code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowerCamelCase : List[str] = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex lowerCamelCase : Any = 1_0 lowerCamelCase : Tuple = 2_5_6 def _lowerCAmelCase ( _UpperCamelCase : List[str] ) -> Optional[MinHash]: """simple docstring""" if len(_UpperCamelCase ) < MIN_NUM_TOKENS: return None _SCREAMING_SNAKE_CASE =MinHash(num_perm=_UpperCamelCase ) for token in set(_UpperCamelCase ): min_hash.update(token.encode() ) return min_hash def _lowerCAmelCase ( _UpperCamelCase : str ) -> Set[str]: """simple docstring""" return {t for t in NON_ALPHA.split(_UpperCamelCase ) if len(t.strip() ) > 0} class A__ : def __init__( self : Dict , *, _a : float = 0.85 , ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =duplication_jaccard_threshold _SCREAMING_SNAKE_CASE =NUM_PERM _SCREAMING_SNAKE_CASE =MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) _SCREAMING_SNAKE_CASE =defaultdict(_a ) def A ( self : Tuple , _a : Tuple , _a : MinHash ) -> None: '''simple docstring''' _SCREAMING_SNAKE_CASE =self._index.query(_a ) if code_key in self._index.keys: print(f"Duplicate key {code_key}" ) return self._index.insert(_a , _a ) if len(_a ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(_a ) break else: self._duplicate_clusters[close_duplicates[0]].add(_a ) def A ( self : int ) -> List[List[Dict]]: '''simple docstring''' _SCREAMING_SNAKE_CASE =[] for base, duplicates in self._duplicate_clusters.items(): _SCREAMING_SNAKE_CASE =[base] + list(_a ) # reformat the cluster to be a list of dict _SCREAMING_SNAKE_CASE =[{'base_index': el[0], 'repo_name': el[1], 'path': el[2]} for el in cluster] duplicate_clusters.append(_a ) return duplicate_clusters def A ( self : Union[str, Any] , _a : Optional[Any] ) -> None: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.get_duplicate_clusters() with open(_a , 'w' ) as f: json.dump(_a , _a ) def _lowerCAmelCase ( _UpperCamelCase : Tuple ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =element _SCREAMING_SNAKE_CASE =get_min_hash([t for t in NON_ALPHA.split(data['content'] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def _lowerCAmelCase ( _UpperCamelCase : Type[Dataset] ) -> List[Any]: """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(_UpperCamelCase , max_queue_size=1_00_00 ) , chunksize=1_00 , ): if data is not None: yield data def _lowerCAmelCase ( _UpperCamelCase : Type[Dataset] , _UpperCamelCase : float ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =DuplicationIndex(duplication_jaccard_threshold=_UpperCamelCase ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_UpperCamelCase ) ) , max_queue_size=1_00 ) ): di.add(_UpperCamelCase , _UpperCamelCase ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def _lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : str ) -> float: """simple docstring""" _SCREAMING_SNAKE_CASE =get_tokens(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =get_tokens(_UpperCamelCase ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) lowerCamelCase : Union[str, Any] = None def _lowerCAmelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Tuple ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =[] for elementa in cluster: _SCREAMING_SNAKE_CASE =_shared_dataset[elementa['base_index']]['content'] for elementa in extremes: _SCREAMING_SNAKE_CASE =_shared_dataset[elementa['base_index']]['content'] if jaccard_similarity(_UpperCamelCase , _UpperCamelCase ) >= jaccard_threshold: elementa["copies"] += 1 break else: _SCREAMING_SNAKE_CASE =1 extremes.append(_UpperCamelCase ) return extremes def _lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : str , _UpperCamelCase : Any ) -> Optional[Any]: """simple docstring""" global _shared_dataset _SCREAMING_SNAKE_CASE =dataset _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =partial(_find_cluster_extremes_shared , jaccard_threshold=_UpperCamelCase ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( _UpperCamelCase , _UpperCamelCase , ) , total=len(_UpperCamelCase ) , ): extremes_list.append(_UpperCamelCase ) return extremes_list def _lowerCAmelCase ( _UpperCamelCase : Type[Dataset] , _UpperCamelCase : float = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: """simple docstring""" _SCREAMING_SNAKE_CASE =make_duplicate_clusters(_UpperCamelCase , _UpperCamelCase ) _SCREAMING_SNAKE_CASE ={x['base_index'] for cluster in duplicate_clusters for x in cluster} _SCREAMING_SNAKE_CASE ={} _SCREAMING_SNAKE_CASE =find_extremes(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) for extremes in extremes_clusters: for element in extremes: _SCREAMING_SNAKE_CASE =element _SCREAMING_SNAKE_CASE =duplicate_indices - set(extreme_dict.keys() ) _SCREAMING_SNAKE_CASE =dataset.filter(lambda _UpperCamelCase , _UpperCamelCase : idx not in remove_indices , with_indices=_UpperCamelCase ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _SCREAMING_SNAKE_CASE =element['base_index'] in extreme_dict if element["is_extreme"]: _SCREAMING_SNAKE_CASE =extreme_dict[element['base_index']]['copies'] print(f"Original dataset size: {len(_UpperCamelCase )}" ) print(f"Number of duplicate clusters: {len(_UpperCamelCase )}" ) print(f"Files in duplicate cluster: {len(_UpperCamelCase )}" ) print(f"Unique files in duplicate cluster: {len(_UpperCamelCase )}" ) print(f"Filtered dataset size: {len(_UpperCamelCase )}" ) return ds_filter, duplicate_clusters
47
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase : List[str] = logging.get_logger(__name__) lowerCamelCase : List[Any] = { "facebook/convnextv2-tiny-1k-224": "https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json", } class A__ ( A__ , A__ ): A__ = 'convnextv2' def __init__( self : Tuple , _a : Optional[int]=3 , _a : Any=4 , _a : int=4 , _a : Union[str, Any]=None , _a : List[str]=None , _a : Optional[Any]="gelu" , _a : Any=0.02 , _a : Any=1e-12 , _a : Tuple=0.0 , _a : int=224 , _a : Any=None , _a : Optional[int]=None , **_a : List[str] , ) -> Optional[Any]: '''simple docstring''' super().__init__(**_a ) _SCREAMING_SNAKE_CASE =num_channels _SCREAMING_SNAKE_CASE =patch_size _SCREAMING_SNAKE_CASE =num_stages _SCREAMING_SNAKE_CASE =[96, 192, 384, 768] if hidden_sizes is None else hidden_sizes _SCREAMING_SNAKE_CASE =[3, 3, 9, 3] if depths is None else depths _SCREAMING_SNAKE_CASE =hidden_act _SCREAMING_SNAKE_CASE =initializer_range _SCREAMING_SNAKE_CASE =layer_norm_eps _SCREAMING_SNAKE_CASE =drop_path_rate _SCREAMING_SNAKE_CASE =image_size _SCREAMING_SNAKE_CASE =['stem'] + [f"stage{idx}" for idx in range(1 , len(self.depths ) + 1 )] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =get_aligned_output_features_output_indices( out_features=_a , out_indices=_a , stage_names=self.stage_names )
47
1
from __future__ import annotations UpperCamelCase : str = tuple[int, int, int] UpperCamelCase : Optional[Any] = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase UpperCamelCase : Optional[Any] = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' # -------------------------- default selection -------------------------- # rotors -------------------------- UpperCamelCase : Optional[Any] = 'EGZWVONAHDCLFQMSIPJBYUKXTR' UpperCamelCase : Tuple = 'FOBHMDKEXQNRAULPGSJVTYICZW' UpperCamelCase : Optional[int] = 'ZJXESIUQLHAVRMDOYGTNFWPBKC' # reflector -------------------------- UpperCamelCase : int = { 'A': 'N', 'N': 'A', 'B': 'O', 'O': 'B', 'C': 'P', 'P': 'C', 'D': 'Q', 'Q': 'D', 'E': 'R', 'R': 'E', 'F': 'S', 'S': 'F', 'G': 'T', 'T': 'G', 'H': 'U', 'U': 'H', 'I': 'V', 'V': 'I', 'J': 'W', 'W': 'J', 'K': 'X', 'X': 'K', 'L': 'Y', 'Y': 'L', 'M': 'Z', 'Z': 'M', } # -------------------------- extra rotors -------------------------- UpperCamelCase : List[str] = 'RMDJXFUWGISLHVTCQNKYPBEZOA' UpperCamelCase : Dict = 'SGLCPQWZHKXAREONTFBVIYJUDM' UpperCamelCase : str = 'HVSICLTYKQUBXDWAJZOMFGPREN' UpperCamelCase : List[Any] = 'RZWQHFMVDBKICJLNTUXAGYPSOE' UpperCamelCase : Union[str, Any] = 'LFKIJODBEGAMQPXVUHYSTCZRWN' UpperCamelCase : List[str] = 'KOAEGVDHXPQZMLFTYWJNBRCIUS' def A ( snake_case :RotorPositionT , snake_case :RotorSelectionT , snake_case :str ) -> List[Any]: if (unique_rotsel := len(set(lowerCAmelCase__ ) )) < 3: __UpperCamelCase = f'Please use 3 unique rotors (not {unique_rotsel})' raise Exception(lowerCAmelCase__ ) # Checks if rotor positions are valid __UpperCamelCase = rotpos if not 0 < rotorposa <= len(lowerCAmelCase__ ): __UpperCamelCase = f'First rotor position is not within range of 1..26 ({rotorposa}' raise ValueError(lowerCAmelCase__ ) if not 0 < rotorposa <= len(lowerCAmelCase__ ): __UpperCamelCase = f'Second rotor position is not within range of 1..26 ({rotorposa})' raise ValueError(lowerCAmelCase__ ) if not 0 < rotorposa <= len(lowerCAmelCase__ ): __UpperCamelCase = f'Third rotor position is not within range of 1..26 ({rotorposa})' raise ValueError(lowerCAmelCase__ ) # Validates string and returns dict __UpperCamelCase = _plugboard(lowerCAmelCase__ ) return rotpos, rotsel, pbdict def A ( snake_case :str ) -> Dict: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __UpperCamelCase = f'Plugboard setting isn\'t type string ({type(lowerCAmelCase__ )})' raise TypeError(lowerCAmelCase__ ) elif len(lowerCAmelCase__ ) % 2 != 0: __UpperCamelCase = f'Odd number of symbols ({len(lowerCAmelCase__ )})' raise Exception(lowerCAmelCase__ ) elif pbstring == "": return {} pbstring.replace(' ' , '' ) # Checks if all characters are unique __UpperCamelCase = set() for i in pbstring: if i not in abc: __UpperCamelCase = f'\'{i}\' not in list of symbols' raise Exception(lowerCAmelCase__ ) elif i in tmppbl: __UpperCamelCase = f'Duplicate symbol ({i})' raise Exception(lowerCAmelCase__ ) else: tmppbl.add(lowerCAmelCase__ ) del tmppbl # Created the dictionary __UpperCamelCase = {} for j in range(0 , len(lowerCAmelCase__ ) - 1 , 2 ): __UpperCamelCase = pbstring[j + 1] __UpperCamelCase = pbstring[j] return pb def A ( snake_case :str , snake_case :RotorPositionT , snake_case :RotorSelectionT = (rotora, rotora, rotora) , snake_case :str = "" , ) -> Union[str, Any]: __UpperCamelCase = text.upper() __UpperCamelCase = _validator( lowerCAmelCase__ , lowerCAmelCase__ , plugb.upper() ) __UpperCamelCase = rotor_position __UpperCamelCase = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 __UpperCamelCase = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: __UpperCamelCase = plugboard[symbol] # rotor ra -------------------------- __UpperCamelCase = abc.index(lowerCAmelCase__ ) + rotorposa __UpperCamelCase = rotora[index % len(lowerCAmelCase__ )] # rotor rb -------------------------- __UpperCamelCase = abc.index(lowerCAmelCase__ ) + rotorposa __UpperCamelCase = rotora[index % len(lowerCAmelCase__ )] # rotor rc -------------------------- __UpperCamelCase = abc.index(lowerCAmelCase__ ) + rotorposa __UpperCamelCase = rotora[index % len(lowerCAmelCase__ )] # reflector -------------------------- # this is the reason you don't need another machine to decipher __UpperCamelCase = reflector[symbol] # 2nd rotors __UpperCamelCase = abc[rotora.index(lowerCAmelCase__ ) - rotorposa] __UpperCamelCase = abc[rotora.index(lowerCAmelCase__ ) - rotorposa] __UpperCamelCase = abc[rotora.index(lowerCAmelCase__ ) - rotorposa] # 2nd plugboard if symbol in plugboard: __UpperCamelCase = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(lowerCAmelCase__ ): __UpperCamelCase = 0 rotorposa += 1 if rotorposa >= len(lowerCAmelCase__ ): __UpperCamelCase = 0 rotorposa += 1 if rotorposa >= len(lowerCAmelCase__ ): __UpperCamelCase = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(lowerCAmelCase__ ) return "".join(lowerCAmelCase__ ) if __name__ == "__main__": UpperCamelCase : Tuple = 'This is my Python script that emulates the Enigma machine from WWII.' UpperCamelCase : str = (1, 1, 1) UpperCamelCase : Dict = 'pictures' UpperCamelCase : List[str] = (rotora, rotora, rotora) UpperCamelCase : str = enigma(message, rotor_pos, rotor_sel, pb) print("Encrypted message:", en) print("Decrypted message:", enigma(en, rotor_pos, rotor_sel, pb))
366
"""simple docstring""" import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer UpperCamelCase : List[Any] = logging.get_logger(__name__) UpperCamelCase : List[str] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase : List[Any] = { "vocab_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json", }, "merges_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt", }, "tokenizer_file": { "Salesforce/codegen-350M-mono": ( "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json" ), }, } UpperCamelCase : List[Any] = { "Salesforce/codegen-350M-mono": 2_0_4_8, } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ["input_ids", "attention_mask"] lowercase = CodeGenTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase=False , **__UpperCAmelCase , ): '''simple docstring''' super().__init__( __UpperCAmelCase , __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , unk_token=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , **__UpperCAmelCase , ) if kwargs.pop('add_bos_token' , __UpperCAmelCase ): __UpperCamelCase = kwargs.pop('name_or_path' , '' ) raise ValueError( 'Currenty GPT2\'s fast tokenizer does NOT support adding a BOS token.' 'Instead you should use GPT2\'s slow tokenizer class `CodeGenTokenizer` as follows: \n' F'`CodeGenTokenizer.from_pretrained(\'{model_id}\')`\nor\n' F'`AutoTokenizer.from_pretrained(\'{model_id}\', use_fast=False)`\n' 'This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.' ' so that the fast tokenizer works correctly.' ) __UpperCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , __UpperCAmelCase ) != add_prefix_space: __UpperCamelCase = getattr(__UpperCAmelCase , pre_tok_state.pop('type' ) ) __UpperCamelCase = add_prefix_space __UpperCamelCase = pre_tok_class(**__UpperCAmelCase ) __UpperCamelCase = add_prefix_space def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = kwargs.get('is_split_into_words' , __UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = kwargs.get('is_split_into_words' , __UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' __UpperCamelCase = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = super().decode( token_ids=__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase , **__UpperCAmelCase , ) if truncate_before_pattern is not None and len(__UpperCAmelCase ) > 0: __UpperCamelCase = self.truncate(__UpperCAmelCase , __UpperCAmelCase ) return decoded_text def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' def find_re(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __UpperCamelCase = pattern.search(__UpperCAmelCase , __UpperCAmelCase ) return m.start() if m else -1 __UpperCamelCase = [re.compile(__UpperCAmelCase , re.MULTILINE ) for pattern in truncate_before_pattern] __UpperCamelCase = list(re.finditer('^print' , __UpperCAmelCase , re.MULTILINE ) ) if len(__UpperCAmelCase ) > 1: __UpperCamelCase = completion[: prints[1].start()] __UpperCamelCase = list(re.finditer('^def' , __UpperCAmelCase , re.MULTILINE ) ) if len(__UpperCAmelCase ) > 1: __UpperCamelCase = completion[: defs[1].start()] __UpperCamelCase = 0 __UpperCamelCase = [ pos for pos in [find_re(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) for terminal in terminals] if pos != -1 ] if len(__UpperCAmelCase ) > 0: return completion[: min(__UpperCAmelCase )] else: return completion
263
0
def lowerCAmelCase__(__snake_case ) -> str: '''simple docstring''' if not numbers: return 0 if not isinstance(lowercase__ ,(list, tuple) ) or not all( isinstance(lowercase__ ,lowercase__ ) for number in numbers ): raise ValueError('''numbers must be an iterable of integers''' ) lowerCamelCase__ = lowerCamelCase__ = lowerCamelCase__ = numbers[0] for i in range(1 ,len(lowercase__ ) ): # update the maximum and minimum subarray products lowerCamelCase__ = numbers[i] if number < 0: lowerCamelCase__ , lowerCamelCase__ = min_till_now, max_till_now lowerCamelCase__ = max(lowercase__ ,max_till_now * number ) lowerCamelCase__ = min(lowercase__ ,min_till_now * number ) # update the maximum product found till now lowerCamelCase__ = max(lowercase__ ,lowercase__ ) return max_prod
209
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __A = { "configuration_blip": [ "BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlipConfig", "BlipTextConfig", "BlipVisionConfig", ], "processing_blip": ["BlipProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["BlipImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "BlipModel", "BlipPreTrainedModel", "BlipForConditionalGeneration", "BlipForQuestionAnswering", "BlipVisionModel", "BlipTextModel", "BlipForImageTextRetrieval", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFBlipModel", "TFBlipPreTrainedModel", "TFBlipForConditionalGeneration", "TFBlipForQuestionAnswering", "TFBlipVisionModel", "TFBlipTextModel", "TFBlipForImageTextRetrieval", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
164
0
"""simple docstring""" def SCREAMING_SNAKE_CASE_ ( snake_case : str )-> str: _lowerCamelCase = '' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def SCREAMING_SNAKE_CASE_ ( snake_case : str )-> dict[str, str]: _lowerCamelCase = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key _lowerCamelCase = remove_duplicates(key.upper() ) _lowerCamelCase = len(snake_case ) # First fill cipher with key characters _lowerCamelCase = {alphabet[i]: char for i, char in enumerate(snake_case )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(snake_case ) , 26 ): _lowerCamelCase = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 _lowerCamelCase = alphabet[i - offset] _lowerCamelCase = char return cipher_alphabet def SCREAMING_SNAKE_CASE_ ( snake_case : str , snake_case : dict[str, str] )-> str: return "".join(cipher_map.get(snake_case , snake_case ) for ch in message.upper() ) def SCREAMING_SNAKE_CASE_ ( snake_case : str , snake_case : dict[str, str] )-> str: _lowerCamelCase = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(snake_case , snake_case ) for ch in message.upper() ) def SCREAMING_SNAKE_CASE_ ( )-> None: _lowerCamelCase = input('Enter message to encode or decode: ' ).strip() _lowerCamelCase = input('Enter keyword: ' ).strip() _lowerCamelCase = input('Encipher or decipher? E/D:' ).strip()[0].lower() try: _lowerCamelCase = {'e': encipher, 'd': decipher}[option] except KeyError: raise KeyError('invalid input option' ) _lowerCamelCase = create_cipher_map(snake_case ) print(func(snake_case , snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
80
"""simple docstring""" def SCREAMING_SNAKE_CASE_ ( snake_case : int )-> list[int]: if num <= 0: raise ValueError('Input must be a positive integer' ) _lowerCamelCase = [True] * (num + 1) _lowerCamelCase = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , snake_case ): _lowerCamelCase = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() A_ : Optional[int] =int(input("""Enter a positive integer: """).strip()) print(prime_sieve_eratosthenes(user_num))
80
1
from sklearn.metrics import matthews_corrcoef import datasets lowerCAmelCase__ : Optional[int] =''' Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] ''' lowerCAmelCase__ : Dict =''' Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results[\'matthews_correlation\'], 2)) -0.25 ''' lowerCAmelCase__ : Optional[Any] ='''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): '''simple docstring''' def _A ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) , reference_urls=[ 'https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html' ] , ) def _A ( self , _A , _A , _A=None ): '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(_A , _A , sample_weight=_A ) ), }
257
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase__ : Optional[Any] ={ '''configuration_mobilenet_v2''': [ '''MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileNetV2Config''', '''MobileNetV2OnnxConfig''', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Dict =['''MobileNetV2FeatureExtractor'''] lowerCAmelCase__ : str =['''MobileNetV2ImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Union[str, Any] =[ '''MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileNetV2ForImageClassification''', '''MobileNetV2ForSemanticSegmentation''', '''MobileNetV2Model''', '''MobileNetV2PreTrainedModel''', '''load_tf_weights_in_mobilenet_v2''', ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys lowerCAmelCase__ : Union[str, Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
257
1
'''simple docstring''' # Imports import numpy as np class _UpperCamelCase : '''simple docstring''' def __init__( self : List[Any] , _lowerCAmelCase : int=None , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : str=None , _lowerCAmelCase : Dict=None): '''simple docstring''' self.set_matricies(red=_lowerCAmelCase , green=_lowerCAmelCase , blue=_lowerCAmelCase , red_edge=_lowerCAmelCase , nir=_lowerCAmelCase) def __lowerCamelCase ( self : int , _lowerCAmelCase : Optional[int]=None , _lowerCAmelCase : Any=None , _lowerCAmelCase : Optional[int]=None , _lowerCAmelCase : int=None , _lowerCAmelCase : Optional[int]=None): '''simple docstring''' if red is not None: __lowercase =red if green is not None: __lowercase =green if blue is not None: __lowercase =blue if red_edge is not None: __lowercase =red_edge if nir is not None: __lowercase =nir return True def __lowerCamelCase ( self : List[Any] , _lowerCAmelCase : List[Any]="" , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : str=None , _lowerCAmelCase : str=None): '''simple docstring''' self.set_matricies(red=_lowerCAmelCase , green=_lowerCAmelCase , blue=_lowerCAmelCase , red_edge=_lowerCAmelCase , nir=_lowerCAmelCase) __lowercase ={ 'ARVI2': self.arvaa, 'CCCI': self.ccci, 'CVI': self.cvi, 'GLI': self.gli, 'NDVI': self.ndvi, 'BNDVI': self.bndvi, 'redEdgeNDVI': self.red_edge_ndvi, 'GNDVI': self.gndvi, 'GBNDVI': self.gbndvi, 'GRNDVI': self.grndvi, 'RBNDVI': self.rbndvi, 'PNDVI': self.pndvi, 'ATSAVI': self.atsavi, 'BWDRVI': self.bwdrvi, 'CIgreen': self.ci_green, 'CIrededge': self.ci_rededge, 'CI': self.ci, 'CTVI': self.ctvi, 'GDVI': self.gdvi, 'EVI': self.evi, 'GEMI': self.gemi, 'GOSAVI': self.gosavi, 'GSAVI': self.gsavi, 'Hue': self.hue, 'IVI': self.ivi, 'IPVI': self.ipvi, 'I': self.i, 'RVI': self.rvi, 'MRVI': self.mrvi, 'MSAVI': self.m_savi, 'NormG': self.norm_g, 'NormNIR': self.norm_nir, 'NormR': self.norm_r, 'NGRDI': self.ngrdi, 'RI': self.ri, 'S': self.s, 'IF': self._if, 'DVI': self.dvi, 'TVI': self.tvi, 'NDRE': self.ndre, } try: return funcs[index]() except KeyError: print('Index not in the list!') return False def __lowerCamelCase ( self : str): '''simple docstring''' return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def __lowerCamelCase ( self : Any): '''simple docstring''' return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def __lowerCamelCase ( self : Dict): '''simple docstring''' return self.nir * (self.red / (self.green**2)) def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def __lowerCamelCase ( self : str): '''simple docstring''' return (self.nir - self.red) / (self.nir + self.red) def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' return (self.nir - self.blue) / (self.nir + self.blue) def __lowerCamelCase ( self : Tuple): '''simple docstring''' return (self.redEdge - self.red) / (self.redEdge + self.red) def __lowerCamelCase ( self : str): '''simple docstring''' return (self.nir - self.green) / (self.nir + self.green) def __lowerCamelCase ( self : Tuple): '''simple docstring''' return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def __lowerCamelCase ( self : List[Any]): '''simple docstring''' return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def __lowerCamelCase ( self : Dict , _lowerCAmelCase : Optional[int]=0.08 , _lowerCAmelCase : Optional[Any]=1.22 , _lowerCAmelCase : Optional[int]=0.03): '''simple docstring''' return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def __lowerCamelCase ( self : Dict): '''simple docstring''' return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def __lowerCamelCase ( self : Any): '''simple docstring''' return (self.nir / self.green) - 1 def __lowerCamelCase ( self : Any): '''simple docstring''' return (self.nir / self.redEdge) - 1 def __lowerCamelCase ( self : Dict): '''simple docstring''' return (self.red - self.blue) / self.red def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' __lowercase =self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5))) * (abs(ndvi + 0.5) ** (1 / 2)) def __lowerCamelCase ( self : str): '''simple docstring''' return self.nir - self.green def __lowerCamelCase ( self : Any): '''simple docstring''' return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def __lowerCamelCase ( self : Dict): '''simple docstring''' __lowercase =(2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red) def __lowerCamelCase ( self : List[str] , _lowerCAmelCase : List[Any]=0.16): '''simple docstring''' return (self.nir - self.green) / (self.nir + self.green + y) def __lowerCamelCase ( self : Union[str, Any] , _lowerCAmelCase : Union[str, Any]=0.5): '''simple docstring''' return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue)) def __lowerCamelCase ( self : int , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : Optional[int]=None): '''simple docstring''' return (self.nir - b) / (a * self.red) def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' return (self.red + self.green + self.blue) / 30.5 def __lowerCamelCase ( self : Any): '''simple docstring''' return self.nir / self.red def __lowerCamelCase ( self : List[str]): '''simple docstring''' return (self.rvi() - 1) / (self.rvi() + 1) def __lowerCamelCase ( self : Dict): '''simple docstring''' return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def __lowerCamelCase ( self : List[str]): '''simple docstring''' return self.green / (self.nir + self.red + self.green) def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' return self.nir / (self.nir + self.red + self.green) def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' return self.red / (self.nir + self.red + self.green) def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' return (self.green - self.red) / (self.green + self.red) def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' return (self.red - self.green) / (self.red + self.green) def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __lowercase =np.max([np.max(self.red), np.max(self.green), np.max(self.blue)]) __lowercase =np.min([np.min(self.red), np.min(self.green), np.min(self.blue)]) return (max_value - min_value) / max_value def __lowerCamelCase ( self : List[Any]): '''simple docstring''' return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def __lowerCamelCase ( self : List[str]): '''simple docstring''' return self.nir / self.red def __lowerCamelCase ( self : List[Any]): '''simple docstring''' return (self.ndvi() + 0.5) ** (1 / 2) def __lowerCamelCase ( self : Tuple): '''simple docstring''' return (self.nir - self.redEdge) / (self.nir + self.redEdge)
48
'''simple docstring''' import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/config.json""", # See all BART models at https://huggingface.co/models?filter=bart } class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = """bart""" lowerCAmelCase__ = ["""past_key_values"""] lowerCAmelCase__ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : List[str] , _lowerCAmelCase : Any=5_0_2_6_5 , _lowerCAmelCase : Optional[Any]=1_0_2_4 , _lowerCAmelCase : List[Any]=1_2 , _lowerCAmelCase : Any=4_0_9_6 , _lowerCAmelCase : List[str]=1_6 , _lowerCAmelCase : List[Any]=1_2 , _lowerCAmelCase : Dict=4_0_9_6 , _lowerCAmelCase : Optional[Any]=1_6 , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : Optional[Any]=0.0 , _lowerCAmelCase : str="gelu" , _lowerCAmelCase : str=1_0_2_4 , _lowerCAmelCase : int=0.1 , _lowerCAmelCase : Union[str, Any]=0.0 , _lowerCAmelCase : List[str]=0.0 , _lowerCAmelCase : Optional[int]=0.02 , _lowerCAmelCase : Optional[int]=0.0 , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Union[str, Any]=3 , _lowerCAmelCase : Tuple=1 , _lowerCAmelCase : Dict=0 , _lowerCAmelCase : int=2 , _lowerCAmelCase : Any=True , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : str=2 , **_lowerCAmelCase : Optional[int] , ): '''simple docstring''' __lowercase =vocab_size __lowercase =max_position_embeddings __lowercase =d_model __lowercase =encoder_ffn_dim __lowercase =encoder_layers __lowercase =encoder_attention_heads __lowercase =decoder_ffn_dim __lowercase =decoder_layers __lowercase =decoder_attention_heads __lowercase =dropout __lowercase =attention_dropout __lowercase =activation_dropout __lowercase =activation_function __lowercase =init_std __lowercase =encoder_layerdrop __lowercase =decoder_layerdrop __lowercase =classifier_dropout __lowercase =use_cache __lowercase =encoder_layers __lowercase =scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=_lowerCAmelCase , pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , forced_eos_token_id=_lowerCAmelCase , **_lowerCAmelCase , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , _lowerCAmelCase): __lowercase =self.bos_token_id warnings.warn( f"""Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. """ 'The config can simply be saved and uploaded again to be fixed.') class _UpperCamelCase ( A ): '''simple docstring''' @property def __lowerCamelCase ( self : List[Any]): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __lowercase =OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ]) if self.use_past: __lowercase ={0: 'batch'} __lowercase ={0: 'batch', 1: 'past_decoder_sequence + sequence'} else: __lowercase ={0: 'batch', 1: 'decoder_sequence'} __lowercase ={0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase , direction='inputs') elif self.task == "causal-lm": # TODO: figure this case out. __lowercase =OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ]) if self.use_past: __lowercase , __lowercase =self.num_layers for i in range(_lowerCAmelCase): __lowercase ={0: 'batch', 2: 'past_sequence + sequence'} __lowercase ={0: 'batch', 2: 'past_sequence + sequence'} else: __lowercase =OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ]) return common_inputs @property def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __lowercase =super().outputs else: __lowercase =super(_lowerCAmelCase , self).outputs if self.use_past: __lowercase , __lowercase =self.num_layers for i in range(_lowerCAmelCase): __lowercase ={0: 'batch', 2: 'past_sequence + sequence'} __lowercase ={0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def __lowerCamelCase ( self : Tuple , _lowerCAmelCase : PreTrainedTokenizer , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ): '''simple docstring''' __lowercase =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) # Generate decoder inputs __lowercase =seq_length if not self.use_past else 1 __lowercase =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) __lowercase ={f"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} __lowercase =dict(**_lowerCAmelCase , **_lowerCAmelCase) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.') else: import torch __lowercase , __lowercase =common_inputs['input_ids'].shape __lowercase =common_inputs['decoder_input_ids'].shape[1] __lowercase , __lowercase =self.num_attention_heads __lowercase =( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase =decoder_seq_length + 3 __lowercase =( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __lowercase =torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(_lowerCAmelCase , _lowerCAmelCase)] , dim=1) __lowercase =[] # If the number of encoder and decoder layers are present in the model configuration, both are considered __lowercase , __lowercase =self.num_layers __lowercase =min(_lowerCAmelCase , _lowerCAmelCase) __lowercase =max(_lowerCAmelCase , _lowerCAmelCase) - min_num_layers __lowercase ='encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(_lowerCAmelCase): common_inputs["past_key_values"].append( ( torch.zeros(_lowerCAmelCase), torch.zeros(_lowerCAmelCase), torch.zeros(_lowerCAmelCase), torch.zeros(_lowerCAmelCase), )) # TODO: test this. __lowercase =encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(_lowerCAmelCase , _lowerCAmelCase): common_inputs["past_key_values"].append((torch.zeros(_lowerCAmelCase), torch.zeros(_lowerCAmelCase))) return common_inputs def __lowerCamelCase ( self : List[str] , _lowerCAmelCase : PreTrainedTokenizer , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ): '''simple docstring''' __lowercase =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.') else: import torch __lowercase , __lowercase =common_inputs['input_ids'].shape # Not using the same length for past_key_values __lowercase =seqlen + 2 __lowercase , __lowercase =self.num_layers __lowercase , __lowercase =self.num_attention_heads __lowercase =( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase =common_inputs['attention_mask'].dtype __lowercase =torch.cat( [common_inputs['attention_mask'], torch.ones(_lowerCAmelCase , _lowerCAmelCase , dtype=_lowerCAmelCase)] , dim=1) __lowercase =[ (torch.zeros(_lowerCAmelCase), torch.zeros(_lowerCAmelCase)) for _ in range(_lowerCAmelCase) ] return common_inputs def __lowerCamelCase ( self : Optional[int] , _lowerCAmelCase : PreTrainedTokenizer , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ): '''simple docstring''' __lowercase =compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase =tokenizer.num_special_tokens_to_add(_lowerCAmelCase) __lowercase =compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowerCAmelCase) # Generate dummy inputs according to compute batch and sequence __lowercase =[' '.join([tokenizer.unk_token]) * seq_length] * batch_size __lowercase =dict(tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase)) return common_inputs def __lowerCamelCase ( self : Optional[Any] , _lowerCAmelCase : PreTrainedTokenizer , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __lowercase =self._generate_dummy_inputs_for_default_and_seqaseq_lm( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase) elif self.task == "causal-lm": __lowercase =self._generate_dummy_inputs_for_causal_lm( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase) else: __lowercase =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase) return common_inputs def __lowerCamelCase ( self : List[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any]): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __lowercase =super()._flatten_past_key_values_(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) else: __lowercase =super(_lowerCAmelCase , self)._flatten_past_key_values_( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase)
48
1
from decimal import Decimal, getcontext from math import ceil, factorial def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> str: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError('Undefined for non-integers' ) elif precision < 1: raise ValueError('Undefined for non-natural numbers' ) lowerCamelCase__ : Tuple = precision lowerCamelCase__ : Optional[int] = ceil(precision / 14 ) lowerCamelCase__ : Optional[Any] = 42_6880 * Decimal(1_0005 ).sqrt() lowerCamelCase__ : int = 1 lowerCamelCase__ : List[str] = 1359_1409 lowerCamelCase__ : Union[str, Any] = Decimal(_UpperCAmelCase ) for k in range(1 , _UpperCAmelCase ): lowerCamelCase__ : int = factorial(6 * k ) // (factorial(3 * k ) * factorial(_UpperCAmelCase ) ** 3) linear_term += 5_4514_0134 exponential_term *= -26_2537_4126_4076_8000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": _UpperCAmelCase : List[str] = 50 print(F"""The first {n} digits of pi is: {pi(n)}""")
50
from itertools import count def SCREAMING_SNAKE_CASE ( _UpperCAmelCase = 50 ) -> int: lowerCamelCase__ : Optional[Any] = [1] * min_block_length for n in count(_UpperCAmelCase ): fill_count_functions.append(1 ) for block_length in range(_UpperCAmelCase , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 100_0000: break return n if __name__ == "__main__": print(F"""{solution() = }""")
50
1
import math import random from typing import Any from .hill_climbing import SearchProblem def _lowerCAmelCase ( UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple = True , UpperCAmelCase : Optional[Any] = math.inf , UpperCAmelCase : Optional[int] = -math.inf , UpperCAmelCase : Optional[int] = math.inf , UpperCAmelCase : Optional[int] = -math.inf , UpperCAmelCase : Tuple = False , UpperCAmelCase : Dict = 100 , UpperCAmelCase : int = 0.01 , UpperCAmelCase : Dict = 1 , ): '''simple docstring''' UpperCamelCase__ : Optional[int] =False UpperCamelCase__ : List[Any] =search_prob UpperCamelCase__ : str =start_temperate UpperCamelCase__ : Dict =[] UpperCamelCase__ : str =0 UpperCamelCase__ : str =None while not search_end: UpperCamelCase__ : List[Any] =current_state.score() if best_state is None or current_score > best_state.score(): UpperCamelCase__ : Union[str, Any] =current_state scores.append(__snake_case ) iterations += 1 UpperCamelCase__ : str =None UpperCamelCase__ : Union[str, Any] =current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to UpperCamelCase__ : Any =random.randint(0 , len(__snake_case ) - 1 ) # picking a random neighbor UpperCamelCase__ : Union[str, Any] =neighbors.pop(__snake_case ) UpperCamelCase__ : Optional[int] =picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: UpperCamelCase__ : Dict =change * -1 # in case we are finding minimum if change > 0: # improves the solution UpperCamelCase__ : Any =picked_neighbor else: UpperCamelCase__ : Tuple =(math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability UpperCamelCase__ : Optional[int] =picked_neighbor UpperCamelCase__ : Tuple =current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor UpperCamelCase__ : Union[str, Any] =True else: UpperCamelCase__ : Any =next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(__snake_case ) , __snake_case ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def _lowerCAmelCase ( UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict ): '''simple docstring''' return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) _SCREAMING_SNAKE_CASE : int = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) _SCREAMING_SNAKE_CASE : Tuple = simulated_annealing( prob, find_max=False, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) _SCREAMING_SNAKE_CASE : Optional[int] = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) _SCREAMING_SNAKE_CASE : Tuple = simulated_annealing( prob, find_max=True, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def _lowerCAmelCase ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int ): '''simple docstring''' return (3 * x**2) - (6 * y) _SCREAMING_SNAKE_CASE : int = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _SCREAMING_SNAKE_CASE : Tuple = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' ) _SCREAMING_SNAKE_CASE : str = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _SCREAMING_SNAKE_CASE : Optional[int] = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' )
364
"""simple docstring""" import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort _SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : List[Any] = { """tensor(bool)""": np.bool_, """tensor(int8)""": np.inta, """tensor(uint8)""": np.uinta, """tensor(int16)""": np.intaa, """tensor(uint16)""": np.uintaa, """tensor(int32)""": np.intaa, """tensor(uint32)""": np.uintaa, """tensor(int64)""": np.intaa, """tensor(uint64)""": np.uintaa, """tensor(float16)""": np.floataa, """tensor(float)""": np.floataa, """tensor(double)""": np.floataa, } class __a : """simple docstring""" def __init__( self : Optional[Any] , lowercase_ : Tuple=None , **lowercase_ : int ): logger.info('''`diffusers.OnnxRuntimeModel` is experimental and might change in the future.''' ) UpperCamelCase__ : Optional[Any] =model UpperCamelCase__ : str =kwargs.get('''model_save_dir''' , lowercase_ ) UpperCamelCase__ : int =kwargs.get('''latest_model_name''' , lowercase_ ) def __call__( self : Any , **lowercase_ : Any ): UpperCamelCase__ : str ={k: np.array(lowercase_ ) for k, v in kwargs.items()} return self.model.run(lowercase_ , lowercase_ ) @staticmethod def _lowerCAmelCase ( lowercase_ : Union[str, Path] , lowercase_ : Dict=None , lowercase_ : Optional[Any]=None ): if provider is None: logger.info('''No onnxruntime provider specified, using CPUExecutionProvider''' ) UpperCamelCase__ : List[str] ='''CPUExecutionProvider''' return ort.InferenceSession(lowercase_ , providers=[provider] , sess_options=lowercase_ ) def _lowerCAmelCase ( self : Union[str, Any] , lowercase_ : Union[str, Path] , lowercase_ : Optional[str] = None , **lowercase_ : Union[str, Any] ): UpperCamelCase__ : Union[str, Any] =file_name if file_name is not None else ONNX_WEIGHTS_NAME UpperCamelCase__ : Tuple =self.model_save_dir.joinpath(self.latest_model_name ) UpperCamelCase__ : str =Path(lowercase_ ).joinpath(lowercase_ ) try: shutil.copyfile(lowercase_ , lowercase_ ) except shutil.SameFileError: pass # copy external weights (for models >2GB) UpperCamelCase__ : List[str] =self.model_save_dir.joinpath(lowercase_ ) if src_path.exists(): UpperCamelCase__ : List[str] =Path(lowercase_ ).joinpath(lowercase_ ) try: shutil.copyfile(lowercase_ , lowercase_ ) except shutil.SameFileError: pass def _lowerCAmelCase ( self : Tuple , lowercase_ : Union[str, os.PathLike] , **lowercase_ : int , ): if os.path.isfile(lowercase_ ): logger.error(f'''Provided path ({save_directory}) should be a directory, not a file''' ) return os.makedirs(lowercase_ , exist_ok=lowercase_ ) # saving model weights/files self._save_pretrained(lowercase_ , **lowercase_ ) @classmethod def _lowerCAmelCase ( cls : List[str] , lowercase_ : Union[str, Path] , lowercase_ : Optional[Union[bool, str, None]] = None , lowercase_ : Optional[Union[str, None]] = None , lowercase_ : bool = False , lowercase_ : Optional[str] = None , lowercase_ : Optional[str] = None , lowercase_ : Optional[str] = None , lowercase_ : Optional["ort.SessionOptions"] = None , **lowercase_ : List[Any] , ): UpperCamelCase__ : Union[str, Any] =file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(lowercase_ ): UpperCamelCase__ : Any =OnnxRuntimeModel.load_model( os.path.join(lowercase_ , lowercase_ ) , provider=lowercase_ , sess_options=lowercase_ ) UpperCamelCase__ : List[str] =Path(lowercase_ ) # load model from hub else: # download model UpperCamelCase__ : Tuple =hf_hub_download( repo_id=lowercase_ , filename=lowercase_ , use_auth_token=lowercase_ , revision=lowercase_ , cache_dir=lowercase_ , force_download=lowercase_ , ) UpperCamelCase__ : Any =Path(lowercase_ ).parent UpperCamelCase__ : List[Any] =Path(lowercase_ ).name UpperCamelCase__ : Optional[int] =OnnxRuntimeModel.load_model(lowercase_ , provider=lowercase_ , sess_options=lowercase_ ) return cls(model=lowercase_ , **lowercase_ ) @classmethod def _lowerCAmelCase ( cls : Dict , lowercase_ : Union[str, Path] , lowercase_ : bool = True , lowercase_ : Optional[str] = None , lowercase_ : Optional[str] = None , **lowercase_ : List[Any] , ): UpperCamelCase__ : Dict =None if len(str(lowercase_ ).split('''@''' ) ) == 2: UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] =model_id.split('''@''' ) return cls._from_pretrained( model_id=lowercase_ , revision=lowercase_ , cache_dir=lowercase_ , force_download=lowercase_ , use_auth_token=lowercase_ , **lowercase_ , )
157
0
from collections.abc import Callable import numpy as np def UpperCamelCase( __UpperCamelCase : Callable ,__UpperCamelCase : float ,__UpperCamelCase : float ,__UpperCamelCase : float ,__UpperCamelCase : float ): lowerCAmelCase_ : Optional[int] = int(np.ceil((x_end - xa) / step_size ) ) lowerCAmelCase_ : Optional[Any] = np.zeros((n + 1,) ) lowerCAmelCase_ : Tuple = ya lowerCAmelCase_ : Dict = xa for k in range(__UpperCamelCase ): lowerCAmelCase_ : str = y[k] + step_size * ode_func(__UpperCamelCase ,y[k] ) lowerCAmelCase_ : List[Any] = y[k] + ( (step_size / 2) * (ode_func(__UpperCamelCase ,y[k] ) + ode_func(x + step_size ,__UpperCamelCase )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
103
def a__ ( snake_case = 1_000_000 ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = 1 __SCREAMING_SNAKE_CASE : Optional[Any] = 1 __SCREAMING_SNAKE_CASE : Optional[int] = {1: 1} for inputa in range(2 , snake_case ): __SCREAMING_SNAKE_CASE : Tuple = 0 __SCREAMING_SNAKE_CASE : Optional[Any] = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: __SCREAMING_SNAKE_CASE : List[Any] = (3 * number) + 1 counter += 1 if inputa not in counters: __SCREAMING_SNAKE_CASE : str = counter if counter > pre_counter: __SCREAMING_SNAKE_CASE : Optional[int] = inputa __SCREAMING_SNAKE_CASE : str = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
303
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { """facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""", # See all LeViT models at https://huggingface.co/models?filter=levit } class lowerCAmelCase ( lowercase_ ): __lowerCamelCase = 'levit' def __init__( self :Any , _lowercase :int=2_24 , _lowercase :str=3 , _lowercase :List[str]=3 , _lowercase :Tuple=2 , _lowercase :Optional[int]=1 , _lowercase :Any=16 , _lowercase :Optional[int]=[1_28, 2_56, 3_84] , _lowercase :Dict=[4, 8, 12] , _lowercase :Optional[Any]=[4, 4, 4] , _lowercase :Optional[int]=[16, 16, 16] , _lowercase :List[Any]=0 , _lowercase :int=[2, 2, 2] , _lowercase :Any=[2, 2, 2] , _lowercase :Any=0.02 , **_lowercase :List[Any] , ): '''simple docstring''' super().__init__(**_lowercase ) lowercase__ = image_size lowercase__ = num_channels lowercase__ = kernel_size lowercase__ = stride lowercase__ = padding lowercase__ = hidden_sizes lowercase__ = num_attention_heads lowercase__ = depths lowercase__ = key_dim lowercase__ = drop_path_rate lowercase__ = patch_size lowercase__ = attention_ratio lowercase__ = mlp_ratio lowercase__ = initializer_range lowercase__ = [ ["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class lowerCAmelCase ( lowercase_ ): __lowerCamelCase = version.parse('1.11' ) @property def UpperCAmelCase ( self :List[str] ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' return 1e-4
201
from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class lowerCAmelCase ( yaml.SafeLoader ): def UpperCAmelCase ( self :Optional[Any] , _lowercase :Any ): '''simple docstring''' lowercase__ = [self.constructed_objects[key_node] for key_node, _ in node.value] lowercase__ = [tuple(_lowercase ) if isinstance(_lowercase , _lowercase ) else key for key in keys] lowercase__ = Counter(_lowercase ) lowercase__ = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(f'''Got duplicate yaml keys: {duplicate_keys}''' ) def UpperCAmelCase ( self :Any , _lowercase :str , _lowercase :Dict=False ): '''simple docstring''' lowercase__ = super().construct_mapping(_lowercase , deep=_lowercase ) self._check_no_duplicates_on_constructed_node(_lowercase ) return mapping def _A ( __magic_name__ ): lowercase__ = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: lowercase__ = full_content[1:].index("---" ) + 1 lowercase__ = "\n".join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(__magic_name__ ) class lowerCAmelCase ( lowercase_ ): # class attributes __lowerCamelCase = {'train_eval_index'} # train-eval-index in the YAML metadata @classmethod def UpperCAmelCase ( cls :Dict , _lowercase :Path ): '''simple docstring''' with open(_lowercase , encoding="utf-8" ) as readme_file: lowercase__ , lowercase__ = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(_lowercase ) else: return cls() def UpperCAmelCase ( self :Any , _lowercase :Path ): '''simple docstring''' if path.exists(): with open(_lowercase , encoding="utf-8" ) as readme_file: lowercase__ = readme_file.read() else: lowercase__ = None lowercase__ = self._to_readme(_lowercase ) with open(_lowercase , "w" , encoding="utf-8" ) as readme_file: readme_file.write(_lowercase ) def UpperCAmelCase ( self :List[str] , _lowercase :Optional[str] = None ): '''simple docstring''' if readme_content is not None: lowercase__ , lowercase__ = _split_yaml_from_readme(_lowercase ) lowercase__ = "---\n" + self.to_yaml_string() + "---\n" + content else: lowercase__ = "---\n" + self.to_yaml_string() + "---\n" return full_content @classmethod def UpperCAmelCase ( cls :Any , _lowercase :str ): '''simple docstring''' lowercase__ = yaml.load(_lowercase , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields lowercase__ = { (key.replace("-" , "_" ) if key.replace("-" , "_" ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**_lowercase ) def UpperCAmelCase ( self :Union[str, Any] ): '''simple docstring''' return yaml.safe_dump( { (key.replace("_" , "-" ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=_lowercase , allow_unicode=_lowercase , encoding="utf-8" , ).decode("utf-8" ) _snake_case = { """image-classification""": [], """translation""": [], """image-segmentation""": [], """fill-mask""": [], """automatic-speech-recognition""": [], """token-classification""": [], """sentence-similarity""": [], """audio-classification""": [], """question-answering""": [], """summarization""": [], """zero-shot-classification""": [], """table-to-text""": [], """feature-extraction""": [], """other""": [], """multiple-choice""": [], """text-classification""": [], """text-to-image""": [], """text2text-generation""": [], """zero-shot-image-classification""": [], """tabular-classification""": [], """tabular-regression""": [], """image-to-image""": [], """tabular-to-text""": [], """unconditional-image-generation""": [], """text-retrieval""": [], """text-to-speech""": [], """object-detection""": [], """audio-to-audio""": [], """text-generation""": [], """conversational""": [], """table-question-answering""": [], """visual-question-answering""": [], """image-to-text""": [], """reinforcement-learning""": [], """voice-activity-detection""": [], """time-series-forecasting""": [], """document-question-answering""": [], } if __name__ == "__main__": from argparse import ArgumentParser _snake_case = ArgumentParser(usage="""Validate the yaml metadata block of a README.md file.""") ap.add_argument("""readme_filepath""") _snake_case = ap.parse_args() _snake_case = Path(args.readme_filepath) _snake_case = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
201
1
'''simple docstring''' def __lowercase ( __lowercase ) -> list[int]: '''simple docstring''' if length <= 0 or not isinstance(__lowercase , __lowercase ): raise ValueError("Length must be a positive integer." ) return [n * (2 * n - 1) for n in range(__lowercase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
79
import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor snake_case : List[Any] = logging.getLogger(__name__) snake_case : Optional[int] = 50 # max width of layer names snake_case : Any = 70 # max width of quantizer names def __lowercase ( __lowerCAmelCase : Tuple ): a__ = parser.add_argument_group('quant_trainer arguments' ) group.add_argument('--wprec' , type=__lowerCAmelCase , default=8 , help='weight precision' ) group.add_argument('--aprec' , type=__lowerCAmelCase , default=8 , help='activation precision' ) group.add_argument('--quant-per-tensor' , action='store_true' , help='per tensor weight scaling' ) group.add_argument('--quant-disable' , action='store_true' , help='disable all quantizers' ) group.add_argument('--quant-disable-embeddings' , action='store_true' , help='disable all embeddings quantizers' ) group.add_argument('--quant-disable-keyword' , type=__lowerCAmelCase , nargs='+' , help='disable quantizers by keyword' ) group.add_argument('--quant-disable-layer-module' , type=__lowerCAmelCase , help='disable quantizers by keyword under layer.' ) group.add_argument('--quant-enable-layer-module' , type=__lowerCAmelCase , help='enable quantizers by keyword under layer' ) group.add_argument('--calibrator' , default='max' , help='which quantization range calibrator to use' ) group.add_argument('--percentile' , default=__lowerCAmelCase , type=__lowerCAmelCase , help='percentile for PercentileCalibrator' ) group.add_argument('--fuse-qkv' , action='store_true' , help='use the same scale factor for qkv' ) group.add_argument('--clip-gelu' , metavar='N' , type=__lowerCAmelCase , help='clip gelu output maximum value to N' ) group.add_argument( '--recalibrate-weights' , action='store_true' , help=( 'recalibrate weight amaxes by taking the max of the weights.' ' amaxes will be computed with the current quantization granularity (axis).' ) , ) def __lowercase ( __lowerCAmelCase : Union[str, Any] ): if args.calibrator == "max": a__ = 'max' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('Specify --percentile when using percentile calibrator' ) a__ = 'histogram' elif args.calibrator == "mse": a__ = 'histogram' else: raise ValueError(F'Invalid calibrator {args.calibrator}' ) a__ = QuantDescriptor(num_bits=args.aprec , calib_method=__lowerCAmelCase ) a__ = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(__lowerCAmelCase ) quant_nn.QuantLinear.set_default_quant_desc_weight(__lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : Dict=False ): logger.info('Configuring Model for Quantization' ) logger.info(F'using quantization package {pytorch_quantization.__file__}' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(__lowerCAmelCase , ['embeddings'] , which='weight' , _disabled=__lowerCAmelCase ) if args.quant_disable: set_quantizer_by_name(__lowerCAmelCase , [''] , _disabled=__lowerCAmelCase ) if args.quant_disable_keyword: set_quantizer_by_name(__lowerCAmelCase , args.quant_disable_keyword , _disabled=__lowerCAmelCase ) if args.quant_disable_layer_module: set_quantizer_by_name(__lowerCAmelCase , [R'layer.\d+.' + args.quant_disable_layer_module] , _disabled=__lowerCAmelCase ) if args.quant_enable_layer_module: set_quantizer_by_name(__lowerCAmelCase , [R'layer.\d+.' + args.quant_enable_layer_module] , _disabled=__lowerCAmelCase ) if args.recalibrate_weights: recalibrate_weights(__lowerCAmelCase ) if args.fuse_qkv: fuse_qkv(__lowerCAmelCase , __lowerCAmelCase ) if args.clip_gelu: clip_gelu(__lowerCAmelCase , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(__lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Optional[int] ): logger.info('Enabling Calibration' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F'{name:80}: {module}' ) def __lowercase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] ): logger.info('Loading calibrated amax' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('percentile' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(__lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str ): def fusea(__lowerCAmelCase : Dict , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] ): for mod in [qq, qk, qv]: if not hasattr(__lowerCAmelCase , '_amax' ): print(' WARNING: NO AMAX BUFFER' ) return a__ = qq._amax.detach().item() a__ = qk._amax.detach().item() a__ = qv._amax.detach().item() a__ = max(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) qq._amax.fill_(__lowerCAmelCase ) qk._amax.fill_(__lowerCAmelCase ) qv._amax.fill_(__lowerCAmelCase ) logger.info(F' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}' ) for name, mod in model.named_modules(): if name.endswith('.attention.self' ): logger.info(F'FUSE_QKV: {name:{name_width}}' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def __lowercase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any] ): for name, mod in model.named_modules(): if name.endswith('.output.dense' ) and not name.endswith('attention.output.dense' ): a__ = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=__lowerCAmelCase ) a__ = mod._input_quantizer._amax.data.detach().item() logger.info(F'CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}' ) def __lowercase ( __lowerCAmelCase : Optional[Any] ): for name, mod in model.named_modules(): if hasattr(__lowerCAmelCase , '_weight_quantizer' ) and mod._weight_quantizer.axis is not None: a__ = mod.weight.shape[0] a__ = mod._weight_quantizer._amax.detach() a__ = torch.ones(__lowerCAmelCase , dtype=amax.dtype , device=amax.device ) * amax print(F'expanding {name} {amax} -> {mod._weight_quantizer._amax}' ) def __lowercase ( __lowerCAmelCase : Union[str, Any] ): for name, mod in model.named_modules(): if hasattr(__lowerCAmelCase , '_weight_quantizer' ): if not hasattr(mod.weight_quantizer , '_amax' ): print('RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) a__ = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) a__ = set(range(len(mod.weight.size() ) ) ) - axis_set a__ = pytorch_quantization.utils.reduce_amax(mod.weight , axis=__lowerCAmelCase , keepdims=__lowerCAmelCase ).detach() logger.info(F'RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}' ) a__ = amax def __lowercase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[int]=2_5 , __lowerCAmelCase : List[Any]=1_8_0 , __lowerCAmelCase : Tuple=None ): if ignore is None: a__ = [] elif not isinstance(__lowerCAmelCase , __lowerCAmelCase ): a__ = [ignore] a__ = 0 for name, mod in model.named_modules(): if not hasattr(__lowerCAmelCase , 'weight' ): continue a__ = max(__lowerCAmelCase , len(__lowerCAmelCase ) ) for name, mod in model.named_modules(): a__ = getattr(__lowerCAmelCase , '_input_quantizer' , __lowerCAmelCase ) a__ = getattr(__lowerCAmelCase , '_weight_quantizer' , __lowerCAmelCase ) if not hasattr(__lowerCAmelCase , 'weight' ): continue if type(__lowerCAmelCase ) in ignore: continue if [True for s in ignore if type(__lowerCAmelCase ) is str and s in name]: continue a__ = F'Act:{input_q.extra_repr()}' a__ = F'Wgt:{weight_q.extra_repr()}' a__ = F'{name:{name_width}} {act_str} {wgt_str}' if len(__lowerCAmelCase ) <= line_width: logger.info(__lowerCAmelCase ) else: logger.info(F'{name:{name_width}} {act_str}' ) logger.info(F'{" ":{name_width}} {wgt_str}' ) def __lowercase ( __lowerCAmelCase : Dict ): a__ = 0 for name, mod in model.named_modules(): if isinstance(__lowerCAmelCase , pytorch_quantization.nn.TensorQuantizer ): print(F'{name:80} {mod}' ) count += 1 print(F'{count} TensorQuantizers found in model' ) def __lowercase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Dict ): a__ = getattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if quantizer_mod is not None: assert hasattr(__lowerCAmelCase , __lowerCAmelCase ) setattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) else: logger.warning(F'{name} has no {quantizer}' ) def __lowercase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int]="both" , **__lowerCAmelCase : str ): a__ = F'Warning: changing {which} quantizers of {name:{qname_width}}' for k, v in kwargs.items(): s += F' {k}={v}' if which in ["input", "both"]: set_quantizer(__lowerCAmelCase , __lowerCAmelCase , '_input_quantizer' , __lowerCAmelCase , __lowerCAmelCase ) if which in ["weight", "both"]: set_quantizer(__lowerCAmelCase , __lowerCAmelCase , '_weight_quantizer' , __lowerCAmelCase , __lowerCAmelCase ) logger.info(__lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : Tuple , **__lowerCAmelCase : Optional[Any] ): for name, mod in model.named_modules(): if hasattr(__lowerCAmelCase , '_input_quantizer' ) or hasattr(__lowerCAmelCase , '_weight_quantizer' ): for n in names: if re.search(__lowerCAmelCase , __lowerCAmelCase ): set_quantizers(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) elif name.endswith('_quantizer' ): for n in names: if re.search(__lowerCAmelCase , __lowerCAmelCase ): a__ = F'Warning: changing {name:{name_width}}' for k, v in kwargs.items(): s += F' {k}={v}' setattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) logger.info(__lowerCAmelCase )
240
0
'''simple docstring''' import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class A__ ( _snake_case ): lowercase = "Speech2TextFeatureExtractor" lowercase = "Speech2TextTokenizer" def __init__( self , UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' super().__init__(UpperCamelCase__ , UpperCamelCase__ ) A_ = self.feature_extractor A_ = False def __call__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' # For backward compatibility if self._in_target_context_manager: return self.current_processor(*UpperCamelCase__ , **UpperCamelCase__ ) if "raw_speech" in kwargs: warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" ) A_ = kwargs.pop("""raw_speech""" ) else: A_ = kwargs.pop("""audio""" , UpperCamelCase__ ) A_ = kwargs.pop("""sampling_rate""" , UpperCamelCase__ ) A_ = kwargs.pop("""text""" , UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: A_ = args[0] A_ = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: A_ = self.feature_extractor(UpperCamelCase__ , *UpperCamelCase__ , sampling_rate=UpperCamelCase__ , **UpperCamelCase__ ) if text is not None: A_ = self.tokenizer(UpperCamelCase__ , **UpperCamelCase__ ) if text is None: return inputs elif audio is None: return encodings else: A_ = encodings["""input_ids"""] return inputs def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @contextmanager def snake_case_ ( self ) -> int: '''simple docstring''' warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your audio inputs, or in a separate call.""" ) A_ = True A_ = self.tokenizer yield A_ = self.feature_extractor A_ = False
101
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase = { '''configuration_blenderbot''': [ '''BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlenderbotConfig''', '''BlenderbotOnnxConfig''', ], '''tokenization_blenderbot''': ['''BlenderbotTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ['''BlenderbotTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlenderbotForCausalLM''', '''BlenderbotForConditionalGeneration''', '''BlenderbotModel''', '''BlenderbotPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''TFBlenderbotForConditionalGeneration''', '''TFBlenderbotModel''', '''TFBlenderbotPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''FlaxBlenderbotForConditionalGeneration''', '''FlaxBlenderbotModel''', '''FlaxBlenderbotPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
101
1
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def UpperCamelCase ( lowerCAmelCase__ = "isbn/0140328726" ): '''simple docstring''' lowercase = olid.strip().strip('''/''' ) # Remove leading/trailing whitespace & slashes if new_olid.count('''/''' ) != 1: lowercase = f'{olid} is not a valid Open Library olid' raise ValueError(lowerCAmelCase__ ) return requests.get(f'https://openlibrary.org/{new_olid}.json' ).json() def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = { '''title''': '''Title''', '''publish_date''': '''Publish date''', '''authors''': '''Authors''', '''number_of_pages''': '''Number of pages:''', '''first_sentence''': '''First sentence''', '''isbn_10''': '''ISBN (10)''', '''isbn_13''': '''ISBN (13)''', } lowercase = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} lowercase = [ get_openlibrary_data(author['''key'''] )['''name'''] for author in data['''Authors'''] ] lowercase = data['''First sentence''']['''value'''] for key, value in data.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase = ''', '''.join(lowerCAmelCase__ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: lowercase__ :List[Any] = input("\nEnter the ISBN code to search (or 'quit' to stop): ").strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(F'Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.') continue print(F'\nSearching Open Library for ISBN: {isbn}...\n') try: lowercase__ :List[str] = summarize_book(get_openlibrary_data(F'isbn/{isbn}')) print("\n".join(F'{key}: {value}' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F'Sorry, there are no results for ISBN: {isbn}.')
