lowerCAmelCase = torch.from_numpy(__lowercase ).to(device=__lowercase , dtype=__lowercase ) __lowerCAmelCase = { '''prompt''': '''a photograph of an astronaut riding a horse''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def _snake_case (self ): __lowerCAmelCase = DiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-base''' ) pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs(__lowercase ) __lowerCAmelCase = pipe(**__lowercase ).images __lowerCAmelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) __lowerCAmelCase = np.array([0.4_9_4_9_3, 0.4_7_8_9_6, 0.4_0_7_9_8, 0.5_4_2_1_4, 0.5_3_2_1_2, 0.4_8_2_0_2, 0.4_7_6_5_6, 0.4_6_3_2_9, 0.4_8_5_0_6] ) assert np.abs(image_slice - expected_slice ).max() < 7e-3
174
1
def _SCREAMING_SNAKE_CASE ( lowercase : List[Any] , lowercase : int ): '''simple docstring''' lowerCamelCase_ = [1] for i in range(2 , lowercase ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" lowerCamelCase_ = [] lowerCamelCase_ = list(range(lowercase ) ) # Find permutation while factorials: lowerCamelCase_ = factorials.pop() lowerCamelCase_ , lowerCamelCase_ = divmod(lowercase , lowercase ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
208
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Tuple = { "transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json", } class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''transfo-xl''' UpperCamelCase = ['''mems'''] UpperCamelCase = { '''n_token''': '''vocab_size''', '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Any , A_ : Optional[Any]=267735 , A_ : Optional[Any]=[20000, 40000, 200000] , A_ : Union[str, Any]=1024 , A_ : Optional[Any]=1024 , A_ : Optional[int]=16 , A_ : Any=64 , A_ : List[Any]=4096 , A_ : str=4 , A_ : int=False , A_ : List[Any]=18 , A_ : Optional[int]=1600 , A_ : Union[str, Any]=1000 , A_ : Optional[Any]=True , A_ : Optional[int]=True , A_ : List[str]=0 , A_ : int=-1 , A_ : List[Any]=True , A_ : List[Any]=0.1 , A_ : str=0.0 , A_ : Dict=True , A_ : Dict="normal" , A_ : Dict=0.01 , A_ : Optional[Any]=0.01 , A_ : Any=0.02 , A_ : int=1E-5 , A_ : List[str]=0 , **A_ : Optional[Any] , ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = vocab_size lowerCamelCase_ = [] self.cutoffs.extend(A_ ) if proj_share_all_but_first: lowerCamelCase_ = [False] + [True] * len(self.cutoffs ) else: lowerCamelCase_ = [False] + [False] * len(self.cutoffs ) lowerCamelCase_ = d_model lowerCamelCase_ = d_embed lowerCamelCase_ = d_head lowerCamelCase_ = d_inner lowerCamelCase_ = div_val lowerCamelCase_ = pre_lnorm lowerCamelCase_ = n_layer lowerCamelCase_ = n_head lowerCamelCase_ = mem_len lowerCamelCase_ = same_length lowerCamelCase_ = attn_type lowerCamelCase_ = clamp_len lowerCamelCase_ = sample_softmax lowerCamelCase_ = adaptive lowerCamelCase_ = dropout lowerCamelCase_ = dropatt lowerCamelCase_ = untie_r lowerCamelCase_ = init lowerCamelCase_ = init_range lowerCamelCase_ = proj_init_std lowerCamelCase_ = init_std lowerCamelCase_ = layer_norm_epsilon super().__init__(eos_token_id=A_ , **A_ ) @property def a__ ( self : Tuple ) -> Any: """simple docstring""" logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def a__ ( self : Dict , A_ : Optional[int] ) -> List[Any]: """simple docstring""" raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
208
1
"""simple docstring""" from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class SCREAMING_SNAKE_CASE__ : __lowerCAmelCase : List[str] __lowerCAmelCase : Optional[str] = None # Automatically constructed __lowerCAmelCase : ClassVar[str] = "dict" __lowerCAmelCase : ClassVar[Any] = None __lowerCAmelCase : str = field(default='Translation' , init=UpperCAmelCase__ , repr=UpperCAmelCase__ ) def __call__( self ) -> Optional[int]: '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def SCREAMING_SNAKE_CASE ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class SCREAMING_SNAKE_CASE__ : __lowerCAmelCase : Optional[List] = None __lowerCAmelCase : Optional[int] = None __lowerCAmelCase : Optional[str] = None # Automatically constructed __lowerCAmelCase : ClassVar[str] = "dict" __lowerCAmelCase : ClassVar[Any] = None __lowerCAmelCase : str = field(default='TranslationVariableLanguages' , init=UpperCAmelCase__ , repr=UpperCAmelCase__ ) def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Union[str, Any] = sorted(set(self.languages ) ) if self.languages else None UpperCAmelCase : Optional[int] = len(self.languages ) if self.languages else None def __call__( self ) -> Tuple: '''simple docstring''' return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' UpperCAmelCase : List[Any] = set(self.languages ) if self.languages and set(_SCREAMING_SNAKE_CASE ) - lang_set: raise ValueError( F"Some languages in example ({', '.join(sorted(set(_SCREAMING_SNAKE_CASE ) - lang_set ) )}) are not in valid set ({', '.join(_SCREAMING_SNAKE_CASE )})." ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. UpperCAmelCase : str = [] for lang, text in translation_dict.items(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. UpperCAmelCase , UpperCAmelCase : Optional[Any] = zip(*sorted(_SCREAMING_SNAKE_CASE ) ) return {"language": languages, "translation": translations} def SCREAMING_SNAKE_CASE ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
109
'''simple docstring''' from __future__ import annotations A_ = list[list[int]] # assigning initial values to the grid A_ = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution A_ = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def A_ ( snake_case , snake_case , snake_case , snake_case ): for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def A_ ( snake_case ): for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def A_ ( snake_case ): if location := find_empty_location(snake_case ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:Optional[int] = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(snake_case , snake_case , snake_case , snake_case ): SCREAMING_SNAKE_CASE:List[str] = digit if sudoku(snake_case ) is not None: return grid SCREAMING_SNAKE_CASE:List[Any] = 0 return None def A_ ( snake_case ): for row in grid: for cell in row: print(snake_case , end=" " ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("\nExample grid:\n" + "=" * 20) print_solution(example_grid) print("\nExample grid solution:") A_ = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("Cannot find a solution.")
139
0
from collections.abc import Callable def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> float: '''simple docstring''' SCREAMING_SNAKE_CASE__ = a SCREAMING_SNAKE_CASE__ = b if function(UpperCamelCase_ ) == 0: # one of the a or b is a root for the function return a elif function(UpperCamelCase_ ) == 0: return b elif ( function(UpperCamelCase_ ) * function(UpperCamelCase_ ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: SCREAMING_SNAKE_CASE__ = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(UpperCamelCase_ ) == 0: return mid elif function(UpperCamelCase_ ) * function(UpperCamelCase_ ) < 0: SCREAMING_SNAKE_CASE__ = mid else: SCREAMING_SNAKE_CASE__ = mid SCREAMING_SNAKE_CASE__ = start + (end - start) / 2.0 return mid def _lowercase ( UpperCamelCase_ ) -> float: '''simple docstring''' return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 10_00)) import doctest doctest.testmod()
169
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=_UpperCAmelCase ) class lowercase__ ( _UpperCAmelCase ): A__ : str =field(default="""audio-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) A__ : ClassVar[Features] =Features({"""audio""": Audio()} ) A__ : ClassVar[Features] =Features({"""labels""": ClassLabel} ) A__ : str ="audio" A__ : str ="labels" def A_ ( self : List[Any] , UpperCAmelCase_ : Optional[Any] ): if self.label_column not in features: raise ValueError(F'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , UpperCAmelCase_ ): raise ValueError(F'Column {self.label_column} is not a ClassLabel.' ) SCREAMING_SNAKE_CASE__ = copy.deepcopy(self ) SCREAMING_SNAKE_CASE__ = self.label_schema.copy() SCREAMING_SNAKE_CASE__ = features[self.label_column] SCREAMING_SNAKE_CASE__ = label_schema return task_template @property def A_ ( self : Union[str, Any] ): return { self.audio_column: "audio", self.label_column: "labels", }
169
1
"""simple docstring""" from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def _snake_case ( ): A__ = HfArgumentParser(UpperCAmelCase_ ) A__ = parser.parse_args_into_dataclasses()[0] A__ = TensorFlowBenchmark(args=UpperCAmelCase_ ) try: A__ = parser.parse_args_into_dataclasses()[0] except ValueError as e: A__ = """Arg --no_{0} is no longer used, please use --no-{0} instead.""" A__ = """ """.join(str(UpperCAmelCase_ ).split(""" """ )[:-1] ) A__ = """""" A__ = eval(str(UpperCAmelCase_ ).split(""" """ )[-1] ) A__ = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(UpperCAmelCase_ ) if len(UpperCAmelCase_ ) > 0: A__ = full_error_msg + begin_error_msg + str(UpperCAmelCase_ ) raise ValueError(UpperCAmelCase_ ) benchmark.run() if __name__ == "__main__": main()
335
"""simple docstring""" def _snake_case ( UpperCAmelCase_ : list[list[int]] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : set ): A__ , A__ = len(UpperCAmelCase_ ), len(grid[0] ) if ( min(UpperCAmelCase_ , UpperCAmelCase_ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) A__ = 0 count += depth_first_search(UpperCAmelCase_ , row + 1 , UpperCAmelCase_ , UpperCAmelCase_ ) count += depth_first_search(UpperCAmelCase_ , row - 1 , UpperCAmelCase_ , UpperCAmelCase_ ) count += depth_first_search(UpperCAmelCase_ , UpperCAmelCase_ , col + 1 , UpperCAmelCase_ ) count += depth_first_search(UpperCAmelCase_ , UpperCAmelCase_ , col - 1 , UpperCAmelCase_ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
335
1
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) class a ( UpperCAmelCase ): _lowercase = ["pixel_values"] def __init__( self , A_ = True , A_ = 32 , A_=PILImageResampling.BILINEAR , A_ = True , **A_ , ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = do_resize _UpperCAmelCase : List[str] = do_rescale _UpperCAmelCase : List[Any] = size_divisor _UpperCAmelCase : Optional[Any] = resample super().__init__(**A_ ) def _UpperCAmelCase ( self , A_ , A_ , A_ , A_ = None , **A_ ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = get_image_size(A_ ) # Rounds the height and width down to the closest multiple of size_divisor _UpperCAmelCase : str = height // size_divisor * size_divisor _UpperCAmelCase : Union[str, Any] = width // size_divisor * size_divisor _UpperCAmelCase : Dict = resize(A_ , (new_h, new_w) , resample=A_ , data_format=A_ , **A_ ) return image def _UpperCAmelCase ( self , A_ , A_ , A_ = None , **A_ ): '''simple docstring''' return rescale(image=A_ , scale=A_ , data_format=A_ , **A_ ) def _UpperCAmelCase ( self , A_ , A_ = None , A_ = None , A_=None , A_ = None , A_ = None , A_ = ChannelDimension.FIRST , **A_ , ): '''simple docstring''' _UpperCAmelCase : Tuple = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase : str = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase : Tuple = size_divisor if size_divisor is not None else self.size_divisor _UpperCAmelCase : int = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError("size_divisor is required for resizing" ) _UpperCAmelCase : Optional[Any] = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError("Invalid image(s)" ) # All transformations expect numpy arrays. _UpperCAmelCase : Tuple = [to_numpy_array(A_ ) for img in images] if do_resize: _UpperCAmelCase : str = [self.resize(A_ , size_divisor=A_ , resample=A_ ) for image in images] if do_rescale: _UpperCAmelCase : Dict = [self.rescale(A_ , scale=1 / 255 ) for image in images] _UpperCAmelCase : Optional[int] = [to_channel_dimension_format(A_ , A_ ) for image in images] _UpperCAmelCase : Union[str, Any] = {"pixel_values": images} return BatchFeature(data=A_ , tensor_type=A_ )
189
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class a ( UpperCAmelCase ): _lowercase = ["image_processor", "tokenizer"] _lowercase = "OwlViTImageProcessor" _lowercase = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , A_=None , A_=None , **A_ ): '''simple docstring''' _UpperCAmelCase : List[str] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , A_ , ) _UpperCAmelCase : Union[str, Any] = kwargs.pop("feature_extractor" ) _UpperCAmelCase : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(A_ , A_ ) def __call__( self , A_=None , A_=None , A_=None , A_="max_length" , A_="np" , **A_ ): '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(A_ , A_ ) or (isinstance(A_ , A_ ) and not isinstance(text[0] , A_ )): _UpperCAmelCase : Optional[int] = [self.tokenizer(A_ , padding=A_ , return_tensors=A_ , **A_ )] elif isinstance(A_ , A_ ) and isinstance(text[0] , A_ ): _UpperCAmelCase : Optional[int] = [] # Maximum number of queries across batch _UpperCAmelCase : Optional[Any] = max([len(A_ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(A_ ) != max_num_queries: _UpperCAmelCase : Optional[int] = t + [" "] * (max_num_queries - len(A_ )) _UpperCAmelCase : str = self.tokenizer(A_ , padding=A_ , return_tensors=A_ , **A_ ) encodings.append(A_ ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": _UpperCAmelCase : List[str] = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) _UpperCAmelCase : Tuple = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp _UpperCAmelCase : Optional[Any] = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) _UpperCAmelCase : str = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch _UpperCAmelCase : str = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) _UpperCAmelCase : Dict = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf _UpperCAmelCase : Union[str, Any] = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) _UpperCAmelCase : Optional[int] = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) _UpperCAmelCase : Optional[int] = BatchEncoding() _UpperCAmelCase : str = input_ids _UpperCAmelCase : Optional[Any] = attention_mask if query_images is not None: _UpperCAmelCase : int = BatchEncoding() _UpperCAmelCase : str = self.image_processor( A_ , return_tensors=A_ , **A_ ).pixel_values _UpperCAmelCase : Optional[Any] = query_pixel_values if images is not None: _UpperCAmelCase : int = self.image_processor(A_ , return_tensors=A_ , **A_ ) if text is not None and images is not None: _UpperCAmelCase : Optional[int] = image_features.pixel_values return encoding elif query_images is not None and images is not None: _UpperCAmelCase : Any = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**A_ ) , tensor_type=A_ ) def _UpperCAmelCase ( self , *A_ , **A_ ): '''simple docstring''' return self.image_processor.post_process(*A_ , **A_ ) def _UpperCAmelCase ( self , *A_ , **A_ ): '''simple docstring''' return self.image_processor.post_process_object_detection(*A_ , **A_ ) def _UpperCAmelCase ( self , *A_ , **A_ ): '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*A_ , **A_ ) def _UpperCAmelCase ( self , *A_ , **A_ ): '''simple docstring''' return self.tokenizer.batch_decode(*A_ , **A_ ) def _UpperCAmelCase ( self , *A_ , **A_ ): '''simple docstring''' return self.tokenizer.decode(*A_ , **A_ ) @property def _UpperCAmelCase ( self ): '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , A_ , ) return self.image_processor_class @property def _UpperCAmelCase ( self ): '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , A_ , ) return self.image_processor
189
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[Any] = botoa.client("iam" ) SCREAMING_SNAKE_CASE_: Dict = { """Version""": """2012-10-17""", """Statement""": [ {"""Effect""": """Allow""", """Principal""": {"""Service""": """sagemaker.amazonaws.com"""}, """Action""": """sts:AssumeRole"""} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=lowercase_ , AssumeRolePolicyDocument=json.dumps(lowercase_ , indent=2 ) ) SCREAMING_SNAKE_CASE_: Dict = { """Version""": """2012-10-17""", """Statement""": [ { """Effect""": """Allow""", """Action""": [ """sagemaker:*""", """ecr:GetDownloadUrlForLayer""", """ecr:BatchGetImage""", """ecr:BatchCheckLayerAvailability""", """ecr:GetAuthorizationToken""", """cloudwatch:PutMetricData""", """cloudwatch:GetMetricData""", """cloudwatch:GetMetricStatistics""", """cloudwatch:ListMetrics""", """logs:CreateLogGroup""", """logs:CreateLogStream""", """logs:DescribeLogStreams""", """logs:PutLogEvents""", """logs:GetLogEvents""", """s3:CreateBucket""", """s3:ListBucket""", """s3:GetBucketLocation""", """s3:GetObject""", """s3:PutObject""", ], """Resource""": """*""", } ], } # attach policy to role iam_client.put_role_policy( RoleName=lowercase_ , PolicyName=f"{role_name}_policy_permission" , PolicyDocument=json.dumps(lowercase_ , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(f"role {role_name} already exists. Using existing one" ) def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[Any] = botoa.client("iam" ) return iam_client.get_role(RoleName=lowercase_ )["Role"]["Arn"] def A_ ( ): SCREAMING_SNAKE_CASE_: Union[str, Any] = _ask_options( "How do you want to authorize?" , ["AWS Profile", "Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) "] , lowercase_ , ) SCREAMING_SNAKE_CASE_: str = None if credentials_configuration == 0: SCREAMING_SNAKE_CASE_: Any = _ask_field("Enter your AWS Profile name: [default] " , default="default" ) SCREAMING_SNAKE_CASE_: Any = aws_profile else: print( "Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with," "`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`" ) SCREAMING_SNAKE_CASE_: Optional[Any] = _ask_field("AWS Access Key ID: " ) SCREAMING_SNAKE_CASE_: Any = aws_access_key_id SCREAMING_SNAKE_CASE_: Optional[Any] = _ask_field("AWS Secret Access Key: " ) SCREAMING_SNAKE_CASE_: List[Any] = aws_secret_access_key SCREAMING_SNAKE_CASE_: Dict = _ask_field("Enter your AWS Region: [us-east-1]" , default="us-east-1" ) SCREAMING_SNAKE_CASE_: Union[str, Any] = aws_region SCREAMING_SNAKE_CASE_: Tuple = _ask_options( "Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?" , ["Provide IAM Role name", "Create new IAM role using credentials"] , lowercase_ , ) if role_management == 0: SCREAMING_SNAKE_CASE_: str = _ask_field("Enter your IAM role name: " ) else: SCREAMING_SNAKE_CASE_: Tuple = """accelerate_sagemaker_execution_role""" print(f"Accelerate will create an iam role \"{iam_role_name}\" using the provided credentials" ) _create_iam_role_for_sagemaker(lowercase_ ) SCREAMING_SNAKE_CASE_: Any = _ask_field( "Do you want to use custom Docker image? [yes/NO]: " , _convert_yes_no_to_bool , default=lowercase_ , error_message="Please enter yes or no." , ) SCREAMING_SNAKE_CASE_: Dict = None if is_custom_docker_image: SCREAMING_SNAKE_CASE_: Any = _ask_field("Enter your Docker image: " , lambda _UpperCAmelCase : str(lowercase_ ).lower() ) SCREAMING_SNAKE_CASE_: List[str] = _ask_field( "Do you want to provide SageMaker input channels with data locations? [yes/NO]: " , _convert_yes_no_to_bool , default=lowercase_ , error_message="Please enter yes or no." , ) SCREAMING_SNAKE_CASE_: Dict = None if is_sagemaker_inputs_enabled: SCREAMING_SNAKE_CASE_: int = _ask_field( "Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): " , lambda _UpperCAmelCase : str(lowercase_ ).lower() , ) SCREAMING_SNAKE_CASE_: Optional[Any] = _ask_field( "Do you want to enable SageMaker metrics? [yes/NO]: " , _convert_yes_no_to_bool , default=lowercase_ , error_message="Please enter yes or no." , ) SCREAMING_SNAKE_CASE_: Tuple = None if is_sagemaker_metrics_enabled: SCREAMING_SNAKE_CASE_: Optional[Any] = _ask_field( "Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): " , lambda _UpperCAmelCase : str(lowercase_ ).lower() , ) SCREAMING_SNAKE_CASE_: List[str] = _ask_options( "What is the distributed mode?" , ["No distributed training", "Data parallelism"] , _convert_sagemaker_distributed_mode , ) SCREAMING_SNAKE_CASE_: Any = {} SCREAMING_SNAKE_CASE_: Union[str, Any] = _ask_field( "Do you wish to optimize your script with torch dynamo?[yes/NO]:" , _convert_yes_no_to_bool , default=lowercase_ , error_message="Please enter yes or no." , ) if use_dynamo: SCREAMING_SNAKE_CASE_: Optional[int] = """dynamo_""" SCREAMING_SNAKE_CASE_: Optional[Any] = _ask_options( "Which dynamo backend would you like to use?" , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) SCREAMING_SNAKE_CASE_: Any = _ask_field( "Do you want to customize the defaults sent to torch.compile? [yes/NO]: " , _convert_yes_no_to_bool , default=lowercase_ , error_message="Please enter yes or no." , ) if use_custom_options: SCREAMING_SNAKE_CASE_: Union[str, Any] = _ask_options( "Which mode do you want to use?" , lowercase_ , lambda _UpperCAmelCase : TORCH_DYNAMO_MODES[int(lowercase_ )] , default="default" , ) SCREAMING_SNAKE_CASE_: Optional[Any] = _ask_field( "Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: " , _convert_yes_no_to_bool , default=lowercase_ , error_message="Please enter yes or no." , ) SCREAMING_SNAKE_CASE_: Dict = _ask_field( "Do you want to enable dynamic shape tracing? [yes/NO]: " , _convert_yes_no_to_bool , default=lowercase_ , error_message="Please enter yes or no." , ) SCREAMING_SNAKE_CASE_: Union[str, Any] = """Which EC2 instance type you want to use for your training?""" if distributed_type != SageMakerDistributedType.NO: SCREAMING_SNAKE_CASE_: Tuple = _ask_options( lowercase_ , lowercase_ , lambda _UpperCAmelCase : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(lowercase_ )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" SCREAMING_SNAKE_CASE_: List[str] = _ask_field(lowercase_ , lambda _UpperCAmelCase : str(lowercase_ ).lower() , default="ml.p3.2xlarge" ) SCREAMING_SNAKE_CASE_: Any = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): SCREAMING_SNAKE_CASE_: List[Any] = _ask_field( "How many machines do you want use? [1]: " , lowercase_ , default=1 , ) SCREAMING_SNAKE_CASE_: List[str] = _ask_options( "Do you wish to use FP16 or BF16 (mixed precision)?" , ["no", "fp16", "bf16", "fp8"] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( "Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts." ) return SageMakerConfig( image_uri=lowercase_ , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=lowercase_ , use_cpu=lowercase_ , dynamo_config=lowercase_ , eca_instance_type=lowercase_ , profile=lowercase_ , region=lowercase_ , iam_role_name=lowercase_ , mixed_precision=lowercase_ , num_machines=lowercase_ , sagemaker_inputs_file=lowercase_ , sagemaker_metrics_file=lowercase_ , )
13
import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def UpperCamelCase (lowercase_: str ) -> Dict: A__ : int = int(lowercase_ ) A__ , A__ , A__ : Tuple = t // 3600, (t // 60) % 60, t % 60 return f"""{h}:{m:02d}:{s:02d}""" if h != 0 else f"""{m:02d}:{s:02d}""" def UpperCamelCase (lowercase_: str , lowercase_: Optional[Any] , lowercase_: Union[str, Any] , lowercase_: Tuple , lowercase_: Any=300 ) -> Optional[int]: # docstyle-ignore return f""" <div> {prefix} <progress value='{value}' max='{total}' style='width:{width}px; height:20px; vertical-align: middle;'></progress> {label} </div> """ def UpperCamelCase (lowercase_: Tuple ) -> Optional[int]: A__ : Tuple = """<table border=\"1\" class=\"dataframe\">\n""" html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += f""" <th>{i}</th>\n""" html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: A__ : str = f"""{elt:.6f}""" if isinstance(lowercase_ , lowercase_ ) else str(lowercase_ ) html_code += f""" <td>{elt}</td>\n""" html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class _a : '''simple docstring''' UpperCAmelCase__: str = 5 UpperCAmelCase__: int = 0.2 def __init__( self , A__ , A__ = None , A__ = True , A__ = None , A__ = 300 , ): A__ : Optional[int] = total A__ : Tuple = """""" if prefix is None else prefix A__ : str = leave A__ : str = parent A__ : int = width A__ : Dict = None A__ : List[str] = None A__ : Optional[int] = None def __A ( self , A__ , A__ = False , A__ = None ): A__ : Tuple = value if comment is not None: A__ : Any = comment if self.last_value is None: A__ : int = time.time() A__ : Dict = value A__ : int = None A__ : int = self.warmup A__ : str = 1 self.update_bar(A__ ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 A__ : Any = time.time() A__ : str = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: A__ : Dict = self.elapsed_time / (value - self.start_value) else: A__ : List[str] = None if value >= self.total: A__ : Optional[Any] = self.total A__ : List[Any] = None if not self.leave: self.close() elif self.average_time_per_item is not None: A__ : List[Any] = self.average_time_per_item * (self.total - value) self.update_bar(A__ ) A__ : Any = value A__ : List[str] = current_time if self.average_time_per_item is None: A__ : str = 1 else: A__ : Optional[Any] = max(int(self.update_every / self.average_time_per_item ) , 1 ) def __A ( self , A__ , A__=None ): A__ : Tuple = """ """ * (len(str(self.total ) ) - len(str(A__ ) )) + str(A__ ) if self.elapsed_time is None: A__ : Union[str, Any] = F"""[{spaced_value}/{self.total} : < :""" elif self.predicted_remaining is None: A__ : Tuple = F"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )}""" else: A__ : Optional[int] = ( F"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <""" F""" {format_time(self.predicted_remaining )}""" ) self.label += F""", {1/self.average_time_per_item:.2f} it/s""" self.label += "]" if self.comment is None or len(self.comment ) == 0 else F""", {self.comment}]""" self.display() def __A ( self ): A__ : str = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: A__ : str = disp.display(disp.HTML(self.html_code ) , display_id=A__ ) else: self.output.update(disp.HTML(self.html_code ) ) def __A ( self ): if self.parent is None and self.output is not None: self.output.update(disp.HTML("""""" ) ) class _a (__magic_name__ ): '''simple docstring''' def __init__( self , A__ , A__=None ): super().__init__(A__ ) A__ : Optional[Any] = None if column_names is None else [column_names] A__ : Optional[Any] = None def __A ( self ): A__ : List[str] = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: A__ : Optional[int] = disp.display(disp.HTML(self.html_code ) , display_id=A__ ) else: self.output.update(disp.HTML(self.html_code ) ) def __A ( self , A__ ): if self.inner_table is None: A__ : List[str] = [list(values.keys() ), list(values.values() )] else: A__ : Optional[Any] = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(A__ ) A__ : Any = columns self.inner_table.append([values[c] for c in columns] ) def __A ( self , A__ , A__=None , A__=300 ): A__ : Optional[Any] = NotebookProgressBar(A__ , prefix=A__ , parent=self , width=A__ ) return self.child_bar def __A ( self ): A__ : List[str] = None self.display() class _a (__magic_name__ ): '''simple docstring''' def __init__( self ): A__ : int = None A__ : List[str] = None A__ : Union[str, Any] = False def __A ( self , A__ , A__ , A__ , **A__ ): A__ : List[str] = """Epoch""" if args.evaluation_strategy == IntervalStrategy.EPOCH else """Step""" A__ : Dict = 0 A__ : Tuple = 0 A__ : Optional[int] = [self.first_column] + ["""Training Loss"""] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append("""Validation Loss""" ) A__ : Union[str, Any] = NotebookTrainingTracker(state.max_steps , A__ ) def __A ( self , A__ , A__ , A__ , **A__ ): A__ : Any = int(state.epoch ) if int(state.epoch ) == state.epoch else F"""{state.epoch:.2f}""" self.training_tracker.update( state.global_step + 1 , comment=F"""Epoch {epoch}/{state.num_train_epochs}""" , force_update=self._force_next_update , ) A__ : str = False def __A ( self , A__ , A__ , A__ , A__=None , **A__ ): if not has_length(A__ ): return if self.prediction_bar is None: if self.training_tracker is not None: A__ : Union[str, Any] = self.training_tracker.add_child(len(A__ ) ) else: A__ : Tuple = NotebookProgressBar(len(A__ ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def __A ( self , A__ , A__ , A__ , **A__ ): if self.prediction_bar is not None: self.prediction_bar.close() A__ : List[str] = None def __A ( self , A__ , A__ , A__ , A__=None , **A__ ): # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: A__ : Dict = {"""Training Loss""": logs["""loss"""]} # First column is necessarily Step sine we're not in epoch eval strategy A__ : List[Any] = state.global_step self.training_tracker.write_line(A__ ) def __A ( self , A__ , A__ , A__ , A__=None , **A__ ): if self.training_tracker is not None: A__ : Tuple = {"""Training Loss""": """No log""", """Validation Loss""": """No log"""} for log in reversed(state.log_history ): if "loss" in log: A__ : Dict = log["""loss"""] break if self.first_column == "Epoch": A__ : List[Any] = int(state.epoch ) else: A__ : Optional[Any] = state.global_step A__ : Optional[Any] = """eval""" for k in metrics: if k.endswith("""_loss""" ): A__ : Optional[int] = re.sub(r"""\_loss$""" , """""" , A__ ) A__ : int = metrics.pop("""total_flos""" , A__ ) A__ : int = metrics.pop("""epoch""" , A__ ) A__ : Optional[int] = metrics.pop(F"""{metric_key_prefix}_runtime""" , A__ ) A__ : Any = metrics.pop(F"""{metric_key_prefix}_samples_per_second""" , A__ ) A__ : List[Any] = metrics.pop(F"""{metric_key_prefix}_steps_per_second""" , A__ ) A__ : Optional[Any] = metrics.pop(F"""{metric_key_prefix}_jit_compilation_time""" , A__ ) for k, v in metrics.items(): if k == F"""{metric_key_prefix}_loss""": A__ : Any = v else: A__ : Optional[Any] = k.split("""_""" ) A__ : Any = """ """.join([part.capitalize() for part in splits[1:]] ) A__ : List[str] = v self.training_tracker.write_line(A__ ) self.training_tracker.remove_child() A__ : Dict = None # Evaluation takes a long time so we should force the next update. A__ : Union[str, Any] = True def __A ( self , A__ , A__ , A__ , **A__ ): self.training_tracker.update( state.global_step , comment=F"""Epoch {int(state.epoch )}/{state.num_train_epochs}""" , force_update=A__ ) A__ : Optional[int] = None
192
0
def _lowerCamelCase( lowercase__ ) -> list[list]: '''simple docstring''' __lowercase= current_set.copy() for row_index, row in enumerate(lowercase__ ): __lowercase= row[0] for column_index, column in enumerate(lowercase__ ): if magnitude == 0: __lowercase= column continue __lowercase= column / magnitude # Subtract to cancel term __lowercase= current_set[0] __lowercase= [first_row] __lowercase= current_set[1::] for row in current_set: __lowercase= [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(lowercase__ ) continue for column_index in range(len(lowercase__ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(lowercase__ ) # Create next recursion iteration set if len(final_set[0] ) != 3: __lowercase= final_set[0] __lowercase= [] __lowercase= [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) __lowercase= simplify(lowercase__ ) for i in range(len(lowercase__ ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , lowercase__ ) __lowercase= resultant return final_set def _lowerCamelCase( lowercase__ ) -> list: '''simple docstring''' if len(lowercase__ ) == 0: raise IndexError('solve_simultaneous() requires n lists of length n+1' ) __lowercase= len(lowercase__ ) + 1 if any(len(lowercase__ ) != _length for item in equations ): raise IndexError('solve_simultaneous() requires n lists of length n+1' ) for row in equations: if any(not isinstance(lowercase__ , (int, float) ) for column in row ): raise ValueError('solve_simultaneous() requires lists of integers' ) if len(lowercase__ ) == 1: return [equations[0][-1] / equations[0][0]] __lowercase= equations.copy() if any(0 in row for row in data_set ): __lowercase= data_set.copy() __lowercase= [] for row_index, row in enumerate(lowercase__ ): if 0 not in row: __lowercase= data_set.pop(lowercase__ ) break if not full_row: raise ValueError('solve_simultaneous() requires at least 1 full equation' ) data_set.insert(0 , lowercase__ ) __lowercase= data_set.copy() __lowercase= simplify(lowercase__ ) __lowercase= simplified[::-1] __lowercase= [] for row in simplified: __lowercase= row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue __lowercase= row.copy()[: len(lowercase__ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(lowercase__ ) == 0: solutions.append(0 ) continue __lowercase= temp_row[1::] __lowercase= temp_row[::-1] for column_index, column in enumerate(lowercase__ ): current_solution -= column * solutions[column_index] solutions.append(lowercase__ ) __lowercase= [] for item in solutions: final.append(float(round(lowercase__ , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
304
from __future__ import annotations from collections.abc import Callable def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ , lowercase__ = 1_0_0 , ) -> float: '''simple docstring''' __lowercase= x_start __lowercase= fnc(lowercase__ ) __lowercase= 0.0 for _ in range(lowercase__ ): # Approximates small segments of curve as linear and solve # for trapezoidal area __lowercase= (x_end - x_start) / steps + xa __lowercase= fnc(lowercase__ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step __lowercase= xa __lowercase= fxa return area if __name__ == "__main__": def _lowerCamelCase( lowercase__ ) -> Dict: '''simple docstring''' return x**3 + x**2 print('''f(x) = x^3 + x^2''') print('''The area between the curve, x = -5, x = 5 and the x axis is:''') lowerCAmelCase = 1_0 while i <= 1_0_0_0_0_0: print(F'with {i} steps: {trapezoidal_area(f, -5, 5, i)}') i *= 1_0
304
1
import numpy as np def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = 1E-12, __lowerCamelCase = 1_00, ): assert np.shape(__lowerCamelCase )[0] == np.shape(__lowerCamelCase )[1] # Ensure proper dimensionality. assert np.shape(__lowerCamelCase )[0] == np.shape(__lowerCamelCase )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(__lowerCamelCase ) == np.iscomplexobj(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = np.iscomplexobj(__lowerCamelCase ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(__lowerCamelCase, input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 1E12 while not convergence: # Multiple matrix by the vector. SCREAMING_SNAKE_CASE_ = np.dot(__lowerCamelCase, __lowerCamelCase ) # Normalize the resulting output vector. SCREAMING_SNAKE_CASE_ = w / np.linalg.norm(__lowerCamelCase ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) SCREAMING_SNAKE_CASE_ = vector.conj().T if is_complex else vector.T SCREAMING_SNAKE_CASE_ = np.dot(__lowerCamelCase, np.dot(__lowerCamelCase, __lowerCamelCase ) ) # Check convergence. SCREAMING_SNAKE_CASE_ = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = lambda_ if is_complex: SCREAMING_SNAKE_CASE_ = np.real(lambda_ ) return lambda_, vector def A__ ( ): SCREAMING_SNAKE_CASE_ = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) SCREAMING_SNAKE_CASE_ = np.array([41, 4, 20] ) SCREAMING_SNAKE_CASE_ = real_input_matrix.astype(np.complexaaa ) SCREAMING_SNAKE_CASE_ = np.triu(1j * complex_input_matrix, 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T SCREAMING_SNAKE_CASE_ = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": SCREAMING_SNAKE_CASE_ = real_input_matrix SCREAMING_SNAKE_CASE_ = real_vector elif problem_type == "complex": SCREAMING_SNAKE_CASE_ = complex_input_matrix SCREAMING_SNAKE_CASE_ = complex_vector # Our implementation. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = power_iteration(__lowerCamelCase, __lowerCamelCase ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = np.linalg.eigh(__lowerCamelCase ) # Last eigenvalue is the maximum one. SCREAMING_SNAKE_CASE_ = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. SCREAMING_SNAKE_CASE_ = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(__lowerCamelCase ) - np.abs(__lowerCamelCase ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
299
import math import random def A__ ( __lowerCamelCase, __lowerCamelCase = False ): if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value __UpperCAmelCase = 0.02 def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = float(2 * (random.randint(1, 1_00 )) - 1 ) for _ in range(__lowerCamelCase ): # Forward propagation SCREAMING_SNAKE_CASE_ = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? SCREAMING_SNAKE_CASE_ = (expected / 1_00) - layer_a # Error delta SCREAMING_SNAKE_CASE_ = layer_1_error * sigmoid_function(__lowerCamelCase, __lowerCamelCase ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 1_00 if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = int(input("Expected value: ")) __UpperCAmelCase = int(input("Number of propagations: ")) print(forward_propagation(expected, number_propagations))
299
1
import math class lowercase_ : def __init__( self , lowercase_=0 ): # a graph with Node 0,1,...,N-1 _snake_case : Any = n _snake_case : Union[str, Any] = [ [math.inf for j in range(0 , _snake_case )] for i in range(0 , _snake_case ) ] # adjacency matrix for weight _snake_case : int = [ [math.inf for j in range(0 , _snake_case )] for i in range(0 , _snake_case ) ] # dp[i][j] stores minimum distance from i to j def UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ ): _snake_case : Any = w def UpperCamelCase ( self ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): _snake_case : List[str] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def UpperCamelCase ( self , lowercase_ , lowercase_ ): return self.dp[u][v] if __name__ == "__main__": __SCREAMING_SNAKE_CASE : str = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 1_0) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 1_0) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
361
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path __SCREAMING_SNAKE_CASE : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) __SCREAMING_SNAKE_CASE : list[int] = [ord(letter) for letter in string.ascii_lowercase] __SCREAMING_SNAKE_CASE : set[int] = {ord(char) for char in VALID_CHARS} __SCREAMING_SNAKE_CASE : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def snake_case (__lowercase , __lowercase ) -> str | None: '''simple docstring''' _snake_case : str = "" _snake_case : int _snake_case : int _snake_case : int for keychar, cipherchar in zip(cycle(__lowercase ) , __lowercase ): _snake_case : str = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(__lowercase ) return decoded def snake_case (__lowercase ) -> list[str]: '''simple docstring''' _snake_case : list[str] = [] for key in product(__lowercase , repeat=3 ): _snake_case : Union[str, Any] = try_key(__lowercase , __lowercase ) if encoded is not None: possibles.append(__lowercase ) return possibles def snake_case (__lowercase , __lowercase ) -> list[str]: '''simple docstring''' return [possible for possible in possibles if common_word in possible.lower()] def snake_case (__lowercase = "p059_cipher.txt" ) -> int: '''simple docstring''' _snake_case : list[int] _snake_case : list[str] _snake_case : str _snake_case : str _snake_case : str = Path(__lowercase ).parent.joinpath(__lowercase ).read_text(encoding="utf-8" ) _snake_case : Dict = [int(__lowercase ) for number in data.strip().split("," )] _snake_case : Tuple = filter_valid_chars(__lowercase ) for common_word in COMMON_WORDS: _snake_case : Optional[int] = filter_common_word(__lowercase , __lowercase ) if len(__lowercase ) == 1: break _snake_case : int = possibles[0] return sum(ord(__lowercase ) for char in decoded_text ) if __name__ == "__main__": print(F'''{solution() = }''')