101
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowercase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): lowercase_ : Tuple =ShapEPipeline lowercase_ : List[Any] =['''prompt'''] lowercase_ : int =['''prompt'''] lowercase_ : Union[str, Any] =[ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] lowercase_ : Optional[int] =False @property def A__ ( self): return 3_2 @property def A__ ( self): return 3_2 @property def A__ ( self): return self.time_input_dim * 4 @property def A__ ( self): return 8 @property def A__ ( self): lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') return tokenizer @property def A__ ( self): torch.manual_seed(0) lowercase = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=self.text_embedder_hidden_size ,projection_dim=self.text_embedder_hidden_size ,intermediate_size=3_7 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,) return CLIPTextModelWithProjection(A__) @property def A__ ( self): torch.manual_seed(0) lowercase = { '''num_attention_heads''': 2, '''attention_head_dim''': 1_6, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 3_2, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } lowercase = PriorTransformer(**A__) return model @property def A__ ( self): torch.manual_seed(0) lowercase = { '''param_shapes''': ( (self.renderer_dim, 9_3), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 1_2, '''background''': ( 0.1, 0.1, 0.1, ), } lowercase = ShapERenderer(**A__) return model def A__ ( self): lowercase = self.dummy_prior lowercase = self.dummy_text_encoder lowercase = self.dummy_tokenizer lowercase = self.dummy_renderer lowercase = HeunDiscreteScheduler( beta_schedule='''exp''' ,num_train_timesteps=1_0_2_4 ,prediction_type='''sample''' ,use_karras_sigmas=A__ ,clip_sample=A__ ,clip_sample_range=1.0 ,) lowercase = { '''prior''': prior, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''renderer''': renderer, '''scheduler''': scheduler, } return components def A__ ( self ,A__ ,A__=0): if str(A__).startswith('''mps'''): lowercase = torch.manual_seed(A__) else: lowercase = torch.Generator(device=A__).manual_seed(A__) lowercase = { '''prompt''': '''horse''', '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 3_2, '''output_type''': '''np''', } return inputs def A__ ( self): lowercase = '''cpu''' lowercase = self.get_dummy_components() lowercase = self.pipeline_class(**A__) lowercase = pipe.to(A__) pipe.set_progress_bar_config(disable=A__) lowercase = pipe(**self.get_dummy_inputs(A__)) lowercase = output.images[0] lowercase = image[0, -3:, -3:, -1] assert image.shape == (2_0, 3_2, 3_2, 3) lowercase = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def A__ ( self): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2]) def A__ ( self): lowercase = torch_device == '''cpu''' lowercase = True self._test_inference_batch_single_identical( batch_size=2 ,test_max_difference=A__ ,relax_max_difference=A__ ,) def A__ ( self): lowercase = self.get_dummy_components() lowercase = self.pipeline_class(**A__) lowercase = pipe.to(A__) pipe.set_progress_bar_config(disable=A__) lowercase = 1 lowercase = 2 lowercase = self.get_dummy_inputs(A__) for key in inputs.keys(): if key in self.batch_params: lowercase = batch_size * [inputs[key]] lowercase = pipe(**A__ ,num_images_per_prompt=A__)[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def A__ ( self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self): lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_np_out.npy''') lowercase = ShapEPipeline.from_pretrained('''openai/shap-e''') lowercase = pipe.to(A__) pipe.set_progress_bar_config(disable=A__) lowercase = torch.Generator(device=A__).manual_seed(0) lowercase = pipe( '''a shark''' ,generator=A__ ,guidance_scale=15.0 ,num_inference_steps=6_4 ,frame_size=6_4 ,output_type='''np''' ,).images[0] assert images.shape == (2_0, 6_4, 6_4, 3) assert_mean_pixel_difference(A__ ,A__)
101
1
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Tuple: # Load checkpoint lowercase : Optional[int] = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" ) lowercase : str = chkpt["""model"""] # We have the base model one level deeper than the original XLM repository lowercase : Tuple = {} for k, v in state_dict.items(): if "pred_layer" in k: lowercase : str = v else: lowercase : int = v lowercase : Tuple = chkpt["""params"""] lowercase : Optional[Any] = {n: v for n, v in config.items() if not isinstance(SCREAMING_SNAKE_CASE__ , (torch.FloatTensor, numpy.ndarray) )} lowercase : Union[str, Any] = chkpt["""dico_word2id"""] lowercase : Union[str, Any] = {s + """</w>""" if s.find("""@@""" ) == -1 and i > 13 else s.replace("""@@""" , """""" ): i for s, i in vocab.items()} # Save pytorch-model lowercase : Tuple = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME lowercase : Union[str, Any] = pytorch_dump_folder_path + """/""" + CONFIG_NAME lowercase : int = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""vocab_file"""] print(f"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print(f"Save configuration file to {pytorch_config_dump_path}" ) with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE__ , indent=2 ) + """\n""" ) print(f"Save vocab file to {pytorch_config_dump_path}" ) with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE__ , indent=2 ) + """\n""" ) if __name__ == "__main__": lowercase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xlm_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowercase : Union[str, Any] = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
351
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class __snake_case ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = tempfile.mkdtemp() lowercase : List[str] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """的""", """价""", """格""", """是""", """15""", """便""", """alex""", """##andra""", """,""", """。""", """-""", """t""", """shirt""", ] lowercase : Dict = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) lowercase : Any = { """do_resize""": True, """size""": {"""height""": 224, """width""": 224}, """do_center_crop""": True, """crop_size""": {"""height""": 18, """width""": 18}, """do_normalize""": True, """image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073], """image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711], """do_convert_rgb""": True, } lowercase : List[str] = os.path.join(self.tmpdirname ,snake_case ) with open(self.image_processor_file ,"""w""" ,encoding="""utf-8""" ) as fp: json.dump(snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ,**snake_case ): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ,**snake_case ): '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ,**snake_case ): '''simple docstring''' return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )] lowercase : str = [Image.fromarray(np.moveaxis(snake_case ,0 ,-1 ) ) for x in image_inputs] return image_inputs def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[str] = self.get_tokenizer() lowercase : Dict = self.get_rust_tokenizer() lowercase : Union[str, Any] = self.get_image_processor() lowercase : Optional[Any] = ChineseCLIPProcessor(tokenizer=snake_case ,image_processor=snake_case ) processor_slow.save_pretrained(self.tmpdirname ) lowercase : Any = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ,use_fast=snake_case ) lowercase : List[Any] = ChineseCLIPProcessor(tokenizer=snake_case ,image_processor=snake_case ) processor_fast.save_pretrained(self.tmpdirname ) lowercase : Tuple = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() ,tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer ,snake_case ) self.assertIsInstance(processor_fast.tokenizer ,snake_case ) self.assertEqual(processor_slow.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor ,snake_case ) self.assertIsInstance(processor_fast.image_processor ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase : int = self.get_tokenizer(cls_token="""(CLS)""" ,sep_token="""(SEP)""" ) lowercase : Dict = self.get_image_processor(do_normalize=snake_case ) lowercase : Optional[Any] = ChineseCLIPProcessor.from_pretrained( self.tmpdirname ,cls_token="""(CLS)""" ,sep_token="""(SEP)""" ,do_normalize=snake_case ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,snake_case ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = self.get_image_processor() lowercase : List[str] = self.get_tokenizer() lowercase : Optional[Any] = ChineseCLIPProcessor(tokenizer=snake_case ,image_processor=snake_case ) lowercase : Optional[int] = self.prepare_image_inputs() lowercase : Tuple = image_processor(snake_case ,return_tensors="""np""" ) lowercase : Optional[int] = processor(images=snake_case ,return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = self.get_image_processor() lowercase : Union[str, Any] = self.get_tokenizer() lowercase : Any = ChineseCLIPProcessor(tokenizer=snake_case ,image_processor=snake_case ) lowercase : Any = """Alexandra,T-shirt的价格是15便士。""" lowercase : int = processor(text=snake_case ) lowercase : Dict = tokenizer(snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = self.get_image_processor() lowercase : Optional[Any] = self.get_tokenizer() lowercase : Dict = ChineseCLIPProcessor(tokenizer=snake_case ,image_processor=snake_case ) lowercase : List[str] = """Alexandra,T-shirt的价格是15便士。""" lowercase : Any = self.prepare_image_inputs() lowercase : Optional[Any] = processor(text=snake_case ,images=snake_case ) self.assertListEqual(list(inputs.keys() ) ,["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(snake_case ): processor() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = self.get_image_processor() lowercase : str = self.get_tokenizer() lowercase : Dict = ChineseCLIPProcessor(tokenizer=snake_case ,image_processor=snake_case ) lowercase : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase : Any = processor.batch_decode(snake_case ) lowercase : str = tokenizer.batch_decode(snake_case ) self.assertListEqual(snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Dict = self.get_image_processor() lowercase : Dict = self.get_tokenizer() lowercase : List[Any] = ChineseCLIPProcessor(tokenizer=snake_case ,image_processor=snake_case ) lowercase : str = """Alexandra,T-shirt的价格是15便士。""" lowercase : Optional[Any] = self.prepare_image_inputs() lowercase : Dict = processor(text=snake_case ,images=snake_case ) self.assertListEqual(list(inputs.keys() ) ,processor.model_input_names )
285
0
"""simple docstring""" def __a ( _SCREAMING_SNAKE_CASE ) ->list: if len(_SCREAMING_SNAKE_CASE ) < 2: return collection def circle_sort_util(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> bool: a__: List[str] = False if low == high: return swapped a__: Tuple = low a__: List[Any] = high while left < right: if collection[left] > collection[right]: a__ , a__: Tuple = ( collection[right], collection[left], ) a__: str = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: a__ , a__: Optional[Any] = ( collection[right + 1], collection[left], ) a__: str = True a__: Any = low + int((high - low) / 2 ) a__: Optional[Any] = circle_sort_util(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a__: Dict = circle_sort_util(_SCREAMING_SNAKE_CASE , mid + 1 , _SCREAMING_SNAKE_CASE ) return swapped or left_swap or right_swap a__: Tuple = True while is_not_sorted is True: a__: Any = circle_sort_util(_SCREAMING_SNAKE_CASE , 0 , len(_SCREAMING_SNAKE_CASE ) - 1 ) return collection if __name__ == "__main__": lowercase__ = input('Enter numbers separated by a comma:\n').strip() lowercase__ = [int(item) for item in user_input.split(',')] print(circle_sort(unsorted))
290
"""simple docstring""" from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor lowercase__ = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __a ( _SCREAMING_SNAKE_CASE ) ->Any: if isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ): return image elif isinstance(_SCREAMING_SNAKE_CASE , PIL.Image.Image ): a__: Optional[int] = [image] a__: str = [trans(img.convert('RGB' ) ) for img in image] a__: Any = torch.stack(_SCREAMING_SNAKE_CASE ) return image class __snake_case ( __lowerCAmelCase ): def __init__( self , lowercase , lowercase) -> Optional[int]: '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM a__: Dict = DDIMScheduler.from_config(scheduler.config) self.register_modules(unet=lowercase , scheduler=lowercase) def lowerCamelCase_ ( self , lowercase) -> int: '''simple docstring''' if strength < 0 or strength > 1: raise ValueError(f'The value of strength should in [0.0, 1.0] but is {strength}') def lowerCamelCase_ ( self , lowercase , lowercase , lowercase) -> Dict: '''simple docstring''' a__: int = min(int(num_inference_steps * strength) , lowercase) a__: Any = max(num_inference_steps - init_timestep , 0) a__: Union[str, Any] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCamelCase_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase=None) -> List[Any]: '''simple docstring''' if not isinstance(lowercase , (torch.Tensor, PIL.Image.Image, list)): raise ValueError( f'`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowercase)}') a__: Tuple = image.to(device=lowercase , dtype=lowercase) if isinstance(lowercase , lowercase) and len(lowercase) != batch_size: raise ValueError( f'You have passed a list of generators of length {len(lowercase)}, but requested an effective batch' f' size of {batch_size}. Make sure the batch size matches the length of the generators.') a__: List[str] = init_latents.shape a__: List[Any] = randn_tensor(lowercase , generator=lowercase , device=lowercase , dtype=lowercase) # get latents print('add noise to latents at timestep' , lowercase) a__: int = self.scheduler.add_noise(lowercase , lowercase , lowercase) a__: Dict = init_latents return latents @torch.no_grad() def __call__( self , lowercase = None , lowercase = 0.8 , lowercase = 1 , lowercase = None , lowercase = 0.0 , lowercase = 50 , lowercase = None , lowercase = "pil" , lowercase = True , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' self.check_inputs(lowercase) # 2. Preprocess image a__: Tuple = preprocess(lowercase) # 3. set timesteps self.scheduler.set_timesteps(lowercase , device=self.device) a__ , a__: Union[str, Any] = self.get_timesteps(lowercase , lowercase , self.device) a__: Optional[int] = timesteps[:1].repeat(lowercase) # 4. Prepare latent variables a__: Union[str, Any] = self.prepare_latents(lowercase , lowercase , lowercase , self.unet.dtype , self.device , lowercase) a__: Optional[Any] = latents # 5. Denoising loop for t in self.progress_bar(lowercase): # 1. predict noise model_output a__: Dict = self.unet(lowercase , lowercase).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 a__: Optional[Any] = self.scheduler.step( lowercase , lowercase , lowercase , eta=lowercase , use_clipped_model_output=lowercase , generator=lowercase , ).prev_sample a__: Union[str, Any] = (image / 2 + 0.5).clamp(0 , 1) a__: Optional[int] = image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": a__: Dict = self.numpy_to_pil(lowercase) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=lowercase)
290
1
class __lowerCamelCase : """simple docstring""" def __init__( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = "" lowercase_ = "" lowercase_ = [] def A__ ( self , UpperCAmelCase , UpperCAmelCase ) -> int: '''simple docstring''' if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: lowercase_ = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: lowercase_ = self.__min_dist_top_down_dp(UpperCAmelCase , n - 1 ) lowercase_ = self.__min_dist_top_down_dp(m - 1 , UpperCAmelCase ) lowercase_ = self.__min_dist_top_down_dp(m - 1 , n - 1 ) lowercase_ = 1 + min(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) return self.dp[m][n] def A__ ( self , UpperCAmelCase , UpperCAmelCase ) -> int: '''simple docstring''' lowercase_ = worda lowercase_ = worda lowercase_ = [[-1 for _ in range(len(UpperCAmelCase ) )] for _ in range(len(UpperCAmelCase ) )] return self.__min_dist_top_down_dp(len(UpperCAmelCase ) - 1 , len(UpperCAmelCase ) - 1 ) def A__ ( self , UpperCAmelCase , UpperCAmelCase ) -> int: '''simple docstring''' lowercase_ = worda lowercase_ = worda lowercase_ = len(UpperCAmelCase ) lowercase_ = len(UpperCAmelCase ) lowercase_ = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty lowercase_ = j elif j == 0: # second string is empty lowercase_ = i elif worda[i - 1] == worda[j - 1]: # last characters are equal lowercase_ = self.dp[i - 1][j - 1] else: lowercase_ = self.dp[i][j - 1] lowercase_ = self.dp[i - 1][j] lowercase_ = self.dp[i - 1][j - 1] lowercase_ = 1 + min(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) return self.dp[m][n] if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = EditDistance() print("""****************** Testing Edit Distance DP Algorithm ******************""") print() SCREAMING_SNAKE_CASE__ = input("""Enter the first string: """).strip() SCREAMING_SNAKE_CASE__ = input("""Enter the second string: """).strip() print() print(f"""The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}""") print(f"""The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}""") print() print("""*************** End of Testing Edit Distance DP Algorithm ***************""")
297
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __lowerCamelCase ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = StableUnCLIPImgaImgPipeline lowerCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS lowerCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCAmelCase__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowerCAmelCase__ = frozenset([] ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = 32 lowercase_ = embedder_hidden_size # image encoding components lowercase_ = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) lowercase_ = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=UpperCAmelCase , projection_dim=UpperCAmelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) lowercase_ = StableUnCLIPImageNormalizer(embedding_dim=UpperCAmelCase ) lowercase_ = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) lowercase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowercase_ = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCAmelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=UpperCAmelCase , layers_per_block=1 , upcast_attention=UpperCAmelCase , use_linear_projection=UpperCAmelCase , ) torch.manual_seed(0 ) lowercase_ = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.00085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=UpperCAmelCase , steps_offset=1 , ) torch.manual_seed(0 ) lowercase_ = AutoencoderKL() lowercase_ = { # image encoding components "feature_extractor": feature_extractor, "image_encoder": image_encoder.eval(), # image noising components "image_normalizer": image_normalizer.eval(), "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder.eval(), "unet": unet.eval(), "scheduler": scheduler, "vae": vae.eval(), } return components def A__ ( self , UpperCAmelCase , UpperCAmelCase=0 , UpperCAmelCase=True ) -> Tuple: '''simple docstring''' if str(UpperCAmelCase ).startswith("mps" ): lowercase_ = torch.manual_seed(UpperCAmelCase ) else: lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) lowercase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) if pil_image: lowercase_ = input_image * 0.5 + 0.5 lowercase_ = input_image.clamp(0 , 1 ) lowercase_ = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowercase_ = DiffusionPipeline.numpy_to_pil(UpperCAmelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase_ = self.get_dummy_components() lowercase_ = StableUnCLIPImgaImgPipeline(**UpperCAmelCase ) lowercase_ = sd_pipe.to(UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = self.get_dummy_inputs(UpperCAmelCase ) inputs.update({"image_embeds": None} ) lowercase_ = sd_pipe(**UpperCAmelCase ).images lowercase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase_ = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A__ ( self ) -> int: '''simple docstring''' lowercase_ = torch_device in ["cpu", "mps"] self._test_attention_slicing_forward_pass(test_max_difference=UpperCAmelCase ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=UpperCAmelCase ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def A__ ( self ) -> int: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_max_difference=UpperCAmelCase ) @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> int: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) lowercase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy" ) lowercase_ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-l-img2img" , torch_dtype=torch.floataa ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase_ = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase_ = pipe(UpperCAmelCase , "anime turle" , generator=UpperCAmelCase , output_type="np" ) lowercase_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCAmelCase , UpperCAmelCase ) def A__ ( self ) -> Any: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) lowercase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy" ) lowercase_ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase_ = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase_ = pipe(UpperCAmelCase , "anime turle" , generator=UpperCAmelCase , output_type="np" ) lowercase_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCAmelCase , UpperCAmelCase ) def A__ ( self ) -> int: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase_ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) lowercase_ = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase_ = pipe( UpperCAmelCase , "anime turtle" , num_inference_steps=2 , output_type="np" , ) lowercase_ = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
297
1
from __future__ import annotations import pandas as pd def SCREAMING_SNAKE_CASE_ ( __magic_name__ : list[int] , __magic_name__ : list[int] , __magic_name__ : int ) -> list[int]: """simple docstring""" UpperCamelCase :List[str] = [0] * no_of_processes UpperCamelCase :str = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(__magic_name__ ): UpperCamelCase :Optional[int] = burst_time[i] UpperCamelCase :str = 0 UpperCamelCase :Tuple = 0 UpperCamelCase :Union[str, Any] = 9_9999_9999 UpperCamelCase :Optional[Any] = 0 UpperCamelCase :Optional[int] = False # Process until all processes are completed while complete != no_of_processes: for j in range(__magic_name__ ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: UpperCamelCase :Dict = remaining_time[j] UpperCamelCase :Optional[Any] = j UpperCamelCase :List[str] = True if not check: increment_time += 1 continue remaining_time[short] -= 1 UpperCamelCase :List[str] = remaining_time[short] if minm == 0: UpperCamelCase :Any = 9_9999_9999 if remaining_time[short] == 0: complete += 1 UpperCamelCase :Dict = False # Find finish time of current process UpperCamelCase :Dict = increment_time + 1 # Calculate waiting time UpperCamelCase :Union[str, Any] = finish_time - arrival_time[short] UpperCamelCase :Optional[Any] = finar - burst_time[short] if waiting_time[short] < 0: UpperCamelCase :Optional[Any] = 0 # Increment time increment_time += 1 return waiting_time def SCREAMING_SNAKE_CASE_ ( __magic_name__ : list[int] , __magic_name__ : int , __magic_name__ : list[int] ) -> list[int]: """simple docstring""" UpperCamelCase :Optional[Any] = [0] * no_of_processes for i in range(__magic_name__ ): UpperCamelCase :List[str] = burst_time[i] + waiting_time[i] return turn_around_time def SCREAMING_SNAKE_CASE_ ( __magic_name__ : list[int] , __magic_name__ : list[int] , __magic_name__ : int ) -> None: """simple docstring""" UpperCamelCase :int = 0 UpperCamelCase :str = 0 for i in range(__magic_name__ ): UpperCamelCase :List[Any] = total_waiting_time + waiting_time[i] UpperCamelCase :str = total_turn_around_time + turn_around_time[i] print(f"""Average waiting time = {total_waiting_time / no_of_processes:.5f}""" ) print("""Average turn around time =""" , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print('''Enter how many process you want to analyze''') UpperCAmelCase_ : Any = int(input()) UpperCAmelCase_ : Optional[int] = [0] * no_of_processes UpperCAmelCase_ : Any = [0] * no_of_processes UpperCAmelCase_ : Any = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print('''Enter the arrival time and burst time for process:--''' + str(i + 1)) UpperCAmelCase_ , UpperCAmelCase_ : Dict = map(int, input().split()) UpperCAmelCase_ : List[str] = calculate_waitingtime(arrival_time, burst_time, no_of_processes) UpperCAmelCase_ : Tuple = burst_time UpperCAmelCase_ : List[str] = no_of_processes UpperCAmelCase_ : Union[str, Any] = waiting_time UpperCAmelCase_ : Union[str, Any] = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) UpperCAmelCase_ : Tuple = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ '''Process''', '''BurstTime''', '''ArrivalTime''', '''WaitingTime''', '''TurnAroundTime''', ], ) # Printing the dataFrame pd.set_option('''display.max_rows''', fcfs.shape[0] + 1) print(fcfs)
38
from __future__ import annotations import csv import requests from bsa import BeautifulSoup def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str = "" ): __UpperCamelCase =url or 'https://www.imdb.com/chart/top/?ref_=nv_mv_250' __UpperCamelCase =BeautifulSoup(requests.get(SCREAMING_SNAKE_CASE__ ).text , 'html.parser' ) __UpperCamelCase =soup.find_all('td' , attrs='titleColumn' ) __UpperCamelCase =soup.find_all('td' , class_='ratingColumn imdbRating' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) } def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str = "IMDb_Top_250_Movies.csv" ): __UpperCamelCase =get_imdb_top_aaa_movies() with open(SCREAMING_SNAKE_CASE__ , 'w' , newline='' ) as out_file: __UpperCamelCase =csv.writer(SCREAMING_SNAKE_CASE__ ) writer.writerow(['Movie title', 'IMDb rating'] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
62
0
from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def A ( lowercase , lowercase , lowercase = 1 / sqrt(2 ) ) -> IIRFilter: '''simple docstring''' UpperCamelCase = tau * frequency / samplerate UpperCamelCase = sin(lowercase ) UpperCamelCase = cos(lowercase ) UpperCamelCase = _sin / (2 * q_factor) UpperCamelCase = (1 - _cos) / 2 UpperCamelCase = 1 - _cos UpperCamelCase = 1 + alpha UpperCamelCase = -2 * _cos UpperCamelCase = 1 - alpha UpperCamelCase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def A ( lowercase , lowercase , lowercase = 1 / sqrt(2 ) ) -> IIRFilter: '''simple docstring''' UpperCamelCase = tau * frequency / samplerate UpperCamelCase = sin(lowercase ) UpperCamelCase = cos(lowercase ) UpperCamelCase = _sin / (2 * q_factor) UpperCamelCase = (1 + _cos) / 2 UpperCamelCase = -1 - _cos UpperCamelCase = 1 + alpha UpperCamelCase = -2 * _cos UpperCamelCase = 1 - alpha UpperCamelCase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def A ( lowercase , lowercase , lowercase = 1 / sqrt(2 ) ) -> IIRFilter: '''simple docstring''' UpperCamelCase = tau * frequency / samplerate UpperCamelCase = sin(lowercase ) UpperCamelCase = cos(lowercase ) UpperCamelCase = _sin / (2 * q_factor) UpperCamelCase = _sin / 2 UpperCamelCase = 0 UpperCamelCase = -ba UpperCamelCase = 1 + alpha UpperCamelCase = -2 * _cos UpperCamelCase = 1 - alpha UpperCamelCase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def A ( lowercase , lowercase , lowercase = 1 / sqrt(2 ) ) -> IIRFilter: '''simple docstring''' UpperCamelCase = tau * frequency / samplerate UpperCamelCase = sin(lowercase ) UpperCamelCase = cos(lowercase ) UpperCamelCase = _sin / (2 * q_factor) UpperCamelCase = 1 - alpha UpperCamelCase = -2 * _cos UpperCamelCase = 1 + alpha UpperCamelCase = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def A ( lowercase , lowercase , lowercase , lowercase = 1 / sqrt(2 ) , ) -> IIRFilter: '''simple docstring''' UpperCamelCase = tau * frequency / samplerate UpperCamelCase = sin(lowercase ) UpperCamelCase = cos(lowercase ) UpperCamelCase = _sin / (2 * q_factor) UpperCamelCase = 10 ** (gain_db / 40) UpperCamelCase = 1 + alpha * big_a UpperCamelCase = -2 * _cos UpperCamelCase = 1 - alpha * big_a UpperCamelCase = 1 + alpha / big_a UpperCamelCase = -2 * _cos UpperCamelCase = 1 - alpha / big_a UpperCamelCase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def A ( lowercase , lowercase , lowercase , lowercase = 1 / sqrt(2 ) , ) -> IIRFilter: '''simple docstring''' UpperCamelCase = tau * frequency / samplerate UpperCamelCase = sin(lowercase ) UpperCamelCase = cos(lowercase ) UpperCamelCase = _sin / (2 * q_factor) UpperCamelCase = 10 ** (gain_db / 40) UpperCamelCase = (big_a + 1) - (big_a - 1) * _cos UpperCamelCase = (big_a + 1) + (big_a - 1) * _cos UpperCamelCase = (big_a - 1) - (big_a + 1) * _cos UpperCamelCase = (big_a - 1) + (big_a + 1) * _cos UpperCamelCase = 2 * sqrt(lowercase ) * alpha UpperCamelCase = big_a * (pmc + aaa) UpperCamelCase = 2 * big_a * mpc UpperCamelCase = big_a * (pmc - aaa) UpperCamelCase = ppmc + aaa UpperCamelCase = -2 * pmpc UpperCamelCase = ppmc - aaa UpperCamelCase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def A ( lowercase , lowercase , lowercase , lowercase = 1 / sqrt(2 ) , ) -> IIRFilter: '''simple docstring''' UpperCamelCase = tau * frequency / samplerate UpperCamelCase = sin(lowercase ) UpperCamelCase = cos(lowercase ) UpperCamelCase = _sin / (2 * q_factor) UpperCamelCase = 10 ** (gain_db / 40) UpperCamelCase = (big_a + 1) - (big_a - 1) * _cos UpperCamelCase = (big_a + 1) + (big_a - 1) * _cos UpperCamelCase = (big_a - 1) - (big_a + 1) * _cos UpperCamelCase = (big_a - 1) + (big_a + 1) * _cos UpperCamelCase = 2 * sqrt(lowercase ) * alpha UpperCamelCase = big_a * (ppmc + aaa) UpperCamelCase = -2 * big_a * pmpc UpperCamelCase = big_a * (ppmc - aaa) UpperCamelCase = pmc + aaa UpperCamelCase = 2 * mpc UpperCamelCase = pmc - aaa UpperCamelCase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
110
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): @register_to_config def __init__( self , A_ = 768 , ) -> List[Any]: """simple docstring""" super().__init__() UpperCamelCase = nn.Parameter(torch.zeros(1 , A_ ) ) UpperCamelCase = nn.Parameter(torch.ones(1 , A_ ) ) def __UpperCamelCase ( self , A_ = None , A_ = None , ) -> Any: """simple docstring""" UpperCamelCase = nn.Parameter(self.mean.to(A_ ).to(A_ ) ) UpperCamelCase = nn.Parameter(self.std.to(A_ ).to(A_ ) ) return self def __UpperCamelCase ( self , A_ ) -> Dict: """simple docstring""" UpperCamelCase = (embeds - self.mean) * 1.0 / self.std return embeds def __UpperCamelCase ( self , A_ ) -> Dict: """simple docstring""" UpperCamelCase = (embeds * self.std) + self.mean return embeds
110
1
'''simple docstring''' import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast lowerCamelCase = datasets.utils.logging.get_logger(__name__) @dataclass class _UpperCamelCase ( datasets.BuilderConfig ): '''simple docstring''' lowerCAmelCase__ = 1_00_00 lowerCAmelCase__ = None lowerCAmelCase__ = None class _UpperCamelCase ( datasets.ArrowBasedBuilder ): '''simple docstring''' lowerCAmelCase__ = ParquetConfig def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features) def __lowerCamelCase ( self : int , _lowerCAmelCase : Optional[int]): '''simple docstring''' if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""") __lowercase =dl_manager.download_and_extract(self.config.data_files) if isinstance(_lowerCAmelCase , (str, list, tuple)): __lowercase =data_files if isinstance(_lowerCAmelCase , _lowerCAmelCase): __lowercase =[files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __lowercase =[dl_manager.iter_files(_lowerCAmelCase) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files})] __lowercase =[] for split_name, files in data_files.items(): if isinstance(_lowerCAmelCase , _lowerCAmelCase): __lowercase =[files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __lowercase =[dl_manager.iter_files(_lowerCAmelCase) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(_lowerCAmelCase): with open(_lowerCAmelCase , 'rb') as f: __lowercase =datasets.Features.from_arrow_schema(pq.read_schema(_lowerCAmelCase)) break splits.append(datasets.SplitGenerator(name=_lowerCAmelCase , gen_kwargs={'files': files})) return splits def __lowerCamelCase ( self : Optional[int] , _lowerCAmelCase : pa.Table): '''simple docstring''' if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __lowercase =table_cast(_lowerCAmelCase , self.info.features.arrow_schema) return pa_table def __lowerCamelCase ( self : str , _lowerCAmelCase : List[str]): '''simple docstring''' __lowercase =self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema) != sorted(self.config.columns): raise ValueError( f"""Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'""") for file_idx, file in enumerate(itertools.chain.from_iterable(_lowerCAmelCase)): with open(_lowerCAmelCase , 'rb') as f: __lowercase =pq.ParquetFile(_lowerCAmelCase) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns)): __lowercase =pa.Table.from_batches([record_batch]) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f"""{file_idx}_{batch_idx}""", self._cast_table(_lowerCAmelCase) except ValueError as e: logger.error(f"""Failed to read file '{file}' with error {type(_lowerCAmelCase)}: {e}""") raise
166
'''simple docstring''' import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def _A ( _lowerCAmelCase=32 , _lowerCAmelCase=10 , _lowerCAmelCase=100 , _lowerCAmelCase=1_026 , _lowerCAmelCase=True , _lowerCAmelCase="data/tokenized_stories_train_wikitext103.jbl" , _lowerCAmelCase="igf_context_pairs.jbl" , ): """simple docstring""" set_seed(3 ) # generate train_data and objective_set __lowercase , __lowercase =generate_datasets( _lowerCAmelCase , _lowerCAmelCase , number=_lowerCAmelCase , min_len=1_026 , trim=_lowerCAmelCase ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? __lowercase =torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) # load pretrained model __lowercase =load_gpta('gpt2' ).to(_lowerCAmelCase ) print('computing perplexity on objective set' ) __lowercase =compute_perplexity(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).item() print('perplexity on objective set:' , _lowerCAmelCase ) # collect igf pairs and save to file demo.jbl collect_objective_set(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def _A ( _lowerCAmelCase , _lowerCAmelCase=15 , _lowerCAmelCase=128 , _lowerCAmelCase=100 , _lowerCAmelCase="igf_model.pt" , ): """simple docstring""" set_seed(42 ) # Load pre-trained model __lowercase =GPTaLMHeadModel.from_pretrained('gpt2' ) # Initialize secondary learner to use embedding weights of model __lowercase =SecondaryLearner(_lowerCAmelCase ) # Train secondary learner __lowercase =train_secondary_learner( _lowerCAmelCase , _lowerCAmelCase , max_epochs=_lowerCAmelCase , batch_size=_lowerCAmelCase , eval_freq=100 , igf_model_path=_lowerCAmelCase , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=32 , _lowerCAmelCase=1_000 , _lowerCAmelCase=16 , _lowerCAmelCase=1.0 , _lowerCAmelCase=recopy_gpta , _lowerCAmelCase=None , _lowerCAmelCase=10 , _lowerCAmelCase="gpt2_finetuned.pt" , ): """simple docstring""" __lowercase =torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) __lowercase =RandomSampler(_lowerCAmelCase ) __lowercase =DataLoader(_lowerCAmelCase , sampler=_lowerCAmelCase ) __lowercase =max_steps // (len(_lowerCAmelCase )) + 1 __lowercase =0 __lowercase =torch.zeros((1, context_len) , dtype=torch.long , device=_lowerCAmelCase ) __lowercase , __lowercase , __lowercase =recopy_model(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) model.train() if secondary_learner is not None: secondary_learner.to(_lowerCAmelCase ) secondary_learner.eval() __lowercase =[] __lowercase =0 __lowercase =[] __lowercase =[] # Compute the performance of the transformer model at the beginning __lowercase =compute_perplexity(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) test_perps.append(_lowerCAmelCase ) print('Test perplexity, step' , _lowerCAmelCase , ':' , _lowerCAmelCase ) for epoch in range(int(_lowerCAmelCase ) ): for step, example in enumerate(_lowerCAmelCase ): torch.cuda.empty_cache() __lowercase =random.randint(0 , example.size(2 ) - context_len - 1 ) __lowercase =example[0, 0, start : start + context_len] lm_optimizer.zero_grad() __lowercase =model(_lowerCAmelCase , labels=_lowerCAmelCase ) __lowercase =True if secondary_learner is not None: __lowercase =secondary_learner.forward( torch.tensor(_lowerCAmelCase , dtype=torch.long , device=_lowerCAmelCase ).unsqueeze(0 ) )[0].item() observed_qs.append(float(_lowerCAmelCase ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: __lowercase =-1 if predicted_q < threshold: __lowercase =False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) __lowercase =outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() __lowercase =0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: __lowercase =compute_perplexity(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) test_perps.append(_lowerCAmelCase ) print('Test perplexity, step' , _lowerCAmelCase , ':' , _lowerCAmelCase ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , _lowerCAmelCase ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def _A ( ): """simple docstring""" __lowercase =argparse.ArgumentParser(description='Fine-tune a transformer model with IGF on a language modeling task' ) # Required parameters parser.add_argument( '--data_dir' , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help='The input data dir. Should contain data files for WikiText.' , ) parser.add_argument( '--model_name_or_path' , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--data_file' , type=_lowerCAmelCase , default=_lowerCAmelCase , help=( 'A jbl file containing tokenized data which can be split as objective dataset, ' 'train_dataset and test_dataset.' ) , ) parser.add_argument( '--igf_data_file' , type=_lowerCAmelCase , default=_lowerCAmelCase , help='A jbl file containing the context and information gain pairs to train secondary learner.' , ) parser.add_argument( '--output_dir' , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help='The output directory where the final fine-tuned model is stored.' , ) parser.add_argument( '--tokenizer_name' , default=_lowerCAmelCase , type=_lowerCAmelCase , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument('--seed' , type=_lowerCAmelCase , default=_lowerCAmelCase , help='A seed for reproducible training.' ) parser.add_argument( '--context_len' , default=32 , type=_lowerCAmelCase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--size_objective_set' , default=100 , type=_lowerCAmelCase , help='number of articles that are long enough to be used as our objective set' , ) parser.add_argument( '--eval_freq' , default=100 , type=_lowerCAmelCase , help='secondary model evaluation is triggered at eval_freq' ) parser.add_argument('--max_steps' , default=1_000 , type=_lowerCAmelCase , help='To calculate training epochs' ) parser.add_argument( '--secondary_learner_batch_size' , default=128 , type=_lowerCAmelCase , help='batch size of training data for secondary learner' , ) parser.add_argument( '--batch_size' , default=16 , type=_lowerCAmelCase , help='batch size of training data of language model(gpt2) ' ) parser.add_argument( '--eval_interval' , default=10 , type=_lowerCAmelCase , help=( 'decay the selectivity of our secondary learner filter from' '1 standard deviation above average to 1 below average after 10 batches' ) , ) parser.add_argument( '--number' , default=100 , type=_lowerCAmelCase , help='The number of examples split to be used as objective_set/test_data' ) parser.add_argument( '--min_len' , default=1_026 , type=_lowerCAmelCase , help='The minimum length of the article to be used as objective set' ) parser.add_argument( '--secondary_learner_max_epochs' , default=15 , type=_lowerCAmelCase , help='number of epochs to train secondary learner' ) parser.add_argument('--trim' , default=_lowerCAmelCase , type=_lowerCAmelCase , help='truncate the example if it exceeds context length' ) parser.add_argument( '--threshold' , default=1.0 , type=_lowerCAmelCase , help=( 'The threshold value used by secondary learner to filter the train_data and allow only' ' informative data as input to the model' ) , ) parser.add_argument('--finetuned_model_name' , default='gpt2_finetuned.pt' , type=_lowerCAmelCase , help='finetuned_model_name' ) parser.add_argument( '--recopy_model' , default=_lowerCAmelCase , type=_lowerCAmelCase , help='Reset the model to the original pretrained GPT-2 weights after each iteration' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1_026 , trim=_lowerCAmelCase , data_file='data/tokenized_stories_train_wikitext103.jbl' , igf_data_file='igf_context_pairs.jbl' , ) # Load train data for secondary learner __lowercase =joblib.load('data/IGF_values.jbl' ) # Train secondary learner __lowercase =training_secondary_learner( _lowerCAmelCase , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path='igf_model.pt' , ) # load pretrained gpt2 model __lowercase =GPTaLMHeadModel.from_pretrained('gpt2' ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model __lowercase , __lowercase =generate_datasets( context_len=32 , file='data/tokenized_stories_train_wikitext103.jbl' , number=100 , min_len=1_026 , trim=_lowerCAmelCase ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , context_len=32 , max_steps=1_000 , batch_size=16 , threshold=1.0 , recopy_model=_lowerCAmelCase , secondary_learner=_lowerCAmelCase , eval_interval=10 , finetuned_model_name='gpt2_finetuned.pt' , ) if __name__ == "__main__": main()
166
1
"""simple docstring""" from __future__ import annotations def _snake_case ( lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = False , ): _lowerCamelCase : List[Any] = cipher_alphabet or [chr(lowercase__ ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) _lowerCamelCase : str = { 'a': 0.0_8_4_9_7, 'b': 0.0_1_4_9_2, 'c': 0.0_2_2_0_2, 'd': 0.0_4_2_5_3, 'e': 0.1_1_1_6_2, 'f': 0.0_2_2_2_8, 'g': 0.0_2_0_1_5, 'h': 0.0_6_0_9_4, 'i': 0.0_7_5_4_6, 'j': 0.0_0_1_5_3, 'k': 0.0_1_2_9_2, 'l': 0.0_4_0_2_5, 'm': 0.0_2_4_0_6, 'n': 0.0_6_7_4_9, 'o': 0.0_7_5_0_7, 'p': 0.0_1_9_2_9, 'q': 0.0_0_0_9_5, 'r': 0.0_7_5_8_7, 's': 0.0_6_3_2_7, 't': 0.0_9_3_5_6, 'u': 0.0_2_7_5_8, 'v': 0.0_0_9_7_8, 'w': 0.0_2_5_6_0, 'x': 0.0_0_1_5_0, 'y': 0.0_1_9_9_4, 'z': 0.0_0_0_7_7, } else: # Custom frequencies dictionary _lowerCamelCase : Tuple = frequencies_dict if not case_sensitive: _lowerCamelCase : List[Any] = ciphertext.lower() # Chi squared statistic values _lowerCamelCase : dict[int, tuple[float, str]] = {} # cycle through all of the shifts for shift in range(len(lowercase__ ) ): _lowerCamelCase : int = '' # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet _lowerCamelCase : int = (alphabet_letters.index(letter.lower() ) - shift) % len( lowercase__ ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter _lowerCamelCase : Optional[Any] = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: _lowerCamelCase : Optional[Any] = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message _lowerCamelCase : Any = decrypted_with_shift.lower().count(lowercase__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies _lowerCamelCase : Optional[int] = frequencies[letter] * occurrences # Complete the chi squared statistic formula _lowerCamelCase : int = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message _lowerCamelCase : str = decrypted_with_shift.count(lowercase__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies _lowerCamelCase : Optional[int] = frequencies[letter] * occurrences # Complete the chi squared statistic formula _lowerCamelCase : int = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary _lowerCamelCase : Tuple = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(lowercase__ ) -> tuple[float, str]: return chi_squared_statistic_values[key] _lowerCamelCase : int = min( lowercase__ , key=lowercase__ , ) # Get all the data from the most likely cipher (key, decoded message) ( ( _lowerCamelCase ), ( _lowerCamelCase ), ) : str = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
12
"""simple docstring""" def _snake_case ( lowercase__ ): # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection _lowerCamelCase : List[str] = len(lowercase__ ) _lowerCamelCase : List[str] = max(lowercase__ ) _lowerCamelCase : List[str] = min(lowercase__ ) # create the counting array _lowerCamelCase : List[Any] = coll_max + 1 - coll_min _lowerCamelCase : List[Any] = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , lowercase__ ): _lowerCamelCase : Optional[int] = counting_arr[i] + counting_arr[i - 1] # create the output collection _lowerCamelCase : Dict = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , lowercase__ ) ): _lowerCamelCase : Any = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def _snake_case ( lowercase__ ): return "".join([chr(lowercase__ ) for i in counting_sort([ord(lowercase__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("""thisisthestring""") == "eghhiiinrsssttt" lowercase__ = input("""Enter numbers separated by a comma:\n""").strip() lowercase__ = [int(item) for item in user_input.split(""",""")] print(counting_sort(unsorted))
12
1
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class lowercase__( unittest.TestCase ): """simple docstring""" def _lowercase ( self : List[str] ) -> List[Any]: lowercase_ = 1_0 def _lowercase ( self : int ) -> List[str]: lowercase_ = [1, 2, 3, 4] lowercase_ = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(SCREAMING_SNAKE_CASE_ , self.block_size , 0 ) , SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : int ) -> Optional[Any]: lowercase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] lowercase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] self.assertEqual(truncate_or_pad(SCREAMING_SNAKE_CASE_ , self.block_size , 0 ) , SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Union[str, Any] ) -> Optional[int]: lowercase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0, 1_1, 1_2, 1_3] lowercase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] self.assertEqual(truncate_or_pad(SCREAMING_SNAKE_CASE_ , self.block_size , 0 ) , SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Any ) -> List[Any]: lowercase_ = '''It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.''' lowercase_ , lowercase_ = process_story(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , [] ) def _lowercase ( self : List[str] ) -> List[str]: lowercase_ = '''''' lowercase_ , lowercase_ = process_story(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , [] ) self.assertEqual(SCREAMING_SNAKE_CASE_ , [] ) def _lowercase ( self : Union[str, Any] ) -> Union[str, Any]: lowercase_ = ( '''It was the year of Our Lord one thousand seven hundred and ''' '''seventy-five\n\nSpiritual revelations were conceded to England ''' '''at that favoured period, as at this.\n@highlight\n\nIt was the best of times''' ) lowercase_ , lowercase_ = process_story(SCREAMING_SNAKE_CASE_ ) lowercase_ = [ '''It was the year of Our Lord one thousand seven hundred and seventy-five.''', '''Spiritual revelations were conceded to England at that favoured period, as at this.''', ] self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = ['''It was the best of times.'''] self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Union[str, Any] ) -> Optional[Any]: lowercase_ = torch.tensor([1, 2, 3, 4] ) lowercase_ = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(SCREAMING_SNAKE_CASE_ , 0 ).numpy() , expected.numpy() ) def _lowercase ( self : List[Any] ) -> Tuple: lowercase_ = torch.tensor([1, 2, 3, 4, 2_3, 2_3, 2_3] ) lowercase_ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(SCREAMING_SNAKE_CASE_ , 2_3 ).numpy() , expected.numpy() ) def _lowercase ( self : int ) -> Dict: lowercase_ = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) lowercase_ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(SCREAMING_SNAKE_CASE_ , 1 ).numpy() , expected.numpy() ) def _lowercase ( self : List[str] ) -> Tuple: lowercase_ = 1_0_1 lowercase_ = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 1_0_1, 5, 6], [1, 1_0_1, 3, 4, 1_0_1, 6]] ) lowercase_ = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) lowercase_ = compute_token_type_ids(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) np.testing.assert_array_equal(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
30
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = inspect.getfile(accelerate.test_utils ) __a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) __a = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_distributed_data_loop.py'''] ) __a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_ops.py'''] ) @require_multi_gpu def __UpperCAmelCase ( self ): print(f'''Found {torch.cuda.device_count()} devices.''' ) __a = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_a , env=os.environ.copy() ) @require_multi_gpu def __UpperCAmelCase ( self ): print(f'''Found {torch.cuda.device_count()} devices.''' ) __a = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path] print(f'''Command: {cmd}''' ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_a , env=os.environ.copy() ) @require_multi_gpu def __UpperCAmelCase ( self ): __a = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_a , env=os.environ.copy() ) @require_multi_gpu def __UpperCAmelCase ( self ): print(f'''Found {torch.cuda.device_count()} devices, using 2 devices only''' ) __a = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices='''0,1''' ): execute_subprocess_async(_a , env=os.environ.copy() ) if __name__ == "__main__": lowercase_ = Accelerator() lowercase_ = (accelerator.state.process_index + 2, 1_0) lowercase_ = torch.randint(0, 1_0, shape).to(accelerator.device) lowercase_ = "" lowercase_ = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." lowercase_ = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." lowercase_ = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
45
0
import argparse import collections import json import os import re import string import sys import numpy as np lowerCAmelCase__ = re.compile(r'''\b(a|an|the)\b''', re.UNICODE) lowerCAmelCase__ = None def __lowerCamelCase ( ): """simple docstring""" lowercase__ : Tuple = argparse.ArgumentParser("Official evaluation script for SQuAD version 2.0." ) parser.add_argument("data_file" , metavar="data.json" , help="Input data JSON file." ) parser.add_argument("pred_file" , metavar="pred.json" , help="Model predictions." ) parser.add_argument( "--out-file" , "-o" , metavar="eval.json" , help="Write accuracy metrics to file (default is stdout)." ) parser.add_argument( "--na-prob-file" , "-n" , metavar="na_prob.json" , help="Model estimates of probability of no answer." ) parser.add_argument( "--na-prob-thresh" , "-t" , type=lowerCamelCase__ , default=1.0 , help="Predict \"\" if no-answer probability exceeds this (default = 1.0)." , ) parser.add_argument( "--out-image-dir" , "-p" , metavar="out_images" , default=lowerCamelCase__ , help="Save precision-recall curves to directory." ) parser.add_argument("--verbose" , "-v" , action="store_true" ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : List[Any] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowercase__ : Dict = bool(qa["answers"]["text"] ) return qid_to_has_ans def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" def remove_articles(lowerCamelCase__ ): return ARTICLES_REGEX.sub(" " , lowerCamelCase__ ) def white_space_fix(lowerCamelCase__ ): return " ".join(text.split() ) def remove_punc(lowerCamelCase__ ): lowercase__ : int = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(lowerCamelCase__ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowerCamelCase__ ) ) ) ) def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" if not s: return [] return normalize_answer(lowerCamelCase__ ).split() def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" return int(normalize_answer(lowerCamelCase__ ) == normalize_answer(lowerCamelCase__ ) ) def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowercase__ : int = get_tokens(lowerCamelCase__ ) lowercase__ : List[Any] = get_tokens(lowerCamelCase__ ) lowercase__ : Dict = collections.Counter(lowerCamelCase__ ) & collections.Counter(lowerCamelCase__ ) lowercase__ : Dict = sum(common.values() ) if len(lowerCamelCase__ ) == 0 or len(lowerCamelCase__ ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 lowercase__ : int = 1.0 * num_same / len(lowerCamelCase__ ) lowercase__ : List[str] = 1.0 * num_same / len(lowerCamelCase__ ) lowercase__ : Union[str, Any] = (2 * precision * recall) / (precision + recall) return fa def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowercase__ : Union[str, Any] = {} lowercase__ : str = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowercase__ : int = qa["id"] lowercase__ : str = [t for t in qa["answers"]["text"] if normalize_answer(lowerCamelCase__ )] if not gold_answers: # For unanswerable questions, only correct answer is empty string lowercase__ : Optional[int] = [""] if qid not in preds: print(F"""Missing prediction for {qid}""" ) continue lowercase__ : Tuple = preds[qid] # Take max over all gold answers lowercase__ : Tuple = max(compute_exact(lowerCamelCase__ , lowerCamelCase__ ) for a in gold_answers ) lowercase__ : Optional[int] = max(compute_fa(lowerCamelCase__ , lowerCamelCase__ ) for a in gold_answers ) return exact_scores, fa_scores def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowercase__ : int = {} for qid, s in scores.items(): lowercase__ : Optional[Any] = na_probs[qid] > na_prob_thresh if pred_na: lowercase__ : Optional[int] = float(not qid_to_has_ans[qid] ) else: lowercase__ : List[Any] = s return new_scores def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ): """simple docstring""" if not qid_list: lowercase__ : int = len(lowerCamelCase__ ) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores.values() ) / total), ("f1", 100.0 * sum(fa_scores.values() ) / total), ("total", total), ] ) else: lowercase__ : int = len(lowerCamelCase__ ) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ("f1", 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ("total", total), ] ) def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" for k in new_eval: lowercase__ : Optional[int] = new_eval[k] def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" plt.step(lowerCamelCase__ , lowerCamelCase__ , color="b" , alpha=0.2 , where="post" ) plt.fill_between(lowerCamelCase__ , lowerCamelCase__ , step="post" , alpha=0.2 , color="b" ) plt.xlabel("Recall" ) plt.ylabel("Precision" ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(lowerCamelCase__ ) plt.savefig(lowerCamelCase__ ) plt.clf() def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None ): """simple docstring""" lowercase__ : Union[str, Any] = sorted(lowerCamelCase__ , key=lambda lowerCamelCase__ : na_probs[k] ) lowercase__ : List[Any] = 0.0 lowercase__ : Union[str, Any] = 1.0 lowercase__ : List[str] = 0.0 lowercase__ : Tuple = [1.0] lowercase__ : Optional[Any] = [0.0] lowercase__ : Any = 0.0 for i, qid in enumerate(lowerCamelCase__ ): if qid_to_has_ans[qid]: true_pos += scores[qid] lowercase__ : Dict = true_pos / float(i + 1 ) lowercase__ : List[Any] = true_pos / float(lowerCamelCase__ ) if i == len(lowerCamelCase__ ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(lowerCamelCase__ ) recalls.append(lowerCamelCase__ ) if out_image: plot_pr_curve(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return {"ap": 100.0 * avg_prec} def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" if out_image_dir and not os.path.exists(lowerCamelCase__ ): os.makedirs(lowerCamelCase__ ) lowercase__ : Optional[int] = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return lowercase__ : Any = make_precision_recall_eval( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , out_image=os.path.join(lowerCamelCase__ , "pr_exact.png" ) , title="Precision-Recall curve for Exact Match score" , ) lowercase__ : str = make_precision_recall_eval( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , out_image=os.path.join(lowerCamelCase__ , "pr_f1.png" ) , title="Precision-Recall curve for F1 score" , ) lowercase__ : List[Any] = {k: float(lowerCamelCase__ ) for k, v in qid_to_has_ans.items()} lowercase__ : int = make_precision_recall_eval( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , out_image=os.path.join(lowerCamelCase__ , "pr_oracle.png" ) , title="Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)" , ) merge_eval(lowerCamelCase__ , lowerCamelCase__ , "pr_exact" ) merge_eval(lowerCamelCase__ , lowerCamelCase__ , "pr_f1" ) merge_eval(lowerCamelCase__ , lowerCamelCase__ , "pr_oracle" ) def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" if not qid_list: return lowercase__ : List[Any] = [na_probs[k] for k in qid_list] lowercase__ : int = np.ones_like(lowerCamelCase__ ) / float(len(lowerCamelCase__ ) ) plt.hist(lowerCamelCase__ , weights=lowerCamelCase__ , bins=20 , range=(0.0, 1.0) ) plt.xlabel("Model probability of no-answer" ) plt.ylabel("Proportion of dataset" ) plt.title(F"""Histogram of no-answer probability: {name}""" ) plt.savefig(os.path.join(lowerCamelCase__ , F"""na_prob_hist_{name}.png""" ) ) plt.clf() def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowercase__ : List[str] = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) lowercase__ : List[str] = num_no_ans lowercase__ : Union[str, Any] = cur_score lowercase__ : Optional[Any] = 0.0 lowercase__ : int = sorted(lowerCamelCase__ , key=lambda lowerCamelCase__ : na_probs[k] ) for i, qid in enumerate(lowerCamelCase__ ): if qid not in scores: continue if qid_to_has_ans[qid]: lowercase__ : Optional[Any] = scores[qid] else: if preds[qid]: lowercase__ : Optional[int] = -1 else: lowercase__ : int = 0 cur_score += diff if cur_score > best_score: lowercase__ : Tuple = cur_score lowercase__ : List[Any] = na_probs[qid] return 100.0 * best_score / len(lowerCamelCase__ ), best_thresh def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowercase__ , lowercase__ : Optional[Any] = find_best_thresh(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowercase__ , lowercase__ : str = find_best_thresh(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowercase__ : int = best_exact lowercase__ : Optional[Any] = exact_thresh lowercase__ : Union[str, Any] = best_fa lowercase__ : int = fa_thresh def __lowerCamelCase ( ): """simple docstring""" with open(OPTS.data_file ) as f: lowercase__ : Optional[int] = json.load(lowerCamelCase__ ) lowercase__ : Any = dataset_json["data"] with open(OPTS.pred_file ) as f: lowercase__ : Any = json.load(lowerCamelCase__ ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: lowercase__ : Optional[Any] = json.load(lowerCamelCase__ ) else: lowercase__ : Union[str, Any] = {k: 0.0 for k in preds} lowercase__ : List[str] = make_qid_to_has_ans(lowerCamelCase__ ) # maps qid to True/False lowercase__ : Tuple = [k for k, v in qid_to_has_ans.items() if v] lowercase__ : Any = [k for k, v in qid_to_has_ans.items() if not v] lowercase__ , lowercase__ : List[str] = get_raw_scores(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ : List[str] = apply_no_ans_threshold(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , OPTS.na_prob_thresh ) lowercase__ : Dict = apply_no_ans_threshold(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , OPTS.na_prob_thresh ) lowercase__ : List[str] = make_eval_dict(lowerCamelCase__ , lowerCamelCase__ ) if has_ans_qids: lowercase__ : List[Any] = make_eval_dict(lowerCamelCase__ , lowerCamelCase__ , qid_list=lowerCamelCase__ ) merge_eval(lowerCamelCase__ , lowerCamelCase__ , "HasAns" ) if no_ans_qids: lowercase__ : Any = make_eval_dict(lowerCamelCase__ , lowerCamelCase__ , qid_list=lowerCamelCase__ ) merge_eval(lowerCamelCase__ , lowerCamelCase__ , "NoAns" ) if OPTS.na_prob_file: find_all_best_thresh(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , OPTS.out_image_dir ) histogram_na_prob(lowerCamelCase__ , lowerCamelCase__ , OPTS.out_image_dir , "hasAns" ) histogram_na_prob(lowerCamelCase__ , lowerCamelCase__ , OPTS.out_image_dir , "noAns" ) if OPTS.out_file: with open(OPTS.out_file , "w" ) as f: json.dump(lowerCamelCase__ , lowerCamelCase__ ) else: print(json.dumps(lowerCamelCase__ , indent=2 ) ) if __name__ == "__main__": lowerCAmelCase__ = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('''Agg''') import matplotlib.pyplot as plt main()
121
import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('''At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training''') # TF training parameters lowerCAmelCase__ = False lowerCAmelCase__ = False def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" return TrainCommand(lowerCamelCase__ ) class snake_case__(_UpperCamelCase ): """simple docstring""" @staticmethod def snake_case ( SCREAMING_SNAKE_CASE : ArgumentParser ): lowercase__ : Optional[int] = parser.add_parser("train" , help="CLI tool to train a model on a task." ) train_parser.add_argument( "--train_data" , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help="path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences." , ) train_parser.add_argument( "--column_label" , type=SCREAMING_SNAKE_CASE , default=0 , help="Column of the dataset csv file with example labels." ) train_parser.add_argument( "--column_text" , type=SCREAMING_SNAKE_CASE , default=1 , help="Column of the dataset csv file with example texts." ) train_parser.add_argument( "--column_id" , type=SCREAMING_SNAKE_CASE , default=2 , help="Column of the dataset csv file with example ids." ) train_parser.add_argument( "--skip_first_row" , action="store_true" , help="Skip the first row of the csv file (headers)." ) train_parser.add_argument("--validation_data" , type=SCREAMING_SNAKE_CASE , default="" , help="path to validation dataset." ) train_parser.add_argument( "--validation_split" , type=SCREAMING_SNAKE_CASE , default=0.1 , help="if validation dataset is not provided, fraction of train dataset to use as validation dataset." , ) train_parser.add_argument("--output" , type=SCREAMING_SNAKE_CASE , default="./" , help="path to saved the trained model." ) train_parser.add_argument( "--task" , type=SCREAMING_SNAKE_CASE , default="text_classification" , help="Task to train the model on." ) train_parser.add_argument( "--model" , type=SCREAMING_SNAKE_CASE , default="bert-base-uncased" , help="Model's name or path to stored model." ) train_parser.add_argument("--train_batch_size" , type=SCREAMING_SNAKE_CASE , default=32 , help="Batch size for training." ) train_parser.add_argument("--valid_batch_size" , type=SCREAMING_SNAKE_CASE , default=64 , help="Batch size for validation." ) train_parser.add_argument("--learning_rate" , type=SCREAMING_SNAKE_CASE , default=3E-5 , help="Learning rate." ) train_parser.add_argument("--adam_epsilon" , type=SCREAMING_SNAKE_CASE , default=1E-0_8 , help="Epsilon for Adam optimizer." ) train_parser.set_defaults(func=SCREAMING_SNAKE_CASE ) def __init__( self : int , SCREAMING_SNAKE_CASE : Namespace ): lowercase__ : int = logging.get_logger("transformers-cli/training" ) lowercase__ : List[Any] = "tf" if is_tf_available() else "torch" os.makedirs(args.output , exist_ok=SCREAMING_SNAKE_CASE ) lowercase__ : Optional[Any] = args.output lowercase__ : Union[str, Any] = args.column_label lowercase__ : Optional[int] = args.column_text lowercase__ : Optional[int] = args.column_id self.logger.info(f"""Loading {args.task} pipeline for {args.model}""" ) if args.task == "text_classification": lowercase__ : int = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f"""Loading dataset from {args.train_data}""" ) lowercase__ : List[str] = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) lowercase__ : Union[str, Any] = None if args.validation_data: self.logger.info(f"""Loading validation dataset from {args.validation_data}""" ) lowercase__ : Optional[int] = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) lowercase__ : Dict = args.validation_split lowercase__ : List[str] = args.train_batch_size lowercase__ : Any = args.valid_batch_size lowercase__ : Optional[int] = args.learning_rate lowercase__ : int = args.adam_epsilon def snake_case ( self : Dict ): if self.framework == "tf": return self.run_tf() return self.run_torch() def snake_case ( self : Union[str, Any] ): raise NotImplementedError def snake_case ( self : Union[str, Any] ): self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
121
1
"""simple docstring""" def A_ ( _lowerCAmelCase : list, _lowerCAmelCase : list, _lowerCAmelCase : int ): """simple docstring""" if len(_lowerCAmelCase ) != len(_lowerCAmelCase ): raise ValueError('''The length of profit and weight must be same.''' ) if max_weight <= 0: raise ValueError('''max_weight must greater than zero.''' ) if any(p < 0 for p in profit ): raise ValueError('''Profit can not be negative.''' ) if any(w < 0 for w in weight ): raise ValueError('''Weight can not be negative.''' ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. _a = [p / w for p, w in zip(_lowerCAmelCase, _lowerCAmelCase )] # Creating a copy of the list and sorting profit/weight in ascending order _a = sorted(_lowerCAmelCase ) # declaring useful variables _a = len(_lowerCAmelCase ) _a = 0 _a = 0 _a = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight _a = sorted_profit_by_weight[length - i - 1] _a = profit_by_weight.index(_lowerCAmelCase ) _a = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( '''Input profits, weights, and then max_weight (all positive ints) separated by ''' '''spaces.''' ) __snake_case = [int(x) for x in input('''Input profits separated by spaces: ''').split()] __snake_case = [int(x) for x in input('''Input weights separated by spaces: ''').split()] __snake_case = int(input('''Max weight allowed: ''')) # Function Call calc_profit(profit, weight, max_weight)
320