284
0
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def UpperCamelCase_ ( _UpperCAmelCase : str , _UpperCAmelCase : str ) -> str | Literal[False]: """simple docstring""" _UpperCAmelCase : Optional[Any] = list(_UpperCAmelCase ) _UpperCAmelCase : Dict = list(_UpperCAmelCase ) _UpperCAmelCase : List[str] = 0 for i in range(len(_UpperCAmelCase ) ): if lista[i] != lista[i]: count += 1 _UpperCAmelCase : Tuple = "_" if count > 1: return False else: return "".join(_UpperCAmelCase ) def UpperCamelCase_ ( _UpperCAmelCase : list[str] ) -> list[str]: """simple docstring""" _UpperCAmelCase : List[Any] = [] while True: _UpperCAmelCase : List[str] = ["$"] * len(_UpperCAmelCase ) _UpperCAmelCase : Union[str, Any] = [] for i in range(len(_UpperCAmelCase ) ): for j in range(i + 1 , len(_UpperCAmelCase ) ): _UpperCAmelCase : str = compare_string(binary[i] , binary[j] ) if k is False: _UpperCAmelCase : Optional[Any] = "*" _UpperCAmelCase : Optional[Any] = "*" temp.append("X" ) for i in range(len(_UpperCAmelCase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_UpperCAmelCase ) == 0: return pi _UpperCAmelCase : Dict = list(set(_UpperCAmelCase ) ) def UpperCamelCase_ ( _UpperCAmelCase : int , _UpperCAmelCase : Sequence[float] ) -> list[str]: """simple docstring""" _UpperCAmelCase : int = [] for minterm in minterms: _UpperCAmelCase : str = "" for _ in range(_UpperCAmelCase ): _UpperCAmelCase : List[Any] = str(minterm % 2 ) + string minterm //= 2 temp.append(_UpperCAmelCase ) return temp def UpperCamelCase_ ( _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : int ) -> bool: """simple docstring""" _UpperCAmelCase : Tuple = list(_UpperCAmelCase ) _UpperCAmelCase : Dict = list(_UpperCAmelCase ) _UpperCAmelCase : Union[str, Any] = 0 for i in range(len(_UpperCAmelCase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def UpperCamelCase_ ( _UpperCAmelCase : list[list[int]] , _UpperCAmelCase : list[str] ) -> list[str]: """simple docstring""" _UpperCAmelCase : str = [] _UpperCAmelCase : str = [0] * len(_UpperCAmelCase ) for i in range(len(chart[0] ) ): _UpperCAmelCase : List[str] = 0 _UpperCAmelCase : Dict = -1 for j in range(len(_UpperCAmelCase ) ): if chart[j][i] == 1: count += 1 _UpperCAmelCase : int = j if count == 1: _UpperCAmelCase : int = 1 for i in range(len(_UpperCAmelCase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_UpperCAmelCase ) ): _UpperCAmelCase : Dict = 0 temp.append(prime_implicants[i] ) while True: _UpperCAmelCase : Union[str, Any] = 0 _UpperCAmelCase : Any = -1 _UpperCAmelCase : Tuple = 0 for i in range(len(_UpperCAmelCase ) ): _UpperCAmelCase : List[Any] = chart[i].count(1 ) if count_n > max_n: _UpperCAmelCase : Optional[int] = count_n _UpperCAmelCase : Dict = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_UpperCAmelCase ) ): _UpperCAmelCase : Tuple = 0 def UpperCamelCase_ ( _UpperCAmelCase : list[str] , _UpperCAmelCase : list[str] ) -> list[list[int]]: """simple docstring""" _UpperCAmelCase : int = [[0 for x in range(len(_UpperCAmelCase ) )] for x in range(len(_UpperCAmelCase ) )] for i in range(len(_UpperCAmelCase ) ): _UpperCAmelCase : Optional[int] = prime_implicants[i].count("_" ) for j in range(len(_UpperCAmelCase ) ): if is_for_table(prime_implicants[i] , binary[j] , _UpperCAmelCase ): _UpperCAmelCase : List[Any] = 1 return chart def UpperCamelCase_ ( ) -> None: """simple docstring""" _UpperCAmelCase : Dict = int(input("Enter the no. of variables\n" ) ) _UpperCAmelCase : Dict = [ float(_UpperCAmelCase ) for x in input( "Enter the decimal representation of Minterms 'Spaces Separated'\n" ).split() ] _UpperCAmelCase : List[str] = decimal_to_binary(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase : int = check(_UpperCAmelCase ) print("Prime Implicants are:" ) print(_UpperCAmelCase ) _UpperCAmelCase : Tuple = prime_implicant_chart(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase : Tuple = selection(_UpperCAmelCase , _UpperCAmelCase ) print("Essential Prime Implicants are:" ) print(_UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
31
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class lowerCamelCase_ (unittest.TestCase ): '''simple docstring''' def __init__( self : int , A : Dict , A : Optional[int]=7 , A : Tuple=3 , A : Optional[Any]=10 , A : int=18 , A : Dict=30 , A : List[str]=400 , A : int=True , A : Optional[Any]=None , A : Optional[Any]=True , A : List[Any]=[0.5, 0.5, 0.5] , A : List[str]=[0.5, 0.5, 0.5] , A : Optional[int]=None , ): _UpperCAmelCase : Dict = size if size is not None else {"shortest_edge": 18} _UpperCAmelCase : Optional[Any] = crop_size if crop_size is not None else {"height": 18, "width": 18} _UpperCAmelCase : Tuple = parent _UpperCAmelCase : Any = batch_size _UpperCAmelCase : Optional[int] = num_channels _UpperCAmelCase : Optional[Any] = num_frames _UpperCAmelCase : Any = image_size _UpperCAmelCase : Dict = min_resolution _UpperCAmelCase : Any = max_resolution _UpperCAmelCase : Optional[int] = do_resize _UpperCAmelCase : str = size _UpperCAmelCase : List[Any] = do_normalize _UpperCAmelCase : Any = image_mean _UpperCAmelCase : Tuple = image_std _UpperCAmelCase : Any = crop_size def _A ( self : List[Any] ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class lowerCamelCase_ (snake_case__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase: Dict = VivitImageProcessor if is_vision_available() else None def _A ( self : int ): _UpperCAmelCase : Tuple = VivitImageProcessingTester(self ) @property def _A ( self : Optional[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def _A ( self : Union[str, Any] ): _UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , "image_mean" ) ) self.assertTrue(hasattr(A , "image_std" ) ) self.assertTrue(hasattr(A , "do_normalize" ) ) self.assertTrue(hasattr(A , "do_resize" ) ) self.assertTrue(hasattr(A , "do_center_crop" ) ) self.assertTrue(hasattr(A , "size" ) ) def _A ( self : List[Any] ): _UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) _UpperCAmelCase : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def _A ( self : Tuple ): # Initialize image_processing _UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos _UpperCAmelCase : Any = prepare_video_inputs(self.image_processor_tester , equal_resolution=A ) for video in video_inputs: self.assertIsInstance(A , A ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input _UpperCAmelCase : str = image_processing(video_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched _UpperCAmelCase : List[Any] = image_processing(A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _A ( self : List[Any] ): # Initialize image_processing _UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase : List[Any] = prepare_video_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for video in video_inputs: self.assertIsInstance(A , A ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input _UpperCAmelCase : Tuple = image_processing(video_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched _UpperCAmelCase : Optional[int] = image_processing(A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _A ( self : List[Any] ): # Initialize image_processing _UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase : Optional[int] = prepare_video_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for video in video_inputs: self.assertIsInstance(A , A ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input _UpperCAmelCase : Optional[Any] = image_processing(video_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched _UpperCAmelCase : List[Any] = image_processing(A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
31
1
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def lowerCamelCase__ ( snake_case_ : dict ) -> tuple: return (data["data"], data["target"]) def lowerCamelCase__ ( snake_case_ : np.ndarray , snake_case_ : np.ndarray ) -> XGBClassifier: __snake_case = XGBClassifier() classifier.fit(snake_case_ , snake_case_ ) return classifier def lowerCamelCase__ ( ) -> None: __snake_case = load_iris() __snake_case , __snake_case = data_handling(snake_case_ ) __snake_case , __snake_case , __snake_case , __snake_case = train_test_split( snake_case_ , snake_case_ , test_size=0.25 ) __snake_case = iris['''target_names'''] # Create an XGBoost Classifier from the training data __snake_case = xgboost(snake_case_ , snake_case_ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( snake_case_ , snake_case_ , snake_case_ , display_labels=snake_case_ , cmap='''Blues''' , normalize='''true''' , ) plt.title('''Normalized Confusion Matrix - IRIS Dataset''' ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
238
from __future__ import annotations snake_case_ = [True] * 1000001 snake_case_ = 2 while i * i <= 1000000: if seive[i]: for j in range(i * i, 1000001, i): snake_case_ = False i += 1 def lowerCamelCase__ ( snake_case_ : int ) -> bool: return seive[n] def lowerCamelCase__ ( snake_case_ : int ) -> bool: return any(digit in '''02468''' for digit in str(snake_case_ ) ) def lowerCamelCase__ ( snake_case_ : int = 100_0000 ) -> list[int]: __snake_case = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(snake_case_ ) and not contains_an_even_digit(snake_case_ ): __snake_case = str(snake_case_ ) __snake_case = [int(str_num[j:] + str_num[:j] ) for j in range(len(snake_case_ ) )] if all(is_prime(snake_case_ ) for i in list_nums ): result.append(snake_case_ ) return result def lowerCamelCase__ ( ) -> int: return len(find_circular_primes() ) if __name__ == "__main__": print(F'{len(find_circular_primes()) = }')
238
1
"""simple docstring""" import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() _A : Optional[Any] = logging.get_logger(__name__) _A : Optional[Any] = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn.grep_linear""": """encoder.layers.*.attention.gru_rel_pos_linear""", """self_attn.relative_attention_bias""": """encoder.layers.*.attention.rel_attn_embed""", """self_attn.grep_a""": """encoder.layers.*.attention.gru_rel_pos_const""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """ctc_proj""", """mask_emb""": """masked_spec_embed""", } _A : Any = [ """ctc_proj""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def __magic_name__ ( __snake_case : Dict , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : Union[str, Any] ) -> Union[str, Any]: for attribute in key.split("." ): lowercase : Tuple = getattr(__snake_case , __snake_case ) if weight_type is not None: lowercase : str = getattr(__snake_case , __snake_case ).shape else: lowercase : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowercase : Optional[Any] = value elif weight_type == "weight_g": lowercase : Optional[Any] = value elif weight_type == "weight_v": lowercase : int = value elif weight_type == "bias": lowercase : int = value else: lowercase : Tuple = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def __magic_name__ ( __snake_case : int , __snake_case : Union[str, Any] ) -> Optional[int]: lowercase : Optional[int] = [] lowercase : Optional[int] = fairseq_model.state_dict() lowercase : Dict = hf_model.feature_extractor for name, value in fairseq_dict.items(): lowercase : int = False if "conv_layers" in name: load_conv_layer( __snake_case , __snake_case , __snake_case , __snake_case , hf_model.config.feat_extract_norm == "group" , ) lowercase : List[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowercase : List[str] = True if "*" in mapped_key: lowercase : Optional[Any] = name.split(__snake_case )[0].split("." )[-2] lowercase : Dict = mapped_key.replace("*" , __snake_case ) if "weight_g" in name: lowercase : Optional[Any] = "weight_g" elif "weight_v" in name: lowercase : List[str] = "weight_v" elif "bias" in name and "relative_attention_bias" not in name: lowercase : str = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowercase : int = "weight" else: lowercase : Any = None set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(f"""Unused weights: {unused_weights}""" ) def __magic_name__ ( __snake_case : Optional[Any] , __snake_case : List[Any] , __snake_case : int , __snake_case : int , __snake_case : Dict ) -> Tuple: lowercase : Union[str, Any] = full_name.split("conv_layers." )[-1] lowercase : str = name.split("." ) lowercase : Optional[int] = int(items[0] ) lowercase : Dict = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowercase : int = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowercase : Union[str, Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) lowercase : str = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowercase : Any = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__snake_case ) @torch.no_grad() def __magic_name__ ( __snake_case : List[Any] , __snake_case : List[str] , __snake_case : Any=None ) -> Any: # load the pre-trained checkpoints lowercase : Union[str, Any] = torch.load(__snake_case ) lowercase : Union[str, Any] = WavLMConfigOrig(checkpoint["cfg"] ) lowercase : List[Any] = WavLMOrig(__snake_case ) model.load_state_dict(checkpoint["model"] ) model.eval() if config_path is not None: lowercase : List[str] = WavLMConfig.from_pretrained(__snake_case ) else: lowercase : List[str] = WavLMConfig() lowercase : Union[str, Any] = WavLMModel(__snake_case ) recursively_load_weights(__snake_case , __snake_case ) hf_wavlm.save_pretrained(__snake_case ) if __name__ == "__main__": _A : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") _A : str = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
202
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin _A : int = """ Hugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning. In March 2021, Hugging Face raised $40 million in a Series B funding round.[3] On April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5] """ class a__ ( unittest.TestCase, a_ ): def __magic_name__ ( self ): lowercase : Tuple = load_tool("text-question-answering" ) self.tool.setup() lowercase : Dict = load_tool("text-question-answering" , remote=_a ) def __magic_name__ ( self ): lowercase : str = self.tool(_a , "What did Hugging Face do in April 2021?" ) self.assertEqual(_a , "launched the BigScience Research Workshop" ) def __magic_name__ ( self ): lowercase : Union[str, Any] = self.remote_tool(_a , "What did Hugging Face do in April 2021?" ) self.assertEqual(_a , "launched the BigScience Research Workshop" ) def __magic_name__ ( self ): lowercase : int = self.tool(text=_a , question="What did Hugging Face do in April 2021?" ) self.assertEqual(_a , "launched the BigScience Research Workshop" ) def __magic_name__ ( self ): lowercase : Optional[Any] = self.remote_tool(text=_a , question="What did Hugging Face do in April 2021?" ) self.assertEqual(_a , "launched the BigScience Research Workshop" )
202
1
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: print('\nThe shortest path matrix using Floyd Warshall algorithm\n' ) for i in range(SCREAMING_SNAKE_CASE_ ): for j in range(SCREAMING_SNAKE_CASE_ ): if dist[i][j] != float('inf' ): print(int(dist[i][j] ) , end='\t' ) else: print('INF' , end='\t' ) print() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: lowerCAmelCase__ : Tuple = [[float('inf' ) for _ in range(SCREAMING_SNAKE_CASE_ )] for _ in range(SCREAMING_SNAKE_CASE_ )] for i in range(SCREAMING_SNAKE_CASE_ ): for j in range(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : List[Any] = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(SCREAMING_SNAKE_CASE_ ): # looping through rows of graph array for i in range(SCREAMING_SNAKE_CASE_ ): # looping through columns of graph array for j in range(SCREAMING_SNAKE_CASE_ ): if ( dist[i][k] != float('inf' ) and dist[k][j] != float('inf' ) and dist[i][k] + dist[k][j] < dist[i][j] ): lowerCAmelCase__ : int = dist[i][k] + dist[k][j] _print_dist(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return dist, v if __name__ == "__main__": lowerCamelCase__ = int(input("""Enter number of vertices: """)) lowerCamelCase__ = int(input("""Enter number of edges: """)) lowerCamelCase__ = [[float("""inf""") for i in range(v)] for j in range(v)] for i in range(v): lowerCamelCase__ = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print("""\nEdge """, i + 1) lowerCamelCase__ = int(input("""Enter source:""")) lowerCamelCase__ = int(input("""Enter destination:""")) lowerCamelCase__ = float(input("""Enter weight:""")) lowerCamelCase__ = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
357
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowerCamelCase__ = """python tqdm regex requests packaging filelock numpy tokenizers""".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("""dataclasses""") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("""importlib_metadata""") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> int: require_version(deps[pkg] , SCREAMING_SNAKE_CASE_ )
307
0
from itertools import product def a( A : int , A : int ) -> list[int]: """simple docstring""" a = sides_number a = max_face_number * dice_number a = [0] * (max_total + 1) a = 1 a = range(A , max_face_number + 1 ) for dice_numbers in product(A , repeat=A ): a = sum(A ) totals_frequencies[total] += 1 return totals_frequencies def a( ) -> float: """simple docstring""" a = total_frequency_distribution( sides_number=4 , dice_number=9 ) a = total_frequency_distribution( sides_number=6 , dice_number=6 ) a = 0 a = 9 a = 4 * 9 a = 6 for peter_total in range(A , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) a = (4**9) * (6**6) a = peter_wins_count / total_games_number a = round(A , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"""{solution() = }""")
227
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase: Union[str, Any] = { "configuration_bridgetower": [ "BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP", "BridgeTowerConfig", "BridgeTowerTextConfig", "BridgeTowerVisionConfig", ], "processing_bridgetower": ["BridgeTowerProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase: Dict = ["BridgeTowerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase: int = [ "BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST", "BridgeTowerForContrastiveLearning", "BridgeTowerForImageAndTextRetrieval", "BridgeTowerForMaskedLM", "BridgeTowerModel", "BridgeTowerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys _lowercase: Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure)
227
1
"""simple docstring""" from __future__ import annotations import requests __lowerCAmelCase : List[Any] =set( """approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports""".split() ) def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :int = 1 , lowerCAmelCase__ :str = "new" , lowerCAmelCase__ :list | None = None ) -> Tuple: '''simple docstring''' lowercase = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(a__ ) - valid_terms ) ): lowercase = f'Invalid search term: {invalid_search_terms}' raise ValueError(a__ ) lowercase = requests.get( f'https://reddit.com/r/{subreddit}/{age}.json?limit={limit}' , headers={"""User-agent""": """A random string"""} , ) if response.status_code == 4_2_9: raise requests.HTTPError lowercase = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(a__ )} lowercase = {} for id_ in range(a__ ): lowercase = { item: data["""data"""]["""children"""][id_]["""data"""][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data("""learnpython""", wanted_data=["""title""", """url""", """selftext"""]))
370
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :list[list] ) -> list[list]: '''simple docstring''' lowercase = current_set.copy() for row_index, row in enumerate(lowerCAmelCase__ ): lowercase = row[0] for column_index, column in enumerate(lowerCAmelCase__ ): if magnitude == 0: lowercase = column continue lowercase = column / magnitude # Subtract to cancel term lowercase = current_set[0] lowercase = [first_row] lowercase = current_set[1::] for row in current_set: lowercase = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(lowerCAmelCase__ ) continue for column_index in range(len(lowerCAmelCase__ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(lowerCAmelCase__ ) # Create next recursion iteration set if len(final_set[0] ) != 3: lowercase = final_set[0] lowercase = [] lowercase = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) lowercase = simplify(lowerCAmelCase__ ) for i in range(len(lowerCAmelCase__ ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , lowerCAmelCase__ ) lowercase = resultant return final_set def UpperCAmelCase__ ( lowerCAmelCase__ :list[list] ) -> list: '''simple docstring''' if len(lowerCAmelCase__ ) == 0: raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) lowercase = len(lowerCAmelCase__ ) + 1 if any(len(lowerCAmelCase__ ) != _length for item in equations ): raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) for row in equations: if any(not isinstance(lowerCAmelCase__ , (int, float) ) for column in row ): raise ValueError("""solve_simultaneous() requires lists of integers""" ) if len(lowerCAmelCase__ ) == 1: return [equations[0][-1] / equations[0][0]] lowercase = equations.copy() if any(0 in row for row in data_set ): lowercase = data_set.copy() lowercase = [] for row_index, row in enumerate(lowerCAmelCase__ ): if 0 not in row: lowercase = data_set.pop(lowerCAmelCase__ ) break if not full_row: raise ValueError("""solve_simultaneous() requires at least 1 full equation""" ) data_set.insert(0 , lowerCAmelCase__ ) lowercase = data_set.copy() lowercase = simplify(lowerCAmelCase__ ) lowercase = simplified[::-1] lowercase = [] for row in simplified: lowercase = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue lowercase = row.copy()[: len(lowerCAmelCase__ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(lowerCAmelCase__ ) == 0: solutions.append(0 ) continue lowercase = temp_row[1::] lowercase = temp_row[::-1] for column_index, column in enumerate(lowerCAmelCase__ ): current_solution -= column * solutions[column_index] solutions.append(lowerCAmelCase__ ) lowercase = [] for item in solutions: final.append(float(round(lowerCAmelCase__ , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase : List[str] =[ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
32
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'weiweishi/roc-bert-base-zh': 'https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json', } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Optional[int] = "roc_bert" def __init__( self : List[str] ,_snake_case : Any=30_522 ,_snake_case : Union[str, Any]=768 ,_snake_case : Union[str, Any]=12 ,_snake_case : List[Any]=12 ,_snake_case : Union[str, Any]=3_072 ,_snake_case : Optional[int]="gelu" ,_snake_case : int=0.1 ,_snake_case : Any=0.1 ,_snake_case : int=512 ,_snake_case : Optional[int]=2 ,_snake_case : List[str]=0.02 ,_snake_case : Dict=1e-12 ,_snake_case : str=True ,_snake_case : Tuple=0 ,_snake_case : List[str]="absolute" ,_snake_case : Optional[Any]=None ,_snake_case : Union[str, Any]=True ,_snake_case : Optional[Any]=True ,_snake_case : List[Any]=768 ,_snake_case : Dict=910 ,_snake_case : List[str]=512 ,_snake_case : List[str]=24_858 ,_snake_case : Tuple=True ,**_snake_case : str ,) -> int: """simple docstring""" lowercase__ : Union[str, Any] = vocab_size lowercase__ : int = max_position_embeddings lowercase__ : Optional[Any] = hidden_size lowercase__ : List[Any] = num_hidden_layers lowercase__ : List[str] = num_attention_heads lowercase__ : Tuple = intermediate_size lowercase__ : Optional[Any] = hidden_act lowercase__ : Union[str, Any] = hidden_dropout_prob lowercase__ : str = attention_probs_dropout_prob lowercase__ : Optional[int] = initializer_range lowercase__ : int = type_vocab_size lowercase__ : int = layer_norm_eps lowercase__ : List[Any] = use_cache lowercase__ : List[str] = enable_pronunciation lowercase__ : Tuple = enable_shape lowercase__ : Optional[Any] = pronunciation_embed_dim lowercase__ : Tuple = pronunciation_vocab_size lowercase__ : Optional[Any] = shape_embed_dim lowercase__ : List[Any] = shape_vocab_size lowercase__ : int = concat_input lowercase__ : str = position_embedding_type lowercase__ : Dict = classifier_dropout super().__init__(pad_token_id=_snake_case ,**_snake_case )
16
"""simple docstring""" import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" debug_launcher(test_script.main ) def UpperCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" debug_launcher(test_ops.main )
16
1
import os _lowerCamelCase : List[Any] = {"I": 1, "V": 5, "X": 1_0, "L": 5_0, "C": 1_0_0, "D": 5_0_0, "M": 1_0_0_0} def _UpperCAmelCase (UpperCamelCase_ : str ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = 0 _lowerCAmelCase : Dict = 0 while index < len(UpperCamelCase_ ) - 1: _lowerCAmelCase : Union[str, Any] = SYMBOLS[numerals[index]] _lowerCAmelCase : List[str] = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def _UpperCAmelCase (UpperCamelCase_ : int ): '''simple docstring''' _lowerCAmelCase : Optional[int] = """""" _lowerCAmelCase : Tuple = num // 1000 numerals += m_count * "M" num %= 1000 _lowerCAmelCase : str = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 _lowerCAmelCase : Optional[int] = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def _UpperCAmelCase (UpperCamelCase_ : str = "/p089_roman.txt" ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = 0 with open(os.path.dirname(UpperCamelCase_ ) + roman_numerals_filename ) as filea: _lowerCAmelCase : Tuple = filea.readlines() for line in lines: _lowerCAmelCase : Any = line.strip() _lowerCAmelCase : Dict = parse_roman_numerals(UpperCamelCase_ ) _lowerCAmelCase : List[str] = generate_roman_numerals(UpperCamelCase_ ) savings += len(UpperCamelCase_ ) - len(UpperCamelCase_ ) return savings if __name__ == "__main__": print(F'''{solution() = }''')
159
from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def _UpperCAmelCase (UpperCamelCase_ : Sequence[float] , UpperCamelCase_ : int , UpperCamelCase_ : int ): '''simple docstring''' if not arr: return None, None, 0 if low == high: return low, high, arr[low] _lowerCAmelCase : List[str] = (low + high) // 2 _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = max_subarray(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[Any] = max_subarray(UpperCamelCase_ , mid + 1 , UpperCamelCase_ ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = max_cross_sum(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def _UpperCAmelCase (UpperCamelCase_ : Sequence[float] , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Optional[int] = float("""-inf""" ), -1 _lowerCAmelCase , _lowerCAmelCase : str = float("""-inf""" ), -1 _lowerCAmelCase : int | float = 0 for i in range(UpperCamelCase_ , low - 1 , -1 ): summ += arr[i] if summ > left_sum: _lowerCAmelCase : Any = summ _lowerCAmelCase : Tuple = i _lowerCAmelCase : int = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: _lowerCAmelCase : List[Any] = summ _lowerCAmelCase : str = i return max_left, max_right, (left_sum + right_sum) def _UpperCAmelCase (UpperCamelCase_ : int ): '''simple docstring''' _lowerCAmelCase : str = [randint(1 , UpperCamelCase_ ) for _ in range(UpperCamelCase_ )] _lowerCAmelCase : str = time.time() max_subarray(UpperCamelCase_ , 0 , input_size - 1 ) _lowerCAmelCase : Any = time.time() return end - start def _UpperCAmelCase (): '''simple docstring''' _lowerCAmelCase : Any = [10, 100, 1000, 10000, 50000, 100000, 200000, 300000, 400000, 500000] _lowerCAmelCase : Any = [time_max_subarray(UpperCamelCase_ ) for input_size in input_sizes] print("""No of Inputs\t\tTime Taken""" ) for input_size, runtime in zip(UpperCamelCase_ , UpperCamelCase_ ): print(UpperCamelCase_ , """\t\t""" , UpperCamelCase_ ) plt.plot(UpperCamelCase_ , UpperCamelCase_ ) plt.xlabel("""Number of Inputs""" ) plt.ylabel("""Time taken in seconds""" ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
159
1
"""simple docstring""" import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient __SCREAMING_SNAKE_CASE =WebClient(token=os.environ["CI_SLACK_BOT_TOKEN"]) def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] ): lowercase_ : int = test_results.split(' ' ) lowercase_ : Optional[int] = 0 lowercase_ : List[Any] = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. lowercase_ : Any = expressions[-2] if """=""" in expressions[-1] else expressions[-1] for i, expression in enumerate(lowercase_ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Any] ): lowercase_ : List[str] = {} lowercase_ : Dict = None lowercase_ : str = False for line in failures_short_lines.split('\n' ): if re.search(R'_ \[doctest\]' , lowercase_ ): lowercase_ : Optional[int] = True lowercase_ : Any = line.split(' ' )[2] elif in_error and not line.split(' ' )[0].isdigit(): lowercase_ : str = line lowercase_ : Optional[int] = False return failures class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' lowercase_ : Tuple = title lowercase_ : List[str] = doc_test_results["""time_spent"""].split(',' )[0] lowercase_ : Optional[Any] = doc_test_results["""success"""] lowercase_ : Optional[Any] = doc_test_results["""failures"""] lowercase_ : str = self.n_success + self.n_failures # Failures and success of the modeling tests lowercase_ : Union[str, Any] = doc_test_results @property def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : Tuple = [self._time_spent] lowercase_ : Optional[Any] = 0 for time in time_spent: lowercase_ : Optional[Any] = time.split(':' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(A__ ) == 1: lowercase_ : str = [0, 0, time_parts[0]] lowercase_ : Union[str, Any] = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds lowercase_ : str = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return f'''{int(A__ )}h{int(A__ )}m{int(A__ )}s''' @property def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def _UpperCAmelCase ( self ) -> str: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": f'''🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.''', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } @property def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( f'''There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in''' f''' {self.time}.''' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } @property def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Dict = 40 lowercase_ : Optional[int] = {k: v["""failed"""] for k, v in doc_test_results.items() if isinstance(A__ ,A__ )} lowercase_ : Dict = """""" for category, failures in category_failures.items(): if len(A__ ) == 0: continue if report != "": report += "\n\n" report += f'''*{category} failures*:'''.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(A__ ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f'''The following examples had failures:\n\n\n{report}\n''', }, } @property def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : List[str] = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(A__ ) @staticmethod def _UpperCAmelCase ( ) -> List[Any]: '''simple docstring''' lowercase_ : Optional[Any] = [ { """type""": """section""", """text""": { """type""": """plain_text""", """text""": """There was an issue running the tests.""", }, """accessory""": { """type""": """button""", """text""": {"""type""": """plain_text""", """text""": """Check Action results""", """emoji""": True}, """url""": f'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } ] print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(A__ )} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] ,text='There was an issue running the tests.' ,blocks=A__ ,) def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(self.payload )} ) ) lowercase_ : Tuple = f'''{self.n_failures} failures out of {self.n_tests} tests,''' if self.n_failures else """All tests passed.""" lowercase_ : Optional[Any] = client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] ,blocks=self.payload ,text=A__ ,) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Dict = """""" for key, value in failures.items(): lowercase_ : Union[str, Any] = value[:200] + """ [Truncated]""" if len(A__ ) > 250 else value failures_text += f'''*{key}*\n_{value}_\n\n''' lowercase_ : Dict = job_name lowercase_ : List[Any] = {"""type""": """section""", """text""": {"""type""": """mrkdwn""", """text""": text}} if job_link is not None: lowercase_ : str = { """type""": """button""", """text""": {"""type""": """plain_text""", """text""": """GitHub Action job""", """emoji""": True}, """url""": job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' if self.thread_ts is None: raise ValueError('Can only post reply if a post has been made.' ) lowercase_ : Tuple = self.doc_test_results.pop('job_link' ) self.doc_test_results.pop('failures' ) self.doc_test_results.pop('success' ) self.doc_test_results.pop('time_spent' ) lowercase_ : List[Any] = sorted(self.doc_test_results.items() ,key=lambda __UpperCamelCase : t[0] ) for job, job_result in sorted_dict: if len(job_result['failures'] ): lowercase_ : Union[str, Any] = f'''*Num failures* :{len(job_result["failed"] )} \n''' lowercase_ : Optional[int] = job_result["""failures"""] lowercase_ : List[str] = self.get_reply_blocks(A__ ,A__ ,A__ ,text=A__ ) print('Sending the following reply' ) print(json.dumps({'blocks': blocks} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] ,text=f'''Results for {job}''' ,blocks=A__ ,thread_ts=self.thread_ts['ts'] ,) time.sleep(1 ) def lowercase__( ): lowercase_ : List[Any] = os.environ["""GITHUB_RUN_ID"""] lowercase_ : Any = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100''' lowercase_ : Dict = requests.get(lowercase_ ).json() lowercase_ : Any = {} try: jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) lowercase_ : Tuple = math.ceil((result['total_count'] - 1_00) / 1_00 ) for i in range(lowercase_ ): lowercase_ : Optional[int] = requests.get(url + F'''&page={i + 2}''' ).json() jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) return jobs except Exception as e: print('Unknown error, could not fetch links.' , lowercase_ ) return {} def lowercase__( __SCREAMING_SNAKE_CASE : str ): lowercase_ : List[Any] = {} if os.path.exists(lowercase_ ): lowercase_ : List[str] = os.listdir(lowercase_ ) for file in files: try: with open(os.path.join(lowercase_ , lowercase_ ) , encoding='utf-8' ) as f: lowercase_ : List[str] = f.read() except UnicodeDecodeError as e: raise ValueError(F'''Could not open {os.path.join(lowercase_ , lowercase_ )}.''' ) from e return _artifact def lowercase__( ): class UpperCamelCase : def __init__( self ,__UpperCamelCase ) -> int: '''simple docstring''' lowercase_ : str = name lowercase_ : str = [] def __str__( self ) -> Union[str, Any]: '''simple docstring''' return self.name def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]: '''simple docstring''' self.paths.append({'name': self.name, 'path': path} ) lowercase_ : Dict[str, Artifact] = {} lowercase_ : Any = filter(os.path.isdir , os.listdir() ) for directory in directories: lowercase_ : List[Any] = directory if artifact_name not in _available_artifacts: lowercase_ : Dict = Artifact(lowercase_ ) _available_artifacts[artifact_name].add_path(lowercase_ ) return _available_artifacts if __name__ == "__main__": __SCREAMING_SNAKE_CASE =get_job_links() __SCREAMING_SNAKE_CASE =retrieve_available_artifacts() __SCREAMING_SNAKE_CASE =collections.OrderedDict( [ ("*.py", "API Examples"), ("*.md", "MD Examples"), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' __SCREAMING_SNAKE_CASE ={ v: { 'failed': [], 'failures': {}, } for v in docs.values() } # Link to the GitHub Action job __SCREAMING_SNAKE_CASE =github_actions_job_links.get("run_doctests") __SCREAMING_SNAKE_CASE =available_artifacts['doc_tests_gpu_test_reports'].paths[0] __SCREAMING_SNAKE_CASE =retrieve_artifact(artifact_path["name"]) if "stats" in artifact: __SCREAMING_SNAKE_CASE =handle_test_results(artifact["stats"]) __SCREAMING_SNAKE_CASE =failed __SCREAMING_SNAKE_CASE =success __SCREAMING_SNAKE_CASE =time_spent[1:-1] + ', ' __SCREAMING_SNAKE_CASE =extract_first_line_failure(artifact["failures_short"]) for line in artifact["summary_short"].split("\n"): if re.search("FAILED", line): __SCREAMING_SNAKE_CASE =line.replace("FAILED ", "") __SCREAMING_SNAKE_CASE =line.split()[0].replace("\n", "") if "::" in line: __SCREAMING_SNAKE_CASE =line.split("::") else: __SCREAMING_SNAKE_CASE =line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): __SCREAMING_SNAKE_CASE =docs[file_regex] doc_test_results[category]["failed"].append(test) __SCREAMING_SNAKE_CASE =all_failures[test] if test in all_failures else 'N/A' __SCREAMING_SNAKE_CASE =failure break __SCREAMING_SNAKE_CASE =Message("🤗 Results of the doc tests.", doc_test_results) message.post() message.post_reply()
213
import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def UpperCamelCase (lowercase_: int , lowercase_: Dict , lowercase_: Tuple ) -> Any: # Construct model if gpta_config_file == "": A__ : Dict = GPTaConfig() else: A__ : List[Any] = GPTaConfig.from_json_file(lowercase_ ) A__ : Tuple = GPTaModel(lowercase_ ) # Load weights from numpy load_tf_weights_in_gpta(lowercase_ , lowercase_ , lowercase_ ) # Save pytorch-model A__ : Optional[Any] = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME A__ : Optional[Any] = pytorch_dump_folder_path + """/""" + CONFIG_NAME print(f"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(model.state_dict() , lowercase_ ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(lowercase_ , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": A_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--gpt2_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--gpt2_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained OpenAI model. \n' 'This specifies the model architecture.' ), ) A_ : str = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
192
0
from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": _UpperCAmelCase : str = input("""Enter image url: """).strip() print(F'''Downloading image from {url} ...''') _UpperCAmelCase : Tuple = BeautifulSoup(requests.get(url).content, """html.parser""") # The image URL is in the content field of the first meta tag with property og:image _UpperCAmelCase : List[Any] = soup.find("""meta""", {"""property""": """og:image"""})["""content"""] _UpperCAmelCase : Any = requests.get(image_url).content _UpperCAmelCase : List[Any] = F'''{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg''' with open(file_name, """wb""") as fp: fp.write(image_data) print(F'''Done. Image saved to disk as {file_name}.''')