"""simple docstring""" import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class __lowerCamelCase ( a__ ): '''simple docstring''' @require_torch def _UpperCAmelCase ( self ) -> Union[str, Any]: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache _a = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(__UpperCAmelCase ) BertModel.from_pretrained(__UpperCAmelCase ) BertTokenizer.from_pretrained(__UpperCAmelCase ) pipeline(task='''fill-mask''' , model=__UpperCAmelCase ) # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed _a = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a = '''1''' _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def _UpperCAmelCase ( self ) -> List[Any]: # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache _a = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(__UpperCAmelCase ) BertModel.from_pretrained(__UpperCAmelCase ) BertTokenizer.from_pretrained(__UpperCAmelCase ) pipeline(task='''fill-mask''' , model=__UpperCAmelCase ) # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed _a = self.get_env() _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def _UpperCAmelCase ( self ) -> Optional[Any]: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a = ''' from transformers import BertConfig, BertModel, BertTokenizer ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed _a = self.get_env() _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # next emulate no network _a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a = '''1''' _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def _UpperCAmelCase ( self ) -> Tuple: _a = ''' from transformers import pipeline ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' _a = self.get_env() _a = '''1''' _a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( '''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , ) @require_torch def _UpperCAmelCase ( self ) -> List[Any]: _a = ''' from transformers import AutoModel ''' _a = ''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed _a = self.get_env() _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a = '''1''' _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() )
320
1
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
310
"""simple docstring""" import torch from transformers import AutoModel class __SCREAMING_SNAKE_CASE ( torch.nn.Module ): '''simple docstring''' def __init__( self : Dict , __a : Tuple="sayef/fsner-bert-base-uncased" ) -> Dict: super(__a , self ).__init__() _UpperCamelCase : Optional[Any] = AutoModel.from_pretrained(__a , return_dict=__a ) _UpperCamelCase : str = torch.nn.CosineSimilarity(3 , 1e-0_8 ) _UpperCamelCase : List[str] = torch.nn.Softmax(dim=1 ) def __SCREAMING_SNAKE_CASE ( self : int , **__a : Tuple ) -> Optional[Any]: return self.bert(**__a ).last_hidden_state def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : Optional[Any] ) -> Optional[int]: return token_embeddings.sum(2 , keepdim=__a ) def __SCREAMING_SNAKE_CASE ( self : str , __a : Any , __a : List[Any] , __a : Tuple=1 ) -> List[Any]: return self.softmax(T * self.cos(__a , __a ) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : List[str] , __a : Dict ) -> Union[str, Any]: _UpperCamelCase : str = W_supports["sizes"].tolist() _UpperCamelCase : Any = W_supports["start_token_id"].item() _UpperCamelCase : Optional[Any] = W_supports["end_token_id"].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] _UpperCamelCase : str = self.BERT(**__a ) _UpperCamelCase : int = self.BERT(**__a ) _UpperCamelCase : int = None _UpperCamelCase : Optional[int] = None _UpperCamelCase : List[Any] = W_supports["input_ids"] == start_token_id _UpperCamelCase : Optional[int] = W_supports["input_ids"] == end_token_id for i, size in enumerate(__a ): if i == 0: _UpperCamelCase : Dict = 0 else: _UpperCamelCase : Any = support_sizes[i - 1] _UpperCamelCase : Dict = S[s : s + size][start_token_masks[s : s + size]] _UpperCamelCase : Optional[int] = S[s : s + size][end_token_masks[s : s + size]] _UpperCamelCase : List[Any] = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) _UpperCamelCase : Any = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: _UpperCamelCase : Any = torch.vstack((p_starts, p_start) ) _UpperCamelCase : Any = torch.vstack((p_ends, p_end) ) else: _UpperCamelCase : Optional[Any] = p_start _UpperCamelCase : str = p_end return p_starts, p_ends
310
1
"""simple docstring""" import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class a : def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Any=13 , __SCREAMING_SNAKE_CASE : Tuple=7 , __SCREAMING_SNAKE_CASE : Optional[int]=True , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : List[Any]=False , __SCREAMING_SNAKE_CASE : Tuple=True , __SCREAMING_SNAKE_CASE : List[Any]=99 , __SCREAMING_SNAKE_CASE : Dict=64 , __SCREAMING_SNAKE_CASE : List[Any]=5 , __SCREAMING_SNAKE_CASE : Tuple=4 , __SCREAMING_SNAKE_CASE : Optional[Any]=64 , __SCREAMING_SNAKE_CASE : Union[str, Any]="gelu" , __SCREAMING_SNAKE_CASE : Optional[int]=0.1 , __SCREAMING_SNAKE_CASE : List[str]=0.1 , __SCREAMING_SNAKE_CASE : Tuple=512 , __SCREAMING_SNAKE_CASE : Tuple=16 , __SCREAMING_SNAKE_CASE : List[str]=2 , __SCREAMING_SNAKE_CASE : Tuple=0.02 , __SCREAMING_SNAKE_CASE : Any=3 , __SCREAMING_SNAKE_CASE : str=4 , __SCREAMING_SNAKE_CASE : List[Any]=None , ) -> Union[str, Any]: lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_input_mask lowerCamelCase_ = use_token_type_ids lowerCamelCase_ = use_labels lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = num_labels lowerCamelCase_ = num_choices lowerCamelCase_ = scope def UpperCamelCase ( self : List[str] ) -> str: return MPNetConfig.from_pretrained('microsoft/mpnet-base' ) def UpperCamelCase ( self : Dict ) -> Any: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_input_mask: lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self : Optional[Any] ) -> int: return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def UpperCamelCase ( self : Any , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict ) -> List[Any]: lowerCamelCase_ = MPNetModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() lowerCamelCase_ = model(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase ( self : Any , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Tuple ) -> int: lowerCamelCase_ = MPNetForQuestionAnswering(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() lowerCamelCase_ = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , start_positions=lowerCamelCase__ , end_positions=lowerCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple ) -> List[Any]: lowerCamelCase_ = self.num_labels lowerCamelCase_ = MPNetForSequenceClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() lowerCamelCase_ = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Tuple ) -> str: lowerCamelCase_ = self.num_choices lowerCamelCase_ = MPNetForMultipleChoice(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() lowerCamelCase_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase_ = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , labels=lowerCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase ( self : str , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : str ) -> Any: lowerCamelCase_ = self.num_labels lowerCamelCase_ = MPNetForTokenClassification(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() lowerCamelCase_ = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: lowerCamelCase_ = self.prepare_config_and_inputs() ((lowerCamelCase_) , (lowerCamelCase_) , (lowerCamelCase_) , (lowerCamelCase_) , (lowerCamelCase_) , (lowerCamelCase_)) = config_and_inputs lowerCamelCase_ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE : List[Any] = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : str = ( { "feature-extraction": MPNetModel, "fill-mask": MPNetForMaskedLM, "question-answering": MPNetForQuestionAnswering, "text-classification": MPNetForSequenceClassification, "token-classification": MPNetForTokenClassification, "zero-shot": MPNetForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : Tuple = False SCREAMING_SNAKE_CASE : Tuple = True def UpperCamelCase ( self : int ) -> Tuple: lowerCamelCase_ = MPNetModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 ) def UpperCamelCase ( self : Optional[int] ) -> Optional[int]: self.config_tester.run_common_tests() def UpperCamelCase ( self : Dict ) -> Optional[Any]: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*lowerCamelCase__ ) def UpperCamelCase ( self : Union[str, Any] ) -> Dict: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*lowerCamelCase__ ) def UpperCamelCase ( self : int ) -> Optional[int]: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*lowerCamelCase__ ) def UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*lowerCamelCase__ ) def UpperCamelCase ( self : List[Any] ) -> Tuple: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*lowerCamelCase__ ) @require_torch class a ( unittest.TestCase ): @slow def UpperCamelCase ( self : Tuple ) -> Tuple: lowerCamelCase_ = MPNetModel.from_pretrained('microsoft/mpnet-base' ) lowerCamelCase_ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) lowerCamelCase_ = model(lowerCamelCase__ )[0] lowerCamelCase_ = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , lowerCamelCase__ ) lowerCamelCase_ = torch.tensor( [[[-0.0_550, 0.1_943, -0.0_740], [-0.0_562, 0.2_211, -0.0_579], [-0.0_437, 0.3_337, -0.0_641]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCamelCase__ , atol=1e-4 ) )
183
import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments SCREAMING_SNAKE_CASE_ = logging.getLogger(__name__) @dataclass class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : Optional[float] = field( default=0.0 , metadata={"help": "The label smoothing epsilon to apply (if not zero)."} ) __snake_case : bool = field(default=lowerCAmelCase_ , metadata={"help": "Whether to SortishSamler or not."} ) __snake_case : bool = field( default=lowerCAmelCase_ , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) __snake_case : bool = field(default=lowerCAmelCase_ , metadata={"help": "whether to use adafactor"} ) __snake_case : Optional[float] = field( default=lowerCAmelCase_ , metadata={"help": "Encoder layer dropout probability. Goes into model.config."} ) __snake_case : Optional[float] = field( default=lowerCAmelCase_ , metadata={"help": "Decoder layer dropout probability. Goes into model.config."} ) __snake_case : Optional[float] = field(default=lowerCAmelCase_ , metadata={"help": "Dropout probability. Goes into model.config."} ) __snake_case : Optional[float] = field( default=lowerCAmelCase_ , metadata={"help": "Attention dropout probability. Goes into model.config."} ) __snake_case : Optional[str] = field( default="linear" , metadata={"help": F"Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"} , )
296
0
"""simple docstring""" import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __magic_name__ (__lowercase , unittest.TestCase ): lowerCamelCase__ = DDIMPipeline lowerCamelCase__ = UNCONDITIONAL_IMAGE_GENERATION_PARAMS lowerCamelCase__ = PipelineTesterMixin.required_optional_params - { '''num_images_per_prompt''', '''latents''', '''callback''', '''callback_steps''', } lowerCamelCase__ = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS lowerCamelCase__ = False def __a ( self ) -> List[Any]: torch.manual_seed(0 ) lowerCAmelCase_ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) lowerCAmelCase_ = DDIMScheduler() lowerCAmelCase_ = {"unet": unet, "scheduler": scheduler} return components def __a ( self , _a , _a=0 ) -> List[Any]: if str(_a ).startswith("mps" ): lowerCAmelCase_ = torch.manual_seed(_a ) else: lowerCAmelCase_ = torch.Generator(device=_a ).manual_seed(_a ) lowerCAmelCase_ = { "batch_size": 1, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def __a ( self ) -> Optional[int]: lowerCAmelCase_ = "cpu" lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = self.get_dummy_inputs(_a ) lowerCAmelCase_ = pipe(**_a ).images lowerCAmelCase_ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) lowerCAmelCase_ = np.array( [1.000E00, 5.717E-01, 4.717E-01, 1.000E00, 0.000E00, 1.000E00, 3.000E-04, 0.000E00, 9.000E-04] ) lowerCAmelCase_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_a , 1E-3 ) def __a ( self ) -> Tuple: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def __a ( self ) -> Union[str, Any]: super().test_save_load_local(expected_max_difference=3E-3 ) def __a ( self ) -> Dict: super().test_save_load_optional_components(expected_max_difference=3E-3 ) def __a ( self ) -> Dict: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __magic_name__ (unittest.TestCase ): def __a ( self ) -> Optional[int]: lowerCAmelCase_ = "google/ddpm-cifar10-32" lowerCAmelCase_ = UNetaDModel.from_pretrained(_a ) lowerCAmelCase_ = DDIMScheduler() lowerCAmelCase_ = DDIMPipeline(unet=_a , scheduler=_a ) ddim.to(_a ) ddim.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = ddim(generator=_a , eta=0.0 , output_type="numpy" ).images lowerCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase_ = np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = "google/ddpm-ema-bedroom-256" lowerCAmelCase_ = UNetaDModel.from_pretrained(_a ) lowerCAmelCase_ = DDIMScheduler.from_pretrained(_a ) lowerCAmelCase_ = DDIMPipeline(unet=_a , scheduler=_a ) ddpm.to(_a ) ddpm.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = ddpm(generator=_a , output_type="numpy" ).images lowerCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowerCAmelCase_ = np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
353
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __magic_name__ (__lowercase ): lowerCamelCase__ = ['''image_processor''', '''tokenizer'''] lowerCamelCase__ = '''ViTImageProcessor''' lowerCamelCase__ = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self , _a=None , _a=None , **_a ) -> Tuple: lowerCAmelCase_ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , _a , ) lowerCAmelCase_ = kwargs.pop("feature_extractor" ) lowerCAmelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(_a , _a ) def __call__( self , _a=None , _a=None , _a=None , _a=None , **_a ) -> Dict: if text is None and visual_prompt is None and images is None: raise ValueError("You have to specify either text, visual prompt or images." ) if text is not None and visual_prompt is not None: raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt." ) if text is not None: lowerCAmelCase_ = self.tokenizer(_a , return_tensors=_a , **_a ) if visual_prompt is not None: lowerCAmelCase_ = self.image_processor(_a , return_tensors=_a , **_a ) if images is not None: lowerCAmelCase_ = self.image_processor(_a , return_tensors=_a , **_a ) if visual_prompt is not None and images is not None: lowerCAmelCase_ = { "pixel_values": image_features.pixel_values, "conditional_pixel_values": prompt_features.pixel_values, } return encoding elif text is not None and images is not None: lowerCAmelCase_ = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: lowerCAmelCase_ = { "conditional_pixel_values": prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**_a ) , tensor_type=_a ) def __a ( self , *_a , **_a ) -> List[str]: return self.tokenizer.batch_decode(*_a , **_a ) def __a ( self , *_a , **_a ) -> Optional[int]: return self.tokenizer.decode(*_a , **_a ) @property def __a ( self ) -> List[str]: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , _a , ) return self.image_processor_class @property def __a ( self ) -> Optional[Any]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , _a , ) return self.image_processor
22
0
"""simple docstring""" from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class _snake_case ( nn.Module ): def __init__( self : Tuple , UpperCAmelCase : int = 16 , UpperCAmelCase : int = 88 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 1 , UpperCAmelCase : float = 0.0 , UpperCAmelCase : int = 32 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : str = "geglu" , UpperCAmelCase : Optional[int] = None , ): super().__init__() __lowerCamelCase : Optional[Any] = nn.ModuleList( [ TransformeraDModel( num_attention_heads=UpperCAmelCase , attention_head_dim=UpperCAmelCase , in_channels=UpperCAmelCase , num_layers=UpperCAmelCase , dropout=UpperCAmelCase , norm_num_groups=UpperCAmelCase , cross_attention_dim=UpperCAmelCase , attention_bias=UpperCAmelCase , sample_size=UpperCAmelCase , num_vector_embeds=UpperCAmelCase , activation_fn=UpperCAmelCase , num_embeds_ada_norm=UpperCAmelCase , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference __lowerCamelCase : Any = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` __lowerCamelCase : Optional[Any] = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` __lowerCamelCase : List[str] = [1, 0] def lowerCamelCase__ ( self : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : Any=None , UpperCAmelCase : bool = True , ): __lowerCamelCase : Any = hidden_states __lowerCamelCase : Any = [] __lowerCamelCase : int = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens __lowerCamelCase : List[str] = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] __lowerCamelCase : Any = self.transformer_index_for_condition[i] __lowerCamelCase : Optional[Any] = self.transformers[transformer_index]( UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , timestep=UpperCAmelCase , cross_attention_kwargs=UpperCAmelCase , return_dict=UpperCAmelCase , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] __lowerCamelCase : Any = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) __lowerCamelCase : Union[str, Any] = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=UpperCAmelCase )
135
"""simple docstring""" import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) __A = '''hf-internal-testing/tiny-random-bert''' __A = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''') __A = '''9b8c223d42b2188cb49d29af482996f9d0f3e5a6''' class _snake_case ( unittest.TestCase ): def lowerCamelCase__ ( self : Any ): __lowerCamelCase : Dict = cached_file(UpperCAmelCase , UpperCAmelCase ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(UpperCAmelCase ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(UpperCAmelCase , UpperCAmelCase ) ) ) with open(os.path.join(UpperCAmelCase , "refs" , "main" ) ) as f: __lowerCamelCase : Dict = f.read() self.assertEqual(UpperCAmelCase , os.path.join(UpperCAmelCase , "snapshots" , UpperCAmelCase , UpperCAmelCase ) ) self.assertTrue(os.path.isfile(UpperCAmelCase ) ) # File is cached at the same place the second time. __lowerCamelCase : Tuple = cached_file(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) # Using a specific revision to test the full commit hash. __lowerCamelCase : List[str] = cached_file(UpperCAmelCase , UpperCAmelCase , revision="9b8c223" ) self.assertEqual(UpperCAmelCase , os.path.join(UpperCAmelCase , "snapshots" , UpperCAmelCase , UpperCAmelCase ) ) def lowerCamelCase__ ( self : List[str] ): with self.assertRaisesRegex(UpperCAmelCase , "is not a valid model identifier" ): __lowerCamelCase : Optional[Any] = cached_file("tiny-random-bert" , UpperCAmelCase ) with self.assertRaisesRegex(UpperCAmelCase , "is not a valid git identifier" ): __lowerCamelCase : Dict = cached_file(UpperCAmelCase , UpperCAmelCase , revision="aaaa" ) with self.assertRaisesRegex(UpperCAmelCase , "does not appear to have a file named" ): __lowerCamelCase : List[Any] = cached_file(UpperCAmelCase , "conf" ) def lowerCamelCase__ ( self : str ): with self.assertRaisesRegex(UpperCAmelCase , "does not appear to have a file named" ): __lowerCamelCase : Any = cached_file(UpperCAmelCase , "conf" ) with open(os.path.join(UpperCAmelCase , "refs" , "main" ) ) as f: __lowerCamelCase : List[str] = f.read() self.assertTrue(os.path.isfile(os.path.join(UpperCAmelCase , ".no_exist" , UpperCAmelCase , "conf" ) ) ) __lowerCamelCase : List[str] = cached_file(UpperCAmelCase , "conf" , _raise_exceptions_for_missing_entries=UpperCAmelCase ) self.assertIsNone(UpperCAmelCase ) __lowerCamelCase : Optional[Any] = cached_file(UpperCAmelCase , "conf" , local_files_only=UpperCAmelCase , _raise_exceptions_for_missing_entries=UpperCAmelCase ) self.assertIsNone(UpperCAmelCase ) __lowerCamelCase : str = mock.Mock() __lowerCamelCase : Union[str, Any] = 500 __lowerCamelCase : Tuple = {} __lowerCamelCase : Dict = HTTPError __lowerCamelCase : Any = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=UpperCAmelCase ) as mock_head: __lowerCamelCase : Any = cached_file(UpperCAmelCase , "conf" , _raise_exceptions_for_connection_errors=UpperCAmelCase ) self.assertIsNone(UpperCAmelCase ) # This check we did call the fake head request mock_head.assert_called() def lowerCamelCase__ ( self : str ): self.assertTrue(has_file("hf-internal-testing/tiny-bert-pt-only" , UpperCAmelCase ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , UpperCAmelCase ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , UpperCAmelCase ) ) def lowerCamelCase__ ( self : Any ): # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo("bert-base-cased" , "ahah.txt" ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(UpperCAmelCase , "is not a valid model identifier" ): get_file_from_repo("bert-base-case" , UpperCAmelCase ) # The function raises if the revision does not exist. with self.assertRaisesRegex(UpperCAmelCase , "is not a valid git identifier" ): get_file_from_repo("bert-base-cased" , UpperCAmelCase , revision="ahaha" ) __lowerCamelCase : str = get_file_from_repo("bert-base-cased" , UpperCAmelCase ) # The name is the cached name which is not very easy to test, so instead we load the content. __lowerCamelCase : Tuple = json.loads(open(UpperCAmelCase , "r" ).read() ) self.assertEqual(config["hidden_size"] , 768 ) def lowerCamelCase__ ( self : Any ): with tempfile.TemporaryDirectory() as tmp_dir: __lowerCamelCase : Union[str, Any] = Path(UpperCAmelCase ) / "a.txt" filename.touch() self.assertEqual(get_file_from_repo(UpperCAmelCase , "a.txt" ) , str(UpperCAmelCase ) ) self.assertIsNone(get_file_from_repo(UpperCAmelCase , "b.txt" ) )
135
1
'''simple docstring''' class _snake_case ( lowercase_ ): pass class _snake_case ( lowercase_ ): pass class _snake_case : def __init__( self ) -> Tuple: '''simple docstring''' snake_case_ = [ [], [], [], ] def lowerCAmelCase__ ( self , a__ , a__ ) -> None: '''simple docstring''' try: if len(self.queues[priority] ) >= 100: raise OverflowError("Maximum queue size is 100" ) self.queues[priority].append(a__ ) except IndexError: raise ValueError("Valid priorities are 0, 1, and 2" ) def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError("All queues are empty" ) def __str__( self ) -> str: '''simple docstring''' return "\n".join(F'Priority {i}: {q}' for i, q in enumerate(self.queues ) ) class _snake_case : def __init__( self ) -> Tuple: '''simple docstring''' snake_case_ = [] def lowerCAmelCase__ ( self , a__ ) -> None: '''simple docstring''' if len(self.queue ) == 100: raise OverFlowError("Maximum queue size is 100" ) self.queue.append(a__ ) def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' if not self.queue: raise UnderFlowError("The queue is empty" ) else: snake_case_ = min(self.queue ) self.queue.remove(a__ ) return data def __str__( self ) -> str: '''simple docstring''' return str(self.queue ) def UpperCamelCase_( ): '''simple docstring''' snake_case_ = FixedPriorityQueue() fpq.enqueue(0 , 1_0 ) fpq.enqueue(1 , 7_0 ) fpq.enqueue(0 , 1_0_0 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 6_4 ) fpq.enqueue(0 , 1_2_8 ) print(snake_case ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(snake_case ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def UpperCamelCase_( ): '''simple docstring''' snake_case_ = ElementPriorityQueue() epq.enqueue(1_0 ) epq.enqueue(7_0 ) epq.enqueue(1_0_0 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(6_4 ) epq.enqueue(1_2_8 ) print(snake_case ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(snake_case ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
364
'''simple docstring''' def UpperCamelCase_( snake_case : list[int] , snake_case : int ): '''simple docstring''' snake_case_ = len(snake_case ) snake_case_ = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): snake_case_ = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): snake_case_ = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: snake_case_ = subset[i - 1][j] if arr[i - 1] <= j: snake_case_ = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
92
0
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _lowerCamelCase( _a, _a, _a, unittest.TestCase ): lowercase_ : Any = StableUnCLIPImgaImgPipeline lowercase_ : int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS lowercase_ : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowercase_ : List[Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowercase_ : Dict = frozenset([] ) def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : List[Any] = 32 _lowercase : Tuple = embedder_hidden_size # image encoding components _lowercase : Dict = CLIPImageProcessor(crop_size=32, size=32) torch.manual_seed(0) _lowercase : Optional[Any] = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=lowerCamelCase, projection_dim=lowerCamelCase, num_hidden_layers=5, num_attention_heads=4, image_size=32, intermediate_size=37, patch_size=1, )) # regular denoising components torch.manual_seed(0) _lowercase : int = StableUnCLIPImageNormalizer(embedding_dim=lowerCamelCase) _lowercase : str = DDPMScheduler(beta_schedule='squaredcos_cap_v2') torch.manual_seed(0) _lowercase : Dict = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') torch.manual_seed(0) _lowercase : Any = CLIPTextModel( CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=lowerCamelCase, projection_dim=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=10_00, )) torch.manual_seed(0) _lowercase : Optional[Any] = UNetaDConditionModel( sample_size=32, in_channels=4, out_channels=4, down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D'), up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D'), block_out_channels=(32, 64), attention_head_dim=(2, 4), class_embed_type='projection', projection_class_embeddings_input_dim=embedder_projection_dim * 2, cross_attention_dim=lowerCamelCase, layers_per_block=1, upcast_attention=lowerCamelCase, use_linear_projection=lowerCamelCase, ) torch.manual_seed(0) _lowercase : int = DDIMScheduler( beta_schedule='scaled_linear', beta_start=0.0_0_0_8_5, beta_end=0.0_1_2, prediction_type='v_prediction', set_alpha_to_one=lowerCamelCase, steps_offset=1, ) torch.manual_seed(0) _lowercase : Dict = AutoencoderKL() _lowercase : Any = { # image encoding components 'feature_extractor': feature_extractor, 'image_encoder': image_encoder.eval(), # image noising components 'image_normalizer': image_normalizer.eval(), 'image_noising_scheduler': image_noising_scheduler, # regular denoising components 'tokenizer': tokenizer, 'text_encoder': text_encoder.eval(), 'unet': unet.eval(), 'scheduler': scheduler, 'vae': vae.eval(), } return components def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=0, lowerCamelCase=True) -> str: """simple docstring""" if str(lowerCamelCase).startswith('mps'): _lowercase : str = torch.manual_seed(lowerCamelCase) else: _lowercase : Optional[int] = torch.Generator(device=lowerCamelCase).manual_seed(lowerCamelCase) _lowercase : Optional[Any] = floats_tensor((1, 3, 32, 32), rng=random.Random(lowerCamelCase)).to(lowerCamelCase) if pil_image: _lowercase : Optional[Any] = input_image * 0.5 + 0.5 _lowercase : Any = input_image.clamp(0, 1) _lowercase : Optional[int] = input_image.cpu().permute(0, 2, 3, 1).float().numpy() _lowercase : List[str] = DiffusionPipeline.numpy_to_pil(lowerCamelCase)[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowercase : Tuple = self.get_dummy_components() _lowercase : List[Any] = StableUnCLIPImgaImgPipeline(**lowerCamelCase) _lowercase : Optional[int] = sd_pipe.to(lowerCamelCase) sd_pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Optional[int] = self.get_dummy_inputs(lowerCamelCase) inputs.update({'image_embeds': None}) _lowercase : int = sd_pipe(**lowerCamelCase).images _lowercase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _lowercase : str = np.array([0.3_8_7_2, 0.7_2_2_4, 0.5_6_0_1, 0.4_7_4_1, 0.6_8_7_2, 0.5_8_1_4, 0.4_6_3_6, 0.3_8_6_7, 0.5_0_7_8]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Tuple = torch_device in ['cpu', 'mps'] self._test_attention_slicing_forward_pass(test_max_difference=lowerCamelCase) def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : Tuple = torch_device in ['cpu', 'mps'] self._test_inference_batch_single_identical(test_max_difference=lowerCamelCase) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available(), reason='XFormers attention is only available with CUDA and `xformers` installed', ) def UpperCamelCase ( self) -> List[Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_max_difference=lowerCamelCase) @slow @require_torch_gpu class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> int: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png') _lowercase : List[str] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy') _lowercase : int = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-l-img2img', torch_dtype=torch.floataa) pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _lowercase : Optional[int] = torch.Generator(device='cpu').manual_seed(0) _lowercase : Optional[int] = pipe(lowerCamelCase, 'anime turle', generator=lowerCamelCase, output_type='np') _lowercase : Union[str, Any] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png') _lowercase : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy') _lowercase : str = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-h-img2img', torch_dtype=torch.floataa) pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _lowercase : Optional[int] = torch.Generator(device='cpu').manual_seed(0) _lowercase : str = pipe(lowerCamelCase, 'anime turle', generator=lowerCamelCase, output_type='np') _lowercase : Union[str, Any] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png') torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _lowercase : Optional[Any] = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-h-img2img', torch_dtype=torch.floataa) _lowercase : Optional[int] = pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _lowercase : Any = pipe( lowerCamelCase, 'anime turtle', num_inference_steps=2, output_type='np', ) _lowercase : str = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
21
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer SCREAMING_SNAKE_CASE : str = "bart" SCREAMING_SNAKE_CASE : Optional[int] = True @st.cache(allow_output_mutation=lowerCamelCase_ ) def UpperCamelCase_( ) -> int: if LOAD_DENSE_INDEX: _lowercase : str = AutoTokenizer.from_pretrained('yjernite/retribert-base-uncased' ) _lowercase : Union[str, Any] = AutoModel.from_pretrained('yjernite/retribert-base-uncased' ).to('cuda:0' ) _lowercase : str = qar_model.eval() else: _lowercase , _lowercase : Any = (None, None) if MODEL_TYPE == "bart": _lowercase : Dict = AutoTokenizer.from_pretrained('yjernite/bart_eli5' ) _lowercase : int = AutoModelForSeqaSeqLM.from_pretrained('yjernite/bart_eli5' ).to('cuda:0' ) _lowercase : Any = torch.load('seq2seq_models/eli5_bart_model_blm_2.pth' ) sas_model.load_state_dict(save_dict['model'] ) _lowercase : List[Any] = sas_model.eval() else: _lowercase , _lowercase : Union[str, Any] = make_qa_sas_model( model_name='t5-small' , from_file='seq2seq_models/eli5_t5_model_1024_4.pth' , device='cuda:0' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=lowerCamelCase_ ) def UpperCamelCase_( ) -> str: if LOAD_DENSE_INDEX: _lowercase : Optional[Any] = faiss.StandardGpuResources() _lowercase : Optional[int] = datasets.load_dataset(path='wiki_snippets' , name='wiki40b_en_100_0' )['train'] _lowercase : Tuple = np.memmap( 'wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat' , dtype='float32' , mode='r' , shape=(wikiaab_passages.num_rows, 128) , ) _lowercase : Any = faiss.IndexFlatIP(128 ) _lowercase : Union[str, Any] = faiss.index_cpu_to_gpu(lowerCamelCase_ , 1 , lowerCamelCase_ ) wikiaab_gpu_index_flat.add(lowerCamelCase_ ) # TODO fix for larger GPU else: _lowercase , _lowercase : Any = (None, None) _lowercase : List[str] = Elasticsearch([{'host': 'localhost', 'port': '9200'}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=lowerCamelCase_ ) def UpperCamelCase_( ) -> Any: _lowercase : List[str] = datasets.load_dataset('eli5' , name='LFQA_reddit' ) _lowercase : Optional[Any] = elia['train_eli5'] _lowercase : Tuple = np.memmap( 'eli5_questions_reps.dat' , dtype='float32' , mode='r' , shape=(elia_train.num_rows, 128) ) _lowercase : Union[str, Any] = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(lowerCamelCase_ ) return (elia_train, eli5_train_q_index) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = load_indexes() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = load_models() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = load_train_data() def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_=10 ) -> List[str]: _lowercase : Any = embed_questions_for_retrieval([question] , lowerCamelCase_ , lowerCamelCase_ ) _lowercase , _lowercase : List[str] = eli5_train_q_index.search(lowerCamelCase_ , lowerCamelCase_ ) _lowercase : List[str] = [elia_train[int(lowerCamelCase_ )] for i in I[0]] return nn_examples def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_="wiki40b" , lowerCamelCase_="dense" , lowerCamelCase_=10 ) -> Dict: if source == "none": _lowercase , _lowercase : Union[str, Any] = (' <P> '.join(['' for _ in range(11 )] ).strip(), []) else: if method == "dense": _lowercase , _lowercase : Dict = query_qa_dense_index( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) else: _lowercase , _lowercase : str = query_es_index( lowerCamelCase_ , lowerCamelCase_ , index_name='english_wiki40b_snippets_100w' , n_results=lowerCamelCase_ , ) _lowercase : List[Any] = [ (res['article_title'], res['section_title'].strip(), res['score'], res['passage_text']) for res in hit_lst ] _lowercase : Union[str, Any] = 'question: {} context: {}'.format(lowerCamelCase_ , lowerCamelCase_ ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda lowerCamelCase_ : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda lowerCamelCase_ : None), } ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=64 , lowerCamelCase_=256 , lowerCamelCase_=False , lowerCamelCase_=2 , lowerCamelCase_=0.95 , lowerCamelCase_=0.8 ) -> Dict: with torch.no_grad(): _lowercase : str = qa_sas_generate( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , num_answers=1 , num_beams=lowerCamelCase_ , min_len=lowerCamelCase_ , max_len=lowerCamelCase_ , do_sample=lowerCamelCase_ , temp=lowerCamelCase_ , top_p=lowerCamelCase_ , top_k=lowerCamelCase_ , max_input_length=1024 , device='cuda:0' , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar SCREAMING_SNAKE_CASE : Union[str, Any] = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" SCREAMING_SNAKE_CASE : List[Any] = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia SCREAMING_SNAKE_CASE : Any = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) SCREAMING_SNAKE_CASE : Union[str, Any] = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] SCREAMING_SNAKE_CASE : Optional[int] = st.sidebar.checkbox("Demo options") if demo_options: SCREAMING_SNAKE_CASE : List[str] = st.sidebar.selectbox( "", action_list, index=3, ) SCREAMING_SNAKE_CASE : Optional[int] = action_list.index(action_st) SCREAMING_SNAKE_CASE : Tuple = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) SCREAMING_SNAKE_CASE : int = show_type == "Show full text of passages" else: SCREAMING_SNAKE_CASE : Any = 3 SCREAMING_SNAKE_CASE : Dict = True SCREAMING_SNAKE_CASE : Union[str, Any] = st.sidebar.checkbox("Retrieval options") if retrieval_options: SCREAMING_SNAKE_CASE : Tuple = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) SCREAMING_SNAKE_CASE : Dict = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) SCREAMING_SNAKE_CASE : Union[str, Any] = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: SCREAMING_SNAKE_CASE : int = "wiki40b" SCREAMING_SNAKE_CASE : int = "dense" SCREAMING_SNAKE_CASE : str = "beam" SCREAMING_SNAKE_CASE : Optional[Any] = 2 SCREAMING_SNAKE_CASE : List[str] = 64 SCREAMING_SNAKE_CASE : Union[str, Any] = 256 SCREAMING_SNAKE_CASE : Union[str, Any] = None SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : str = st.sidebar.checkbox("Generation options") if generate_options: SCREAMING_SNAKE_CASE : Any = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) SCREAMING_SNAKE_CASE : List[Any] = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) SCREAMING_SNAKE_CASE : Tuple = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) SCREAMING_SNAKE_CASE : int = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": SCREAMING_SNAKE_CASE : int = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: SCREAMING_SNAKE_CASE : Union[str, Any] = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) SCREAMING_SNAKE_CASE : Any = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) SCREAMING_SNAKE_CASE : str = None # start main text SCREAMING_SNAKE_CASE : List[str] = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] SCREAMING_SNAKE_CASE : str = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": SCREAMING_SNAKE_CASE : List[str] = st.text_input("Enter your question here:", "") else: SCREAMING_SNAKE_CASE : Optional[int] = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = make_support(question, source=wiki_source, method="dense", n_results=10) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = make_support(question, source=wiki_source, method="sparse", n_results=10) SCREAMING_SNAKE_CASE : Tuple = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] SCREAMING_SNAKE_CASE : Optional[Any] = support_list[:10] SCREAMING_SNAKE_CASE : int = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): SCREAMING_SNAKE_CASE : Optional[Any] = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) SCREAMING_SNAKE_CASE : List[Any] = res[1].strip() if sec_titles == "": SCREAMING_SNAKE_CASE : Union[str, Any] = "[{}]({})".format(res[0], wiki_url) else: SCREAMING_SNAKE_CASE : Any = sec_titles.split(" & ") SCREAMING_SNAKE_CASE : List[Any] = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: SCREAMING_SNAKE_CASE : str = find_nearest_training(question) SCREAMING_SNAKE_CASE : Any = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) SCREAMING_SNAKE_CASE : str = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) SCREAMING_SNAKE_CASE : Tuple = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
21
1
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch lowercase_ = logging.get_logger(__name__) @add_end_docstrings( _UpperCAmelCase , R'\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n ' , ) class A ( _UpperCAmelCase ): """simple docstring""" def snake_case__ ( self : str,lowercase_ : GenericTensor )-> Any: '''simple docstring''' if self.framework == "tf": A__ = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": A__ = torch.nonzero(input_ids == self.tokenizer.mask_token_id,as_tuple=_a ) else: raise ValueError('Unsupported framework' ) return masked_index def snake_case__ ( self : Tuple,lowercase_ : GenericTensor )-> Tuple: '''simple docstring''' A__ = self.get_masked_index(_a ) A__ = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( 'fill-mask',self.model.base_model_prefix,F'No mask_token ({self.tokenizer.mask_token}) found on the input',) def snake_case__ ( self : int,lowercase_ : GenericTensor )-> Tuple: '''simple docstring''' if isinstance(_a,_a ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['input_ids'][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(_a ) def snake_case__ ( self : List[Any],lowercase_ : int,lowercase_ : Dict=None,**lowercase_ : int )-> Optional[Any]: '''simple docstring''' if return_tensors is None: A__ = self.framework A__ = self.tokenizer(_a,return_tensors=_a ) self.ensure_exactly_one_mask_token(_a ) return model_inputs def snake_case__ ( self : Tuple,lowercase_ : Any )-> List[Any]: '''simple docstring''' A__ = self.model(**_a ) A__ = model_inputs['input_ids'] return model_outputs def snake_case__ ( self : str,lowercase_ : str,lowercase_ : Dict=5,lowercase_ : str=None )-> Tuple: '''simple docstring''' if target_ids is not None and target_ids.shape[0] < top_k: A__ = target_ids.shape[0] A__ = model_outputs['input_ids'][0] A__ = model_outputs['logits'] if self.framework == "tf": A__ = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] A__ = outputs.numpy() A__ = outputs[0, masked_index, :] A__ = stable_softmax(_a,axis=-1 ) if target_ids is not None: A__ = tf.gather_nd(tf.squeeze(_a,0 ),target_ids.reshape(-1,1 ) ) A__ = tf.expand_dims(_a,0 ) A__ = tf.math.top_k(_a,k=_a ) A__ , A__ = topk.values.numpy(), topk.indices.numpy() else: A__ = torch.nonzero(input_ids == self.tokenizer.mask_token_id,as_tuple=_a ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample A__ = outputs[0, masked_index, :] A__ = logits.softmax(dim=-1 ) if target_ids is not None: A__ = probs[..., target_ids] A__ , A__ = probs.topk(_a ) A__ = [] A__ = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist(),predictions.tolist() ) ): A__ = [] for v, p in zip(_values,_predictions ): # Copy is important since we're going to modify this array in place A__ = input_ids.numpy().copy() if target_ids is not None: A__ = target_ids[p].tolist() A__ = p # Filter padding out: A__ = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back A__ = self.tokenizer.decode(_a,skip_special_tokens=_a ) A__ = {'score': v, 'token': p, 'token_str': self.tokenizer.decode([p] ), 'sequence': sequence} row.append(_a ) result.append(_a ) if single_mask: return result[0] return result def snake_case__ ( self : List[str],lowercase_ : List[str],lowercase_ : List[Any]=None )-> str: '''simple docstring''' if isinstance(_a,_a ): A__ = [targets] try: A__ = self.tokenizer.get_vocab() except Exception: A__ = {} A__ = [] for target in targets: A__ = vocab.get(_a,_a ) if id_ is None: A__ = self.tokenizer( _a,add_special_tokens=_a,return_attention_mask=_a,return_token_type_ids=_a,max_length=1,truncation=_a,)['input_ids'] if len(_a ) == 0: logger.warning( F'The specified target token `{target}` does not exist in the model vocabulary. ' 'We cannot replace it with anything meaningful, ignoring it' ) continue A__ = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F'The specified target token `{target}` does not exist in the model vocabulary. ' F'Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.' ) target_ids.append(id_ ) A__ = list(set(_a ) ) if len(_a ) == 0: raise ValueError('At least one target must be provided when passed.' ) A__ = np.array(_a ) return target_ids def snake_case__ ( self : Any,lowercase_ : Any=None,lowercase_ : Optional[Any]=None )-> Dict: '''simple docstring''' A__ = {} if targets is not None: A__ = self.get_target_ids(_a,_a ) A__ = target_ids if top_k is not None: A__ = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( 'fill-mask',self.model.base_model_prefix,'The tokenizer does not define a `mask_token`.' ) return {}, {}, postprocess_params def __call__( self : Tuple,lowercase_ : Any,*lowercase_ : Optional[Any],**lowercase_ : List[str] )-> str: '''simple docstring''' A__ = super().__call__(_a,**_a ) if isinstance(_a,_a ) and len(_a ) == 1: return outputs[0] return outputs
363
import random def _snake_case( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : str ) -> tuple: '''simple docstring''' A__ , A__ , A__ = [], [], [] for element in data: if element < pivot: less.append(SCREAMING_SNAKE_CASE__ ) elif element > pivot: greater.append(SCREAMING_SNAKE_CASE__ ) else: equal.append(SCREAMING_SNAKE_CASE__ ) return less, equal, greater def _snake_case( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : int ) -> str: '''simple docstring''' if index >= len(SCREAMING_SNAKE_CASE__ ) or index < 0: return None A__ = items[random.randint(0 , len(SCREAMING_SNAKE_CASE__ ) - 1 )] A__ = 0 A__ , A__ , A__ = _partition(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ = len(SCREAMING_SNAKE_CASE__ ) A__ = len(SCREAMING_SNAKE_CASE__ ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # must be in larger else: return quick_select(SCREAMING_SNAKE_CASE__ , index - (m + count) )
282
0
'''simple docstring''' def __a(SCREAMING_SNAKE_CASE_ : list[list[int | float]] ): '''simple docstring''' _lowerCAmelCase = len(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = len(matrix[0] ) _lowerCAmelCase = min(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for row in range(SCREAMING_SNAKE_CASE_ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = matrix[col][row] / matrix[row][row] for i in range(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows _lowerCAmelCase = True for i in range(row + 1 , SCREAMING_SNAKE_CASE_ ): if matrix[i][row] != 0: _lowerCAmelCase , _lowerCAmelCase = matrix[i], matrix[row] _lowerCAmelCase = False break if reduce: rank -= 1 for i in range(SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
158
'''simple docstring''' from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] ): '''simple docstring''' return {key.lstrip("-" ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def __a(): '''simple docstring''' _lowerCAmelCase = ArgumentParser( "HuggingFace Datasets CLI tool" , usage="datasets-cli <command> [<args>]" , allow_abbrev=SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = parser.add_subparsers(help="datasets-cli command helpers" ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(SCREAMING_SNAKE_CASE_ ) EnvironmentCommand.register_subcommand(SCREAMING_SNAKE_CASE_ ) TestCommand.register_subcommand(SCREAMING_SNAKE_CASE_ ) RunBeamCommand.register_subcommand(SCREAMING_SNAKE_CASE_ ) DummyDataCommand.register_subcommand(SCREAMING_SNAKE_CASE_ ) # Parse args _lowerCAmelCase , _lowerCAmelCase = parser.parse_known_args() if not hasattr(SCREAMING_SNAKE_CASE_ , "func" ): parser.print_help() exit(1 ) _lowerCAmelCase = parse_unknown_args(SCREAMING_SNAKE_CASE_ ) # Run _lowerCAmelCase = args.func(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) service.run() if __name__ == "__main__": main()
158
1
'''simple docstring''' import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets UpperCAmelCase : Union[str, Any] = '\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n' UpperCAmelCase : Optional[Any] = '\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy.\n' UpperCAmelCase : Any = R'\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting "1/2" to "\\frac{1}{2}")\n\nExamples:\n >>> metric = datasets.load_metric("competition_math")\n >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"])\n >>> print(results)\n {\'accuracy\': 1.0}\n' @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self : Optional[Any] ) -> int: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" ), """references""": datasets.Value("""string""" ), } ) , homepage="""https://github.com/hendrycks/math""" , codebase_urls=["""https://github.com/hendrycks/math"""] , ) def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = 0.0 for i, j in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): n_correct += 1.0 if math_equivalence.is_equiv(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else 0.0 __SCREAMING_SNAKE_CASE = n_correct / len(__SCREAMING_SNAKE_CASE ) return { "accuracy": accuracy, }
331
'''simple docstring''' import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast UpperCAmelCase : List[str] = datasets.utils.logging.get_logger(__name__) @dataclass class lowerCAmelCase__ ( datasets.BuilderConfig ): """simple docstring""" lowerCAmelCase__ = 10000 lowerCAmelCase__ = None lowerCAmelCase__ = None class lowerCAmelCase__ ( datasets.ArrowBasedBuilder ): """simple docstring""" lowerCAmelCase__ = ParquetConfig def UpperCAmelCase__ ( self : List[str] ) -> List[Any]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def UpperCAmelCase__ ( self : str , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Tuple: """simple docstring""" if not self.config.data_files: raise ValueError(f'At least one data file must be specified, but got data_files={self.config.data_files}' ) __SCREAMING_SNAKE_CASE = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__SCREAMING_SNAKE_CASE , (str, list, tuple) ): __SCREAMING_SNAKE_CASE = data_files if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __SCREAMING_SNAKE_CASE = [dl_manager.iter_files(__SCREAMING_SNAKE_CASE ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] __SCREAMING_SNAKE_CASE = [] for split_name, files in data_files.items(): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __SCREAMING_SNAKE_CASE = [dl_manager.iter_files(__SCREAMING_SNAKE_CASE ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(__SCREAMING_SNAKE_CASE ): with open(__SCREAMING_SNAKE_CASE , """rb""" ) as f: __SCREAMING_SNAKE_CASE = datasets.Features.from_arrow_schema(pq.read_schema(__SCREAMING_SNAKE_CASE ) ) break splits.append(datasets.SplitGenerator(name=__SCREAMING_SNAKE_CASE , gen_kwargs={"""files""": files} ) ) return splits def UpperCAmelCase__ ( self : Optional[int] , __SCREAMING_SNAKE_CASE : pa.Table ) -> pa.Table: """simple docstring""" if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __SCREAMING_SNAKE_CASE = table_cast(__SCREAMING_SNAKE_CASE , self.info.features.arrow_schema ) return pa_table def UpperCAmelCase__ ( self : Tuple , __SCREAMING_SNAKE_CASE : int ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f'Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'' ) for file_idx, file in enumerate(itertools.chain.from_iterable(__SCREAMING_SNAKE_CASE ) ): with open(__SCREAMING_SNAKE_CASE , """rb""" ) as f: __SCREAMING_SNAKE_CASE = pq.ParquetFile(__SCREAMING_SNAKE_CASE ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): __SCREAMING_SNAKE_CASE = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f'{file_idx}_{batch_idx}', self._cast_table(__SCREAMING_SNAKE_CASE ) except ValueError as e: logger.error(f'Failed to read file \'{file}\' with error {type(__SCREAMING_SNAKE_CASE )}: {e}' ) raise
331
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A__ : Dict = { '''configuration_albert''': ['''ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AlbertConfig''', '''AlbertOnnxConfig'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Dict = ['''AlbertTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Union[str, Any] = ['''AlbertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Dict = [ '''ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AlbertForMaskedLM''', '''AlbertForMultipleChoice''', '''AlbertForPreTraining''', '''AlbertForQuestionAnswering''', '''AlbertForSequenceClassification''', '''AlbertForTokenClassification''', '''AlbertModel''', '''AlbertPreTrainedModel''', '''load_tf_weights_in_albert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : str = [ '''TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFAlbertForMaskedLM''', '''TFAlbertForMultipleChoice''', '''TFAlbertForPreTraining''', '''TFAlbertForQuestionAnswering''', '''TFAlbertForSequenceClassification''', '''TFAlbertForTokenClassification''', '''TFAlbertMainLayer''', '''TFAlbertModel''', '''TFAlbertPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : List[str] = [ '''FlaxAlbertForMaskedLM''', '''FlaxAlbertForMultipleChoice''', '''FlaxAlbertForPreTraining''', '''FlaxAlbertForQuestionAnswering''', '''FlaxAlbertForSequenceClassification''', '''FlaxAlbertForTokenClassification''', '''FlaxAlbertModel''', '''FlaxAlbertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys A__ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
207
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed snake_case : List[Any] = logging.getLogger(__name__) def __lowercase ( __lowerCAmelCase : str=2 , __lowerCAmelCase : Optional[int]=3 , __lowerCAmelCase : List[str]=1_6 , __lowerCAmelCase : int = 1_0 , __lowerCAmelCase : int = 2 ): def get_dataset(__lowerCAmelCase : Dict ): a__ = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(__lowerCAmelCase , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) a__ = get_dataset(__lowerCAmelCase ) a__ = get_dataset(__lowerCAmelCase ) a__ = DataLoader(__lowerCAmelCase , shuffle=__lowerCAmelCase , batch_size=__lowerCAmelCase , num_workers=4 ) a__ = DataLoader(__lowerCAmelCase , shuffle=__lowerCAmelCase , batch_size=__lowerCAmelCase , num_workers=4 ) return (train_dataloader, valid_dataloader) def __lowercase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int]=None ): a__ = [] for epoch in range(__lowerCAmelCase ): # Train quickly model.train() for batch in dataloader: a__ , a__ = batch a__ = model(__lowerCAmelCase ) a__ = torch.nn.functional.mse_loss(__lowerCAmelCase , __lowerCAmelCase ) accelerator.backward(__lowerCAmelCase ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class snake_case_ (nn.Module ): def __init__( self :Any ) -> Union[str, Any]: super().__init__() a__ = nn.Parameter(torch.randn(1 ) ) a__ = nn.Parameter(torch.randn(1 ) ) def lowerCamelCase__( self :List[str] ,__snake_case :Union[str, Any] ) -> str: return x * self.a + self.b class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Tuple ) -> Dict: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) a__ = DummyModel() a__ = torch.optim.Adam(params=model.parameters() ,lr=1E-3 ) a__ , a__ = dummy_dataloaders() a__ = ProjectConfiguration(total_limit=1 ,project_dir=__snake_case ,automatic_checkpoint_naming=__snake_case ) # Train baseline a__ = Accelerator(project_config=__snake_case ) a__ , a__ , a__ , a__ = accelerator.prepare( __snake_case ,__snake_case ,__snake_case ,__snake_case ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) ,1 ) def lowerCamelCase__( self :List[Any] ) -> str: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) a__ = DummyModel() a__ = torch.optim.Adam(params=model.parameters() ,lr=1E-3 ) a__ , a__ = dummy_dataloaders() # Train baseline a__ = Accelerator() a__ , a__ , a__ , a__ = accelerator.prepare( __snake_case ,__snake_case ,__snake_case ,__snake_case ) # Save initial a__ = os.path.join(__snake_case ,'initial' ) accelerator.save_state(__snake_case ) ((a__) , (a__)) = model.a.item(), model.b.item() a__ = optimizer.state_dict() a__ = train(3 ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) ((a__) , (a__)) = model.a.item(), model.b.item() a__ = optimizer.state_dict() # Train partially set_seed(42 ) a__ = DummyModel() a__ = torch.optim.Adam(params=model.parameters() ,lr=1E-3 ) a__ , a__ = dummy_dataloaders() a__ = Accelerator() a__ , a__ , a__ , a__ = accelerator.prepare( __snake_case ,__snake_case ,__snake_case ,__snake_case ) accelerator.load_state(__snake_case ) ((a__) , (a__)) = model.a.item(), model.b.item() a__ = optimizer.state_dict() self.assertEqual(__snake_case ,__snake_case ) self.assertEqual(__snake_case ,__snake_case ) self.assertEqual(__snake_case ,__snake_case ) a__ = train(2 ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) # Save everything a__ = os.path.join(__snake_case ,'checkpoint' ) accelerator.save_state(__snake_case ) # Load everything back in and make sure all states work accelerator.load_state(__snake_case ) test_rands += train(1 ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) ((a__) , (a__)) = model.a.item(), model.b.item() a__ = optimizer.state_dict() self.assertEqual(__snake_case ,__snake_case ) self.assertEqual(__snake_case ,__snake_case ) self.assertEqual(__snake_case ,__snake_case ) self.assertEqual(__snake_case ,__snake_case ) def lowerCamelCase__( self :str ) -> List[str]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) a__ = DummyModel() a__ = torch.optim.Adam(params=model.parameters() ,lr=1E-3 ) a__ , a__ = dummy_dataloaders() a__ = ProjectConfiguration(automatic_checkpoint_naming=__snake_case ) # Train baseline a__ = Accelerator(project_dir=__snake_case ,project_config=__snake_case ) a__ , a__ , a__ , a__ = accelerator.prepare( __snake_case ,__snake_case ,__snake_case ,__snake_case ) # Save initial accelerator.save_state() ((a__) , (a__)) = model.a.item(), model.b.item() a__ = optimizer.state_dict() a__ = train(3 ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) ((a__) , (a__)) = model.a.item(), model.b.item() a__ = optimizer.state_dict() # Train partially set_seed(42 ) a__ = DummyModel() a__ = torch.optim.Adam(params=model.parameters() ,lr=1E-3 ) a__ , a__ = dummy_dataloaders() a__ = ProjectConfiguration(iteration=1 ,automatic_checkpoint_naming=__snake_case ) a__ = Accelerator(project_dir=__snake_case ,project_config=__snake_case ) a__ , a__ , a__ , a__ = accelerator.prepare( __snake_case ,__snake_case ,__snake_case ,__snake_case ) accelerator.load_state(os.path.join(__snake_case ,'checkpoints' ,'checkpoint_0' ) ) ((a__) , (a__)) = model.a.item(), model.b.item() a__ = optimizer.state_dict() self.assertEqual(__snake_case ,__snake_case ) self.assertEqual(__snake_case ,__snake_case ) self.assertEqual(__snake_case ,__snake_case ) a__ = train(2 ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(__snake_case ,'checkpoints' ,'checkpoint_1' ) ) test_rands += train(1 ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) ((a__) , (a__)) = model.a.item(), model.b.item() a__ = optimizer.state_dict() self.assertEqual(__snake_case ,__snake_case ) self.assertEqual(__snake_case ,__snake_case ) self.assertEqual(__snake_case ,__snake_case ) self.assertEqual(__snake_case ,__snake_case ) def lowerCamelCase__( self :Union[str, Any] ) -> List[str]: a__ = torch.tensor([1, 2, 3] ) a__ = torch.tensor([2, 3, 4] ) a__ = DummyModel() a__ = torch.optim.Adam(net.parameters() ) a__ = Accelerator() with self.assertRaises(__snake_case ) as ve: accelerator.register_for_checkpointing(__snake_case ,__snake_case ,__snake_case ,__snake_case ) a__ = str(ve.exception ) self.assertTrue('Item at index 0' in message ) self.assertTrue('Item at index 1' in message ) self.assertFalse('Item at index 2' in message ) self.assertFalse('Item at index 3' in message ) def lowerCamelCase__( self :List[Any] ) -> Dict: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) a__ = DummyModel() a__ = torch.optim.Adam(params=model.parameters() ,lr=1E-3 ) a__ = torch.optim.lr_scheduler.StepLR(__snake_case ,step_size=1 ,gamma=0.99 ) a__ , a__ = dummy_dataloaders() a__ = ProjectConfiguration(automatic_checkpoint_naming=__snake_case ) # Train baseline a__ = Accelerator(project_dir=__snake_case ,project_config=__snake_case ) a__ , a__ , a__ , a__ , a__ = accelerator.prepare( __snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) # Save initial accelerator.save_state() a__ = scheduler.state_dict() train(3 ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) self.assertNotEqual(__snake_case ,scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(__snake_case ,'checkpoints' ,'checkpoint_0' ) ) self.assertEqual(__snake_case ,scheduler.state_dict() ) def lowerCamelCase__( self :Optional[int] ) -> List[str]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) a__ = DummyModel() a__ = ProjectConfiguration(automatic_checkpoint_naming=__snake_case ,total_limit=2 ) # Train baseline a__ = Accelerator(project_dir=__snake_case ,project_config=__snake_case ) a__ = accelerator.prepare(__snake_case ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(__snake_case ,'checkpoints' ,'checkpoint_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(__snake_case ,'checkpoints' ,'checkpoint_9' ) ) ) self.assertTrue(os.path.exists(os.path.join(__snake_case ,'checkpoints' ,'checkpoint_10' ) ) ) @require_cuda def lowerCamelCase__( self :Dict ) -> str: a__ = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] execute_subprocess_async(__snake_case ,env=os.environ.copy() ) if __name__ == "__main__": snake_case : Tuple = '''/tmp/accelerate/state_checkpointing''' snake_case : str = DummyModel() snake_case : List[Any] = torch.optim.Adam(params=model.parameters(), lr=1e-3) snake_case : Union[str, Any] = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) snake_case , snake_case : str = dummy_dataloaders() snake_case : Union[str, Any] = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline snake_case : Dict = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='''no''') if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) snake_case , snake_case , snake_case , snake_case , snake_case : List[str] = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) snake_case , snake_case : Any = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: snake_case : Any = group['''params'''][0].device break assert param_device.type == accelerator.device.type snake_case : Union[str, Any] = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''cpu''') for group in optimizer.param_groups: snake_case : int = group['''params'''][0].device break assert ( param_device.type == torch.device('''cpu''').type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''on_device''') for group in optimizer.param_groups: snake_case : Optional[int] = group['''params'''][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match='''Unsupported optimizer map location passed'''): accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''invalid''') accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
240
0
"""simple docstring""" from __future__ import annotations A__ : Any = tuple[int, int, int] A__ : Any = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase A__ : Optional[Any] = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' # -------------------------- default selection -------------------------- # rotors -------------------------- A__ : List[Any] = 'EGZWVONAHDCLFQMSIPJBYUKXTR' A__ : Dict = 'FOBHMDKEXQNRAULPGSJVTYICZW' A__ : List[Any] = 'ZJXESIUQLHAVRMDOYGTNFWPBKC' # reflector -------------------------- A__ : Optional[Any] = { 'A': 'N', 'N': 'A', 'B': 'O', 'O': 'B', 'C': 'P', 'P': 'C', 'D': 'Q', 'Q': 'D', 'E': 'R', 'R': 'E', 'F': 'S', 'S': 'F', 'G': 'T', 'T': 'G', 'H': 'U', 'U': 'H', 'I': 'V', 'V': 'I', 'J': 'W', 'W': 'J', 'K': 'X', 'X': 'K', 'L': 'Y', 'Y': 'L', 'M': 'Z', 'Z': 'M', } # -------------------------- extra rotors -------------------------- A__ : Dict = 'RMDJXFUWGISLHVTCQNKYPBEZOA' A__ : Optional[int] = 'SGLCPQWZHKXAREONTFBVIYJUDM' A__ : Any = 'HVSICLTYKQUBXDWAJZOMFGPREN' A__ : Union[str, Any] = 'RZWQHFMVDBKICJLNTUXAGYPSOE' A__ : List[str] = 'LFKIJODBEGAMQPXVUHYSTCZRWN' A__ : Tuple = 'KOAEGVDHXPQZMLFTYWJNBRCIUS' def _snake_case ( lowerCamelCase__ : RotorPositionT , lowerCamelCase__ : RotorSelectionT , lowerCamelCase__ : str ) -> tuple[RotorPositionT, RotorSelectionT, dict[str, str]]: # Checks if there are 3 unique rotors if (unique_rotsel := len(set(lowerCamelCase__ ) )) < 3: lowerCamelCase_ : int =F"""Please use 3 unique rotors (not {unique_rotsel})""" raise Exception(lowerCamelCase__ ) # Checks if rotor positions are valid lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Tuple =rotpos if not 0 < rotorposa <= len(lowerCamelCase__ ): lowerCamelCase_ : Optional[int] =F"""First rotor position is not within range of 1..26 ({rotorposa}""" raise ValueError(lowerCamelCase__ ) if not 0 < rotorposa <= len(lowerCamelCase__ ): lowerCamelCase_ : Union[str, Any] =F"""Second rotor position is not within range of 1..26 ({rotorposa})""" raise ValueError(lowerCamelCase__ ) if not 0 < rotorposa <= len(lowerCamelCase__ ): lowerCamelCase_ : Tuple =F"""Third rotor position is not within range of 1..26 ({rotorposa})""" raise ValueError(lowerCamelCase__ ) # Validates string and returns dict lowerCamelCase_ : Tuple =_plugboard(lowerCamelCase__ ) return rotpos, rotsel, pbdict def _snake_case ( lowerCamelCase__ : str ) -> dict[str, str]: # tests the input string if it # a) is type string # b) has even length (so pairs can be made) if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ : Tuple =F"""Plugboard setting isn't type string ({type(lowerCamelCase__ )})""" raise TypeError(lowerCamelCase__ ) elif len(lowerCamelCase__ ) % 2 != 0: lowerCamelCase_ : List[Any] =F"""Odd number of symbols ({len(lowerCamelCase__ )})""" raise Exception(lowerCamelCase__ ) elif pbstring == "": return {} pbstring.replace(" " , "" ) # Checks if all characters are unique lowerCamelCase_ : str =set() for i in pbstring: if i not in abc: lowerCamelCase_ : Dict =F"""'{i}' not in list of symbols""" raise Exception(lowerCamelCase__ ) elif i in tmppbl: lowerCamelCase_ : str =F"""Duplicate symbol ({i})""" raise Exception(lowerCamelCase__ ) else: tmppbl.add(lowerCamelCase__ ) del tmppbl # Created the dictionary lowerCamelCase_ : List[Any] ={} for j in range(0 , len(lowerCamelCase__ ) - 1 , 2 ): lowerCamelCase_ : Union[str, Any] =pbstring[j + 1] lowerCamelCase_ : List[Any] =pbstring[j] return pb def _snake_case ( lowerCamelCase__ : str , lowerCamelCase__ : RotorPositionT , lowerCamelCase__ : RotorSelectionT = (rotora, rotora, rotora) , lowerCamelCase__ : str = "" , ) -> str: lowerCamelCase_ : List[str] =text.upper() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Optional[int] =_validator( lowerCamelCase__ , lowerCamelCase__ , plugb.upper() ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : List[str] =rotor_position lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : str =rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 lowerCamelCase_ : Union[str, Any] =[] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: lowerCamelCase_ : Dict =plugboard[symbol] # rotor ra -------------------------- lowerCamelCase_ : int =abc.index(lowerCamelCase__ ) + rotorposa lowerCamelCase_ : Dict =rotora[index % len(lowerCamelCase__ )] # rotor rb -------------------------- lowerCamelCase_ : Optional[int] =abc.index(lowerCamelCase__ ) + rotorposa lowerCamelCase_ : List[Any] =rotora[index % len(lowerCamelCase__ )] # rotor rc -------------------------- lowerCamelCase_ : Any =abc.index(lowerCamelCase__ ) + rotorposa lowerCamelCase_ : Any =rotora[index % len(lowerCamelCase__ )] # reflector -------------------------- # this is the reason you don't need another machine to decipher lowerCamelCase_ : Any =reflector[symbol] # 2nd rotors lowerCamelCase_ : Tuple =abc[rotora.index(lowerCamelCase__ ) - rotorposa] lowerCamelCase_ : Union[str, Any] =abc[rotora.index(lowerCamelCase__ ) - rotorposa] lowerCamelCase_ : Tuple =abc[rotora.index(lowerCamelCase__ ) - rotorposa] # 2nd plugboard if symbol in plugboard: lowerCamelCase_ : int =plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(lowerCamelCase__ ): lowerCamelCase_ : Tuple =0 rotorposa += 1 if rotorposa >= len(lowerCamelCase__ ): lowerCamelCase_ : List[str] =0 rotorposa += 1 if rotorposa >= len(lowerCamelCase__ ): lowerCamelCase_ : Tuple =0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(lowerCamelCase__ ) return "".join(lowerCamelCase__ ) if __name__ == "__main__": A__ : List[Any] = 'This is my Python script that emulates the Enigma machine from WWII.' A__ : Union[str, Any] = (1, 1, 1) A__ : int = 'pictures' A__ : Union[str, Any] = (rotora, rotora, rotora) A__ : int = enigma(message, rotor_pos, rotor_sel, pb) print('Encrypted message:', en) print('Decrypted message:', enigma(en, rotor_pos, rotor_sel, pb))