200
import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = BigBirdConfig.from_json_file(UpperCamelCase__ ) print(F'''Building PyTorch model from configuration: {config}''' ) if is_trivia_qa: snake_case_ = BigBirdForQuestionAnswering(UpperCamelCase__ ) else: snake_case_ = BigBirdForPreTraining(UpperCamelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(UpperCamelCase__ , UpperCamelCase__ , is_trivia_qa=UpperCamelCase__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": _UpperCAmelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--big_bird_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_trivia_qa""", action="""store_true""", help="""Whether to convert a model with a trivia_qa head.""" ) _UpperCAmelCase : str = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
200
1
"""simple docstring""" def __a ( _SCREAMING_SNAKE_CASE ) ->Any: assert column_title.isupper() a__: Dict = 0 a__: int = len(A__ ) - 1 a__: int = 0 while index >= 0: a__: Tuple = (ord(column_title[index] ) - 64) * pow(26 , A__ ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
290
'''simple docstring''' import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" if isinstance(A__ , A__ ): __lowercase = np.full((len(A__ ), sequence_length, 2) , A__ ) else: __lowercase = np.full((len(A__ ), sequence_length) , A__ ) for i, tensor in enumerate(A__ ): if padding_side == "right": if isinstance(A__ , A__ ): __lowercase = tensor[:sequence_length] else: __lowercase = tensor[:sequence_length] else: if isinstance(A__ , A__ ): __lowercase = tensor[:sequence_length] else: __lowercase = tensor[:sequence_length] return out_tensor.tolist() def _A ( A__ ): """simple docstring""" __lowercase = ord(A__ ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True __lowercase = unicodedata.category(A__ ) if cat.startswith('''P''' ): return True return False @dataclass class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : PreTrainedTokenizerBase SCREAMING_SNAKE_CASE : Union[bool, str, PaddingStrategy] = True SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : int = -1_0_0 SCREAMING_SNAKE_CASE : str = "pt" def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : List[str] ): import torch __lowercase = '''label''' if '''label''' in features[0].keys() else '''labels''' __lowercase = [feature[label_name] for feature in features] if label_name in features[0].keys() else None __lowercase = self.tokenizer.pad( lowercase__ ,padding=self.padding ,max_length=self.max_length ,pad_to_multiple_of=self.pad_to_multiple_of ,return_tensors='''pt''' if labels is None else None ,) if labels is None: return batch __lowercase = torch.tensor(batch['''entity_ids'''] ).shape[1] __lowercase = self.tokenizer.padding_side if padding_side == "right": __lowercase = [ list(lowercase__ ) + [self.label_pad_token_id] * (sequence_length - len(lowercase__ )) for label in labels ] else: __lowercase = [ [self.label_pad_token_id] * (sequence_length - len(lowercase__ )) + list(lowercase__ ) for label in labels ] __lowercase = [feature['''ner_tags'''] for feature in features] __lowercase = padding_tensor(lowercase__ ,-1 ,lowercase__ ,lowercase__ ) __lowercase = [feature['''original_entity_spans'''] for feature in features] __lowercase = padding_tensor(lowercase__ ,(-1, -1) ,lowercase__ ,lowercase__ ) __lowercase = {k: torch.tensor(lowercase__ ,dtype=torch.intaa ) for k, v in batch.items()} return batch
104
0
"""simple docstring""" import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } __UpperCamelCase = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: for attribute in key.split('.' ): snake_case_ = getattr(UpperCAmelCase , UpperCAmelCase ) if weight_type is not None: snake_case_ = getattr(UpperCAmelCase , UpperCAmelCase ).shape else: snake_case_ = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": snake_case_ = value elif weight_type == "weight_g": snake_case_ = value elif weight_type == "weight_v": snake_case_ = value elif weight_type == "bias": snake_case_ = value else: snake_case_ = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[Any]: snake_case_ = [] snake_case_ = fairseq_model.state_dict() snake_case_ = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight snake_case_ = None for name, value in fairseq_dict.items(): snake_case_ = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , hf_model.config.feat_extract_norm == 'group' , ) snake_case_ = True elif name.split('.' )[0] == "proj": snake_case_ = fairseq_model.proj snake_case_ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: snake_case_ = True if "*" in mapped_key: snake_case_ = name.split(UpperCAmelCase )[0].split('.' )[-2] snake_case_ = mapped_key.replace('*' , UpperCAmelCase ) if "weight_g" in name: snake_case_ = 'weight_g' elif "weight_v" in name: snake_case_ = 'weight_v' elif "bias" in name: snake_case_ = 'bias' elif "weight" in name: snake_case_ = 'weight' else: snake_case_ = None set_recursively(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) continue if not is_used: unused_weights.append(UpperCAmelCase ) logger.warning(f'Unused weights: {unused_weights}' ) return proj_weight def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: snake_case_ = full_name.split('conv_layers.' )[-1] snake_case_ = name.split('.' ) snake_case_ = int(items[0] ) snake_case_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) snake_case_ = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) snake_case_ = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) snake_case_ = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) snake_case_ = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(UpperCAmelCase ) def UpperCAmelCase ( UpperCAmelCase ) -> Any: snake_case_ , snake_case_ = emb.weight.shape snake_case_ = nn.Linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase ) snake_case_ = emb.weight.data return lin_layer def UpperCAmelCase ( UpperCAmelCase ) -> str: with open(UpperCAmelCase , 'r' , encoding='utf-8' ) as f: snake_case_ = f.readlines() snake_case_ = [line.split(' ' )[0] for line in lines] snake_case_ = len(UpperCAmelCase ) snake_case_ = { '<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3, } vocab_dict.update(dict(zip(UpperCAmelCase , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Union[str, Any]: snake_case_ = WavaVecaConfig.from_pretrained(UpperCAmelCase ) snake_case_ = SpeechaTextaConfig.from_pretrained( UpperCAmelCase , vocab_size=UpperCAmelCase , decoder_layers=UpperCAmelCase , do_stable_layer_norm=UpperCAmelCase ) snake_case_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=UpperCAmelCase , return_attention_mask=UpperCAmelCase , ) snake_case_ , snake_case_ , snake_case_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) snake_case_ = model[0].eval() # set weights for wav2vec2 encoder snake_case_ = WavaVecaModel(UpperCAmelCase ) snake_case_ = recursively_load_weights_wavaveca(model.encoder , UpperCAmelCase ) snake_case_ = SpeechaTextaForCausalLM(UpperCAmelCase ) snake_case_ , snake_case_ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=UpperCAmelCase ) # set output linear layer unexpected_keys.remove('embed_out' ) snake_case_ = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f'The following keys are missing when loading the decoder weights: {missing_keys}' ) logger.warning(f'The following keys are unexpected when loading the decoder weights: {unexpected_keys}' ) snake_case_ = SpeechEncoderDecoderModel(encoder=UpperCAmelCase , decoder=UpperCAmelCase ) snake_case_ = False # add projection layer snake_case_ = nn.Parameter(projection_layer.weight ) snake_case_ = nn.Parameter(projection_layer.bias ) snake_case_ = create_vocab_dict(UpperCAmelCase ) with open(os.path.join(UpperCAmelCase , 'vocab.json' ) , 'w' ) as fp: json.dump(UpperCAmelCase , UpperCAmelCase ) snake_case_ = SpeechaTextaTokenizer(os.path.join(UpperCAmelCase , 'vocab.json' ) ) tokenizer.save_pretrained(UpperCAmelCase ) snake_case_ = hf_wavavec.config.to_dict() snake_case_ = tokenizer.pad_token_id snake_case_ = tokenizer.bos_token_id snake_case_ = tokenizer.eos_token_id snake_case_ = 'speech_to_text_2' snake_case_ = 'wav2vec2' snake_case_ = SpeechEncoderDecoderConfig.from_dict(UpperCAmelCase ) hf_wavavec.save_pretrained(UpperCAmelCase ) feature_extractor.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument( '''--encoder_config_path''', default='''facebook/wav2vec2-large-lv60''', type=str, help='''Path to hf encoder wav2vec2 checkpoint config''', ) parser.add_argument( '''--decoder_config_path''', default='''facebook/s2t-small-mustc-en-fr-st''', type=str, help='''Path to hf decoder s2t checkpoint config''', ) parser.add_argument('''--vocab_size''', default=1_0224, type=int, help='''Vocab size of decoder''') parser.add_argument('''--num_decoder_layers''', default=7, type=int, help='''Number of decoder layers''') __UpperCamelCase = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
312
"""simple docstring""" from __future__ import annotations import math def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: if depth < 0: raise ValueError('Depth cannot be less than 0' ) if len(UpperCAmelCase ) == 0: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , ) return min( minimax(depth + 1 , node_index * 2 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , ) def UpperCAmelCase ( ) -> None: snake_case_ = [90, 23, 6, 33, 21, 65, 123, 34423] snake_case_ = math.log(len(UpperCAmelCase ) , 2 ) print('Optimal value : ' , end='' ) print(minimax(0 , 0 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
312
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def UpperCAmelCase ( lowercase ): """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def UpperCAmelCase ( lowercase ): """simple docstring""" __lowercase = create_tensor(lowercase ) __lowercase = gather(lowercase ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def UpperCAmelCase ( lowercase ): """simple docstring""" __lowercase = [state.process_index] __lowercase = gather_object(lowercase ) assert len(lowercase ) == state.num_processes, F"{gathered_obj}, {len(lowercase )} != {state.num_processes}" assert gathered_obj == list(range(state.num_processes ) ), F"{gathered_obj} != {list(range(state.num_processes ) )}" def UpperCAmelCase ( lowercase ): """simple docstring""" __lowercase = create_tensor(lowercase ) __lowercase = broadcast(lowercase ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def UpperCAmelCase ( lowercase ): """simple docstring""" if state.is_main_process: __lowercase = torch.arange(state.num_processes + 1 ).to(state.device ) else: __lowercase = torch.arange(state.num_processes ).to(state.device ) __lowercase = pad_across_processes(lowercase ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def UpperCAmelCase ( lowercase ): """simple docstring""" if state.num_processes != 2: return __lowercase = create_tensor(lowercase ) __lowercase = reduce(lowercase , '''sum''' ) __lowercase = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(lowercase , lowercase ), F"{reduced_tensor} != {truth_tensor}" def UpperCAmelCase ( lowercase ): """simple docstring""" if state.num_processes != 2: return __lowercase = create_tensor(lowercase ) __lowercase = reduce(lowercase , '''mean''' ) __lowercase = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(lowercase , lowercase ), F"{reduced_tensor} != {truth_tensor}" def UpperCAmelCase ( lowercase ): """simple docstring""" main() def UpperCAmelCase ( ): """simple docstring""" __lowercase = PartialState() state.print(F"State: {state}" ) state.print('''testing gather''' ) test_gather(lowercase ) state.print('''testing gather_object''' ) test_gather_object(lowercase ) state.print('''testing broadcast''' ) test_broadcast(lowercase ) state.print('''testing pad_across_processes''' ) test_pad_across_processes(lowercase ) state.print('''testing reduce_sum''' ) test_reduce_sum(lowercase ) state.print('''testing reduce_mean''' ) test_reduce_mean(lowercase ) if __name__ == "__main__": main()
210
import qiskit def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" __lowercase = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register __lowercase = qiskit.QuantumCircuit(lowercase , lowercase ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator __lowercase = qiskit.execute(lowercase , lowercase , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowercase ) if __name__ == "__main__": print(F'''Total count for various states are: {single_qubit_measure(1, 1)}''')
210
1
# Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() UpperCamelCase__ : Any = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model UpperCamelCase__ : Optional[Any] = { # fairseq: """wmt19-ru-en""": {"""length_penalty""": 1.1}, """wmt19-en-ru""": {"""length_penalty""": 1.1_5}, """wmt19-en-de""": {"""length_penalty""": 1.0}, """wmt19-de-en""": {"""length_penalty""": 1.1}, # allenai: """wmt16-en-de-dist-12-1""": {"""length_penalty""": 0.6}, """wmt16-en-de-dist-6-1""": {"""length_penalty""": 0.6}, """wmt16-en-de-12-1""": {"""length_penalty""": 0.8}, """wmt19-de-en-6-6-base""": {"""length_penalty""": 0.6}, """wmt19-de-en-6-6-big""": {"""length_penalty""": 0.6}, } # this remaps the different models to their organization names UpperCamelCase__ : Optional[int] = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: UpperCamelCase__ : Optional[int] = """facebook""" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: UpperCamelCase__ : List[Any] = """allenai""" def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Dict: """simple docstring""" a = dict((re.sub(r'''@@$''', '''''', snake_case_ ), v) if k.endswith('''@@''' ) else (re.sub(r'''$''', '''</w>''', snake_case_ ), v) for k, v in d.items() ) a = '''<s> <pad> </s> <unk>'''.split() # restore the special tokens for k in keep_keys: del da[f"""{k}</w>"""] a = d[k] # restore return da def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> List[str]: """simple docstring""" assert os.path.exists(snake_case_ ) os.makedirs(snake_case_, exist_ok=snake_case_ ) print(f"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models a = basename(snake_case_ ) a = dirname(snake_case_ ) a = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel a = cls.hub_models() a = {'''bpe''': '''fastbpe''', '''tokenizer''': '''moses'''} a = '''.''' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f"""using checkpoint {checkpoint_file}""" ) a = hub_utils.from_pretrained( snake_case_, snake_case_, snake_case_, archive_map=snake_case_, **snake_case_ ) a = vars(chkpt['''args''']['''model'''] ) a = args['''source_lang'''] a = args['''target_lang'''] a = dirname(snake_case_ ) a = basename(snake_case_ ) # dicts a = os.path.join(snake_case_, f"""dict.{src_lang}.txt""" ) a = os.path.join(snake_case_, f"""dict.{tgt_lang}.txt""" ) a = Dictionary.load(snake_case_ ) a = rewrite_dict_keys(src_dict.indices ) a = len(snake_case_ ) a = os.path.join(snake_case_, '''vocab-src.json''' ) print(f"""Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records""" ) with open(snake_case_, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(snake_case_, ensure_ascii=snake_case_, indent=snake_case_ ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab a = True for k in src_vocab.keys(): if not k.islower(): a = False break a = Dictionary.load(snake_case_ ) a = rewrite_dict_keys(tgt_dict.indices ) a = len(snake_case_ ) a = os.path.join(snake_case_, '''vocab-tgt.json''' ) print(f"""Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records""" ) with open(snake_case_, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(snake_case_, ensure_ascii=snake_case_, indent=snake_case_ ) ) # merges_file (bpecodes) a = os.path.join(snake_case_, VOCAB_FILES_NAMES['''merges_file'''] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" a = os.path.join(snake_case_, snake_case_ ) if os.path.exists(snake_case_ ): break with open(snake_case_, encoding='''utf-8''' ) as fin: a = fin.read() a = re.sub(r''' \d+$''', '''''', snake_case_, 0, re.M ) # remove frequency number print(f"""Generating {merges_file}""" ) with open(snake_case_, '''w''', encoding='''utf-8''' ) as fout: fout.write(snake_case_ ) # model config a = os.path.join(snake_case_, '''config.json''' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f"""need to extend tokenizer to support bpe={args["bpe"]}""" assert args["tokenizer"] == "moses", f"""need to extend tokenizer to support bpe={args["tokenizer"]}""" a = { '''architectures''': ['''FSMTForConditionalGeneration'''], '''model_type''': '''fsmt''', '''activation_dropout''': args['''activation_dropout'''], '''activation_function''': '''relu''', '''attention_dropout''': args['''attention_dropout'''], '''d_model''': args['''decoder_embed_dim'''], '''dropout''': args['''dropout'''], '''init_std''': 0.02, '''max_position_embeddings''': args['''max_source_positions'''], '''num_hidden_layers''': args['''encoder_layers'''], '''src_vocab_size''': src_vocab_size, '''tgt_vocab_size''': tgt_vocab_size, '''langs''': [src_lang, tgt_lang], '''encoder_attention_heads''': args['''encoder_attention_heads'''], '''encoder_ffn_dim''': args['''encoder_ffn_embed_dim'''], '''encoder_layerdrop''': args['''encoder_layerdrop'''], '''encoder_layers''': args['''encoder_layers'''], '''decoder_attention_heads''': args['''decoder_attention_heads'''], '''decoder_ffn_dim''': args['''decoder_ffn_embed_dim'''], '''decoder_layerdrop''': args['''decoder_layerdrop'''], '''decoder_layers''': args['''decoder_layers'''], '''bos_token_id''': 0, '''pad_token_id''': 1, '''eos_token_id''': 2, '''is_encoder_decoder''': True, '''scale_embedding''': not args['''no_scale_embedding'''], '''tie_word_embeddings''': args['''share_all_embeddings'''], } # good hparam defaults to start with a = 5 a = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: a = best_score_hparams[model_dir]['''length_penalty'''] else: a = 1.0 print(f"""Generating {fsmt_model_config_file}""" ) with open(snake_case_, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(snake_case_, ensure_ascii=snake_case_, indent=snake_case_ ) ) # tokenizer config a = os.path.join(snake_case_, snake_case_ ) a = { '''langs''': [src_lang, tgt_lang], '''model_max_length''': 1_0_2_4, '''do_lower_case''': do_lower_case, } print(f"""Generating {fsmt_tokenizer_config_file}""" ) with open(snake_case_, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(snake_case_, ensure_ascii=snake_case_, indent=snake_case_ ) ) # model a = chkpt['''models'''][0] a = model.state_dict() # rename keys to start with 'model.' a = OrderedDict(('''model.''' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys a = [ '''model.model''', '''model.encoder.version''', '''model.decoder.version''', '''model.encoder_embed_tokens.weight''', '''model.decoder_embed_tokens.weight''', '''model.encoder.embed_positions._float_tensor''', '''model.decoder.embed_positions._float_tensor''', ] for k in ignore_keys: model_state_dict.pop(snake_case_, snake_case_ ) a = FSMTConfig.from_pretrained(snake_case_ ) a = FSMTForConditionalGeneration(snake_case_ ) # check that it loads ok model_new.load_state_dict(snake_case_, strict=snake_case_ ) # save a = os.path.join(snake_case_, snake_case_ ) print(f"""Generating {pytorch_weights_dump_path}""" ) torch.save(snake_case_, snake_case_ ) print('''Conversion is done!''' ) print('''\nLast step is to upload the files to s3''' ) print(f"""cd {data_root}""" ) print(f"""transformers-cli upload {model_dir}""" ) if __name__ == "__main__": UpperCamelCase__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fsmt_checkpoint_path""", default=None, type=str, required=True, help=( """Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,""" """ bpecodes, etc.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCamelCase__ : List[str] = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
330
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig UpperCamelCase__ : List[Any] = logging.get_logger(__name__) # General docstring UpperCamelCase__ : List[Any] = """RegNetConfig""" # Base docstring UpperCamelCase__ : Dict = """facebook/regnet-y-040""" UpperCamelCase__ : int = [1, 1_088, 7, 7] # Image classification docstring UpperCamelCase__ : Optional[Any] = """facebook/regnet-y-040""" UpperCamelCase__ : Dict = """tabby, tabby cat""" UpperCamelCase__ : Dict = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowerCamelCase_ ( tf.keras.layers.Layer ): def __init__( self : List[str] ,__lowerCamelCase : int ,__lowerCamelCase : int = 3 ,__lowerCamelCase : int = 1 ,__lowerCamelCase : int = 1 ,__lowerCamelCase : Optional[str] = "relu" ,**__lowerCamelCase : str ,): '''simple docstring''' super().__init__(**__lowerCamelCase ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb a = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) a = tf.keras.layers.ConvaD( filters=__lowerCamelCase ,kernel_size=__lowerCamelCase ,strides=__lowerCamelCase ,padding='''VALID''' ,groups=__lowerCamelCase ,use_bias=__lowerCamelCase ,name='''convolution''' ,) a = tf.keras.layers.BatchNormalization(epsilon=1e-5 ,momentum=0.9 ,name='''normalization''' ) a = ACTaFN[activation] if activation is not None else tf.identity def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : List[str] ): '''simple docstring''' a = self.convolution(self.padding(__lowerCamelCase ) ) a = self.normalization(__lowerCamelCase ) a = self.activation(__lowerCamelCase ) return hidden_state class lowerCamelCase_ ( tf.keras.layers.Layer ): def __init__( self : Any ,__lowerCamelCase : RegNetConfig ,**__lowerCamelCase : List[Any] ): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = config.num_channels a = TFRegNetConvLayer( out_channels=config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ,name='''embedder''' ,) def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : Optional[Any] ): '''simple docstring''' a = shape_list(__lowerCamelCase )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) a = tf.transpose(__lowerCamelCase ,perm=(0, 2, 3, 1) ) a = self.embedder(__lowerCamelCase ) return hidden_state class lowerCamelCase_ ( tf.keras.layers.Layer ): def __init__( self : str ,__lowerCamelCase : int ,__lowerCamelCase : int = 2 ,**__lowerCamelCase : Tuple ): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = tf.keras.layers.ConvaD( filters=__lowerCamelCase ,kernel_size=1 ,strides=__lowerCamelCase ,use_bias=__lowerCamelCase ,name='''convolution''' ) a = tf.keras.layers.BatchNormalization(epsilon=1e-5 ,momentum=0.9 ,name='''normalization''' ) def SCREAMING_SNAKE_CASE_ ( self : Dict ,__lowerCamelCase : tf.Tensor ,__lowerCamelCase : bool = False ): '''simple docstring''' return self.normalization(self.convolution(__lowerCamelCase ) ,training=__lowerCamelCase ) class lowerCamelCase_ ( tf.keras.layers.Layer ): def __init__( self : List[Any] ,__lowerCamelCase : int ,__lowerCamelCase : int ,**__lowerCamelCase : str ): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__lowerCamelCase ,name='''pooler''' ) a = [ tf.keras.layers.ConvaD(filters=__lowerCamelCase ,kernel_size=1 ,activation='''relu''' ,name='''attention.0''' ), tf.keras.layers.ConvaD(filters=__lowerCamelCase ,kernel_size=1 ,activation='''sigmoid''' ,name='''attention.2''' ), ] def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : Optional[Any] ): '''simple docstring''' a = self.pooler(__lowerCamelCase ) for layer_module in self.attention: a = layer_module(__lowerCamelCase ) a = hidden_state * pooled return hidden_state class lowerCamelCase_ ( tf.keras.layers.Layer ): def __init__( self : Union[str, Any] ,__lowerCamelCase : RegNetConfig ,__lowerCamelCase : int ,__lowerCamelCase : int ,__lowerCamelCase : int = 1 ,**__lowerCamelCase : Dict ): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = in_channels != out_channels or stride != 1 a = max(1 ,out_channels // config.groups_width ) a = ( TFRegNetShortCut(__lowerCamelCase ,stride=__lowerCamelCase ,name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' ,name='''shortcut''' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. a = [ TFRegNetConvLayer(__lowerCamelCase ,kernel_size=1 ,activation=config.hidden_act ,name='''layer.0''' ), TFRegNetConvLayer( __lowerCamelCase ,stride=__lowerCamelCase ,groups=__lowerCamelCase ,activation=config.hidden_act ,name='''layer.1''' ), TFRegNetConvLayer(__lowerCamelCase ,kernel_size=1 ,activation=__lowerCamelCase ,name='''layer.2''' ), ] a = ACTaFN[config.hidden_act] def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : Union[str, Any] ): '''simple docstring''' a = hidden_state for layer_module in self.layers: a = layer_module(__lowerCamelCase ) a = self.shortcut(__lowerCamelCase ) hidden_state += residual a = self.activation(__lowerCamelCase ) return hidden_state class lowerCamelCase_ ( tf.keras.layers.Layer ): def __init__( self : Dict ,__lowerCamelCase : RegNetConfig ,__lowerCamelCase : int ,__lowerCamelCase : int ,__lowerCamelCase : int = 1 ,**__lowerCamelCase : List[str] ): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = in_channels != out_channels or stride != 1 a = max(1 ,out_channels // config.groups_width ) a = ( TFRegNetShortCut(__lowerCamelCase ,stride=__lowerCamelCase ,name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' ,name='''shortcut''' ) ) a = [ TFRegNetConvLayer(__lowerCamelCase ,kernel_size=1 ,activation=config.hidden_act ,name='''layer.0''' ), TFRegNetConvLayer( __lowerCamelCase ,stride=__lowerCamelCase ,groups=__lowerCamelCase ,activation=config.hidden_act ,name='''layer.1''' ), TFRegNetSELayer(__lowerCamelCase ,reduced_channels=int(round(in_channels / 4 ) ) ,name='''layer.2''' ), TFRegNetConvLayer(__lowerCamelCase ,kernel_size=1 ,activation=__lowerCamelCase ,name='''layer.3''' ), ] a = ACTaFN[config.hidden_act] def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ,__lowerCamelCase : str ): '''simple docstring''' a = hidden_state for layer_module in self.layers: a = layer_module(__lowerCamelCase ) a = self.shortcut(__lowerCamelCase ) hidden_state += residual a = self.activation(__lowerCamelCase ) return hidden_state class lowerCamelCase_ ( tf.keras.layers.Layer ): def __init__( self : Optional[int] ,__lowerCamelCase : RegNetConfig ,__lowerCamelCase : int ,__lowerCamelCase : int ,__lowerCamelCase : int = 2 ,__lowerCamelCase : int = 2 ,**__lowerCamelCase : Optional[Any] ): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = TFRegNetXLayer if config.layer_type == '''x''' else TFRegNetYLayer a = [ # downsampling is done in the first layer with stride of 2 layer(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,stride=__lowerCamelCase ,name='''layers.0''' ), *[layer(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,name=F"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : int ): '''simple docstring''' for layer_module in self.layers: a = layer_module(__lowerCamelCase ) return hidden_state class lowerCamelCase_ ( tf.keras.layers.Layer ): def __init__( self : Union[str, Any] ,__lowerCamelCase : RegNetConfig ,**__lowerCamelCase : Optional[Any] ): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( __lowerCamelCase ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,name='''stages.0''' ,) ) a = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(__lowerCamelCase ,config.depths[1:] ) ): self.stages.append(TFRegNetStage(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,depth=__lowerCamelCase ,name=F"""stages.{i+1}""" ) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : tf.Tensor ,__lowerCamelCase : bool = False ,__lowerCamelCase : bool = True ): '''simple docstring''' a = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: a = hidden_states + (hidden_state,) a = stage_module(__lowerCamelCase ) if output_hidden_states: a = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=__lowerCamelCase ,hidden_states=__lowerCamelCase ) @keras_serializable class lowerCamelCase_ ( tf.keras.layers.Layer ): SCREAMING_SNAKE_CASE_ = RegNetConfig def __init__( self : Dict ,__lowerCamelCase : Optional[int] ,**__lowerCamelCase : Optional[Any] ): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = config a = TFRegNetEmbeddings(__lowerCamelCase ,name='''embedder''' ) a = TFRegNetEncoder(__lowerCamelCase ,name='''encoder''' ) a = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__lowerCamelCase ,name='''pooler''' ) @unpack_inputs def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : tf.Tensor ,__lowerCamelCase : Optional[bool] = None ,__lowerCamelCase : Optional[bool] = None ,__lowerCamelCase : bool = False ,): '''simple docstring''' a = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a = return_dict if return_dict is not None else self.config.use_return_dict a = self.embedder(__lowerCamelCase ,training=__lowerCamelCase ) a = self.encoder( __lowerCamelCase ,output_hidden_states=__lowerCamelCase ,return_dict=__lowerCamelCase ,training=__lowerCamelCase ) a = encoder_outputs[0] a = self.pooler(__lowerCamelCase ) # Change to NCHW output format have uniformity in the modules a = tf.transpose(__lowerCamelCase ,perm=(0, 3, 1, 2) ) a = tf.transpose(__lowerCamelCase ,perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: a = tuple([tf.transpose(__lowerCamelCase ,perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__lowerCamelCase ,pooler_output=__lowerCamelCase ,hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states ,) class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = RegNetConfig SCREAMING_SNAKE_CASE_ = 'regnet' SCREAMING_SNAKE_CASE_ = 'pixel_values' @property def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) ,dtype=tf.floataa )} UpperCamelCase__ : Union[str, Any] = R""" Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ UpperCamelCase__ : List[str] = R""" Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , a_ , ) class lowerCamelCase_ ( a_ ): def __init__( self : Optional[int] ,__lowerCamelCase : RegNetConfig ,*__lowerCamelCase : int ,**__lowerCamelCase : Union[str, Any] ): '''simple docstring''' super().__init__(__lowerCamelCase ,*__lowerCamelCase ,**__lowerCamelCase ) a = TFRegNetMainLayer(__lowerCamelCase ,name='''regnet''' ) @unpack_inputs @add_start_docstrings_to_model_forward(__lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=__lowerCamelCase ,config_class=_CONFIG_FOR_DOC ,modality='''vision''' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : tf.Tensor ,__lowerCamelCase : Optional[bool] = None ,__lowerCamelCase : Optional[bool] = None ,__lowerCamelCase : List[str]=False ,): '''simple docstring''' a = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a = return_dict if return_dict is not None else self.config.use_return_dict a = self.regnet( pixel_values=__lowerCamelCase ,output_hidden_states=__lowerCamelCase ,return_dict=__lowerCamelCase ,training=__lowerCamelCase ,) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state ,pooler_output=outputs.pooler_output ,hidden_states=outputs.hidden_states ,) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , a_ , ) class lowerCamelCase_ ( a_ , a_ ): def __init__( self : Optional[int] ,__lowerCamelCase : RegNetConfig ,*__lowerCamelCase : str ,**__lowerCamelCase : Any ): '''simple docstring''' super().__init__(__lowerCamelCase ,*__lowerCamelCase ,**__lowerCamelCase ) a = config.num_labels a = TFRegNetMainLayer(__lowerCamelCase ,name='''regnet''' ) # classification head a = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels ,name='''classifier.1''' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(__lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=__lowerCamelCase ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : tf.Tensor = None ,__lowerCamelCase : tf.Tensor = None ,__lowerCamelCase : bool = None ,__lowerCamelCase : bool = None ,__lowerCamelCase : Dict=False ,): '''simple docstring''' a = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a = return_dict if return_dict is not None else self.config.use_return_dict a = self.regnet( __lowerCamelCase ,output_hidden_states=__lowerCamelCase ,return_dict=__lowerCamelCase ,training=__lowerCamelCase ) a = outputs.pooler_output if return_dict else outputs[1] a = self.classifier[0](__lowerCamelCase ) a = self.classifier[1](__lowerCamelCase ) a = None if labels is None else self.hf_compute_loss(labels=__lowerCamelCase ,logits=__lowerCamelCase ) if not return_dict: a = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=__lowerCamelCase ,logits=__lowerCamelCase ,hidden_states=outputs.hidden_states )
330
1
"""simple docstring""" import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) lowercase__ = getLogger(__name__) def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ = 8 , lowercase__ = 1024 , lowercase__="val" , lowercase__=None , lowercase__=False , lowercase__="summarization" , lowercase__=None , lowercase__=1 , lowercase__ = None , lowercase__="" , **lowercase__ , ): _lowerCamelCase : List[str] = str(lowercase__ ) assert local_rank is not None torch.distributed.init_process_group(backend='nccl' , rank=lowercase__ ) _lowerCamelCase : str = Path(lowercase__ ) _lowerCamelCase : int = save_dir.joinpath(f'''rank_{local_rank}_output.json''' ) torch.cuda.set_device(lowercase__ ) _lowerCamelCase : Any = AutoModelForSeqaSeqLM.from_pretrained(lowercase__ ).cuda() if fpaa: _lowerCamelCase : Optional[Any] = model.half() # determine if we need to increase num_beams use_task_specific_params(lowercase__ , lowercase__ ) # update config with task specific params _lowerCamelCase : Any = generate_kwargs.pop('num_beams' , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: _lowerCamelCase : Dict = num_return_sequences _lowerCamelCase : List[Any] = AutoTokenizer.from_pretrained(lowercase__ ) logger.info(f'''Inferred tokenizer type: {tokenizer.__class__}''' ) # if this is wrong, check config.model_type. if max_source_length is None: _lowerCamelCase : Tuple = tokenizer.model_max_length if prefix is None: _lowerCamelCase : Optional[Any] = prefix or getattr(model.config , 'prefix' , '' ) or '' _lowerCamelCase : int = SeqaSeqDataset( lowercase__ , lowercase__ , lowercase__ , max_target_length=1024 , type_path=lowercase__ , n_obs=lowercase__ , prefix=lowercase__ , **lowercase__ , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. _lowerCamelCase : List[Any] = ds.make_sortish_sampler(lowercase__ , distributed=lowercase__ , add_extra_examples=lowercase__ , shuffle=lowercase__ ) _lowerCamelCase : List[Any] = DataLoader(lowercase__ , sampler=lowercase__ , batch_size=lowercase__ , collate_fn=ds.collate_fn ) _lowerCamelCase : Optional[Any] = [] for batch in tqdm(lowercase__ ): _lowerCamelCase : Tuple = model.generate( input_ids=batch['input_ids'].to(model.device ) , attention_mask=batch['attention_mask'].to(model.device ) , num_return_sequences=lowercase__ , num_beams=lowercase__ , **lowercase__ , ) _lowerCamelCase : Tuple = tokenizer.batch_decode(lowercase__ , skip_special_tokens=lowercase__ , clean_up_tokenization_spaces=lowercase__ ) _lowerCamelCase : str = batch['ids'] if num_return_sequences > 1: _lowerCamelCase : Any = chunks(lowercase__ , lowercase__ ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(lowercase__ ): results.append({'pred': pred, 'id': ids[i].item()} ) save_json(lowercase__ , lowercase__ ) return results, sampler.num_replicas def _snake_case ( ): _lowerCamelCase : str = argparse.ArgumentParser( epilog='Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate' ) parser.add_argument('--data_dir' , type=lowercase__ , help='like cnn_dm/test.source' ) parser.add_argument( '--model_name' , type=lowercase__ , help='like facebook/bart-large-cnn,t5-base, etc.' , default='sshleifer/distilbart-xsum-12-3' , ) parser.add_argument('--save_dir' , type=lowercase__ , help='where to save' , default='tmp_gen' ) parser.add_argument('--max_source_length' , type=lowercase__ , default=lowercase__ ) parser.add_argument( '--type_path' , type=lowercase__ , default='test' , help='which subset to evaluate typically train/val/test' ) parser.add_argument('--task' , type=lowercase__ , default='summarization' , help='used for task_specific_params + metrics' ) parser.add_argument('--bs' , type=lowercase__ , default=8 , required=lowercase__ , help='batch size' ) parser.add_argument( '--local_rank' , type=lowercase__ , default=-1 , required=lowercase__ , help='should be passed by distributed.launch' ) parser.add_argument( '--n_obs' , type=lowercase__ , default=lowercase__ , required=lowercase__ , help='How many observations. Defaults to all.' ) parser.add_argument( '--num_return_sequences' , type=lowercase__ , default=1 , required=lowercase__ , help='How many sequences to return' ) parser.add_argument( '--sync_timeout' , type=lowercase__ , default=600 , required=lowercase__ , help='How long should master process wait for other processes to finish.' , ) parser.add_argument('--src_lang' , type=lowercase__ , default=lowercase__ , required=lowercase__ ) parser.add_argument('--tgt_lang' , type=lowercase__ , default=lowercase__ , required=lowercase__ ) parser.add_argument( '--prefix' , type=lowercase__ , required=lowercase__ , default=lowercase__ , help='will be added to the begininng of src examples' ) parser.add_argument('--fp16' , action='store_true' ) parser.add_argument('--debug' , action='store_true' ) _lowerCamelCase : str = time.time() _lowerCamelCase, _lowerCamelCase : List[Any] = parser.parse_known_args() _lowerCamelCase : Any = parse_numeric_n_bool_cl_kwargs(lowercase__ ) if generate_kwargs and args.local_rank <= 0: print(f'''parsed the following generate kwargs: {generate_kwargs}''' ) _lowerCamelCase : List[Any] = Path(args.save_dir + '_tmp' ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) # this handles locking. _lowerCamelCase : Any = list(json_save_dir.glob('rank_*.json' ) ) if intermediate_files: raise ValueError(f'''Found files at {json_save_dir} please move or remove them.''' ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. _lowerCamelCase : Optional[Any] = {} if args.src_lang is not None: _lowerCamelCase : Tuple = args.src_lang if args.tgt_lang is not None: _lowerCamelCase : Tuple = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=lowercase__ ) _lowerCamelCase, _lowerCamelCase : Optional[Any] = eval_data_dir( args.data_dir , lowercase__ , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=lowercase__ , **lowercase__ , ) if args.local_rank <= 0: _lowerCamelCase : Tuple = Path(args.save_dir ) save_dir.mkdir(exist_ok=lowercase__ ) _lowerCamelCase : Union[str, Any] = gather_results_from_each_node(lowercase__ , lowercase__ , args.sync_timeout ) _lowerCamelCase : str = combine_partial_results(lowercase__ ) if args.num_return_sequences > 1: _lowerCamelCase : str = save_dir.joinpath('pseudolabel_results.json' ) print(f'''Saving aggregated results at {save_path}, intermediate in {json_save_dir}/''' ) save_json(lowercase__ , lowercase__ ) return _lowerCamelCase : Any = Path(args.data_dir ).joinpath(args.type_path + '.target' ) with open(lowercase__ ) as f: _lowerCamelCase : int = [x.rstrip() for x in f.readlines()][: len(lowercase__ )] # Calculate metrics, save metrics, and save _generations.txt _lowerCamelCase : str = 'translation' in args.task _lowerCamelCase : Tuple = calculate_bleu if calc_bleu else calculate_rouge _lowerCamelCase : List[str] = 'bleu' if calc_bleu else 'rouge' _lowerCamelCase : Dict = score_fn(lowercase__ , lowercase__ ) _lowerCamelCase : Any = len(lowercase__ ) _lowerCamelCase : Dict = time.time() - start_time _lowerCamelCase : Optional[int] = round(runtime / metrics['n_obs'] , 4 ) _lowerCamelCase : Optional[Any] = num_replicas # TODO(@stas00): add whatever metadata to metrics _lowerCamelCase : Union[str, Any] = save_dir.joinpath(f'''{args.type_path}_{metric_name}.json''' ) save_json(lowercase__ , lowercase__ , indent=lowercase__ ) print(lowercase__ ) write_txt_file(lowercase__ , save_dir.joinpath(f'''{args.type_path}_generations.txt''' ) ) if args.debug: write_txt_file(lowercase__ , save_dir.joinpath(f'''{args.type_path}.target''' ) ) else: shutil.rmtree(lowercase__ ) def _snake_case ( lowercase__ ): _lowerCamelCase : str = [] for partial_result in partial_results: records.extend(lowercase__ ) _lowerCamelCase : int = sorted(lowercase__ , key=lambda lowercase__ : x["id"] ) _lowerCamelCase : List[Any] = [x['pred'] for x in records] return preds def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): # WAIT FOR lots of .json files _lowerCamelCase : str = time.time() logger.info('waiting for all nodes to finish' ) _lowerCamelCase : Dict = None while (time.time() - start_wait) < timeout: _lowerCamelCase : Union[str, Any] = list(save_dir.glob('rank_*.json' ) ) if len(lowercase__ ) < num_replicas: continue try: # make sure all json files are fully saved _lowerCamelCase : str = lmap(lowercase__ , lowercase__ ) return json_data except JSONDecodeError: continue else: raise TimeoutError('Rank 0 gave up on waiting for other processes' ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