209
"""simple docstring""" def _snake_case ( lowerCamelCase__ : Optional[Any] ) -> Optional[int]: if not head: return True # split the list to two parts lowerCamelCase_ , lowerCamelCase_ : Union[str, Any] =head.next, head while fast and fast.next: lowerCamelCase_ : Optional[Any] =fast.next.next lowerCamelCase_ : str =slow.next lowerCamelCase_ : Tuple =slow.next lowerCamelCase_ : Any =None # Don't forget here! But forget still works! # reverse the second part lowerCamelCase_ : List[str] =None while second: lowerCamelCase_ : Any =second.next lowerCamelCase_ : Union[str, Any] =node lowerCamelCase_ : Union[str, Any] =second lowerCamelCase_ : Optional[Any] =nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False lowerCamelCase_ : List[str] =node.next lowerCamelCase_ : Optional[Any] =head.next return True def _snake_case ( lowerCamelCase__ : str ) -> Optional[int]: if not head or not head.next: return True # 1. Get the midpoint (slow) lowerCamelCase_ : List[str] =head while fast and fast.next: lowerCamelCase_ , lowerCamelCase_ : Union[str, Any] =fast.next.next, slow.next # 2. Push the second half into the stack lowerCamelCase_ : List[Any] =[slow.val] while slow.next: lowerCamelCase_ : List[Any] =slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False lowerCamelCase_ : Union[str, Any] =cur.next return True def _snake_case ( lowerCamelCase__ : Dict ) -> Optional[Any]: if not head or not head.next: return True lowerCamelCase_ : Union[str, Any] ={} lowerCamelCase_ : List[Any] =0 while head: if head.val in d: d[head.val].append(lowerCamelCase__ ) else: lowerCamelCase_ : List[str] =[pos] lowerCamelCase_ : Optional[int] =head.next pos += 1 lowerCamelCase_ : Union[str, Any] =pos - 1 lowerCamelCase_ : Optional[int] =0 for v in d.values(): if len(lowerCamelCase__ ) % 2 != 0: middle += 1 else: lowerCamelCase_ : Optional[Any] =0 for i in range(0 , len(lowerCamelCase__ ) ): if v[i] + v[len(lowerCamelCase__ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
209
1
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class lowerCamelCase (_snake_case ): '''simple docstring''' def __UpperCAmelCase ( self , _UpperCamelCase ) -> int: with open(_UpperCamelCase , encoding='utf-8' ) as input_file: UpperCAmelCase_ : int = re.compile(r'(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)' ) UpperCAmelCase_ : Dict = input_file.read() UpperCAmelCase_ : Union[str, Any] = regexp.search(_UpperCamelCase ) return match def __UpperCAmelCase ( self , _UpperCamelCase ) -> Union[str, Any]: with open(_UpperCamelCase , encoding='utf-8' ) as input_file: UpperCAmelCase_ : Tuple = re.compile(r'#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()' , re.DOTALL ) UpperCAmelCase_ : str = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCAmelCase_ : Optional[int] = regexp.finditer(_UpperCamelCase ) UpperCAmelCase_ : List[str] = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def __UpperCAmelCase ( self ) -> List[str]: UpperCAmelCase_ : List[str] = Path('./datasets' ) UpperCAmelCase_ : List[Any] = list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(_UpperCamelCase ) ): raise AssertionError(f"open(...) must use utf-8 encoding in {dataset}" ) def __UpperCAmelCase ( self ) -> Optional[Any]: UpperCAmelCase_ : Optional[int] = Path('./datasets' ) UpperCAmelCase_ : Optional[Any] = list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_print_statements(str(_UpperCamelCase ) ): raise AssertionError(f"print statement found in {dataset}. Use datasets.logger/logging instead." )
29
def lowercase__ ( __snake_case : list ): '''simple docstring''' for i in range(len(__snake_case ) - 1 , 0 , -1 ): UpperCAmelCase_ : Dict = False for j in range(__snake_case , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: UpperCAmelCase_ , UpperCAmelCase_ : Any = unsorted[j - 1], unsorted[j] UpperCAmelCase_ : int = True for j in range(__snake_case ): if unsorted[j] > unsorted[j + 1]: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = unsorted[j + 1], unsorted[j] UpperCAmelCase_ : Any = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = input('Enter numbers separated by a comma:\n').strip() __UpperCAmelCase = [int(item) for item in user_input.split(',')] print(F'{cocktail_shaker_sort(unsorted) = }')
29
1
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class UpperCAmelCase_ ( a__): snake_case__ = 42 snake_case__ = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.26.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version(""">=""", """0.0.12""") ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class UpperCAmelCase_ ( a__): snake_case__ = 42 snake_case__ = 42 from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
369
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class UpperCAmelCase_ ( unittest.TestCase): snake_case__ = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING snake_case__ = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def _UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[int] ) -> int: _UpperCamelCase = TextaTextGenerationPipeline(model=__UpperCamelCase , tokenizer=__UpperCamelCase ) return generator, ["Something to write", "Something else"] def _UpperCamelCase ( self : Tuple , __UpperCamelCase : str , __UpperCamelCase : List[Any] ) -> Union[str, Any]: _UpperCamelCase = generator('''Something there''' ) self.assertEqual(__UpperCamelCase , [{'''generated_text''': ANY(__UpperCamelCase )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['''generated_text'''].startswith('''Something there''' ) ) _UpperCamelCase = generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=__UpperCamelCase ) self.assertEqual( __UpperCamelCase , [ [{'''generated_text''': ANY(__UpperCamelCase )}, {'''generated_text''': ANY(__UpperCamelCase )}], [{'''generated_text''': ANY(__UpperCamelCase )}, {'''generated_text''': ANY(__UpperCamelCase )}], ] , ) _UpperCamelCase = generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=__UpperCamelCase ) self.assertEqual( __UpperCamelCase , [ [{'''generated_text''': ANY(__UpperCamelCase )}, {'''generated_text''': ANY(__UpperCamelCase )}], [{'''generated_text''': ANY(__UpperCamelCase )}, {'''generated_text''': ANY(__UpperCamelCase )}], ] , ) with self.assertRaises(__UpperCamelCase ): generator(4 ) @require_torch def _UpperCamelCase ( self : List[str] ) -> List[str]: _UpperCamelCase = pipeline('''text2text-generation''' , model='''patrickvonplaten/t5-tiny-random''' , framework='''pt''' ) # do_sample=False necessary for reproducibility _UpperCamelCase = generator('''Something there''' , do_sample=__UpperCamelCase ) self.assertEqual(__UpperCamelCase , [{'''generated_text''': ''''''}] ) _UpperCamelCase = 3 _UpperCamelCase = generator( '''Something there''' , num_return_sequences=__UpperCamelCase , num_beams=__UpperCamelCase , ) _UpperCamelCase = [ {'''generated_text''': '''Beide Beide Beide Beide Beide Beide Beide Beide Beide'''}, {'''generated_text''': '''Beide Beide Beide Beide Beide Beide Beide Beide'''}, {'''generated_text''': ''''''}, ] self.assertEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCamelCase = generator('''This is a test''' , do_sample=__UpperCamelCase , num_return_sequences=2 , return_tensors=__UpperCamelCase ) self.assertEqual( __UpperCamelCase , [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ] , ) _UpperCamelCase = generator.model.config.eos_token_id _UpperCamelCase = '''<pad>''' _UpperCamelCase = generator( ['''This is a test''', '''This is a second test'''] , do_sample=__UpperCamelCase , num_return_sequences=2 , batch_size=2 , return_tensors=__UpperCamelCase , ) self.assertEqual( __UpperCamelCase , [ [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ], [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ], ] , ) @require_tf def _UpperCamelCase ( self : Optional[Any] ) -> List[Any]: _UpperCamelCase = pipeline('''text2text-generation''' , model='''patrickvonplaten/t5-tiny-random''' , framework='''tf''' ) # do_sample=False necessary for reproducibility _UpperCamelCase = generator('''Something there''' , do_sample=__UpperCamelCase ) self.assertEqual(__UpperCamelCase , [{'''generated_text''': ''''''}] )
54
0
"""simple docstring""" from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = "EncodecFeatureExtractor" __lowerCAmelCase = ("T5Tokenizer", "T5TokenizerFast") def __init__( self , __A , __A ) -> Any: super().__init__(__A , __A ) a =self.feature_extractor a =False def SCREAMING_SNAKE_CASE ( self , __A=None , __A=None , __A=True ) -> int: return self.tokenizer.get_decoder_prompt_ids(task=__A , language=__A , no_timestamps=__A ) def __call__( self , *__A , **__A ) -> int: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__A , **__A ) a =kwargs.pop('''audio''' , __A ) a =kwargs.pop('''sampling_rate''' , __A ) a =kwargs.pop('''text''' , __A ) if len(__A ) > 0: a =args[0] a =args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if text is not None: a =self.tokenizer(__A , **__A ) if audio is not None: a =self.feature_extractor(__A , *__A , sampling_rate=__A , **__A ) if audio is None: return inputs elif text is None: return audio_inputs else: a =audio_inputs['''input_values'''] if "padding_mask" in audio_inputs: a =audio_inputs['''padding_mask'''] return inputs def SCREAMING_SNAKE_CASE ( self , *__A , **__A ) -> str: a =kwargs.pop('''audio''' , __A ) a =kwargs.pop('''padding_mask''' , __A ) if len(__A ) > 0: a =args[0] a =args[1:] if audio_values is not None: return self._decode_audio(__A , padding_mask=__A ) else: return self.tokenizer.batch_decode(*__A , **__A ) def SCREAMING_SNAKE_CASE ( self , *__A , **__A ) -> Optional[int]: return self.tokenizer.decode(*__A , **__A ) def SCREAMING_SNAKE_CASE ( self , __A , __A = None ) -> List[np.ndarray]: a =to_numpy(__A ) a , a , a =audio_values.shape if padding_mask is None: return list(__A ) a =to_numpy(__A ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) a =seq_len - padding_mask.shape[-1] a =1 - self.feature_extractor.padding_value a =np.pad(__A , ((0, 0), (0, difference)) , '''constant''' , constant_values=__A ) a =audio_values.tolist() for i in range(__A ): a =np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] a =sliced_audio.reshape(__A , -1 ) return audio_values
81
"""simple docstring""" import numpy as np import qiskit def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = 8 ,_lowerCamelCase : int | None = None ) -> str: _lowerCAmelCase : int = np.random.default_rng(seed=_lowerCamelCase ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. _lowerCAmelCase : Tuple = 6 * key_len # Measurement basis for Alice's qubits. _lowerCAmelCase : Dict = rng.integers(2 ,size=_lowerCamelCase ) # The set of states Alice will prepare. _lowerCAmelCase : Tuple = rng.integers(2 ,size=_lowerCamelCase ) # Measurement basis for Bob's qubits. _lowerCAmelCase : Union[str, Any] = rng.integers(2 ,size=_lowerCamelCase ) # Quantum Circuit to simulate BB84 _lowerCAmelCase : Dict = qiskit.QuantumCircuit(_lowerCamelCase ,name="""BB84""" ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(_lowerCamelCase ): if alice_state[index] == 1: bbaa_circ.x(_lowerCamelCase ) if alice_basis[index] == 1: bbaa_circ.h(_lowerCamelCase ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(_lowerCamelCase ): if bob_basis[index] == 1: bbaa_circ.h(_lowerCamelCase ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. _lowerCAmelCase : int = qiskit.Aer.get_backend("""aer_simulator""" ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. _lowerCAmelCase : List[str] = qiskit.execute(_lowerCamelCase ,_lowerCamelCase ,shots=1 ,seed_simulator=_lowerCamelCase ) # Returns the result of measurement. _lowerCAmelCase : List[Any] = job.result().get_counts(_lowerCamelCase ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. _lowerCAmelCase : str = """""".join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( _lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. _lowerCAmelCase : List[Any] = gen_key[:key_len] if len(_lowerCamelCase ) >= key_len else gen_key.ljust(_lowerCamelCase ,"""0""" ) return key if __name__ == "__main__": print(F"""The generated key is : {bbaa(8, seed=0)}""") from doctest import testmod testmod()
44
0
import os import sys __lowercase = os.path.join(os.path.dirname(__file__), '''src''') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) __lowercase = [ '''torch''', '''numpy''', '''tokenizers''', '''filelock''', '''requests''', '''tqdm''', '''regex''', '''sentencepiece''', '''sacremoses''', '''importlib_metadata''', '''huggingface_hub''', ] @add_start_docstrings(AutoConfig.__doc__ ) def _lowerCAmelCase ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Union[str, Any]: """simple docstring""" return AutoConfig.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoTokenizer.__doc__ ) def _lowerCAmelCase ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Any: """simple docstring""" return AutoTokenizer.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModel.__doc__ ) def _lowerCAmelCase ( *__lowerCAmelCase , **__lowerCAmelCase ) -> str: """simple docstring""" return AutoModel.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def _lowerCAmelCase ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Optional[Any]: """simple docstring""" return AutoModelForCausalLM.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def _lowerCAmelCase ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[str]: """simple docstring""" return AutoModelForMaskedLM.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def _lowerCAmelCase ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Union[str, Any]: """simple docstring""" return AutoModelForSequenceClassification.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def _lowerCAmelCase ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Optional[Any]: """simple docstring""" return AutoModelForQuestionAnswering.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase )
367
from manim import * class a ( __lowerCamelCase ): def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : Optional[Any] = Rectangle(height=0.5 ,width=0.5 ) snake_case__ : Optional[int] = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 ) snake_case__ : Optional[Any] = Rectangle(height=0.25 ,width=0.25 ) snake_case__ : Tuple = [mem.copy() for i in range(6 )] snake_case__ : Optional[int] = [mem.copy() for i in range(6 )] snake_case__ : List[str] = VGroup(*__lowercase ).arrange(__lowercase ,buff=0 ) snake_case__ : Optional[int] = VGroup(*__lowercase ).arrange(__lowercase ,buff=0 ) snake_case__ : List[Any] = VGroup(__lowercase ,__lowercase ).arrange(__lowercase ,buff=0 ) snake_case__ : List[Any] = Text('''CPU''' ,font_size=2_4 ) snake_case__ : Dict = Group(__lowercase ,__lowercase ).arrange(__lowercase ,buff=0.5 ,aligned_edge=__lowercase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__lowercase ) snake_case__ : Union[str, Any] = [mem.copy() for i in range(4 )] snake_case__ : Optional[int] = VGroup(*__lowercase ).arrange(__lowercase ,buff=0 ) snake_case__ : int = Text('''GPU''' ,font_size=2_4 ) snake_case__ : Any = Group(__lowercase ,__lowercase ).arrange(__lowercase ,buff=0.5 ,aligned_edge=__lowercase ) gpu.move_to([-1, -1, 0] ) self.add(__lowercase ) snake_case__ : Optional[Any] = [mem.copy() for i in range(6 )] snake_case__ : Optional[int] = VGroup(*__lowercase ).arrange(__lowercase ,buff=0 ) snake_case__ : Optional[Any] = Text('''Model''' ,font_size=2_4 ) snake_case__ : Dict = Group(__lowercase ,__lowercase ).arrange(__lowercase ,buff=0.5 ,aligned_edge=__lowercase ) model.move_to([3, -1.0, 0] ) self.add(__lowercase ) snake_case__ : List[str] = [] snake_case__ : int = [] for i, rect in enumerate(__lowercase ): snake_case__ : Dict = fill.copy().set_fill(__lowercase ,opacity=0.8 ) target.move_to(__lowercase ) model_arr.append(__lowercase ) snake_case__ : Dict = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0.0 ).set_fill(__lowercase ,opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(__lowercase ) self.add(*__lowercase ,*__lowercase ) snake_case__ : Tuple = [meta_mem.copy() for i in range(6 )] snake_case__ : Optional[int] = [meta_mem.copy() for i in range(6 )] snake_case__ : str = VGroup(*__lowercase ).arrange(__lowercase ,buff=0 ) snake_case__ : Union[str, Any] = VGroup(*__lowercase ).arrange(__lowercase ,buff=0 ) snake_case__ : Tuple = VGroup(__lowercase ,__lowercase ).arrange(__lowercase ,buff=0 ) snake_case__ : Dict = Text('''Disk''' ,font_size=2_4 ) snake_case__ : Optional[Any] = Group(__lowercase ,__lowercase ).arrange(__lowercase ,buff=0.5 ,aligned_edge=__lowercase ) disk.move_to([-4, -1.25, 0] ) self.add(__lowercase ,__lowercase ) snake_case__ : Tuple = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) snake_case__ : Union[str, Any] = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" ,font_size=1_8 ,) key_text.move_to([-5, 2.4, 0] ) self.add(__lowercase ,__lowercase ) snake_case__ : Any = MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" ,font_size=1_8 ,) blue_text.next_to(__lowercase ,DOWN * 2.4 ,aligned_edge=key_text.get_left() ) self.add(__lowercase ) snake_case__ : List[str] = MarkupText( F"""Now watch as an input is passed through the model\nand how the memory is utilized and handled.""" ,font_size=2_4 ,) step_a.move_to([2, 2, 0] ) self.play(Write(__lowercase ) ) snake_case__ : Optional[Any] = Square(0.3 ) input.set_fill(__lowercase ,opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] ,__lowercase ,buff=0.5 ) self.play(Write(__lowercase ) ) input.generate_target() input.target.next_to(model_arr[0] ,direction=__lowercase ,buff=0.02 ) self.play(MoveToTarget(__lowercase ) ) self.play(FadeOut(__lowercase ) ) snake_case__ : Optional[Any] = Arrow(start=__lowercase ,end=__lowercase ,color=__lowercase ,buff=0.5 ) a.next_to(model_arr[0].get_left() ,__lowercase ,buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) snake_case__ : Dict = MarkupText( F"""As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.""" ,font_size=2_4 ,) step_a.move_to([2, 2, 0] ) self.play(Write(__lowercase ,run_time=3 ) ) snake_case__ : Tuple = {'''run_time''': 1, '''fade_in''': True, '''fade_out''': True, '''buff''': 0.02} self.play( Write(__lowercase ) ,Circumscribe(model_arr[0] ,color=__lowercase ,**__lowercase ) ,Circumscribe(model_cpu_arr[0] ,color=__lowercase ,**__lowercase ) ,Circumscribe(gpu_rect[0] ,color=__lowercase ,**__lowercase ) ,) self.play(MoveToTarget(model_cpu_arr[0] ) ) snake_case__ : int = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 ,__lowercase ,buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) snake_case__ : Tuple = AnimationGroup( FadeOut(__lowercase ,run_time=0.5 ) ,MoveToTarget(__lowercase ,run_time=0.5 ) ,FadeIn(__lowercase ,run_time=0.5 ) ,lag_ratio=0.2 ) self.play(__lowercase ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: snake_case__ : str = 0.7 self.play( Circumscribe(model_arr[i] ,**__lowercase ) ,Circumscribe(cpu_left_col_base[i] ,**__lowercase ) ,Circumscribe(cpu_left_col_base[i + 1] ,color=__lowercase ,**__lowercase ) ,Circumscribe(gpu_rect[0] ,color=__lowercase ,**__lowercase ) ,Circumscribe(model_arr[i + 1] ,color=__lowercase ,**__lowercase ) ,) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) ,MoveToTarget(model_cpu_arr[i + 1] ) ,) else: self.play( MoveToTarget(model_cpu_arr[i] ,run_time=0.7 ) ,MoveToTarget(model_cpu_arr[i + 1] ,run_time=0.7 ) ,) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() ,RIGHT + 0.02 ,buff=0.2 ) self.play( Circumscribe(model_arr[-1] ,color=__lowercase ,**__lowercase ) ,Circumscribe(cpu_left_col_base[-1] ,color=__lowercase ,**__lowercase ) ,Circumscribe(gpu_rect[0] ,color=__lowercase ,**__lowercase ) ,) self.play(MoveToTarget(model_cpu_arr[i] ) ) snake_case__ : List[str] = a_c snake_case__ : Optional[int] = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] ,RIGHT + 0.02 ,buff=0.5 ) self.play( FadeOut(__lowercase ) ,FadeOut(__lowercase ,run_time=0.5 ) ,) snake_case__ : Optional[int] = MarkupText(F"""Inference on a model too large for GPU memory\nis successfully completed.""" ,font_size=2_4 ) step_a.move_to([2, 2, 0] ) self.play(Write(__lowercase ,run_time=3 ) ,MoveToTarget(__lowercase ) ) self.wait()
44
0
def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or number < 0: raise ValueError('Input must be a non-negative integer' ) snake_case_ = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
285
from ..utils import DummyObject, requires_backends class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : Any = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : Optional[int] = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : str = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : List[Any] = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : Optional[int] = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : Dict = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : Dict = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : Union[str, Any] = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : Optional[int] = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : Optional[Any] = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : Any = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : Optional[Any] = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : int = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] )
283
0
"""simple docstring""" from typing import Any class __snake_case : def __init__( self , lowercase) -> Tuple: '''simple docstring''' a__: str = data a__: Tuple = None class __snake_case : def __init__( self) -> List[str]: '''simple docstring''' a__: Union[str, Any] = None def lowerCamelCase_ ( self) -> Dict: '''simple docstring''' a__: int = self.head while temp is not None: print(temp.data , end=' ') a__: List[str] = temp.next print() def lowerCamelCase_ ( self , lowercase) -> List[str]: '''simple docstring''' a__: Union[str, Any] = Node(UpperCAmelCase_) a__: int = self.head a__: Any = new_node def lowerCamelCase_ ( self , lowercase , lowercase) -> List[Any]: '''simple docstring''' if node_data_a == node_data_a: return else: a__: List[str] = self.head while node_a is not None and node_a.data != node_data_a: a__: Union[str, Any] = node_a.next a__: str = self.head while node_a is not None and node_a.data != node_data_a: a__: str = node_a.next if node_a is None or node_a is None: return a__: Optional[int] = node_a.data, node_a.data if __name__ == "__main__": lowercase__ = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('After swapping') ll.print_list()
365
"""simple docstring""" def __a ( _SCREAMING_SNAKE_CASE = 1000000 ) ->int: a__: Any = limit + 1 a__: List[str] = [0] * limit for first_term in range(1 , _SCREAMING_SNAKE_CASE ): for n in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): a__: Any = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a a__: Optional[int] = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f"{solution() = }")
203
0
def A__ ( SCREAMING_SNAKE_CASE__) -> float: return 10 - x * x def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) -> float: # Bolzano theory in order to find if there is a root between a and b if equation(SCREAMING_SNAKE_CASE__) * equation(SCREAMING_SNAKE_CASE__) >= 0: raise ValueError("""Wrong space!""") __snake_case: Optional[Any] = a while (b - a) >= 0.01: # Find middle point __snake_case: List[str] = (a + b) / 2 # Check if middle point is root if equation(SCREAMING_SNAKE_CASE__) == 0.0: break # Decide the side to repeat the steps if equation(SCREAMING_SNAKE_CASE__) * equation(SCREAMING_SNAKE_CASE__) < 0: __snake_case: str = c else: __snake_case: Dict = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
111
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class __snake_case ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase__ ( self : Any , A : Dict , A : Any ): return f'''gaussian_noise_s={seed}_shape={'_'.join([str(A ) for s in shape] )}.npy''' def UpperCAmelCase__ ( self : Optional[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() def UpperCAmelCase__ ( self : Optional[Any] , A : Optional[int]=0 , A : Tuple=(4, 4, 64, 64) , A : Tuple=False ): __snake_case: Dict = jnp.bfloataa if fpaa else jnp.floataa __snake_case: str = jnp.array(load_hf_numpy(self.get_file_format(A , A ) ) , dtype=A ) return image def UpperCAmelCase__ ( self : Union[str, Any] , A : Any=False , A : Optional[Any]="CompVis/stable-diffusion-v1-4" ): __snake_case: List[Any] = jnp.bfloataa if fpaa else jnp.floataa __snake_case: Union[str, Any] = """bf16""" if fpaa else None __snake_case , __snake_case: Optional[int] = FlaxUNetaDConditionModel.from_pretrained( A , subfolder="""unet""" , dtype=A , revision=A ) return model, params def UpperCAmelCase__ ( self : Tuple , A : Tuple=0 , A : str=(4, 77, 768) , A : List[str]=False ): __snake_case: Any = jnp.bfloataa if fpaa else jnp.floataa __snake_case: Dict = jnp.array(load_hf_numpy(self.get_file_format(A , A ) ) , dtype=A ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1_000, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def UpperCAmelCase__ ( self : Optional[Any] , A : Optional[Any] , A : str , A : Any ): __snake_case , __snake_case: Union[str, Any] = self.get_unet_model(model_id="""CompVis/stable-diffusion-v1-4""" , fpaa=A ) __snake_case: Tuple = self.get_latents(A , fpaa=A ) __snake_case: int = self.get_encoder_hidden_states(A , fpaa=A ) __snake_case: List[Any] = model.apply( {"""params""": params} , A , jnp.array(A , dtype=jnp.intaa ) , encoder_hidden_states=A , ).sample assert sample.shape == latents.shape __snake_case: str = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __snake_case: Optional[int] = jnp.array(A , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(A , A , atol=1E-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1_000, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def UpperCAmelCase__ ( self : Optional[Any] , A : int , A : Tuple , A : List[str] ): __snake_case , __snake_case: Union[str, Any] = self.get_unet_model(model_id="""stabilityai/stable-diffusion-2""" , fpaa=A ) __snake_case: Optional[int] = self.get_latents(A , shape=(4, 4, 96, 96) , fpaa=A ) __snake_case: str = self.get_encoder_hidden_states(A , shape=(4, 77, 1_024) , fpaa=A ) __snake_case: str = model.apply( {"""params""": params} , A , jnp.array(A , dtype=jnp.intaa ) , encoder_hidden_states=A , ).sample assert sample.shape == latents.shape __snake_case: Dict = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __snake_case: Any = jnp.array(A , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(A , A , atol=1E-2 )
111
1
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_=False ) -> List[Any]: try: _lowercase : Optional[int] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. _lowercase : Any = default else: # KEY is set, convert it to True or False. try: _lowercase : str = strtobool(snake_case_ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F'''If set, {key} must be yes or no.''' ) return _value SCREAMING_SNAKE_CASE : int = parse_flag_from_env("RUN_SLOW", default=False) def UpperCamelCase_( lowerCamelCase_ ) -> Dict: return unittest.skip('Test was skipped' )(snake_case_ ) def UpperCamelCase_( lowerCamelCase_ ) -> List[str]: return unittest.skipUnless(_run_slow_tests , 'test is slow' )(snake_case_ ) def UpperCamelCase_( lowerCamelCase_ ) -> List[Any]: return unittest.skipUnless(not torch.cuda.is_available() , 'test requires only a CPU' )(snake_case_ ) def UpperCamelCase_( lowerCamelCase_ ) -> int: return unittest.skipUnless(torch.cuda.is_available() , 'test requires a GPU' )(snake_case_ ) def UpperCamelCase_( lowerCamelCase_ ) -> Optional[Any]: return unittest.skipUnless(is_xpu_available() , 'test requires a XPU' )(snake_case_ ) def UpperCamelCase_( lowerCamelCase_ ) -> Optional[Any]: return unittest.skipUnless(is_mps_available() , 'test requires a `mps` backend support in `torch`' )(snake_case_ ) def UpperCamelCase_( lowerCamelCase_ ) -> List[Any]: return unittest.skipUnless( is_transformers_available() and is_datasets_available() , 'test requires the Hugging Face suite' )(snake_case_ ) def UpperCamelCase_( lowerCamelCase_ ) -> List[Any]: return unittest.skipUnless(is_bnb_available() , 'test requires the bitsandbytes library' )(snake_case_ ) def UpperCamelCase_( lowerCamelCase_ ) -> Optional[Any]: return unittest.skipUnless(is_tpu_available() , 'test requires TPU' )(snake_case_ ) def UpperCamelCase_( lowerCamelCase_ ) -> Union[str, Any]: return unittest.skipUnless(torch.cuda.device_count() == 1 , 'test requires a GPU' )(snake_case_ ) def UpperCamelCase_( lowerCamelCase_ ) -> str: return unittest.skipUnless(torch.xpu.device_count() == 1 , 'test requires a XPU' )(snake_case_ ) def UpperCamelCase_( lowerCamelCase_ ) -> List[Any]: return unittest.skipUnless(torch.cuda.device_count() > 1 , 'test requires multiple GPUs' )(snake_case_ ) def UpperCamelCase_( lowerCamelCase_ ) -> Optional[int]: return unittest.skipUnless(torch.xpu.device_count() > 1 , 'test requires multiple XPUs' )(snake_case_ ) def UpperCamelCase_( lowerCamelCase_ ) -> Dict: return unittest.skipUnless(is_safetensors_available() , 'test requires safetensors' )(snake_case_ ) def UpperCamelCase_( lowerCamelCase_ ) -> Dict: return unittest.skipUnless(is_deepspeed_available() , 'test requires DeepSpeed' )(snake_case_ ) def UpperCamelCase_( lowerCamelCase_ ) -> Optional[Any]: return unittest.skipUnless(is_torch_version('>=' , '1.12.0' ) , 'test requires torch version >= 1.12.0' )(snake_case_ ) def UpperCamelCase_( lowerCamelCase_=None , lowerCamelCase_=None ) -> str: if test_case is None: return partial(snake_case_ , version=snake_case_ ) return unittest.skipUnless(is_torch_version('>=' , snake_case_ ) , F'''test requires torch version >= {version}''' )(snake_case_ ) def UpperCamelCase_( lowerCamelCase_ ) -> Any: return unittest.skipUnless(is_tensorboard_available() , 'test requires Tensorboard' )(snake_case_ ) def UpperCamelCase_( lowerCamelCase_ ) -> int: return unittest.skipUnless(is_wandb_available() , 'test requires wandb' )(snake_case_ ) def UpperCamelCase_( lowerCamelCase_ ) -> List[str]: return unittest.skipUnless(is_comet_ml_available() , 'test requires comet_ml' )(snake_case_ ) SCREAMING_SNAKE_CASE : int = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def UpperCamelCase_( lowerCamelCase_ ) -> List[Any]: return unittest.skipUnless( _atleast_one_tracker_available , 'test requires at least one tracker to be available and for `comet_ml` to not be installed' , )(snake_case_ ) class _lowerCamelCase( unittest.TestCase ): lowercase_ : Optional[Any] = True @classmethod def UpperCamelCase ( cls) -> List[Any]: """simple docstring""" _lowercase : Optional[Any] = tempfile.mkdtemp() @classmethod def UpperCamelCase ( cls) -> Tuple: """simple docstring""" if os.path.exists(cls.tmpdir): shutil.rmtree(cls.tmpdir) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" if self.clear_on_setup: for path in Path(self.tmpdir).glob('**/*'): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(SCREAMING_SNAKE_CASE_) class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self, lowerCamelCase) -> Tuple: """simple docstring""" _lowercase : Optional[int] = mocks if isinstance(SCREAMING_SNAKE_CASE_, (tuple, list)) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop) def UpperCamelCase_( lowerCamelCase_ ) -> Any: _lowercase : List[str] = AcceleratorState() _lowercase : Dict = tensor[None].clone().to(state.device ) _lowercase : Optional[Any] = gather(snake_case_ ).cpu() _lowercase : Tuple = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , snake_case_ ): return False return True class _lowerCamelCase: def __init__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> List[Any]: """simple docstring""" _lowercase : List[Any] = returncode _lowercase : List[str] = stdout _lowercase : Union[str, Any] = stderr async def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> Dict: while True: _lowercase : Any = await stream.readline() if line: callback(snake_case_ ) else: break async def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=False , lowerCamelCase_=False ) -> Union[str, Any]: if echo: print('\nRunning: ' , ' '.join(snake_case_ ) ) _lowercase : Any = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=snake_case_ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=snake_case_ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) _lowercase : List[Any] = [] _lowercase : List[str] = [] def tee(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_="" ): _lowercase : Tuple = line.decode('utf-8' ).rstrip() sink.append(snake_case_ ) if not quiet: print(snake_case_ , snake_case_ , file=snake_case_ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda lowerCamelCase_ : tee(snake_case_ , snake_case_ , sys.stdout , label='stdout:' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda lowerCamelCase_ : tee(snake_case_ , snake_case_ , sys.stderr , label='stderr:' ) ) ), ] , timeout=snake_case_ , ) return _RunOutput(await p.wait() , snake_case_ , snake_case_ ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=180 , lowerCamelCase_=False , lowerCamelCase_=True ) -> Union[str, Any]: _lowercase : List[str] = asyncio.get_event_loop() _lowercase : Dict = loop.run_until_complete( _stream_subprocess(snake_case_ , env=snake_case_ , stdin=snake_case_ , timeout=snake_case_ , quiet=snake_case_ , echo=snake_case_ ) ) _lowercase : int = """ """.join(snake_case_ ) if result.returncode > 0: _lowercase : List[Any] = """\n""".join(result.stderr ) raise RuntimeError( F'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' F'''The combined stderr from workers follows:\n{stderr}''' ) return result class _lowerCamelCase( _UpperCAmelCase ): pass def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_=False ) -> str: try: _lowercase : Dict = subprocess.check_output(snake_case_ , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(snake_case_ , 'decode' ): _lowercase : Optional[Any] = output.decode('utf-8' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F'''Command `{" ".join(snake_case_ )}` failed with the following error:\n\n{e.output.decode()}''' ) from e
355
import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) def UpperCamelCase_( lowerCamelCase_ ) -> Union[str, Any]: _lowercase : int = OrderedDict() for key, value in state_dict.items(): if key.startswith('module.encoder' ): _lowercase : Union[str, Any] = key.replace('module.encoder' , 'glpn.encoder' ) if key.startswith('module.decoder' ): _lowercase : Optional[int] = key.replace('module.decoder' , 'decoder.stages' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _lowercase : Tuple = key[key.find('patch_embed' ) + len('patch_embed' )] _lowercase : Dict = key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(lowerCamelCase_ )-1}''' ) if "norm" in key: _lowercase : Tuple = key.replace('norm' , 'layer_norm' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _lowercase : str = key[key.find('glpn.encoder.layer_norm' ) + len('glpn.encoder.layer_norm' )] _lowercase : Union[str, Any] = key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(lowerCamelCase_ )-1}''' ) if "layer_norm1" in key: _lowercase : int = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: _lowercase : str = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 _lowercase : Optional[Any] = key[key.find('block' ) + len('block' )] _lowercase : Optional[int] = key.replace(F'''block{idx}''' , F'''block.{int(lowerCamelCase_ )-1}''' ) if "attn.q" in key: _lowercase : Union[str, Any] = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: _lowercase : str = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: _lowercase : int = key.replace('attn' , 'attention.self' ) if "fc1" in key: _lowercase : Any = key.replace('fc1' , 'dense1' ) if "fc2" in key: _lowercase : str = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: _lowercase : Optional[Any] = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: _lowercase : List[str] = key.replace('linear_fuse.conv' , 'linear_fuse' ) _lowercase : str = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _lowercase : Tuple = key[key.find('linear_c' ) + len('linear_c' )] _lowercase : List[Any] = key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(lowerCamelCase_ )-1}''' ) if "bot_conv" in key: _lowercase : Optional[int] = key.replace('bot_conv' , '0.convolution' ) if "skip_conv1" in key: _lowercase : str = key.replace('skip_conv1' , '1.convolution' ) if "skip_conv2" in key: _lowercase : List[str] = key.replace('skip_conv2' , '2.convolution' ) if "fusion1" in key: _lowercase : List[Any] = key.replace('fusion1' , '1.fusion' ) if "fusion2" in key: _lowercase : List[str] = key.replace('fusion2' , '2.fusion' ) if "fusion3" in key: _lowercase : Optional[int] = key.replace('fusion3' , '3.fusion' ) if "fusion" in key and "conv" in key: _lowercase : Any = key.replace('conv' , 'convolutional_layer' ) if key.startswith('module.last_layer_depth' ): _lowercase : Dict = key.replace('module.last_layer_depth' , 'head.head' ) _lowercase : Dict = value return new_state_dict def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> str: # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _lowercase : List[str] = state_dict.pop(F'''glpn.encoder.block.{i}.{j}.attention.self.kv.weight''' ) _lowercase : Union[str, Any] = state_dict.pop(F'''glpn.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict _lowercase : List[str] = kv_weight[ : config.hidden_sizes[i], : ] _lowercase : List[str] = kv_bias[: config.hidden_sizes[i]] _lowercase : Any = kv_weight[ config.hidden_sizes[i] :, : ] _lowercase : Optional[Any] = kv_bias[config.hidden_sizes[i] :] def UpperCamelCase_( ) -> Union[str, Any]: _lowercase : int = 'http://images.cocodataset.org/val2017/000000039769.jpg' _lowercase : Dict = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ) return image @torch.no_grad() def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=None ) -> Dict: _lowercase : str = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) _lowercase : str = GLPNImageProcessor() # prepare image _lowercase : List[Any] = prepare_img() _lowercase : List[str] = image_processor(images=lowerCamelCase_ , return_tensors='pt' ).pixel_values logger.info('Converting model...' ) # load original state dict _lowercase : Any = torch.load(lowerCamelCase_ , map_location=torch.device('cpu' ) ) # rename keys _lowercase : List[Any] = rename_keys(lowerCamelCase_ ) # key and value matrices need special treatment read_in_k_v(lowerCamelCase_ , lowerCamelCase_ ) # create HuggingFace model and load state dict _lowercase : Union[str, Any] = GLPNForDepthEstimation(lowerCamelCase_ ) model.load_state_dict(lowerCamelCase_ ) model.eval() # forward pass _lowercase : List[Any] = model(lowerCamelCase_ ) _lowercase : int = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: _lowercase : Optional[int] = torch.tensor( [[4.41_47, 4.08_73, 4.06_73], [3.78_90, 3.28_81, 3.15_25], [3.76_74, 3.54_23, 3.49_13]] ) elif "kitti" in model_name: _lowercase : str = torch.tensor( [[3.42_91, 2.78_65, 2.51_51], [3.28_41, 2.70_21, 2.35_02], [3.11_47, 2.46_25, 2.24_81]] ) else: raise ValueError(F'''Unknown model name: {model_name}''' ) _lowercase : Optional[Any] = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , lowerCamelCase_ , atol=1e-4 ) print('Looks ok!' ) # finally, push to hub if required if push_to_hub: logger.info('Pushing model and image processor to the hub...' ) model.push_to_hub( repo_path_or_name=Path(lowerCamelCase_ , lowerCamelCase_ ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=lowerCamelCase_ , ) image_processor.push_to_hub( repo_path_or_name=Path(lowerCamelCase_ , lowerCamelCase_ ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=lowerCamelCase_ , ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub." ) parser.add_argument( "--model_name", default="glpn-kitti", type=str, help="Name of the model in case you're pushing to the hub.", ) SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
84
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _A : List[Any] = { """configuration_electra""": ["""ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ElectraConfig""", """ElectraOnnxConfig"""], """tokenization_electra""": ["""ElectraTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : List[Any] = ["""ElectraTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : str = [ """ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """ElectraForCausalLM""", """ElectraForMaskedLM""", """ElectraForMultipleChoice""", """ElectraForPreTraining""", """ElectraForQuestionAnswering""", """ElectraForSequenceClassification""", """ElectraForTokenClassification""", """ElectraModel""", """ElectraPreTrainedModel""", """load_tf_weights_in_electra""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Union[str, Any] = [ """TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFElectraForMaskedLM""", """TFElectraForMultipleChoice""", """TFElectraForPreTraining""", """TFElectraForQuestionAnswering""", """TFElectraForSequenceClassification""", """TFElectraForTokenClassification""", """TFElectraModel""", """TFElectraPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : int = [ """FlaxElectraForCausalLM""", """FlaxElectraForMaskedLM""", """FlaxElectraForMultipleChoice""", """FlaxElectraForPreTraining""", """FlaxElectraForQuestionAnswering""", """FlaxElectraForSequenceClassification""", """FlaxElectraForTokenClassification""", """FlaxElectraModel""", """FlaxElectraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys _A : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
202
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin _A : int = """ Hugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning. In March 2021, Hugging Face raised $40 million in a Series B funding round.[3] On April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5] """ class a__ ( unittest.TestCase, a_ ): def __magic_name__ ( self ): lowercase : Tuple = load_tool("text-question-answering" ) self.tool.setup() lowercase : Dict = load_tool("text-question-answering" , remote=_a ) def __magic_name__ ( self ): lowercase : str = self.tool(_a , "What did Hugging Face do in April 2021?" ) self.assertEqual(_a , "launched the BigScience Research Workshop" ) def __magic_name__ ( self ): lowercase : Union[str, Any] = self.remote_tool(_a , "What did Hugging Face do in April 2021?" ) self.assertEqual(_a , "launched the BigScience Research Workshop" ) def __magic_name__ ( self ): lowercase : int = self.tool(text=_a , question="What did Hugging Face do in April 2021?" ) self.assertEqual(_a , "launched the BigScience Research Workshop" ) def __magic_name__ ( self ): lowercase : Optional[Any] = self.remote_tool(text=_a , question="What did Hugging Face do in April 2021?" ) self.assertEqual(_a , "launched the BigScience Research Workshop" )
202
1
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor SCREAMING_SNAKE_CASE : Optional[int] = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def UpperCamelCase ( _a ) -> Any: '''simple docstring''' if isinstance(_a , torch.Tensor ): return image elif isinstance(_a , PIL.Image.Image ): lowercase_ :int = [image] lowercase_ :List[Any] = [trans(img.convert('''RGB''' ) ) for img in image] lowercase_ :int = torch.stack(_a ) return image class UpperCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self , UpperCamelCase_ , UpperCamelCase_ ): super().__init__() # make sure scheduler can always be converted to DDIM lowercase_ :Any = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) def UpperCamelCase ( self , UpperCamelCase_ ): if strength < 0 or strength > 1: raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}" ) def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): # get the original timestep using init_timestep lowercase_ :Any = min(int(num_inference_steps * strength ) , UpperCamelCase_ ) lowercase_ :Dict = max(num_inference_steps - init_timestep , 0 ) lowercase_ :Optional[int] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None ): if not isinstance(UpperCamelCase_ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(UpperCamelCase_ )}" ) lowercase_ :List[Any] = image.to(device=UpperCamelCase_ , dtype=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(UpperCamelCase_ )}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) lowercase_ :Tuple = init_latents.shape lowercase_ :int = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=UpperCamelCase_ , dtype=UpperCamelCase_ ) # get latents print('''add noise to latents at timestep''' , UpperCamelCase_ ) lowercase_ :Tuple = self.scheduler.add_noise(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowercase_ :Optional[int] = init_latents return latents @torch.no_grad() def __call__( self , UpperCamelCase_ = None , UpperCamelCase_ = 0.8 , UpperCamelCase_ = 1 , UpperCamelCase_ = None , UpperCamelCase_ = 0.0 , UpperCamelCase_ = 50 , UpperCamelCase_ = None , UpperCamelCase_ = "pil" , UpperCamelCase_ = True , ): self.check_inputs(UpperCamelCase_ ) # 2. Preprocess image lowercase_ :Union[str, Any] = preprocess(UpperCamelCase_ ) # 3. set timesteps self.scheduler.set_timesteps(UpperCamelCase_ , device=self.device ) lowercase_ , lowercase_ :Tuple = self.get_timesteps(UpperCamelCase_ , UpperCamelCase_ , self.device ) lowercase_ :Tuple = timesteps[:1].repeat(UpperCamelCase_ ) # 4. Prepare latent variables lowercase_ :Union[str, Any] = self.prepare_latents(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.unet.dtype , self.device , UpperCamelCase_ ) lowercase_ :Optional[int] = latents # 5. Denoising loop for t in self.progress_bar(UpperCamelCase_ ): # 1. predict noise model_output lowercase_ :Tuple = self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowercase_ :Any = self.scheduler.step( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , eta=UpperCamelCase_ , use_clipped_model_output=UpperCamelCase_ , generator=UpperCamelCase_ , ).prev_sample lowercase_ :Any = (image / 2 + 0.5).clamp(0 , 1 ) lowercase_ :Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowercase_ :Dict = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=UpperCamelCase_ )
252
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version SCREAMING_SNAKE_CASE : Optional[Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt") @dataclass class UpperCamelCase : '''simple docstring''' lowercase : Optional[str] =field( default="""cifar10""" , metadata={"""help""": """Name of a dataset from the datasets package"""} ) lowercase : Optional[str] =field( default=lowercase__ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) lowercase : Optional[str] =field( default=lowercase__ , metadata={"""help""": """The column name of the images in the files."""} ) lowercase : Optional[str] =field(default=lowercase__ , metadata={"""help""": """A folder containing the training data."""} ) lowercase : Optional[str] =field(default=lowercase__ , metadata={"""help""": """A folder containing the validation data."""} ) lowercase : Optional[float] =field( default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""} ) lowercase : Optional[int] =field( default=lowercase__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) lowercase : Optional[int] =field( default=lowercase__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def UpperCamelCase ( self ): lowercase_ :int = {} if self.train_dir is not None: lowercase_ :Union[str, Any] = self.train_dir if self.validation_dir is not None: lowercase_ :int = self.validation_dir lowercase_ :str = data_files if data_files else None @dataclass class UpperCamelCase : '''simple docstring''' lowercase : str =field( default=lowercase__ , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) lowercase : Optional[str] =field( default=lowercase__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name_or_path"""} ) lowercase : Optional[str] =field( default=lowercase__ , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) lowercase : Optional[str] =field( default=lowercase__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) lowercase : str =field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) lowercase : str =field(default=lowercase__ , metadata={"""help""": """Name or path of preprocessor config."""} ) lowercase : bool =field( default=lowercase__ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) lowercase : float =field( default=0.75 , metadata={"""help""": """The ratio of the number of masked tokens in the input sequence."""} ) lowercase : bool =field( default=lowercase__ , metadata={"""help""": """Whether or not to train with normalized pixel values as target."""} ) @dataclass class UpperCamelCase ( lowercase__ ): '''simple docstring''' lowercase : float =field( default=1E-3 , metadata={"""help""": """Base learning rate: absolute_lr = base_lr * total_batch_size / 256."""} ) def UpperCamelCase ( _a ) -> int: '''simple docstring''' lowercase_ :Tuple = torch.stack([example['''pixel_values'''] for example in examples] ) return {"pixel_values": pixel_values} def UpperCamelCase ( ) -> Optional[int]: '''simple docstring''' lowercase_ :str = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase_ , lowercase_ , lowercase_ :int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase_ , lowercase_ , lowercase_ :Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_mae''' , _a , _a ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase_ :Dict = training_args.get_process_log_level() logger.setLevel(_a ) transformers.utils.logging.set_verbosity(_a ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. lowercase_ :Optional[int] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase_ :List[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset. lowercase_ :Any = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. lowercase_ :Dict = None if '''validation''' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _a ) and data_args.train_val_split > 0.0: lowercase_ :int = ds['''train'''].train_test_split(data_args.train_val_split ) lowercase_ :Tuple = split['''train'''] lowercase_ :Optional[int] = split['''test'''] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase_ :int = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name: lowercase_ :Union[str, Any] = ViTMAEConfig.from_pretrained(model_args.config_name , **_a ) elif model_args.model_name_or_path: lowercase_ :Union[str, Any] = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **_a ) else: lowercase_ :str = ViTMAEConfig() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(f"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(f"New config: {config}" ) # adapt config config.update( { '''mask_ratio''': model_args.mask_ratio, '''norm_pix_loss''': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: lowercase_ :int = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **_a ) elif model_args.model_name_or_path: lowercase_ :Dict = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **_a ) else: lowercase_ :Optional[Any] = ViTImageProcessor() # create model if model_args.model_name_or_path: lowercase_ :Dict = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_a , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) lowercase_ :str = ViTMAEForPreTraining(_a ) if training_args.do_train: lowercase_ :str = ds['''train'''].column_names else: lowercase_ :Tuple = ds['''validation'''].column_names if data_args.image_column_name is not None: lowercase_ :Optional[Any] = data_args.image_column_name elif "image" in column_names: lowercase_ :str = '''image''' elif "img" in column_names: lowercase_ :Any = '''img''' else: lowercase_ :Optional[Any] = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: lowercase_ :int = image_processor.size['''shortest_edge'''] else: lowercase_ :Union[str, Any] = (image_processor.size['''height'''], image_processor.size['''width''']) lowercase_ :List[str] = Compose( [ Lambda(lambda _a : img.convert('''RGB''' ) if img.mode != "RGB" else img ), RandomResizedCrop(_a , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(_a ): lowercase_ :List[Any] = [transforms(_a ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: lowercase_ :Tuple = ds['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(_a ) if training_args.do_eval: if "validation" not in ds: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: lowercase_ :str = ( ds['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(_a ) # Compute absolute learning rate lowercase_ :Any = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: lowercase_ :str = training_args.base_learning_rate * total_train_batch_size / 2_5_6 # Initialize our trainer lowercase_ :Any = Trainer( model=_a , args=_a , train_dataset=ds['''train'''] if training_args.do_train else None , eval_dataset=ds['''validation'''] if training_args.do_eval else None , tokenizer=_a , data_collator=_a , ) # Training if training_args.do_train: lowercase_ :Any = None if training_args.resume_from_checkpoint is not None: lowercase_ :Any = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase_ :Tuple = last_checkpoint lowercase_ :List[Any] = trainer.train(resume_from_checkpoint=_a ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase_ :str = trainer.evaluate() trainer.log_metrics('''eval''' , _a ) trainer.save_metrics('''eval''' , _a ) # Write model card and (optionally) push to hub lowercase_ :List[Any] = { '''tasks''': '''masked-auto-encoding''', '''dataset''': data_args.dataset_name, '''tags''': ['''masked-auto-encoding'''], } if training_args.push_to_hub: trainer.push_to_hub(**_a ) else: trainer.create_model_card(**_a ) def UpperCamelCase ( _a ) -> str: '''simple docstring''' main() if __name__ == "__main__": main()
252
1
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS __a = logging.get_logger(__name__) __a = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, 'constant': get_constant_schedule, 'constant_w_warmup': get_constant_schedule_with_warmup, } class lowercase__( UpperCAmelCase ): """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : Optional[Any]=None , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> List[str]: super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if config is None: assert isinstance(self.model , SCREAMING_SNAKE_CASE_ ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f''' {self.model.__class__}''' ) lowercase_ = self.model.config else: lowercase_ = config lowercase_ = data_args lowercase_ = self.config.tgt_vocab_size if isinstance(self.config , SCREAMING_SNAKE_CASE_ ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' ''' padding..''' ) if self.args.label_smoothing == 0: lowercase_ = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss lowercase_ = label_smoothed_nll_loss def _lowercase ( self : int , SCREAMING_SNAKE_CASE_ : int ) -> Optional[Any]: if self.optimizer is None: lowercase_ = ['''bias''', '''LayerNorm.weight'''] lowercase_ = [ { '''params''': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], '''weight_decay''': self.args.weight_decay, }, { '''params''': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] lowercase_ = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: lowercase_ = Adafactor lowercase_ = {'''scale_parameter''': False, '''relative_step''': False} else: lowercase_ = AdamW lowercase_ = { '''betas''': (self.args.adam_betaa, self.args.adam_betaa), '''eps''': self.args.adam_epsilon, } lowercase_ = self.args.learning_rate if self.sharded_ddp: lowercase_ = OSS( params=SCREAMING_SNAKE_CASE_ , optim=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) else: lowercase_ = optimizer_cls(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if self.lr_scheduler is None: lowercase_ = self._get_lr_scheduler(SCREAMING_SNAKE_CASE_ ) else: # ignoring --lr_scheduler logger.warning('''scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.''' ) def _lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Dict ) -> Dict: lowercase_ = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": lowercase_ = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": lowercase_ = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: lowercase_ = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=SCREAMING_SNAKE_CASE_ ) return scheduler def _lowercase ( self : Tuple ) -> Optional[torch.utils.data.Sampler]: if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def _lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[Any] ) -> Any: if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token lowercase_ = model(**SCREAMING_SNAKE_CASE_ , use_cache=SCREAMING_SNAKE_CASE_ )[0] lowercase_ = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models lowercase_ , lowercase_ = model(**SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , use_cache=SCREAMING_SNAKE_CASE_ )[:2] else: # compute label smoothed loss lowercase_ = model(**SCREAMING_SNAKE_CASE_ , use_cache=SCREAMING_SNAKE_CASE_ )[0] lowercase_ = torch.nn.functional.log_softmax(SCREAMING_SNAKE_CASE_ , dim=-1 ) lowercase_ , lowercase_ = self.loss_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def _lowercase ( self : str , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> List[Any]: lowercase_ = inputs.pop('''labels''' ) lowercase_ , lowercase_ = self._compute_loss(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return loss def _lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : nn.Module , SCREAMING_SNAKE_CASE_ : Dict[str, Union[torch.Tensor, Any]] , SCREAMING_SNAKE_CASE_ : bool , SCREAMING_SNAKE_CASE_ : Optional[List[str]] = None , ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: lowercase_ = self._prepare_inputs(SCREAMING_SNAKE_CASE_ ) lowercase_ = { '''max_length''': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, '''num_beams''': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: lowercase_ = self.model.generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , **SCREAMING_SNAKE_CASE_ , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: lowercase_ = self._pad_tensors_to_max_len(SCREAMING_SNAKE_CASE_ , gen_kwargs['''max_length'''] ) lowercase_ = inputs.pop('''labels''' ) with torch.no_grad(): # compute loss on predict data lowercase_ , lowercase_ = self._compute_loss(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) lowercase_ = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: lowercase_ = self._pad_tensors_to_max_len(SCREAMING_SNAKE_CASE_ , gen_kwargs['''max_length'''] ) return (loss, logits, labels) def _lowercase ( self : str , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : int ) -> Tuple: # If PAD token is not defined at least EOS token has to be defined lowercase_ = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( '''Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be''' f''' padded to `max_length`={max_length}''' ) lowercase_ = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) lowercase_ = tensor return padded_tensor
30
"""simple docstring""" from manim import * class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Dict ): _A = Rectangle(height=0.5 , width=0.5 ) _A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _A = Rectangle(height=0.25 , width=0.25 ) _A = [mem.copy() for i in range(6 )] _A = [mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('CPU' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_UpperCAmelCase ) _A = [mem.copy() for i in range(4 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('GPU' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(_UpperCAmelCase ) _A = [mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('Model' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(_UpperCAmelCase ) _A = [] _A = [] for i, rect in enumerate(_UpperCAmelCase ): _A = fill.copy().set_fill(_UpperCAmelCase , opacity=0.8 ) target.move_to(_UpperCAmelCase ) model_arr.append(_UpperCAmelCase ) _A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_UpperCAmelCase , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(_UpperCAmelCase ) self.add(*_UpperCAmelCase , *_UpperCAmelCase ) _A = [meta_mem.copy() for i in range(6 )] _A = [meta_mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('Disk' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) disk.move_to([-4, -1.25, 0] ) self.add(_UpperCAmelCase , _UpperCAmelCase ) _A = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _A = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_UpperCAmelCase , _UpperCAmelCase ) _A = MarkupText( F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(_UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_UpperCAmelCase ) _A = MarkupText( F'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase ) ) _A = Square(0.3 ) input.set_fill(_UpperCAmelCase , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , _UpperCAmelCase , buff=0.5 ) self.play(Write(_UpperCAmelCase ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=_UpperCAmelCase , buff=0.02 ) self.play(MoveToTarget(_UpperCAmelCase ) ) self.play(FadeOut(_UpperCAmelCase ) ) _A = Arrow(start=_UpperCAmelCase , end=_UpperCAmelCase , color=_UpperCAmelCase , buff=0.5 ) a.next_to(model_arr[0].get_left() , _UpperCAmelCase , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) _A = MarkupText( F'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase , run_time=3 ) ) _A = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(_UpperCAmelCase ) , Circumscribe(model_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_cpu_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) _A = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , _UpperCAmelCase , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) _A = AnimationGroup( FadeOut(_UpperCAmelCase , run_time=0.5 ) , MoveToTarget(_UpperCAmelCase , run_time=0.5 ) , FadeIn(_UpperCAmelCase , run_time=0.5 ) , lag_ratio=0.2 ) self.play(_UpperCAmelCase ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: _A = 0.7 self.play( Circumscribe(model_arr[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_arr[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) _A = a_c _A = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(_UpperCAmelCase ) , FadeOut(_UpperCAmelCase , run_time=0.5 ) , ) _A = MarkupText(F'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase , run_time=3 ) , MoveToTarget(_UpperCAmelCase ) ) self.wait()
315
0
def A ( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' while b: UpperCAmelCase_ , UpperCAmelCase_ = b, a % b return a def A ( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' return a if b == 0 else euclidean_gcd_recursive(_UpperCamelCase , a % b ) def A ( ) -> List[str]: '''simple docstring''' print(f"euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}" ) print(f"euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}" ) print(f"euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}" ) print(f"euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}" ) print(f"euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}" ) print(f"euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}" ) print(f"euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}" ) print(f"euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}" ) print(f"euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}" ) print(f"euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}" ) if __name__ == "__main__": main()
368
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"vocab_file": "spiece.model"} UpperCamelCase_ = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", } } UpperCamelCase_ = { "xlnet-base-cased": None, "xlnet-large-cased": None, } # Segments (not really needed) UpperCamelCase_ = 0 UpperCamelCase_ = 1 UpperCamelCase_ = 2 UpperCamelCase_ = 3 UpperCamelCase_ = 4 class a_ ( _snake_case ): UpperCamelCase__ : List[Any] =VOCAB_FILES_NAMES UpperCamelCase__ : Optional[Any] =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : Tuple =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : Any ="left" def __init__( self :Optional[int] , _lowercase :Union[str, Any] , _lowercase :Union[str, Any]=False , _lowercase :Optional[int]=True , _lowercase :Union[str, Any]=False , _lowercase :Tuple="<s>" , _lowercase :Any="</s>" , _lowercase :Dict="<unk>" , _lowercase :str="<sep>" , _lowercase :Tuple="<pad>" , _lowercase :Any="<cls>" , _lowercase :List[str]="<mask>" , _lowercase :Union[str, Any]=["<eop>", "<eod>"] , _lowercase :Optional[Dict[str, Any]] = None , **_lowercase :Union[str, Any] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase) if isinstance(_lowercase , _lowercase) else mask_token UpperCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , additional_special_tokens=_lowercase , sp_model_kwargs=self.sp_model_kwargs , **_lowercase , ) UpperCAmelCase_ = 3 UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = remove_space UpperCAmelCase_ = keep_accents UpperCAmelCase_ = vocab_file UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(_lowercase) @property def __a ( self :int) -> List[Any]: return len(self.sp_model) def __a ( self :Optional[int]) -> List[Any]: UpperCAmelCase_ = {self.convert_ids_to_tokens(_lowercase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self :Dict) -> Union[str, Any]: UpperCAmelCase_ = self.__dict__.copy() UpperCAmelCase_ = None return state def __setstate__( self :Optional[Any] , _lowercase :Optional[Any]) -> List[Any]: UpperCAmelCase_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): UpperCAmelCase_ = {} UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def __a ( self :List[str] , _lowercase :Tuple) -> Optional[int]: if self.remove_space: UpperCAmelCase_ = ''' '''.join(inputs.strip().split()) else: UpperCAmelCase_ = inputs UpperCAmelCase_ = outputs.replace('''``''' , '''"''').replace('''\'\'''' , '''"''') if not self.keep_accents: UpperCAmelCase_ = unicodedata.normalize('''NFKD''' , _lowercase) UpperCAmelCase_ = ''''''.join([c for c in outputs if not unicodedata.combining(_lowercase)]) if self.do_lower_case: UpperCAmelCase_ = outputs.lower() return outputs def __a ( self :str , _lowercase :str) -> List[str]: UpperCAmelCase_ = self.preprocess_text(_lowercase) UpperCAmelCase_ = self.sp_model.encode(_lowercase , out_type=_lowercase) UpperCAmelCase_ = [] for piece in pieces: if len(_lowercase) > 1 and piece[-1] == str(''',''') and piece[-2].isdigit(): UpperCAmelCase_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowercase , '''''')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: UpperCAmelCase_ = cur_pieces[1:] else: UpperCAmelCase_ = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(_lowercase) else: new_pieces.append(_lowercase) return new_pieces def __a ( self :Optional[Any] , _lowercase :Union[str, Any]) -> Tuple: return self.sp_model.PieceToId(_lowercase) def __a ( self :Optional[int] , _lowercase :Optional[Any]) -> List[str]: return self.sp_model.IdToPiece(_lowercase) def __a ( self :List[Any] , _lowercase :Optional[Any]) -> int: UpperCAmelCase_ = ''''''.join(_lowercase).replace(_lowercase , ''' ''').strip() return out_string def __a ( self :Union[str, Any] , _lowercase :List[int] , _lowercase :bool = False , _lowercase :bool = None , _lowercase :bool = True , **_lowercase :Tuple , ) -> str: UpperCAmelCase_ = kwargs.pop('''use_source_tokenizer''' , _lowercase) UpperCAmelCase_ = self.convert_ids_to_tokens(_lowercase , skip_special_tokens=_lowercase) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 UpperCAmelCase_ = [] UpperCAmelCase_ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowercase)) UpperCAmelCase_ = [] sub_texts.append(_lowercase) else: current_sub_text.append(_lowercase) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowercase)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens UpperCAmelCase_ = ''''''.join(_lowercase) UpperCAmelCase_ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: UpperCAmelCase_ = self.clean_up_tokenization(_lowercase) return clean_text else: return text def __a ( self :str , _lowercase :List[int] , _lowercase :Optional[List[int]] = None) -> List[int]: UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __a ( self :Dict , _lowercase :List[int] , _lowercase :Optional[List[int]] = None , _lowercase :bool = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase) if token_ids_a is not None: return ([0] * len(_lowercase)) + [1] + ([0] * len(_lowercase)) + [1, 1] return ([0] * len(_lowercase)) + [1, 1] def __a ( self :Optional[int] , _lowercase :List[int] , _lowercase :Optional[List[int]] = None) -> List[int]: UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def __a ( self :str , _lowercase :str , _lowercase :Optional[str] = None) -> Tuple[str]: if not os.path.isdir(_lowercase): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return UpperCAmelCase_ = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(_lowercase) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , _lowercase) elif not os.path.isfile(self.vocab_file): with open(_lowercase , '''wb''') as fi: UpperCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(_lowercase) return (out_vocab_file,)