96
"""simple docstring""" import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask _A : Optional[int] = logging.getLogger(__name__) class a__ ( a_ ): def __init__( self , _a=-1 ): # in NER datasets, the last column is usually reserved for NER label lowercase : List[str] = label_idx def __magic_name__ ( self , _a , _a ): if isinstance(_a , _a ): lowercase : Optional[Any] = mode.value lowercase : List[str] = os.path.join(_a , f"""{mode}.txt""" ) lowercase : str = 1 lowercase : Optional[int] = [] with open(_a , encoding="utf-8" ) as f: lowercase : List[Any] = [] lowercase : Optional[int] = [] for line in f: if line.startswith("-DOCSTART-" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=_a , labels=_a ) ) guid_index += 1 lowercase : int = [] lowercase : int = [] else: lowercase : Optional[Any] = line.split(" " ) words.append(splits[0] ) if len(_a ) > 1: labels.append(splits[self.label_idx].replace("\n" , "" ) ) else: # Examples could have no label for mode = "test" labels.append("O" ) if words: examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=_a , labels=_a ) ) return examples def __magic_name__ ( self , _a , _a , _a ): lowercase : List[str] = 0 for line in test_input_reader: if line.startswith("-DOCSTART-" ) or line == "" or line == "\n": writer.write(_a ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: lowercase : Any = line.split()[0] + " " + preds_list[example_id].pop(0 ) + "\n" writer.write(_a ) else: logger.warning("Maximum sequence length exceeded: No prediction for '%s'." , line.split()[0] ) def __magic_name__ ( self , _a ): if path: with open(_a , "r" ) as f: lowercase : Optional[Any] = f.read().splitlines() if "O" not in labels: lowercase : List[Any] = ["O"] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class a__ ( a_ ): def __init__( self ): # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def __magic_name__ ( self , _a ): if path: with open(_a , "r" ) as f: lowercase : Tuple = f.read().splitlines() if "O" not in labels: lowercase : Optional[int] = ["O"] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class a__ ( a_ ): def __magic_name__ ( self , _a , _a ): if isinstance(_a , _a ): lowercase : List[Any] = mode.value lowercase : Optional[int] = os.path.join(_a , f"""{mode}.txt""" ) lowercase : Tuple = 1 lowercase : List[str] = [] with open(_a , encoding="utf-8" ) as f: for sentence in parse_incr(_a ): lowercase : Optional[Any] = [] lowercase : str = [] for token in sentence: words.append(token["form"] ) labels.append(token["upos"] ) assert len(_a ) == len(_a ) if words: examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=_a , labels=_a ) ) guid_index += 1 return examples def __magic_name__ ( self , _a , _a , _a ): lowercase : str = 0 for sentence in parse_incr(_a ): lowercase : List[Any] = preds_list[example_id] lowercase : List[str] = "" for token in sentence: out += f"""{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) """ out += "\n" writer.write(_a ) example_id += 1 def __magic_name__ ( self , _a ): if path: with open(_a , "r" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
202
0
import os import sys _A = os.path.join(os.path.dirname(__file__), '''src''') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) _A = [ """torch""", """numpy""", """tokenizers""", """filelock""", """requests""", """tqdm""", """regex""", """sentencepiece""", """sacremoses""", """importlib_metadata""", """huggingface_hub""", ] @add_start_docstrings(AutoConfig.__doc__ ) def lowerCamelCase__ ( *a__ : int , **a__ : Tuple ) -> Tuple: return AutoConfig.from_pretrained(*a__ , **a__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def lowerCamelCase__ ( *a__ : Optional[Any] , **a__ : List[Any] ) -> Optional[int]: return AutoTokenizer.from_pretrained(*a__ , **a__ ) @add_start_docstrings(AutoModel.__doc__ ) def lowerCamelCase__ ( *a__ : int , **a__ : Union[str, Any] ) -> Dict: return AutoModel.from_pretrained(*a__ , **a__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def lowerCamelCase__ ( *a__ : Union[str, Any] , **a__ : Union[str, Any] ) -> List[str]: return AutoModelForCausalLM.from_pretrained(*a__ , **a__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def lowerCamelCase__ ( *a__ : Union[str, Any] , **a__ : Optional[int] ) -> List[Any]: return AutoModelForMaskedLM.from_pretrained(*a__ , **a__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def lowerCamelCase__ ( *a__ : int , **a__ : Any ) -> Optional[Any]: return AutoModelForSequenceClassification.from_pretrained(*a__ , **a__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def lowerCamelCase__ ( *a__ : Tuple , **a__ : List[str] ) -> Tuple: return AutoModelForQuestionAnswering.from_pretrained(*a__ , **a__ )
352
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def lowerCamelCase__ ( a__ : Dict ) -> List[Any]: UpperCamelCase_ = {} UpperCamelCase_ = tokenizer(example["""content"""] , truncation=a__ )["""input_ids"""] UpperCamelCase_ = len(example["""content"""] ) / len(output["""input_ids"""] ) return output _A = HfArgumentParser(PretokenizationArguments) _A = parser.parse_args() if args.num_workers is None: _A = multiprocessing.cpu_count() _A = AutoTokenizer.from_pretrained(args.tokenizer_dir) _A = time.time() _A = load_dataset(args.dataset_name, split='''train''') print(F'''Dataset loaded in {time.time()-t_start:.2f}s''') _A = time.time() _A = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ '''repo_name''', '''path''', '''copies''', '''size''', '''content''', '''license''', '''hash''', '''line_mean''', '''line_max''', '''alpha_frac''', '''autogenerated''', ], ) print(F'''Dataset tokenized in {time.time()-t_start:.2f}s''') _A = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
261
0
from ..utils import DummyObject, requires_backends class __lowercase ( metaclass=UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : int = ['''speech'''] def __init__( self : Optional[int] , *lowerCAmelCase__ : int , **lowerCAmelCase__ : Union[str, Any]): requires_backends(self , ["speech"]) class __lowercase ( metaclass=UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : str = ['''speech'''] def __init__( self : str , *lowerCAmelCase__ : int , **lowerCAmelCase__ : List[str]): requires_backends(self , ["speech"])
13
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Optional[int] = {"""configuration_wavlm""": ["""WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """WavLMConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Any = [ """WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """WavLMForAudioFrameClassification""", """WavLMForCTC""", """WavLMForSequenceClassification""", """WavLMForXVector""", """WavLMModel""", """WavLMPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
13
1
"""simple docstring""" import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def _snake_case ( lowercase__ : Union[str, Any] ) -> Any: '''simple docstring''' return 1.0 / (1.0 + np.exp(-_outputs )) def _snake_case ( lowercase__ : List[Any] ) -> int: '''simple docstring''' lowerCAmelCase_ :Optional[Any] = np.max(_outputs , axis=-1 , keepdims=lowercase__ ) lowerCAmelCase_ :List[Any] = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=lowercase__ ) class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :Tuple = "sigmoid" UpperCAmelCase_ :Dict = "softmax" UpperCAmelCase_ :Tuple = "none" @add_end_docstrings( A__ , r"\n return_all_scores (`bool`, *optional*, defaults to `False`):\n Whether to return all prediction scores or just the one of the predicted class.\n function_to_apply (`str`, *optional*, defaults to `\"default\"`):\n The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:\n\n - `\"default\"`: if the model has a single label, will apply the sigmoid function on the output. If the model\n has several labels, will apply the softmax function on the output.\n - `\"sigmoid\"`: Applies the sigmoid function on the output.\n - `\"softmax\"`: Applies the softmax function on the output.\n - `\"none\"`: Does not apply any function on the output.\n " , ) class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :Optional[Any] = False UpperCAmelCase_ :List[Any] = ClassificationFunction.NONE def __init__( self , **__A ) -> List[str]: super().__init__(**__A ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def __lowerCAmelCase ( self , __A=None , __A=None , __A="" , **__A ) -> Tuple: # Using "" as default argument because we're going to use `top_k=None` in user code to declare # "No top_k" lowerCAmelCase_ :Tuple = tokenizer_kwargs lowerCAmelCase_ :List[str] = {} if hasattr(self.model.config , """return_all_scores""" ) and return_all_scores is None: lowerCAmelCase_ :int = self.model.config.return_all_scores if isinstance(__A , __A ) or top_k is None: lowerCAmelCase_ :Any = top_k lowerCAmelCase_ :Optional[int] = False elif return_all_scores is not None: warnings.warn( """`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of""" """ `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.""" , __A , ) if return_all_scores: lowerCAmelCase_ :Optional[Any] = None else: lowerCAmelCase_ :Dict = 1 if isinstance(__A , __A ): lowerCAmelCase_ :Any = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: lowerCAmelCase_ :Optional[Any] = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self , *__A , **__A ) -> str: lowerCAmelCase_ :Dict = super().__call__(*__A , **__A ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. lowerCAmelCase_ :Optional[int] = """top_k""" not in kwargs if isinstance(args[0] , __A ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def __lowerCAmelCase ( self , __A , **__A ) -> Dict[str, GenericTensor]: lowerCAmelCase_ :List[str] = self.framework if isinstance(__A , __A ): return self.tokenizer(**__A , return_tensors=__A , **__A ) elif isinstance(__A , __A ) and len(__A ) == 1 and isinstance(inputs[0] , __A ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=__A , **__A ) elif isinstance(__A , __A ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( """The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a""" """ dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair.""" ) return self.tokenizer(__A , return_tensors=__A , **__A ) def __lowerCAmelCase ( self , __A ) -> Optional[int]: return self.model(**__A ) def __lowerCAmelCase ( self , __A , __A=None , __A=1 , __A=True ) -> Union[str, Any]: # `_legacy` is used to determine if we're running the naked pipeline and in backward # compatibility mode, or if running the pipeline with `pipeline(..., top_k=1)` we're running # the more natural result containing the list. # Default value before `set_parameters` if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: lowerCAmelCase_ :List[str] = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: lowerCAmelCase_ :Any = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , """function_to_apply""" ) and function_to_apply is None: lowerCAmelCase_ :Optional[int] = self.model.config.function_to_apply else: lowerCAmelCase_ :List[Any] = ClassificationFunction.NONE lowerCAmelCase_ :Any = model_outputs["""logits"""][0] lowerCAmelCase_ :Optional[Any] = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: lowerCAmelCase_ :Optional[int] = sigmoid(__A ) elif function_to_apply == ClassificationFunction.SOFTMAX: lowerCAmelCase_ :Optional[int] = softmax(__A ) elif function_to_apply == ClassificationFunction.NONE: lowerCAmelCase_ :List[Any] = outputs else: raise ValueError(f"""Unrecognized `function_to_apply` argument: {function_to_apply}""" ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} lowerCAmelCase_ :int = [ {"""label""": self.model.config.idalabel[i], """score""": score.item()} for i, score in enumerate(__A ) ] if not _legacy: dict_scores.sort(key=lambda __A : x["score"] , reverse=__A ) if top_k is not None: lowerCAmelCase_ :List[str] = dict_scores[:top_k] return dict_scores
1
"""simple docstring""" import os from math import logaa def _snake_case ( lowercase__ : str = "base_exp.txt" ) -> int: '''simple docstring''' lowerCAmelCase_ :float = 0 lowerCAmelCase_ :Union[str, Any] = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(lowercase__ ) , lowercase__ ) ) ): lowerCAmelCase_ , lowerCAmelCase_ :Union[str, Any] = list(map(lowercase__ , line.split(""",""" ) ) ) if x * logaa(lowercase__ ) > largest: lowerCAmelCase_ :Any = x * logaa(lowercase__ ) lowerCAmelCase_ :List[Any] = i + 1 return result if __name__ == "__main__": print(solution())
1
1
class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None ) -> Tuple: lowerCamelCase : Tuple = data lowerCamelCase : str = previous lowerCamelCase : List[str] = next_node def __str__( self ) -> str: return F'''{self.data}''' def _lowercase ( self ) -> int: return self.data def _lowercase ( self ) -> Dict: return self.next def _lowercase ( self ) -> Optional[int]: return self.previous class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ ) -> Dict: lowerCamelCase : Optional[int] = head def __iter__( self ) -> List[str]: return self def _lowercase ( self ) -> Any: if not self.current: raise StopIteration else: lowerCamelCase : str = self.current.get_data() lowerCamelCase : Union[str, Any] = self.current.get_next() return value class UpperCamelCase__ : '''simple docstring''' def __init__( self ) -> str: lowerCamelCase : Dict = None # First node in list lowerCamelCase : Any = None # Last node in list def __str__( self ) -> Union[str, Any]: lowerCamelCase : Optional[Any] = self.head lowerCamelCase : List[str] = [] while current is not None: nodes.append(current.get_data() ) lowerCamelCase : Any = current.get_next() return " ".join(str(UpperCamelCase__ ) for node in nodes ) def __contains__( self , UpperCamelCase__ ) -> str: lowerCamelCase : int = self.head while current: if current.get_data() == value: return True lowerCamelCase : Tuple = current.get_next() return False def __iter__( self ) -> Tuple: return LinkedListIterator(self.head ) def _lowercase ( self ) -> str: if self.head: return self.head.get_data() return None def _lowercase ( self ) -> Optional[Any]: if self.tail: return self.tail.get_data() return None def _lowercase ( self , UpperCamelCase__ ) -> None: if self.head is None: lowerCamelCase : Union[str, Any] = node lowerCamelCase : Any = node else: self.insert_before_node(self.head , UpperCamelCase__ ) def _lowercase ( self , UpperCamelCase__ ) -> None: if self.head is None: self.set_head(UpperCamelCase__ ) else: self.insert_after_node(self.tail , UpperCamelCase__ ) def _lowercase ( self , UpperCamelCase__ ) -> None: lowerCamelCase : List[Any] = Node(UpperCamelCase__ ) if self.head is None: self.set_head(UpperCamelCase__ ) else: self.set_tail(UpperCamelCase__ ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> None: lowerCamelCase : Union[str, Any] = node lowerCamelCase : Dict = node.previous if node.get_previous() is None: lowerCamelCase : int = node_to_insert else: lowerCamelCase : Dict = node_to_insert lowerCamelCase : List[Any] = node_to_insert def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> None: lowerCamelCase : str = node lowerCamelCase : Tuple = node.next if node.get_next() is None: lowerCamelCase : Optional[Any] = node_to_insert else: lowerCamelCase : Optional[int] = node_to_insert lowerCamelCase : Union[str, Any] = node_to_insert def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> None: lowerCamelCase : Any = 1 lowerCamelCase : Optional[int] = Node(UpperCamelCase__ ) lowerCamelCase : Tuple = self.head while node: if current_position == position: self.insert_before_node(UpperCamelCase__ , UpperCamelCase__ ) return current_position += 1 lowerCamelCase : Union[str, Any] = node.next self.insert_after_node(self.tail , UpperCamelCase__ ) def _lowercase ( self , UpperCamelCase__ ) -> Node: lowerCamelCase : int = self.head while node: if node.get_data() == item: return node lowerCamelCase : Optional[int] = node.get_next() raise Exception("Node not found" ) def _lowercase ( self , UpperCamelCase__ ) -> str: if (node := self.get_node(UpperCamelCase__ )) is not None: if node == self.head: lowerCamelCase : Dict = self.head.get_next() if node == self.tail: lowerCamelCase : List[Any] = self.tail.get_previous() self.remove_node_pointers(UpperCamelCase__ ) @staticmethod def _lowercase ( UpperCamelCase__ ) -> None: if node.get_next(): lowerCamelCase : Dict = node.previous if node.get_previous(): lowerCamelCase : Tuple = node.next lowerCamelCase : Optional[int] = None lowerCamelCase : List[Any] = None def _lowercase ( self ) -> Tuple: return self.head is None def A ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
48
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) _lowerCAmelCase : List[str] = [ "cross_validation.py", "gradient_accumulation.py", "local_sgd.py", "multi_process_metrics.py", "memory.py", "automatic_gradient_accumulation.py", "fsdp_with_peak_mem_tracking.py", "deepspeed_with_config_support.py", "megatron_lm_gpt_pretraining.py", ] class _UpperCamelCase ( unittest.TestCase ): def UpperCAmelCase_ ( self :Dict , lowerCamelCase :str , lowerCamelCase :bool , lowerCamelCase :str = None , lowerCamelCase :list = None ) -> Tuple: UpperCAmelCase__ = None UpperCAmelCase__ = os.path.abspath(os.path.join("examples" , "by_feature" ) ) UpperCAmelCase__ = os.path.abspath("examples" ) for item in os.listdir(lowerCamelCase ): if item not in EXCLUDE_EXAMPLES: UpperCAmelCase__ = os.path.join(lowerCamelCase , lowerCamelCase ) if os.path.isfile(lowerCamelCase ) and ".py" in item_path: with self.subTest( tested_script=lowerCamelCase , feature_script=lowerCamelCase , tested_section="main()" if parser_only else "training_function()" , ): UpperCAmelCase__ = compare_against_test( os.path.join(lowerCamelCase , lowerCamelCase ) , lowerCamelCase , lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = "\n".join(lowerCamelCase ) if special_strings is not None: for string in special_strings: UpperCAmelCase__ = diff.replace(lowerCamelCase , "" ) self.assertEqual(lowerCamelCase , "" ) def UpperCAmelCase_ ( self :List[str] ) -> Any: self.one_complete_example("complete_nlp_example.py" , lowerCamelCase ) self.one_complete_example("complete_nlp_example.py" , lowerCamelCase ) def UpperCAmelCase_ ( self :str ) -> int: UpperCAmelCase__ = os.path.abspath(os.path.join("examples" , "cv_example.py" ) ) UpperCAmelCase__ = [ " " * 16 + "{\n\n", " " * 20 + "\"accuracy\": eval_metric[\"accuracy\"],\n\n", " " * 20 + "\"f1\": eval_metric[\"f1\"],\n\n", " " * 20 + "\"train_loss\": total_loss.item() / len(train_dataloader),\n\n", " " * 20 + "\"epoch\": epoch,\n\n", " " * 16 + "},\n\n", " " * 16 + "step=epoch,\n", " " * 12, " " * 8 + "for step, batch in enumerate(active_dataloader):\n", ] self.one_complete_example("complete_cv_example.py" , lowerCamelCase , lowerCamelCase , lowerCamelCase ) self.one_complete_example("complete_cv_example.py" , lowerCamelCase , lowerCamelCase , lowerCamelCase ) @mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """1"""} ) class _UpperCamelCase ( lowerCAmelCase ): UpperCAmelCase_ = False @classmethod def UpperCAmelCase_ ( cls :List[Any] ) -> Any: super().setUpClass() UpperCAmelCase__ = tempfile.mkdtemp() UpperCAmelCase__ = os.path.join(cls._tmpdir , "default_config.yml" ) write_basic_config(save_location=cls.configPath ) UpperCAmelCase__ = ["accelerate", "launch", "--config_file", cls.configPath] @classmethod def UpperCAmelCase_ ( cls :Union[str, Any] ) -> Optional[int]: super().tearDownClass() shutil.rmtree(cls._tmpdir ) def UpperCAmelCase_ ( self :Dict ) -> Dict: UpperCAmelCase__ = f''' examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} '''.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "epoch_0" ) ) ) def UpperCAmelCase_ ( self :Optional[int] ) -> Any: UpperCAmelCase__ = f''' examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} '''.split() UpperCAmelCase__ = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "step_2" ) ) ) def UpperCAmelCase_ ( self :Tuple ) -> Dict: UpperCAmelCase__ = f''' examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )} '''.split() UpperCAmelCase__ = run_command(self._launch_args + testargs , return_stdout=lowerCamelCase ) self.assertNotIn("epoch 0:" , lowerCamelCase ) self.assertIn("epoch 1:" , lowerCamelCase ) def UpperCAmelCase_ ( self :Dict ) -> int: UpperCAmelCase__ = f''' examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )} '''.split() UpperCAmelCase__ = run_command(self._launch_args + testargs , return_stdout=lowerCamelCase ) if torch.cuda.is_available(): UpperCAmelCase__ = torch.cuda.device_count() else: UpperCAmelCase__ = 1 if num_processes > 1: self.assertNotIn("epoch 0:" , lowerCamelCase ) self.assertIn("epoch 1:" , lowerCamelCase ) else: self.assertIn("epoch 0:" , lowerCamelCase ) self.assertIn("epoch 1:" , lowerCamelCase ) @slow def UpperCAmelCase_ ( self :Dict ) -> Optional[int]: UpperCAmelCase__ = "\n examples/by_feature/cross_validation.py\n --num_folds 2\n ".split() with mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "0"} ): UpperCAmelCase__ = run_command(self._launch_args + testargs , return_stdout=lowerCamelCase ) UpperCAmelCase__ = re.findall("({.+})" , lowerCamelCase ) UpperCAmelCase__ = [r for r in results if "accuracy" in r][-1] UpperCAmelCase__ = ast.literal_eval(lowerCamelCase ) self.assertGreaterEqual(results["accuracy"] , 0.75 ) def UpperCAmelCase_ ( self :int ) -> Optional[int]: UpperCAmelCase__ = ["examples/by_feature/multi_process_metrics.py"] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def UpperCAmelCase_ ( self :List[Any] ) -> Dict: with tempfile.TemporaryDirectory() as tmpdir: UpperCAmelCase__ = f''' examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} '''.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(lowerCamelCase , "tracking" ) ) ) def UpperCAmelCase_ ( self :Any ) -> Dict: UpperCAmelCase__ = ["examples/by_feature/gradient_accumulation.py"] run_command(self._launch_args + testargs ) def UpperCAmelCase_ ( self :Any ) -> Optional[int]: UpperCAmelCase__ = ["examples/by_feature/local_sgd.py"] run_command(self._launch_args + testargs )
169
0
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } lowerCAmelCase__ = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } lowerCAmelCase__ = {'''facebook/blenderbot-3B''': 128} class _lowerCamelCase ( _lowercase ): UpperCAmelCase_ = VOCAB_FILES_NAMES UpperCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ = ["input_ids", "attention_mask"] UpperCAmelCase_ = BlenderbotTokenizer def __init__(self , __a=None , __a=None , __a=None , __a="replace" , __a="<s>" , __a="</s>" , __a="</s>" , __a="<s>" , __a="<unk>" , __a="<pad>" , __a="<mask>" , __a=False , __a=True , **__a , ) -> Union[str, Any]: super().__init__( __a , __a , tokenizer_file=__a , errors=__a , bos_token=__a , eos_token=__a , sep_token=__a , cls_token=__a , unk_token=__a , pad_token=__a , mask_token=__a , add_prefix_space=__a , trim_offsets=__a , **__a , ) UpperCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , __a ) != add_prefix_space: UpperCamelCase = getattr(__a , pre_tok_state.pop("type" ) ) UpperCamelCase = add_prefix_space UpperCamelCase = pre_tok_class(**__a ) UpperCamelCase = add_prefix_space UpperCamelCase = "post_processor" UpperCamelCase = getattr(self.backend_tokenizer , __a , __a ) if tokenizer_component_instance: UpperCamelCase = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCamelCase = tuple(state["sep"] ) if "cls" in state: UpperCamelCase = tuple(state["cls"] ) UpperCamelCase = False if state.get("add_prefix_space" , __a ) != add_prefix_space: UpperCamelCase = add_prefix_space UpperCamelCase = True if state.get("trim_offsets" , __a ) != trim_offsets: UpperCamelCase = trim_offsets UpperCamelCase = True if changes_to_apply: UpperCamelCase = getattr(__a , state.pop("type" ) ) UpperCamelCase = component_class(**__a ) setattr(self.backend_tokenizer , __a , __a ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def snake_case_ (self ) -> str: if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def snake_case_ (self , __a ) -> Any: UpperCamelCase = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else value UpperCamelCase = value def snake_case_ (self , *__a , **__a ) -> BatchEncoding: UpperCamelCase = kwargs.get("is_split_into_words" , __a ) assert self.add_prefix_space or not is_split_into_words, ( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__a , **__a ) def snake_case_ (self , *__a , **__a ) -> BatchEncoding: UpperCamelCase = kwargs.get("is_split_into_words" , __a ) assert self.add_prefix_space or not is_split_into_words, ( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*__a , **__a ) def snake_case_ (self , __a , __a = None ) -> Tuple[str]: UpperCamelCase = self._tokenizer.model.save(__a , name=__a ) return tuple(__a ) def snake_case_ (self , __a , __a = None ) -> List[int]: UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case_ (self , __a , __a = None ) -> int: return token_ids_a + [self.eos_token_id] def snake_case_ (self , __a ) -> List[int]: UpperCamelCase = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__a ) UpperCamelCase = " ".join(__a ) UpperCamelCase = self.encode(__a ) if len(__a ) > self.model_max_length: UpperCamelCase = input_ids[-self.model_max_length :] logger.warning(F"Trimmed input from conversation as it was longer than {self.model_max_length} tokens." ) return input_ids
359
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = { '''configuration_timesformer''': ['''TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimesformerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimesformerModel''', '''TimesformerForVideoClassification''', '''TimesformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
244
0
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : int = logging.get_logger(__name__) a__ : Optional[int] = { '''huggingface/time-series-transformer-tourism-monthly''': ( '''https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json''' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE): UpperCAmelCase__ : Tuple = 'time_series_transformer' UpperCAmelCase__ : str = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self :List[str] , _A :List[str] = None , _A :str = None , _A :Dict = "student_t" , _A :Optional[int] = "nll" , _A :Tuple = 1 , _A :Union[str, Any] = [1, 2, 3, 4, 5, 6, 7] , _A :Tuple = "mean" , _A :List[str] = 0 , _A :Union[str, Any] = 0 , _A :str = 0 , _A :List[str] = 0 , _A :Optional[Any] = None , _A :List[str] = None , _A :Optional[int] = 32 , _A :str = 32 , _A :Union[str, Any] = 2 , _A :Any = 2 , _A :List[str] = 2 , _A :str = 2 , _A :Any = True , _A :Dict = "gelu" , _A :Union[str, Any] = 64 , _A :List[str] = 0.1 , _A :Any = 0.1 , _A :str = 0.1 , _A :int = 0.1 , _A :Optional[Any] = 0.1 , _A :Dict = 100 , _A :int = 0.02 , _A :str=True , **_A :Optional[int] , ) -> List[Any]: '''simple docstring''' __A = prediction_length __A = context_length or prediction_length __A = distribution_output __A = loss __A = input_size __A = num_time_features __A = lags_sequence __A = scaling __A = num_dynamic_real_features __A = num_static_real_features __A = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(_SCREAMING_SNAKE_CASE ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) __A = cardinality else: __A = [0] if embedding_dimension and num_static_categorical_features > 0: if len(_SCREAMING_SNAKE_CASE ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) __A = embedding_dimension else: __A = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] __A = num_parallel_samples # Transformer architecture configuration __A = input_size * len(_SCREAMING_SNAKE_CASE ) + self._number_of_features __A = d_model __A = encoder_attention_heads __A = decoder_attention_heads __A = encoder_ffn_dim __A = decoder_ffn_dim __A = encoder_layers __A = decoder_layers __A = dropout __A = attention_dropout __A = activation_dropout __A = encoder_layerdrop __A = decoder_layerdrop __A = activation_function __A = init_std __A = use_cache super().__init__(is_encoder_decoder=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @property def lowercase_ ( self :List[Any] ) -> int: '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
161
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class __a ( unittest.TestCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=0.9 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , ) -> str: """simple docstring""" _UpperCAmelCase = size if size is not None else {'shortest_edge': 30} _UpperCAmelCase = crop_size if crop_size is not None else {'height': 30, 'width': 30} _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize_and_center_crop _UpperCAmelCase = size _UpperCAmelCase = crop_pct _UpperCAmelCase = crop_size _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean _UpperCAmelCase = image_std def UpperCAmelCase__ ( self ) -> int: """simple docstring""" return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __a ( UpperCAmelCase , unittest.TestCase ): _a : Optional[Any] = PoolFormerImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = PoolFormerImageProcessingTester(self ) @property def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_resize_and_center_crop' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'size' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'crop_pct' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_normalize' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_mean' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_std' ) ) def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 30} ) self.assertEqual(image_processor.crop_size , {'height': 30, 'width': 30} ) _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" pass def UpperCAmelCase__ ( self ) -> int: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
329
0
"""simple docstring""" import math def snake_case ( A__ ): UpperCAmelCase_ : Union[str, Any] = 0 UpperCAmelCase_ : Tuple = 0 while num > 0: UpperCAmelCase_ : int = num % 8 UpperCAmelCase_ : List[str] = octal + (remainder * math.floor(math.pow(10 ,A__ ) )) counter += 1 UpperCAmelCase_ : Optional[Any] = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return F"""0o{int(A__ )}""" def snake_case ( ): print("\n2 in octal is:" ) print(decimal_to_octal(2 ) ) # = 2 print("\n8 in octal is:" ) print(decimal_to_octal(8 ) ) # = 10 print("\n65 in octal is:" ) print(decimal_to_octal(65 ) ) # = 101 print("\n216 in octal is:" ) print(decimal_to_octal(2_16 ) ) # = 330 print("\n512 in octal is:" ) print(decimal_to_octal(5_12 ) ) # = 1000 print("\n" ) if __name__ == "__main__": main()
253
"""simple docstring""" def snake_case ( A__ ): return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(A__ ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__('''doctest''').testmod()
253
1
'''simple docstring''' import qiskit def UpperCamelCase( UpperCAmelCase_ = 2 ): UpperCAmelCase : Union[str, Any] = qubits # Using Aer's simulator UpperCAmelCase : List[str] = qiskit.Aer.get_backend('aer_simulator' ) # Creating a Quantum Circuit acting on the q register UpperCAmelCase : Union[str, Any] = qiskit.QuantumCircuit(UpperCAmelCase_ , UpperCAmelCase_ ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , UpperCAmelCase_ ): # Adding CX (CNOT) gate circuit.cx(i - 1 , UpperCAmelCase_ ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(UpperCAmelCase_ ) ) , list(range(UpperCAmelCase_ ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator UpperCAmelCase : int = qiskit.execute(UpperCAmelCase_ , UpperCAmelCase_ , shots=10_00 ) return job.result().get_counts(UpperCAmelCase_ ) if __name__ == "__main__": print(f'''Total count for various states are: {quantum_entanglement(3)}''')
151
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowercase__ = {"processing_layoutxlm": ["LayoutXLMProcessor"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["LayoutXLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["LayoutXLMTokenizerFast"] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys lowercase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
151
1
'''simple docstring''' from typing import Any def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list , _UpperCamelCase : list , _UpperCamelCase : dict , _UpperCamelCase : dict , _UpperCamelCase : dict , ) -> list: '''simple docstring''' _validation( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) # Creates data structures and fill initial step UpperCamelCase__ = {} UpperCamelCase__ = {} for state in states_space: UpperCamelCase__ = observations_space[0] UpperCamelCase__ = ( initial_probabilities[state] * emission_probabilities[state][observation] ) UpperCamelCase__ = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(_UpperCamelCase ) ): UpperCamelCase__ = observations_space[o] UpperCamelCase__ = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function UpperCamelCase__ = "" UpperCamelCase__ = -1 for k_state in states_space: UpperCamelCase__ = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: UpperCamelCase__ = probability UpperCamelCase__ = k_state # Update probabilities and pointers dicts UpperCamelCase__ = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) UpperCamelCase__ = arg_max # The final observation UpperCamelCase__ = observations_space[len(_UpperCamelCase ) - 1] # argmax for given final observation UpperCamelCase__ = "" UpperCamelCase__ = -1 for k_state in states_space: UpperCamelCase__ = probabilities[(k_state, final_observation)] if probability > max_probability: UpperCamelCase__ = probability UpperCamelCase__ = k_state UpperCamelCase__ = arg_max # Process pointers backwards UpperCamelCase__ = last_state UpperCamelCase__ = [] for o in range(len(_UpperCamelCase ) - 1 , -1 , -1 ): result.append(_UpperCamelCase ) UpperCamelCase__ = pointers[previous, observations_space[o]] result.reverse() return result def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Any , _UpperCamelCase : Any , _UpperCamelCase : Any , _UpperCamelCase : Any , _UpperCamelCase : Any , ) -> None: '''simple docstring''' _validate_not_empty( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) _validate_lists(_UpperCamelCase , _UpperCamelCase ) _validate_dicts( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Any , _UpperCamelCase : Any , _UpperCamelCase : Any , _UpperCamelCase : Any , _UpperCamelCase : Any , ) -> None: '''simple docstring''' if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("There's an empty parameter" ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Any , _UpperCamelCase : Any ) -> None: '''simple docstring''' _validate_list(_UpperCamelCase , "observations_space" ) _validate_list(_UpperCamelCase , "states_space" ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Any , _UpperCamelCase : str ) -> None: '''simple docstring''' if not isinstance(_object , _UpperCamelCase ): UpperCamelCase__ = F'{var_name} must be a list' raise ValueError(_UpperCamelCase ) else: for x in _object: if not isinstance(_UpperCamelCase , _UpperCamelCase ): UpperCamelCase__ = F'{var_name} must be a list of strings' raise ValueError(_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Any , _UpperCamelCase : Any , _UpperCamelCase : Any , ) -> None: '''simple docstring''' _validate_dict(_UpperCamelCase , "initial_probabilities" , _UpperCamelCase ) _validate_nested_dict(_UpperCamelCase , "transition_probabilities" ) _validate_nested_dict(_UpperCamelCase , "emission_probabilities" ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Any , _UpperCamelCase : str ) -> None: '''simple docstring''' _validate_dict(_object , _UpperCamelCase , _UpperCamelCase ) for x in _object.values(): _validate_dict(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Any , _UpperCamelCase : str , _UpperCamelCase : type , _UpperCamelCase : bool = False ) -> None: '''simple docstring''' if not isinstance(_object , _UpperCamelCase ): UpperCamelCase__ = F'{var_name} must be a dict' raise ValueError(_UpperCamelCase ) if not all(isinstance(_UpperCamelCase , _UpperCamelCase ) for x in _object ): UpperCamelCase__ = F'{var_name} all keys must be strings' raise ValueError(_UpperCamelCase ) if not all(isinstance(_UpperCamelCase , _UpperCamelCase ) for x in _object.values() ): UpperCamelCase__ = "nested dictionary " if nested else "" UpperCamelCase__ = F'{var_name} {nested_text}all values must be {value_type.__name__}' raise ValueError(_UpperCamelCase ) if __name__ == "__main__": from doctest import testmod testmod()
31
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): def __init__( self : Any, a_ : VQModel, a_ : UNetaDModel, a_ : DDIMScheduler ): """simple docstring""" super().__init__() self.register_modules(vqvae=a_, unet=a_, scheduler=a_ ) @torch.no_grad() def __call__( self : Union[str, Any], a_ : int = 1, a_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None, a_ : float = 0.0, a_ : int = 50, a_ : Optional[str] = "pil", a_ : bool = True, **a_ : Tuple, ): """simple docstring""" UpperCamelCase__ = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size), generator=a_, ) UpperCamelCase__ = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase__ = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(a_ ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature UpperCamelCase__ = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase__ = {} if accepts_eta: UpperCamelCase__ = eta for t in self.progress_bar(self.scheduler.timesteps ): UpperCamelCase__ = self.scheduler.scale_model_input(a_, a_ ) # predict the noise residual UpperCamelCase__ = self.unet(a_, a_ ).sample # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase__ = self.scheduler.step(a_, a_, a_, **a_ ).prev_sample # decode the image latents with the VAE UpperCamelCase__ = self.vqvae.decode(a_ ).sample UpperCamelCase__ = (image / 2 + 0.5).clamp(0, 1 ) UpperCamelCase__ = image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": UpperCamelCase__ = self.numpy_to_pil(a_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a_ )
31
1
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def lowerCamelCase__ ( ) -> List[Any]: UpperCamelCase_ = """https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg""" UpperCamelCase_ = Image.open(requests.get(a__ , stream=a__ ).raw ).convert("""RGB""" ) return image def lowerCamelCase__ ( a__ : List[str] ) -> Union[str, Any]: UpperCamelCase_ = [] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.weight''', f'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.bias''', f'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.weight''', f'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.bias''', f'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.qkv.weight''', f'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.weight''', f'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.bias''', f'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.embeddings.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.embeddings.layernorm.bias""") ) # fmt: on return rename_keys def lowerCamelCase__ ( a__ : Optional[int] , a__ : Union[str, Any] , a__ : List[Any] ) -> List[str]: UpperCamelCase_ = dct.pop(a__ ) UpperCamelCase_ = val def lowerCamelCase__ ( a__ : Optional[int] , a__ : Dict ) -> Tuple: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases UpperCamelCase_ = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.q_bias''' ) UpperCamelCase_ = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict UpperCamelCase_ = torch.cat((q_bias, torch.zeros_like(a__ , requires_grad=a__ ), v_bias) ) UpperCamelCase_ = qkv_bias def lowerCamelCase__ ( a__ : Optional[Any] ) -> str: UpperCamelCase_ = 364 if """coco""" in model_name else 224 UpperCamelCase_ = InstructBlipVisionConfig(image_size=a__ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: UpperCamelCase_ = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: UpperCamelCase_ = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: UpperCamelCase_ = LlamaConfig.from_pretrained("""decapoda-research/llama-7b-hf""" , vocab_size=3_2001 ).to_dict() elif "vicuna-13b" in model_name: UpperCamelCase_ = LlamaConfig.from_pretrained("""decapoda-research/llama-13b-hf""" , vocab_size=3_2001 ).to_dict() else: raise ValueError("""Model name not supported""" ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 UpperCamelCase_ = InstructBlipQFormerConfig(vocab_size=3_0523 ).to_dict() UpperCamelCase_ = InstructBlipConfig(vision_config=a__ , text_config=a__ , qformer_config=a__ ) return config, image_size @torch.no_grad() def lowerCamelCase__ ( a__ : Any , a__ : Dict=None , a__ : List[Any]=False ) -> int: UpperCamelCase_ = AutoTokenizer.from_pretrained("""bert-base-uncased""" , truncation_side="""left""" ) qformer_tokenizer.add_special_tokens({"""bos_token""": """[DEC]"""} ) if "t5" in model_name: UpperCamelCase_ = TaTokenizerFast.from_pretrained("""google/flan-t5-xl""" , truncation_side="""left""" ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) UpperCamelCase_ = LlamaTokenizerFast.from_pretrained( """huggyllama/llama-7b""" , truncation_side="""left""" , bos_token="""</s>""" , unk_token="""</s>""" ) tokenizer.add_special_tokens({"""pad_token""": """[PAD]"""} ) UpperCamelCase_ , UpperCamelCase_ = get_blipa_config(a__ ) UpperCamelCase_ = InstructBlipForConditionalGeneration(a__ ).eval() UpperCamelCase_ = { """instructblip-vicuna-7b""": ("""blip2_vicuna_instruct""", """vicuna7b"""), """instructblip-vicuna-13b""": ("""blip2_vicuna_instruct""", """vicuna13b"""), """instructblip-flan-t5-xl""": ("""blip2_t5_instruct""", """flant5xl"""), """instructblip-flan-t5-xxl""": ("""blip2_t5_instruct""", """flant5xxl"""), } UpperCamelCase_ , UpperCamelCase_ = model_name_to_original[model_name] # load original model print("""Loading original model...""" ) UpperCamelCase_ = """cuda:1""" if torch.cuda.is_available() else """cpu""" UpperCamelCase_ = """cuda:2""" if torch.cuda.is_available() else """cpu""" UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = load_model_and_preprocess( name=a__ , model_type=a__ , is_eval=a__ , device=a__ ) original_model.eval() print("""Done!""" ) # update state dict keys UpperCamelCase_ = original_model.state_dict() UpperCamelCase_ = create_rename_keys(a__ ) for src, dest in rename_keys: rename_key(a__ , a__ , a__ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): UpperCamelCase_ = state_dict.pop(a__ ) if key.startswith("""Qformer.bert""" ): UpperCamelCase_ = key.replace("""Qformer.bert""" , """qformer""" ) if "attention.self" in key: UpperCamelCase_ = key.replace("""self""" , """attention""" ) if "llm_proj" in key: UpperCamelCase_ = key.replace("""llm_proj""" , """language_projection""" ) if "t5_proj" in key: UpperCamelCase_ = key.replace("""t5_proj""" , """language_projection""" ) if key.startswith("""llm_model""" ): UpperCamelCase_ = key.replace("""llm_model""" , """language_model""" ) if key.startswith("""t5""" ): UpperCamelCase_ = key.replace("""t5""" , """language""" ) UpperCamelCase_ = val # read in qv biases read_in_q_v_bias(a__ , a__ ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(a__ , strict=a__ ) UpperCamelCase_ = load_demo_image() UpperCamelCase_ = """What is unusual about this image?""" # create processor UpperCamelCase_ = BlipImageProcessor( size={"""height""": image_size, """width""": image_size} , image_mean=a__ , image_std=a__ ) UpperCamelCase_ = InstructBlipProcessor( image_processor=a__ , tokenizer=a__ , qformer_tokenizer=a__ , ) UpperCamelCase_ = processor(images=a__ , text=a__ , return_tensors="""pt""" ).to(a__ ) # make sure processor creates exact same pixel values UpperCamelCase_ = vis_processors["""eval"""](a__ ).unsqueeze(0 ).to(a__ ) UpperCamelCase_ = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , a__ ) original_model.to(a__ ) hf_model.to(a__ ) with torch.no_grad(): if "vicuna" in model_name: UpperCamelCase_ = original_model({"""image""": original_pixel_values, """text_input""": [prompt]} ).logits UpperCamelCase_ = hf_model(**a__ ).logits else: UpperCamelCase_ = original_model( {"""image""": original_pixel_values, """text_input""": [prompt], """text_output""": ["""\n"""]} ).logits UpperCamelCase_ = tokenizer("""\n""" , return_tensors="""pt""" ).input_ids.to(a__ ) UpperCamelCase_ = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -100 ) UpperCamelCase_ = hf_model(**a__ , labels=a__ ).logits print("""First values of original logits:""" , original_logits[0, :3, :3] ) print("""First values of HF logits:""" , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape UpperCamelCase_ = 1e-4 if """vicuna""" in model_name else 1e-5 assert torch.allclose(original_logits.to(logits.device ) , a__ , atol=a__ ) print("""Looks ok!""" ) print("""Generating with original model...""" ) UpperCamelCase_ = original_model.generate({"""image""": original_pixel_values, """prompt""": prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print("""Generating with HF model...""" ) UpperCamelCase_ = hf_model.generate( **a__ , do_sample=a__ , num_beams=5 , max_length=256 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? UpperCamelCase_ = 2 print("""Original generation:""" , a__ ) UpperCamelCase_ = processor.batch_decode(a__ , skip_special_tokens=a__ ) UpperCamelCase_ = [text.strip() for text in output_text] print("""HF generation:""" , a__ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(a__ ) hf_model.save_pretrained(a__ ) if push_to_hub: processor.push_to_hub(f'''Salesforce/{model_name}''' ) hf_model.push_to_hub(f'''Salesforce/{model_name}''' ) if __name__ == "__main__": _A = argparse.ArgumentParser() _A = [ '''instructblip-vicuna-7b''', '''instructblip-vicuna-13b''', '''instructblip-flan-t5-xl''', '''instructblip-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''instructblip-flan-t5-xl''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) _A = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
122
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class lowercase_ ( unittest.TestCase ): def __init__( self , __UpperCamelCase , __UpperCamelCase=7 , __UpperCamelCase=3 , __UpperCamelCase=3_0 , __UpperCamelCase=4_0_0 , __UpperCamelCase=True , __UpperCamelCase=None , __UpperCamelCase=True , __UpperCamelCase=[0.5, 0.5, 0.5] , __UpperCamelCase=[0.5, 0.5, 0.5] , __UpperCamelCase=True , __UpperCamelCase=1 / 2_5_5 , __UpperCamelCase=True , ): """simple docstring""" UpperCamelCase_ = size if size is not None else {"""shortest_edge""": 1_8, """longest_edge""": 1_3_3_3} UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = num_channels UpperCamelCase_ = min_resolution UpperCamelCase_ = max_resolution UpperCamelCase_ = do_resize UpperCamelCase_ = size UpperCamelCase_ = do_normalize UpperCamelCase_ = image_mean UpperCamelCase_ = image_std UpperCamelCase_ = do_rescale UpperCamelCase_ = rescale_factor UpperCamelCase_ = do_pad def lowerCamelCase_ ( self ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase=False ): """simple docstring""" if not batched: UpperCamelCase_ = image_inputs[0] if isinstance(__UpperCamelCase , Image.Image ): UpperCamelCase_ , UpperCamelCase_ = image.size else: UpperCamelCase_ , UpperCamelCase_ = image.shape[1], image.shape[2] if w < h: UpperCamelCase_ = int(self.size["""shortest_edge"""] * h / w ) UpperCamelCase_ = self.size["""shortest_edge"""] elif w > h: UpperCamelCase_ = self.size["""shortest_edge"""] UpperCamelCase_ = int(self.size["""shortest_edge"""] * w / h ) else: UpperCamelCase_ = self.size["""shortest_edge"""] UpperCamelCase_ = self.size["""shortest_edge"""] else: UpperCamelCase_ = [] for image in image_inputs: UpperCamelCase_ , UpperCamelCase_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCamelCase_ = max(__UpperCamelCase , key=lambda __UpperCamelCase : item[0] )[0] UpperCamelCase_ = max(__UpperCamelCase , key=lambda __UpperCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowercase_ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): A__ : str = YolosImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = YolosImageProcessingTester(self ) @property def lowerCamelCase_ ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """image_std""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """size""" ) ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 1_8, """longest_edge""": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , __UpperCamelCase ) UpperCamelCase_ = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__UpperCamelCase ) self.assertEqual(image_processor.size , {"""shortest_edge""": 4_2, """longest_edge""": 8_4} ) self.assertEqual(image_processor.do_pad , __UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" pass def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , Image.Image ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) UpperCamelCase_ = image_processing(__UpperCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , numpify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , np.ndarray ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase_ = image_processing(__UpperCamelCase , return_tensors="""pt""" ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , torchify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , torch.Tensor ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase_ = image_processing(__UpperCamelCase , return_tensors="""pt""" ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) UpperCamelCase_ = self.image_processing_class(do_resize=__UpperCamelCase , do_normalize=__UpperCamelCase , do_rescale=__UpperCamelCase ) # create random PyTorch tensors UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , torchify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors UpperCamelCase_ = image_processing_a.pad(__UpperCamelCase , return_tensors="""pt""" ) UpperCamelCase_ = image_processing_a(__UpperCamelCase , return_tensors="""pt""" ) self.assertTrue( torch.allclose(encoded_images_with_method["""pixel_values"""] , encoded_images["""pixel_values"""] , atol=1e-4 ) ) @slow def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: UpperCamelCase_ = json.loads(f.read() ) UpperCamelCase_ = {"""image_id""": 3_9_7_6_9, """annotations""": target} # encode them UpperCamelCase_ = YolosImageProcessor.from_pretrained("""hustvl/yolos-small""" ) UpperCamelCase_ = image_processing(images=__UpperCamelCase , annotations=__UpperCamelCase , return_tensors="""pt""" ) # verify pixel values UpperCamelCase_ = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["""pixel_values"""].shape , __UpperCamelCase ) UpperCamelCase_ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __UpperCamelCase , atol=1e-4 ) ) # verify area UpperCamelCase_ = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __UpperCamelCase ) ) # verify boxes UpperCamelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __UpperCamelCase ) UpperCamelCase_ = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __UpperCamelCase , atol=1e-3 ) ) # verify image_id UpperCamelCase_ = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __UpperCamelCase ) ) # verify is_crowd UpperCamelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __UpperCamelCase ) ) # verify class_labels UpperCamelCase_ = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __UpperCamelCase ) ) # verify orig_size UpperCamelCase_ = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __UpperCamelCase ) ) # verify size UpperCamelCase_ = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __UpperCamelCase ) ) @slow def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: UpperCamelCase_ = json.loads(f.read() ) UpperCamelCase_ = {"""file_name""": """000000039769.png""", """image_id""": 3_9_7_6_9, """segments_info""": target} UpperCamelCase_ = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them UpperCamelCase_ = YolosImageProcessor(format="""coco_panoptic""" ) UpperCamelCase_ = image_processing(images=__UpperCamelCase , annotations=__UpperCamelCase , masks_path=__UpperCamelCase , return_tensors="""pt""" ) # verify pixel values UpperCamelCase_ = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["""pixel_values"""].shape , __UpperCamelCase ) UpperCamelCase_ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __UpperCamelCase , atol=1e-4 ) ) # verify area UpperCamelCase_ = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __UpperCamelCase ) ) # verify boxes UpperCamelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __UpperCamelCase ) UpperCamelCase_ = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __UpperCamelCase , atol=1e-3 ) ) # verify image_id UpperCamelCase_ = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __UpperCamelCase ) ) # verify is_crowd UpperCamelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __UpperCamelCase ) ) # verify class_labels UpperCamelCase_ = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __UpperCamelCase ) ) # verify masks UpperCamelCase_ = 8_2_2_8_7_3 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , __UpperCamelCase ) # verify orig_size UpperCamelCase_ = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __UpperCamelCase ) ) # verify size UpperCamelCase_ = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __UpperCamelCase ) )
122
1
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class a : __lowerCAmelCase : List[str] __lowerCAmelCase : Optional[str] = None # Automatically constructed __lowerCAmelCase : ClassVar[str] = "dict" __lowerCAmelCase : ClassVar[Any] = None __lowerCAmelCase : str = field(default="""Translation""" , init=__lowerCamelCase , repr=__lowerCamelCase ) def __call__( self :Optional[Any] ): return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def __lowerCamelCase ( self :Dict ): from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class a : __lowerCAmelCase : Optional[List] = None __lowerCAmelCase : Optional[int] = None __lowerCAmelCase : Optional[str] = None # Automatically constructed __lowerCAmelCase : ClassVar[str] = "dict" __lowerCAmelCase : ClassVar[Any] = None __lowerCAmelCase : str = field(default="""TranslationVariableLanguages""" , init=__lowerCamelCase , repr=__lowerCamelCase ) def __lowerCamelCase ( self :List[Any] ): snake_case__ : Optional[Any] = sorted(set(self.languages ) ) if self.languages else None snake_case__ : Optional[Any] = len(self.languages ) if self.languages else None def __call__( self :List[Any] ): return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def __lowerCamelCase ( self :Optional[Any] ,__lowercase :Optional[int] ): snake_case__ : str = set(self.languages ) if self.languages and set(__lowercase ) - lang_set: raise ValueError( F"""Some languages in example ({', '.join(sorted(set(__lowercase ) - lang_set ) )}) are not in valid set ({', '.join(__lowercase )}).""" ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. snake_case__ : Union[str, Any] = [] for lang, text in translation_dict.items(): if isinstance(__lowercase ,__lowercase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. snake_case__ , snake_case__ : int = zip(*sorted(__lowercase ) ) return {"language": languages, "translation": translations} def __lowerCamelCase ( self :Union[str, Any] ): from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
44
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A__ = logging.get_logger(__name__) A__ = {'''vocab_file''': '''vocab.txt'''} A__ = { '''vocab_file''': { '''openbmb/cpm-ant-10b''': '''https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt''', }, } A__ = { '''openbmb/cpm-ant-10b''': 1024, } def _lowerCAmelCase ( __lowerCAmelCase ) -> str: """simple docstring""" snake_case__ : str = collections.OrderedDict() with open(__lowerCAmelCase , '''r''' , encoding='''utf-8''' ) as reader: snake_case__ : List[Any] = reader.readlines() for index, token in enumerate(__lowerCAmelCase ): snake_case__ : str = token.rstrip('''\n''' ) snake_case__ : int = index return vocab class a ( __lowerCamelCase ): def __init__( self :str ,__lowercase :str ,__lowercase :int="<unk>" ,__lowercase :Tuple=2_0_0 ): snake_case__ : Union[str, Any] = vocab snake_case__ : str = unk_token snake_case__ : Dict = max_input_chars_per_word def __lowerCamelCase ( self :Tuple ,__lowercase :Dict ): snake_case__ : Optional[Any] = list(__lowercase ) if len(__lowercase ) > self.max_input_chars_per_word: return [self.unk_token] snake_case__ : List[Any] = 0 snake_case__ : List[str] = [] while start < len(__lowercase ): snake_case__ : Any = len(__lowercase ) snake_case__ : Any = None while start < end: snake_case__ : Tuple = ''''''.join(chars[start:end] ) if substr in self.vocab: snake_case__ : Union[str, Any] = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(__lowercase ) snake_case__ : Union[str, Any] = end return sub_tokens class a ( __lowerCamelCase ): __lowerCAmelCase : List[str] = VOCAB_FILES_NAMES __lowerCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Tuple = ["""input_ids""", """attention_mask"""] __lowerCAmelCase : Optional[Any] = False def __init__( self :str ,__lowercase :Optional[Any] ,__lowercase :Dict="<d>" ,__lowercase :List[Any]="</d>" ,__lowercase :Union[str, Any]="<s>" ,__lowercase :List[str]="</s>" ,__lowercase :str="<pad>" ,__lowercase :Tuple="<unk>" ,__lowercase :Tuple="</n>" ,__lowercase :List[Any]="</_>" ,__lowercase :str="left" ,**__lowercase :Optional[Any] ,): requires_backends(self ,['''jieba'''] ) super().__init__( bod_token=__lowercase ,eod_token=__lowercase ,bos_token=__lowercase ,eos_token=__lowercase ,pad_token=__lowercase ,unk_token=__lowercase ,line_token=__lowercase ,space_token=__lowercase ,padding_side=__lowercase ,**__lowercase ,) snake_case__ : List[str] = bod_token snake_case__ : List[Any] = eod_token snake_case__ : List[Any] = load_vocab(__lowercase ) snake_case__ : Any = self.encoder[space_token] snake_case__ : Dict = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] snake_case__ : Union[str, Any] = collections.OrderedDict(sorted(self.encoder.items() ,key=lambda __lowercase : x[1] ) ) snake_case__ : Any = {v: k for k, v in self.encoder.items()} snake_case__ : Any = WordpieceTokenizer(vocab=self.encoder ,unk_token=self.unk_token ) @property def __lowerCamelCase ( self :Optional[int] ): return self.encoder[self.bod_token] @property def __lowerCamelCase ( self :Union[str, Any] ): return self.encoder[self.eod_token] @property def __lowerCamelCase ( self :List[str] ): return self.encoder["\n"] @property def __lowerCamelCase ( self :Tuple ): return len(self.encoder ) def __lowerCamelCase ( self :Any ): return dict(self.encoder ,**self.added_tokens_encoder ) def __lowerCamelCase ( self :str ,__lowercase :Dict ): snake_case__ : Tuple = [] for x in jieba.cut(__lowercase ,cut_all=__lowercase ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(__lowercase ) ) return output_tokens def __lowerCamelCase ( self :Optional[Any] ,__lowercase :Optional[Any] ,**__lowercase :Union[str, Any] ): snake_case__ : Dict = [i for i in token_ids if i >= 0] snake_case__ : Optional[int] = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(__lowercase ,**__lowercase ) def __lowerCamelCase ( self :int ,__lowercase :List[str] ): return token in self.encoder def __lowerCamelCase ( self :int ,__lowercase :List[str] ): return "".join(__lowercase ) def __lowerCamelCase ( self :Optional[int] ,__lowercase :Optional[int] ): return self.encoder.get(__lowercase ,self.encoder.get(self.unk_token ) ) def __lowerCamelCase ( self :Tuple ,__lowercase :int ): return self.decoder.get(__lowercase ,self.unk_token ) def __lowerCamelCase ( self :Optional[Any] ,__lowercase :str ,__lowercase :Optional[str] = None ): if os.path.isdir(__lowercase ): snake_case__ : int = os.path.join( __lowercase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: snake_case__ : str = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory snake_case__ : List[str] = 0 if " " in self.encoder: snake_case__ : Dict = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: snake_case__ : Union[str, Any] = self.encoder['''\n'''] del self.encoder["\n"] snake_case__ : Dict = collections.OrderedDict(sorted(self.encoder.items() ,key=lambda __lowercase : x[1] ) ) with open(__lowercase ,'''w''' ,encoding='''utf-8''' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) snake_case__ : str = token_index writer.write(token + '''\n''' ) index += 1 return (vocab_file,) def __lowerCamelCase ( self :Tuple ,__lowercase :List[int] ,__lowercase :List[int] = None ): if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def __lowerCamelCase ( self :int ,__lowercase :List[int] ,__lowercase :Optional[List[int]] = None ,__lowercase :bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowercase ,token_ids_a=__lowercase ,already_has_special_tokens=__lowercase ) if token_ids_a is not None: return [1] + ([0] * len(__lowercase )) + [1] + ([0] * len(__lowercase )) return [1] + ([0] * len(__lowercase ))
44
1
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging lowerCAmelCase : Dict = logging.get_logger(__name__) lowerCAmelCase : List[Any] = {"vocab_file": "spiece.model"} lowerCAmelCase : Union[str, Any] = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", } } lowerCAmelCase : List[Any] = { "xlnet-base-cased": None, "xlnet-large-cased": None, } # Segments (not really needed) lowerCAmelCase : str = 0 lowerCAmelCase : str = 1 lowerCAmelCase : List[str] = 2 lowerCAmelCase : Optional[Any] = 3 lowerCAmelCase : List[Any] = 4 class __magic_name__ ( _lowerCamelCase ): '''simple docstring''' __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = "left" def __init__( self , _a , _a=False , _a=True , _a=False , _a="<s>" , _a="</s>" , _a="<unk>" , _a="<sep>" , _a="<pad>" , _a="<cls>" , _a="<mask>" , _a=["<eop>", "<eod>"] , _a = None , **_a , ): """simple docstring""" lowerCamelCase = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else mask_token lowerCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCAmelCase_ , remove_space=lowerCAmelCase_ , keep_accents=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , additional_special_tokens=lowerCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase_ , ) lowerCamelCase = 3 lowerCamelCase = do_lower_case lowerCamelCase = remove_space lowerCamelCase = keep_accents lowerCamelCase = vocab_file lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCAmelCase_ ) @property def _lowerCAmelCase ( self ): """simple docstring""" return len(self.sp_model ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = {self.convert_ids_to_tokens(lowerCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" lowerCamelCase = self.__dict__.copy() lowerCamelCase = None return state def __setstate__( self , _a ): """simple docstring""" lowerCamelCase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowerCamelCase = {} lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCAmelCase ( self , _a ): """simple docstring""" if self.remove_space: lowerCamelCase = """ """.join(inputs.strip().split() ) else: lowerCamelCase = inputs lowerCamelCase = outputs.replace("""``""" , """\"""" ).replace("""\'\'""" , """\"""" ) if not self.keep_accents: lowerCamelCase = unicodedata.normalize("""NFKD""" , lowerCAmelCase_ ) lowerCamelCase = """""".join([c for c in outputs if not unicodedata.combining(lowerCAmelCase_ )] ) if self.do_lower_case: lowerCamelCase = outputs.lower() return outputs def _lowerCAmelCase ( self , _a ): """simple docstring""" lowerCamelCase = self.preprocess_text(lowerCAmelCase_ ) lowerCamelCase = self.sp_model.encode(lowerCAmelCase_ , out_type=lowerCAmelCase_ ) lowerCamelCase = [] for piece in pieces: if len(lowerCAmelCase_ ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): lowerCamelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCAmelCase_ , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowerCamelCase = cur_pieces[1:] else: lowerCamelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(lowerCAmelCase_ ) else: new_pieces.append(lowerCAmelCase_ ) return new_pieces def _lowerCAmelCase ( self , _a ): """simple docstring""" return self.sp_model.PieceToId(lowerCAmelCase_ ) def _lowerCAmelCase ( self , _a ): """simple docstring""" return self.sp_model.IdToPiece(lowerCAmelCase_ ) def _lowerCAmelCase ( self , _a ): """simple docstring""" lowerCamelCase = """""".join(lowerCAmelCase_ ).replace(lowerCAmelCase_ , """ """ ).strip() return out_string def _lowerCAmelCase ( self , _a , _a = False , _a = None , _a = True , **_a , ): """simple docstring""" lowerCamelCase = kwargs.pop("""use_source_tokenizer""" , lowerCAmelCase_ ) lowerCamelCase = self.convert_ids_to_tokens(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 lowerCamelCase = [] lowerCamelCase = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase_ ) ) lowerCamelCase = [] sub_texts.append(lowerCAmelCase_ ) else: current_sub_text.append(lowerCAmelCase_ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase_ ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens lowerCamelCase = """""".join(lowerCAmelCase_ ) lowerCamelCase = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: lowerCamelCase = self.clean_up_tokenization(lowerCAmelCase_ ) return clean_text else: return text def _lowerCAmelCase ( self , _a , _a = None ): """simple docstring""" lowerCamelCase = [self.sep_token_id] lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowerCAmelCase ( self , _a , _a = None , _a = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ ) if token_ids_a is not None: return ([0] * len(lowerCAmelCase_ )) + [1] + ([0] * len(lowerCAmelCase_ )) + [1, 1] return ([0] * len(lowerCAmelCase_ )) + [1, 1] def _lowerCAmelCase ( self , _a , _a = None ): """simple docstring""" lowerCamelCase = [self.sep_token_id] lowerCamelCase = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _lowerCAmelCase ( self , _a , _a = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowerCamelCase = os.path.join( lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase_ , """wb""" ) as fi: lowerCamelCase = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase_ ) return (out_vocab_file,)
291
'''simple docstring''' from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. lowercase : Dict = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. lowercase : Optional[int] = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. lowercase : Optional[Any] = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> tuple[str, float]: _snake_case = len([g for position, g in enumerate(__A ) if g == main_target[position]] ) return (item, float(__A )) def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> tuple[str, str]: _snake_case = random.randint(0 , len(__A ) - 1 ) _snake_case = parent_a[:random_slice] + parent_a[random_slice:] _snake_case = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> str: _snake_case = list(__A ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: _snake_case = random.choice(__A ) return "".join(__A ) def SCREAMING_SNAKE_CASE__ ( __A , __A , __A , ) -> list[str]: _snake_case = [] # Generate more children proportionally to the fitness score. _snake_case = int(parent_a[1] * 100 ) + 1 _snake_case = 10 if child_n >= 10 else child_n for _ in range(__A ): _snake_case = population_score[random.randint(0 , __A )][0] _snake_case , _snake_case = crossover(parent_a[0] , __A ) # Append new string to the population list. pop.append(mutate(__A , __A ) ) pop.append(mutate(__A , __A ) ) return pop def SCREAMING_SNAKE_CASE__ ( __A , __A , __A = True ) -> tuple[int, int, str]: # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: _snake_case = F'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(__A ) # Verify that the target contains no genes besides the ones inside genes variable. _snake_case = sorted({c for c in target if c not in genes} ) if not_in_genes_list: _snake_case = F'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(__A ) # Generate random starting population. _snake_case = [] for _ in range(__A ): population.append(''.join([random.choice(__A ) for i in range(len(__A ) )] ) ) # Just some logs to know what the algorithms is doing. _snake_case , _snake_case = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(__A ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. _snake_case = [evaluate(__A , __A ) for item in population] # Check if there is a matching evolution. _snake_case = sorted(__A , key=lambda __A : x[1] , reverse=__A ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'\nGeneration: {generation}' F'\nTotal Population:{total_population}' F'\nBest score: {population_score[0][1]}' F'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. _snake_case = population[: int(N_POPULATION / 3 )] population.clear() population.extend(__A ) # Normalize population score to be between 0 and 1. _snake_case = [ (item, score / len(__A )) for item, score in population_score ] # This is selection for i in range(__A ): population.extend(select(population_score[int(__A )] , __A , __A ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(__A ) > N_POPULATION: break if __name__ == "__main__": lowercase : str = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) lowercase : str = list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) lowercase , lowercase , lowercase : Tuple = basic(target_str, genes_list) print( F'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
42
0
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer __A : Tuple = logging.get_logger(__name__) __A : List[Any] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } __A : str = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } __A : Optional[Any] = { 'facebook/blenderbot_small-90M': 512, } class __UpperCamelCase ( lowercase__ ): lowercase : str = VOCAB_FILES_NAMES lowercase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : Dict = BlenderbotSmallTokenizer def __init__( self :str ,_UpperCamelCase :Optional[int]=None ,_UpperCamelCase :Union[str, Any]=None ,_UpperCamelCase :Tuple="<|endoftext|>" ,_UpperCamelCase :int="<|endoftext|>" ,_UpperCamelCase :Dict="<|endoftext|>" ,_UpperCamelCase :Optional[Any]=False ,_UpperCamelCase :List[Any]=True ,**_UpperCamelCase :Any ,): super().__init__( ByteLevelBPETokenizer( vocab=_UpperCamelCase ,merges=_UpperCamelCase ,add_prefix_space=_UpperCamelCase ,trim_offsets=_UpperCamelCase ,) ,bos_token=_UpperCamelCase ,eos_token=_UpperCamelCase ,unk_token=_UpperCamelCase ,**_UpperCamelCase ,) snake_case_ : Any = add_prefix_space def a__ ( self :Optional[Any] ,_UpperCamelCase :int ,_UpperCamelCase :Optional[Any]=None ): snake_case_ : List[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def a__ ( self :int ,_UpperCamelCase :List[int] ,_UpperCamelCase :Optional[List[int]] = None ): snake_case_ : int = [self.sep_token_id] snake_case_ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
352
'''simple docstring''' import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) __A : int = logging.getLogger() def UpperCAmelCase ( ): '''simple docstring''' snake_case_ : List[Any] = argparse.ArgumentParser() parser.add_argument("""-f""" ) snake_case_ : int = parser.parse_args() return args.f def UpperCAmelCase ( lowerCamelCase_ :str ): '''simple docstring''' snake_case_ : Optional[Any] = {} snake_case_ : Optional[Any] = os.path.join(lowerCamelCase_ , """all_results.json""" ) if os.path.exists(lowerCamelCase_ ): with open(lowerCamelCase_ , """r""" ) as f: snake_case_ : str = json.load(lowerCamelCase_ ) else: raise ValueError(F'''can\'t find {path}''' ) return results def UpperCAmelCase ( ): '''simple docstring''' snake_case_ : List[str] = torch.cuda.is_available() and torch_device == """cuda""" return is_using_cuda and is_apex_available() __A : Any = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __UpperCamelCase ( lowercase__ ): @classmethod def a__ ( cls :Dict ): # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU snake_case_ : Optional[int] = tempfile.mkdtemp() snake_case_ : Any = os.path.join(cls.tmpdir ,"""default_config.yml""" ) write_basic_config(save_location=cls.configPath ) snake_case_ : List[Any] = ["""accelerate""", """launch""", """--config_file""", cls.configPath] @classmethod def a__ ( cls :int ): shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :Optional[int] ): snake_case_ : List[Any] = self.get_auto_remove_tmp_dir() snake_case_ : List[str] = F''' {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --seed=42 --checkpointing_steps epoch --with_tracking '''.split() if is_cuda_and_apex_available(): testargs.append("""--fp16""" ) run_command(self._launch_args + testargs ) snake_case_ : Dict = get_results(_UpperCamelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] ,0.75 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""glue_no_trainer""" ) ) ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :Tuple ): snake_case_ : str = self.get_auto_remove_tmp_dir() snake_case_ : Tuple = F''' {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --block_size 128 --per_device_train_batch_size 5 --per_device_eval_batch_size 5 --num_train_epochs 2 --output_dir {tmp_dir} --checkpointing_steps epoch --with_tracking '''.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) snake_case_ : Optional[int] = get_results(_UpperCamelCase ) self.assertLess(result["""perplexity"""] ,1_0_0 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""clm_no_trainer""" ) ) ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :Tuple ): snake_case_ : List[Any] = self.get_auto_remove_tmp_dir() snake_case_ : List[str] = F''' {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --num_train_epochs=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ : str = get_results(_UpperCamelCase ) self.assertLess(result["""perplexity"""] ,4_2 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""mlm_no_trainer""" ) ) ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :List[Any] ): # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu snake_case_ : Dict = 7 if get_gpu_count() > 1 else 2 snake_case_ : str = self.get_auto_remove_tmp_dir() snake_case_ : str = F''' {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ : Optional[int] = get_results(_UpperCamelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] ,0.75 ) self.assertLess(result["""train_loss"""] ,0.5 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""ner_no_trainer""" ) ) ) @unittest.skip(reason="""Fix me @muellerzr""" ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :List[str] ): snake_case_ : List[Any] = self.get_auto_remove_tmp_dir() snake_case_ : Optional[int] = F''' {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --seed=42 --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ : str = get_results(_UpperCamelCase ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result["""eval_f1"""] ,2_8 ) self.assertGreaterEqual(result["""eval_exact"""] ,2_8 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""qa_no_trainer""" ) ) ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :List[Any] ): snake_case_ : str = self.get_auto_remove_tmp_dir() snake_case_ : Union[str, Any] = F''' {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/swag/sample.json --validation_file tests/fixtures/tests_samples/swag/sample.json --output_dir {tmp_dir} --max_train_steps=20 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ : Union[str, Any] = get_results(_UpperCamelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] ,0.8 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""swag_no_trainer""" ) ) ) @slow @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :int ): snake_case_ : List[Any] = self.get_auto_remove_tmp_dir() snake_case_ : List[Any] = F''' {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ : int = get_results(_UpperCamelCase ) self.assertGreaterEqual(result["""eval_rouge1"""] ,1_0 ) self.assertGreaterEqual(result["""eval_rouge2"""] ,2 ) self.assertGreaterEqual(result["""eval_rougeL"""] ,7 ) self.assertGreaterEqual(result["""eval_rougeLsum"""] ,7 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""summarization_no_trainer""" ) ) ) @slow @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :int ): snake_case_ : Tuple = self.get_auto_remove_tmp_dir() snake_case_ : Optional[Any] = F''' {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py --model_name_or_path sshleifer/student_marian_en_ro_6_1 --source_lang en --target_lang ro --train_file tests/fixtures/tests_samples/wmt16/sample.json --validation_file tests/fixtures/tests_samples/wmt16/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --num_beams=6 --learning_rate=3e-3 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --source_lang en_XX --target_lang ro_RO --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ : Any = get_results(_UpperCamelCase ) self.assertGreaterEqual(result["""eval_bleu"""] ,3_0 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""translation_no_trainer""" ) ) ) @slow def a__ ( self :Optional[Any] ): snake_case_ : List[str] = logging.StreamHandler(sys.stdout ) logger.addHandler(_UpperCamelCase ) snake_case_ : Dict = self.get_auto_remove_tmp_dir() snake_case_ : Tuple = F''' {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py --dataset_name huggingface/semantic-segmentation-test-sample --output_dir {tmp_dir} --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch '''.split() run_command(self._launch_args + testargs ) snake_case_ : str = get_results(_UpperCamelCase ) self.assertGreaterEqual(result["""eval_overall_accuracy"""] ,0.10 ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :Any ): snake_case_ : Dict = self.get_auto_remove_tmp_dir() snake_case_ : Tuple = F''' {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py --model_name_or_path google/vit-base-patch16-224-in21k --dataset_name hf-internal-testing/cats_vs_dogs_sample --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --max_train_steps 2 --train_val_split 0.1 --seed 42 --output_dir {tmp_dir} --with_tracking --checkpointing_steps 1 '''.split() if is_cuda_and_apex_available(): testargs.append("""--fp16""" ) run_command(self._launch_args + testargs ) snake_case_ : str = get_results(_UpperCamelCase ) # The base model scores a 25% self.assertGreaterEqual(result["""eval_accuracy"""] ,0.6 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""step_1""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""image_classification_no_trainer""" ) ) )
8
0