344
0
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.p3.16xlarge''', '''results''': {'''train_runtime''': 6_5_0, '''eval_accuracy''': 0.7, '''eval_loss''': 0.6}, }, { '''framework''': '''pytorch''', '''script''': '''run_ddp.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.p3.16xlarge''', '''results''': {'''train_runtime''': 6_0_0, '''eval_accuracy''': 0.7, '''eval_loss''': 0.6}, }, { '''framework''': '''tensorflow''', '''script''': '''run_tf_dist.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.p3.16xlarge''', '''results''': {'''train_runtime''': 6_0_0, '''eval_accuracy''': 0.6, '''eval_loss''': 0.7}, }, ] ) class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self ): """simple docstring""" if self.framework == "pytorch": subprocess.run( F'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding='utf-8' , check=lowercase , ) assert hasattr(self , 'env' ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : str = F'''{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}''' # distributed data settings A_ : Any = {'smdistributed': {'dataparallel': {'enabled': True}}} if self.script != 'run_ddp.py' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=lowercase , instance_count=lowercase , instance_type=self.instance_type , debugger_hook_config=lowercase , hyperparameters={**self.env.distributed_hyperparameters, 'model_name_or_path': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=lowercase , py_version='py36' , ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" TrainingJobAnalytics(lowercase ).export_csv(F'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(2,)] ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Any = self.create_estimator(lowercase ) # run training estimator.fit() # result dataframe A_ : Any = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis A_ : List[str] = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) A_ : Optional[Any] = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping A_ : Union[str, Any] = ( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 9_9_9_9_9_9 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(F'''{estimator.latest_training_job.name}.json''' , 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , lowercase )
140
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging _UpperCAmelCase = logging.get_logger(__name__) logging.set_verbosity_info() def UpperCamelCase ( __lowercase : str ,__lowercase : str ): '''simple docstring''' if "xprophetnet" in prophetnet_checkpoint_path: A_ : Any = XLMProphetNetForConditionalGenerationOld.from_pretrained(__lowercase ) A_ , A_ : List[str] = XLMProphetNetForConditionalGeneration.from_pretrained( __lowercase ,output_loading_info=__lowercase ) else: A_ : List[Any] = ProphetNetForConditionalGenerationOld.from_pretrained(__lowercase ) A_ , A_ : str = ProphetNetForConditionalGeneration.from_pretrained( __lowercase ,output_loading_info=__lowercase ) A_ : Any = ['key_proj', 'value_proj', 'query_proj'] A_ : str = { 'self_attn': 'ngram_self_attn', 'cross_attn': 'encoder_attn', 'cross_attn_layer_norm': 'encoder_attn_layer_norm', 'feed_forward_layer_norm': 'final_layer_norm', 'feed_forward': '', 'intermediate': 'fc1', 'output': 'fc2', 'key_proj': 'k_proj', 'query_proj': 'q_proj', 'value_proj': 'v_proj', 'word_embeddings': 'embed_tokens', 'embeddings_layer_norm': 'emb_layer_norm', 'relative_pos_embeddings': 'relative_linear', 'ngram_embeddings': 'ngram_input_embed', 'position_embeddings': 'embed_positions', } for key in loading_info["missing_keys"]: A_ : Optional[Any] = key.split('.' ) if attributes[0] == "lm_head": A_ : int = prophet A_ : int = prophet_old else: A_ : Tuple = prophet.prophetnet A_ : Optional[Any] = prophet_old.model A_ : Optional[int] = False for attribute in attributes: if attribute in mapping: A_ : Dict = mapping[attribute] if not hasattr(__lowercase ,__lowercase ) and len(__lowercase ) > 0: A_ : Union[str, Any] = attribute elif hasattr(__lowercase ,__lowercase ): A_ : Optional[int] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" A_ : List[Any] = old_model.weight logger.info(f'''{attribute} is initialized.''' ) A_ : Dict = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" A_ : Optional[int] = old_model.bias logger.info(f'''{attribute} is initialized''' ) A_ : List[str] = True break elif attribute in special_keys and hasattr(__lowercase ,'in_proj_weight' ): A_ : Union[str, Any] = old_model.in_proj_weight.shape[0] // 3 A_ : Optional[int] = getattr(__lowercase ,__lowercase ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": A_ : Tuple = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) A_ : Any = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": A_ : Tuple = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) A_ : Tuple = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": A_ : Dict = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) A_ : str = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) A_ : Union[str, Any] = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." A_ : Any = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) A_ : Union[str, Any] = True break if attribute.isdigit(): A_ : str = model[int(__lowercase )] A_ : List[str] = old_model[int(__lowercase )] else: A_ : int = getattr(__lowercase ,__lowercase ) if old_attribute == "": A_ : List[str] = old_model else: if not hasattr(__lowercase ,__lowercase ): raise ValueError(f'''{old_model} does not have {old_attribute}''' ) A_ : Union[str, Any] = getattr(__lowercase ,__lowercase ) if not is_key_init: raise ValueError(f'''{key} was not correctly initialized!''' ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(__lowercase ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--prophetnet_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _UpperCAmelCase = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
140
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'shi-labs/nat-mini-in1k-224': 'https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json', # See all Nat models at https://huggingface.co/models?filter=nat } class _lowerCAmelCase ( __snake_case , __snake_case ): '''simple docstring''' lowerCAmelCase_ = "nat" lowerCAmelCase_ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__(self , UpperCAmelCase=4 , UpperCAmelCase=3 , UpperCAmelCase=64 , UpperCAmelCase=[3, 4, 6, 5] , UpperCAmelCase=[2, 4, 8, 16] , UpperCAmelCase=7 , UpperCAmelCase=3.0 , UpperCAmelCase=True , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase="gelu" , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase=0.0 , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase , ) -> str: super().__init__(**UpperCAmelCase ) _snake_case = patch_size _snake_case = num_channels _snake_case = embed_dim _snake_case = depths _snake_case = len(UpperCAmelCase ) _snake_case = num_heads _snake_case = kernel_size _snake_case = mlp_ratio _snake_case = qkv_bias _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = drop_path_rate _snake_case = hidden_act _snake_case = layer_norm_eps _snake_case = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _snake_case = int(embed_dim * 2 ** (len(UpperCAmelCase ) - 1) ) _snake_case = layer_scale_init_value _snake_case = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(UpperCAmelCase ) + 1 )] _snake_case, _snake_case = get_aligned_output_features_output_indices( out_features=UpperCAmelCase , out_indices=UpperCAmelCase , stage_names=self.stage_names )
270
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __lowerCAmelCase = { 'configuration_encodec': [ 'ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EncodecConfig', ], 'feature_extraction_encodec': ['EncodecFeatureExtractor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST', 'EncodecModel', 'EncodecPreTrainedModel', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
270
1
import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer _UpperCAmelCase = logging.get_logger(__name__) class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = '''AutoTokenizer''' lowerCamelCase_ = ['''tokenizer'''] lowerCamelCase_ = { '''semantic_prompt''': 1, '''coarse_prompt''': 2, '''fine_prompt''': 2, } def __init__( self , lowercase , lowercase=None ): """simple docstring""" super().__init__(lowercase ) A_ : List[Any] = speaker_embeddings @classmethod def lowerCAmelCase_ ( cls , lowercase , lowercase="speaker_embeddings_path.json" , **lowercase ): """simple docstring""" if speaker_embeddings_dict_path is not None: A_ : Dict = get_file_from_repo( lowercase , lowercase , subfolder=kwargs.pop('subfolder' , lowercase ) , cache_dir=kwargs.pop('cache_dir' , lowercase ) , force_download=kwargs.pop('force_download' , lowercase ) , proxies=kwargs.pop('proxies' , lowercase ) , resume_download=kwargs.pop('resume_download' , lowercase ) , local_files_only=kwargs.pop('local_files_only' , lowercase ) , use_auth_token=kwargs.pop('use_auth_token' , lowercase ) , revision=kwargs.pop('revision' , lowercase ) , ) if speaker_embeddings_path is None: logger.warning( F'''`{os.path.join(lowercase , lowercase )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' ) A_ : str = None else: with open(lowercase ) as speaker_embeddings_json: A_ : Tuple = json.load(lowercase ) else: A_ : Dict = None A_ : Optional[Any] = AutoTokenizer.from_pretrained(lowercase , **lowercase ) return cls(tokenizer=lowercase , speaker_embeddings=lowercase ) def lowerCAmelCase_ ( self , lowercase , lowercase="speaker_embeddings_path.json" , lowercase="speaker_embeddings" , lowercase = False , **lowercase , ): """simple docstring""" if self.speaker_embeddings is not None: os.makedirs(os.path.join(lowercase , lowercase , 'v2' ) , exist_ok=lowercase ) A_ : Optional[Any] = {} A_ : Dict = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": A_ : str = self._load_voice_preset(lowercase ) A_ : Tuple = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['repo_or_path'] , lowercase , F'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=lowercase , ) A_ : str = os.path.join(lowercase , F'''{prompt_key}_{key}.npy''' ) A_ : List[Any] = tmp_dict with open(os.path.join(lowercase , lowercase ) , 'w' ) as fp: json.dump(lowercase , lowercase ) super().save_pretrained(lowercase , lowercase , **lowercase ) def lowerCAmelCase_ ( self , lowercase = None , **lowercase ): """simple docstring""" A_ : Tuple = self.speaker_embeddings[voice_preset] A_ : str = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' ) A_ : List[str] = get_file_from_repo( self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] , subfolder=kwargs.pop('subfolder' , lowercase ) , cache_dir=kwargs.pop('cache_dir' , lowercase ) , force_download=kwargs.pop('force_download' , lowercase ) , proxies=kwargs.pop('proxies' , lowercase ) , resume_download=kwargs.pop('resume_download' , lowercase ) , local_files_only=kwargs.pop('local_files_only' , lowercase ) , use_auth_token=kwargs.pop('use_auth_token' , lowercase ) , revision=kwargs.pop('revision' , lowercase ) , ) if path is None: raise ValueError( F'''`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.''' ) A_ : Any = np.load(lowercase ) return voice_preset_dict def lowerCAmelCase_ ( self , lowercase = None ): """simple docstring""" for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F'''Voice preset unrecognized, missing {key} as a key.''' ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) def __call__( self , lowercase=None , lowercase=None , lowercase="pt" , lowercase=2_5_6 , lowercase=False , lowercase=True , lowercase=False , **lowercase , ): """simple docstring""" if voice_preset is not None and not isinstance(lowercase , lowercase ): if ( isinstance(lowercase , lowercase ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): A_ : Union[str, Any] = self._load_voice_preset(lowercase ) else: if isinstance(lowercase , lowercase ) and not voice_preset.endswith('.npz' ): A_ : Dict = voice_preset + '.npz' A_ : Union[str, Any] = np.load(lowercase ) if voice_preset is not None: self._validate_voice_preset_dict(lowercase , **lowercase ) A_ : Optional[Any] = BatchFeature(data=lowercase , tensor_type=lowercase ) A_ : List[Any] = self.tokenizer( lowercase , return_tensors=lowercase , padding='max_length' , max_length=lowercase , return_attention_mask=lowercase , return_token_type_ids=lowercase , add_special_tokens=lowercase , **lowercase , ) if voice_preset is not None: A_ : Any = voice_preset return encoded_text
140
from typing import Any import numpy as np def UpperCamelCase ( __lowercase : np.ndarray ): '''simple docstring''' return np.array_equal(__lowercase ,matrix.conjugate().T ) def UpperCamelCase ( __lowercase : np.ndarray ,__lowercase : np.ndarray ): '''simple docstring''' A_ : Union[str, Any] = v.conjugate().T A_ : Dict = v_star.dot(__lowercase ) assert isinstance(__lowercase ,np.ndarray ) return (v_star_dot.dot(__lowercase )) / (v_star.dot(__lowercase )) def UpperCamelCase ( ): '''simple docstring''' A_ : Dict = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) A_ : List[Any] = np.array([[1], [2], [3]] ) assert is_hermitian(__lowercase ), f'''{a} is not hermitian.''' print(rayleigh_quotient(__lowercase ,__lowercase ) ) A_ : List[str] = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(__lowercase ), f'''{a} is not hermitian.''' assert rayleigh_quotient(__lowercase ,__lowercase ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
140
1
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=32 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=16 , _lowerCamelCase=[1, 2, 1] , _lowerCamelCase=[2, 2, 4] , _lowerCamelCase=2 , _lowerCamelCase=2.0 , _lowerCamelCase=True , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-5 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=10 , _lowerCamelCase=8 , _lowerCamelCase=["stage1", "stage2", "stage3"] , _lowerCamelCase=[1, 2, 3] , ) ->Dict: SCREAMING_SNAKE_CASE : int = parent SCREAMING_SNAKE_CASE : Any = batch_size SCREAMING_SNAKE_CASE : str = image_size SCREAMING_SNAKE_CASE : Tuple = patch_size SCREAMING_SNAKE_CASE : Optional[int] = num_channels SCREAMING_SNAKE_CASE : int = embed_dim SCREAMING_SNAKE_CASE : int = depths SCREAMING_SNAKE_CASE : str = num_heads SCREAMING_SNAKE_CASE : List[Any] = window_size SCREAMING_SNAKE_CASE : Dict = mlp_ratio SCREAMING_SNAKE_CASE : Optional[Any] = qkv_bias SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : int = drop_path_rate SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE : Optional[Any] = use_absolute_embeddings SCREAMING_SNAKE_CASE : List[str] = patch_norm SCREAMING_SNAKE_CASE : Any = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE : Union[str, Any] = is_training SCREAMING_SNAKE_CASE : Optional[Any] = scope SCREAMING_SNAKE_CASE : Optional[int] = use_labels SCREAMING_SNAKE_CASE : str = type_sequence_label_size SCREAMING_SNAKE_CASE : List[Any] = encoder_stride SCREAMING_SNAKE_CASE : Any = out_features SCREAMING_SNAKE_CASE : Tuple = out_indices def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_labels: SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Tuple = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self ) ->Union[str, Any]: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Any: SCREAMING_SNAKE_CASE : List[Any] = MaskFormerSwinModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : str = model(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) SCREAMING_SNAKE_CASE : int = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Dict: SCREAMING_SNAKE_CASE : Union[str, Any] = MaskFormerSwinBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(_lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(_lowerCamelCase ): SCREAMING_SNAKE_CASE : Tuple = ['''stem'''] SCREAMING_SNAKE_CASE : Dict = MaskFormerSwinBackbone(config=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : List[Any] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = config_and_inputs SCREAMING_SNAKE_CASE : int = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a_ ( a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : int = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {} __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : str = False __SCREAMING_SNAKE_CASE : Union[str, Any] = False __SCREAMING_SNAKE_CASE : Any = False __SCREAMING_SNAKE_CASE : Optional[Any] = False def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : List[str] = MaskFormerSwinModelTester(self ) SCREAMING_SNAKE_CASE : str = ConfigTester(self , config_class=_lowerCamelCase , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '''`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with''' ''' `nn.DataParallel`''' ) ) def __lowerCAmelCase ( self ) ->Optional[int]: pass def __lowerCAmelCase ( self ) ->List[str]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCAmelCase ( self ) ->Any: return def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_lowerCamelCase ) @unittest.skip('''Swin does not use inputs_embeds''' ) def __lowerCAmelCase ( self ) ->Any: pass @unittest.skip('''Swin does not support feedforward chunking''' ) def __lowerCAmelCase ( self ) ->int: pass def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Dict = model_class(_lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCamelCase , nn.Linear ) ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Any = model_class(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : List[str] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) @unittest.skip(reason='''MaskFormerSwin is only used as backbone and doesn\'t support output_attentions''' ) def __lowerCAmelCase ( self ) ->Tuple: pass @unittest.skip(reason='''MaskFormerSwin is only used as an internal backbone''' ) def __lowerCAmelCase ( self ) ->Dict: pass def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->str: SCREAMING_SNAKE_CASE : Dict = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Tuple = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) SCREAMING_SNAKE_CASE : int = outputs.hidden_states SCREAMING_SNAKE_CASE : str = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) # Swin has a different seq_length SCREAMING_SNAKE_CASE : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) SCREAMING_SNAKE_CASE : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : int = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : int = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Dict = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : int = 3 SCREAMING_SNAKE_CASE : Any = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) SCREAMING_SNAKE_CASE : Dict = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) SCREAMING_SNAKE_CASE : str = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) SCREAMING_SNAKE_CASE : Dict = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : str = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Tuple = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , (padded_height, padded_width) ) @unittest.skip(reason='''MaskFormerSwin doesn\'t have pretrained checkpoints''' ) def __lowerCAmelCase ( self ) ->Optional[int]: pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def __lowerCAmelCase ( self ) ->Tuple: pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def __lowerCAmelCase ( self ) ->int: pass def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(_lowerCamelCase ): SCREAMING_SNAKE_CASE : str = 0 return t def check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase={} ): with torch.no_grad(): SCREAMING_SNAKE_CASE : Tuple = model(**_lowerCamelCase , return_dict=_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = model(**_lowerCamelCase , return_dict=_lowerCamelCase , **_lowerCamelCase ).to_tuple() def recursive_check(_lowerCamelCase , _lowerCamelCase ): if isinstance(_lowerCamelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_lowerCamelCase , _lowerCamelCase ): recursive_check(_lowerCamelCase , _lowerCamelCase ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(_lowerCamelCase , _lowerCamelCase ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(_lowerCamelCase ) , set_nan_tensor_to_zero(_lowerCamelCase ) , atol=1e-5 ) , msg=( '''Tuple and dict output are not equal. Difference:''' F""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:""" F""" {torch.isnan(_lowerCamelCase ).any()} and `inf`: {torch.isinf(_lowerCamelCase )}. Dict has""" F""" `nan`: {torch.isnan(_lowerCamelCase ).any()} and `inf`: {torch.isinf(_lowerCamelCase )}.""" ) , ) recursive_check(_lowerCamelCase , _lowerCamelCase ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : int = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , {'''output_hidden_states''': True} ) SCREAMING_SNAKE_CASE : Optional[int] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , {'''output_hidden_states''': True} ) @require_torch class a_ ( unittest.TestCase , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = (MaskFormerSwinBackbone,) if is_torch_available() else () __SCREAMING_SNAKE_CASE : str = MaskFormerSwinConfig def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Optional[int] = MaskFormerSwinModelTester(self ) def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Union[str, Any] = inputs_dict['''pixel_values'''].shape[0] for backbone_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[int] = backbone_class(_lowerCamelCase ) backbone.to(_lowerCamelCase ) backbone.eval() SCREAMING_SNAKE_CASE : Tuple = backbone(**_lowerCamelCase ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , _lowerCamelCase ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True SCREAMING_SNAKE_CASE : Optional[Any] = backbone(**_lowerCamelCase , output_hidden_states=_lowerCamelCase ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: SCREAMING_SNAKE_CASE : Tuple = backbone(**_lowerCamelCase , output_attentions=_lowerCamelCase ) self.assertIsNotNone(outputs.attentions )
19
import datasets from .evaluate import evaluate a__ : Dict = '''\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } ''' a__ : List[str] = ''' This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. ''' a__ : List[Any] = ''' Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair as given in the references (see below) - \'prediction_text\': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair (see above), - \'answers\': a Dict in the CUAD dataset format { \'text\': list of possible texts for the answer, as a list of strings \'answer_start\': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: \'exact_match\': Exact match (the normalized answer exactly match the gold answer) \'f1\': The F-score of predicted tokens versus the gold answer \'aupr\': Area Under the Precision-Recall curve \'prec_at_80_recall\': Precision at 80% recall \'prec_at_90_recall\': Precision at 90% recall Examples: >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> cuad_metric = datasets.load_metric("cuad") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): """simple docstring""" def __lowerCAmelCase ( self ) ->Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': { '''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ), }, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ) , codebase_urls=['''https://www.atticusprojectai.org/cuad'''] , reference_urls=['''https://www.atticusprojectai.org/cuad'''] , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Tuple: SCREAMING_SNAKE_CASE : Any = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} SCREAMING_SNAKE_CASE : int = [ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] SCREAMING_SNAKE_CASE : Dict = evaluate(dataset=_lowerCamelCase , predictions=_lowerCamelCase ) return score
19
1
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): SCREAMING_SNAKE_CASE__ : Optional[Any] = True from torch.cuda.amp import autocast SCREAMING_SNAKE_CASE__ : List[str] = logging.getLogger(__name__) def __magic_name__ ( __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : Union[str, Any]=None ) -> str: return field(default_factory=lambda: default , metadata=__lowerCAmelCase ) @dataclass class lowerCAmelCase__ : a__ : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a__ : Optional[str] = field( default=__lowercase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a__ : Optional[bool] = field( default=__lowercase , metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""} ) a__ : Optional[float] = field( default=0.1 , metadata={"""help""": """The dropout ratio for the attention probabilities."""} ) a__ : Optional[float] = field( default=0.1 , metadata={"""help""": """The dropout ratio for activations inside the fully connected layer."""} ) a__ : Optional[float] = field( default=0.1 , metadata={ """help""": """The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.""" } , ) a__ : Optional[float] = field( default=0.1 , metadata={"""help""": """The dropout probabilitiy for all 1D convolutional layers in feature extractor."""} , ) a__ : Optional[float] = field( default=0.05 , metadata={ """help""": ( """Propability of each feature vector along the time axis to be chosen as the start of the vector""" """span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature""" """vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.""" ) } , ) a__ : Optional[float] = field(default=0.0 , metadata={"""help""": """The LayerDrop probability."""} ) @dataclass class lowerCAmelCase__ : a__ : Optional[str] = field( default=__lowercase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) a__ : Optional[str] = field( default="""train+validation""" , metadata={ """help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'""" } , ) a__ : bool = field( default=__lowercase , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) a__ : Optional[int] = field( default=__lowercase , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) a__ : Optional[int] = field( default=__lowercase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) a__ : Optional[int] = field( default=__lowercase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of validation examples to this """ """value if set.""" ) } , ) a__ : List[str] = list_field( default=[""",""", """?""", """.""", """!""", """-""", """;""", """:""", """\"\"""", """%""", """'""", """\"""", """�"""] , metadata={"""help""": """A list of characters to remove from the transcripts."""} , ) @dataclass class lowerCAmelCase__ : a__ : WavaVecaProcessor a__ : Union[bool, str] = True a__ : Optional[int] = None a__ : Optional[int] = None a__ : Optional[int] = None a__ : Optional[int] = None def __call__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Dict[str, Union[List[int], torch.Tensor]]] ) -> Dict[str, torch.Tensor]: # split inputs and labels since they have to be of different lenghts and need # different padding methods __lowerCamelCase = [{'''input_values''': feature['''input_values''']} for feature in features] __lowerCamelCase = [{'''input_ids''': feature['''labels''']} for feature in features] __lowerCamelCase = self.processor.pad( SCREAMING_SNAKE_CASE__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) __lowerCamelCase = self.processor.pad( labels=SCREAMING_SNAKE_CASE__ , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='''pt''' , ) # replace padding with -100 to ignore loss correctly __lowerCamelCase = labels_batch['''input_ids'''].masked_fill(labels_batch.attention_mask.ne(1 ) , -1_00 ) __lowerCamelCase = labels return batch class lowerCAmelCase__ ( __lowercase ): def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : nn.Module , SCREAMING_SNAKE_CASE__ : Dict[str, Union[torch.Tensor, Any]] ) -> torch.Tensor: model.train() __lowerCamelCase = self._prepare_inputs(SCREAMING_SNAKE_CASE__ ) if self.use_amp: with autocast(): __lowerCamelCase = self.compute_loss(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: __lowerCamelCase = self.compute_loss(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": __lowerCamelCase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": __lowerCamelCase = loss.sum() / (inputs['''labels'''] >= 0).sum() else: raise ValueError(f'''{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']''' ) if self.args.gradient_accumulation_steps > 1: __lowerCamelCase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(SCREAMING_SNAKE_CASE__ ).backward() elif self.use_apex: with amp.scale_loss(SCREAMING_SNAKE_CASE__ , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(SCREAMING_SNAKE_CASE__ ) else: loss.backward() return loss.detach() def __magic_name__ ( ) -> str: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __lowerCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , __lowerCAmelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: __lowerCamelCase = datasets.load_dataset( '''common_voice''' , data_args.dataset_config_name , split=data_args.train_split_name ) __lowerCamelCase = datasets.load_dataset('''common_voice''' , data_args.dataset_config_name , split='''test''' ) # Create and save tokenizer __lowerCamelCase = f'''[{''.join(data_args.chars_to_ignore )}]''' def remove_special_characters(__lowerCAmelCase : str ): __lowerCamelCase = re.sub(__lowerCAmelCase , '''''' , batch['''sentence'''] ).lower() + ''' ''' return batch __lowerCamelCase = train_dataset.map(__lowerCAmelCase , remove_columns=['''sentence'''] ) __lowerCamelCase = eval_dataset.map(__lowerCAmelCase , remove_columns=['''sentence'''] ) def extract_all_chars(__lowerCAmelCase : Optional[int] ): __lowerCamelCase = ''' '''.join(batch['''text'''] ) __lowerCamelCase = list(set(__lowerCAmelCase ) ) return {"vocab": [vocab], "all_text": [all_text]} __lowerCamelCase = train_dataset.map( __lowerCAmelCase , batched=__lowerCAmelCase , batch_size=-1 , keep_in_memory=__lowerCAmelCase , remove_columns=train_dataset.column_names , ) __lowerCamelCase = train_dataset.map( __lowerCAmelCase , batched=__lowerCAmelCase , batch_size=-1 , keep_in_memory=__lowerCAmelCase , remove_columns=eval_dataset.column_names , ) __lowerCamelCase = list(set(vocab_train['''vocab'''][0] ) | set(vocab_test['''vocab'''][0] ) ) __lowerCamelCase = {v: k for k, v in enumerate(__lowerCAmelCase )} __lowerCamelCase = vocab_dict[''' '''] del vocab_dict[" "] __lowerCamelCase = len(__lowerCAmelCase ) __lowerCamelCase = len(__lowerCAmelCase ) with open('''vocab.json''' , '''w''' ) as vocab_file: json.dump(__lowerCAmelCase , __lowerCAmelCase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCamelCase = WavaVecaCTCTokenizer( '''vocab.json''' , unk_token='''[UNK]''' , pad_token='''[PAD]''' , word_delimiter_token='''|''' , ) __lowerCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0.0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase ) __lowerCamelCase = WavaVecaProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) __lowerCamelCase = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='''mean''' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: __lowerCamelCase = min(len(__lowerCAmelCase ) , data_args.max_train_samples ) __lowerCamelCase = train_dataset.select(range(__lowerCAmelCase ) ) if data_args.max_val_samples is not None: __lowerCamelCase = eval_dataset.select(range(data_args.max_val_samples ) ) __lowerCamelCase = torchaudio.transforms.Resample(4_8000 , 1_6000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(__lowerCAmelCase : Tuple ): __lowerCamelCase , __lowerCamelCase = torchaudio.load(batch['''path'''] ) __lowerCamelCase = resampler(__lowerCAmelCase ).squeeze().numpy() __lowerCamelCase = 1_6000 __lowerCamelCase = batch['''text'''] return batch __lowerCamelCase = train_dataset.map( __lowerCAmelCase , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) __lowerCamelCase = eval_dataset.map( __lowerCAmelCase , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(__lowerCAmelCase : str ): # check that all files have the correct sampling rate assert ( len(set(batch['''sampling_rate'''] ) ) == 1 ), f'''Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.''' __lowerCamelCase = processor( audio=batch['''speech'''] , text=batch['''target_text'''] , sampling_rate=batch['''sampling_rate'''][0] ) batch.update(__lowerCAmelCase ) return batch __lowerCamelCase = train_dataset.map( __lowerCAmelCase , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__lowerCAmelCase , num_proc=data_args.preprocessing_num_workers , ) __lowerCamelCase = eval_dataset.map( __lowerCAmelCase , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__lowerCAmelCase , num_proc=data_args.preprocessing_num_workers , ) # Metric __lowerCamelCase = datasets.load_metric('''wer''' ) def compute_metrics(__lowerCAmelCase : int ): __lowerCamelCase = pred.predictions __lowerCamelCase = np.argmax(__lowerCAmelCase , axis=-1 ) __lowerCamelCase = processor.tokenizer.pad_token_id __lowerCamelCase = processor.batch_decode(__lowerCAmelCase ) # we do not want to group tokens when computing the metrics __lowerCamelCase = processor.batch_decode(pred.label_ids , group_tokens=__lowerCAmelCase ) __lowerCamelCase = wer_metric.compute(predictions=__lowerCAmelCase , references=__lowerCAmelCase ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator __lowerCamelCase = DataCollatorCTCWithPadding(processor=__lowerCAmelCase , padding=__lowerCAmelCase ) # Initialize our Trainer __lowerCamelCase = CTCTrainer( model=__lowerCAmelCase , data_collator=__lowerCAmelCase , args=__lowerCAmelCase , compute_metrics=__lowerCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: __lowerCamelCase = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): __lowerCamelCase = model_args.model_name_or_path else: __lowerCamelCase = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) __lowerCamelCase = trainer.train(resume_from_checkpoint=__lowerCAmelCase ) trainer.save_model() __lowerCamelCase = train_result.metrics __lowerCamelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__lowerCAmelCase ) ) __lowerCamelCase = min(__lowerCAmelCase , len(__lowerCAmelCase ) ) trainer.log_metrics('''train''' , __lowerCAmelCase ) trainer.save_metrics('''train''' , __lowerCAmelCase ) trainer.save_state() # Evaluation __lowerCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __lowerCamelCase = trainer.evaluate() __lowerCamelCase = data_args.max_val_samples if data_args.max_val_samples is not None else len(__lowerCAmelCase ) __lowerCamelCase = min(__lowerCAmelCase , len(__lowerCAmelCase ) ) trainer.log_metrics('''eval''' , __lowerCAmelCase ) trainer.save_metrics('''eval''' , __lowerCAmelCase ) return results if __name__ == "__main__": main()
270
from abc import ABC, abstractmethod from argparse import ArgumentParser class lowerCAmelCase__ ( __lowercase ): @staticmethod @abstractmethod def __A ( SCREAMING_SNAKE_CASE__ : ArgumentParser ) -> str: raise NotImplementedError() @abstractmethod def __A ( self : Optional[int] ) -> Union[str, Any]: raise NotImplementedError()
270
1
from math import sqrt def lowerCamelCase_ ( UpperCamelCase__ : int ): '''simple docstring''' UpperCamelCase__ = 0 for i in range(1, int(sqrt(UpperCamelCase__ ) + 1 ) ): if n % i == 0 and i != sqrt(UpperCamelCase__ ): total += i + n // i elif i == sqrt(UpperCamelCase__ ): total += i return total - n def lowerCamelCase_ ( UpperCamelCase__ : int = 1_0000 ): '''simple docstring''' UpperCamelCase__ = sum( i for i in range(1, UpperCamelCase__ ) if sum_of_divisors(sum_of_divisors(UpperCamelCase__ ) ) == i and sum_of_divisors(UpperCamelCase__ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
35
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase = { """configuration_xlm_roberta""": [ """XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMRobertaConfig""", """XLMRobertaOnnxConfig""", ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ["""XLMRobertaTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ["""XLMRobertaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ """XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMRobertaForCausalLM""", """XLMRobertaForMaskedLM""", """XLMRobertaForMultipleChoice""", """XLMRobertaForQuestionAnswering""", """XLMRobertaForSequenceClassification""", """XLMRobertaForTokenClassification""", """XLMRobertaModel""", """XLMRobertaPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ """TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLMRobertaForCausalLM""", """TFXLMRobertaForMaskedLM""", """TFXLMRobertaForMultipleChoice""", """TFXLMRobertaForQuestionAnswering""", """TFXLMRobertaForSequenceClassification""", """TFXLMRobertaForTokenClassification""", """TFXLMRobertaModel""", """TFXLMRobertaPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ """FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """FlaxXLMRobertaForMaskedLM""", """FlaxXLMRobertaForCausalLM""", """FlaxXLMRobertaForMultipleChoice""", """FlaxXLMRobertaForQuestionAnswering""", """FlaxXLMRobertaForSequenceClassification""", """FlaxXLMRobertaForTokenClassification""", """FlaxXLMRobertaModel""", """FlaxXLMRobertaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
35
1
import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow _UpperCAmelCase : Tuple =False class snake_case__( unittest.TestCase ): '''simple docstring''' def lowercase_ ( self , __lowercase=3_2 ) -> Tuple: set_seed(0 ) lowerCAmelCase_ : Optional[int] = UNetaDModel(sample_size=lowerCAmelCase__ , in_channels=3 , out_channels=3 ) lowerCAmelCase_ : Optional[int] = torch.optim.SGD(model.parameters() , lr=0.00_01 ) return model, optimizer @slow def lowercase_ ( self ) -> Dict: lowerCAmelCase_ : Any = "cpu" # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable lowerCAmelCase_ : Optional[Any] = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.00_01 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=lowerCAmelCase__ , ) lowerCAmelCase_ : Any = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.00_01 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=lowerCAmelCase__ , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) lowerCAmelCase_ : Tuple = [torch.randn((4, 3, 3_2, 3_2) ).clip(-1 , 1 ).to(lowerCAmelCase__ ) for _ in range(4 )] lowerCAmelCase_ : Tuple = [torch.randn((4, 3, 3_2, 3_2) ).to(lowerCAmelCase__ ) for _ in range(4 )] lowerCAmelCase_ : Union[str, Any] = [torch.randint(0 , 1_0_0_0 , (4,) ).long().to(lowerCAmelCase__ ) for _ in range(4 )] # train with a DDPM scheduler lowerCAmelCase_ : Optional[Any] = self.get_model_optimizer(resolution=3_2 ) model.train().to(lowerCAmelCase__ ) for i in range(4 ): optimizer.zero_grad() lowerCAmelCase_ : List[Any] = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowerCAmelCase_ : Optional[int] = model(lowerCAmelCase__ , timesteps[i] ).sample lowerCAmelCase_ : int = torch.nn.functional.mse_loss(lowerCAmelCase__ , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM lowerCAmelCase_ : List[str] = self.get_model_optimizer(resolution=3_2 ) model.train().to(lowerCAmelCase__ ) for i in range(4 ): optimizer.zero_grad() lowerCAmelCase_ : Union[str, Any] = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowerCAmelCase_ : Optional[Any] = model(lowerCAmelCase__ , timesteps[i] ).sample lowerCAmelCase_ : List[Any] = torch.nn.functional.mse_loss(lowerCAmelCase__ , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-5 ) ) self.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-5 ) )
262
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase : Any = { """configuration_convbert""": ["""CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvBertConfig""", """ConvBertOnnxConfig"""], """tokenization_convbert""": ["""ConvBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] = ["""ConvBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[str] = [ """CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConvBertForMaskedLM""", """ConvBertForMultipleChoice""", """ConvBertForQuestionAnswering""", """ConvBertForSequenceClassification""", """ConvBertForTokenClassification""", """ConvBertLayer""", """ConvBertModel""", """ConvBertPreTrainedModel""", """load_tf_weights_in_convbert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Union[str, Any] = [ """TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFConvBertForMaskedLM""", """TFConvBertForMultipleChoice""", """TFConvBertForQuestionAnswering""", """TFConvBertForSequenceClassification""", """TFConvBertForTokenClassification""", """TFConvBertLayer""", """TFConvBertModel""", """TFConvBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys UpperCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
95
0
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version lowerCamelCase__ = get_logger(__name__) class _UpperCAmelCase : '''simple docstring''' __A = '''dummy_data''' __A = '''datasets''' __A = False def __init__( self : int , lowercase_ : str , lowercase_ : str , lowercase_ : Union[Version, str] , lowercase_ : Optional[str] = None , lowercase_ : bool = False , lowercase_ : bool = True , lowercase_ : Optional[List[Callable]] = None , ) -> int: """simple docstring""" _UpperCamelCase = 0 _UpperCamelCase = dataset_name _UpperCamelCase = cache_dir _UpperCamelCase = use_local_dummy_data _UpperCamelCase = config # download_callbacks take a single url as input _UpperCamelCase = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root _UpperCamelCase = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general _UpperCamelCase = str(lowercase_) # to be downloaded _UpperCamelCase = None _UpperCamelCase = None @property def __UpperCAmelCase ( self : List[Any]) -> Tuple: """simple docstring""" if self._dummy_file is None: _UpperCamelCase = self.download_dummy_data() return self._dummy_file @property def __UpperCAmelCase ( self : str) -> List[Any]: """simple docstring""" if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("dummy" , self.config.name , self.version_name) # structure is dummy / version_name return os.path.join("dummy" , self.version_name) @property def __UpperCAmelCase ( self : Any) -> List[Any]: """simple docstring""" return os.path.join(self.dummy_data_folder , "dummy_data.zip") def __UpperCAmelCase ( self : Dict) -> Tuple: """simple docstring""" _UpperCamelCase = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) _UpperCamelCase = cached_path( lowercase_ , cache_dir=self.cache_dir , extract_compressed_file=lowercase_ , force_extract=lowercase_) return os.path.join(lowercase_ , self.dummy_file_name) @property def __UpperCAmelCase ( self : str) -> Tuple: """simple docstring""" return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file) @property def __UpperCAmelCase ( self : List[str]) -> Optional[Any]: """simple docstring""" if self._bucket_url is None: _UpperCamelCase = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , "/")) return self._bucket_url @property def __UpperCAmelCase ( self : List[str]) -> List[str]: """simple docstring""" if os.path.isdir(self.dummy_file): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , "/").split("/")[:-1]) def __UpperCAmelCase ( self : List[str] , lowercase_ : Dict , *lowercase_ : Optional[Any]) -> Optional[Any]: """simple docstring""" if self.load_existing_dummy_data: # dummy data is downloaded and tested _UpperCamelCase = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned _UpperCamelCase = self.dummy_file_name # special case when data_url is a dict if isinstance(lowercase_ , lowercase_): return self.create_dummy_data_dict(lowercase_ , lowercase_) elif isinstance(lowercase_ , (list, tuple)): return self.create_dummy_data_list(lowercase_ , lowercase_) else: return self.create_dummy_data_single(lowercase_ , lowercase_) def __UpperCAmelCase ( self : List[Any] , lowercase_ : Any , *lowercase_ : List[str]) -> List[Any]: """simple docstring""" return self.download_and_extract(lowercase_) def __UpperCAmelCase ( self : Tuple , lowercase_ : int , lowercase_ : Union[str, Any]) -> Dict: """simple docstring""" return self.download_and_extract(lowercase_) def __UpperCAmelCase ( self : Union[str, Any] , lowercase_ : str , *lowercase_ : Tuple , **lowercase_ : Any) -> List[Any]: """simple docstring""" return path def __UpperCAmelCase ( self : Union[str, Any]) -> List[Any]: """simple docstring""" return {} def __UpperCAmelCase ( self : Tuple , lowercase_ : Tuple , lowercase_ : Any) -> List[Any]: """simple docstring""" _UpperCamelCase = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(lowercase_ , lowercase_): for single_url in single_urls: download_callback(lowercase_) else: _UpperCamelCase = single_urls download_callback(lowercase_) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(lowercase_ , lowercase_): _UpperCamelCase = [os.path.join(lowercase_ , urllib.parse.quote_plus(Path(lowercase_).name)) for x in single_urls] else: _UpperCamelCase = single_urls _UpperCamelCase = os.path.join(lowercase_ , urllib.parse.quote_plus(Path(lowercase_).name)) _UpperCamelCase = value # make sure that values are unique if all(isinstance(lowercase_ , lowercase_) for i in dummy_data_dict.values()) and len(set(dummy_data_dict.values())) < len( dummy_data_dict.values()): # append key to value to make its name unique _UpperCamelCase = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def __UpperCAmelCase ( self : str , lowercase_ : Union[str, Any] , lowercase_ : Any) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one _UpperCamelCase = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" , lowercase_)) for url in data_url) _UpperCamelCase = all( url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed") for url in data_url) if data_url and (is_tf_records or is_pubmed_records): _UpperCamelCase = [data_url[0]] * len(lowercase_) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(lowercase_) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _UpperCamelCase = os.path.join(lowercase_ , urllib.parse.quote_plus(single_url.split("/")[-1])) dummy_data_list.append(lowercase_) return dummy_data_list def __UpperCAmelCase ( self : Dict , lowercase_ : List[str] , lowercase_ : Dict) -> Tuple: """simple docstring""" for download_callback in self.download_callbacks: download_callback(lowercase_) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _UpperCamelCase = os.path.join(lowercase_ , urllib.parse.quote_plus(data_url.split("/")[-1])) if os.path.exists(lowercase_) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def __UpperCAmelCase ( self : List[Any]) -> Any: """simple docstring""" pass def __UpperCAmelCase ( self : Optional[int]) -> int: """simple docstring""" pass def __UpperCAmelCase ( self : List[str] , lowercase_ : Union[str, Any]) -> Tuple: """simple docstring""" def _iter_archive_members(lowercase_ : Any): # this preserves the order of the members inside the ZIP archive _UpperCamelCase = Path(self.dummy_file).parent _UpperCamelCase = path.relative_to(lowercase_) with ZipFile(self.local_path_to_dummy_data) as zip_file: _UpperCamelCase = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix()): yield dummy_parent_path.joinpath(lowercase_) _UpperCamelCase = Path(lowercase_) _UpperCamelCase = _iter_archive_members(lowercase_) if self.use_local_dummy_data else path.rglob("*") for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((".", "__")): yield file_path.relative_to(lowercase_).as_posix(), file_path.open("rb") def __UpperCAmelCase ( self : Tuple , lowercase_ : str) -> Dict: """simple docstring""" if not isinstance(lowercase_ , lowercase_): _UpperCamelCase = [paths] for path in paths: if os.path.isfile(lowercase_): if os.path.basename(lowercase_).startswith((".", "__")): return yield path else: for dirpath, dirnames, filenames in os.walk(lowercase_): if os.path.basename(lowercase_).startswith((".", "__")): continue dirnames.sort() for filename in sorted(lowercase_): if filename.startswith((".", "__")): continue yield os.path.join(lowercase_ , lowercase_)
63
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def lowerCAmelCase__ ( a__ , a__ , a__ ) ->int: '''simple docstring''' _UpperCamelCase = MobileBertConfig.from_json_file(a__ ) print(f'Building PyTorch model from configuration: {config}' ) _UpperCamelCase = MobileBertForPreTraining(a__ ) # Load weights from tf checkpoint _UpperCamelCase = load_tf_weights_in_mobilebert(a__ , a__ , a__ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , a__ ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--mobilebert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained MobileBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCamelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
63
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor lowerCAmelCase : List[Any] =logging.get_logger(__name__) class a_ ( _lowerCAmelCase ): def __init__( self : Optional[int] , *lowercase : Any , **lowercase : List[Any] ): """simple docstring""" warnings.warn( "The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use FlavaImageProcessor instead." , lowercase , ) super().__init__(*lowercase , **lowercase )
223
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[Any] =logging.get_logger(__name__) lowerCAmelCase : Tuple ={ '''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class a_ ( _lowerCAmelCase ): __A = "vit_mae" def __init__( self : Any , lowercase : int=768 , lowercase : Tuple=12 , lowercase : str=12 , lowercase : Optional[Any]=3_072 , lowercase : List[Any]="gelu" , lowercase : Tuple=0.0 , lowercase : Union[str, Any]=0.0 , lowercase : str=0.02 , lowercase : Optional[int]=1e-1_2 , lowercase : List[Any]=224 , lowercase : str=16 , lowercase : List[str]=3 , lowercase : Optional[Any]=True , lowercase : int=16 , lowercase : Optional[Any]=512 , lowercase : Optional[Any]=8 , lowercase : Optional[Any]=2_048 , lowercase : List[str]=0.75 , lowercase : str=False , **lowercase : Union[str, Any] , ): """simple docstring""" super().__init__(**lowercase ) lowercase_ :Any = hidden_size lowercase_ :Optional[Any] = num_hidden_layers lowercase_ :Optional[Any] = num_attention_heads lowercase_ :int = intermediate_size lowercase_ :Optional[int] = hidden_act lowercase_ :str = hidden_dropout_prob lowercase_ :Optional[Any] = attention_probs_dropout_prob lowercase_ :str = initializer_range lowercase_ :Optional[int] = layer_norm_eps lowercase_ :str = image_size lowercase_ :Union[str, Any] = patch_size lowercase_ :Dict = num_channels lowercase_ :Any = qkv_bias lowercase_ :Optional[int] = decoder_num_attention_heads lowercase_ :Optional[Any] = decoder_hidden_size lowercase_ :Union[str, Any] = decoder_num_hidden_layers lowercase_ :List[Any] = decoder_intermediate_size lowercase_ :Optional[Any] = mask_ratio lowercase_ :Optional[Any] = norm_pix_loss
223
1
import pprint import requests UpperCAmelCase_ = """https://zenquotes.io/api""" def lowerCamelCase__ ( ) -> list: '''simple docstring''' return requests.get(API_ENDPOINT_URL + '/today' ).json() def lowerCamelCase__ ( ) -> list: '''simple docstring''' return requests.get(API_ENDPOINT_URL + '/random' ).json() if __name__ == "__main__": UpperCAmelCase_ = random_quotes() pprint.pprint(response)
295
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo UpperCAmelCase_ = """\ @misc{wu2016googles, title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ UpperCAmelCase_ = """\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the 'GLEU score'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score's range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. """ UpperCAmelCase_ = """\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: 'google_bleu': google_bleu score Examples: Example 1: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.44 Example 2: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.61 Example 3: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results[\"google_bleu\"], 2)) 0.53 Example 4: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results[\"google_bleu\"], 2)) 0.4 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def lowerCAmelCase ( self ) -> MetricInfo: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 1 , lowerCAmelCase_ = 4 , ) -> Dict[str, float]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=lowerCAmelCase_ , hypotheses=lowerCAmelCase_ , min_len=lowerCAmelCase_ , max_len=lowerCAmelCase_ ) }
295
1
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device A : Dict = False class _lowercase ( unittest.TestCase): """simple docstring""" pass @nightly @require_torch_gpu class _lowercase ( unittest.TestCase): """simple docstring""" def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : Optional[int] = VersatileDiffusionTextToImagePipeline.from_pretrained("shi-labs/versatile-diffusion" ) # remove text_unet pipe.remove_unused_weights() pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCamelCase__ : List[str] = "A painting of a squirrel eating a burger " lowerCamelCase__ : List[Any] = torch.manual_seed(0 ) lowerCamelCase__ : Dict = pipe( prompt=__lowerCamelCase , generator=__lowerCamelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__lowerCamelCase ) lowerCamelCase__ : int = VersatileDiffusionTextToImagePipeline.from_pretrained(__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCamelCase__ : int = generator.manual_seed(0 ) lowerCamelCase__ : Union[str, Any] = pipe( prompt=__lowerCamelCase , generator=__lowerCamelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = VersatileDiffusionTextToImagePipeline.from_pretrained( "shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = "A painting of a squirrel eating a burger " lowerCamelCase__ : List[str] = torch.manual_seed(0 ) lowerCamelCase__ : Union[str, Any] = pipe( prompt=__lowerCamelCase , generator=__lowerCamelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" ).images lowerCamelCase__ : List[Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase__ : int = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
184
import math import random from typing import Any from .hill_climbing import SearchProblem def lowercase_ ( _A : Optional[int] , _A : bool = True , _A : float = math.inf , _A : float = -math.inf , _A : float = math.inf , _A : float = -math.inf , _A : bool = False , _A : float = 100 , _A : float = 0.01 , _A : float = 1 , ): """simple docstring""" lowerCamelCase__ : List[Any] = False lowerCamelCase__ : Optional[Any] = search_prob lowerCamelCase__ : List[str] = start_temperate lowerCamelCase__ : Optional[int] = [] lowerCamelCase__ : Any = 0 lowerCamelCase__ : Optional[Any] = None while not search_end: lowerCamelCase__ : Optional[Any] = current_state.score() if best_state is None or current_score > best_state.score(): lowerCamelCase__ : List[Any] = current_state scores.append(_A ) iterations += 1 lowerCamelCase__ : List[Any] = None lowerCamelCase__ : Optional[Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to lowerCamelCase__ : Any = random.randint(0 , len(_A ) - 1 ) # picking a random neighbor lowerCamelCase__ : List[Any] = neighbors.pop(_A ) lowerCamelCase__ : Dict = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: lowerCamelCase__ : Dict = change * -1 # in case we are finding minimum if change > 0: # improves the solution lowerCamelCase__ : Optional[Any] = picked_neighbor else: lowerCamelCase__ : str = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability lowerCamelCase__ : Optional[int] = picked_neighbor lowerCamelCase__ : Any = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor lowerCamelCase__ : int = True else: lowerCamelCase__ : Optional[int] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(_A ) , _A ) plt.xlabel("Iterations" ) plt.ylabel("Function values" ) plt.show() return best_state if __name__ == "__main__": def lowercase_ ( _A : List[str] , _A : int ): """simple docstring""" return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) A : Any = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) A : Dict = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( "The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " f'and 50 > y > - 5 found via hill climbing: {local_min.score()}' ) # starting the problem with initial coordinates (12, 47) A : str = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) A : int = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( "The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " f'and 50 > y > - 5 found via hill climbing: {local_min.score()}' ) def lowercase_ ( _A : int , _A : Any ): """simple docstring""" return (3 * x**2) - (6 * y) A : Optional[int] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) A : Union[str, Any] = simulated_annealing(prob, find_max=False, visualization=True) print( "The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: " f'{local_min.score()}' ) A : Any = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) A : Optional[int] = simulated_annealing(prob, find_max=True, visualization=True) print( "The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: " f'{local_min.score()}' )
184
1
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("0.12.2"): raise Exception("requires fairseq >= 0.12.2") if version.parse(fairseq.__version__) > version.parse("2"): raise Exception("requires fairseq < v2") logging.set_verbosity_info() __magic_name__: Any = logging.get_logger(__name__) __magic_name__: int = "Hello, World!" __magic_name__: Tuple = "en_XX" def UpperCamelCase ( _A, _A, _A ): """simple docstring""" __magic_name__ : List[str] = Path("""data_bin""" ) __magic_name__ : List[str] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(_A ).parent ), checkpoint_file=Path(_A ).name, _name="""xmod_base""", arch="""xmod_base""", task="""multilingual_masked_lm""", data_name_or_path=str(_A ), bpe="""sentencepiece""", sentencepiece_model=str(Path(_A ).parent / """sentencepiece.bpe.model""" ), src_dict=str(data_dir / """dict.txt""" ), ) xmod.eval() # disable dropout print(_A ) __magic_name__ : Optional[Any] = xmod.model.encoder.sentence_encoder __magic_name__ : Union[str, Any] = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings, hidden_size=xmod.cfg.model.encoder_embed_dim, num_hidden_layers=xmod.cfg.model.encoder_layers, num_attention_heads=xmod.cfg.model.encoder_attention_heads, intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim, max_position_embeddings=514, type_vocab_size=1, layer_norm_eps=1e-5, pre_norm=xmod.cfg.model.encoder_normalize_before, adapter_reduction_factor=getattr(xmod.cfg.model, """bottleneck""", 2 ), adapter_layer_norm=xmod.cfg.model.adapter_layer_norm, adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm, ln_before_adapter=xmod.cfg.model.ln_before_adapter, languages=xmod.cfg.model.languages, ) if classification_head: __magic_name__ : int = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our X-MOD config:""", _A ) __magic_name__ : List[Any] = XmodForSequenceClassification(_A ) if classification_head else XmodForMaskedLM(_A ) model.eval() # Now let's copy all the weights. # Embeddings __magic_name__ : Dict = xmod_sent_encoder.embed_tokens.weight __magic_name__ : List[Any] = xmod_sent_encoder.embed_positions.weight __magic_name__ : Union[str, Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. __magic_name__ : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.weight __magic_name__ : Any = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __magic_name__ : Any = model.roberta.encoder.layer[i] __magic_name__ : Union[str, Any] = xmod_sent_encoder.layers[i] # self attention __magic_name__ : List[str] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("""Dimensions of self-attention weights do not match.""" ) __magic_name__ : Optional[Any] = xmod_layer.self_attn.q_proj.weight __magic_name__ : Optional[Any] = xmod_layer.self_attn.q_proj.bias __magic_name__ : Union[str, Any] = xmod_layer.self_attn.k_proj.weight __magic_name__ : Tuple = xmod_layer.self_attn.k_proj.bias __magic_name__ : Any = xmod_layer.self_attn.v_proj.weight __magic_name__ : List[Any] = xmod_layer.self_attn.v_proj.bias # self-attention output __magic_name__ : List[str] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("""Dimensions of self-attention output weights do not match.""" ) __magic_name__ : Union[str, Any] = xmod_layer.self_attn.out_proj.weight __magic_name__ : List[str] = xmod_layer.self_attn.out_proj.bias __magic_name__ : List[Any] = xmod_layer.self_attn_layer_norm.weight __magic_name__ : List[str] = xmod_layer.self_attn_layer_norm.bias # intermediate __magic_name__ : Dict = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of intermediate weights do not match.""" ) __magic_name__ : int = xmod_layer.fca.weight __magic_name__ : str = xmod_layer.fca.bias # output __magic_name__ : List[Any] = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of feed-forward weights do not match.""" ) __magic_name__ : Tuple = xmod_layer.fca.weight __magic_name__ : Union[str, Any] = xmod_layer.fca.bias __magic_name__ : Optional[Any] = xmod_layer.final_layer_norm.weight __magic_name__ : Any = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: __magic_name__ : Optional[int] = xmod_layer.adapter_layer_norm.weight __magic_name__ : List[str] = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("""Lists of language adapters do not match.""" ) for lang_code, adapter in xmod_layer.adapter_modules.items(): __magic_name__ : Optional[int] = bert_output.adapter_modules[lang_code] __magic_name__ : Dict = xmod_layer.adapter_modules[lang_code] __magic_name__ : Any = from_adapter.fca.weight __magic_name__ : List[Any] = from_adapter.fca.bias __magic_name__ : List[Any] = from_adapter.fca.weight __magic_name__ : Dict = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: __magic_name__ : Tuple = xmod_sent_encoder.layer_norm.weight __magic_name__ : Optional[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: __magic_name__ : str = xmod.model.classification_heads["""mnli"""].dense.weight __magic_name__ : str = xmod.model.classification_heads["""mnli"""].dense.bias __magic_name__ : List[Any] = xmod.model.classification_heads["""mnli"""].out_proj.weight __magic_name__ : Optional[Any] = xmod.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head __magic_name__ : int = xmod.model.encoder.lm_head.dense.weight __magic_name__ : int = xmod.model.encoder.lm_head.dense.bias __magic_name__ : Optional[int] = xmod.model.encoder.lm_head.layer_norm.weight __magic_name__ : Optional[int] = xmod.model.encoder.lm_head.layer_norm.bias __magic_name__ : int = xmod.model.encoder.lm_head.weight __magic_name__ : str = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. __magic_name__ : int = xmod.encode(_A ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(_A ) __magic_name__ : Optional[int] = model(_A )[0] if classification_head: __magic_name__ : Union[str, Any] = xmod.model.classification_heads["""mnli"""](xmod.extract_features(_A ) ) else: __magic_name__ : Optional[int] = xmod.model(_A, lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape, their_output.shape ) __magic_name__ : int = torch.max(torch.abs(our_output - their_output ) ).item() print(f'max_absolute_diff = {max_absolute_diff}' ) # ~ 1e-7 __magic_name__ : List[str] = torch.allclose(_A, _A, atol=1e-3 ) print("""Do both models output the same tensors?""", """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) Path(_A ).mkdir(parents=_A, exist_ok=_A ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(_A ) if __name__ == "__main__": __magic_name__: List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xmod_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) __magic_name__: Optional[Any] = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
370