"""simple docstring""" import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class UpperCAmelCase_ ( _lowercase): def __get__( self : Dict , __UpperCamelCase : Optional[int] , __UpperCamelCase : Any=None ) -> int: # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError('''unreadable attribute''' ) _UpperCamelCase = '''__cached_''' + self.fget.__name__ _UpperCamelCase = getattr(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if cached is None: _UpperCamelCase = self.fget(__UpperCamelCase ) setattr(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return cached def lowercase ( a__ : List[Any] ) -> Optional[Any]: _UpperCamelCase = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F'''invalid truth value {val!r}''' ) def lowercase ( a__ : List[str] ) -> Any: if is_torch_fx_proxy(a__ ): return True if is_torch_available(): import torch if isinstance(a__ , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(a__ , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(a__ , (jnp.ndarray, Tracer) ): return True return isinstance(a__ , np.ndarray ) def lowercase ( a__ : Tuple ) -> Tuple: return isinstance(a__ , np.ndarray ) def lowercase ( a__ : Dict ) -> int: return _is_numpy(a__ ) def lowercase ( a__ : int ) -> Any: import torch return isinstance(a__ , torch.Tensor ) def lowercase ( a__ : Optional[Any] ) -> Union[str, Any]: return False if not is_torch_available() else _is_torch(a__ ) def lowercase ( a__ : Tuple ) -> Union[str, Any]: import torch return isinstance(a__ , torch.device ) def lowercase ( a__ : int ) -> str: return False if not is_torch_available() else _is_torch_device(a__ ) def lowercase ( a__ : Union[str, Any] ) -> int: import torch if isinstance(a__ , a__ ): if hasattr(a__ , a__ ): _UpperCamelCase = getattr(a__ , a__ ) else: return False return isinstance(a__ , torch.dtype ) def lowercase ( a__ : int ) -> List[str]: return False if not is_torch_available() else _is_torch_dtype(a__ ) def lowercase ( a__ : int ) -> Any: import tensorflow as tf return isinstance(a__ , tf.Tensor ) def lowercase ( a__ : Optional[int] ) -> Optional[Any]: return False if not is_tf_available() else _is_tensorflow(a__ ) def lowercase ( a__ : Optional[Any] ) -> str: import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(a__ , '''is_symbolic_tensor''' ): return tf.is_symbolic_tensor(a__ ) return type(a__ ) == tf.Tensor def lowercase ( a__ : Optional[int] ) -> Union[str, Any]: return False if not is_tf_available() else _is_tf_symbolic_tensor(a__ ) def lowercase ( a__ : List[Any] ) -> Optional[int]: import jax.numpy as jnp # noqa: F811 return isinstance(a__ , jnp.ndarray ) def lowercase ( a__ : List[str] ) -> Dict: return False if not is_flax_available() else _is_jax(a__ ) def lowercase ( a__ : List[Any] ) -> Optional[int]: if isinstance(a__ , (dict, UserDict) ): return {k: to_py_obj(a__ ) for k, v in obj.items()} elif isinstance(a__ , (list, tuple) ): return [to_py_obj(a__ ) for o in obj] elif is_tf_tensor(a__ ): return obj.numpy().tolist() elif is_torch_tensor(a__ ): return obj.detach().cpu().tolist() elif is_jax_tensor(a__ ): return np.asarray(a__ ).tolist() elif isinstance(a__ , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def lowercase ( a__ : List[str] ) -> int: if isinstance(a__ , (dict, UserDict) ): return {k: to_numpy(a__ ) for k, v in obj.items()} elif isinstance(a__ , (list, tuple) ): return np.array(a__ ) elif is_tf_tensor(a__ ): return obj.numpy() elif is_torch_tensor(a__ ): return obj.detach().cpu().numpy() elif is_jax_tensor(a__ ): return np.asarray(a__ ) else: return obj class UpperCAmelCase_ ( _lowercase): def _UpperCamelCase ( self : Tuple ) -> List[str]: _UpperCamelCase = fields(self ) # Safety and consistency checks if not len(__UpperCamelCase ): raise ValueError(F'''{self.__class__.__name__} has no fields.''' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(F'''{self.__class__.__name__} should not have more than one required field.''' ) _UpperCamelCase = getattr(self , class_fields[0].name ) _UpperCamelCase = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(__UpperCamelCase ): if isinstance(__UpperCamelCase , __UpperCamelCase ): _UpperCamelCase = first_field.items() _UpperCamelCase = True else: try: _UpperCamelCase = iter(__UpperCamelCase ) _UpperCamelCase = True except TypeError: _UpperCamelCase = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(__UpperCamelCase ): if ( not isinstance(__UpperCamelCase , (list, tuple) ) or not len(__UpperCamelCase ) == 2 or not isinstance(element[0] , __UpperCamelCase ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute _UpperCamelCase = first_field else: # If we have a mixed iterator, raise an error raise ValueError( F'''Cannot set key/value for {element}. It needs to be a tuple (key, value).''' ) break setattr(self , element[0] , element[1] ) if element[1] is not None: _UpperCamelCase = element[1] elif first_field is not None: _UpperCamelCase = first_field else: for field in class_fields: _UpperCamelCase = getattr(self , field.name ) if v is not None: _UpperCamelCase = v def __delitem__( self : List[Any] , *__UpperCamelCase : int , **__UpperCamelCase : Union[str, Any] ) -> Union[str, Any]: raise Exception(F'''You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.''' ) def _UpperCamelCase ( self : Optional[Any] , *__UpperCamelCase : Optional[Any] , **__UpperCamelCase : str ) -> List[str]: raise Exception(F'''You cannot use ``setdefault`` on a {self.__class__.__name__} instance.''' ) def _UpperCamelCase ( self : str , *__UpperCamelCase : Union[str, Any] , **__UpperCamelCase : List[Any] ) -> List[Any]: raise Exception(F'''You cannot use ``pop`` on a {self.__class__.__name__} instance.''' ) def _UpperCamelCase ( self : Union[str, Any] , *__UpperCamelCase : Union[str, Any] , **__UpperCamelCase : List[str] ) -> Union[str, Any]: raise Exception(F'''You cannot use ``update`` on a {self.__class__.__name__} instance.''' ) def __getitem__( self : Any , __UpperCamelCase : str ) -> Dict: if isinstance(__UpperCamelCase , __UpperCamelCase ): _UpperCamelCase = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : Any , __UpperCamelCase : int , __UpperCamelCase : List[str] ) -> Optional[int]: if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(__UpperCamelCase , __UpperCamelCase ) super().__setattr__(__UpperCamelCase , __UpperCamelCase ) def __setitem__( self : Tuple , __UpperCamelCase : Dict , __UpperCamelCase : Any ) -> str: # Will raise a KeyException if needed super().__setitem__(__UpperCamelCase , __UpperCamelCase ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(__UpperCamelCase , __UpperCamelCase ) def _UpperCamelCase ( self : int ) -> Tuple[Any]: return tuple(self[k] for k in self.keys() ) class UpperCAmelCase_ ( _lowercase , _lowercase): @classmethod def _UpperCamelCase ( cls : Any , __UpperCamelCase : Optional[int] ) -> Any: raise ValueError( F'''{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}''' ) class UpperCAmelCase_ ( _lowercase): snake_case__ = '''longest''' snake_case__ = '''max_length''' snake_case__ = '''do_not_pad''' class UpperCAmelCase_ ( _lowercase): snake_case__ = '''pt''' snake_case__ = '''tf''' snake_case__ = '''np''' snake_case__ = '''jax''' class UpperCAmelCase_ : def __init__( self : Union[str, Any] , __UpperCamelCase : List[ContextManager] ) -> Union[str, Any]: _UpperCamelCase = context_managers _UpperCamelCase = ExitStack() def __enter__( self : Any ) -> Optional[int]: for context_manager in self.context_managers: self.stack.enter_context(__UpperCamelCase ) def __exit__( self : Dict , *__UpperCamelCase : int , **__UpperCamelCase : Optional[int] ) -> List[str]: self.stack.__exit__(*__UpperCamelCase , **__UpperCamelCase ) def lowercase ( a__ : Dict ) -> Optional[int]: _UpperCamelCase = infer_framework(a__ ) if framework == "tf": _UpperCamelCase = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": _UpperCamelCase = inspect.signature(model_class.forward ) # PyTorch models else: _UpperCamelCase = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def lowercase ( a__ : str ) -> Any: _UpperCamelCase = model_class.__name__ _UpperCamelCase = infer_framework(a__ ) if framework == "tf": _UpperCamelCase = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": _UpperCamelCase = inspect.signature(model_class.forward ) # PyTorch models else: _UpperCamelCase = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def lowercase ( a__ : MutableMapping , a__ : str = "" , a__ : str = "." ) -> List[str]: def _flatten_dict(a__ : Optional[int] , a__ : Union[str, Any]="" , a__ : Tuple="." ): for k, v in d.items(): _UpperCamelCase = str(a__ ) + delimiter + str(a__ ) if parent_key else k if v and isinstance(a__ , a__ ): yield from flatten_dict(a__ , a__ , delimiter=a__ ).items() else: yield key, v return dict(_flatten_dict(a__ , a__ , a__ ) ) @contextmanager def lowercase ( a__ : int , a__ : bool = False ) -> Tuple: if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def lowercase ( a__ : Optional[Any] , a__ : Tuple=None ) -> int: if is_numpy_array(a__ ): return np.transpose(a__ , axes=a__ ) elif is_torch_tensor(a__ ): return array.T if axes is None else array.permute(*a__ ) elif is_tf_tensor(a__ ): import tensorflow as tf return tf.transpose(a__ , perm=a__ ) elif is_jax_tensor(a__ ): return jnp.transpose(a__ , axes=a__ ) else: raise ValueError(F'''Type not supported for transpose: {type(a__ )}.''' ) def lowercase ( a__ : str , a__ : List[Any] ) -> int: if is_numpy_array(a__ ): return np.reshape(a__ , a__ ) elif is_torch_tensor(a__ ): return array.reshape(*a__ ) elif is_tf_tensor(a__ ): import tensorflow as tf return tf.reshape(a__ , a__ ) elif is_jax_tensor(a__ ): return jnp.reshape(a__ , a__ ) else: raise ValueError(F'''Type not supported for reshape: {type(a__ )}.''' ) def lowercase ( a__ : str , a__ : Optional[int]=None ) -> Dict: if is_numpy_array(a__ ): return np.squeeze(a__ , axis=a__ ) elif is_torch_tensor(a__ ): return array.squeeze() if axis is None else array.squeeze(dim=a__ ) elif is_tf_tensor(a__ ): import tensorflow as tf return tf.squeeze(a__ , axis=a__ ) elif is_jax_tensor(a__ ): return jnp.squeeze(a__ , axis=a__ ) else: raise ValueError(F'''Type not supported for squeeze: {type(a__ )}.''' ) def lowercase ( a__ : Any , a__ : Dict ) -> Optional[int]: if is_numpy_array(a__ ): return np.expand_dims(a__ , a__ ) elif is_torch_tensor(a__ ): return array.unsqueeze(dim=a__ ) elif is_tf_tensor(a__ ): import tensorflow as tf return tf.expand_dims(a__ , axis=a__ ) elif is_jax_tensor(a__ ): return jnp.expand_dims(a__ , axis=a__ ) else: raise ValueError(F'''Type not supported for expand_dims: {type(a__ )}.''' ) def lowercase ( a__ : Dict ) -> List[Any]: if is_numpy_array(a__ ): return np.size(a__ ) elif is_torch_tensor(a__ ): return array.numel() elif is_tf_tensor(a__ ): import tensorflow as tf return tf.size(a__ ) elif is_jax_tensor(a__ ): return array.size else: raise ValueError(F'''Type not supported for expand_dims: {type(a__ )}.''' ) def lowercase ( a__ : Dict , a__ : Union[str, Any] ) -> Optional[int]: for key, value in auto_map.items(): if isinstance(a__ , (tuple, list) ): _UpperCamelCase = [F'''{repo_id}--{v}''' if (v is not None and '''--''' not in v) else v for v in value] elif value is not None and "--" not in value: _UpperCamelCase = F'''{repo_id}--{value}''' return auto_map def lowercase ( a__ : Dict ) -> List[str]: for base_class in inspect.getmro(a__ ): _UpperCamelCase = base_class.__module__ _UpperCamelCase = base_class.__name__ if module.startswith('''tensorflow''' ) or module.startswith('''keras''' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('''torch''' ) or name == "PreTrainedModel": return "pt" elif module.startswith('''flax''' ) or module.startswith('''jax''' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F'''Could not infer framework from class {model_class}.''' )
256
"""simple docstring""" def lowercase ( a__ : float , a__ : float ) -> float: if density <= 0: raise ValueError('''Impossible fluid density''' ) if bulk_modulus <= 0: raise ValueError('''Impossible bulk modulus''' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
256
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { """sayakpaul/vit-msn-base""": """https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json""", # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: str = "vit_msn" def __init__( self : List[str] , _A : List[Any]=768 , _A : Tuple=12 , _A : Optional[int]=12 , _A : Optional[Any]=3072 , _A : int="gelu" , _A : Any=0.0 , _A : Optional[int]=0.0 , _A : int=0.0_2 , _A : Any=1E-06 , _A : List[Any]=224 , _A : Tuple=16 , _A : Dict=3 , _A : Union[str, Any]=True , **_A : int , ) -> Any: """simple docstring""" super().__init__(**_A ) snake_case_ : Tuple = hidden_size snake_case_ : Dict = num_hidden_layers snake_case_ : Optional[Any] = num_attention_heads snake_case_ : Any = intermediate_size snake_case_ : int = hidden_act snake_case_ : List[Any] = hidden_dropout_prob snake_case_ : str = attention_probs_dropout_prob snake_case_ : Optional[int] = initializer_range snake_case_ : List[Any] = layer_norm_eps snake_case_ : Tuple = image_size snake_case_ : Optional[int] = patch_size snake_case_ : List[Any] = num_channels snake_case_ : Tuple = qkv_bias
361
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: Optional[Any] = ["image_processor", "tokenizer"] __magic_name__: Optional[Any] = "LayoutLMv3ImageProcessor" __magic_name__: str = ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast") def __init__( self : int , _A : List[str]=None , _A : Dict=None , **_A : int ) -> List[str]: """simple docstring""" snake_case_ : Any = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _A , ) snake_case_ : Any = kwargs.pop('feature_extractor' ) snake_case_ : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_A , _A ) def __call__( self : List[str] , _A : Optional[Any] , _A : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _A : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , _A : Union[List[List[int]], List[List[List[int]]]] = None , _A : Optional[Union[List[int], List[List[int]]]] = None , _A : bool = True , _A : Union[bool, str, PaddingStrategy] = False , _A : Union[bool, str, TruncationStrategy] = None , _A : Optional[int] = None , _A : int = 0 , _A : Optional[int] = None , _A : Optional[bool] = None , _A : Optional[bool] = None , _A : bool = False , _A : bool = False , _A : bool = False , _A : bool = False , _A : bool = True , _A : Optional[Union[str, TensorType]] = None , **_A : str , ) -> BatchEncoding: """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) # first, apply the image processor snake_case_ : str = self.image_processor(images=_A , return_tensors=_A ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_A , _A ): snake_case_ : List[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) snake_case_ : str = features['words'] snake_case_ : Optional[int] = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=_A , add_special_tokens=_A , padding=_A , truncation=_A , max_length=_A , stride=_A , pad_to_multiple_of=_A , return_token_type_ids=_A , return_attention_mask=_A , return_overflowing_tokens=_A , return_special_tokens_mask=_A , return_offsets_mapping=_A , return_length=_A , verbose=_A , return_tensors=_A , **_A , ) # add pixel values snake_case_ : List[str] = features.pop('pixel_values' ) if return_overflowing_tokens is True: snake_case_ : Dict = self.get_overflowing_images(_A , encoded_inputs['overflow_to_sample_mapping'] ) snake_case_ : Optional[Any] = images return encoded_inputs def UpperCAmelCase_ ( self : Dict , _A : Tuple , _A : Dict ) -> Union[str, Any]: """simple docstring""" snake_case_ : List[str] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_A ) != len(_A ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' F""" {len(_A )} and {len(_A )}""" ) return images_with_overflow def UpperCAmelCase_ ( self : Optional[Any] , *_A : Optional[Any] , **_A : List[Any] ) -> List[str]: """simple docstring""" return self.tokenizer.batch_decode(*_A , **_A ) def UpperCAmelCase_ ( self : Union[str, Any] , *_A : Dict , **_A : str ) -> Any: """simple docstring""" return self.tokenizer.decode(*_A , **_A ) @property def UpperCAmelCase_ ( self : Optional[int] ) -> int: """simple docstring""" return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def UpperCAmelCase_ ( self : Any ) -> Any: """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _A , ) return self.image_processor_class @property def UpperCAmelCase_ ( self : List[Any] ) -> int: """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _A , ) return self.image_processor
88
0
"""simple docstring""" # Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union __lowerCamelCase = re.compile(R"^(?P<major>\d+)" R"\.(?P<minor>\d+)" R"\.(?P<patch>\d+)$") @total_ordering @dataclass class UpperCamelCase__: lowerCAmelCase__ : str lowerCAmelCase__ : Optional[str] = None lowerCAmelCase__ : Optional[Union[str, int]] = None lowerCAmelCase__ : Optional[Union[str, int]] = None lowerCAmelCase__ : Optional[Union[str, int]] = None def snake_case__ ( self ) -> int: A__ , A__ , A__ = _str_to_version_tuple(self.version_str ) def __repr__( self ) -> Union[str, Any]: return f'''{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}''' @property def snake_case__ ( self ) -> Union[str, Any]: return self.major, self.minor, self.patch def snake_case__ ( self ,__UpperCAmelCase ) -> List[Any]: if isinstance(__UpperCAmelCase ,__UpperCAmelCase ): return Version(__UpperCAmelCase ) elif isinstance(__UpperCAmelCase ,__UpperCAmelCase ): return other raise TypeError(f'''{other} (type {type(__UpperCAmelCase )}) cannot be compared to version.''' ) def __eq__( self ,__UpperCAmelCase ) -> Optional[int]: try: A__ = self._validate_operand(__UpperCAmelCase ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self ,__UpperCAmelCase ) -> Optional[Any]: A__ = self._validate_operand(__UpperCAmelCase ) return self.tuple < other.tuple def __hash__( self ) -> Union[str, Any]: return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def snake_case__ ( cls ,__UpperCAmelCase ) -> Dict: A__ = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def snake_case__ ( self ) -> str: return self.version_str def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" A__ = _VERSION_REG.match(UpperCamelCase__ ) if not res: raise ValueError(F'''Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.''' ) return tuple(int(UpperCamelCase__ ) for v in [res.group('major' ), res.group('minor' ), res.group('patch' )] ) def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" return ".".join(str(UpperCamelCase__ ) for v in version_tuple )
221
"""simple docstring""" import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" A__ = AlbertConfig.from_json_file(UpperCamelCase__ ) print(F'''Building PyTorch model from configuration: {config}''' ) A__ = AlbertForPreTraining(UpperCamelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_albert(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , UpperCamelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--albert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained ALBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCamelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
221
1
'''simple docstring''' from __future__ import annotations import os from typing import Any import requests UpperCAmelCase : List[Any] = 'https://api.github.com' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user UpperCAmelCase : Dict = BASE_URL + '/user' # https://github.com/settings/tokens UpperCAmelCase : Any = os.environ.get('USER_TOKEN', '') def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = { """Authorization""": F'token {auth_token}', """Accept""": """application/vnd.github.v3+json""", } return requests.get(a__ , headers=a__ ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f"""{key}: {value}""") else: raise ValueError('\'USER_TOKEN\' field cannot be empty.')
331
'''simple docstring''' class lowerCAmelCase__ : # Public class to implement a graph """simple docstring""" def __init__( self : Dict , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[list[bool]] ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = row __SCREAMING_SNAKE_CASE = col __SCREAMING_SNAKE_CASE = graph def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[list[bool]] ) -> bool: """simple docstring""" return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def UpperCAmelCase__ ( self : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[list[bool]] ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order __SCREAMING_SNAKE_CASE = [-1, 0, 1, -1, 1, -1, 0, 1] __SCREAMING_SNAKE_CASE = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , __SCREAMING_SNAKE_CASE ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Tuple ) -> int: # And finally, count all islands. """simple docstring""" __SCREAMING_SNAKE_CASE = [[False for j in range(self.COL )] for i in range(self.ROW )] __SCREAMING_SNAKE_CASE = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) count += 1 return count
331
1
"""simple docstring""" import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class a__ : def __init__( self : str, lowerCAmelCase : Tuple, lowerCAmelCase : Dict=13, lowerCAmelCase : str=7, lowerCAmelCase : Any=True, lowerCAmelCase : Any=True, lowerCAmelCase : int=True, lowerCAmelCase : Union[str, Any]=True, lowerCAmelCase : Tuple=99, lowerCAmelCase : Optional[int]=32, lowerCAmelCase : int=5, lowerCAmelCase : Dict=4, lowerCAmelCase : Tuple=37, lowerCAmelCase : Dict="gelu", lowerCAmelCase : Tuple=0.1, lowerCAmelCase : Union[str, Any]=0.1, lowerCAmelCase : List[Any]=128, lowerCAmelCase : Optional[int]=32, lowerCAmelCase : Tuple=16, lowerCAmelCase : List[Any]=2, lowerCAmelCase : Union[str, Any]=0.02, lowerCAmelCase : Dict=3, lowerCAmelCase : str=4, lowerCAmelCase : List[str]=None, ) -> List[str]: lowercase : Optional[int] = parent lowercase : int = batch_size lowercase : List[Any] = seq_length lowercase : Optional[Any] = is_training lowercase : Tuple = use_input_mask lowercase : List[Any] = use_token_type_ids lowercase : Dict = use_labels lowercase : List[str] = vocab_size lowercase : List[Any] = hidden_size lowercase : Optional[Any] = num_hidden_layers lowercase : Optional[Any] = num_attention_heads lowercase : Optional[int] = intermediate_size lowercase : Tuple = hidden_act lowercase : Any = hidden_dropout_prob lowercase : str = attention_probs_dropout_prob lowercase : Tuple = max_position_embeddings lowercase : List[Any] = type_vocab_size lowercase : Union[str, Any] = type_sequence_label_size lowercase : Any = initializer_range lowercase : Tuple = num_labels lowercase : List[str] = num_choices lowercase : Tuple = scope def lowercase ( self : List[str] ) -> int: lowercase : Dict = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowercase : Optional[int] = None if self.use_input_mask: lowercase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) lowercase : str = None if self.use_token_type_ids: lowercase : Any = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) lowercase : Union[str, Any] = None lowercase : int = None lowercase : Any = None if self.use_labels: lowercase : Any = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowercase : Tuple = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowercase : Optional[int] = ids_tensor([self.batch_size], self.num_choices ) lowercase : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self : List[Any] ) -> List[Any]: return NezhaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=lowerCAmelCase, initializer_range=self.initializer_range, ) def lowercase ( self : Union[str, Any] ) -> int: ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Union[str, Any] = self.prepare_config_and_inputs() lowercase : Tuple = True lowercase : Any = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase : List[str] = ids_tensor([self.batch_size, self.seq_length], vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowercase ( self : str, lowerCAmelCase : Union[str, Any], lowerCAmelCase : Tuple, lowerCAmelCase : List[Any], lowerCAmelCase : int, lowerCAmelCase : Dict, lowerCAmelCase : Optional[Any], lowerCAmelCase : Optional[Any] ) -> List[str]: lowercase : Optional[int] = NezhaModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowercase : List[Any] = model(lowerCAmelCase, attention_mask=lowerCAmelCase, token_type_ids=lowerCAmelCase ) lowercase : Any = model(lowerCAmelCase, token_type_ids=lowerCAmelCase ) lowercase : int = model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size) ) def lowercase ( self : Union[str, Any], lowerCAmelCase : Dict, lowerCAmelCase : Optional[int], lowerCAmelCase : Dict, lowerCAmelCase : Tuple, lowerCAmelCase : str, lowerCAmelCase : Tuple, lowerCAmelCase : Tuple, lowerCAmelCase : str, lowerCAmelCase : Dict, ) -> Any: lowercase : Union[str, Any] = True lowercase : int = NezhaModel(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowercase : Any = model( lowerCAmelCase, attention_mask=lowerCAmelCase, token_type_ids=lowerCAmelCase, encoder_hidden_states=lowerCAmelCase, encoder_attention_mask=lowerCAmelCase, ) lowercase : Optional[int] = model( lowerCAmelCase, attention_mask=lowerCAmelCase, token_type_ids=lowerCAmelCase, encoder_hidden_states=lowerCAmelCase, ) lowercase : List[str] = model(lowerCAmelCase, attention_mask=lowerCAmelCase, token_type_ids=lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size) ) def lowercase ( self : Any, lowerCAmelCase : List[Any], lowerCAmelCase : List[str], lowerCAmelCase : int, lowerCAmelCase : Union[str, Any], lowerCAmelCase : List[Any], lowerCAmelCase : int, lowerCAmelCase : Union[str, Any] ) -> Dict: lowercase : Optional[Any] = NezhaForMaskedLM(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowercase : Optional[int] = model(lowerCAmelCase, attention_mask=lowerCAmelCase, token_type_ids=lowerCAmelCase, labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self : Dict, lowerCAmelCase : Dict, lowerCAmelCase : Optional[Any], lowerCAmelCase : Any, lowerCAmelCase : int, lowerCAmelCase : str, lowerCAmelCase : Optional[Any], lowerCAmelCase : List[str] ) -> List[str]: lowercase : List[str] = NezhaForNextSentencePrediction(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowercase : List[Any] = model( lowerCAmelCase, attention_mask=lowerCAmelCase, token_type_ids=lowerCAmelCase, labels=lowerCAmelCase, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, 2) ) def lowercase ( self : int, lowerCAmelCase : List[str], lowerCAmelCase : str, lowerCAmelCase : Any, lowerCAmelCase : List[Any], lowerCAmelCase : Union[str, Any], lowerCAmelCase : int, lowerCAmelCase : int ) -> Optional[Any]: lowercase : Union[str, Any] = NezhaForPreTraining(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowercase : List[str] = model( lowerCAmelCase, attention_mask=lowerCAmelCase, token_type_ids=lowerCAmelCase, labels=lowerCAmelCase, next_sentence_label=lowerCAmelCase, ) self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2) ) def lowercase ( self : str, lowerCAmelCase : str, lowerCAmelCase : Any, lowerCAmelCase : Optional[Any], lowerCAmelCase : List[Any], lowerCAmelCase : Union[str, Any], lowerCAmelCase : int, lowerCAmelCase : str ) -> int: lowercase : Union[str, Any] = NezhaForQuestionAnswering(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowercase : Any = model( lowerCAmelCase, attention_mask=lowerCAmelCase, token_type_ids=lowerCAmelCase, start_positions=lowerCAmelCase, end_positions=lowerCAmelCase, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def lowercase ( self : Optional[Any], lowerCAmelCase : Tuple, lowerCAmelCase : Tuple, lowerCAmelCase : Tuple, lowerCAmelCase : Optional[Any], lowerCAmelCase : int, lowerCAmelCase : List[str], lowerCAmelCase : Any ) -> Optional[int]: lowercase : Dict = self.num_labels lowercase : Union[str, Any] = NezhaForSequenceClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowercase : Union[str, Any] = model(lowerCAmelCase, attention_mask=lowerCAmelCase, token_type_ids=lowerCAmelCase, labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def lowercase ( self : List[str], lowerCAmelCase : Tuple, lowerCAmelCase : List[str], lowerCAmelCase : Optional[Any], lowerCAmelCase : List[str], lowerCAmelCase : int, lowerCAmelCase : List[Any], lowerCAmelCase : Union[str, Any] ) -> int: lowercase : Optional[Any] = self.num_labels lowercase : Dict = NezhaForTokenClassification(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowercase : List[Any] = model(lowerCAmelCase, attention_mask=lowerCAmelCase, token_type_ids=lowerCAmelCase, labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self : Union[str, Any], lowerCAmelCase : str, lowerCAmelCase : Optional[int], lowerCAmelCase : Dict, lowerCAmelCase : List[str], lowerCAmelCase : Dict, lowerCAmelCase : str, lowerCAmelCase : Tuple ) -> Any: lowercase : Dict = self.num_choices lowercase : str = NezhaForMultipleChoice(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowercase : List[str] = input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowercase : List[str] = token_type_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowercase : str = input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowercase : str = model( lowerCAmelCase, attention_mask=lowerCAmelCase, token_type_ids=lowerCAmelCase, labels=lowerCAmelCase, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def lowercase ( self : Tuple ) -> List[Any]: lowercase : List[str] = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Optional[Any] = config_and_inputs lowercase : List[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a__ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, unittest.TestCase ): _lowerCamelCase = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) _lowerCamelCase = ( { 'feature-extraction': NezhaModel, 'fill-mask': NezhaForMaskedLM, 'question-answering': NezhaForQuestionAnswering, 'text-classification': NezhaForSequenceClassification, 'token-classification': NezhaForTokenClassification, 'zero-shot': NezhaForSequenceClassification, } if is_torch_available() else {} ) _lowerCamelCase = True def lowercase ( self : int, lowerCAmelCase : Union[str, Any], lowerCAmelCase : List[str], lowerCAmelCase : str=False ) -> Optional[int]: lowercase : Any = super()._prepare_for_class(lowerCAmelCase, lowerCAmelCase, return_labels=lowerCAmelCase ) if return_labels: if model_class in get_values(lowerCAmelCase ): lowercase : Tuple = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=lowerCAmelCase ) lowercase : Tuple = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=lowerCAmelCase ) return inputs_dict def lowercase ( self : Dict ) -> str: lowercase : List[str] = NezhaModelTester(self ) lowercase : List[Any] = ConfigTester(self, config_class=lowerCAmelCase, hidden_size=37 ) def lowercase ( self : List[Any] ) -> Dict: self.config_tester.run_common_tests() def lowercase ( self : int ) -> List[str]: lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def lowercase ( self : Any ) -> List[str]: lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowerCAmelCase ) def lowercase ( self : List[Any] ) -> str: # This regression test was failing with PyTorch < 1.3 ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Optional[int] = self.model_tester.prepare_config_and_inputs_for_decoder() lowercase : List[Any] = None self.model_tester.create_and_check_model_as_decoder( lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ) def lowercase ( self : List[str] ) -> int: lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase ) def lowercase ( self : Optional[int] ) -> Union[str, Any]: lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase ) def lowercase ( self : Union[str, Any] ) -> Any: lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*lowerCAmelCase ) def lowercase ( self : int ) -> List[Any]: lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase ) def lowercase ( self : str ) -> Optional[Any]: lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase ) def lowercase ( self : str ) -> Optional[Any]: lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase ) def lowercase ( self : str ) -> Dict: lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase ) @slow def lowercase ( self : Dict ) -> Optional[int]: for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Union[str, Any] = NezhaModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) @slow @require_torch_gpu def lowercase ( self : Optional[int] ) -> Any: lowercase , lowercase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return lowercase : Optional[Any] = True lowercase : List[str] = model_class(config=lowerCAmelCase ) lowercase : Union[str, Any] = self._prepare_for_class(lowerCAmelCase, lowerCAmelCase ) lowercase : List[Any] = torch.jit.trace( lowerCAmelCase, (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowerCAmelCase, os.path.join(lowerCAmelCase, 'bert.pt' ) ) lowercase : Optional[Any] = torch.jit.load(os.path.join(lowerCAmelCase, 'bert.pt' ), map_location=lowerCAmelCase ) loaded(inputs_dict['input_ids'].to(lowerCAmelCase ), inputs_dict['attention_mask'].to(lowerCAmelCase ) ) @require_torch class a__ ( unittest.TestCase ): @slow def lowercase ( self : List[Any] ) -> Optional[int]: lowercase : Any = NezhaModel.from_pretrained('sijunhe/nezha-cn-base' ) lowercase : Optional[Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowercase : List[str] = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase : Tuple = model(lowerCAmelCase, attention_mask=lowerCAmelCase )[0] lowercase : Any = torch.Size((1, 6, 768) ) self.assertEqual(output.shape, lowerCAmelCase ) lowercase : List[str] = torch.tensor([[[0.0685, 0.2441, 0.1102], [0.0600, 0.1906, 0.1349], [0.0221, 0.0819, 0.0586]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4], lowerCAmelCase, atol=1e-4 ) ) @slow def lowercase ( self : str ) -> int: lowercase : List[str] = NezhaForMaskedLM.from_pretrained('sijunhe/nezha-cn-base' ) lowercase : Tuple = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowercase : Tuple = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase : Union[str, Any] = model(lowerCAmelCase, attention_mask=lowerCAmelCase )[0] lowercase : Union[str, Any] = torch.Size((1, 6, 21128) ) self.assertEqual(output.shape, lowerCAmelCase ) lowercase : int = torch.tensor( [[-2.7939, -1.7902, -2.2189], [-2.8585, -1.8908, -2.3723], [-2.6499, -1.7750, -2.2558]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4], lowerCAmelCase, atol=1e-4 ) )
255
"""simple docstring""" import math def lowercase__ ( _UpperCAmelCase = 1_00 ) -> int: '''simple docstring''' lowercase : List[str] = sum(i * i for i in range(1 , n + 1 ) ) lowercase : Dict = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f'''{solution() = }''')
255
1
"""simple docstring""" import requests def __UpperCAmelCase ( snake_case_ : str , snake_case_ : str ) -> None: """simple docstring""" _lowerCAmelCase = {"""Content-Type""": """application/json"""} _lowerCAmelCase = requests.post(snake_case_ , json={"""text""": message_body} , headers=snake_case_ ) if response.status_code != 200: _lowerCAmelCase = ( """Request to slack returned an error """ F"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(snake_case_ ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('''<YOUR MESSAGE BODY>''', '''<SLACK CHANNEL URL>''')
317
"""simple docstring""" from __future__ import annotations class __lowerCamelCase : def __init__(self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase = text, pattern _lowerCAmelCase , _lowerCAmelCase = len(lowerCamelCase ), len(lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def A__ (self , lowerCamelCase ): '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def A__ (self ): '''simple docstring''' _lowerCAmelCase = [] for i in range(self.textLen - self.patLen + 1 ): _lowerCAmelCase = self.mismatch_in_text(lowerCamelCase ) if mismatch_index == -1: positions.append(lowerCamelCase ) else: _lowerCAmelCase = self.match_in_pattern(self.text[mismatch_index] ) _lowerCAmelCase = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions SCREAMING_SNAKE_CASE : Any = '''ABAABA''' SCREAMING_SNAKE_CASE : Optional[int] = '''AB''' SCREAMING_SNAKE_CASE : str = BoyerMooreSearch(text, pattern) SCREAMING_SNAKE_CASE : Tuple = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
317
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ = {"""configuration_opt""": ["""OPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """OPTConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """OPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """OPTForCausalLM""", """OPTModel""", """OPTPreTrainedModel""", """OPTForSequenceClassification""", """OPTForQuestionAnswering""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["""TFOPTForCausalLM""", """TFOPTModel""", """TFOPTPreTrainedModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """FlaxOPTForCausalLM""", """FlaxOPTModel""", """FlaxOPTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
303
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
303
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __UpperCAmelCase (unittest.TestCase ): def __init__( self: Union[str, Any] , UpperCAmelCase_: int , UpperCAmelCase_: Union[str, Any]=7 , UpperCAmelCase_: Tuple=3 , UpperCAmelCase_: Union[str, Any]=18 , UpperCAmelCase_: List[Any]=30 , UpperCAmelCase_: Any=400 , UpperCAmelCase_: str=True , UpperCAmelCase_: Union[str, Any]=None , UpperCAmelCase_: Dict=True , UpperCAmelCase_: str=None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = size if size is not None else {"""shortest_edge""": 20} _SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = num_channels _SCREAMING_SNAKE_CASE = image_size _SCREAMING_SNAKE_CASE = min_resolution _SCREAMING_SNAKE_CASE = max_resolution _SCREAMING_SNAKE_CASE = do_resize _SCREAMING_SNAKE_CASE = size _SCREAMING_SNAKE_CASE = do_center_crop _SCREAMING_SNAKE_CASE = crop_size def UpperCamelCase ( self: str ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : List[Any] = MobileNetVaImageProcessor if is_vision_available() else None def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = MobileNetVaImageProcessingTester(self ) @property def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , """do_resize""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """size""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """do_center_crop""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """crop_size""" ) ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) _SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' pass def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image ) # Test not batched input _SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _SCREAMING_SNAKE_CASE = image_processing(UpperCAmelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray ) # Test not batched input _SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _SCREAMING_SNAKE_CASE = image_processing(UpperCAmelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) # Test not batched input _SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _SCREAMING_SNAKE_CASE = image_processing(UpperCAmelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
125
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) UpperCamelCase = { '''sample_size''': 32, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': 1_000, '''block_out_channels''': [32, 64], '''attention_head_dim''': 8, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } UpperCamelCase = { '''sample_size''': 64, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 3, '''num_class_embeds''': 1_000, '''block_out_channels''': [192, 192 * 2, 192 * 3, 192 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } UpperCamelCase = { '''sample_size''': 256, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': None, '''block_out_channels''': [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''default''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } UpperCamelCase = { '''num_train_timesteps''': 40, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } UpperCamelCase = { '''num_train_timesteps''': 201, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } UpperCamelCase = { '''num_train_timesteps''': 151, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } def __lowerCamelCase ( snake_case__ ) -> Optional[Any]: """simple docstring""" if isinstance(snake_case__ ,snake_case__ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("""boolean value expected""" ) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__=False ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.in_layers.0.weight'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.in_layers.0.bias'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.in_layers.2.weight'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.in_layers.2.bias'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.emb_layers.1.weight'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.emb_layers.1.bias'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.out_layers.0.weight'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.out_layers.0.bias'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.out_layers.3.weight'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.out_layers.3.bias'] if has_skip: _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.skip_connection.weight'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.skip_connection.bias'] return new_checkpoint def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__=None ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.qkv.weight'].chunk(3 ,dim=0 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.qkv.bias'].chunk(3 ,dim=0 ) _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.norm.weight'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.norm.bias'] _SCREAMING_SNAKE_CASE = weight_q.squeeze(-1 ).squeeze(-1 ) _SCREAMING_SNAKE_CASE = bias_q.squeeze(-1 ).squeeze(-1 ) _SCREAMING_SNAKE_CASE = weight_k.squeeze(-1 ).squeeze(-1 ) _SCREAMING_SNAKE_CASE = bias_k.squeeze(-1 ).squeeze(-1 ) _SCREAMING_SNAKE_CASE = weight_v.squeeze(-1 ).squeeze(-1 ) _SCREAMING_SNAKE_CASE = bias_v.squeeze(-1 ).squeeze(-1 ) _SCREAMING_SNAKE_CASE = ( checkpoint[F'{old_prefix}.proj_out.weight'].squeeze(-1 ).squeeze(-1 ) ) _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.proj_out.bias'].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = torch.load(snake_case__ ,map_location="""cpu""" ) _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = checkpoint["""time_embed.0.weight"""] _SCREAMING_SNAKE_CASE = checkpoint["""time_embed.0.bias"""] _SCREAMING_SNAKE_CASE = checkpoint["""time_embed.2.weight"""] _SCREAMING_SNAKE_CASE = checkpoint["""time_embed.2.bias"""] if unet_config["num_class_embeds"] is not None: _SCREAMING_SNAKE_CASE = checkpoint["""label_emb.weight"""] _SCREAMING_SNAKE_CASE = checkpoint["""input_blocks.0.0.weight"""] _SCREAMING_SNAKE_CASE = checkpoint["""input_blocks.0.0.bias"""] _SCREAMING_SNAKE_CASE = unet_config["""down_block_types"""] _SCREAMING_SNAKE_CASE = unet_config["""layers_per_block"""] _SCREAMING_SNAKE_CASE = unet_config["""attention_head_dim"""] _SCREAMING_SNAKE_CASE = unet_config["""block_out_channels"""] _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = channels_list[0] for i, layer_type in enumerate(snake_case__ ): _SCREAMING_SNAKE_CASE = channels_list[i] _SCREAMING_SNAKE_CASE = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(snake_case__ ): _SCREAMING_SNAKE_CASE = F'down_blocks.{i}.resnets.{j}' _SCREAMING_SNAKE_CASE = F'input_blocks.{current_layer}.0' _SCREAMING_SNAKE_CASE = True if j == 0 and downsample_block_has_skip else False _SCREAMING_SNAKE_CASE = convert_resnet(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,has_skip=snake_case__ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(snake_case__ ): _SCREAMING_SNAKE_CASE = F'down_blocks.{i}.resnets.{j}' _SCREAMING_SNAKE_CASE = F'input_blocks.{current_layer}.0' _SCREAMING_SNAKE_CASE = True if j == 0 and downsample_block_has_skip else False _SCREAMING_SNAKE_CASE = convert_resnet(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,has_skip=snake_case__ ) _SCREAMING_SNAKE_CASE = F'down_blocks.{i}.attentions.{j}' _SCREAMING_SNAKE_CASE = F'input_blocks.{current_layer}.1' _SCREAMING_SNAKE_CASE = convert_attention( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) current_layer += 1 if i != len(snake_case__ ) - 1: _SCREAMING_SNAKE_CASE = F'down_blocks.{i}.downsamplers.0' _SCREAMING_SNAKE_CASE = F'input_blocks.{current_layer}.0' _SCREAMING_SNAKE_CASE = convert_resnet(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) current_layer += 1 _SCREAMING_SNAKE_CASE = current_channels # hardcoded the mid-block for now _SCREAMING_SNAKE_CASE = """mid_block.resnets.0""" _SCREAMING_SNAKE_CASE = """middle_block.0""" _SCREAMING_SNAKE_CASE = convert_resnet(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = """mid_block.attentions.0""" _SCREAMING_SNAKE_CASE = """middle_block.1""" _SCREAMING_SNAKE_CASE = convert_attention(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = """mid_block.resnets.1""" _SCREAMING_SNAKE_CASE = """middle_block.2""" _SCREAMING_SNAKE_CASE = convert_resnet(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = unet_config["""up_block_types"""] for i, layer_type in enumerate(snake_case__ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): _SCREAMING_SNAKE_CASE = F'up_blocks.{i}.resnets.{j}' _SCREAMING_SNAKE_CASE = F'output_blocks.{current_layer}.0' _SCREAMING_SNAKE_CASE = convert_resnet(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,has_skip=snake_case__ ) current_layer += 1 if i != len(snake_case__ ) - 1: _SCREAMING_SNAKE_CASE = F'up_blocks.{i}.upsamplers.0' _SCREAMING_SNAKE_CASE = F'output_blocks.{current_layer-1}.1' _SCREAMING_SNAKE_CASE = convert_resnet(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): _SCREAMING_SNAKE_CASE = F'up_blocks.{i}.resnets.{j}' _SCREAMING_SNAKE_CASE = F'output_blocks.{current_layer}.0' _SCREAMING_SNAKE_CASE = convert_resnet(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,has_skip=snake_case__ ) _SCREAMING_SNAKE_CASE = F'up_blocks.{i}.attentions.{j}' _SCREAMING_SNAKE_CASE = F'output_blocks.{current_layer}.1' _SCREAMING_SNAKE_CASE = convert_attention( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) current_layer += 1 if i != len(snake_case__ ) - 1: _SCREAMING_SNAKE_CASE = F'up_blocks.{i}.upsamplers.0' _SCREAMING_SNAKE_CASE = F'output_blocks.{current_layer-1}.2' _SCREAMING_SNAKE_CASE = convert_resnet(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = checkpoint["""out.0.weight"""] _SCREAMING_SNAKE_CASE = checkpoint["""out.0.bias"""] _SCREAMING_SNAKE_CASE = checkpoint["""out.2.weight"""] _SCREAMING_SNAKE_CASE = checkpoint["""out.2.bias"""] return new_checkpoint if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--unet_path''', default=None, type=str, required=True, help='''Path to the unet.pt to convert.''') parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output the converted UNet model.''' ) parser.add_argument('''--class_cond''', default=True, type=str, help='''Whether the model is class-conditional.''') UpperCamelCase = parser.parse_args() UpperCamelCase = strabool(args.class_cond) UpperCamelCase = os.path.basename(args.unet_path) print(f"Checkpoint: {ckpt_name}") # Get U-Net config if "imagenet64" in ckpt_name: UpperCamelCase = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): UpperCamelCase = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: UpperCamelCase = TEST_UNET_CONFIG else: raise ValueError(f"Checkpoint type {ckpt_name} is not currently supported.") if not args.class_cond: UpperCamelCase = None UpperCamelCase = con_pt_to_diffuser(args.unet_path, unet_config) UpperCamelCase = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: UpperCamelCase = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: UpperCamelCase = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): UpperCamelCase = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f"Checkpoint type {ckpt_name} is not currently supported.") UpperCamelCase = CMStochasticIterativeScheduler(**scheduler_config) UpperCamelCase = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
125
1
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class _A : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=[1, 2, 1] , _SCREAMING_SNAKE_CASE=[2, 2, 4] , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=2.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1e-5 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=["stage1", "stage2", "stage3"] , _SCREAMING_SNAKE_CASE=[1, 2, 3] , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = parent SCREAMING_SNAKE_CASE_ : int = batch_size SCREAMING_SNAKE_CASE_ : Tuple = image_size SCREAMING_SNAKE_CASE_ : Any = patch_size SCREAMING_SNAKE_CASE_ : int = num_channels SCREAMING_SNAKE_CASE_ : List[Any] = embed_dim SCREAMING_SNAKE_CASE_ : Optional[Any] = depths SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_heads SCREAMING_SNAKE_CASE_ : int = window_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = mlp_ratio SCREAMING_SNAKE_CASE_ : Any = qkv_bias SCREAMING_SNAKE_CASE_ : List[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : int = drop_path_rate SCREAMING_SNAKE_CASE_ : Union[str, Any] = hidden_act SCREAMING_SNAKE_CASE_ : Tuple = use_absolute_embeddings SCREAMING_SNAKE_CASE_ : Tuple = patch_norm SCREAMING_SNAKE_CASE_ : List[Any] = layer_norm_eps SCREAMING_SNAKE_CASE_ : List[Any] = initializer_range SCREAMING_SNAKE_CASE_ : Any = is_training SCREAMING_SNAKE_CASE_ : str = scope SCREAMING_SNAKE_CASE_ : Union[str, Any] = use_labels SCREAMING_SNAKE_CASE_ : List[Any] = type_sequence_label_size SCREAMING_SNAKE_CASE_ : Dict = encoder_stride SCREAMING_SNAKE_CASE_ : str = out_features SCREAMING_SNAKE_CASE_ : List[str] = out_indices def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ : int = None if self.use_labels: SCREAMING_SNAKE_CASE_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self ): """simple docstring""" return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = MaskFormerSwinModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() SCREAMING_SNAKE_CASE_ : Any = model(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) SCREAMING_SNAKE_CASE_ : Any = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = MaskFormerSwinBackbone(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() SCREAMING_SNAKE_CASE_ : Optional[int] = model(_SCREAMING_SNAKE_CASE ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = ['stem'] SCREAMING_SNAKE_CASE_ : int = MaskFormerSwinBackbone(config=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = config_and_inputs SCREAMING_SNAKE_CASE_ : Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _A ( __magic_name__ , __magic_name__ , unittest.TestCase): SCREAMING_SNAKE_CASE : Union[str, Any] = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : str = {'''feature-extraction''': MaskFormerSwinModel} if is_torch_available() else {} SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : Any = False SCREAMING_SNAKE_CASE : str = False SCREAMING_SNAKE_CASE : List[Any] = False def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = MaskFormerSwinModelTester(self ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with' ' `nn.DataParallel`' ) ) def UpperCAmelCase ( self ): """simple docstring""" pass def UpperCAmelCase ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self ): """simple docstring""" return def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_SCREAMING_SNAKE_CASE ) @unittest.skip('Swin does not use inputs_embeds' ) def UpperCAmelCase ( self ): """simple docstring""" pass @unittest.skip('Swin does not support feedforward chunking' ) def UpperCAmelCase ( self ): """simple docstring""" pass def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Tuple = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Optional[Any] = model_class(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ : Dict = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ : Dict = ['pixel_values'] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) @unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' ) def UpperCAmelCase ( self ): """simple docstring""" pass @unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' ) def UpperCAmelCase ( self ): """simple docstring""" pass def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ : int = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE_ : Tuple = outputs.hidden_states SCREAMING_SNAKE_CASE_ : Any = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # Swin has a different seq_length SCREAMING_SNAKE_CASE_ : List[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) SCREAMING_SNAKE_CASE_ : List[str] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : List[Any] = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_ : Tuple = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : int = 3 SCREAMING_SNAKE_CASE_ : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) SCREAMING_SNAKE_CASE_ : str = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) SCREAMING_SNAKE_CASE_ : Optional[int] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) SCREAMING_SNAKE_CASE_ : Any = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Optional[Any] = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_ : int = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) @unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' ) def UpperCAmelCase ( self ): """simple docstring""" pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def UpperCAmelCase ( self ): """simple docstring""" pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def UpperCAmelCase ( self ): """simple docstring""" pass def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : List[str] = 0 return t def check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE={} ): with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Any = model(**_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : int = model(**_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).to_tuple() def recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if isinstance(_SCREAMING_SNAKE_CASE , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ) , set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ) , atol=1e-5 ) , msg=( 'Tuple and dict output are not equal. Difference:' f" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:" f" {torch.isnan(_SCREAMING_SNAKE_CASE ).any()} and `inf`: {torch.isinf(_SCREAMING_SNAKE_CASE )}. Dict has" f" `nan`: {torch.isnan(_SCREAMING_SNAKE_CASE ).any()} and `inf`: {torch.isinf(_SCREAMING_SNAKE_CASE )}." ) , ) recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : List[str] = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : str = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : int = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : str = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Tuple = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : int = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , {'output_hidden_states': True} ) SCREAMING_SNAKE_CASE_ : Optional[Any] = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[Any] = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , {'output_hidden_states': True} ) @require_torch class _A ( unittest.TestCase , __magic_name__): SCREAMING_SNAKE_CASE : List[Any] = (MaskFormerSwinBackbone,) if is_torch_available() else () SCREAMING_SNAKE_CASE : Dict = MaskFormerSwinConfig def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = MaskFormerSwinModelTester(self ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Tuple = inputs_dict['pixel_values'].shape[0] for backbone_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Dict = backbone_class(_SCREAMING_SNAKE_CASE ) backbone.to(_SCREAMING_SNAKE_CASE ) backbone.eval() SCREAMING_SNAKE_CASE_ : Any = backbone(**_SCREAMING_SNAKE_CASE ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , _SCREAMING_SNAKE_CASE ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True SCREAMING_SNAKE_CASE_ : Optional[int] = backbone(**_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: SCREAMING_SNAKE_CASE_ : Tuple = backbone(**_SCREAMING_SNAKE_CASE , output_attentions=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(outputs.attentions )
253
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=__magic_name__) class _A ( __magic_name__): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization SCREAMING_SNAKE_CASE : str = field(default='''text-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True}) SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({'''text''': Value('''string''')}) SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({'''labels''': ClassLabel}) SCREAMING_SNAKE_CASE : str = "text" SCREAMING_SNAKE_CASE : str = "labels" def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" if self.label_column not in features: raise ValueError(f"Column {self.label_column} is not present in features." ) if not isinstance(features[self.label_column] , _SCREAMING_SNAKE_CASE ): raise ValueError(f"Column {self.label_column} is not a ClassLabel." ) SCREAMING_SNAKE_CASE_ : List[Any] = copy.deepcopy(self ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.label_schema.copy() SCREAMING_SNAKE_CASE_ : List[Any] = features[self.label_column] SCREAMING_SNAKE_CASE_ : List[Any] = label_schema return task_template @property def UpperCAmelCase ( self ): """simple docstring""" return { self.text_column: "text", self.label_column: "labels", }
253
1
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast __lowercase = datasets.utils.logging.get_logger(__name__) @dataclass class lowerCamelCase_ ( datasets.BuilderConfig ): '''simple docstring''' a__ : int = 1_0_0_0_0 a__ : Optional[List[str]] = None a__ : Optional[datasets.Features] = None class lowerCamelCase_ ( datasets.ArrowBasedBuilder ): '''simple docstring''' a__ : Any = ParquetConfig def UpperCamelCase__ ( self) -> Dict: return datasets.DatasetInfo(features=self.config.features) def UpperCamelCase__ ( self , __lowercase) -> str: if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""") __UpperCamelCase :List[Any] = dl_manager.download_and_extract(self.config.data_files) if isinstance(__lowercase , (str, list, tuple)): __UpperCamelCase :Any = data_files if isinstance(__lowercase , __lowercase): __UpperCamelCase :int = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __UpperCamelCase :Tuple = [dl_manager.iter_files(__lowercase) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files})] __UpperCamelCase :Union[str, Any] = [] for split_name, files in data_files.items(): if isinstance(__lowercase , __lowercase): __UpperCamelCase :List[str] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __UpperCamelCase :Dict = [dl_manager.iter_files(__lowercase) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(__lowercase): with open(__lowercase , '''rb''') as f: __UpperCamelCase :int = datasets.Features.from_arrow_schema(pq.read_schema(__lowercase)) break splits.append(datasets.SplitGenerator(name=__lowercase , gen_kwargs={'''files''': files})) return splits def UpperCamelCase__ ( self , __lowercase) -> pa.Table: if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __UpperCamelCase :Tuple = table_cast(__lowercase , self.info.features.arrow_schema) return pa_table def UpperCamelCase__ ( self , __lowercase) -> List[Any]: __UpperCamelCase :Any = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema) != sorted(self.config.columns): raise ValueError( f"""Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'""") for file_idx, file in enumerate(itertools.chain.from_iterable(__lowercase)): with open(__lowercase , '''rb''') as f: __UpperCamelCase :Dict = pq.ParquetFile(__lowercase) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns)): __UpperCamelCase :Tuple = pa.Table.from_batches([record_batch]) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f"""{file_idx}_{batch_idx}""", self._cast_table(__lowercase) except ValueError as e: logger.error(f"""Failed to read file '{file}' with error {type(__lowercase)}: {e}""") raise
351
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch __lowercase = logging.get_logger(__name__) @dataclass class lowerCamelCase_ : '''simple docstring''' def __init__( self , __lowercase=False , __lowercase=False , __lowercase=6.0 , __lowercase=None , __lowercase=False , __lowercase=False , __lowercase=None , __lowercase="fp4" , __lowercase=False , **__lowercase , ) -> Tuple: __UpperCamelCase :List[str] = load_in_abit __UpperCamelCase :Union[str, Any] = load_in_abit __UpperCamelCase :str = llm_inta_threshold __UpperCamelCase :List[str] = llm_inta_skip_modules __UpperCamelCase :Any = llm_inta_enable_fpaa_cpu_offload __UpperCamelCase :List[Any] = llm_inta_has_fpaa_weight __UpperCamelCase :str = bnb_abit_quant_type __UpperCamelCase :Optional[int] = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: __UpperCamelCase :Tuple = torch.floataa elif isinstance(__lowercase , __lowercase): __UpperCamelCase :Union[str, Any] = getattr(__lowercase , __lowercase) elif isinstance(__lowercase , torch.dtype): __UpperCamelCase :int = bnb_abit_compute_dtype else: raise ValueError('''bnb_4bit_compute_dtype must be a string or a torch.dtype''') self.post_init() def UpperCamelCase__ ( self) -> Union[str, Any]: if not isinstance(self.llm_inta_threshold , __lowercase): raise ValueError('''llm_int8_threshold must be a float''') if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , __lowercase): raise ValueError('''llm_int8_skip_modules must be a list of strings''') if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , __lowercase): raise ValueError('''llm_int8_enable_fp32_cpu_offload must be a boolean''') if not isinstance(self.llm_inta_has_fpaa_weight , __lowercase): raise ValueError('''llm_int8_has_fp16_weight must be a boolean''') if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype): raise ValueError('''bnb_4bit_compute_dtype must be torch.dtype''') if not isinstance(self.bnb_abit_quant_type , __lowercase): raise ValueError('''bnb_4bit_quant_type must be a string''') if not isinstance(self.bnb_abit_use_double_quant , __lowercase): raise ValueError('''bnb_4bit_use_double_quant must be a boolean''') if self.load_in_abit and not version.parse(importlib.metadata.version('''bitsandbytes''')) >= version.parse( '''0.39.0'''): raise ValueError( '''4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version''') def UpperCamelCase__ ( self) -> Any: return self.load_in_abit or self.load_in_abit def UpperCamelCase__ ( self) -> List[Any]: if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def UpperCamelCase__ ( cls , __lowercase , __lowercase , **__lowercase) -> List[str]: __UpperCamelCase :Optional[int] = cls(**__lowercase) __UpperCamelCase :Optional[Any] = [] for key, value in kwargs.items(): if hasattr(__lowercase , __lowercase): setattr(__lowercase , __lowercase , __lowercase) to_remove.append(__lowercase) for key in to_remove: kwargs.pop(__lowercase , __lowercase) if return_unused_kwargs: return config, kwargs else: return config def UpperCamelCase__ ( self , __lowercase) -> Union[str, Any]: with open(__lowercase , '''w''' , encoding='''utf-8''') as writer: __UpperCamelCase :Optional[int] = self.to_dict() __UpperCamelCase :Optional[int] = json.dumps(__lowercase , indent=2 , sort_keys=__lowercase) + '''\n''' writer.write(__lowercase) def UpperCamelCase__ ( self) -> Dict[str, Any]: __UpperCamelCase :Optional[Any] = copy.deepcopy(self.__dict__) __UpperCamelCase :Optional[int] = str(output['''bnb_4bit_compute_dtype''']).split('''.''')[1] return output def __repr__( self) -> Dict: return f"""{self.__class__.__name__} {self.to_json_string()}""" def UpperCamelCase__ ( self , __lowercase = True) -> str: if use_diff is True: __UpperCamelCase :Union[str, Any] = self.to_diff_dict() else: __UpperCamelCase :Dict = self.to_dict() return json.dumps(__lowercase , indent=2 , sort_keys=__lowercase) + "\n" def UpperCamelCase__ ( self) -> Dict[str, Any]: __UpperCamelCase :Union[str, Any] = self.to_dict() # get the default config dict __UpperCamelCase :Optional[Any] = BitsAndBytesConfig().to_dict() __UpperCamelCase :str = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: __UpperCamelCase :str = value return serializable_config_dict
105
0
import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": UpperCamelCase__ = '%20'.join(argv[1:]) if len(argv) > 1 else quote(str(input('Search: '))) print('Googling.....') UpperCamelCase__ = f'''https://www.google.com/search?q={query}&num=100''' UpperCamelCase__ = requests.get( url, headers={'User-Agent': str(UserAgent().random)}, ) try: UpperCamelCase__ = ( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'yuRUbf'}) .find('a') .get('href') ) except AttributeError: UpperCamelCase__ = parse_qs( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'kCrYT'}) .find('a') .get('href') )['url'][0] webbrowser.open(link)
65
import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) UpperCamelCase__ = logging.getLogger(__name__) def lowerCAmelCase_ ( ) -> int: '''simple docstring''' UpperCAmelCase__ = argparse.ArgumentParser( description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids)." ) parser.add_argument("--file_path", type=__A, default="data/dump.txt", help="The path to the data." ) parser.add_argument("--tokenizer_type", type=__A, default="bert", choices=["bert", "roberta", "gpt2"] ) parser.add_argument("--tokenizer_name", type=__A, default="bert-base-uncased", help="The tokenizer to use." ) parser.add_argument("--dump_file", type=__A, default="data/dump", help="The dump file prefix." ) UpperCAmelCase__ = parser.parse_args() logger.info(f"""Loading Tokenizer ({args.tokenizer_name})""" ) if args.tokenizer_type == "bert": UpperCAmelCase__ = BertTokenizer.from_pretrained(args.tokenizer_name ) UpperCAmelCase__ = tokenizer.special_tokens_map["cls_token"] # `[CLS]` UpperCAmelCase__ = tokenizer.special_tokens_map["sep_token"] # `[SEP]` elif args.tokenizer_type == "roberta": UpperCAmelCase__ = RobertaTokenizer.from_pretrained(args.tokenizer_name ) UpperCAmelCase__ = tokenizer.special_tokens_map["cls_token"] # `<s>` UpperCAmelCase__ = tokenizer.special_tokens_map["sep_token"] # `</s>` elif args.tokenizer_type == "gpt2": UpperCAmelCase__ = GPTaTokenizer.from_pretrained(args.tokenizer_name ) UpperCAmelCase__ = tokenizer.special_tokens_map["bos_token"] # `<|endoftext|>` UpperCAmelCase__ = tokenizer.special_tokens_map["eos_token"] # `<|endoftext|>` logger.info(f"""Loading text from {args.file_path}""" ) with open(args.file_path, "r", encoding="utf8" ) as fp: UpperCAmelCase__ = fp.readlines() logger.info("Start encoding" ) logger.info(f"""{len(__A )} examples to process.""" ) UpperCAmelCase__ = [] UpperCAmelCase__ = 0 UpperCAmelCase__ = 10_000 UpperCAmelCase__ = time.time() for text in data: UpperCAmelCase__ = f"""{bos} {text.strip()} {sep}""" UpperCAmelCase__ = tokenizer.encode(__A, add_special_tokens=__A ) rslt.append(__A ) iter += 1 if iter % interval == 0: UpperCAmelCase__ = time.time() logger.info(f"""{iter} examples processed. - {(end-start):.2f}s/{interval}expl""" ) UpperCAmelCase__ = time.time() logger.info("Finished binarization" ) logger.info(f"""{len(__A )} examples processed.""" ) UpperCAmelCase__ = f"""{args.dump_file}.{args.tokenizer_name}.pickle""" UpperCAmelCase__ = tokenizer.vocab_size if vocab_size < (1 << 16): UpperCAmelCase__ = [np.uintaa(__A ) for d in rslt] else: UpperCAmelCase__ = [np.intaa(__A ) for d in rslt] random.shuffle(rslt_ ) logger.info(f"""Dump to {dp_file}""" ) with open(__A, "wb" ) as handle: pickle.dump(rslt_, __A, protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
65
1
"""simple docstring""" import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __UpperCAmelCase = 16 __UpperCAmelCase = 32 def _snake_case ( lowercase__ : Accelerator , lowercase__ : int = 1_6 ) -> int: '''simple docstring''' lowerCAmelCase_ :List[Any] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowerCAmelCase_ :Optional[Any] = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowercase__ : Dict ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase_ :Optional[Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase_ :List[Any] = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase_ :Dict = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowercase__ : Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase_ :int = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase_ :int = 1_6 elif accelerator.mixed_precision != "no": lowerCAmelCase_ :List[str] = 8 else: lowerCAmelCase_ :str = None return tokenizer.pad( UpperCamelCase__ , padding="""longest""" , max_length=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_tensors="""pt""" , ) # Instantiate dataloaders. lowerCAmelCase_ :List[Any] = DataLoader( tokenized_datasets["""train"""] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ , drop_last=UpperCamelCase__ ) lowerCAmelCase_ :Dict = DataLoader( tokenized_datasets["""validation"""] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ , drop_last=(accelerator.mixed_precision == """fp8""") , ) return train_dataloader, eval_dataloader def _snake_case ( lowercase__ : Any , lowercase__ : Tuple ) -> int: '''simple docstring''' lowerCAmelCase_ :Optional[Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase_ :List[Any] = config["""lr"""] lowerCAmelCase_ :List[Any] = int(config["""num_epochs"""] ) lowerCAmelCase_ :List[Any] = int(config["""seed"""] ) lowerCAmelCase_ :int = int(config["""batch_size"""] ) lowerCAmelCase_ :Any = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation lowerCAmelCase_ :int = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowerCAmelCase_ :Dict = batch_size // MAX_GPU_BATCH_SIZE lowerCAmelCase_ :Dict = MAX_GPU_BATCH_SIZE set_seed(UpperCamelCase__ ) lowerCAmelCase_ , lowerCAmelCase_ :Optional[int] = get_dataloaders(UpperCamelCase__ , UpperCamelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase_ :List[Any] = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=UpperCamelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase_ :Optional[Any] = model.to(accelerator.device ) # Instantiate optimizer lowerCAmelCase_ :Any = AdamW(params=model.parameters() , lr=UpperCamelCase__ ) # Instantiate scheduler lowerCAmelCase_ :Tuple = get_linear_schedule_with_warmup( optimizer=UpperCamelCase__ , num_warmup_steps=1_0_0 , num_training_steps=(len(UpperCamelCase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ :str = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Now we train the model for epoch in range(UpperCamelCase__ ): model.train() for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCAmelCase_ :Optional[int] = model(**UpperCamelCase__ ) lowerCAmelCase_ :Any = outputs.loss lowerCAmelCase_ :Optional[Any] = loss / gradient_accumulation_steps accelerator.backward(UpperCamelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase_ :str = model(**UpperCamelCase__ ) lowerCAmelCase_ :int = outputs.logits.argmax(dim=-1 ) lowerCAmelCase_ , lowerCAmelCase_ :Dict = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=UpperCamelCase__ , references=UpperCamelCase__ , ) lowerCAmelCase_ :Dict = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , UpperCamelCase__ ) def _snake_case ( ) -> int: '''simple docstring''' lowerCAmelCase_ :List[str] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=UpperCamelCase__ , default=UpperCamelCase__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) lowerCAmelCase_ :Any = parser.parse_args() lowerCAmelCase_ :Optional[int] = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 1_6} training_function(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": main()
362
"""simple docstring""" import os from math import logaa def _snake_case ( lowercase__ : str = "base_exp.txt" ) -> int: '''simple docstring''' lowerCAmelCase_ :float = 0 lowerCAmelCase_ :Union[str, Any] = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(lowercase__ ) , lowercase__ ) ) ): lowerCAmelCase_ , lowerCAmelCase_ :Union[str, Any] = list(map(lowercase__ , line.split(""",""" ) ) ) if x * logaa(lowercase__ ) > largest: lowerCAmelCase_ :Any = x * logaa(lowercase__ ) lowerCAmelCase_ :List[Any] = i + 1 return result if __name__ == "__main__": print(solution())
1
0
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCAmelCase_ ( _UpperCAmelCase , unittest.TestCase): lowerCamelCase__ = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def snake_case__ ( self, __a=0): '''simple docstring''' _lowerCAmelCase : Optional[Any] = floats_tensor((1, 3, 128, 128), rng=random.Random(a__)) _lowerCAmelCase : str = np.random.RandomState(a__) _lowerCAmelCase : Optional[int] = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "strength": 0.75, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") pipe.set_progress_bar_config(disable=a__) _lowerCAmelCase : int = self.get_dummy_inputs() _lowerCAmelCase : int = pipe(**a__).images _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) _lowerCAmelCase : int = np.array([0.69_643, 0.58_484, 0.50_314, 0.58_760, 0.55_368, 0.59_643, 0.51_529, 0.41_217, 0.49_087]) assert np.abs(image_slice - expected_slice).max() < 1E-1 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") _lowerCAmelCase : Union[str, Any] = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=a__) pipe.set_progress_bar_config(disable=a__) _lowerCAmelCase : Dict = self.get_dummy_inputs() _lowerCAmelCase : Optional[int] = pipe(**a__).images _lowerCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _lowerCAmelCase : int = np.array([0.61_737, 0.54_642, 0.53_183, 0.54_465, 0.52_742, 0.60_525, 0.49_969, 0.40_655, 0.48_154]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") _lowerCAmelCase : List[Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=a__) # warmup pass to apply optimizations _lowerCAmelCase : int = pipe(**self.get_dummy_inputs()) _lowerCAmelCase : Dict = self.get_dummy_inputs() _lowerCAmelCase : List[str] = pipe(**a__).images _lowerCAmelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _lowerCAmelCase : Optional[int] = np.array([0.52_761, 0.59_977, 0.49_033, 0.49_619, 0.54_282, 0.50_311, 0.47_600, 0.40_918, 0.45_203]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") _lowerCAmelCase : Union[str, Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=a__) _lowerCAmelCase : List[Any] = self.get_dummy_inputs() _lowerCAmelCase : str = pipe(**a__).images _lowerCAmelCase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _lowerCAmelCase : List[str] = np.array([0.52_911, 0.60_004, 0.49_229, 0.49_805, 0.54_502, 0.50_680, 0.47_777, 0.41_028, 0.45_304]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") _lowerCAmelCase : Optional[int] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=a__) _lowerCAmelCase : Optional[int] = self.get_dummy_inputs() _lowerCAmelCase : Optional[Any] = pipe(**a__).images _lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _lowerCAmelCase : Union[str, Any] = np.array([0.52_911, 0.60_004, 0.49_229, 0.49_805, 0.54_502, 0.50_680, 0.47_777, 0.41_028, 0.45_304]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") _lowerCAmelCase : List[str] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=a__) _lowerCAmelCase : Tuple = self.get_dummy_inputs() _lowerCAmelCase : List[str] = pipe(**a__).images _lowerCAmelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _lowerCAmelCase : Union[str, Any] = np.array([0.65_331, 0.58_277, 0.48_204, 0.56_059, 0.53_665, 0.56_235, 0.50_969, 0.40_009, 0.46_552]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): @property def snake_case__ ( self): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ort.SessionOptions() _lowerCAmelCase : List[Any] = False return options def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg") _lowerCAmelCase : List[Any] = init_image.resize((768, 512)) # using the PNDM scheduler by default _lowerCAmelCase : Optional[int] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", revision="onnx", safety_checker=a__, feature_extractor=a__, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=a__) _lowerCAmelCase : Optional[int] = "A fantasy landscape, trending on artstation" _lowerCAmelCase : Optional[Any] = np.random.RandomState(0) _lowerCAmelCase : int = pipe( prompt=a__, image=a__, strength=0.75, guidance_scale=7.5, num_inference_steps=10, generator=a__, output_type="np", ) _lowerCAmelCase : Dict = output.images _lowerCAmelCase : List[str] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) _lowerCAmelCase : Union[str, Any] = np.array([0.4_909, 0.5_059, 0.5_372, 0.4_623, 0.4_876, 0.5_049, 0.4_820, 0.4_956, 0.5_019]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2E-2 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg") _lowerCAmelCase : str = init_image.resize((768, 512)) _lowerCAmelCase : Optional[int] = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5", subfolder="scheduler", revision="onnx") _lowerCAmelCase : Tuple = OnnxStableDiffusionImgaImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", revision="onnx", scheduler=a__, safety_checker=a__, feature_extractor=a__, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=a__) _lowerCAmelCase : Dict = "A fantasy landscape, trending on artstation" _lowerCAmelCase : int = np.random.RandomState(0) _lowerCAmelCase : Optional[int] = pipe( prompt=a__, image=a__, strength=0.75, guidance_scale=7.5, num_inference_steps=20, generator=a__, output_type="np", ) _lowerCAmelCase : int = output.images _lowerCAmelCase : int = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) _lowerCAmelCase : Tuple = np.array([0.8_043, 0.926, 0.9_581, 0.8_119, 0.8_954, 0.913, 0.7_209, 0.7_463, 0.7_431]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2E-2
36
from math import loga def lowerCamelCase__ ( snake_case_ : int ) -> int: if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(snake_case_ , snake_case_ ): raise TypeError('''Input value must be a \'int\' type''' ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
24
0
'''simple docstring''' def a__ ( lowercase : int = 10, lowercase : int = 1000, lowercase : bool = True ) -> int: """simple docstring""" assert ( isinstance(lowercase, lowercase ) and isinstance(lowercase, lowercase ) and isinstance(lowercase, lowercase ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError('''Invalid value for min_val or max_val (min_value < max_value)''' ) return min_val if option else max_val def a__ ( lowercase : int, lowercase : int ) -> int: """simple docstring""" return int((number_a + number_a) / 2 ) def a__ ( lowercase : int, lowercase : int, lowercase : int ) -> None: """simple docstring""" assert ( isinstance(lowercase, lowercase ) and isinstance(lowercase, lowercase ) and isinstance(lowercase, lowercase ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError('''argument value for lower and higher must be(lower > higher)''' ) if not lower < to_guess < higher: raise ValueError( '''guess value must be within the range of lower and higher value''' ) def answer(lowercase : int ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print('''started...''' ) _UpperCamelCase = lower _UpperCamelCase = higher _UpperCamelCase = [] while True: _UpperCamelCase = get_avg(lowercase, lowercase ) last_numbers.append(lowercase ) if answer(lowercase ) == "low": _UpperCamelCase = number elif answer(lowercase ) == "high": _UpperCamelCase = number else: break print(F"""guess the number : {last_numbers[-1]}""" ) print(F"""details : {last_numbers!s}""" ) def a__ ( ) -> None: """simple docstring""" _UpperCamelCase = int(input('''Enter lower value : ''' ).strip() ) _UpperCamelCase = int(input('''Enter high value : ''' ).strip() ) _UpperCamelCase = int(input('''Enter value to guess : ''' ).strip() ) guess_the_number(lowercase, lowercase, lowercase ) if __name__ == "__main__": main()
287
'''simple docstring''' import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Union[str, Any]=13 , lowerCAmelCase__ : Union[str, Any]=7 , lowerCAmelCase__ : str=True , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : int=99 , lowerCAmelCase__ : str=32 , lowerCAmelCase__ : str=5 , lowerCAmelCase__ : str=4 , lowerCAmelCase__ : str=37 , lowerCAmelCase__ : int="gelu" , lowerCAmelCase__ : Optional[Any]=0.1 , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : Optional[int]=512 , lowerCAmelCase__ : Dict=16 , lowerCAmelCase__ : List[Any]=2 , lowerCAmelCase__ : Any=0.02 , lowerCAmelCase__ : Union[str, Any]=4 , ) -> Dict: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_attention_mask _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_choices def snake_case__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = None if self.use_attention_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCamelCase = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def snake_case__ ( self : Optional[int] ) -> Any: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def snake_case__ ( self : List[str] ) -> Any: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = True _UpperCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : Optional[int] = True _snake_case : Optional[Any] = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def snake_case__ ( self : Dict ) -> List[Any]: '''simple docstring''' _UpperCamelCase = FlaxRobertaModelTester(self ) @slow def snake_case__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCamelCase = model_class_name.from_pretrained('''roberta-base''' , from_pt=lowerCAmelCase__ ) _UpperCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCAmelCase__ )
287
1