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin __magic_name__: Union[str, Any] = False @skip_mps class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): lowercase__ : Optional[int] = StableDiffusionAttendAndExcitePipeline lowercase__ : Tuple = False lowercase__ : List[str] = TEXT_TO_IMAGE_PARAMS lowercase__ : Dict = TEXT_TO_IMAGE_BATCH_PARAMS.union({'''token_indices'''} ) lowercase__ : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS lowercase__ : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def __magic_name__ ( cls ) -> Tuple: super().setUpClass() torch.use_deterministic_algorithms(lowerCAmelCase__ ) @classmethod def __magic_name__ ( cls ) -> Optional[Any]: super().tearDownClass() torch.use_deterministic_algorithms(lowerCAmelCase__ ) def __magic_name__ ( self ) -> str: torch.manual_seed(0 ) __magic_name__ : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=lowerCAmelCase__ , ) __magic_name__ : List[Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , ) torch.manual_seed(0 ) __magic_name__ : List[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) __magic_name__ : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) __magic_name__ : Any = CLIPTextModel(lowerCAmelCase__ ) __magic_name__ : Optional[int] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __magic_name__ : Optional[int] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=0 ) -> Optional[Any]: if str(lowerCAmelCase__ ).startswith("""mps""" ): __magic_name__ : int = torch.manual_seed(lowerCAmelCase__ ) else: __magic_name__ : int = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = { """prompt""": """a cat and a frog""", """token_indices""": [2, 5], """generator""": generator, """num_inference_steps""": 1, """guidance_scale""": 6.0, """output_type""": """numpy""", """max_iter_to_alter""": 2, """thresholds""": {0: 0.7}, } return inputs def __magic_name__ ( self ) -> Dict: __magic_name__ : int = """cpu""" __magic_name__ : Union[str, Any] = self.get_dummy_components() __magic_name__ : int = self.pipeline_class(**lowerCAmelCase__ ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = self.get_dummy_inputs(lowerCAmelCase__ ) __magic_name__ : str = pipe(**lowerCAmelCase__ ).images __magic_name__ : Any = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3) ) __magic_name__ : Dict = np.array( [0.6_3_9_0_5_3_6_4, 0.6_2_8_9_7_3_0_7, 0.4_8_5_9_9_0_1_7, 0.5_1_3_3_6_2_4, 0.5_5_5_0_0_4_8, 0.4_5_7_6_9_5_1_6, 0.5_0_3_2_6_9_7_3, 0.5_0_2_3_1_3_9, 0.4_5_3_8_4_4_9_6] ) __magic_name__ : Tuple = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCAmelCase__ , 1e-3 ) def __magic_name__ ( self ) -> List[Any]: super().test_cpu_offload_forward_pass(expected_max_diff=5e-4 ) def __magic_name__ ( self ) -> Union[str, Any]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __magic_name__ ( self ) -> int: self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7e-4 ) def __magic_name__ ( self ) -> List[str]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def __magic_name__ ( self ) -> Any: super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5e-4 ) def __magic_name__ ( self ) -> Dict: super().test_save_load_local(expected_max_difference=5e-4 ) def __magic_name__ ( self ) -> List[Any]: super().test_save_load_optional_components(expected_max_difference=4e-4 ) @require_torch_gpu @slow class snake_case__ ( unittest.TestCase ): @classmethod def __magic_name__ ( cls ) -> Optional[int]: super().setUpClass() torch.use_deterministic_algorithms(lowerCAmelCase__ ) @classmethod def __magic_name__ ( cls ) -> List[Any]: super().tearDownClass() torch.use_deterministic_algorithms(lowerCAmelCase__ ) def __magic_name__ ( self ) -> Tuple: super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : str = torch.manual_seed(51 ) __magic_name__ : Tuple = StableDiffusionAttendAndExcitePipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , safety_checker=lowerCAmelCase__ , torch_dtype=torch.floataa ) pipe.to("""cuda""" ) __magic_name__ : List[str] = """a painting of an elephant with glasses""" __magic_name__ : Any = [5, 7] __magic_name__ : List[Any] = pipe( prompt=lowerCAmelCase__ , token_indices=lowerCAmelCase__ , guidance_scale=7.5 , generator=lowerCAmelCase__ , num_inference_steps=5 , max_iter_to_alter=5 , output_type="""numpy""" , ).images[0] __magic_name__ : Optional[int] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy""" ) assert np.abs((expected_image - image).max() ) < 5e-1
138
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class __lowerCAmelCase ( unittest.TestCase ): @slow def A__ ( self ) -> Dict: '''simple docstring''' _lowercase =XLMRobertaModel.from_pretrained('xlm-roberta-base' ) _lowercase =torch.tensor([[0, 581, 10_269, 83, 99_942, 136, 60_742, 23, 70, 80_583, 18_276, 2]] ) # The dog is cute and lives in the garden house _lowercase =torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim _lowercase =torch.tensor( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): _lowercase =model(snake_case_ )["""last_hidden_state"""].detach() self.assertEqual(output.shape , snake_case_ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , snake_case_ , atol=1e-3 ) ) @slow def A__ ( self ) -> Optional[Any]: '''simple docstring''' _lowercase =XLMRobertaModel.from_pretrained('xlm-roberta-large' ) _lowercase =torch.tensor([[0, 581, 10_269, 83, 99_942, 136, 60_742, 23, 70, 80_583, 18_276, 2]] ) # The dog is cute and lives in the garden house _lowercase =torch.Size((1, 12, 1_024) ) # batch_size, sequence_length, embedding_vector_dim _lowercase =torch.tensor( [[-0.0699, -0.0318, 0.0705, -0.1241, 0.0999, -0.0520, 0.1004, -0.1838, -0.4704, 0.1437, 0.0821, 0.0126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): _lowercase =model(snake_case_ )["""last_hidden_state"""].detach() self.assertEqual(output.shape , snake_case_ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , snake_case_ , atol=1e-3 ) )
205
'''simple docstring''' import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( _a , unittest.TestCase ): """simple docstring""" lowercase = GPTSanJapaneseTokenizer lowercase = False lowercase = {"do_clean_text": False, "add_prefix_space": False} def lowerCamelCase ( self : str ): super().setUp() # fmt: off snake_case__ : Optional[Any] = ["""こん""", """こんに""", """にちは""", """ばんは""", """世界,㔺界""", """、""", """。""", """<BR>""", """<SP>""", """<TAB>""", """<URL>""", """<EMAIL>""", """<TEL>""", """<DATE>""", """<PRICE>""", """<BLOCK>""", """<KIGOU>""", """<U2000U2BFF>""", """<|emoji1|>""", """<unk>""", """<|bagoftoken|>""", """<|endoftext|>"""] # fmt: on snake_case__ : int = {"""emoji""": {"""\ud83d\ude00""": """<|emoji1|>"""}, """emoji_inv""": {"""<|emoji1|>""": """\ud83d\ude00"""}} # 😀 snake_case__ : List[Any] = {"""unk_token""": """<unk>"""} snake_case__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""emoji_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.emoji_file , """w""" ) as emoji_writer: emoji_writer.write(json.dumps(snake_case_ ) ) def lowerCamelCase ( self : Any , **snake_case_ : Union[str, Any] ): kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def lowerCamelCase ( self : Any , snake_case_ : str ): snake_case__ : Union[str, Any] = """こんにちは、世界。 \nこんばんは、㔺界。😀""" snake_case__ : List[str] = """こんにちは、世界。 \nこんばんは、世界。😀""" return input_text, output_text def lowerCamelCase ( self : Any , snake_case_ : Dict ): snake_case__ , snake_case__ : int = self.get_input_output_texts(snake_case_ ) snake_case__ : int = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) snake_case__ : List[str] = tokenizer.decode(snake_case_ , clean_up_tokenization_spaces=snake_case_ ) return text, ids def lowerCamelCase ( self : Optional[Any] ): pass # TODO add if relevant def lowerCamelCase ( self : Union[str, Any] ): pass # TODO add if relevant def lowerCamelCase ( self : List[str] ): pass # TODO add if relevant def lowerCamelCase ( self : Dict ): snake_case__ : Optional[Any] = self.get_tokenizer() # Testing tokenization snake_case__ : int = """こんにちは、世界。 こんばんは、㔺界。""" snake_case__ : Optional[int] = ["""こん""", """にちは""", """、""", """世界""", """。""", """<SP>""", """こん""", """ばんは""", """、""", """㔺界""", """。"""] snake_case__ : Dict = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # Testing conversion to ids without special tokens snake_case__ : Union[str, Any] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] snake_case__ : List[Any] = tokenizer.convert_tokens_to_ids(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # Testing conversion to ids with special tokens snake_case__ : Union[str, Any] = tokens + [tokenizer.unk_token] snake_case__ : Dict = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] snake_case__ : Any = tokenizer.convert_tokens_to_ids(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def lowerCamelCase ( self : Optional[Any] ): snake_case__ : Union[str, Any] = self.get_tokenizer() # Testing tokenization snake_case__ : Union[str, Any] = """こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。""" snake_case__ : Optional[int] = """こんにちは、、、、世界。こんばんは、、、、世界。""" snake_case__ : Any = tokenizer.encode(snake_case_ ) snake_case__ : int = tokenizer.decode(snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) @slow def lowerCamelCase ( self : Union[str, Any] ): snake_case__ : Optional[Any] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization snake_case__ : Tuple = """こんにちは、世界。""" snake_case__ : Optional[Any] = """こんばんは、㔺界。😀""" snake_case__ : List[str] = """こんにちは、世界。こんばんは、世界。😀""" snake_case__ : Dict = tokenizer.encode(prefix_text + input_text ) snake_case__ : Dict = tokenizer.encode("""""" , prefix_text=prefix_text + input_text ) snake_case__ : int = tokenizer.encode(snake_case_ , prefix_text=snake_case_ ) snake_case__ : Optional[Any] = tokenizer.decode(snake_case_ ) snake_case__ : Union[str, Any] = tokenizer.decode(snake_case_ ) snake_case__ : str = tokenizer.decode(snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) @slow def lowerCamelCase ( self : Union[str, Any] ): snake_case__ : Optional[Any] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization snake_case__ : Dict = """こんにちは、世界。""" snake_case__ : Optional[int] = """こんばんは、㔺界。😀""" snake_case__ : Any = len(tokenizer.encode(snake_case_ ) ) - 2 snake_case__ : Optional[int] = len(tokenizer.encode(snake_case_ ) ) - 2 snake_case__ : List[str] = [1] + [0] * (len_prefix + len_text + 1) snake_case__ : Optional[int] = [1] * (len_prefix + len_text + 1) + [0] snake_case__ : int = [1] + [1] * (len_prefix) + [0] * (len_text + 1) snake_case__ : Any = tokenizer(prefix_text + input_text ).token_type_ids snake_case__ : str = tokenizer("""""" , prefix_text=prefix_text + input_text ).token_type_ids snake_case__ : Optional[Any] = tokenizer(snake_case_ , prefix_text=snake_case_ ).token_type_ids self.assertListEqual(snake_case_ , snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) @slow def lowerCamelCase ( self : Optional[int] ): snake_case__ : Optional[Any] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) snake_case__ : Union[str, Any] = tokenizer.encode("""あンいワ""" ) snake_case__ : int = tokenizer.encode("""""" , prefix_text="""あンいワ""" ) snake_case__ : Dict = tokenizer.encode("""いワ""" , prefix_text="""あン""" ) self.assertEqual(tokenizer.decode(snake_case_ ) , tokenizer.decode(snake_case_ ) ) self.assertEqual(tokenizer.decode(snake_case_ ) , tokenizer.decode(snake_case_ ) ) self.assertNotEqual(snake_case_ , snake_case_ ) self.assertNotEqual(snake_case_ , snake_case_ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def lowerCamelCase ( self : Any ): snake_case__ : Optional[int] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) snake_case__ : int = [["""武田信玄""", """は、"""], ["""織田信長""", """の配下の、"""]] snake_case__ : Optional[Any] = tokenizer(snake_case_ , padding=snake_case_ ) snake_case__ : Tuple = tokenizer.batch_encode_plus(snake_case_ , padding=snake_case_ ) # fmt: off snake_case__ : Optional[Any] = [[35_993, 8_640, 25_948, 35_998, 30_647, 35_675, 35_999, 35_999], [35_993, 10_382, 9_868, 35_998, 30_646, 9_459, 30_646, 35_675]] snake_case__ : Optional[Any] = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] snake_case__ : Optional[Any] = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , snake_case_ ) self.assertListEqual(x_token.token_type_ids , snake_case_ ) self.assertListEqual(x_token.attention_mask , snake_case_ ) self.assertListEqual(x_token_a.input_ids , snake_case_ ) self.assertListEqual(x_token_a.token_type_ids , snake_case_ ) self.assertListEqual(x_token_a.attention_mask , snake_case_ ) def lowerCamelCase ( self : Any ): # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def lowerCamelCase ( self : List[str] ): # tokenizer has no padding token pass
35
0
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = [1_0, 2_0, 3_0, 4_0, 5_0, 6_0] __lowercase = [2, 4, 6, 8, 1_0, 1_2] __lowercase = 1_0_0 self.assertEqual(kp.calc_profit(lowercase__ ,lowercase__ ,lowercase__ ) ,2_1_0 ) def SCREAMING_SNAKE_CASE ( self : List[str] ): self.assertRaisesRegex(lowercase__ ,'''max_weight must greater than zero.''' ) def SCREAMING_SNAKE_CASE ( self : Dict ): self.assertRaisesRegex(lowercase__ ,'''Weight can not be negative.''' ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): self.assertRaisesRegex(lowercase__ ,'''Profit can not be negative.''' ) def SCREAMING_SNAKE_CASE ( self : int ): self.assertRaisesRegex(lowercase__ ,'''max_weight must greater than zero.''' ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): self.assertRaisesRegex( lowercase__ ,'''The length of profit and weight must be same.''' ) if __name__ == "__main__": unittest.main()
52
'''simple docstring''' from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class lowercase_ : """simple docstring""" def __init__( self : List[str] ,lowercase__ : str ,lowercase__ : List[str]=1_3 ,lowercase__ : str=7 ,lowercase__ : Tuple=True ,lowercase__ : Dict=True ,lowercase__ : str=True ,lowercase__ : Optional[Any]=True ,lowercase__ : List[str]=9_9 ,lowercase__ : int=[1, 1, 2] ,lowercase__ : int=1 ,lowercase__ : Tuple=3_2 ,lowercase__ : Union[str, Any]=4 ,lowercase__ : Tuple=8 ,lowercase__ : Any=3_7 ,lowercase__ : Union[str, Any]="gelu_new" ,lowercase__ : Tuple=0.1 ,lowercase__ : int=0.1 ,lowercase__ : Optional[int]=0.0 ,lowercase__ : Union[str, Any]=5_1_2 ,lowercase__ : Dict=3 ,lowercase__ : Union[str, Any]=0.0_2 ,lowercase__ : Any=3 ,lowercase__ : Tuple=4 ,lowercase__ : Dict=None ,lowercase__ : List[Any]=False ,): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = block_sizes __lowercase = num_decoder_layers __lowercase = d_model __lowercase = n_head __lowercase = d_head __lowercase = d_inner __lowercase = hidden_act __lowercase = hidden_dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = 2 __lowercase = num_labels __lowercase = num_choices __lowercase = scope __lowercase = initializer_std # Used in the tests to check the size of the first attention layer __lowercase = n_head # Used in the tests to check the size of the first hidden state __lowercase = self.d_model # Used in the tests to check the number of output hidden states/attentions __lowercase = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: __lowercase = self.num_hidden_layers + 2 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) __lowercase = ids_tensor([self.batch_size] ,self.num_choices ) __lowercase = FunnelConfig( vocab_size=self.vocab_size ,block_sizes=self.block_sizes ,num_decoder_layers=self.num_decoder_layers ,d_model=self.d_model ,n_head=self.n_head ,d_head=self.d_head ,d_inner=self.d_inner ,hidden_act=self.hidden_act ,hidden_dropout=self.hidden_dropout ,attention_dropout=self.attention_dropout ,activation_dropout=self.activation_dropout ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_std=self.initializer_std ,) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ,lowercase__ : str ,lowercase__ : List[Any] ,lowercase__ : Dict ,lowercase__ : Optional[int] ,lowercase__ : List[str] ,lowercase__ : str ,): __lowercase = TFFunnelModel(config=lowercase__ ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(lowercase__ ) __lowercase = [input_ids, input_mask] __lowercase = model(lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.d_model) ) __lowercase = False __lowercase = TFFunnelModel(config=lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.d_model) ) __lowercase = False __lowercase = TFFunnelModel(config=lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.d_model) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Any ,lowercase__ : Any ,lowercase__ : Optional[Any] ,lowercase__ : Tuple ,lowercase__ : Union[str, Any] ,): __lowercase = TFFunnelBaseModel(config=lowercase__ ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(lowercase__ ) __lowercase = [input_ids, input_mask] __lowercase = model(lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, 2, self.d_model) ) __lowercase = False __lowercase = TFFunnelBaseModel(config=lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, 3, self.d_model) ) __lowercase = False __lowercase = TFFunnelBaseModel(config=lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, 2, self.d_model) ) def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : Optional[int] ,lowercase__ : Optional[Any] ,lowercase__ : Dict ,lowercase__ : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : Tuple ,lowercase__ : Dict ,): __lowercase = TFFunnelForPreTraining(config=lowercase__ ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : Optional[int] ,lowercase__ : List[Any] ,lowercase__ : int ,lowercase__ : List[str] ,lowercase__ : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : Tuple ,): __lowercase = TFFunnelForMaskedLM(config=lowercase__ ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : str ,lowercase__ : List[Any] ,lowercase__ : int ,lowercase__ : Tuple ,lowercase__ : List[str] ,): __lowercase = self.num_labels __lowercase = TFFunnelForSequenceClassification(config=lowercase__ ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Tuple ,lowercase__ : Tuple ,lowercase__ : Tuple ,lowercase__ : Optional[int] ,lowercase__ : Optional[Any] ,lowercase__ : Any ,lowercase__ : Tuple ,): __lowercase = self.num_choices __lowercase = TFFunnelForMultipleChoice(config=lowercase__ ) __lowercase = tf.tile(tf.expand_dims(lowercase__ ,1 ) ,(1, self.num_choices, 1) ) __lowercase = tf.tile(tf.expand_dims(lowercase__ ,1 ) ,(1, self.num_choices, 1) ) __lowercase = tf.tile(tf.expand_dims(lowercase__ ,1 ) ,(1, self.num_choices, 1) ) __lowercase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } __lowercase = model(lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : Any ,lowercase__ : Tuple ,lowercase__ : Any ,lowercase__ : Any ,lowercase__ : Any ,lowercase__ : str ,lowercase__ : Any ,): __lowercase = self.num_labels __lowercase = TFFunnelForTokenClassification(config=lowercase__ ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : str ,lowercase__ : Any ,lowercase__ : int ,lowercase__ : Optional[Any] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ,lowercase__ : List[str] ,): __lowercase = TFFunnelForQuestionAnswering(config=lowercase__ ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(lowercase__ ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowercase_ (lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE : int = ( { 'feature-extraction': (TFFunnelBaseModel, TFFunnelModel), 'fill-mask': TFFunnelForMaskedLM, 'question-answering': TFFunnelForQuestionAnswering, 'text-classification': TFFunnelForSequenceClassification, 'token-classification': TFFunnelForTokenClassification, 'zero-shot': TFFunnelForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE : Optional[Any] = False SCREAMING_SNAKE_CASE : List[str] = False def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = TFFunnelModelTester(self ) __lowercase = ConfigTester(self ,config_class=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Tuple ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase__ ) @require_tf class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : Tuple = False def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = TFFunnelModelTester(self ,base=lowercase__ ) __lowercase = ConfigTester(self ,config_class=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase__ )
52
1
from __future__ import annotations from collections.abc import Callable UpperCamelCase__ = list[list[float | int]] def _a ( SCREAMING_SNAKE_CASE_ : Matrix , SCREAMING_SNAKE_CASE_ : Matrix ): __lowerCAmelCase = len(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = [[0 for _ in range(size + 1 )] for _ in range(SCREAMING_SNAKE_CASE_ )] __lowerCAmelCase = 42 __lowerCAmelCase = 42 __lowerCAmelCase = 42 __lowerCAmelCase = 42 __lowerCAmelCase = 42 __lowerCAmelCase = 42 for row in range(SCREAMING_SNAKE_CASE_ ): for col in range(SCREAMING_SNAKE_CASE_ ): __lowerCAmelCase = matrix[row][col] __lowerCAmelCase = vector[row][0] __lowerCAmelCase = 0 __lowerCAmelCase = 0 while row < size and col < size: # pivoting __lowerCAmelCase = max((abs(augmented[rowa][col] ), rowa) for rowa in range(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: __lowerCAmelCase , __lowerCAmelCase = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , SCREAMING_SNAKE_CASE_ ): __lowerCAmelCase = augmented[rowa][col] / augmented[row][col] __lowerCAmelCase = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , SCREAMING_SNAKE_CASE_ ): for row in range(SCREAMING_SNAKE_CASE_ ): __lowerCAmelCase = augmented[row][col] / augmented[col][col] for cola in range(SCREAMING_SNAKE_CASE_ , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(SCREAMING_SNAKE_CASE_ ) ] def _a ( SCREAMING_SNAKE_CASE_ : list[int] ): __lowerCAmelCase = len(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = [[0 for _ in range(SCREAMING_SNAKE_CASE_ )] for _ in range(SCREAMING_SNAKE_CASE_ )] __lowerCAmelCase = [[0] for _ in range(SCREAMING_SNAKE_CASE_ )] __lowerCAmelCase = 42 __lowerCAmelCase = 42 __lowerCAmelCase = 42 __lowerCAmelCase = 42 for x_val, y_val in enumerate(SCREAMING_SNAKE_CASE_ ): for col in range(SCREAMING_SNAKE_CASE_ ): __lowerCAmelCase = (x_val + 1) ** (size - col - 1) __lowerCAmelCase = y_val __lowerCAmelCase = solve(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def interpolated_func(SCREAMING_SNAKE_CASE_ : int ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(SCREAMING_SNAKE_CASE_ ) ) return interpolated_func def _a ( SCREAMING_SNAKE_CASE_ : int ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def _a ( SCREAMING_SNAKE_CASE_ : Callable[[int], int] = question_function , SCREAMING_SNAKE_CASE_ : int = 10 ): __lowerCAmelCase = [func(SCREAMING_SNAKE_CASE_ ) for x_val in range(1 , order + 1 )] __lowerCAmelCase = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] __lowerCAmelCase = 0 __lowerCAmelCase = 42 __lowerCAmelCase = 42 for poly in polynomials: __lowerCAmelCase = 1 while func(SCREAMING_SNAKE_CASE_ ) == poly(SCREAMING_SNAKE_CASE_ ): x_val += 1 ret += poly(SCREAMING_SNAKE_CASE_ ) return ret if __name__ == "__main__": print(f'''{solution() = }''')
92
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available UpperCamelCase__ = { """configuration_audio_spectrogram_transformer""": [ """AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ASTConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ """AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """ASTForAudioClassification""", """ASTModel""", """ASTPreTrainedModel""", ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ["""ASTFeatureExtractor"""] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
92
1
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class __snake_case : def __init__( self : Any , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any]=1_2 , __lowerCAmelCase : Optional[Any]=7 , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : Dict=True , __lowerCAmelCase : Any=9_9 , __lowerCAmelCase : int=3_2 , __lowerCAmelCase : Tuple=3_2 , __lowerCAmelCase : Tuple=2 , __lowerCAmelCase : Any=4 , __lowerCAmelCase : Union[str, Any]=3_7 , __lowerCAmelCase : str=0.1 , __lowerCAmelCase : List[Any]=0.1 , __lowerCAmelCase : Tuple=5_1_2 , __lowerCAmelCase : List[str]=0.02 , __lowerCAmelCase : str=0 , __lowerCAmelCase : Any=None , ): """simple docstring""" _lowerCamelCase : List[Any] = parent _lowerCamelCase : Any = batch_size _lowerCamelCase : int = seq_length _lowerCamelCase : str = is_training _lowerCamelCase : Optional[Any] = use_input_mask _lowerCamelCase : List[Any] = use_labels _lowerCamelCase : str = vocab_size _lowerCamelCase : List[Any] = hidden_size _lowerCamelCase : Dict = projection_dim _lowerCamelCase : List[Any] = num_hidden_layers _lowerCamelCase : Union[str, Any] = num_attention_heads _lowerCamelCase : str = intermediate_size _lowerCamelCase : Optional[Any] = dropout _lowerCamelCase : Union[str, Any] = attention_dropout _lowerCamelCase : Optional[Any] = max_position_embeddings _lowerCamelCase : Optional[Any] = initializer_range _lowerCamelCase : Optional[Any] = scope _lowerCamelCase : Optional[Any] = bos_token_id def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCamelCase : Any = None if self.use_input_mask: _lowerCamelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: _lowerCamelCase : List[str] = input_mask.numpy() _lowerCamelCase , _lowerCamelCase : Optional[Any] = input_mask.shape _lowerCamelCase : Any = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(__lowerCAmelCase ): _lowerCamelCase : Dict = 1 _lowerCamelCase : str = 0 _lowerCamelCase : Union[str, Any] = self.get_config() return config, input_ids, tf.convert_to_tensor(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Optional[Any] = TFBlipTextModel(config=__lowerCAmelCase ) _lowerCamelCase : Dict = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , training=__lowerCAmelCase ) _lowerCamelCase : Dict = model(__lowerCAmelCase , training=__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : str = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[Any] = config_and_inputs _lowerCamelCase : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __snake_case ( _lowercase , unittest.TestCase): snake_case__ : Tuple = (TFBlipTextModel,) if is_tf_available() else () snake_case__ : Union[str, Any] = False snake_case__ : Dict = False snake_case__ : List[Any] = False def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : List[str] = BlipTextModelTester(self ) _lowerCamelCase : int = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=3_7 ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" pass @slow def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Dict = TFBlipTextModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __lowerCAmelCase : str=True ): """simple docstring""" super().test_pt_tf_model_equivalence(allow_missing_keys=__lowerCAmelCase )
175
"""simple docstring""" def snake_case_ ( A_ : float ): '''simple docstring''' if edge <= 0 or not isinstance(A_, A_ ): raise ValueError('''Length must be a positive.''' ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def snake_case_ ( A_ : float ): '''simple docstring''' if edge <= 0 or not isinstance(A_, A_ ): raise ValueError('''Length must be a positive.''' ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
175
1
from math import pi, sqrt, tan def _UpperCamelCase ( snake_case__ ) -> float: if side_length < 0: raise ValueError("surface_area_cube() only accepts non-negative values" ) return 6 * side_length**2 def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> float: if length < 0 or breadth < 0 or height < 0: raise ValueError("surface_area_cuboid() only accepts non-negative values" ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def _UpperCamelCase ( snake_case__ ) -> float: if radius < 0: raise ValueError("surface_area_sphere() only accepts non-negative values" ) return 4 * pi * radius**2 def _UpperCamelCase ( snake_case__ ) -> float: if radius < 0: raise ValueError("surface_area_hemisphere() only accepts non-negative values" ) return 3 * pi * radius**2 def _UpperCamelCase ( snake_case__, snake_case__ ) -> float: if radius < 0 or height < 0: raise ValueError("surface_area_cone() only accepts non-negative values" ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> float: if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( "surface_area_conical_frustum() only accepts non-negative values" ) __UpperCAmelCase : Union[str, Any] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def _UpperCamelCase ( snake_case__, snake_case__ ) -> float: if radius < 0 or height < 0: raise ValueError("surface_area_cylinder() only accepts non-negative values" ) return 2 * pi * radius * (height + radius) def _UpperCamelCase ( snake_case__, snake_case__ ) -> float: if torus_radius < 0 or tube_radius < 0: raise ValueError("surface_area_torus() only accepts non-negative values" ) if torus_radius < tube_radius: raise ValueError( "surface_area_torus() does not support spindle or self intersecting tori" ) return 4 * pow(__lowerCAmelCase, 2 ) * torus_radius * tube_radius def _UpperCamelCase ( snake_case__, snake_case__ ) -> float: if length < 0 or width < 0: raise ValueError("area_rectangle() only accepts non-negative values" ) return length * width def _UpperCamelCase ( snake_case__ ) -> float: if side_length < 0: raise ValueError("area_square() only accepts non-negative values" ) return side_length**2 def _UpperCamelCase ( snake_case__, snake_case__ ) -> float: if base < 0 or height < 0: raise ValueError("area_triangle() only accepts non-negative values" ) return (base * height) / 2 def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> float: if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError("area_triangle_three_sides() only accepts non-negative values" ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError("Given three sides do not form a triangle" ) __UpperCAmelCase : Dict = (sidea + sidea + sidea) / 2 __UpperCAmelCase : Optional[Any] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def _UpperCamelCase ( snake_case__, snake_case__ ) -> float: if base < 0 or height < 0: raise ValueError("area_parallelogram() only accepts non-negative values" ) return base * height def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> float: if basea < 0 or basea < 0 or height < 0: raise ValueError("area_trapezium() only accepts non-negative values" ) return 1 / 2 * (basea + basea) * height def _UpperCamelCase ( snake_case__ ) -> float: if radius < 0: raise ValueError("area_circle() only accepts non-negative values" ) return pi * radius**2 def _UpperCamelCase ( snake_case__, snake_case__ ) -> float: if radius_x < 0 or radius_y < 0: raise ValueError("area_ellipse() only accepts non-negative values" ) return pi * radius_x * radius_y def _UpperCamelCase ( snake_case__, snake_case__ ) -> float: if diagonal_a < 0 or diagonal_a < 0: raise ValueError("area_rhombus() only accepts non-negative values" ) return 1 / 2 * diagonal_a * diagonal_a def _UpperCamelCase ( snake_case__, snake_case__ ) -> float: if not isinstance(__lowerCAmelCase, __lowerCAmelCase ) or sides < 3: raise ValueError( "area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides" ) elif length < 0: raise ValueError( "area_reg_polygon() only accepts non-negative values as \ length of a side" ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('''[DEMO] Areas of various geometric shapes: \n''') print(F'Rectangle: {area_rectangle(10, 20) = }') print(F'Square: {area_square(10) = }') print(F'Triangle: {area_triangle(10, 10) = }') print(F'Triangle: {area_triangle_three_sides(5, 12, 13) = }') print(F'Parallelogram: {area_parallelogram(10, 20) = }') print(F'Rhombus: {area_rhombus(10, 20) = }') print(F'Trapezium: {area_trapezium(10, 20, 30) = }') print(F'Circle: {area_circle(20) = }') print(F'Ellipse: {area_ellipse(10, 20) = }') print('''\nSurface Areas of various geometric shapes: \n''') print(F'Cube: {surface_area_cube(20) = }') print(F'Cuboid: {surface_area_cuboid(10, 20, 30) = }') print(F'Sphere: {surface_area_sphere(20) = }') print(F'Hemisphere: {surface_area_hemisphere(20) = }') print(F'Cone: {surface_area_cone(10, 20) = }') print(F'Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }') print(F'Cylinder: {surface_area_cylinder(10, 20) = }') print(F'Torus: {surface_area_torus(20, 10) = }') print(F'Equilateral Triangle: {area_reg_polygon(3, 10) = }') print(F'Square: {area_reg_polygon(4, 10) = }') print(F'Reqular Pentagon: {area_reg_polygon(5, 10) = }')
157
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=3 , UpperCAmelCase=32 , UpperCAmelCase=3 , UpperCAmelCase=10 , UpperCAmelCase=[10, 20, 30, 40] , UpperCAmelCase=[1, 1, 2, 1] , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase="relu" , UpperCAmelCase=3 , UpperCAmelCase=None , ): """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = num_channels _UpperCAmelCase = embeddings_size _UpperCAmelCase = hidden_sizes _UpperCAmelCase = depths _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = hidden_act _UpperCAmelCase = num_labels _UpperCAmelCase = scope _UpperCAmelCase = len(UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def UpperCamelCase ( self ): """simple docstring""" return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = TFResNetModel(config=UpperCAmelCase ) _UpperCAmelCase = model(UpperCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFResNetForImageClassification(UpperCAmelCase ) _UpperCAmelCase = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __lowerCamelCase ( snake_case__ , snake_case__ , unittest.TestCase): """simple docstring""" UpperCamelCase__ = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () UpperCamelCase__ = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TFResNetModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase ( self ): """simple docstring""" return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def UpperCamelCase ( self ): """simple docstring""" pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def UpperCamelCase ( self ): """simple docstring""" pass def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(UpperCAmelCase ) _UpperCAmelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" def check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): _UpperCAmelCase = model_class(UpperCAmelCase ) _UpperCAmelCase = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) _UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCAmelCase = self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _UpperCAmelCase = layer_type _UpperCAmelCase = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) @slow def UpperCamelCase ( self ): """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = TFResNetModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __A ( )-> Optional[Any]: """simple docstring""" _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __lowerCamelCase ( unittest.TestCase): """simple docstring""" @cached_property def UpperCamelCase ( self ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=UpperCAmelCase , return_tensors='tf' ) # forward pass _UpperCAmelCase = model(**UpperCAmelCase ) # verify the logits _UpperCAmelCase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) _UpperCAmelCase = tf.constant([-11.10_69, -9.78_77, -8.37_77] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , UpperCAmelCase , atol=1e-4 ) )
39
0
lowercase : int = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ lowercase : Tuple = [{"""type""": """code""", """content""": INSTALL_CONTENT}] lowercase : Any = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
362
def A_ ( A__ ) -> int: if not isinstance(A__ , A__ ): raise TypeError('only integers accepted as input' ) else: a__ : List[Any] = str(abs(A__ ) ) a__ : Optional[int] = [list(A__ ) for char in range(len(A__ ) )] for index in range(len(A__ ) ): num_transpositions[index].pop(A__ ) return max( int(''.join(list(A__ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
225
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class _UpperCAmelCase ( a ): '''simple docstring''' a__ ='''openai/whisper-base''' a__ =( '''This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the ''' '''transcribed text.''' ) a__ ='''transcriber''' a__ =WhisperProcessor a__ =WhisperForConditionalGeneration a__ =['''audio'''] a__ =['''text'''] def __lowerCAmelCase ( self , A ) -> Dict: return self.pre_processor(A , return_tensors='''pt''' ).input_features def __lowerCAmelCase ( self , A ) -> Tuple: return self.model.generate(inputs=A ) def __lowerCAmelCase ( self , A ) -> Any: return self.pre_processor.batch_decode(A , skip_special_tokens=A )[0]
263
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin _lowerCAmelCase :Any = False @skip_mps class _UpperCAmelCase ( a ,a ,a ,unittest.TestCase ): '''simple docstring''' a__ =StableDiffusionAttendAndExcitePipeline a__ =False a__ =TEXT_TO_IMAGE_PARAMS a__ =TEXT_TO_IMAGE_BATCH_PARAMS.union({'''token_indices'''} ) a__ =TEXT_TO_IMAGE_IMAGE_PARAMS a__ =TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def __lowerCAmelCase ( cls ) -> List[str]: super().setUpClass() torch.use_deterministic_algorithms(A ) @classmethod def __lowerCAmelCase ( cls ) -> Union[str, Any]: super().tearDownClass() torch.use_deterministic_algorithms(A ) def __lowerCAmelCase ( self ) -> Tuple: torch.manual_seed(0 ) _UpperCAmelCase : Optional[int] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=1 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=A , ) _UpperCAmelCase : List[Any] = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=A , set_alpha_to_one=A , ) torch.manual_seed(0 ) _UpperCAmelCase : int = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) _UpperCAmelCase : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='''gelu''' , projection_dim=5_1_2 , ) _UpperCAmelCase : List[str] = CLIPTextModel(A ) _UpperCAmelCase : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _UpperCAmelCase : Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __lowerCAmelCase ( self , A , A=0 ) -> List[Any]: if str(A ).startswith('''mps''' ): _UpperCAmelCase : Optional[int] = torch.manual_seed(A ) else: _UpperCAmelCase : Union[str, Any] = torch.Generator(device=A ).manual_seed(A ) _UpperCAmelCase : List[str] = { '''prompt''': '''a cat and a frog''', '''token_indices''': [2, 5], '''generator''': generator, '''num_inference_steps''': 1, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''max_iter_to_alter''': 2, '''thresholds''': {0: 0.7}, } return inputs def __lowerCAmelCase ( self ) -> int: _UpperCAmelCase : List[str] = '''cpu''' _UpperCAmelCase : Tuple = self.get_dummy_components() _UpperCAmelCase : int = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) _UpperCAmelCase : Dict = self.get_dummy_inputs(A ) _UpperCAmelCase : Union[str, Any] = pipe(**A ).images _UpperCAmelCase : Tuple = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 6_4, 6_4, 3) ) _UpperCAmelCase : int = np.array( [0.63_905_364, 0.62_897_307, 0.48_599_017, 0.5_133_624, 0.5_550_048, 0.45_769_516, 0.50_326_973, 0.5_023_139, 0.45_384_496] ) _UpperCAmelCase : Tuple = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(A , 1E-3 ) def __lowerCAmelCase ( self ) -> Dict: super().test_cpu_offload_forward_pass(expected_max_diff=5E-4 ) def __lowerCAmelCase ( self ) -> List[str]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __lowerCAmelCase ( self ) -> Union[str, Any]: self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7E-4 ) def __lowerCAmelCase ( self ) -> List[str]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def __lowerCAmelCase ( self ) -> List[str]: super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5E-4 ) def __lowerCAmelCase ( self ) -> str: super().test_save_load_local(expected_max_difference=5E-4 ) def __lowerCAmelCase ( self ) -> Optional[int]: super().test_save_load_optional_components(expected_max_difference=4E-4 ) @require_torch_gpu @slow class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def __lowerCAmelCase ( cls ) -> Union[str, Any]: super().setUpClass() torch.use_deterministic_algorithms(A ) @classmethod def __lowerCAmelCase ( cls ) -> Optional[int]: super().tearDownClass() torch.use_deterministic_algorithms(A ) def __lowerCAmelCase ( self ) -> List[str]: super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) -> str: _UpperCAmelCase : Any = torch.manual_seed(5_1 ) _UpperCAmelCase : Optional[Any] = StableDiffusionAttendAndExcitePipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , safety_checker=A , torch_dtype=torch.floataa ) pipe.to('''cuda''' ) _UpperCAmelCase : Optional[int] = '''a painting of an elephant with glasses''' _UpperCAmelCase : int = [5, 7] _UpperCAmelCase : Dict = pipe( prompt=A , token_indices=A , guidance_scale=7.5 , generator=A , num_inference_steps=5 , max_iter_to_alter=5 , output_type='''numpy''' , ).images[0] _UpperCAmelCase : List[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy''' ) assert np.abs((expected_image - image).max() ) < 5E-1
263
1
def SCREAMING_SNAKE_CASE__ ( lowercase = 1000 ) -> int: return sum(2 * a * ((a - 1) // 2) for a in range(3 ,n + 1 ) ) if __name__ == "__main__": print(solution())
360
from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING lowerCamelCase : int = logging.get_logger(__name__) @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" def __init__( self , *A , **A ) -> Optional[int]: super().__init__(*A , **A ) requires_backends(self , """decord""" ) self.check_model_type(A ) def UpperCAmelCase ( self , A=None , A=None , A=None ) -> int: snake_case : Any = {} if frame_sampling_rate is not None: snake_case : int = frame_sampling_rate if num_frames is not None: snake_case : Union[str, Any] = num_frames snake_case : str = {} if top_k is not None: snake_case : Optional[int] = top_k return preprocess_params, {}, postprocess_params def __call__( self , A , **A ) -> Dict: return super().__call__(A , **A ) def UpperCAmelCase ( self , A , A=None , A=1 ) -> Tuple: if num_frames is None: snake_case : Tuple = self.model.config.num_frames if video.startswith("""http://""" ) or video.startswith("""https://""" ): snake_case : Optional[int] = BytesIO(requests.get(A ).content ) snake_case : Optional[Any] = VideoReader(A ) videoreader.seek(0 ) snake_case : Optional[Any] = 0 snake_case : Optional[Any] = num_frames * frame_sampling_rate - 1 snake_case : Any = np.linspace(A , A , num=A , dtype=np.intaa ) snake_case : int = videoreader.get_batch(A ).asnumpy() snake_case : List[Any] = list(A ) snake_case : Optional[Any] = self.image_processor(A , return_tensors=self.framework ) return model_inputs def UpperCAmelCase ( self , A ) -> List[str]: snake_case : Dict = self.model(**A ) return model_outputs def UpperCAmelCase ( self , A , A=5 ) -> int: if top_k > self.model.config.num_labels: snake_case : str = self.model.config.num_labels if self.framework == "pt": snake_case : List[Any] = model_outputs.logits.softmax(-1 )[0] snake_case , snake_case : Tuple = probs.topk(A ) else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) snake_case : List[Any] = scores.tolist() snake_case : str = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(A , A )]
176
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowercase__ = logging.get_logger(__name__) if is_vision_available(): import PIL class __snake_case ( __lowerCAmelCase ): a__ = ["""pixel_values"""] def __init__( self , lowercase = True , lowercase = None , lowercase = PILImageResampling.BICUBIC , lowercase = True , lowercase = None , lowercase = True , lowercase = 1 / 2_55 , lowercase = True , lowercase = None , lowercase = None , lowercase = True , **lowercase , ) -> None: '''simple docstring''' super().__init__(**__UpperCamelCase) a__: List[str] = size if size is not None else {'shortest_edge': 2_24} a__: Any = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase) a__: Dict = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} a__: Union[str, Any] = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase , param_name='crop_size') a__: int = do_resize a__: Union[str, Any] = size a__: List[str] = resample a__: Optional[Any] = do_center_crop a__: List[str] = crop_size a__: Any = do_rescale a__: str = rescale_factor a__: Tuple = do_normalize a__: Any = image_mean if image_mean is not None else OPENAI_CLIP_MEAN a__: Dict = image_std if image_std is not None else OPENAI_CLIP_STD a__: Tuple = do_convert_rgb def lowerCamelCase_ ( self , lowercase , lowercase , lowercase = PILImageResampling.BICUBIC , lowercase = None , **lowercase , ) -> np.ndarray: '''simple docstring''' a__: Dict = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}') a__: Dict = get_resize_output_image_size(__UpperCamelCase , size=size['shortest_edge'] , default_to_square=__UpperCamelCase) return resize(__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase) def lowerCamelCase_ ( self , lowercase , lowercase , lowercase = None , **lowercase , ) -> np.ndarray: '''simple docstring''' a__: str = get_size_dict(__UpperCamelCase) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}') return center_crop(__UpperCamelCase , size=(size['height'], size['width']) , data_format=__UpperCamelCase , **__UpperCamelCase) def lowerCamelCase_ ( self , lowercase , lowercase , lowercase = None , **lowercase , ) -> Optional[Any]: '''simple docstring''' return rescale(__UpperCamelCase , scale=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase) def lowerCamelCase_ ( self , lowercase , lowercase , lowercase , lowercase = None , **lowercase , ) -> np.ndarray: '''simple docstring''' return normalize(__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase) def lowerCamelCase_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ) -> PIL.Image.Image: '''simple docstring''' a__: Tuple = do_resize if do_resize is not None else self.do_resize a__: Any = size if size is not None else self.size a__: Optional[Any] = get_size_dict(__UpperCamelCase , param_name='size' , default_to_square=__UpperCamelCase) a__: Optional[int] = resample if resample is not None else self.resample a__: List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop a__: List[str] = crop_size if crop_size is not None else self.crop_size a__: Union[str, Any] = get_size_dict(__UpperCamelCase , param_name='crop_size' , default_to_square=__UpperCamelCase) a__: List[Any] = do_rescale if do_rescale is not None else self.do_rescale a__: List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor a__: Any = do_normalize if do_normalize is not None else self.do_normalize a__: Optional[Any] = image_mean if image_mean is not None else self.image_mean a__: Optional[int] = image_std if image_std is not None else self.image_std a__: List[Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb a__: List[Any] = make_list_of_images(__UpperCamelCase) if not valid_images(__UpperCamelCase): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # PIL RGBA images are converted to RGB if do_convert_rgb: a__: Optional[Any] = [convert_to_rgb(__UpperCamelCase) for image in images] # All transformations expect numpy arrays. a__: Dict = [to_numpy_array(__UpperCamelCase) for image in images] if do_resize: a__: Tuple = [self.resize(image=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase) for image in images] if do_center_crop: a__: int = [self.center_crop(image=__UpperCamelCase , size=__UpperCamelCase) for image in images] if do_rescale: a__: str = [self.rescale(image=__UpperCamelCase , scale=__UpperCamelCase) for image in images] if do_normalize: a__: List[Any] = [self.normalize(image=__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase) for image in images] a__: Union[str, Any] = [to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase) for image in images] a__: Tuple = {'pixel_values': images} return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase)
290
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str = " " ): '''simple docstring''' _UpperCAmelCase = [] _UpperCAmelCase = 0 for index, char in enumerate(_SCREAMING_SNAKE_CASE ): if char == separator: split_words.append(string[last_index:index] ) _UpperCAmelCase = index + 1 elif index + 1 == len(_SCREAMING_SNAKE_CASE ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
260
0
def A__ ( SCREAMING_SNAKE_CASE__) -> int: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) or number < 0: raise ValueError("""Input must be a non-negative integer""") __snake_case: Optional[Any] = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
293
import argparse from collections import defaultdict import yaml __UpperCAmelCase : int = "docs/source/en/_toctree.yml" def A__ ( SCREAMING_SNAKE_CASE__) -> Dict: __snake_case: Union[str, Any] = defaultdict(SCREAMING_SNAKE_CASE__) for doc in model_doc: counts[doc["local"]] += 1 __snake_case: Dict = [key for key, value in counts.items() if value > 1] __snake_case: Optional[Any] = [] for duplicate_key in duplicates: __snake_case: Tuple = list({doc["""title"""] for doc in model_doc if doc["""local"""] == duplicate_key}) if len(SCREAMING_SNAKE_CASE__) > 1: raise ValueError( F'''{duplicate_key} is present several times in the documentation table of content at ''' """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""") # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]}) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc["""local"""]] == 1]) # Sort return sorted(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__: s["title"].lower()) def A__ ( SCREAMING_SNAKE_CASE__=False) -> List[str]: with open(SCREAMING_SNAKE_CASE__ , encoding="""utf-8""") as f: __snake_case: Optional[int] = yaml.safe_load(f.read()) # Get to the API doc __snake_case: Dict = 0 while content[api_idx]["title"] != "API": api_idx += 1 __snake_case: str = content[api_idx]["""sections"""] # Then to the model doc __snake_case: List[Any] = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 __snake_case: Dict = api_doc[model_idx]["""sections"""] __snake_case: int = [(idx, section) for idx, section in enumerate(SCREAMING_SNAKE_CASE__) if """sections""" in section] __snake_case: Optional[int] = False for idx, modality_doc in modalities_docs: __snake_case: Dict = modality_doc["""sections"""] __snake_case: List[str] = clean_model_doc_toc(SCREAMING_SNAKE_CASE__) if old_modality_doc != new_modality_doc: __snake_case: List[str] = True if overwrite: __snake_case: Dict = new_modality_doc if diff: if overwrite: __snake_case: Dict = model_doc __snake_case: int = api_doc with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""") as f: f.write(yaml.dump(SCREAMING_SNAKE_CASE__ , allow_unicode=SCREAMING_SNAKE_CASE__)) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""") if __name__ == "__main__": __UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") __UpperCAmelCase : str = parser.parse_args() check_model_doc(args.fix_and_overwrite)
293
1
def snake_case__ ( SCREAMING_SNAKE_CASE_ : int = 1_000 ): '''simple docstring''' lowercase__ : Optional[int] = 2**power lowercase__ : Optional[Any] = 0 while n: lowercase__ , lowercase__ : Union[str, Any] = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
214
import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values snake_case_ = argparse.ArgumentParser() parser.add_argument('''--user''', type=str, default='''ubuntu''') parser.add_argument('''--host''', type=str, default='''localhost''') parser.add_argument('''--key_path''', type=str, default=None) parser.add_argument('''--instance''', type=str, default='''V100:1''') parser.add_argument('''--provider''', type=str, default='''cheapest''') parser.add_argument('''--use_spot''', type=bool, default=False) parser.add_argument('''--example''', type=str, default='''pytorch/text-generation/run_generation.py''') snake_case_ , snake_case_ = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError('''Cannot specify both BYO and on-demand cluster args''') snake_case_ = rh.cluster( name='''rh-cluster''', ips=[args.host], ssh_creds={'''ssh_user''': args.user, '''ssh_private_key''': args.key_path} ) else: snake_case_ = rh.cluster( name='''rh-cluster''', instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) snake_case_ = args.example.rsplit('''/''', 1)[0] # Set up remote environment cluster.install_packages(['''pip:./''']) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([F'''pip install -r transformers/examples/{example_dir}/requirements.txt''']) cluster.run(['''pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117''']) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([F'''python transformers/examples/{args.example} {' '.join(shlex.quote(arg) for arg in unknown)}''']) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
214
1
import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def a__ ( UpperCAmelCase : dict ) -> tuple: return (data["data"], data["target"]) def a__ ( UpperCAmelCase : np.ndarray , UpperCAmelCase : np.ndarray , UpperCAmelCase : np.ndarray ) -> np.ndarray: UpperCAmelCase : List[str] = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(UpperCAmelCase , UpperCAmelCase ) # Predict target for test data UpperCAmelCase : Any = xgb.predict(UpperCAmelCase ) UpperCAmelCase : Dict = predictions.reshape(len(UpperCAmelCase ) , 1 ) return predictions def a__ ( ) -> None: UpperCAmelCase : str = fetch_california_housing() UpperCAmelCase : List[str] = data_handling(UpperCAmelCase ) UpperCAmelCase : Optional[Any] = train_test_split( UpperCAmelCase , UpperCAmelCase , test_size=0.25 , random_state=1 ) UpperCAmelCase : str = xgboost(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Error printing print(f'''Mean Absolute Error : {mean_absolute_error(UpperCAmelCase , UpperCAmelCase )}''' ) print(f'''Mean Square Error : {mean_squared_error(UpperCAmelCase , UpperCAmelCase )}''' ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
352
from ..utils import DummyObject, requires_backends class __UpperCAmelCase ( metaclass=lowerCamelCase__ ): UpperCamelCase = ["""onnx"""] def __init__( self : int, *__A : Optional[Any], **__A : Dict ): requires_backends(self, ['''onnx'''] ) @classmethod def __magic_name__ ( cls : Any, *__A : Any, **__A : Dict ): requires_backends(cls, ['''onnx'''] ) @classmethod def __magic_name__ ( cls : Tuple, *__A : List[str], **__A : List[str] ): requires_backends(cls, ['''onnx'''] )
99
0
"""simple docstring""" import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A: int = logging.get_logger(__name__) A: int = { "vocab_file": "vocab.json", "merges_file": "merges.txt", } A: Tuple = { "vocab_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"}, "merges_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"}, } A: Any = { "ctrl": 2_5_6, } A: Optional[Any] = { "Pregnancy": 1_6_8_6_2_9, "Christianity": 7_6_7_5, "Explain": 1_0_6_4_2_3, "Fitness": 6_3_4_4_0, "Saving": 6_3_1_6_3, "Ask": 2_7_1_7_1, "Ass": 9_5_9_8_5, "Joke": 1_6_3_5_0_9, "Questions": 4_5_6_2_2, "Thoughts": 4_9_6_0_5, "Retail": 5_2_3_4_2, "Feminism": 1_6_4_3_3_8, "Writing": 1_1_9_9_2, "Atheism": 1_9_2_2_6_3, "Netflix": 4_8_6_1_6, "Computing": 3_9_6_3_9, "Opinion": 4_3_2_1_3, "Alone": 4_4_9_6_7, "Funny": 5_8_9_1_7, "Gaming": 4_0_3_5_8, "Human": 4_0_8_8, "India": 1_3_3_1, "Joker": 7_7_1_3_8, "Diet": 3_6_2_0_6, "Legal": 1_1_8_5_9, "Norman": 4_9_3_9, "Tip": 7_2_6_8_9, "Weight": 5_2_3_4_3, "Movies": 4_6_2_7_3, "Running": 2_3_4_2_5, "Science": 2_0_9_0, "Horror": 3_7_7_9_3, "Confession": 6_0_5_7_2, "Finance": 1_2_2_5_0, "Politics": 1_6_3_6_0, "Scary": 1_9_1_9_8_5, "Support": 1_2_6_5_4, "Technologies": 3_2_5_1_6, "Teenage": 6_6_1_6_0, "Event": 3_2_7_6_9, "Learned": 6_7_4_6_0, "Notion": 1_8_2_7_7_0, "Wikipedia": 3_7_5_8_3, "Books": 6_6_6_5, "Extract": 7_6_0_5_0, "Confessions": 1_0_2_7_0_1, "Conspiracy": 7_5_9_3_2, "Links": 6_3_6_7_4, "Narcissus": 1_5_0_4_2_5, "Relationship": 5_4_7_6_6, "Relationships": 1_3_4_7_9_6, "Reviews": 4_1_6_7_1, "News": 4_2_5_6, "Translation": 2_6_8_2_0, "multilingual": 1_2_8_4_0_6, } def _snake_case ( UpperCamelCase : int ): UpperCAmelCase : Union[str, Any] = set() UpperCAmelCase : Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase : Tuple = char UpperCAmelCase : str = set(UpperCamelCase ) return pairs class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __lowerCAmelCase : str = VOCAB_FILES_NAMES __lowerCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Dict = CONTROL_CODES def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="<unk>" , **_SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' super().__init__(unk_token=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE , encoding="""utf-8""" ) as vocab_handle: UpperCAmelCase : Tuple = json.load(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Tuple = {v: k for k, v in self.encoder.items()} with open(_SCREAMING_SNAKE_CASE , encoding="""utf-8""" ) as merges_handle: UpperCAmelCase : Optional[int] = merges_handle.read().split("""\n""" )[1:-1] UpperCAmelCase : str = [tuple(merge.split() ) for merge in merges] UpperCAmelCase : int = dict(zip(_SCREAMING_SNAKE_CASE , range(len(_SCREAMING_SNAKE_CASE ) ) ) ) UpperCAmelCase : Optional[Any] = {} @property def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' return len(self.encoder ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' if token in self.cache: return self.cache[token] UpperCAmelCase : Optional[int] = tuple(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Any = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) UpperCAmelCase : Union[str, Any] = get_pairs(_SCREAMING_SNAKE_CASE ) if not pairs: return token while True: UpperCAmelCase : Any = min(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : self.bpe_ranks.get(_SCREAMING_SNAKE_CASE , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase , UpperCAmelCase : int = bigram UpperCAmelCase : Any = [] UpperCAmelCase : str = 0 while i < len(_SCREAMING_SNAKE_CASE ): try: UpperCAmelCase : List[Any] = word.index(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase : List[str] = j if word[i] == first and i < len(_SCREAMING_SNAKE_CASE ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase : Union[str, Any] = tuple(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Tuple = new_word if len(_SCREAMING_SNAKE_CASE ) == 1: break else: UpperCAmelCase : Tuple = get_pairs(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Dict = """@@ """.join(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Tuple = word[:-4] UpperCAmelCase : Union[str, Any] = word return word def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' UpperCAmelCase : List[Any] = [] UpperCAmelCase : Optional[Any] = re.findall(r"""\S+\n?""" , _SCREAMING_SNAKE_CASE ) for token in words: split_tokens.extend(list(self.bpe(_SCREAMING_SNAKE_CASE ).split(""" """ ) ) ) return split_tokens def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' return self.encoder.get(_SCREAMING_SNAKE_CASE , self.encoder.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' return self.decoder.get(_SCREAMING_SNAKE_CASE , self.unk_token ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Optional[int] = """ """.join(_SCREAMING_SNAKE_CASE ).replace("""@@ """ , """""" ).strip() return out_string def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return UpperCAmelCase : List[str] = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase : str = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(_SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_SCREAMING_SNAKE_CASE , ensure_ascii=_SCREAMING_SNAKE_CASE ) + """\n""" ) UpperCAmelCase : int = 0 with open(_SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _SCREAMING_SNAKE_CASE : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." """ Please check that the tokenizer is not corrupted!""" ) UpperCAmelCase : Union[str, Any] = token_index writer.write(""" """.join(_SCREAMING_SNAKE_CASE ) + """\n""" ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
109
"""simple docstring""" from collections.abc import Callable import numpy as np def _snake_case ( UpperCamelCase : Callable , UpperCamelCase : float , UpperCamelCase : float , UpperCamelCase : float , UpperCamelCase : float ): UpperCAmelCase : Any = int(np.ceil((x_end - xa) / step_size ) ) UpperCAmelCase : Optional[Any] = np.zeros((n + 1,) ) UpperCAmelCase : Optional[int] = ya UpperCAmelCase : int = xa for k in range(UpperCamelCase ): UpperCAmelCase : Optional[int] = y[k] + step_size * ode_func(UpperCamelCase , y[k] ) UpperCAmelCase : Optional[int] = y[k] + ( (step_size / 2) * (ode_func(UpperCamelCase , y[k] ) + ode_func(x + step_size , UpperCamelCase )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
109
1
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowercase = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. lowercase = direct_transformers_import(PATH_TO_TRANSFORMERS) lowercase = transformers.models.auto.configuration_auto.CONFIG_MAPPING lowercase = { # used to compute the property `self.chunk_length` """EncodecConfig""": ["""overlap"""], # used as `self.bert_model = BertModel(config, ...)` """DPRConfig""": True, # not used in modeling files, but it's an important information """FSMTConfig""": ["""langs"""], # used internally in the configuration class file """GPTNeoConfig""": ["""attention_types"""], # used internally in the configuration class file """EsmConfig""": ["""is_folding_model"""], # used during training (despite we don't have training script for these models yet) """Mask2FormerConfig""": ["""ignore_value"""], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) """OneFormerConfig""": ["""ignore_value""", """norm"""], # used during preprocessing and collation, see `collating_graphormer.py` """GraphormerConfig""": ["""spatial_pos_max"""], # used internally in the configuration class file """T5Config""": ["""feed_forward_proj"""], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally """MT5Config""": ["""feed_forward_proj""", """tokenizer_class"""], """UMT5Config""": ["""feed_forward_proj""", """tokenizer_class"""], # used internally in the configuration class file """LongT5Config""": ["""feed_forward_proj"""], # used internally in the configuration class file """SwitchTransformersConfig""": ["""feed_forward_proj"""], # having default values other than `1e-5` - we can't fix them without breaking """BioGptConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """GLPNConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """SegformerConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """CvtConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """PerceiverConfig""": ["""layer_norm_eps"""], # used internally to calculate the feature size """InformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate the feature size """TimeSeriesTransformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate the feature size """AutoformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate `mlp_dim` """SamVisionConfig""": ["""mlp_ratio"""], # For (head) training, but so far not implemented """ClapAudioConfig""": ["""num_classes"""], # Not used, but providing useful information to users """SpeechT5HifiGanConfig""": ["""sampling_rate"""], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { """CLIPSegConfig""": True, """DeformableDetrConfig""": True, """DetaConfig""": True, """DinatConfig""": True, """DonutSwinConfig""": True, """EfficientFormerConfig""": True, """FSMTConfig""": True, """JukeboxConfig""": True, """LayoutLMv2Config""": True, """MaskFormerSwinConfig""": True, """MT5Config""": True, """NatConfig""": True, """OneFormerConfig""": True, """PerceiverConfig""": True, """RagConfig""": True, """SpeechT5Config""": True, """SwinConfig""": True, """Swin2SRConfig""": True, """Swinv2Config""": True, """SwitchTransformersConfig""": True, """TableTransformerConfig""": True, """TapasConfig""": True, """TransfoXLConfig""": True, """UniSpeechConfig""": True, """UniSpeechSatConfig""": True, """WavLMConfig""": True, """WhisperConfig""": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) """JukeboxPriorConfig""": True, # TODO: @Younes (for `is_decoder`) """Pix2StructTextConfig""": True, } ) def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : Any, UpperCamelCase__ : List[str] ): '''simple docstring''' UpperCamelCase__ = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( F"""config.{attribute}""" in modeling_source or F"""getattr(config, \"{attribute}\"""" in modeling_source or F"""getattr(self.config, \"{attribute}\"""" in modeling_source ): UpperCamelCase__ = True # Deal with multi-line cases elif ( re.search( rF"""getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"""", UpperCamelCase__, ) is not None ): UpperCamelCase__ = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: UpperCamelCase__ = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files UpperCamelCase__ = [ '''bos_index''', '''eos_index''', '''pad_index''', '''unk_index''', '''mask_index''', '''image_size''', '''use_cache''', '''out_features''', '''out_indices''', ] UpperCamelCase__ = ['''encoder_no_repeat_ngram_size'''] # Special cases to be allowed UpperCamelCase__ = True if not attribute_used: UpperCamelCase__ = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: UpperCamelCase__ = True elif attribute in ["tie_word_embeddings"] and default_value is False: UpperCamelCase__ = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: UpperCamelCase__ = True elif attribute.endswith('''_token_id''' ): UpperCamelCase__ = True # configuration class specific cases if not case_allowed: UpperCamelCase__ = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__, [] ) UpperCamelCase__ = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def lowerCamelCase_ ( UpperCamelCase__ : Dict ): '''simple docstring''' UpperCamelCase__ = dict(inspect.signature(config_class.__init__ ).parameters ) UpperCamelCase__ = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']] UpperCamelCase__ = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass UpperCamelCase__ = {} if len(config_class.attribute_map ) > 0: UpperCamelCase__ = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files UpperCamelCase__ = inspect.getsourcefile(UpperCamelCase__ ) UpperCamelCase__ = os.path.dirname(UpperCamelCase__ ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. UpperCamelCase__ = [os.path.join(UpperCamelCase__, UpperCamelCase__ ) for fn in os.listdir(UpperCamelCase__ ) if fn.startswith('''modeling_''' )] # Get the source code strings UpperCamelCase__ = [] for path in modeling_paths: if os.path.isfile(UpperCamelCase__ ): with open(UpperCamelCase__ ) as fp: modeling_sources.append(fp.read() ) UpperCamelCase__ = [] for config_param, default_value in zip(UpperCamelCase__, UpperCamelCase__ ): # `attributes` here is all the variant names for `config_param` UpperCamelCase__ = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): unused_attributes.append(attributes[0] ) return sorted(UpperCamelCase__ ) def lowerCamelCase_ ( ): '''simple docstring''' UpperCamelCase__ = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) UpperCamelCase__ = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ), lambda UpperCamelCase__ : inspect.isclass(UpperCamelCase__ ) and issubclass(UpperCamelCase__, UpperCamelCase__ ) and inspect.getmodule(UpperCamelCase__ ) == inspect.getmodule(_config_class ), ) ] for config_class in config_classes_in_module: UpperCamelCase__ = check_config_attributes_being_used(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: UpperCamelCase__ = unused_attributes if len(UpperCamelCase__ ) > 0: UpperCamelCase__ = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n''' for name, attributes in configs_with_unused_attributes.items(): error += F"""{name}: {attributes}\n""" raise ValueError(UpperCamelCase__ ) if __name__ == "__main__": check_config_attributes()