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class __A ( unittest.TestCase ): def __init__( self , a__ , a__=7 , a__=3 , a__=30 , a__=400 , a__=True , a__=None , a__=True , a__=[0.5, 0.5, 0.5] , a__=[0.5, 0.5, 0.5] , a__=True , a__=1 / 255 , a__=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _lowerCAmelCase : int = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} _lowerCAmelCase : List[str] = parent _lowerCAmelCase : Dict = batch_size _lowerCAmelCase : int = num_channels _lowerCAmelCase : Optional[Any] = min_resolution _lowerCAmelCase : Tuple = max_resolution _lowerCAmelCase : List[Any] = do_resize _lowerCAmelCase : Optional[Any] = size _lowerCAmelCase : Optional[int] = do_normalize _lowerCAmelCase : Optional[int] = image_mean _lowerCAmelCase : Dict = image_std _lowerCAmelCase : Optional[Any] = do_rescale _lowerCAmelCase : List[Any] = rescale_factor _lowerCAmelCase : int = do_pad def __A ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __A ( self , a__ , a__=False ): if not batched: _lowerCAmelCase : Optional[int] = image_inputs[0] if isinstance(a__ , Image.Image ): _lowerCAmelCase , _lowerCAmelCase : str = image.size else: _lowerCAmelCase , _lowerCAmelCase : Tuple = image.shape[1], image.shape[2] if w < h: _lowerCAmelCase : Any = int(self.size["""shortest_edge"""] * h / w ) _lowerCAmelCase : Optional[int] = self.size["""shortest_edge"""] elif w > h: _lowerCAmelCase : Tuple = self.size["""shortest_edge"""] _lowerCAmelCase : Union[str, Any] = int(self.size["""shortest_edge"""] * w / h ) else: _lowerCAmelCase : List[Any] = self.size["""shortest_edge"""] _lowerCAmelCase : Any = self.size["""shortest_edge"""] else: _lowerCAmelCase : Optional[int] = [] for image in image_inputs: _lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _lowerCAmelCase : List[str] = max(a__ , key=lambda a__ : item[0] )[0] _lowerCAmelCase : Any = max(a__ , key=lambda a__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Tuple = ConditionalDetrImageProcessor if is_vision_available() else None def __A ( self ): _lowerCAmelCase : Dict = ConditionalDetrImageProcessingTester(self ) @property def __A ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __A ( self ): _lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a__ , """image_mean""" ) ) self.assertTrue(hasattr(a__ , """image_std""" ) ) self.assertTrue(hasattr(a__ , """do_normalize""" ) ) self.assertTrue(hasattr(a__ , """do_resize""" ) ) self.assertTrue(hasattr(a__ , """size""" ) ) def __A ( self ): _lowerCAmelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , a__ ) _lowerCAmelCase : Tuple = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=a__ ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , a__ ) def __A ( self ): pass def __A ( self ): # Initialize image_processing _lowerCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ ) for image in image_inputs: self.assertIsInstance(a__ , Image.Image ) # Test not batched input _lowerCAmelCase : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values _lowerCAmelCase , _lowerCAmelCase : str = self.image_processor_tester.get_expected_values(a__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.image_processor_tester.get_expected_values(a__ , batched=a__ ) _lowerCAmelCase : Optional[Any] = image_processing(a__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __A ( self ): # Initialize image_processing _lowerCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , numpify=a__ ) for image in image_inputs: self.assertIsInstance(a__ , np.ndarray ) # Test not batched input _lowerCAmelCase : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.image_processor_tester.get_expected_values(a__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCAmelCase : str = image_processing(a__ , return_tensors="""pt""" ).pixel_values _lowerCAmelCase , _lowerCAmelCase : int = self.image_processor_tester.get_expected_values(a__ , batched=a__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __A ( self ): # Initialize image_processing _lowerCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , torchify=a__ ) for image in image_inputs: self.assertIsInstance(a__ , torch.Tensor ) # Test not batched input _lowerCAmelCase : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values _lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.image_processor_tester.get_expected_values(a__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCAmelCase : Tuple = image_processing(a__ , return_tensors="""pt""" ).pixel_values _lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.image_processor_tester.get_expected_values(a__ , batched=a__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __A ( self ): # prepare image and target _lowerCAmelCase : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: _lowerCAmelCase : Optional[Any] = json.loads(f.read() ) _lowerCAmelCase : Optional[int] = {"""image_id""": 39769, """annotations""": target} # encode them _lowerCAmelCase : Union[str, Any] = ConditionalDetrImageProcessor.from_pretrained("""microsoft/conditional-detr-resnet-50""" ) _lowerCAmelCase : Any = image_processing(images=a__ , annotations=a__ , return_tensors="""pt""" ) # verify pixel values _lowerCAmelCase : Union[str, Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , a__ ) _lowerCAmelCase : Optional[Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , a__ , atol=1e-4 ) ) # verify area _lowerCAmelCase : Optional[int] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , a__ ) ) # verify boxes _lowerCAmelCase : str = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , a__ ) _lowerCAmelCase : Union[str, Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , a__ , atol=1e-3 ) ) # verify image_id _lowerCAmelCase : Any = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , a__ ) ) # verify is_crowd _lowerCAmelCase : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , a__ ) ) # verify class_labels _lowerCAmelCase : str = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , a__ ) ) # verify orig_size _lowerCAmelCase : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , a__ ) ) # verify size _lowerCAmelCase : str = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , a__ ) ) @slow def __A ( self ): # prepare image, target and masks_path _lowerCAmelCase : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: _lowerCAmelCase : str = json.loads(f.read() ) _lowerCAmelCase : Dict = {"""file_name""": """000000039769.png""", """image_id""": 39769, """segments_info""": target} _lowerCAmelCase : Tuple = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them _lowerCAmelCase : List[str] = ConditionalDetrImageProcessor(format="""coco_panoptic""" ) _lowerCAmelCase : str = image_processing(images=a__ , annotations=a__ , masks_path=a__ , return_tensors="""pt""" ) # verify pixel values _lowerCAmelCase : List[Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , a__ ) _lowerCAmelCase : List[str] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , a__ , atol=1e-4 ) ) # verify area _lowerCAmelCase : List[str] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , a__ ) ) # verify boxes _lowerCAmelCase : Dict = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , a__ ) _lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , a__ , atol=1e-3 ) ) # verify image_id _lowerCAmelCase : List[Any] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , a__ ) ) # verify is_crowd _lowerCAmelCase : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , a__ ) ) # verify class_labels _lowerCAmelCase : Optional[int] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , a__ ) ) # verify masks _lowerCAmelCase : int = 822873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , a__ ) # verify orig_size _lowerCAmelCase : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , a__ ) ) # verify size _lowerCAmelCase : Union[str, Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , a__ ) )
44
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING lowerCAmelCase :Tuple = logging.get_logger(__name__) @add_end_docstrings(lowercase__ ) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : Optional[Any] , *_A : Optional[Any] , **_A : List[Any] ) -> Any: super().__init__(*_A , **_A ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == 'tf' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def __lowerCAmelCase ( self : str , _A : Any=None , _A : Union[str, Any]=None , _A : Union[str, Any]=None ) -> List[str]: __magic_name__ : Union[str, Any] = {} __magic_name__ : Optional[Any] = {} if prompt is not None: __magic_name__ : Union[str, Any] = prompt if generate_kwargs is not None: __magic_name__ : str = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: __magic_name__ : Union[str, Any] = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,' ' please use only one' ) __magic_name__ : Optional[Any] = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : Optional[Any] , _A : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_A : List[Any] ) -> int: return super().__call__(_A , **_A ) def __lowerCAmelCase ( self : List[str] , _A : str , _A : Optional[int]=None ) -> Dict: __magic_name__ : List[Any] = load_image(_A ) if prompt is not None: if not isinstance(_A , _A ): raise ValueError( F'Received an invalid text input, got - {type(_A )} - but expected a single string. ' 'Note also that one single text can be provided for conditional image to text generation.' ) __magic_name__ : Any = self.model.config.model_type if model_type == "git": __magic_name__ : int = self.image_processor(images=_A , return_tensors=self.framework ) __magic_name__ : List[str] = self.tokenizer(text=_A , add_special_tokens=_A ).input_ids __magic_name__ : str = [self.tokenizer.cls_token_id] + input_ids __magic_name__ : List[Any] = torch.tensor(_A ).unsqueeze(0 ) model_inputs.update({'input_ids': input_ids} ) elif model_type == "pix2struct": __magic_name__ : Dict = self.image_processor(images=_A , header_text=_A , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation __magic_name__ : int = self.image_processor(images=_A , return_tensors=self.framework ) __magic_name__ : List[str] = self.tokenizer(_A , return_tensors=self.framework ) model_inputs.update(_A ) else: raise ValueError(F'Model type {model_type} does not support conditional text generation' ) else: __magic_name__ : Optional[Any] = self.image_processor(images=_A , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: __magic_name__ : int = None return model_inputs def __lowerCAmelCase ( self : List[Any] , _A : Tuple , _A : List[str]=None ) -> Any: # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs['input_ids'] , _A ) and all(x is None for x in model_inputs['input_ids'] ) ): __magic_name__ : str = None if generate_kwargs is None: __magic_name__ : Optional[int] = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. __magic_name__ : Optional[Any] = model_inputs.pop(self.model.main_input_name ) __magic_name__ : Union[str, Any] = self.model.generate(_A , **_A , **_A ) return model_outputs def __lowerCAmelCase ( self : List[str] , _A : Tuple ) -> Optional[Any]: __magic_name__ : Optional[Any] = [] for output_ids in model_outputs: __magic_name__ : Union[str, Any] = { 'generated_text': self.tokenizer.decode( _A , skip_special_tokens=_A , ) } records.append(_A ) return records
331
0
'''simple docstring''' import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class a_ ( _lowerCAmelCase , unittest.TestCase ): __A = CTRLTokenizer __A = False __A = False def lowercase__ ( self : List[str] ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase_ :Optional[int] = ["adapt", "re@@", "a@@", "apt", "c@@", "t", "<unk>"] lowercase_ :Optional[Any] = dict(zip(lowercase , range(len(lowercase ) ) ) ) lowercase_ :Optional[int] = ["#version: 0.2", "a p", "ap t</w>", "r e", "a d", "ad apt</w>", ""] lowercase_ :Tuple = {"unk_token": "<unk>"} lowercase_ :List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowercase_ :Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowercase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowercase ) ) def lowercase__ ( self : int , **lowercase : str ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **lowercase ) def lowercase__ ( self : List[str] , lowercase : Dict ): """simple docstring""" lowercase_ :Union[str, Any] = "adapt react readapt apt" lowercase_ :List[Any] = "adapt react readapt apt" return input_text, output_text def lowercase__ ( self : Dict ): """simple docstring""" lowercase_ :Dict = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase_ :List[Any] = "adapt react readapt apt" lowercase_ :str = "adapt re@@ a@@ c@@ t re@@ adapt apt".split() lowercase_ :List[str] = tokenizer.tokenize(lowercase ) self.assertListEqual(lowercase , lowercase ) lowercase_ :str = tokens + [tokenizer.unk_token] lowercase_ :List[str] = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase ) , lowercase )
147
'''simple docstring''' import numpy as np def UpperCAmelCase_ ( __lowerCamelCase : str ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : int ,__lowerCamelCase : List[str] ,__lowerCamelCase : List[Any] ): lowercase_ :Dict = int(np.ceil((x_end - xa) / h ) ) lowercase_ :Optional[int] = np.zeros((n + 1,) ) lowercase_ :Tuple = ya lowercase_ :List[str] = xa for k in range(__lowerCamelCase ): lowercase_ :Any = f(__lowerCamelCase ,y[k] ) lowercase_ :Optional[Any] = f(x + 0.5 * h ,y[k] + 0.5 * h * ka ) lowercase_ :Optional[Any] = f(x + 0.5 * h ,y[k] + 0.5 * h * ka ) lowercase_ :Any = f(x + h ,y[k] + h * ka ) lowercase_ :Tuple = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
147
1
'''simple docstring''' from ....utils import logging lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : Tuple , __a : int , __a : Any=None , __a : Optional[int]=20_48 ): _a = config.__dict__ _a = modal_hidden_size if num_labels: _a = num_labels
63
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase_ : List[str] = { 'microsoft/trocr-base-handwritten': ( 'https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a ='trocr' __a =['past_key_values'] __a ={ 'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model', 'num_hidden_layers': 'decoder_layers', } def __init__( self : Optional[int] , __a : Any=5_02_65 , __a : Optional[int]=10_24 , __a : List[Any]=12 , __a : str=16 , __a : int=40_96 , __a : Optional[Any]="gelu" , __a : Union[str, Any]=5_12 , __a : Dict=0.1 , __a : List[str]=0.0 , __a : Union[str, Any]=0.0 , __a : Any=2 , __a : Union[str, Any]=0.02 , __a : Any=0.0 , __a : List[str]=True , __a : Optional[Any]=False , __a : Union[str, Any]=True , __a : Optional[Any]=True , __a : Any=1 , __a : List[Any]=0 , __a : Any=2 , **__a : Optional[Any] , ): _a = vocab_size _a = d_model _a = decoder_layers _a = decoder_attention_heads _a = decoder_ffn_dim _a = activation_function _a = max_position_embeddings _a = dropout _a = attention_dropout _a = activation_dropout _a = init_std _a = decoder_layerdrop _a = use_cache _a = scale_embedding _a = use_learned_position_embeddings _a = layernorm_embedding super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , decoder_start_token_id=__a , **__a , )
63
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {} class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :List[Any] = "llama" UpperCAmelCase_ :str = ["past_key_values"] def __init__( self , __A=3_2000 , __A=4096 , __A=1_1008 , __A=32 , __A=32 , __A=None , __A="silu" , __A=2048 , __A=0.0_2 , __A=1E-6 , __A=True , __A=0 , __A=1 , __A=2 , __A=1 , __A=False , __A=None , **__A , ) -> List[str]: lowerCAmelCase_ :str = vocab_size lowerCAmelCase_ :str = max_position_embeddings lowerCAmelCase_ :int = hidden_size lowerCAmelCase_ :List[str] = intermediate_size lowerCAmelCase_ :Tuple = num_hidden_layers lowerCAmelCase_ :Dict = num_attention_heads # for backward compatibility if num_key_value_heads is None: lowerCAmelCase_ :List[str] = num_attention_heads lowerCAmelCase_ :Any = num_key_value_heads lowerCAmelCase_ :Optional[int] = hidden_act lowerCAmelCase_ :Any = initializer_range lowerCAmelCase_ :str = rms_norm_eps lowerCAmelCase_ :List[Any] = pretraining_tp lowerCAmelCase_ :int = use_cache lowerCAmelCase_ :List[Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , tie_word_embeddings=__A , **__A , ) def __lowerCAmelCase ( self ) -> List[Any]: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __A ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f"""got {self.rope_scaling}""" ) lowerCAmelCase_ :List[str] = self.rope_scaling.get("""type""" , __A ) lowerCAmelCase_ :List[Any] = self.rope_scaling.get("""factor""" , __A ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(__A , __A ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
1
"""simple docstring""" # This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class _SCREAMING_SNAKE_CASE ( A__ , A__ , A__ , unittest.TestCase ): UpperCAmelCase_ :int = StableDiffusionControlNetImgaImgPipeline UpperCAmelCase_ :str = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} UpperCAmelCase_ :Tuple = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCAmelCase_ :List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"control_image"} ) UpperCAmelCase_ :Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def __lowerCAmelCase ( self ) -> List[str]: torch.manual_seed(0 ) lowerCAmelCase_ :Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) torch.manual_seed(0 ) lowerCAmelCase_ :List[Any] = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) lowerCAmelCase_ :Optional[Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=__A , set_alpha_to_one=__A , ) torch.manual_seed(0 ) lowerCAmelCase_ :List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase_ :Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCAmelCase_ :List[Any] = CLIPTextModel(__A ) lowerCAmelCase_ :int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowerCAmelCase_ :Union[str, Any] = { """unet""": unet, """controlnet""": controlnet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def __lowerCAmelCase ( self , __A , __A=0 ) -> List[str]: if str(__A ).startswith("""mps""" ): lowerCAmelCase_ :Tuple = torch.manual_seed(__A ) else: lowerCAmelCase_ :Optional[int] = torch.Generator(device=__A ).manual_seed(__A ) lowerCAmelCase_ :List[Any] = 2 lowerCAmelCase_ :int = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=__A , device=torch.device(__A ) , ) lowerCAmelCase_ :Optional[int] = floats_tensor(control_image.shape , rng=random.Random(__A ) ).to(__A ) lowerCAmelCase_ :Tuple = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase_ :List[Any] = Image.fromarray(np.uinta(__A ) ).convert("""RGB""" ).resize((64, 64) ) lowerCAmelCase_ :Union[str, Any] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", """image""": image, """control_image""": control_image, } return inputs def __lowerCAmelCase ( self ) -> int: return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def __lowerCAmelCase ( self ) -> Union[str, Any]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def __lowerCAmelCase ( self ) -> List[str]: self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) class _SCREAMING_SNAKE_CASE ( A__ , A__ , unittest.TestCase ): UpperCAmelCase_ :List[str] = StableDiffusionControlNetImgaImgPipeline UpperCAmelCase_ :int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} UpperCAmelCase_ :str = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCAmelCase_ :int = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def __lowerCAmelCase ( self ) -> Optional[int]: torch.manual_seed(0 ) lowerCAmelCase_ :Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(__A ): if isinstance(__A , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) lowerCAmelCase_ :List[Any] = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(__A ) torch.manual_seed(0 ) lowerCAmelCase_ :Optional[Any] = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(__A ) torch.manual_seed(0 ) lowerCAmelCase_ :Optional[Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=__A , set_alpha_to_one=__A , ) torch.manual_seed(0 ) lowerCAmelCase_ :Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase_ :Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCAmelCase_ :str = CLIPTextModel(__A ) lowerCAmelCase_ :str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowerCAmelCase_ :Optional[Any] = MultiControlNetModel([controlneta, controlneta] ) lowerCAmelCase_ :List[Any] = { """unet""": unet, """controlnet""": controlnet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def __lowerCAmelCase ( self , __A , __A=0 ) -> str: if str(__A ).startswith("""mps""" ): lowerCAmelCase_ :Optional[Any] = torch.manual_seed(__A ) else: lowerCAmelCase_ :List[Any] = torch.Generator(device=__A ).manual_seed(__A ) lowerCAmelCase_ :Optional[Any] = 2 lowerCAmelCase_ :Optional[int] = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=__A , device=torch.device(__A ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=__A , device=torch.device(__A ) , ), ] lowerCAmelCase_ :int = floats_tensor(control_image[0].shape , rng=random.Random(__A ) ).to(__A ) lowerCAmelCase_ :Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase_ :List[Any] = Image.fromarray(np.uinta(__A ) ).convert("""RGB""" ).resize((64, 64) ) lowerCAmelCase_ :List[str] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", """image""": image, """control_image""": control_image, } return inputs def __lowerCAmelCase ( self ) -> Optional[Any]: lowerCAmelCase_ :List[str] = self.get_dummy_components() lowerCAmelCase_ :Tuple = self.pipeline_class(**__A ) pipe.to(__A ) lowerCAmelCase_ :Union[str, Any] = 1_0.0 lowerCAmelCase_ :Union[str, Any] = 4 lowerCAmelCase_ :Tuple = self.get_dummy_inputs(__A ) lowerCAmelCase_ :List[str] = steps lowerCAmelCase_ :int = scale lowerCAmelCase_ :Union[str, Any] = pipe(**__A )[0] lowerCAmelCase_ :Any = self.get_dummy_inputs(__A ) lowerCAmelCase_ :str = steps lowerCAmelCase_ :str = scale lowerCAmelCase_ :Tuple = pipe(**__A , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] lowerCAmelCase_ :Optional[Any] = self.get_dummy_inputs(__A ) lowerCAmelCase_ :Union[str, Any] = steps lowerCAmelCase_ :Union[str, Any] = scale lowerCAmelCase_ :str = pipe(**__A , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] lowerCAmelCase_ :List[str] = self.get_dummy_inputs(__A ) lowerCAmelCase_ :Optional[int] = steps lowerCAmelCase_ :Tuple = scale lowerCAmelCase_ :str = pipe(**__A , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 def __lowerCAmelCase ( self ) -> Dict: return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def __lowerCAmelCase ( self ) -> Tuple: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def __lowerCAmelCase ( self ) -> Optional[int]: self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) def __lowerCAmelCase ( self ) -> List[str]: lowerCAmelCase_ :str = self.get_dummy_components() lowerCAmelCase_ :Tuple = self.pipeline_class(**__A ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(__A ) except NotImplementedError: pass @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> int: super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ :Any = ControlNetModel.from_pretrained("""lllyasviel/sd-controlnet-canny""" ) lowerCAmelCase_ :int = StableDiffusionControlNetImgaImgPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , safety_checker=__A , controlnet=__A ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=__A ) lowerCAmelCase_ :List[str] = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowerCAmelCase_ :List[Any] = """evil space-punk bird""" lowerCAmelCase_ :List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png""" ).resize((512, 512) ) lowerCAmelCase_ :int = load_image( """https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png""" ).resize((512, 512) ) lowerCAmelCase_ :Union[str, Any] = pipe( __A , __A , control_image=__A , generator=__A , output_type="""np""" , num_inference_steps=50 , strength=0.6 , ) lowerCAmelCase_ :Tuple = output.images[0] assert image.shape == (512, 512, 3) lowerCAmelCase_ :Tuple = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy""" ) assert np.abs(expected_image - image ).max() < 9E-2
1
1
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : str = field(default="language-modeling" , metadata={"include_in_asdict_even_if_is_default": True} ) UpperCAmelCase__ : ClassVar[Features] = Features({"text": Value("string" )} ) UpperCAmelCase__ : ClassVar[Features] = Features({} ) UpperCAmelCase__ : str = "text" @property def _a ( self ) -> Dict[str, str]: return {self.text_column: "text"}
62
from importlib import import_module from .logging import get_logger __lowerCAmelCase : str =get_logger(__name__) class _lowercase : '''simple docstring''' def __init__( self :List[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :str=None ) -> int: __SCREAMING_SNAKE_CASE : List[str] = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith('''__''' ): setattr(self , lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = module._original_module if isinstance(lowerCAmelCase__ , _PatchedModuleObj ) else module class _lowercase : '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = [] def __init__( self :Tuple , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :Any , lowerCAmelCase__ :Dict=None ) -> List[Any]: __SCREAMING_SNAKE_CASE : Optional[int] = obj __SCREAMING_SNAKE_CASE : str = target __SCREAMING_SNAKE_CASE : Dict = new __SCREAMING_SNAKE_CASE : Union[str, Any] = target.split('''.''' )[0] __SCREAMING_SNAKE_CASE : List[str] = {} __SCREAMING_SNAKE_CASE : Tuple = attrs or [] def __enter__( self :int ) -> Dict: *__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = self.target.split('''.''' ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(lowerCAmelCase__ ) ): try: __SCREAMING_SNAKE_CASE : Any = import_module('''.'''.join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): __SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(self.obj , lowerCAmelCase__ ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(lowerCAmelCase__ , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): __SCREAMING_SNAKE_CASE : int = obj_attr # patch at top level setattr(self.obj , lowerCAmelCase__ , _PatchedModuleObj(lowerCAmelCase__ , attrs=self.attrs ) ) __SCREAMING_SNAKE_CASE : List[str] = getattr(self.obj , lowerCAmelCase__ ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(lowerCAmelCase__ , lowerCAmelCase__ , _PatchedModuleObj(getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , attrs=self.attrs ) ) __SCREAMING_SNAKE_CASE : Tuple = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) # finally set the target attribute setattr(lowerCAmelCase__ , lowerCAmelCase__ , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: __SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(import_module('''.'''.join(lowerCAmelCase__ ) ) , lowerCAmelCase__ ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , lowerCAmelCase__ ) is attr_value: __SCREAMING_SNAKE_CASE : Any = getattr(self.obj , lowerCAmelCase__ ) setattr(self.obj , lowerCAmelCase__ , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" __SCREAMING_SNAKE_CASE : Union[str, Any] = globals()['''__builtins__'''][target_attr] setattr(self.obj , lowerCAmelCase__ , self.new ) else: raise RuntimeError(f'''Tried to patch attribute {target_attr} instead of a submodule.''' ) def __exit__( self :str , *lowerCAmelCase__ :Union[str, Any] ) -> Optional[int]: for attr in list(self.original ): setattr(self.obj , lowerCAmelCase__ , self.original.pop(lowerCAmelCase__ ) ) def __magic_name__( self :List[Any] ) -> List[Any]: self.__enter__() self._active_patches.append(self ) def __magic_name__( self :Optional[int] ) -> int: try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
9
0
import datasets from .evaluate import evaluate lowerCamelCase__ : Dict = '\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n' lowerCamelCase__ : List[str] = '\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n' lowerCamelCase__ : List[str] = '\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the SQuAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> squad_metric = datasets.load_metric("squad")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase_ ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase_ ( self : Union[str, Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': {'id': datasets.Value('string' ), 'prediction_text': datasets.Value('string' )}, 'references': { 'id': datasets.Value('string' ), 'answers': datasets.features.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), }, } ) , codebase_urls=['https://rajpurkar.github.io/SQuAD-explorer/'] , reference_urls=['https://rajpurkar.github.io/SQuAD-explorer/'] , ) def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = {prediction['id']: prediction['prediction_text'] for prediction in predictions} SCREAMING_SNAKE_CASE_ = [ { 'paragraphs': [ { 'qas': [ { 'answers': [{'text': answer_text} for answer_text in ref['answers']['text']], 'id': ref['id'], } for ref in references ] } ] } ] SCREAMING_SNAKE_CASE_ = evaluate(dataset=_lowerCAmelCase , predictions=_lowerCAmelCase ) return score
210
import gc import threading import time import psutil import torch class lowerCamelCase_ : '''simple docstring''' def __init__( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = psutil.Process() SCREAMING_SNAKE_CASE_ = False def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = -1 while True: SCREAMING_SNAKE_CASE_ = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = threading.Thread(target=self.peak_monitor ) SCREAMING_SNAKE_CASE_ = True self.thread.start() def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = False self.thread.join() return self.cpu_memory_peak lowerCamelCase__ : List[str] = PeakCPUMemory() def UpperCAmelCase_ ( ) -> Tuple: # Time SCREAMING_SNAKE_CASE_ = {'time': time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem SCREAMING_SNAKE_CASE_ = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): SCREAMING_SNAKE_CASE_ = torch.cuda.memory_allocated(__UpperCAmelCase ) torch.cuda.reset_peak_memory_stats() return measures def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] ) -> Optional[Any]: # Time SCREAMING_SNAKE_CASE_ = {'time': time.time() - start_measures['time']} gc.collect() torch.cuda.empty_cache() # CPU mem SCREAMING_SNAKE_CASE_ = (psutil.Process().memory_info().rss - start_measures['cpu']) / 2**20 SCREAMING_SNAKE_CASE_ = (cpu_peak_tracker.stop() - start_measures['cpu']) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): SCREAMING_SNAKE_CASE_ = (torch.cuda.memory_allocated(__UpperCAmelCase ) - start_measures[str(__UpperCAmelCase )]) / 2**20 SCREAMING_SNAKE_CASE_ = (torch.cuda.max_memory_allocated(__UpperCAmelCase ) - start_measures[str(__UpperCAmelCase )]) / 2**20 return measures def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Any ) -> Optional[Any]: print(f"{description}:" ) print(f"- Time: {measures['time']:.2f}s" ) for i in range(torch.cuda.device_count() ): print(f"- GPU {i} allocated: {measures[str(__UpperCAmelCase )]:.2f}MiB" ) SCREAMING_SNAKE_CASE_ = measures[f"{i}-peak"] print(f"- GPU {i} peak: {peak:.2f}MiB" ) print(f"- CPU RAM allocated: {measures['cpu']:.2f}MiB" ) print(f"- CPU RAM peak: {measures['cpu-peak']:.2f}MiB" )
210
1
"""simple docstring""" import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py _A : Optional[int] = """\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\", author = \"Lin, Chin-Yew and Och, Franz Josef\", booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\", month = \"aug 23{--}aug 27\", year = \"2004\", address = \"Geneva, Switzerland\", publisher = \"COLING\", url = \"https://www.aclweb.org/anthology/C04-1072\", pages = \"501--507\", } """ _A : List[Any] = """\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation, the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. """ _A : List[str] = """ Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 'bleu': bleu score, 'precisions': geometric mean of n-gram precisions, 'brevity_penalty': brevity penalty, 'length_ratio': ratio of lengths, 'translation_length': translation_length, 'reference_length': reference_length Examples: >>> predictions = [ ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample ... ] >>> references = [ ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references) ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric(\"bleu\") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results[\"bleu\"]) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): def __magic_name__ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"] , reference_urls=[ "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ] , ) def __magic_name__ ( self , _a , _a , _a=4 , _a=False ): lowercase : List[str] = compute_bleu( reference_corpus=_a , translation_corpus=_a , max_order=_a , smooth=_a ) ((lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase)) : Dict = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
202
"""simple docstring""" import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class a__ ( unittest.TestCase ): def __magic_name__ ( self ): lowercase : Optional[int] = "laion/clap-htsat-unfused" lowercase : Optional[int] = tempfile.mkdtemp() def __magic_name__ ( self , **_a ): return RobertaTokenizer.from_pretrained(self.checkpoint , **_a ) def __magic_name__ ( self , **_a ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **_a ) def __magic_name__ ( self ): shutil.rmtree(self.tmpdirname ) def __magic_name__ ( self ): lowercase : Optional[int] = self.get_tokenizer() lowercase : List[Any] = self.get_feature_extractor() lowercase : Dict = ClapProcessor(tokenizer=_a , feature_extractor=_a ) processor.save_pretrained(self.tmpdirname ) lowercase : int = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , _a ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _a ) def __magic_name__ ( self ): lowercase : Tuple = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) lowercase : Union[str, Any] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowercase : Optional[int] = self.get_feature_extractor(do_normalize=_a , padding_value=1.0 ) lowercase : Dict = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=_a , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _a ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _a ) def __magic_name__ ( self ): lowercase : List[Any] = self.get_feature_extractor() lowercase : List[str] = self.get_tokenizer() lowercase : int = ClapProcessor(tokenizer=_a , feature_extractor=_a ) lowercase : Dict = floats_list((3, 1_000) ) lowercase : str = feature_extractor(_a , return_tensors="np" ) lowercase : Dict = processor(audios=_a , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __magic_name__ ( self ): lowercase : Dict = self.get_feature_extractor() lowercase : int = self.get_tokenizer() lowercase : Dict = ClapProcessor(tokenizer=_a , feature_extractor=_a ) lowercase : Optional[Any] = "This is a test string" lowercase : Any = processor(text=_a ) lowercase : List[Any] = tokenizer(_a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __magic_name__ ( self ): lowercase : Optional[int] = self.get_feature_extractor() lowercase : Any = self.get_tokenizer() lowercase : Union[str, Any] = ClapProcessor(tokenizer=_a , feature_extractor=_a ) lowercase : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase : str = processor.batch_decode(_a ) lowercase : Optional[int] = tokenizer.batch_decode(_a ) self.assertListEqual(_a , _a ) def __magic_name__ ( self ): lowercase : List[Any] = self.get_feature_extractor() lowercase : Union[str, Any] = self.get_tokenizer() lowercase : Any = ClapProcessor(tokenizer=_a , feature_extractor=_a ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="`processor` and `feature_extractor` model input names do not match" , )
202
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : Dict = logging.get_logger(__name__) lowercase : Union[str, Any] = {'openai-gpt': 'https://huggingface.co/openai-gpt/resolve/main/config.json'} class lowerCamelCase__ ( _UpperCamelCase): '''simple docstring''' _A = 'openai-gpt' _A = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self :int , a :Tuple=4_0_4_7_8 , a :Tuple=5_1_2 , a :int=7_6_8 , a :int=1_2 , a :str=1_2 , a :List[str]="gelu" , a :Any=0.1 , a :Optional[int]=0.1 , a :str=0.1 , a :Any=1E-5 , a :int=0.02 , a :Optional[int]="cls_index" , a :Tuple=True , a :Dict=None , a :Optional[int]=True , a :List[str]=0.1 , **a :List[str] , ) -> List[Any]: __UpperCamelCase : Tuple = vocab_size __UpperCamelCase : List[str] = n_positions __UpperCamelCase : List[str] = n_embd __UpperCamelCase : Optional[Any] = n_layer __UpperCamelCase : Dict = n_head __UpperCamelCase : str = afn __UpperCamelCase : Tuple = resid_pdrop __UpperCamelCase : List[Any] = embd_pdrop __UpperCamelCase : Any = attn_pdrop __UpperCamelCase : Union[str, Any] = layer_norm_epsilon __UpperCamelCase : Dict = initializer_range __UpperCamelCase : Dict = summary_type __UpperCamelCase : str = summary_use_proj __UpperCamelCase : Any = summary_activation __UpperCamelCase : Union[str, Any] = summary_first_dropout __UpperCamelCase : Optional[Any] = summary_proj_to_labels super().__init__(**_UpperCAmelCase )
369
def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int , _lowerCamelCase : int) -> int: '''simple docstring''' return int((input_a, input_a).count(0) == 0) def _SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' assert and_gate(0 , 0) == 0 assert and_gate(0 , 1) == 0 assert and_gate(1 , 0) == 0 assert and_gate(1 , 1) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
151
0
"""simple docstring""" def A_ ( _lowercase ): '''simple docstring''' if not isinstance(_lowercase, _lowercase ): raise TypeError("""Input value must be an 'int' type""" ) snake_case_ :Any = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
66
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _snake_case = { '''configuration_squeezebert''': [ '''SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SqueezeBertConfig''', '''SqueezeBertOnnxConfig''', ], '''tokenization_squeezebert''': ['''SqueezeBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['''SqueezeBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SqueezeBertForMaskedLM''', '''SqueezeBertForMultipleChoice''', '''SqueezeBertForQuestionAnswering''', '''SqueezeBertForSequenceClassification''', '''SqueezeBertForTokenClassification''', '''SqueezeBertModel''', '''SqueezeBertModule''', '''SqueezeBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
283
0
def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): lowercase__ = [] if len(SCREAMING_SNAKE_CASE_ ) == 1: return [nums.copy()] for _ in range(len(SCREAMING_SNAKE_CASE_ ) ): lowercase__ = nums.pop(0 ) lowercase__ = permute(SCREAMING_SNAKE_CASE_ ) for perm in permutations: perm.append(SCREAMING_SNAKE_CASE_ ) result.extend(SCREAMING_SNAKE_CASE_ ) nums.append(SCREAMING_SNAKE_CASE_ ) return result def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): def backtrack(SCREAMING_SNAKE_CASE_ ): if start == len(SCREAMING_SNAKE_CASE_ ) - 1: output.append(nums[:] ) else: for i in range(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ): lowercase__ , lowercase__ = nums[i], nums[start] backtrack(start + 1 ) lowercase__ , lowercase__ = nums[i], nums[start] # backtrack lowercase__ = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function lowercase_ = permutea([1, 2, 3]) print(res) doctest.testmod()
224
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """transfo-xl-wt103""": """https://huggingface.co/transfo-xl-wt103/resolve/main/config.json""", } class _snake_case ( lowercase__): UpperCamelCase__ : Optional[Any] ="""transfo-xl""" UpperCamelCase__ : Dict =["""mems"""] UpperCamelCase__ : Optional[int] ={ """n_token""": """vocab_size""", """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Optional[Any], __lowercase : Optional[Any]=26_7735, __lowercase : int=[2_0000, 4_0000, 20_0000], __lowercase : Union[str, Any]=1024, __lowercase : Tuple=1024, __lowercase : Tuple=16, __lowercase : Optional[Any]=64, __lowercase : str=4096, __lowercase : Optional[int]=4, __lowercase : Union[str, Any]=False, __lowercase : Union[str, Any]=18, __lowercase : List[str]=1600, __lowercase : List[Any]=1000, __lowercase : Union[str, Any]=True, __lowercase : Tuple=True, __lowercase : Optional[Any]=0, __lowercase : List[str]=-1, __lowercase : int=True, __lowercase : Dict=0.1, __lowercase : Union[str, Any]=0.0, __lowercase : str=True, __lowercase : Optional[Any]="normal", __lowercase : str=0.01, __lowercase : Tuple=0.01, __lowercase : List[Any]=0.02, __lowercase : Any=1e-5, __lowercase : Union[str, Any]=0, **__lowercase : Union[str, Any], ): lowercase__ = vocab_size lowercase__ = [] self.cutoffs.extend(__lowercase ) if proj_share_all_but_first: lowercase__ = [False] + [True] * len(self.cutoffs ) else: lowercase__ = [False] + [False] * len(self.cutoffs ) lowercase__ = d_model lowercase__ = d_embed lowercase__ = d_head lowercase__ = d_inner lowercase__ = div_val lowercase__ = pre_lnorm lowercase__ = n_layer lowercase__ = n_head lowercase__ = mem_len lowercase__ = same_length lowercase__ = attn_type lowercase__ = clamp_len lowercase__ = sample_softmax lowercase__ = adaptive lowercase__ = dropout lowercase__ = dropatt lowercase__ = untie_r lowercase__ = init lowercase__ = init_range lowercase__ = proj_init_std lowercase__ = init_std lowercase__ = layer_norm_epsilon super().__init__(eos_token_id=__lowercase, **__lowercase ) @property def A__ ( self : Optional[Any] ): # Message copied from Transformer-XL documentation logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def A__ ( self : List[str], __lowercase : Union[str, Any] ): # Message copied from Transformer-XL documentation raise NotImplementedError( F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
224
1