35
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowercase = [ """python""", """tqdm""", """regex""", """requests""", """packaging""", """filelock""", """numpy""", """tokenizers""", """huggingface-hub""", """safetensors""", """accelerate""", """pyyaml""", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f'can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py') def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : Dict=None ): '''simple docstring''' require_version(deps[pkg], UpperCamelCase__ )
35
1
"""simple docstring""" import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _snake_case ( A__ , A__ , A__ , unittest.TestCase ): snake_case__ = StableUnCLIPPipeline snake_case__ = TEXT_TO_IMAGE_PARAMS snake_case__ = TEXT_TO_IMAGE_BATCH_PARAMS snake_case__ = TEXT_TO_IMAGE_IMAGE_PARAMS snake_case__ = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false snake_case__ = False def lowerCamelCase__ ( self : Dict ): __lowerCamelCase : Dict = 32 __lowerCamelCase : List[str] = embedder_hidden_size # prior components torch.manual_seed(0 ) __lowerCamelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) __lowerCamelCase : List[str] = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=SCREAMING_SNAKE_CASE__ , projection_dim=SCREAMING_SNAKE_CASE__ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) __lowerCamelCase : Optional[Any] = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=SCREAMING_SNAKE_CASE__ , num_layers=1 , ) torch.manual_seed(0 ) __lowerCamelCase : Union[str, Any] = DDPMScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=1000 , clip_sample=SCREAMING_SNAKE_CASE__ , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , ) # regular denoising components torch.manual_seed(0 ) __lowerCamelCase : List[Any] = StableUnCLIPImageNormalizer(embedding_dim=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : Dict = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) __lowerCamelCase : str = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) __lowerCamelCase : str = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=SCREAMING_SNAKE_CASE__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) __lowerCamelCase : int = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=SCREAMING_SNAKE_CASE__ , layers_per_block=1 , upcast_attention=SCREAMING_SNAKE_CASE__ , use_linear_projection=SCREAMING_SNAKE_CASE__ , ) torch.manual_seed(0 ) __lowerCamelCase : Union[str, Any] = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , prediction_type="v_prediction" , set_alpha_to_one=SCREAMING_SNAKE_CASE__ , steps_offset=1 , ) torch.manual_seed(0 ) __lowerCamelCase : Dict = AutoencoderKL() __lowerCamelCase : int = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def lowerCamelCase__ ( self : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[str]=0 ): if str(SCREAMING_SNAKE_CASE__ ).startswith("mps" ): __lowerCamelCase : str = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: __lowerCamelCase : Dict = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : Tuple = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def lowerCamelCase__ ( self : Optional[int] ): __lowerCamelCase : Optional[int] = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=SCREAMING_SNAKE_CASE__ ) def lowerCamelCase__ ( self : Union[str, Any] ): __lowerCamelCase : Optional[int] = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=SCREAMING_SNAKE_CASE__ ) @slow @require_torch_gpu class _snake_case ( unittest.TestCase ): def lowerCamelCase__ ( self : List[str] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self : Any ): __lowerCamelCase : Any = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" ) __lowerCamelCase : Union[str, Any] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowerCamelCase : Dict = torch.Generator(device="cpu" ).manual_seed(0 ) __lowerCamelCase : List[Any] = pipe("anime turle" , generator=SCREAMING_SNAKE_CASE__ , output_type="np" ) __lowerCamelCase : List[Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def lowerCamelCase__ ( self : Any ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __lowerCamelCase : Tuple = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) __lowerCamelCase : int = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowerCamelCase : Optional[int] = pipe( "anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , ) __lowerCamelCase : Tuple = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
135
import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def __lowercase ( _UpperCamelCase = 8 ) ->str: """simple docstring""" lowercase : List[str] = ascii_letters + digits + punctuation return "".join(secrets.choice(_UpperCamelCase ) for _ in range(_UpperCamelCase ) ) def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->str: """simple docstring""" i -= len(_UpperCamelCase ) lowercase : Dict = i // 3 lowercase : List[str] = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) lowercase : Union[str, Any] = ( chars_incl + random(_UpperCamelCase, quotient + remainder ) + random(_UpperCamelCase, _UpperCamelCase ) + random(_UpperCamelCase, _UpperCamelCase ) ) lowercase : Union[str, Any] = list(_UpperCamelCase ) shuffle(_UpperCamelCase ) return "".join(_UpperCamelCase ) # random is a generalised function for letters, characters and numbers def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->str: """simple docstring""" return "".join(secrets.choice(_UpperCamelCase ) for _ in range(_UpperCamelCase ) ) def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->Dict: """simple docstring""" pass # Put your code here... def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->Union[str, Any]: """simple docstring""" pass # Put your code here... def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->List[Any]: """simple docstring""" pass # Put your code here... def __lowercase ( _UpperCamelCase, _UpperCamelCase = 8 ) ->bool: """simple docstring""" if len(_UpperCamelCase ) < min_length: # Your Password must be at least 8 characters long return False lowercase : str = any(char in ascii_uppercase for char in password ) lowercase : List[str] = any(char in ascii_lowercase for char in password ) lowercase : Dict = any(char in digits for char in password ) lowercase : Tuple = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def __lowercase ( ) ->Dict: """simple docstring""" lowercase : Union[str, Any] = int(input('''Please indicate the max length of your password: ''' ).strip() ) lowercase : Optional[Any] = input( '''Please indicate the characters that must be in your password: ''' ).strip() print('''Password generated:''', password_generator(_UpperCamelCase ) ) print( '''Alternative Password generated:''', alternative_password_generator(_UpperCamelCase, _UpperCamelCase ), ) print('''[If you are thinking of using this passsword, You better save it.]''' ) if __name__ == "__main__": main()
337
0
'''simple docstring''' def a__ ( lowercase : int = 1000 ) -> int: """simple docstring""" _UpperCamelCase , _UpperCamelCase = 1, 1 _UpperCamelCase = [] for i in range(1, n + 1 ): _UpperCamelCase = prev_numerator + 2 * prev_denominator _UpperCamelCase = prev_numerator + prev_denominator if len(str(lowercase ) ) > len(str(lowercase ) ): result.append(lowercase ) _UpperCamelCase = numerator _UpperCamelCase = denominator return len(lowercase ) if __name__ == "__main__": print(F"""{solution() = }""")
355
'''simple docstring''' import random class __lowerCAmelCase : """simple docstring""" @staticmethod def snake_case__ ( lowerCAmelCase__ : str ) -> tuple[list[int], list[int]]: '''simple docstring''' _UpperCamelCase = [ord(lowerCAmelCase__ ) for i in text] _UpperCamelCase = [] _UpperCamelCase = [] for i in plain: _UpperCamelCase = random.randint(1 , 300 ) _UpperCamelCase = (i + k) * k cipher.append(lowerCAmelCase__ ) key.append(lowerCAmelCase__ ) return cipher, key @staticmethod def snake_case__ ( lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[int] ) -> str: '''simple docstring''' _UpperCamelCase = [] for i in range(len(lowerCAmelCase__ ) ): _UpperCamelCase = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(lowerCAmelCase__ ) ) return "".join(lowerCAmelCase__ ) if __name__ == "__main__": lowercase__ , lowercase__ : List[str] = Onepad().encrypt('Hello') print(c, k) print(Onepad().decrypt(c, k))
287
0
from __future__ import annotations def lowercase_ ( _lowerCamelCase : list): if not nums: raise ValueError("List is empty") return sum(_lowerCamelCase) / len(_lowerCamelCase) if __name__ == "__main__": import doctest doctest.testmod()
87
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case_ ( __A ,unittest.TestCase ): __A : Union[str, Any] = LEDTokenizer __A : Union[str, Any] = LEDTokenizerFast __A : Optional[Any] = True def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: super().setUp() lowercase__ : List[str] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] lowercase__ : Optional[int] = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) lowercase__ : str = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowercase__ : Tuple = {"unk_token": "<unk>"} lowercase__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowercase__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowercase_ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowercase_ ) ) def __UpperCamelCase ( self : int , **lowercase_ : str ) -> List[Any]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase_ ) def __UpperCamelCase ( self : List[Any] , **lowercase_ : Any ) -> List[Any]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowercase_ ) def __UpperCamelCase ( self : str , lowercase_ : Any ) -> Tuple: return "lower newer", "lower newer" @cached_property def __UpperCamelCase ( self : Tuple ) -> Optional[Any]: return LEDTokenizer.from_pretrained("allenai/led-base-16384" ) @cached_property def __UpperCamelCase ( self : Tuple ) -> int: return LEDTokenizerFast.from_pretrained("allenai/led-base-16384" ) @require_torch def __UpperCamelCase ( self : int ) -> List[Any]: lowercase__ : Union[str, Any] = ["A long paragraph for summarization.", "Another paragraph for summarization."] lowercase__ : str = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : Dict = tokenizer(lowercase_ , max_length=len(lowercase_ ) , padding=lowercase_ , return_tensors="pt" ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) lowercase__ : Union[str, Any] = batch.input_ids.tolist()[0] self.assertListEqual(lowercase_ , lowercase_ ) @require_torch def __UpperCamelCase ( self : List[str] ) -> Tuple: lowercase__ : Dict = ["A long paragraph for summarization.", "Another paragraph for summarization."] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : Optional[int] = tokenizer(lowercase_ , padding=lowercase_ , return_tensors="pt" ) self.assertIn("input_ids" , lowercase_ ) self.assertIn("attention_mask" , lowercase_ ) self.assertNotIn("labels" , lowercase_ ) self.assertNotIn("decoder_attention_mask" , lowercase_ ) @require_torch def __UpperCamelCase ( self : Optional[Any] ) -> Any: lowercase__ : Dict = [ "Summary of the text.", "Another summary.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : Dict = tokenizer(text_target=lowercase_ , max_length=32 , padding="max_length" , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) @require_torch def __UpperCamelCase ( self : Optional[int] ) -> Tuple: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : int = tokenizer( ["I am a small frog" * 10_24, "I am a small frog"] , padding=lowercase_ , truncation=lowercase_ , return_tensors="pt" ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertEqual(batch.input_ids.shape , (2, 51_22) ) @require_torch def __UpperCamelCase ( self : List[str] ) -> Any: lowercase__ : Union[str, Any] = ["A long paragraph for summarization."] lowercase__ : List[Any] = [ "Summary of the text.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : List[Any] = tokenizer(lowercase_ , return_tensors="pt" ) lowercase__ : Dict = tokenizer(text_target=lowercase_ , return_tensors="pt" ) lowercase__ : Optional[int] = inputs["input_ids"] lowercase__ : str = targets["input_ids"] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : int = ["Summary of the text.", "Another summary."] lowercase__ : List[str] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] lowercase__ : Tuple = tokenizer(lowercase_ , padding=lowercase_ ) lowercase__ : int = [[0] * len(lowercase_ ) for x in encoded_output["input_ids"]] lowercase__ : Any = tokenizer.pad(lowercase_ ) self.assertSequenceEqual(outputs["global_attention_mask"] , lowercase_ ) def __UpperCamelCase ( self : int ) -> Union[str, Any]: pass def __UpperCamelCase ( self : int ) -> Optional[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase__ : List[Any] = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) lowercase__ : List[str] = self.tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) lowercase__ : List[Any] = "A, <mask> AllenNLP sentence." lowercase__ : Tuple = tokenizer_r.encode_plus(lowercase_ , add_special_tokens=lowercase_ , return_token_type_ids=lowercase_ ) lowercase__ : List[str] = tokenizer_p.encode_plus(lowercase_ , add_special_tokens=lowercase_ , return_token_type_ids=lowercase_ ) self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) lowercase__ : Any = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) lowercase__ : Optional[Any] = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) self.assertSequenceEqual(tokens_p["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( lowercase_ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( lowercase_ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
87
1
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase ( self : Optional[int] ): lowerCAmelCase_ : Optional[int] = tempfile.mkdtemp() lowerCAmelCase_ : Optional[int] = BlipImageProcessor() lowerCAmelCase_ : Any = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) lowerCAmelCase_ : Union[str, Any] = BertTokenizerFast.from_pretrained("hf-internal-testing/tiny-random-bert" ) lowerCAmelCase_ : Optional[int] = InstructBlipProcessor(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def lowerCamelCase ( self : Optional[Any] , **a_ : Tuple ): return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).tokenizer def lowerCamelCase ( self : int , **a_ : str ): return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).image_processor def lowerCamelCase ( self : Optional[Any] , **a_ : Any ): return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).qformer_tokenizer def lowerCamelCase ( self : str ): shutil.rmtree(self.tmpdirname ) def lowerCamelCase ( self : Optional[int] ): lowerCAmelCase_ : str = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] lowerCAmelCase_ : int = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase ( self : Optional[Any] ): lowerCAmelCase_ : Dict = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase_ : Union[str, Any] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowerCAmelCase_ : Dict = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 ) lowerCAmelCase_ : Optional[Any] = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) self.assertIsInstance(processor.qformer_tokenizer , __UpperCAmelCase ) def lowerCamelCase ( self : Optional[Any] ): lowerCAmelCase_ : List[str] = self.get_image_processor() lowerCAmelCase_ : Optional[int] = self.get_tokenizer() lowerCAmelCase_ : Optional[int] = self.get_qformer_tokenizer() lowerCAmelCase_ : Tuple = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) lowerCAmelCase_ : Dict = self.prepare_image_inputs() lowerCAmelCase_ : List[Any] = image_processor(__UpperCAmelCase , return_tensors="np" ) lowerCAmelCase_ : List[Any] = processor(images=__UpperCAmelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCamelCase ( self : List[str] ): lowerCAmelCase_ : Any = self.get_image_processor() lowerCAmelCase_ : Union[str, Any] = self.get_tokenizer() lowerCAmelCase_ : Optional[Any] = self.get_qformer_tokenizer() lowerCAmelCase_ : int = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) lowerCAmelCase_ : Dict = "lower newer" lowerCAmelCase_ : str = processor(text=__UpperCAmelCase ) lowerCAmelCase_ : str = tokenizer(__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase ) lowerCAmelCase_ : Any = qformer_tokenizer(__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["qformer_" + key] ) def lowerCamelCase ( self : Dict ): lowerCAmelCase_ : Any = self.get_image_processor() lowerCAmelCase_ : Dict = self.get_tokenizer() lowerCAmelCase_ : Optional[Any] = self.get_qformer_tokenizer() lowerCAmelCase_ : Union[str, Any] = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) lowerCAmelCase_ : Any = "lower newer" lowerCAmelCase_ : Optional[Any] = self.prepare_image_inputs() lowerCAmelCase_ : List[str] = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual( list(inputs.keys() ) , ["input_ids", "attention_mask", "qformer_input_ids", "qformer_attention_mask", "pixel_values"] , ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def lowerCamelCase ( self : Dict ): lowerCAmelCase_ : Optional[Any] = self.get_image_processor() lowerCAmelCase_ : int = self.get_tokenizer() lowerCAmelCase_ : Tuple = self.get_qformer_tokenizer() lowerCAmelCase_ : Tuple = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase_ : Dict = processor.batch_decode(__UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = tokenizer.batch_decode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def lowerCamelCase ( self : Union[str, Any] ): lowerCAmelCase_ : Tuple = self.get_image_processor() lowerCAmelCase_ : str = self.get_tokenizer() lowerCAmelCase_ : Union[str, Any] = self.get_qformer_tokenizer() lowerCAmelCase_ : Tuple = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) lowerCAmelCase_ : Dict = "lower newer" lowerCAmelCase_ : Optional[Any] = self.prepare_image_inputs() lowerCAmelCase_ : Tuple = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual( list(inputs.keys() ) , ["input_ids", "attention_mask", "qformer_input_ids", "qformer_attention_mask", "pixel_values"] , )
354
"""simple docstring""" from __future__ import annotations import math class __lowerCamelCase : '''simple docstring''' def __init__( self : Dict , a_ : int ): lowerCAmelCase_ : Union[str, Any] = size # approximate the overall size of segment tree with given value lowerCAmelCase_ : Union[str, Any] = [0 for i in range(0 , 4 * size )] # create array to store lazy update lowerCAmelCase_ : int = [0 for i in range(0 , 4 * size )] lowerCAmelCase_ : Any = [0 for i in range(0 , 4 * size )] # flag for lazy update def lowerCamelCase ( self : List[Any] , a_ : int ): return idx * 2 def lowerCamelCase ( self : Tuple , a_ : int ): return idx * 2 + 1 def lowerCamelCase ( self : Tuple , a_ : int , a_ : int , a_ : int , a_ : list[int] ): if left_element == right_element: lowerCAmelCase_ : Tuple = a[left_element - 1] else: lowerCAmelCase_ : Tuple = (left_element + right_element) // 2 self.build(self.left(a_ ) , a_ , a_ , a_ ) self.build(self.right(a_ ) , mid + 1 , a_ , a_ ) lowerCAmelCase_ : int = max( self.segment_tree[self.left(a_ )] , self.segment_tree[self.right(a_ )] ) def lowerCamelCase ( self : Union[str, Any] , a_ : int , a_ : int , a_ : int , a_ : int , a_ : int , a_ : int ): if self.flag[idx] is True: lowerCAmelCase_ : Dict = self.lazy[idx] lowerCAmelCase_ : Optional[Any] = False if left_element != right_element: lowerCAmelCase_ : str = self.lazy[idx] lowerCAmelCase_ : Dict = self.lazy[idx] lowerCAmelCase_ : List[Any] = True lowerCAmelCase_ : Union[str, Any] = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: lowerCAmelCase_ : Dict = val if left_element != right_element: lowerCAmelCase_ : Union[str, Any] = val lowerCAmelCase_ : Dict = val lowerCAmelCase_ : List[Any] = True lowerCAmelCase_ : List[str] = True return True lowerCAmelCase_ : Optional[Any] = (left_element + right_element) // 2 self.update(self.left(a_ ) , a_ , a_ , a_ , a_ , a_ ) self.update(self.right(a_ ) , mid + 1 , a_ , a_ , a_ , a_ ) lowerCAmelCase_ : int = max( self.segment_tree[self.left(a_ )] , self.segment_tree[self.right(a_ )] ) return True def lowerCamelCase ( self : int , a_ : int , a_ : int , a_ : int , a_ : int , a_ : int ): if self.flag[idx] is True: lowerCAmelCase_ : Union[str, Any] = self.lazy[idx] lowerCAmelCase_ : Optional[int] = False if left_element != right_element: lowerCAmelCase_ : int = self.lazy[idx] lowerCAmelCase_ : int = self.lazy[idx] lowerCAmelCase_ : Optional[Any] = True lowerCAmelCase_ : Dict = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] lowerCAmelCase_ : Any = (left_element + right_element) // 2 lowerCAmelCase_ : Union[str, Any] = self.query(self.left(a_ ) , a_ , a_ , a_ , a_ ) lowerCAmelCase_ : List[str] = self.query(self.right(a_ ) , mid + 1 , a_ , a_ , a_ ) return max(a_ , a_ ) def __str__( self : str ): return str([self.query(1 , 1 , self.size , a_ , a_ ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": lowercase__ = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] lowercase__ = 15 lowercase__ = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
161
0
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A ( UpperCAmelCase_ , unittest.TestCase ): __UpperCAmelCase : Optional[int] = DanceDiffusionPipeline __UpperCAmelCase : Optional[Any] = UNCONDITIONAL_AUDIO_GENERATION_PARAMS __UpperCAmelCase : List[Any] = PipelineTesterMixin.required_optional_params - { 'callback', 'latents', 'callback_steps', 'output_type', 'num_images_per_prompt', } __UpperCAmelCase : Optional[Any] = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS __UpperCAmelCase : str = False __UpperCAmelCase : List[str] = False def lowercase_ (self : Optional[int] ) -> Any: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase__ = UNetaDModel( block_out_channels=(3_2, 3_2, 6_4) , extra_in_channels=1_6 , sample_size=5_1_2 , sample_rate=1_6_0_0_0 , in_channels=2 , out_channels=2 , flip_sin_to_cos=__UpperCAmelCase , use_timestep_embedding=__UpperCAmelCase , time_embedding_type="fourier" , mid_block_type="UNetMidBlock1D" , down_block_types=("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , up_block_types=("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , ) UpperCAmelCase__ = IPNDMScheduler() UpperCAmelCase__ = { "unet": unet, "scheduler": scheduler, } return components def lowercase_ (self : str , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[int]=0 ) -> Any: """simple docstring""" if str(__UpperCAmelCase ).startswith("mps" ): UpperCAmelCase__ = torch.manual_seed(__UpperCAmelCase ) else: UpperCAmelCase__ = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) UpperCAmelCase__ = { "batch_size": 1, "generator": generator, "num_inference_steps": 4, } return inputs def lowercase_ (self : Union[str, Any] ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase__ = self.get_dummy_components() UpperCAmelCase__ = DanceDiffusionPipeline(**__UpperCAmelCase ) UpperCAmelCase__ = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) UpperCAmelCase__ = self.get_dummy_inputs(__UpperCAmelCase ) UpperCAmelCase__ = pipe(**__UpperCAmelCase ) UpperCAmelCase__ = output.audios UpperCAmelCase__ = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) UpperCAmelCase__ = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def lowercase_ (self : Tuple ) -> Any: """simple docstring""" return super().test_save_load_local() @skip_mps def lowercase_ (self : Dict ) -> List[str]: """simple docstring""" return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def lowercase_ (self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return super().test_save_load_optional_components() @skip_mps def lowercase_ (self : Union[str, Any] ) -> str: """simple docstring""" return super().test_attention_slicing_forward_pass() def lowercase_ (self : List[str] ) -> Dict: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class A ( unittest.TestCase ): def lowercase_ (self : str ) -> int: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ (self : Dict ) -> str: """simple docstring""" UpperCAmelCase__ = torch_device UpperCAmelCase__ = DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k" ) UpperCAmelCase__ = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) UpperCAmelCase__ = torch.manual_seed(0 ) UpperCAmelCase__ = pipe(generator=__UpperCAmelCase , num_inference_steps=1_0_0 , audio_length_in_s=4.096 ) UpperCAmelCase__ = output.audios UpperCAmelCase__ = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) UpperCAmelCase__ = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase_ (self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = torch_device UpperCAmelCase__ = DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k" , torch_dtype=torch.floataa ) UpperCAmelCase__ = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) UpperCAmelCase__ = torch.manual_seed(0 ) UpperCAmelCase__ = pipe(generator=__UpperCAmelCase , num_inference_steps=1_0_0 , audio_length_in_s=4.096 ) UpperCAmelCase__ = output.audios UpperCAmelCase__ = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) UpperCAmelCase__ = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
65
import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __UpperCamelCase : Tuple = logging.getLogger(__name__) __UpperCamelCase : str = tf.data.AUTOTUNE def _a ( ): """simple docstring""" UpperCamelCase__ : str = argparse.ArgumentParser(description='''Train a masked language model on TPU.''' ) parser.add_argument( '''--pretrained_model_config''' , type=SCREAMING_SNAKE_CASE , default='''roberta-base''' , help='''The model config to use. Note that we don\'t copy the model\'s weights, only the config!''' , ) parser.add_argument( '''--tokenizer''' , type=SCREAMING_SNAKE_CASE , default='''unigram-tokenizer-wikitext''' , help='''The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model\'s vocab size.''' , ) parser.add_argument( '''--per_replica_batch_size''' , type=SCREAMING_SNAKE_CASE , default=8 , help='''Batch size per TPU core.''' , ) parser.add_argument( '''--no_tpu''' , action='''store_true''' , help='''If set, run on CPU and don\'t try to initialize a TPU. Useful for debugging on non-TPU instances.''' , ) parser.add_argument( '''--tpu_name''' , type=SCREAMING_SNAKE_CASE , help='''Name of TPU resource to initialize. Should be blank on Colab, and \'local\' on TPU VMs.''' , default='''local''' , ) parser.add_argument( '''--tpu_zone''' , type=SCREAMING_SNAKE_CASE , help='''Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.''' , ) parser.add_argument( '''--gcp_project''' , type=SCREAMING_SNAKE_CASE , help='''Google cloud project name. Only used for non-Colab TPU nodes.''' ) parser.add_argument( '''--bfloat16''' , action='''store_true''' , help='''Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.''' , ) parser.add_argument( '''--train_dataset''' , type=SCREAMING_SNAKE_CASE , help='''Path to training dataset to load. If the path begins with `gs://`''' ''' then the dataset will be loaded from a Google Cloud Storage bucket.''' , ) parser.add_argument( '''--shuffle_buffer_size''' , type=SCREAMING_SNAKE_CASE , default=2**18 , help='''Size of the shuffle buffer (in samples)''' , ) parser.add_argument( '''--eval_dataset''' , type=SCREAMING_SNAKE_CASE , help='''Path to evaluation dataset to load. If the path begins with `gs://`''' ''' then the dataset will be loaded from a Google Cloud Storage bucket.''' , ) parser.add_argument( '''--num_epochs''' , type=SCREAMING_SNAKE_CASE , default=1 , help='''Number of epochs to train for.''' , ) parser.add_argument( '''--learning_rate''' , type=SCREAMING_SNAKE_CASE , default=1E-4 , help='''Learning rate to use for training.''' , ) parser.add_argument( '''--weight_decay_rate''' , type=SCREAMING_SNAKE_CASE , default=1E-3 , help='''Weight decay rate to use for training.''' , ) parser.add_argument( '''--max_length''' , type=SCREAMING_SNAKE_CASE , default=512 , help='''Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py''' , ) parser.add_argument( '''--mlm_probability''' , type=SCREAMING_SNAKE_CASE , default=0.15 , help='''Fraction of tokens to mask during training.''' , ) parser.add_argument('''--output_dir''' , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help='''Path to save model checkpoints to.''' ) parser.add_argument('''--hub_model_id''' , type=SCREAMING_SNAKE_CASE , help='''Model ID to upload to on the Hugging Face Hub.''' ) UpperCamelCase__ : str = parser.parse_args() return args def _a ( SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" try: if args.tpu_name: UpperCamelCase__ : Optional[Any] = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: UpperCamelCase__ : Any = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( '''Couldn\'t connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or ''' '''--gcp_project. When running on a TPU VM, use --tpu_name local.''' ) tf.config.experimental_connect_to_cluster(SCREAMING_SNAKE_CASE ) tf.tpu.experimental.initialize_tpu_system(SCREAMING_SNAKE_CASE ) return tpu def _a ( SCREAMING_SNAKE_CASE : Any ): """simple docstring""" UpperCamelCase__ : List[Any] = 0 for file in file_list: UpperCamelCase__ : List[str] = file.split('''/''' )[-1] UpperCamelCase__ : Optional[Any] = re.search(r'''-\d+-(\d+)\.tfrecord''' , SCREAMING_SNAKE_CASE ).group(1 ) UpperCamelCase__ : List[Any] = int(SCREAMING_SNAKE_CASE ) num_samples += sample_count return num_samples def _a ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Any=None ): """simple docstring""" UpperCamelCase__ : int = count_samples(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : int = tf.data.Dataset.from_tensor_slices(SCREAMING_SNAKE_CASE ) if shuffle: UpperCamelCase__ : Any = dataset.shuffle(len(SCREAMING_SNAKE_CASE ) ) UpperCamelCase__ : Tuple = tf.data.TFRecordDataset(SCREAMING_SNAKE_CASE , num_parallel_reads=SCREAMING_SNAKE_CASE ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here UpperCamelCase__ : Union[str, Any] = dataset.apply(tf.data.experimental.assert_cardinality(SCREAMING_SNAKE_CASE ) ) UpperCamelCase__ : List[Any] = dataset.map(SCREAMING_SNAKE_CASE , num_parallel_calls=SCREAMING_SNAKE_CASE ) if shuffle: assert shuffle_buffer_size is not None UpperCamelCase__ : Dict = dataset.shuffle(args.shuffle_buffer_size ) UpperCamelCase__ : int = dataset.batch(SCREAMING_SNAKE_CASE , drop_remainder=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = dataset.map(SCREAMING_SNAKE_CASE , num_parallel_calls=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = dataset.prefetch(SCREAMING_SNAKE_CASE ) return dataset def _a ( SCREAMING_SNAKE_CASE : int ): """simple docstring""" if not args.no_tpu: UpperCamelCase__ : List[Any] = initialize_tpu(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = tf.distribute.TPUStrategy(SCREAMING_SNAKE_CASE ) else: UpperCamelCase__ : Any = tf.distribute.OneDeviceStrategy(device='''/gpu:0''' ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy('''mixed_bfloat16''' ) UpperCamelCase__ : Tuple = AutoTokenizer.from_pretrained(args.tokenizer ) UpperCamelCase__ : List[Any] = AutoConfig.from_pretrained(args.pretrained_model_config ) UpperCamelCase__ : Dict = tokenizer.vocab_size UpperCamelCase__ : int = tf.io.gfile.glob(os.path.join(args.train_dataset , '''*.tfrecord''' ) ) if not training_records: raise ValueError(F"No .tfrecord files found in {args.train_dataset}." ) UpperCamelCase__ : int = tf.io.gfile.glob(os.path.join(args.eval_dataset , '''*.tfrecord''' ) ) if not eval_records: raise ValueError(F"No .tfrecord files found in {args.eval_dataset}." ) UpperCamelCase__ : str = count_samples(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) UpperCamelCase__ : List[Any] = steps_per_epoch * args.num_epochs with strategy.scope(): UpperCamelCase__ : List[str] = TFAutoModelForMaskedLM.from_config(SCREAMING_SNAKE_CASE ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built UpperCamelCase__ , UpperCamelCase__ : int = create_optimizer( num_train_steps=SCREAMING_SNAKE_CASE , num_warmup_steps=total_train_steps // 20 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=SCREAMING_SNAKE_CASE , metrics=['''accuracy'''] ) def decode_fn(SCREAMING_SNAKE_CASE : Optional[Any] ): UpperCamelCase__ : Tuple = { '''input_ids''': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), '''attention_mask''': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. UpperCamelCase__ : Optional[int] = DataCollatorForLanguageModeling( tokenizer=SCREAMING_SNAKE_CASE , mlm_probability=args.mlm_probability , mlm=SCREAMING_SNAKE_CASE , return_tensors='''tf''' ) def mask_with_collator(SCREAMING_SNAKE_CASE : int ): # TF really needs an isin() function UpperCamelCase__ : Optional[int] = ( ~tf.cast(batch['''attention_mask'''] , tf.bool ) | (batch['''input_ids'''] == tokenizer.cls_token_id) | (batch['''input_ids'''] == tokenizer.sep_token_id) ) UpperCamelCase__ , UpperCamelCase__ : List[str] = data_collator.tf_mask_tokens( batch['''input_ids'''] , vocab_size=len(SCREAMING_SNAKE_CASE ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=SCREAMING_SNAKE_CASE , ) return batch UpperCamelCase__ : Tuple = args.per_replica_batch_size * strategy.num_replicas_in_sync UpperCamelCase__ : List[str] = prepare_dataset( SCREAMING_SNAKE_CASE , decode_fn=SCREAMING_SNAKE_CASE , mask_fn=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE , shuffle=SCREAMING_SNAKE_CASE , shuffle_buffer_size=args.shuffle_buffer_size , ) UpperCamelCase__ : Optional[int] = prepare_dataset( SCREAMING_SNAKE_CASE , decode_fn=SCREAMING_SNAKE_CASE , mask_fn=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE , shuffle=SCREAMING_SNAKE_CASE , ) UpperCamelCase__ : List[Any] = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=SCREAMING_SNAKE_CASE ) ) model.fit( SCREAMING_SNAKE_CASE , validation_data=SCREAMING_SNAKE_CASE , epochs=args.num_epochs , callbacks=SCREAMING_SNAKE_CASE , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __UpperCamelCase : Dict = parse_args() main(args)
146
0
def UpperCamelCase ( _A : List[str] , _A : List[str] , _A : List[str] , _A : Optional[int] )-> Union[str, Any]: """simple docstring""" global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: A__ = mf_knapsack(i - 1 , _A , _A , _A ) else: A__ = max( mf_knapsack(i - 1 , _A , _A , _A ) , mf_knapsack(i - 1 , _A , _A , j - wt[i - 1] ) + val[i - 1] , ) A__ = val return f[i][j] def UpperCamelCase ( _A : Dict , _A : List[str] , _A : List[str] , _A : List[str] )-> List[Any]: """simple docstring""" A__ = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: A__ = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: A__ = dp[i - 1][w_] return dp[n][w_], dp def UpperCamelCase ( _A : int , _A : list , _A : list )-> Dict: """simple docstring""" if not (isinstance(_A , (list, tuple) ) and isinstance(_A , (list, tuple) )): raise ValueError( "Both the weights and values vectors must be either lists or tuples" ) A__ = len(_A ) if num_items != len(_A ): A__ = ( "The number of weights must be the same as the number of values.\n" f"""But got {num_items} weights and {len(_A )} values""" ) raise ValueError(_A ) for i in range(_A ): if not isinstance(wt[i] , _A ): A__ = ( "All weights must be integers but got weight of " f"""type {type(wt[i] )} at index {i}""" ) raise TypeError(_A ) A__ , A__ = knapsack(_A , _A , _A , _A ) A__ = set() _construct_solution(_A , _A , _A , _A , _A ) return optimal_val, example_optional_set def UpperCamelCase ( _A : list , _A : list , _A : int , _A : int , _A : set )-> List[str]: """simple docstring""" if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(_A , _A , i - 1 , _A , _A ) else: optimal_set.add(_A ) _construct_solution(_A , _A , i - 1 , j - wt[i - 1] , _A ) if __name__ == "__main__": UpperCAmelCase_ : List[Any] = [3, 2, 4, 4] UpperCAmelCase_ : str = [4, 3, 2, 3] UpperCAmelCase_ : Union[str, Any] = 4 UpperCAmelCase_ : str = 6 UpperCAmelCase_ : Dict = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] UpperCAmelCase_ , UpperCAmelCase_ : Dict = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 UpperCAmelCase_ , UpperCAmelCase_ : Dict = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("optimal_value = ", optimal_solution) print("An optimal subset corresponding to the optimal value", optimal_subset)
198
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : str = logging.get_logger(__name__) def UpperCamelCase ( _A : str )-> List[str]: """simple docstring""" A__ = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] ) A__ = MaskFormerConfig(backbone_config=_A ) A__ = "huggingface/label-files" if "ade20k-full" in model_name: # this should be ok A__ = 847 A__ = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok A__ = 150 A__ = "ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok A__ = 171 A__ = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO A__ = 133 A__ = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok A__ = 19 A__ = "cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok A__ = 65 A__ = "mapillary-vistas-id2label.json" A__ = json.load(open(hf_hub_download(_A , _A , repo_type="dataset" ) , "r" ) ) A__ = {int(_A ): v for k, v in idalabel.items()} return config def UpperCamelCase ( _A : Tuple )-> Union[str, Any]: """simple docstring""" A__ = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((f"""backbone.layers.{i}.downsample.reduction.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((f"""backbone.layers.{i}.downsample.norm.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((f"""backbone.layers.{i}.downsample.norm.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((f"""backbone.norm{i}.weight""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((f"""backbone.norm{i}.bias""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((f"""sem_seg_head.adapter_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", f"""mask_embedder.{i}.0.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", f"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def UpperCamelCase ( _A : int , _A : List[str] , _A : List[str] )-> Any: """simple docstring""" A__ = dct.pop(_A ) A__ = val def UpperCamelCase ( _A : Tuple , _A : List[str] )-> Dict: """simple docstring""" A__ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): A__ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) A__ = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) A__ = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict A__ = in_proj_weight[:dim, :] A__ = in_proj_bias[: dim] A__ = in_proj_weight[ dim : dim * 2, : ] A__ = in_proj_bias[ dim : dim * 2 ] A__ = in_proj_weight[ -dim :, : ] A__ = in_proj_bias[-dim :] # fmt: on def UpperCamelCase ( _A : Tuple , _A : Optional[int] )-> Union[str, Any]: """simple docstring""" A__ = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) A__ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) A__ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict A__ = in_proj_weight[: hidden_size, :] A__ = in_proj_bias[:config.hidden_size] A__ = in_proj_weight[hidden_size : hidden_size * 2, :] A__ = in_proj_bias[hidden_size : hidden_size * 2] A__ = in_proj_weight[-hidden_size :, :] A__ = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) A__ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) A__ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict A__ = in_proj_weight[: hidden_size, :] A__ = in_proj_bias[:config.hidden_size] A__ = in_proj_weight[hidden_size : hidden_size * 2, :] A__ = in_proj_bias[hidden_size : hidden_size * 2] A__ = in_proj_weight[-hidden_size :, :] A__ = in_proj_bias[-hidden_size :] # fmt: on def UpperCamelCase ( )-> torch.Tensor: """simple docstring""" A__ = "http://images.cocodataset.org/val2017/000000039769.jpg" A__ = Image.open(requests.get(_A , stream=_A ).raw ) return im @torch.no_grad() def UpperCamelCase ( _A : str , _A : str , _A : str , _A : bool = False )-> Tuple: """simple docstring""" A__ = get_maskformer_config(_A ) # load original state_dict with open(_A , "rb" ) as f: A__ = pickle.load(_A ) A__ = data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys A__ = create_rename_keys(_A ) for src, dest in rename_keys: rename_key(_A , _A , _A ) read_in_swin_q_k_v(_A , config.backbone_config ) read_in_decoder_q_k_v(_A , _A ) # update to torch tensors for key, value in state_dict.items(): A__ = torch.from_numpy(_A ) # load 🤗 model A__ = MaskFormerForInstanceSegmentation(_A ) model.eval() for name, param in model.named_parameters(): print(_A , param.shape ) A__ , A__ = model.load_state_dict(_A , strict=_A ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(_A ) == 0, f"""Unexpected keys: {unexpected_keys}""" # verify results A__ = prepare_img() if "vistas" in model_name: A__ = 65 elif "cityscapes" in model_name: A__ = 65535 else: A__ = 255 A__ = True if "ade" in model_name else False A__ = MaskFormerImageProcessor(ignore_index=_A , reduce_labels=_A ) A__ = image_processor(_A , return_tensors="pt" ) A__ = model(**_A ) print("Logits:" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": A__ = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , _A , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(_A ).mkdir(exist_ok=_A ) model.save_pretrained(_A ) image_processor.save_pretrained(_A ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(f"""nielsr/{model_name}""" ) image_processor.push_to_hub(f"""nielsr/{model_name}""" ) if __name__ == "__main__": UpperCAmelCase_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="maskformer-swin-tiny-ade", type=str, help=("Name of the MaskFormer model you'd like to convert",), ) parser.add_argument( "--checkpoint_path", default="/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl", type=str, help="Path to the original state dict (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) UpperCAmelCase_ : Tuple = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
198
1
'''simple docstring''' import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed __SCREAMING_SNAKE_CASE : str = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(F'{bindir}/../../examples/pytorch/translation'): from run_translation import main # noqa set_seed(42) __SCREAMING_SNAKE_CASE : Any = """sshleifer/student_marian_en_ro_6_1""" __SCREAMING_SNAKE_CASE : int = """sshleifer/tiny-mbart""" @require_torch class lowerCamelCase_ (snake_case__ ): '''simple docstring''' def _A ( self : Union[str, Any] , A : List[str]=False , A : Union[str, Any]=None , A : Dict=True , A : Any=True , A : Any=True , A : Tuple=True , ): _UpperCAmelCase : List[str] = self.run_trainer( eval_steps=1 , max_len=12 , model_name=A , num_train_epochs=1 , distributed=A , extra_args_str=A , predict_with_generate=A , do_train=A , do_eval=A , do_predict=A , ) _UpperCAmelCase : int = TrainerState.load_from_json(os.path.join(A , "trainer_state.json" ) ).log_history if not do_eval: return _UpperCAmelCase : Union[str, Any] = [log for log in logs if "eval_loss" in log.keys()] _UpperCAmelCase : Optional[int] = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats _UpperCAmelCase : int = eval_metrics[-1] assert isinstance(last_step_stats["eval_bleu"] , A ) assert not math.isnan(float(last_step_stats["eval_loss"] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def _A ( self : Tuple ): self.run_seqaseq_quick() @require_torch_multi_gpu def _A ( self : int ): self.run_seqaseq_quick(distributed=A ) @require_torch_multi_gpu def _A ( self : Any ): self.run_seqaseq_quick(distributed=A ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def _A ( self : Any ): self.run_seqaseq_quick(distributed=A , extra_args_str="--sharded_ddp simple" ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def _A ( self : Dict ): self.run_seqaseq_quick(distributed=A , extra_args_str="--sharded_ddp simple --fp16" ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def _A ( self : Optional[int] ): self.run_seqaseq_quick(distributed=A , extra_args_str="--sharded_ddp zero_dp_2" , predict_with_generate=A ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def _A ( self : Tuple ): self.run_seqaseq_quick( distributed=A , extra_args_str="--sharded_ddp zero_dp_2 --fp16" , predict_with_generate=A ) @require_apex @require_torch_gpu def _A ( self : Tuple ): # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=A , extra_args_str="--fp16 --fp16_backend=apex" ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=A , extra_args_str="--fp16 --fp16_backend=apex" ) @parameterized.expand(["base", "low", "high", "mixed"] ) @require_torch_multi_gpu def _A ( self : Tuple , A : int ): # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout _UpperCAmelCase : str = { # test with the default log_level - should be info and thus log info once "base": {"extra_args_str": "", "n_matches": 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes "low": {"extra_args_str": "--log_level debug --log_level_replica debug", "n_matches": 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica "high": {"extra_args_str": "--log_level error --log_level_replica debug", "n_matches": 1}, # test with high log_level and log_level_replica - should be quiet on all processes "mixed": {"extra_args_str": "--log_level error --log_level_replica error", "n_matches": 0}, } _UpperCAmelCase : List[Any] = experiments[experiment_id] _UpperCAmelCase : Dict = {"distributed": True, "predict_with_generate": False, "do_eval": False, "do_predict": False} _UpperCAmelCase : List[str] = "Running training" with CaptureStderr() as cl: self.run_seqaseq_quick(**A , extra_args_str=data["extra_args_str"] ) _UpperCAmelCase : Tuple = len(re.findall(A , cl.err ) ) self.assertEqual(A , data["n_matches"] ) @slow def _A ( self : int ): _UpperCAmelCase : List[str] = self.run_trainer( eval_steps=2 , max_len=128 , model_name=A , learning_rate=3E-4 , num_train_epochs=10 , distributed=A , ) # Check metrics _UpperCAmelCase : Any = TrainerState.load_from_json(os.path.join(A , "trainer_state.json" ) ).log_history _UpperCAmelCase : Tuple = [log for log in logs if "eval_loss" in log.keys()] _UpperCAmelCase : Union[str, Any] = eval_metrics[0] _UpperCAmelCase : List[str] = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats["eval_bleu"] , A ) # test if do_predict saves generations and metrics _UpperCAmelCase : Optional[int] = os.listdir(A ) _UpperCAmelCase : str = {os.path.basename(A ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def _A ( self : int ): from transformers.training_args import OptimizerNames def train_and_return_metrics(A : str ) -> Tuple[int, float]: _UpperCAmelCase : int = "--skip_memory_metrics 0" _UpperCAmelCase : Tuple = self.run_trainer( max_len=128 , model_name=A , learning_rate=3E-4 , num_train_epochs=1 , optim=A , distributed=A , extra_args_str=A , do_eval=A , do_predict=A , n_gpus_to_use=1 , ) # Check metrics _UpperCAmelCase : Optional[Any] = TrainerState.load_from_json(Path(A , "trainer_state.json" ) ).log_history _UpperCAmelCase : int = int(logs[0]["train_mem_gpu_peaked_delta"] / 2**20 ) _UpperCAmelCase : Union[str, Any] = int(logs[0]["train_mem_gpu_alloc_delta"] / 2**20 ) _UpperCAmelCase : Optional[int] = logs[0]["train_loss"] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[int] = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[str] = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) _UpperCAmelCase : str = gpu_alloc_mem_orig - gpu_alloc_mem_bnb _UpperCAmelCase : Optional[Any] = gpu_peak_mem_orig + gpu_alloc_mem_orig _UpperCAmelCase : Union[str, Any] = gpu_peak_mem_bnb + gpu_alloc_mem_bnb _UpperCAmelCase : int = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings _UpperCAmelCase : List[str] = 120 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( A , A , "should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got" F""" a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and""" F""" gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB""" , ) self.assertGreater( A , A , "should use ~150MB less total gpu memory with BNB, compared to without it for this model but got" F""" a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and""" F""" gpu_total_mem_bnb={gpu_total_mem_bnb}MB""" , ) self.assertEqual( A , A , F"""loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}""" ) def _A ( self : Dict , A : int , A : str , A : int , A : float = 3E-3 , A : str = "adafactor" , A : bool = False , A : str = None , A : int = 0 , A : bool = True , A : bool = True , A : bool = True , A : bool = True , A : int = None , ): _UpperCAmelCase : Optional[int] = self.test_file_dir / "../fixtures/tests_samples/wmt_en_ro" _UpperCAmelCase : List[str] = self.get_auto_remove_tmp_dir() _UpperCAmelCase : List[Any] = F""" --model_name_or_path {model_name} --train_file {data_dir}/train.json --validation_file {data_dir}/val.json --test_file {data_dir}/test.json --output_dir {output_dir} --overwrite_output_dir --max_train_samples 8 --max_source_length {max_len} --max_target_length {max_len} --do_train --num_train_epochs {str(A )} --per_device_train_batch_size 4 --learning_rate {learning_rate} --warmup_steps 8 --logging_steps 0 --logging_strategy no --save_steps {str(A )} --group_by_length --label_smoothing_factor 0.1 --target_lang ro_RO --source_lang en_XX """.split() _UpperCAmelCase : List[Any] = F""" --do_eval --per_device_eval_batch_size 4 --max_eval_samples 8 --val_max_target_length {max_len} --evaluation_strategy steps --eval_steps {str(A )} """.split() _UpperCAmelCase : Tuple = "\n --do_predict\n ".split() _UpperCAmelCase : Union[str, Any] = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += F"""--optim {optim}""".split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: _UpperCAmelCase : Dict = get_gpu_count() _UpperCAmelCase : Dict = get_torch_dist_unique_port() _UpperCAmelCase : List[str] = F""" -m torch.distributed.run --nproc_per_node={n_gpus_to_use} --master_port={master_port} {self.examples_dir_str}/pytorch/translation/run_translation.py """.split() _UpperCAmelCase : str = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(A , env=self.get_env() ) else: _UpperCAmelCase : List[str] = ["run_translation.py"] + args with patch.object(A , "argv" , A ): main() return output_dir
31
'''simple docstring''' def UpperCamelCase_ ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: """simple docstring""" _UpperCAmelCase : List[str] = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): _UpperCAmelCase : Any = n - k # Calculate C(n,k) for i in range(_UpperCAmelCase ): result *= n - i result //= i + 1 return result def UpperCamelCase_ ( _UpperCAmelCase : int ) -> int: """simple docstring""" return binomial_coefficient(2 * node_count , _UpperCAmelCase ) // (node_count + 1) def UpperCamelCase_ ( _UpperCAmelCase : int ) -> int: """simple docstring""" if n < 0: raise ValueError("factorial() not defined for negative values" ) _UpperCAmelCase : List[str] = 1 for i in range(1 , n + 1 ): result *= i return result def UpperCamelCase_ ( _UpperCAmelCase : int ) -> int: """simple docstring""" return catalan_number(_UpperCAmelCase ) * factorial(_UpperCAmelCase ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Dict = int(input("""Enter the number of nodes: """).strip() or 0) if node_count <= 0: raise ValueError("""We need some nodes to work with.""") print( F'Given {node_count} nodes, there are {binary_tree_count(node_count)} ' F'binary trees and {catalan_number(node_count)} binary search trees.' )
31
1
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int) -> List[str]: '''simple docstring''' def is_in_circle(_lowerCamelCase : float , _lowerCamelCase : float) -> bool: __UpperCamelCase : Any = sqrt((x**2) + (y**2)) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle __UpperCamelCase : int = mean( int(is_in_circle(uniform(-1.0 , 1.0) , uniform(-1.0 , 1.0))) for _ in range(SCREAMING_SNAKE_CASE_)) # The ratio of the area for circle to square is pi/4. __UpperCamelCase : List[Any] = proportion * 4 print(F'The estimated value of pi is {pi_estimate}') print(F'The numpy value of pi is {pi}') print(F'The total error is {abs(pi - pi_estimate)}') def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int , _lowerCamelCase : Callable[[float], float] , _lowerCamelCase : float = 0.0 , _lowerCamelCase : float = 1.0 , ) -> float: '''simple docstring''' return mean( function_to_integrate(uniform(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)) for _ in range(SCREAMING_SNAKE_CASE_)) * (max_value - min_value) def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int , _lowerCamelCase : float = 0.0 , _lowerCamelCase : float = 1.0) -> None: '''simple docstring''' def identity_function(_lowerCamelCase : float) -> float: return x __UpperCamelCase : str = area_under_curve_estimator( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) __UpperCamelCase : Union[str, Any] = (max_value * max_value - min_value * min_value) / 2 print("******************") print(F'Estimating area under y=x where x varies from {min_value} to {max_value}') print(F'Estimated value is {estimated_value}') print(F'Expected value is {expected_value}') print(F'Total error is {abs(estimated_value - expected_value)}') print("******************") def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int) -> None: '''simple docstring''' def function_to_integrate(_lowerCamelCase : float) -> float: return sqrt(4.0 - x * x) __UpperCamelCase : Union[str, Any] = area_under_curve_estimator( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 0.0 , 2.0) print("******************") print("Estimating pi using area_under_curve_estimator") print(F'Estimated value is {estimated_value}') print(F'Expected value is {pi}') print(F'Total error is {abs(estimated_value - pi)}') print("******************") if __name__ == "__main__": import doctest doctest.testmod()
366
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowercase : str = logging.get_logger(__name__) @add_end_docstrings(__lowercase) class lowerCamelCase__ ( __lowercase): '''simple docstring''' def __init__( self :Any , **a :Union[str, Any] ) -> Union[str, Any]: super().__init__(**a ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self :Any , a :Union[str, List[str], "Image", List["Image"]] , **a :Tuple ) -> List[str]: return super().__call__(a , **a ) def _lowerCamelCase ( self :List[Any] , **a :List[str] ) -> List[Any]: __UpperCamelCase : List[Any] = {} if "candidate_labels" in kwargs: __UpperCamelCase : Optional[int] = kwargs["candidate_labels"] if "hypothesis_template" in kwargs: __UpperCamelCase : List[str] = kwargs["hypothesis_template"] return preprocess_params, {}, {} def _lowerCamelCase ( self :List[str] , a :Optional[int] , a :List[str]=None , a :Dict="This is a photo of {}." ) -> Any: __UpperCamelCase : Dict = load_image(a ) __UpperCamelCase : Any = self.image_processor(images=[image] , return_tensors=self.framework ) __UpperCamelCase : str = candidate_labels __UpperCamelCase : List[Any] = [hypothesis_template.format(a ) for x in candidate_labels] __UpperCamelCase : List[Any] = self.tokenizer(a , return_tensors=self.framework , padding=a ) __UpperCamelCase : Any = [text_inputs] return inputs def _lowerCamelCase ( self :Union[str, Any] , a :Optional[Any] ) -> List[Any]: __UpperCamelCase : List[str] = model_inputs.pop("candidate_labels" ) __UpperCamelCase : Dict = model_inputs.pop("text_inputs" ) if isinstance(text_inputs[0] , a ): __UpperCamelCase : Optional[Any] = text_inputs[0] else: # Batching case. __UpperCamelCase : int = text_inputs[0][0] __UpperCamelCase : str = self.model(**a , **a ) __UpperCamelCase : List[Any] = { "candidate_labels": candidate_labels, "logits": outputs.logits_per_image, } return model_outputs def _lowerCamelCase ( self :List[Any] , a :List[Any] ) -> Tuple: __UpperCamelCase : Any = model_outputs.pop("candidate_labels" ) __UpperCamelCase : Optional[Any] = model_outputs["logits"][0] if self.framework == "pt": __UpperCamelCase : int = logits.softmax(dim=-1 ).squeeze(-1 ) __UpperCamelCase : List[str] = probs.tolist() if not isinstance(a , a ): __UpperCamelCase : List[Any] = [scores] elif self.framework == "tf": __UpperCamelCase : Optional[int] = stable_softmax(a , axis=-1 ) __UpperCamelCase : Dict = probs.numpy().tolist() else: raise ValueError(f'Unsupported framework: {self.framework}' ) __UpperCamelCase : Tuple = [ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(a , a ) , key=lambda a : -x[0] ) ] return result
151
0
def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> int: '''simple docstring''' if exponent == 1: return base if exponent % 2 == 0: UpperCAmelCase = _modexpt(UpperCamelCase__ , exponent // 2 , UpperCamelCase__ ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(UpperCamelCase__ , exponent - 1 , UpperCamelCase__ )) % modulo_value def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ = 1777 , UpperCamelCase__ = 1855 , UpperCamelCase__ = 8 ) -> int: '''simple docstring''' UpperCAmelCase = base for _ in range(1 , UpperCamelCase__ ): UpperCAmelCase = _modexpt(UpperCamelCase__ , UpperCamelCase__ , 10**digits ) return result if __name__ == "__main__": print(F'{solution() = }')
273
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A : int = logging.get_logger(__name__) __A : Tuple = { "google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json", "google/bigbird-roberta-large": "https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json", "google/bigbird-base-trivia-itc": "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json", # See all BigBird models at https://huggingface.co/models?filter=big_bird } class A_ (a_ ): UpperCAmelCase__ = '''big_bird''' def __init__( self , _A=5_0_3_5_8 , _A=7_6_8 , _A=1_2 , _A=1_2 , _A=3_0_7_2 , _A="gelu_new" , _A=0.1 , _A=0.1 , _A=4_0_9_6 , _A=2 , _A=0.02 , _A=1E-12 , _A=True , _A=0 , _A=1 , _A=2 , _A=6_6 , _A="block_sparse" , _A=True , _A=False , _A=6_4 , _A=3 , _A=None , **_A , ): '''simple docstring''' super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , sep_token_id=_A , **_A , ) UpperCAmelCase = vocab_size UpperCAmelCase = max_position_embeddings UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = initializer_range UpperCAmelCase = type_vocab_size UpperCAmelCase = layer_norm_eps UpperCAmelCase = use_cache UpperCAmelCase = rescale_embeddings UpperCAmelCase = attention_type UpperCAmelCase = use_bias UpperCAmelCase = block_size UpperCAmelCase = num_random_blocks UpperCAmelCase = classifier_dropout class A_ (a_ ): @property def _lowercase ( self ): '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
273
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class a ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any , __snake_case : str , __snake_case : Optional[int]=7 , __snake_case : int=3 , __snake_case : Tuple=30 , __snake_case : Optional[Any]=4_00 , __snake_case : str=True , __snake_case : Union[str, Any]=None , __snake_case : Union[str, Any]=0.9 , __snake_case : Any=None , __snake_case : int=True , __snake_case : Union[str, Any]=[0.5, 0.5, 0.5] , __snake_case : Dict=[0.5, 0.5, 0.5] , ): UpperCAmelCase_ = size if size is not None else {'''shortest_edge''': 30} UpperCAmelCase_ = crop_size if crop_size is not None else {'''height''': 30, '''width''': 30} UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = min_resolution UpperCAmelCase_ = max_resolution UpperCAmelCase_ = do_resize_and_center_crop UpperCAmelCase_ = size UpperCAmelCase_ = crop_pct UpperCAmelCase_ = crop_size UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean UpperCAmelCase_ = image_std def lowerCamelCase_ ( self : Union[str, Any] ): return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class a ( _A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[Any] = PoolFormerImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self : Dict ): UpperCAmelCase_ = PoolFormerImageProcessingTester(self ) @property def lowerCamelCase_ ( self : int ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self : Dict ): UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , '''do_resize_and_center_crop''' ) ) self.assertTrue(hasattr(__snake_case , '''size''' ) ) self.assertTrue(hasattr(__snake_case , '''crop_pct''' ) ) self.assertTrue(hasattr(__snake_case , '''do_normalize''' ) ) self.assertTrue(hasattr(__snake_case , '''image_mean''' ) ) self.assertTrue(hasattr(__snake_case , '''image_std''' ) ) def lowerCamelCase_ ( self : int ): UpperCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 30} ) self.assertEqual(image_processor.crop_size , {'''height''': 30, '''width''': 30} ) UpperCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def lowerCamelCase_ ( self : Optional[Any] ): pass def lowerCamelCase_ ( self : List[str] ): # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowerCamelCase_ ( self : Union[str, Any] ): # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , np.ndarray ) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowerCamelCase_ ( self : int ): # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , torch.Tensor ) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
177
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowerCamelCase = { 'configuration_conditional_detr': [ 'CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConditionalDetrConfig', 'ConditionalDetrOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = ['ConditionalDetrFeatureExtractor'] _lowerCamelCase = ['ConditionalDetrImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ 'CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConditionalDetrForObjectDetection', 'ConditionalDetrForSegmentation', 'ConditionalDetrModel', 'ConditionalDetrPreTrainedModel', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys _lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
177
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase : Dict = { '''configuration_lxmert''': ['''LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LxmertConfig'''], '''tokenization_lxmert''': ['''LxmertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : int = ['''LxmertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Any = [ '''LxmertEncoder''', '''LxmertForPreTraining''', '''LxmertForQuestionAnswering''', '''LxmertModel''', '''LxmertPreTrainedModel''', '''LxmertVisualFeatureEncoder''', '''LxmertXLayer''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Any = [ '''TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFLxmertForPreTraining''', '''TFLxmertMainLayer''', '''TFLxmertModel''', '''TFLxmertPreTrainedModel''', '''TFLxmertVisualFeatureEncoder''', ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys lowercase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
99
"""simple docstring""" from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig __A : Union[str, Any] = logging.get_logger(__name__) # General docstring __A : Tuple = '''MobileNetV1Config''' # Base docstring __A : Union[str, Any] = '''google/mobilenet_v1_1.0_224''' __A : Union[str, Any] = [1, 1_024, 7, 7] # Image classification docstring __A : Optional[Any] = '''google/mobilenet_v1_1.0_224''' __A : List[Any] = '''tabby, tabby cat''' __A : Union[str, Any] = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def lowercase ( __snake_case : List[str] , __snake_case : Union[str, Any] , __snake_case : Dict=None ): lowercase_ : str = {} if isinstance(__snake_case , __snake_case ): lowercase_ : Union[str, Any] = model.mobilenet_va else: lowercase_ : Optional[Any] = model lowercase_ : Union[str, Any] = '''MobilenetV1/Conv2d_0/''' lowercase_ : Union[str, Any] = backbone.conv_stem.convolution.weight lowercase_ : Optional[Any] = backbone.conv_stem.normalization.bias lowercase_ : Union[str, Any] = backbone.conv_stem.normalization.weight lowercase_ : Any = backbone.conv_stem.normalization.running_mean lowercase_ : int = backbone.conv_stem.normalization.running_var for i in range(1_3 ): lowercase_ : Optional[int] = i + 1 lowercase_ : Union[str, Any] = i * 2 lowercase_ : Optional[Any] = backbone.layer[pt_index] lowercase_ : Union[str, Any] = F'''MobilenetV1/Conv2d_{tf_index}_depthwise/''' lowercase_ : str = pointer.convolution.weight lowercase_ : int = pointer.normalization.bias lowercase_ : Any = pointer.normalization.weight lowercase_ : Dict = pointer.normalization.running_mean lowercase_ : Union[str, Any] = pointer.normalization.running_var lowercase_ : Any = backbone.layer[pt_index + 1] lowercase_ : Union[str, Any] = F'''MobilenetV1/Conv2d_{tf_index}_pointwise/''' lowercase_ : int = pointer.convolution.weight lowercase_ : str = pointer.normalization.bias lowercase_ : Tuple = pointer.normalization.weight lowercase_ : Dict = pointer.normalization.running_mean lowercase_ : Any = pointer.normalization.running_var if isinstance(__snake_case , __snake_case ): lowercase_ : Optional[Any] = '''MobilenetV1/Logits/Conv2d_1c_1x1/''' lowercase_ : Any = model.classifier.weight lowercase_ : Optional[int] = model.classifier.bias return tf_to_pt_map def lowercase ( __snake_case : Optional[int] , __snake_case : int , __snake_case : Dict ): try: import numpy as np import tensorflow as tf except ImportError: logger.error( '''Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ''' '''https://www.tensorflow.org/install/ for installation instructions.''' ) raise # Load weights from TF model lowercase_ : Tuple = tf.train.list_variables(__snake_case ) lowercase_ : int = {} for name, shape in init_vars: logger.info(F'''Loading TF weight {name} with shape {shape}''' ) lowercase_ : Optional[Any] = tf.train.load_variable(__snake_case , __snake_case ) lowercase_ : Optional[int] = array # Build TF to PyTorch weights loading map lowercase_ : Any = _build_tf_to_pytorch_map(__snake_case , __snake_case , __snake_case ) for name, pointer in tf_to_pt_map.items(): logger.info(F'''Importing {name}''' ) if name not in tf_weights: logger.info(F'''{name} not in tf pre-trained weights, skipping''' ) continue lowercase_ : Union[str, Any] = tf_weights[name] if "depthwise_weights" in name: logger.info('''Transposing depthwise''' ) lowercase_ : Any = np.transpose(__snake_case , (2, 3, 0, 1) ) elif "weights" in name: logger.info('''Transposing''' ) if len(pointer.shape ) == 2: # copying into linear layer lowercase_ : Optional[int] = array.squeeze().transpose() else: lowercase_ : Optional[int] = np.transpose(__snake_case , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F'''Pointer shape {pointer.shape} and array shape {array.shape} mismatched''' ) logger.info(F'''Initialize PyTorch weight {name} {array.shape}''' ) lowercase_ : str = torch.from_numpy(__snake_case ) tf_weights.pop(__snake_case , __snake_case ) tf_weights.pop(name + '''/RMSProp''' , __snake_case ) tf_weights.pop(name + '''/RMSProp_1''' , __snake_case ) tf_weights.pop(name + '''/ExponentialMovingAverage''' , __snake_case ) logger.info(F'''Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}''' ) return model def lowercase ( __snake_case : torch.Tensor , __snake_case : nn.Convad ): lowercase_ , lowercase_ : Optional[int] = features.shape[-2:] lowercase_ , lowercase_ : str = conv_layer.stride lowercase_ , lowercase_ : Tuple = conv_layer.kernel_size if in_height % stride_height == 0: lowercase_ : Dict = max(kernel_height - stride_height , 0 ) else: lowercase_ : List[Any] = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: lowercase_ : str = max(kernel_width - stride_width , 0 ) else: lowercase_ : int = max(kernel_width - (in_width % stride_width) , 0 ) lowercase_ : int = pad_along_width // 2 lowercase_ : Union[str, Any] = pad_along_width - pad_left lowercase_ : Tuple = pad_along_height // 2 lowercase_ : List[str] = pad_along_height - pad_top lowercase_ : str = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(__snake_case , __snake_case , '''constant''' , 0.0 ) class _UpperCAmelCase ( nn.Module ): def __init__( self : List[Any] , A : MobileNetVaConfig , A : int , A : int , A : int , A : Optional[int] = 1 , A : Optional[int] = 1 , A : bool = False , A : Optional[bool] = True , A : Optional[bool or str] = True , ) -> None: super().__init__() lowercase_ : int = config if in_channels % groups != 0: raise ValueError(F'''Input channels ({in_channels}) are not divisible by {groups} groups.''' ) if out_channels % groups != 0: raise ValueError(F'''Output channels ({out_channels}) are not divisible by {groups} groups.''' ) lowercase_ : Tuple = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) lowercase_ : int = nn.Convad( in_channels=A , out_channels=A , kernel_size=A , stride=A , padding=A , groups=A , bias=A , padding_mode='''zeros''' , ) if use_normalization: lowercase_ : Optional[Any] = nn.BatchNormad( num_features=A , eps=config.layer_norm_eps , momentum=0.9997 , affine=A , track_running_stats=A , ) else: lowercase_ : Union[str, Any] = None if use_activation: if isinstance(A , A ): lowercase_ : str = ACTaFN[use_activation] elif isinstance(config.hidden_act , A ): lowercase_ : Any = ACTaFN[config.hidden_act] else: lowercase_ : Tuple = config.hidden_act else: lowercase_ : Tuple = None def A ( self : str , A : torch.Tensor ) -> torch.Tensor: if self.config.tf_padding: lowercase_ : List[Any] = apply_tf_padding(A , self.convolution ) lowercase_ : Optional[int] = self.convolution(A ) if self.normalization is not None: lowercase_ : Union[str, Any] = self.normalization(A ) if self.activation is not None: lowercase_ : Optional[int] = self.activation(A ) return features class _UpperCAmelCase ( _A ): SCREAMING_SNAKE_CASE_ : Optional[int] = MobileNetVaConfig SCREAMING_SNAKE_CASE_ : int = load_tf_weights_in_mobilenet_va SCREAMING_SNAKE_CASE_ : Optional[Any] = "mobilenet_v1" SCREAMING_SNAKE_CASE_ : Union[str, Any] = "pixel_values" SCREAMING_SNAKE_CASE_ : List[str] = False def A ( self : Any , A : Union[nn.Linear, nn.Convad] ) -> None: if isinstance(A , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(A , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) __A : Union[str, Any] = R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' __A : List[str] = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare MobileNetV1 model outputting raw hidden-states without any specific head on top." , _A , ) class _UpperCAmelCase ( _A ): def __init__( self : str , A : MobileNetVaConfig , A : bool = True ) -> int: super().__init__(A ) lowercase_ : Union[str, Any] = config lowercase_ : List[str] = 32 lowercase_ : str = max(int(depth * config.depth_multiplier ) , config.min_depth ) lowercase_ : Union[str, Any] = MobileNetVaConvLayer( A , in_channels=config.num_channels , out_channels=A , kernel_size=3 , stride=2 , ) lowercase_ : Optional[Any] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] lowercase_ : List[Any] = nn.ModuleList() for i in range(13 ): lowercase_ : Dict = out_channels if strides[i] == 2 or i == 0: depth *= 2 lowercase_ : str = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( A , in_channels=A , out_channels=A , kernel_size=3 , stride=strides[i] , groups=A , ) ) self.layer.append( MobileNetVaConvLayer( A , in_channels=A , out_channels=A , kernel_size=1 , ) ) lowercase_ : int = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def A ( self : Any , A : Optional[Any] ) -> Optional[int]: raise NotImplementedError @add_start_docstrings_to_model_forward(A ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=A , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def A ( self : List[Any] , A : Optional[torch.Tensor] = None , A : Optional[bool] = None , A : Optional[bool] = None , ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: lowercase_ : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase_ : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''' ) lowercase_ : List[str] = self.conv_stem(A ) lowercase_ : Dict = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): lowercase_ : Optional[int] = layer_module(A ) if output_hidden_states: lowercase_ : str = all_hidden_states + (hidden_states,) lowercase_ : Tuple = hidden_states if self.pooler is not None: lowercase_ : Dict = torch.flatten(self.pooler(A ) , start_dim=1 ) else: lowercase_ : Optional[Any] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=A , pooler_output=A , hidden_states=A , ) @add_start_docstrings( "\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , _A , ) class _UpperCAmelCase ( _A ): def __init__( self : List[str] , A : MobileNetVaConfig ) -> None: super().__init__(A ) lowercase_ : int = config.num_labels lowercase_ : List[str] = MobileNetVaModel(A ) lowercase_ : Union[str, Any] = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head lowercase_ : Tuple = nn.Dropout(config.classifier_dropout_prob , inplace=A ) lowercase_ : int = nn.Linear(A , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(A ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=A , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def A ( self : Optional[Any] , A : Optional[torch.Tensor] = None , A : Optional[bool] = None , A : Optional[torch.Tensor] = None , A : Optional[bool] = None , ) -> Union[tuple, ImageClassifierOutputWithNoAttention]: lowercase_ : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict lowercase_ : List[Any] = self.mobilenet_va(A , output_hidden_states=A , return_dict=A ) lowercase_ : Union[str, Any] = outputs.pooler_output if return_dict else outputs[1] lowercase_ : Dict = self.classifier(self.dropout(A ) ) lowercase_ : int = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowercase_ : List[str] = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowercase_ : Optional[Any] = '''single_label_classification''' else: lowercase_ : Tuple = '''multi_label_classification''' if self.config.problem_type == "regression": lowercase_ : str = MSELoss() if self.num_labels == 1: lowercase_ : List[str] = loss_fct(logits.squeeze() , labels.squeeze() ) else: lowercase_ : List[str] = loss_fct(A , A ) elif self.config.problem_type == "single_label_classification": lowercase_ : List[Any] = CrossEntropyLoss() lowercase_ : str = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowercase_ : str = BCEWithLogitsLoss() lowercase_ : List[Any] = loss_fct(A , A ) if not return_dict: lowercase_ : Tuple = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=A , logits=A , hidden_states=outputs.hidden_states , )
33
0
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask __a = logging.getLogger(__name__) class __a( _a ): """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE=-1 ) -> Optional[int]: # in NER datasets, the last column is usually reserved for NER label UpperCAmelCase_ : str = label_idx def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> List[InputExample]: if isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : str = mode.value UpperCAmelCase_ : int = os.path.join(_SCREAMING_SNAKE_CASE ,f'''{mode}.txt''' ) UpperCAmelCase_ : Union[str, Any] = 1 UpperCAmelCase_ : int = [] with open(_SCREAMING_SNAKE_CASE ,encoding='''utf-8''' ) as f: UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : Dict = [] for line in f: if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' ,words=_SCREAMING_SNAKE_CASE ,labels=_SCREAMING_SNAKE_CASE ) ) guid_index += 1 UpperCAmelCase_ : Tuple = [] UpperCAmelCase_ : Optional[Any] = [] else: UpperCAmelCase_ : List[str] = line.split(''' ''' ) words.append(splits[0] ) if len(_SCREAMING_SNAKE_CASE ) > 1: labels.append(splits[self.label_idx].replace('''\n''' ,'''''' ) ) else: # Examples could have no label for mode = "test" labels.append('''O''' ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' ,words=_SCREAMING_SNAKE_CASE ,labels=_SCREAMING_SNAKE_CASE ) ) return examples def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Any: UpperCAmelCase_ : Tuple = 0 for line in test_input_reader: if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n": writer.write(_SCREAMING_SNAKE_CASE ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: UpperCAmelCase_ : Any = line.split()[0] + ''' ''' + preds_list[example_id].pop(0 ) + '''\n''' writer.write(_SCREAMING_SNAKE_CASE ) else: logger.warning('''Maximum sequence length exceeded: No prediction for \'%s\'.''' ,line.split()[0] ) def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> List[str]: if path: with open(_SCREAMING_SNAKE_CASE ,'''r''' ) as f: UpperCAmelCase_ : List[str] = f.read().splitlines() if "O" not in labels: UpperCAmelCase_ : int = ['''O'''] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class __a( _a ): """simple docstring""" def __init__( self ) -> Dict: # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> List[str]: if path: with open(_SCREAMING_SNAKE_CASE ,'''r''' ) as f: UpperCAmelCase_ : Union[str, Any] = f.read().splitlines() if "O" not in labels: UpperCAmelCase_ : Union[str, Any] = ['''O'''] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class __a( _a ): """simple docstring""" def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> List[InputExample]: if isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : int = mode.value UpperCAmelCase_ : Optional[int] = os.path.join(_SCREAMING_SNAKE_CASE ,f'''{mode}.txt''' ) UpperCAmelCase_ : str = 1 UpperCAmelCase_ : Dict = [] with open(_SCREAMING_SNAKE_CASE ,encoding='''utf-8''' ) as f: for sentence in parse_incr(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Any = [] UpperCAmelCase_ : List[str] = [] for token in sentence: words.append(token['''form'''] ) labels.append(token['''upos'''] ) assert len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' ,words=_SCREAMING_SNAKE_CASE ,labels=_SCREAMING_SNAKE_CASE ) ) guid_index += 1 return examples def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Optional[Any]: UpperCAmelCase_ : List[str] = 0 for sentence in parse_incr(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Any = preds_list[example_id] UpperCAmelCase_ : Any = '''''' for token in sentence: out += f'''{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) ''' out += "\n" writer.write(_SCREAMING_SNAKE_CASE ) example_id += 1 def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> List[str]: if path: with open(_SCREAMING_SNAKE_CASE ,'''r''' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
235
from math import ceil def lowerCamelCase__ ( _lowercase = 1001 ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): UpperCAmelCase_ : List[Any] = 2 * i + 1 UpperCAmelCase_ : Optional[int] = 2 * i UpperCAmelCase_ : Any = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: __a = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number')
235
1
import torch def lowercase_( ): '''simple docstring''' if torch.cuda.is_available(): lowerCamelCase : List[Any] = torch.cuda.device_count() else: lowerCamelCase : Any = 0 print(f"""Successfully ran on {num_gpus} GPUs""" ) if __name__ == "__main__": main()
283
"""simple docstring""" from decimal import Decimal, getcontext from math import ceil, factorial def _SCREAMING_SNAKE_CASE ( _lowercase : int ) ->str: '''simple docstring''' if not isinstance(_lowercase , _lowercase ): raise TypeError("Undefined for non-integers" ) elif precision < 1: raise ValueError("Undefined for non-natural numbers" ) a : Tuple = precision a : str = ceil(precision / 14 ) a : List[Any] = 42_6880 * Decimal(1_0005 ).sqrt() a : Union[str, Any] = 1 a : Dict = 1359_1409 a : Optional[int] = Decimal(_lowercase ) for k in range(1 , _lowercase ): a : int = factorial(6 * k ) // (factorial(3 * k ) * factorial(_lowercase ) ** 3) linear_term += 5_4514_0134 exponential_term *= -26_2537_4126_4076_8000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": a : Optional[Any] = 50 print(F'''The first {n} digits of pi is: {pi(n)}''')
105
0
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. lowercase__ =10 def __UpperCamelCase ( lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : int ): for i in range(lowerCAmelCase__ , lowerCAmelCase__ ): if array[i] == target: return i return -1 def __UpperCamelCase ( lowerCAmelCase__ : list[int] , lowerCAmelCase__ : int ): __a : List[Any] = 0 __a : Union[str, Any] = len(lowerCAmelCase__ ) while left <= right: if right - left < precision: return lin_search(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __a : str = (left + right) // 3 + 1 __a : List[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: __a : List[str] = one_third - 1 elif array[two_third] < target: __a : List[str] = two_third + 1 else: __a : Dict = one_third + 1 __a : Any = two_third - 1 else: return -1 def __UpperCamelCase ( lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : int ): if left < right: if right - left < precision: return lin_search(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __a : Union[str, Any] = (left + right) // 3 + 1 __a : Optional[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(lowerCAmelCase__ , one_third - 1 , lowerCAmelCase__ , lowerCAmelCase__ ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , lowerCAmelCase__ , lowerCAmelCase__ ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() lowercase__ =input('Enter numbers separated by comma:\n').strip() lowercase__ =[int(item.strip()) for item in user_input.split(',')] assert collection == sorted(collection), F"List must be ordered.\n{collection}." lowercase__ =int(input('Enter the number to be found in the list:\n').strip()) lowercase__ =ite_ternary_search(collection, target) lowercase__ =rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F"""Iterative search: {target} found at positions: {resulta}""") print(F"""Recursive search: {target} found at positions: {resulta}""") else: print('Not found')
90
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class UpperCamelCase__ : _SCREAMING_SNAKE_CASE : CommonSchedulerState # setable values _SCREAMING_SNAKE_CASE : jnp.ndarray _SCREAMING_SNAKE_CASE : jnp.ndarray _SCREAMING_SNAKE_CASE : Optional[int] = None @classmethod def lowerCAmelCase (cls : int , snake_case_ : CommonSchedulerState , snake_case_ : jnp.ndarray , snake_case_ : jnp.ndarray ): return cls(common=snake_case_ , init_noise_sigma=snake_case_ , timesteps=snake_case_ ) @dataclass class UpperCamelCase__ ( __lowercase ): _SCREAMING_SNAKE_CASE : DDPMSchedulerState class UpperCamelCase__ ( __lowercase ,__lowercase ): _SCREAMING_SNAKE_CASE : str = [e.name for e in FlaxKarrasDiffusionSchedulers] _SCREAMING_SNAKE_CASE : jnp.dtype @property def lowerCAmelCase (self : Optional[Any] ): return True @register_to_config def __init__(self : Any , snake_case_ : int = 1_0_0_0 , snake_case_ : float = 0.0001 , snake_case_ : float = 0.02 , snake_case_ : str = "linear" , snake_case_ : Optional[jnp.ndarray] = None , snake_case_ : str = "fixed_small" , snake_case_ : bool = True , snake_case_ : str = "epsilon" , snake_case_ : jnp.dtype = jnp.floataa , ): __a : str = dtype def lowerCAmelCase (self : Any , snake_case_ : Optional[CommonSchedulerState] = None ): if common is None: __a : Optional[Any] = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution __a : int = jnp.array(1.0 , dtype=self.dtype ) __a : List[Any] = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=snake_case_ , init_noise_sigma=snake_case_ , timesteps=snake_case_ , ) def lowerCAmelCase (self : Dict , snake_case_ : DDPMSchedulerState , snake_case_ : jnp.ndarray , snake_case_ : Optional[int] = None ): return sample def lowerCAmelCase (self : List[Any] , snake_case_ : DDPMSchedulerState , snake_case_ : int , snake_case_ : Tuple = () ): __a : Tuple = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 __a : Any = (jnp.arange(0 , snake_case_ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=snake_case_ , timesteps=snake_case_ , ) def lowerCAmelCase (self : List[Any] , snake_case_ : DDPMSchedulerState , snake_case_ : Optional[Any] , snake_case_ : List[str]=None , snake_case_ : Union[str, Any]=None ): __a : Optional[Any] = state.common.alphas_cumprod[t] __a : List[str] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __a : Optional[int] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: __a : List[str] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": __a : Optional[Any] = jnp.clip(snake_case_ , a_min=1E-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": __a : int = jnp.log(jnp.clip(snake_case_ , a_min=1E-20 ) ) elif variance_type == "fixed_large": __a : List[str] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log __a : Union[str, Any] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": __a : Any = variance __a : Dict = state.common.betas[t] __a : Any = (predicted_variance + 1) / 2 __a : Optional[Any] = frac * max_log + (1 - frac) * min_log return variance def lowerCAmelCase (self : Any , snake_case_ : DDPMSchedulerState , snake_case_ : jnp.ndarray , snake_case_ : int , snake_case_ : jnp.ndarray , snake_case_ : Optional[jax.random.KeyArray] = None , snake_case_ : bool = True , ): __a : int = timestep if key is None: __a : Any = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: __a , __a : List[str] = jnp.split(snake_case_ , sample.shape[1] , axis=1 ) else: __a : int = None # 1. compute alphas, betas __a : Optional[int] = state.common.alphas_cumprod[t] __a : Tuple = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) __a : Optional[int] = 1 - alpha_prod_t __a : Union[str, Any] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __a : int = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __a : Union[str, Any] = model_output elif self.config.prediction_type == "v_prediction": __a : Tuple = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` " ''' for the FlaxDDPMScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: __a : Dict = jnp.clip(snake_case_ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __a : str = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t __a : str = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __a : Tuple = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): __a : Optional[int] = jax.random.split(snake_case_ , num=1 ) __a : Union[str, Any] = jax.random.normal(snake_case_ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(snake_case_ , snake_case_ , predicted_variance=snake_case_ ) ** 0.5) * noise __a : Dict = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) __a : Tuple = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=snake_case_ , state=snake_case_ ) def lowerCAmelCase (self : List[str] , snake_case_ : DDPMSchedulerState , snake_case_ : jnp.ndarray , snake_case_ : jnp.ndarray , snake_case_ : jnp.ndarray , ): return add_noise_common(state.common , snake_case_ , snake_case_ , snake_case_ ) def lowerCAmelCase (self : str , snake_case_ : DDPMSchedulerState , snake_case_ : jnp.ndarray , snake_case_ : jnp.ndarray , snake_case_ : jnp.ndarray , ): return get_velocity_common(state.common , snake_case_ , snake_case_ , snake_case_ ) def __len__(self : List[str] ): return self.config.num_train_timesteps
90
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A_ = logging.get_logger(__name__) A_ = torch.device("cpu") def A_ ( ): SCREAMING_SNAKE_CASE:Any = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE:Optional[int] = Image.open(requests.get(snake_case , stream=snake_case ).raw ) return im def A_ ( snake_case ): if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1703e00, 2.1107e00, -2.0811e00, 8.8685e-01, 2.4360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9636e-01, 2.3478e-01, -1.6963e00, -1.7381e00, -8.6337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2768e-01, -4.7429e-01, -1.0897e00, -1.0248e00, 3.5523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5330e-01, 2.4211e-01, -6.0185e-01, -8.2789e-01, -6.0446e-02] ) def A_ ( snake_case , snake_case , snake_case ): SCREAMING_SNAKE_CASE:str = dct.pop(snake_case ) SCREAMING_SNAKE_CASE:Tuple = val def A_ ( snake_case ): SCREAMING_SNAKE_CASE:Union[str, Any] = [] for k in state_dict.keys(): SCREAMING_SNAKE_CASE:Dict = k if ".pwconv" in k: SCREAMING_SNAKE_CASE:Tuple = k_new.replace(".pwconv" , ".point_wise_conv" ) if ".dwconv" in k: SCREAMING_SNAKE_CASE:List[str] = k_new.replace(".dwconv" , ".depth_wise_conv" ) if ".Proj." in k: SCREAMING_SNAKE_CASE:int = k_new.replace(".Proj." , ".proj." ) if "patch_embed" in k_new: SCREAMING_SNAKE_CASE:Dict = k_new.replace("patch_embed" , "swiftformer.patch_embed.patch_embedding" ) if "network" in k_new: SCREAMING_SNAKE_CASE:str = k_new.split("." ) if ls[2].isdigit(): SCREAMING_SNAKE_CASE:Optional[Any] = "swiftformer.encoder.network." + ls[1] + ".blocks." + ls[2] + "." + ".".join(ls[3:] ) else: SCREAMING_SNAKE_CASE:List[str] = k_new.replace("network" , "swiftformer.encoder.network" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def A_ ( snake_case , snake_case , snake_case ): SCREAMING_SNAKE_CASE:Dict = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size SCREAMING_SNAKE_CASE:List[Any] = 1000 SCREAMING_SNAKE_CASE:str = "huggingface/label-files" SCREAMING_SNAKE_CASE:int = "imagenet-1k-id2label.json" SCREAMING_SNAKE_CASE:Union[str, Any] = json.load(open(hf_hub_download(snake_case , snake_case , repo_type="dataset" ) , "r" ) ) SCREAMING_SNAKE_CASE:List[str] = {int(snake_case ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE:str = idalabel SCREAMING_SNAKE_CASE:Dict = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": SCREAMING_SNAKE_CASE:Optional[int] = [3, 3, 6, 4] SCREAMING_SNAKE_CASE:str = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": SCREAMING_SNAKE_CASE:Dict = [3, 3, 9, 6] SCREAMING_SNAKE_CASE:Union[str, Any] = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": SCREAMING_SNAKE_CASE:str = [4, 3, 10, 5] SCREAMING_SNAKE_CASE:int = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": SCREAMING_SNAKE_CASE:Tuple = [4, 4, 12, 6] SCREAMING_SNAKE_CASE:Optional[int] = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("https" ): SCREAMING_SNAKE_CASE:Any = torch.hub.load_state_dict_from_url(snake_case , map_location="cpu" , check_hash=snake_case ) else: SCREAMING_SNAKE_CASE:Any = torch.load(snake_case , map_location="cpu" ) SCREAMING_SNAKE_CASE:Union[str, Any] = checkpoint SCREAMING_SNAKE_CASE:Any = create_rename_keys(snake_case ) for rename_key_src, rename_key_dest in rename_keys: rename_key(snake_case , snake_case , snake_case ) # load HuggingFace model SCREAMING_SNAKE_CASE:str = SwiftFormerForImageClassification(snake_case ).eval() hf_model.load_state_dict(snake_case ) # prepare test inputs SCREAMING_SNAKE_CASE:Tuple = prepare_img() SCREAMING_SNAKE_CASE:Optional[Any] = ViTImageProcessor.from_pretrained("preprocessor_config" ) SCREAMING_SNAKE_CASE:List[str] = processor(images=snake_case , return_tensors="pt" ) # compare outputs from both models SCREAMING_SNAKE_CASE:Union[str, Any] = get_expected_output(snake_case ) SCREAMING_SNAKE_CASE:Optional[int] = hf_model(inputs["pixel_values"] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , snake_case , atol=1e-3 ) Path(snake_case ).mkdir(exist_ok=snake_case ) print(F'''Saving model {swiftformer_name} to {pytorch_dump_folder_path}''' ) hf_model.save_pretrained(snake_case ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swiftformer_name", default="swiftformer_xs", choices=["swiftformer_xs", "swiftformer_s", "swiftformer_l1", "swiftformer_l3"], type=str, help="Name of the SwiftFormer model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="./converted_outputs/", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--original_ckpt", default=None, type=str, help="Path to the original model checkpoint.") A_ = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
139
'''simple docstring''' import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _snake_case ( _a , unittest.TestCase ): _A : str = CTRLTokenizer _A : List[str] = False _A : int = False def __UpperCamelCase ( self : Tuple ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE:Dict = ["adapt", "re@@", "a@@", "apt", "c@@", "t", "<unk>"] SCREAMING_SNAKE_CASE:Optional[Any] = dict(zip(SCREAMING_SNAKE_CASE__ ,range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) SCREAMING_SNAKE_CASE:str = ["#version: 0.2", "a p", "ap t</w>", "r e", "a d", "ad apt</w>", ""] SCREAMING_SNAKE_CASE:Union[str, Any] = {"unk_token": "<unk>"} SCREAMING_SNAKE_CASE:Any = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE:Union[str, Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) + "\n" ) with open(self.merges_file ,"w" ,encoding="utf-8" ) as fp: fp.write("\n".join(SCREAMING_SNAKE_CASE__ ) ) def __UpperCamelCase ( self : Union[str, Any] ,**SCREAMING_SNAKE_CASE__ : Any ): kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname ,**SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : int ,SCREAMING_SNAKE_CASE__ : Any ): SCREAMING_SNAKE_CASE:Optional[Any] = "adapt react readapt apt" SCREAMING_SNAKE_CASE:Tuple = "adapt react readapt apt" return input_text, output_text def __UpperCamelCase ( self : Tuple ): SCREAMING_SNAKE_CASE:List[str] = CTRLTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) SCREAMING_SNAKE_CASE:Any = "adapt react readapt apt" SCREAMING_SNAKE_CASE:Any = "adapt re@@ a@@ c@@ t re@@ adapt apt".split() SCREAMING_SNAKE_CASE:Union[str, Any] = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Union[str, Any] = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE:Optional[int] = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) ,SCREAMING_SNAKE_CASE__ )
139
1
"""simple docstring""" # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers lowerCamelCase__ = """3""" print("""Python version:""", sys.version) print("""transformers version:""", transformers.__version__) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) print("""NCCL version:""", torch.cuda.nccl.version()) except ImportError: print("""Torch version:""", None) try: import deepspeed print("""DeepSpeed version:""", deepspeed.__version__) except ImportError: print("""DeepSpeed version:""", None) try: import tensorflow as tf print("""TensorFlow version:""", tf.__version__) print("""TF GPUs available:""", bool(tf.config.list_physical_devices("""GPU"""))) print("""Number of TF GPUs available:""", len(tf.config.list_physical_devices("""GPU"""))) except ImportError: print("""TensorFlow version:""", None)
182
"""simple docstring""" # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : str = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, oder?', } # BLUE scores as follows: # "pair": [fairseq, transformers] __lowerCAmelCase : Union[str, Any] = { 'ru-en': ['[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)', '39.20'], 'en-ru': ['[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)', '33.47'], 'en-de': ['[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)', '42.83'], 'de-en': ['[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)', '41.35'], } __lowerCAmelCase : List[str] = F"{src_lang}-{tgt_lang}" __lowerCAmelCase : Tuple = F"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) __lowerCAmelCase : Any = os.path.join(_UpperCamelCase , 'README.md' ) print(F"Generating {path}" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(_UpperCamelCase ) # make sure we are under the root of the project lowerCamelCase__ = Path(__file__).resolve().parent.parent.parent lowerCamelCase__ = repo_dir / """model_cards""" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = model_name.split("""-""") lowerCamelCase__ = model_cards_dir / """facebook""" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
182
1
'''simple docstring''' def __lowerCamelCase ( lowerCAmelCase_ = 50 ) -> List[Any]: _a : Dict = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f"""{solution() = }""")
89
"""simple docstring""" import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class __lowerCamelCase : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=99 , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=9 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase=8 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.002 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> Optional[int]: _a = parent _a = batch_size _a = encoder_seq_length _a = decoder_seq_length # For common tests _a = self.decoder_seq_length _a = is_training _a = use_attention_mask _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = d_ff _a = relative_attention_num_buckets _a = dropout_rate _a = initializer_factor _a = eos_token_id _a = pad_token_id _a = decoder_start_token_id _a = None _a = decoder_layers def _UpperCAmelCase ( self ) -> Dict: return TaConfig.from_pretrained('''google/umt5-base''' ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> Optional[int]: if attention_mask is None: _a = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: _a = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: _a = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=__UpperCAmelCase ) if decoder_head_mask is None: _a = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=__UpperCAmelCase ) if cross_attn_head_mask is None: _a = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=__UpperCAmelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def _UpperCAmelCase ( self ) -> Tuple: _a = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) _a = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input _a = input_ids.clamp(self.pad_token_id + 1 ) _a = decoder_input_ids.clamp(self.pad_token_id + 1 ) _a = self.get_config() _a = config.num_attention_heads _a = self.prepare_inputs_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return config, input_dict def _UpperCAmelCase ( self ) -> int: _a , _a = self.prepare_config_and_inputs() return config, inputs_dict def _UpperCAmelCase ( self ) -> Tuple: return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _UpperCAmelCase ( self ) -> List[str]: return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Dict: _a = UMTaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _a = model( input_ids=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase , attention_mask=__UpperCAmelCase , decoder_attention_mask=__UpperCAmelCase , ) _a = model(input_ids=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase ) _a = result.last_hidden_state _a = result.past_key_values _a = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(__UpperCAmelCase ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[Any]: _a = UMTaModel(config=__UpperCAmelCase ).get_decoder().to(__UpperCAmelCase ).eval() # first forward pass _a = model(__UpperCAmelCase , use_cache=__UpperCAmelCase ) _a = model(__UpperCAmelCase ) _a = model(__UpperCAmelCase , use_cache=__UpperCAmelCase ) self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) ) self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) + 1 ) _a , _a = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _a = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and _a = torch.cat([input_ids, next_tokens] , dim=-1 ) _a = model(__UpperCAmelCase )['''last_hidden_state'''] _a = model(__UpperCAmelCase , past_key_values=__UpperCAmelCase )['''last_hidden_state'''] # select random slice _a = ids_tensor((1,) , output_from_past.shape[-1] ).item() _a = output_from_no_past[:, -1, random_slice_idx].detach() _a = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , ) -> Union[str, Any]: _a = UMTaModel(config=__UpperCAmelCase ).to(__UpperCAmelCase ).half().eval() _a = model(**__UpperCAmelCase )['''last_hidden_state'''] self.parent.assertFalse(torch.isnan(__UpperCAmelCase ).any().item() ) @require_torch class __lowerCamelCase ( a__ , a__ , a__ , unittest.TestCase ): '''simple docstring''' A_ : Optional[Any] = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) A_ : Optional[Any] = (UMTaForConditionalGeneration,) if is_torch_available() else () A_ : int = ( { 'conversational': UMTaForConditionalGeneration, 'feature-extraction': UMTaModel, 'summarization': UMTaForConditionalGeneration, 'text2text-generation': UMTaForConditionalGeneration, 'translation': UMTaForConditionalGeneration, 'question-answering': UMTaForQuestionAnswering, } if is_torch_available() else {} ) A_ : str = True A_ : List[str] = False A_ : List[Any] = False A_ : str = True A_ : List[str] = True # The small UMT5 model needs higher percentages for CPU/MP tests A_ : Optional[Any] = [0.8, 0.9] def _UpperCAmelCase ( self ) -> Tuple: _a = UMTaModelTester(self ) @unittest.skip('''Test has a segmentation fault on torch 1.8.0''' ) def _UpperCAmelCase ( self ) -> int: _a = self.model_tester.prepare_config_and_inputs() _a = UMTaModel(config_and_inputs[0] ).to(__UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( __UpperCAmelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F'{tmpdirname}/t5_test.onnx' , export_params=__UpperCAmelCase , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions'''] _a = self.model_tester.prepare_config_and_inputs() _a = config_and_inputs[0] _a = UMTaForConditionalGeneration(__UpperCAmelCase ).eval() model.to(__UpperCAmelCase ) _a = { '''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=__UpperCAmelCase ), '''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ), '''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ), } for attn_name, (name, mask) in zip(__UpperCAmelCase , head_masking.items() ): _a = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": _a = torch.ones( config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ) _a = model.generate( config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=__UpperCAmelCase , return_dict_in_generate=__UpperCAmelCase , **__UpperCAmelCase , ) # We check the state of decoder_attentions and cross_attentions just from the last step _a = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' ) def _UpperCAmelCase ( self ) -> int: pass @require_torch @require_sentencepiece @require_tokenizers class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow @unittest.skip( '''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' ) def _UpperCAmelCase ( self ) -> Optional[int]: _a = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=__UpperCAmelCase ).to(__UpperCAmelCase ) _a = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=__UpperCAmelCase , legacy=__UpperCAmelCase ) _a = [ '''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''', '''No se como puedo <extra_id_0>.''', '''This is the reason why we <extra_id_0> them.''', '''The <extra_id_0> walks in <extra_id_1>, seats''', '''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''', ] _a = tokenizer(__UpperCAmelCase , return_tensors='''pt''' , padding=__UpperCAmelCase ).input_ids # fmt: off _a = torch.tensor( [ [ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(__UpperCAmelCase , __UpperCAmelCase ) _a = model.generate(input_ids.to(__UpperCAmelCase ) ) _a = [ '''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''', '''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', ] _a = tokenizer.batch_decode(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
320
0
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py _lowerCAmelCase : Tuple = """src/diffusers""" _lowerCAmelCase : Dict = """.""" # This is to make sure the diffusers module imported is the one in the repo. _lowerCAmelCase : Union[str, Any] = importlib.util.spec_from_file_location( '''diffusers''', os.path.join(DIFFUSERS_PATH, '''__init__.py'''), submodule_search_locations=[DIFFUSERS_PATH], ) _lowerCAmelCase : List[Any] = spec.loader.load_module() def __snake_case ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] ) -> str: return line.startswith(_A ) or len(_A ) <= 1 or re.search(r"^\s*\)(\s*->.*:|:)\s*$" , _A ) is not None def __snake_case ( _lowerCAmelCase : int ) -> str: A_ : Optional[Any] = object_name.split("." ) A_ : Optional[Any] = 0 # First let's find the module where our object lives. A_ : Dict = parts[i] while i < len(_A ) and not os.path.isfile(os.path.join(_A , f"{module}.py" ) ): i += 1 if i < len(_A ): A_ : Dict = os.path.join(_A , parts[i] ) if i >= len(_A ): raise ValueError(f"`object_name` should begin with the name of a module of diffusers but got {object_name}." ) with open(os.path.join(_A , f"{module}.py" ) , "r" , encoding="utf-8" , newline="\n" ) as f: A_ : List[Any] = f.readlines() # Now let's find the class / func in the code! A_ : Dict = '' A_ : Tuple = 0 for name in parts[i + 1 :]: while ( line_index < len(_A ) and re.search(rf"^{indent}(class|def)\s+{name}(\(|\:)" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(_A ): raise ValueError(f" {object_name} does not match any function or class in {module}." ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). A_ : Tuple = line_index while line_index < len(_A ) and _should_continue(lines[line_index] , _A ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 A_ : Dict = lines[start_index:line_index] return "".join(_A ) _lowerCAmelCase : Union[str, Any] = re.compile(r'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''') _lowerCAmelCase : Optional[int] = re.compile(r'''^\s*(\S+)->(\S+)(\s+.*|$)''') _lowerCAmelCase : str = re.compile(r'''<FILL\s+[^>]*>''') def __snake_case ( _lowerCAmelCase : Any ) -> int: A_ : Optional[int] = code.split("\n" ) A_ : Optional[Any] = 0 while idx < len(_A ) and len(lines[idx] ) == 0: idx += 1 if idx < len(_A ): return re.search(r"^(\s*)\S" , lines[idx] ).groups()[0] return "" def __snake_case ( _lowerCAmelCase : Tuple ) -> Dict: A_ : Optional[Any] = len(get_indent(_A ) ) > 0 if has_indent: A_ : int = f"class Bla:\n{code}" A_ : Union[str, Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=_A ) A_ : List[str] = black.format_str(_A , mode=_A ) A_ : List[str] = style_docstrings_in_code(_A ) return result[len("class Bla:\n" ) :] if has_indent else result def __snake_case ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int]=False ) -> Any: with open(_A , "r" , encoding="utf-8" , newline="\n" ) as f: A_ : str = f.readlines() A_ : Union[str, Any] = [] A_ : str = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(_A ): A_ : List[str] = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. A_ : Optional[Any] = search.groups() A_ : Optional[int] = find_code_in_diffusers(_A ) A_ : List[Any] = get_indent(_A ) A_ : str = line_index + 1 if indent == theoretical_indent else line_index + 2 A_ : Union[str, Any] = theoretical_indent A_ : Dict = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. A_ : Optional[int] = True while line_index < len(_A ) and should_continue: line_index += 1 if line_index >= len(_A ): break A_ : Any = lines[line_index] A_ : Optional[int] = _should_continue(_A , _A ) and re.search(f"^{indent}# End copy" , _A ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 A_ : Union[str, Any] = lines[start_index:line_index] A_ : Optional[int] = ''.join(_A ) # Remove any nested `Copied from` comments to avoid circular copies A_ : List[Any] = [line for line in theoretical_code.split("\n" ) if _re_copy_warning.search(_A ) is None] A_ : List[Any] = '\n'.join(_A ) # Before comparing, use the `replace_pattern` on the original code. if len(_A ) > 0: A_ : List[Any] = replace_pattern.replace("with" , "" ).split("," ) A_ : Union[str, Any] = [_re_replace_pattern.search(_A ) for p in patterns] for pattern in patterns: if pattern is None: continue A_ : Tuple = pattern.groups() A_ : Optional[Any] = re.sub(_A , _A , _A ) if option.strip() == "all-casing": A_ : Any = re.sub(obja.lower() , obja.lower() , _A ) A_ : Optional[int] = re.sub(obja.upper() , obja.upper() , _A ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line A_ : Any = blackify(lines[start_index - 1] + theoretical_code ) A_ : Optional[int] = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: A_ : Optional[int] = lines[:start_index] + [theoretical_code] + lines[line_index:] A_ : str = start_index + 1 if overwrite and len(_A ) > 0: # Warn the user a file has been modified. print(f"Detected changes, rewriting {filename}." ) with open(_A , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(_A ) return diffs def __snake_case ( _lowerCAmelCase : Any = False ) -> Any: A_ : Union[str, Any] = glob.glob(os.path.join(_A , "**/*.py" ) , recursive=_A ) A_ : Union[str, Any] = [] for filename in all_files: A_ : int = is_copy_consistent(_A , _A ) diffs += [f"- {filename}: copy does not match {d[0]} at line {d[1]}" for d in new_diffs] if not overwrite and len(_A ) > 0: A_ : Any = '\n'.join(_A ) raise Exception( "Found the following copy inconsistencies:\n" + diff + "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them." ) if __name__ == "__main__": _lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') _lowerCAmelCase : Tuple = parser.parse_args() check_copies(args.fix_and_overwrite)
353
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path _lowerCAmelCase : Optional[Any] = Path(__file__).resolve().parents[3] / '''src''' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) _lowerCAmelCase : Tuple = {'''base''': '''patrickvonplaten/wav2vec2_tiny_random''', '''robust''': '''patrickvonplaten/wav2vec2_tiny_random_robust'''} _lowerCAmelCase : List[str] = '''zero2''' _lowerCAmelCase : Dict = '''zero3''' _lowerCAmelCase : Tuple = [ZEROa, ZEROa] def __snake_case ( _lowerCAmelCase : str , _lowerCAmelCase : Dict , _lowerCAmelCase : List[Any] ) -> Any: # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param A_ : Dict = parameterized.to_safe_name("_".join(str(_lowerCAmelCase ) for x in param.args ) ) return f"{func.__name__}_{param_based_name}" # Cartesian-product of zero stages with models to test _lowerCAmelCase : List[Any] = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" @parameterized.expand(snake_case , name_func=snake_case ) def SCREAMING_SNAKE_CASE ( self :str , snake_case :Tuple , snake_case :Tuple ): '''simple docstring''' self.run_and_check( stage=snake_case , model=snake_case , distributed=snake_case , fpaa=snake_case , ) @require_torch_multi_gpu @parameterized.expand(snake_case , name_func=snake_case ) def SCREAMING_SNAKE_CASE ( self :int , snake_case :Tuple , snake_case :Optional[Any] ): '''simple docstring''' self.run_and_check( stage=snake_case , model=snake_case , distributed=snake_case , fpaa=snake_case , ) @parameterized.expand(snake_case , name_func=snake_case ) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :Dict , snake_case :Any ): '''simple docstring''' self.run_and_check( stage=snake_case , model=snake_case , distributed=snake_case , fpaa=snake_case , ) @require_torch_multi_gpu @parameterized.expand(snake_case , name_func=snake_case ) def SCREAMING_SNAKE_CASE ( self :int , snake_case :str , snake_case :Tuple ): '''simple docstring''' self.run_and_check( stage=snake_case , model=snake_case , distributed=snake_case , fpaa=snake_case , ) def SCREAMING_SNAKE_CASE ( self :List[str] , snake_case :int ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self :Dict , snake_case :str , snake_case :str , snake_case :int = 10 , snake_case :bool = True , snake_case :bool = True , snake_case :bool = True , ): '''simple docstring''' A_ : Any = models[model] A_ : List[Any] = self.run_trainer( stage=snake_case , model_name=snake_case , eval_steps=snake_case , num_train_epochs=1 , distributed=snake_case , fpaa=snake_case , ) self.do_checks(snake_case ) return output_dir def SCREAMING_SNAKE_CASE ( self :str , snake_case :str , snake_case :str , snake_case :int = 10 , snake_case :int = 1 , snake_case :bool = True , snake_case :bool = True , ): '''simple docstring''' A_ : List[Any] = self.get_auto_remove_tmp_dir("./xxx" , after=snake_case ) A_ : Tuple = f"\n --model_name_or_path {model_name}\n --dataset_name hf-internal-testing/librispeech_asr_dummy\n --dataset_config_name clean\n --train_split_name validation\n --validation_split_name validation\n --output_dir {output_dir}\n --num_train_epochs {str(snake_case )}\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 2\n --evaluation_strategy steps\n --learning_rate 5e-4\n --warmup_steps 8\n --orthography timit\n --preprocessing_num_workers 1\n --group_by_length\n --freeze_feature_extractor\n --report_to none\n --save_steps 0\n --eval_steps {eval_steps}\n --report_to none\n ".split() if fpaa: args.extend(["--fp16"] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files A_ : List[str] = f"--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json".split() A_ : List[str] = [f"{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"] A_ : str = self.get_launcher(snake_case ) A_ : Dict = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(snake_case , env=self.get_env() ) return output_dir def SCREAMING_SNAKE_CASE ( self :Optional[int] , snake_case :Optional[Any]=False ): '''simple docstring''' A_ : int = min(2 , get_gpu_count() ) if distributed else 1 return f"deepspeed --num_nodes 1 --num_gpus {num_gpus}".split()
70
0
from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig __a = logging.get_logger(__name__) __a = 'T5Config' class lowercase__( UpperCAmelCase ): """simple docstring""" a :Tuple = 'mt5' a :List[str] = MTaConfig class lowercase__( UpperCAmelCase ): """simple docstring""" a :Any = 'mt5' a :int = MTaConfig class lowercase__( UpperCAmelCase ): """simple docstring""" a :Union[str, Any] = 'mt5' a :int = MTaConfig
30
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch __a = 'sshleifer/bart-tiny-random' __a = 'patrickvonplaten/t5-tiny-random' @require_torch class lowercase__( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : Any ) -> Tuple: return AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : int ) -> List[Any]: lowercase_ , *lowercase_ = create_student_by_copying_alternating_layers(SCREAMING_SNAKE_CASE_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def _lowercase ( self : Union[str, Any] ) -> Optional[int]: lowercase_ , *lowercase_ = create_student_by_copying_alternating_layers(SCREAMING_SNAKE_CASE_ , tempfile.mkdtemp() , e=1 , d=SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : List[str] ) -> List[Any]: lowercase_ , *lowercase_ = create_student_by_copying_alternating_layers(SCREAMING_SNAKE_CASE_ , tempfile.mkdtemp() , e=1 , d=SCREAMING_SNAKE_CASE_ ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def _lowercase ( self : List[Any] ) -> List[Any]: lowercase_ , *lowercase_ = create_student_by_copying_alternating_layers(SCREAMING_SNAKE_CASE_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def _lowercase ( self : Union[str, Any] ) -> Optional[int]: with self.assertRaises(SCREAMING_SNAKE_CASE_ ): create_student_by_copying_alternating_layers(SCREAMING_SNAKE_CASE_ , tempfile.mkdtemp() , e=SCREAMING_SNAKE_CASE_ , d=SCREAMING_SNAKE_CASE_ )
30
1
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class UpperCAmelCase__ ( A_ , A_ ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = 1 @register_to_config def __init__( self , A_ = 1000 , A_ = None ) -> Union[str, Any]: # set `betas`, `alphas`, `timesteps` self.set_timesteps(A_ ) # standard deviation of the initial noise distribution __UpperCamelCase =1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. __UpperCamelCase =4 # running values __UpperCamelCase =[] def _a ( self , A_ , A_ = None ) -> List[Any]: __UpperCamelCase =num_inference_steps __UpperCamelCase =torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] __UpperCamelCase =torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: __UpperCamelCase =torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: __UpperCamelCase =torch.sin(steps * math.pi / 2 ) ** 2 __UpperCamelCase =(1.0 - self.betas**2) ** 0.5 __UpperCamelCase =(torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] __UpperCamelCase =timesteps.to(A_ ) __UpperCamelCase =[] def _a ( self , A_ , A_ , A_ , A_ = True , ) -> Union[SchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) __UpperCamelCase =(self.timesteps == timestep).nonzero().item() __UpperCamelCase =timestep_index + 1 __UpperCamelCase =sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(A_ ) if len(self.ets ) == 1: __UpperCamelCase =self.ets[-1] elif len(self.ets ) == 2: __UpperCamelCase =(3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: __UpperCamelCase =(23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: __UpperCamelCase =(1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) __UpperCamelCase =self._get_prev_sample(A_ , A_ , A_ , A_ ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=A_ ) def _a ( self , A_ , *A_ , **A_ ) -> torch.FloatTensor: return sample def _a ( self , A_ , A_ , A_ , A_ ) -> Union[str, Any]: __UpperCamelCase =self.alphas[timestep_index] __UpperCamelCase =self.betas[timestep_index] __UpperCamelCase =self.alphas[prev_timestep_index] __UpperCamelCase =self.betas[prev_timestep_index] __UpperCamelCase =(sample - sigma * ets) / max(A_ , 1E-8 ) __UpperCamelCase =next_alpha * pred + ets * next_sigma return prev_sample def __len__( self ) -> Union[str, Any]: return self.config.num_train_timesteps
117
import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor _A = logging.get_logger(__name__) class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , *A_ , **A_ ) -> None: warnings.warn( 'The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ImageGPTImageProcessor instead.' , A_ , ) super().__init__(*A_ , **A_ )
117
1
"""simple docstring""" from __future__ import annotations import requests __A : Optional[Any] = set( '''approved_at_utc approved_by author_flair_background_color author_flair_css_class author_flair_richtext author_flair_template_id author_fullname author_premium can_mod_post category clicked content_categories created_utc downs edited gilded gildings hidden hide_score is_created_from_ads_ui is_meta is_original_content is_reddit_media_domain is_video link_flair_css_class link_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title name permalink pwls quarantine saved score secure_media secure_media_embed selftext subreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type total_awards_received ups upvote_ratio url user_reports'''.split() ) def lowercase ( __snake_case : str , __snake_case : int = 1 , __snake_case : str = "new" , __snake_case : list | None = None ): lowercase_ : Tuple = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(__snake_case ) - valid_terms ) ): lowercase_ : Union[str, Any] = F'''Invalid search term: {invalid_search_terms}''' raise ValueError(__snake_case ) lowercase_ : Optional[Any] = requests.get( F'''https://reddit.com/r/{subreddit}/{age}.json?limit={limit}''' , headers={'''User-agent''': '''A random string'''} , ) if response.status_code == 4_2_9: raise requests.HTTPError lowercase_ : Optional[int] = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(__snake_case )} lowercase_ : str = {} for id_ in range(__snake_case ): lowercase_ : Dict = { item: data['''data''']['''children'''][id_]['''data'''][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data('''learnpython''', wanted_data=['''title''', '''url''', '''selftext''']))
33
def __snake_case ( __UpperCamelCase : bytes ): """simple docstring""" return "".join([hex(__UpperCamelCase )[2:].zfill(2 ).upper() for byte in list(__UpperCamelCase )] ) def __snake_case ( __UpperCamelCase : str ): """simple docstring""" if (len(__UpperCamelCase ) % 2) != 0: raise ValueError( "Base16 encoded data is invalid:\nData does not have an even number of hex digits." ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(__UpperCamelCase ) <= set("0123456789ABCDEF" ): raise ValueError( "Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters." ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] ,16 ) for i in range(0 ,len(__UpperCamelCase ) ,2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
312
0
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _SCREAMING_SNAKE_CASE : '''simple docstring''' @staticmethod def SCREAMING_SNAKE_CASE_ (*UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Optional[Any]) ->Optional[Any]: '''simple docstring''' pass @is_pipeline_test @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @require_torch def SCREAMING_SNAKE_CASE_ (self : Dict) ->List[str]: '''simple docstring''' lowerCamelCase__: Optional[int] =pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , ) lowerCamelCase__: List[str] =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") lowerCamelCase__: List[Any] =image_classifier(snake_case_ , candidate_labels=["a", "b", "c"]) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(snake_case_) , [ [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}], [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}], ] , ) lowerCamelCase__: Dict =image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2) self.assertEqual( nested_simplify(snake_case_) , [ [ {"score": 0.333, "label": ANY(snake_case_)}, {"score": 0.333, "label": ANY(snake_case_)}, {"score": 0.333, "label": ANY(snake_case_)}, ], [ {"score": 0.333, "label": ANY(snake_case_)}, {"score": 0.333, "label": ANY(snake_case_)}, {"score": 0.333, "label": ANY(snake_case_)}, ], [ {"score": 0.333, "label": ANY(snake_case_)}, {"score": 0.333, "label": ANY(snake_case_)}, {"score": 0.333, "label": ANY(snake_case_)}, ], [ {"score": 0.333, "label": ANY(snake_case_)}, {"score": 0.333, "label": ANY(snake_case_)}, {"score": 0.333, "label": ANY(snake_case_)}, ], [ {"score": 0.333, "label": ANY(snake_case_)}, {"score": 0.333, "label": ANY(snake_case_)}, {"score": 0.333, "label": ANY(snake_case_)}, ], ] , ) @require_tf def SCREAMING_SNAKE_CASE_ (self : Any) ->Any: '''simple docstring''' lowerCamelCase__: str =pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf") lowerCamelCase__: Optional[int] =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") lowerCamelCase__: int =image_classifier(snake_case_ , candidate_labels=["a", "b", "c"]) self.assertEqual( nested_simplify(snake_case_) , [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}] , ) lowerCamelCase__: Optional[int] =image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2) self.assertEqual( nested_simplify(snake_case_) , [ [ {"score": 0.333, "label": ANY(snake_case_)}, {"score": 0.333, "label": ANY(snake_case_)}, {"score": 0.333, "label": ANY(snake_case_)}, ], [ {"score": 0.333, "label": ANY(snake_case_)}, {"score": 0.333, "label": ANY(snake_case_)}, {"score": 0.333, "label": ANY(snake_case_)}, ], [ {"score": 0.333, "label": ANY(snake_case_)}, {"score": 0.333, "label": ANY(snake_case_)}, {"score": 0.333, "label": ANY(snake_case_)}, ], [ {"score": 0.333, "label": ANY(snake_case_)}, {"score": 0.333, "label": ANY(snake_case_)}, {"score": 0.333, "label": ANY(snake_case_)}, ], [ {"score": 0.333, "label": ANY(snake_case_)}, {"score": 0.333, "label": ANY(snake_case_)}, {"score": 0.333, "label": ANY(snake_case_)}, ], ] , ) @slow @require_torch def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: List[str] =pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , ) # This is an image of 2 cats with remotes and no planes lowerCamelCase__: Optional[Any] =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") lowerCamelCase__: Union[str, Any] =image_classifier(snake_case_ , candidate_labels=["cat", "plane", "remote"]) self.assertEqual( nested_simplify(snake_case_) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) lowerCamelCase__: List[Any] =image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2) self.assertEqual( nested_simplify(snake_case_) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , ) @slow @require_tf def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' lowerCamelCase__: Optional[Any] =pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf") # This is an image of 2 cats with remotes and no planes lowerCamelCase__: Dict =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") lowerCamelCase__: Any =image_classifier(snake_case_ , candidate_labels=["cat", "plane", "remote"]) self.assertEqual( nested_simplify(snake_case_) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) lowerCamelCase__: Optional[int] =image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2) self.assertEqual( nested_simplify(snake_case_) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , )
371
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def lowerCAmelCase_ ( __a ) -> int: """simple docstring""" return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) __A = "\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n" class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @staticmethod def SCREAMING_SNAKE_CASE_ (UpperCAmelCase_ : ArgumentParser) ->str: '''simple docstring''' lowerCamelCase__: Dict =parser.add_parser( "convert" , help="CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints." , ) train_parser.add_argument("--model_type" , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help="Model's type.") train_parser.add_argument( "--tf_checkpoint" , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help="TensorFlow checkpoint path or folder.") train_parser.add_argument( "--pytorch_dump_output" , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help="Path to the PyTorch saved model output.") train_parser.add_argument("--config" , type=UpperCAmelCase_ , default="" , help="Configuration file path or folder.") train_parser.add_argument( "--finetuning_task_name" , type=UpperCAmelCase_ , default=UpperCAmelCase_ , help="Optional fine-tuning task name if the TF model was a finetuned model." , ) train_parser.set_defaults(func=UpperCAmelCase_) def __init__(self : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : str , *UpperCAmelCase_ : Optional[int] , ) ->List[str]: '''simple docstring''' lowerCamelCase__: Dict =logging.get_logger("transformers-cli/converting") self._logger.info(F"""Loading model {model_type}""") lowerCamelCase__: Any =model_type lowerCamelCase__: Optional[int] =tf_checkpoint lowerCamelCase__: Any =pytorch_dump_output lowerCamelCase__: Union[str, Any] =config lowerCamelCase__: str =finetuning_task_name def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Tuple: '''simple docstring''' if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(UpperCAmelCase_) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(UpperCAmelCase_) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(UpperCAmelCase_) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(UpperCAmelCase_) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(UpperCAmelCase_) if "ckpt" in self._tf_checkpoint.lower(): lowerCamelCase__: Tuple =self._tf_checkpoint lowerCamelCase__: List[str] ="" else: lowerCamelCase__: Any =self._tf_checkpoint lowerCamelCase__: Dict ="" convert_transfo_xl_checkpoint_to_pytorch( UpperCAmelCase_ , self._config , self._pytorch_dump_output , UpperCAmelCase_) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(UpperCAmelCase_) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(UpperCAmelCase_) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) else: raise ValueError( "--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]")
273
0
'''simple docstring''' import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def a_ ( lowerCamelCase : Tuple , lowerCamelCase : str , lowerCamelCase : Tuple , lowerCamelCase : int ): if isinstance(lowerCamelCase , lowerCamelCase ): lowerCAmelCase = np.full((len(lowerCamelCase ), sequence_length, 2) , lowerCamelCase ) else: lowerCAmelCase = np.full((len(lowerCamelCase ), sequence_length) , lowerCamelCase ) for i, tensor in enumerate(lowerCamelCase ): if padding_side == "right": if isinstance(lowerCamelCase , lowerCamelCase ): lowerCAmelCase = tensor[:sequence_length] else: lowerCAmelCase = tensor[:sequence_length] else: if isinstance(lowerCamelCase , lowerCamelCase ): lowerCAmelCase = tensor[:sequence_length] else: lowerCAmelCase = tensor[:sequence_length] return out_tensor.tolist() def a_ ( lowerCamelCase : Optional[int] ): lowerCAmelCase = ord(lowerCamelCase ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True lowerCAmelCase = unicodedata.category(lowerCamelCase ) if cat.startswith('P' ): return True return False @dataclass class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : PreTrainedTokenizerBase lowerCamelCase : Union[bool, str, PaddingStrategy] = True lowerCamelCase : Optional[int] = None lowerCamelCase : Optional[int] = None lowerCamelCase : int = -100 lowerCamelCase : str = "pt" def __UpperCAmelCase ( self : int , UpperCAmelCase__ : Any ) -> List[Any]: import torch lowerCAmelCase = 'label' if 'label' in features[0].keys() else 'labels' lowerCAmelCase = [feature[label_name] for feature in features] if label_name in features[0].keys() else None lowerCAmelCase = self.tokenizer.pad( UpperCAmelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' if labels is None else None , ) if labels is None: return batch lowerCAmelCase = torch.tensor(batch['entity_ids'] ).shape[1] lowerCAmelCase = self.tokenizer.padding_side if padding_side == "right": lowerCAmelCase = [ list(UpperCAmelCase__ ) + [self.label_pad_token_id] * (sequence_length - len(UpperCAmelCase__ )) for label in labels ] else: lowerCAmelCase = [ [self.label_pad_token_id] * (sequence_length - len(UpperCAmelCase__ )) + list(UpperCAmelCase__ ) for label in labels ] lowerCAmelCase = [feature['ner_tags'] for feature in features] lowerCAmelCase = padding_tensor(UpperCAmelCase__ , -1 , UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase = [feature['original_entity_spans'] for feature in features] lowerCAmelCase = padding_tensor(UpperCAmelCase__ , (-1, -1) , UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase = {k: torch.tensor(UpperCAmelCase__ , dtype=torch.intaa ) for k, v in batch.items()} return batch
4
'''simple docstring''' from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __snake_case ="""\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } """ __snake_case ="""\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. """ __snake_case =""" Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for 'record': list of question-answer dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'prediction_text': the predicted answer text - for 'multirc': list of question-answer dictionaries with the following keys: - 'idx': index of the question-answer pair as specified by the dataset - 'prediction': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for 'record': list of question-answers dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'answers': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for 'record': - 'exact_match': Exact match between answer and gold answer - 'f1': F1 score - for 'multirc': - 'exact_match': Exact match between answer and gold answer - 'f1_m': Per-question macro-F1 score - 'f1_a': Average F1 score over all answers - for 'axb': 'matthews_correlation': Matthew Correlation - for 'cb': - 'accuracy': Accuracy - 'f1': F1 score - for all others: - 'accuracy': Accuracy Examples: >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'cb') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'record') >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}] >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc') >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'axb') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'matthews_correlation': 1.0} """ def a_ ( lowerCamelCase : str , lowerCamelCase : Union[str, Any] ): return float((preds == labels).mean() ) def a_ ( lowerCamelCase : Union[str, Any] , lowerCamelCase : Dict , lowerCamelCase : str="binary" ): lowerCAmelCase = simple_accuracy(lowerCamelCase , lowerCamelCase ) lowerCAmelCase = float(fa_score(y_true=lowerCamelCase , y_pred=lowerCamelCase , average=lowerCamelCase ) ) return { "accuracy": acc, "f1": fa, } def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : List[Any] ): lowerCAmelCase = {} for id_pred, label in zip(lowerCamelCase , lowerCamelCase ): lowerCAmelCase = f'''{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}''' lowerCAmelCase = id_pred['prediction'] if question_id in question_map: question_map[question_id].append((pred, label) ) else: lowerCAmelCase = [(pred, label)] lowerCAmelCase , lowerCAmelCase = [], [] for question, preds_labels in question_map.items(): lowerCAmelCase , lowerCAmelCase = zip(*lowerCamelCase ) lowerCAmelCase = fa_score(y_true=lowerCamelCase , y_pred=lowerCamelCase , average='macro' ) fas.append(lowerCamelCase ) lowerCAmelCase = int(sum(pred == label for pred, label in preds_labels ) == len(lowerCamelCase ) ) ems.append(lowerCamelCase ) lowerCAmelCase = float(sum(lowerCamelCase ) / len(lowerCamelCase ) ) lowerCAmelCase = sum(lowerCamelCase ) / len(lowerCamelCase ) lowerCAmelCase = float(fa_score(y_true=lowerCamelCase , y_pred=[id_pred['prediction'] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): def __UpperCAmelCase ( self : List[str] ) -> List[Any]: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( 'You should supply a configuration name selected in ' '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='numpy' if not self.config_name == 'record' and not self.config_name == 'multirc' else None , ) def __UpperCAmelCase ( self : Union[str, Any] ) -> str: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('int64' ), "query": datasets.Value('int64' ), }, "prediction_text": datasets.Value('string' ), }, "references": { "idx": { "passage": datasets.Value('int64' ), "query": datasets.Value('int64' ), }, "answers": datasets.Sequence(datasets.Value('string' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('int64' ), "paragraph": datasets.Value('int64' ), "question": datasets.Value('int64' ), }, "prediction": datasets.Value('int64' ), }, "references": datasets.Value('int64' ), } else: return { "predictions": datasets.Value('int64' ), "references": datasets.Value('int64' ), } def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[Any] ) -> Any: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(UpperCAmelCase__ , UpperCAmelCase__ )} elif self.config_name == "cb": return acc_and_fa(UpperCAmelCase__ , UpperCAmelCase__ , fa_avg='macro' ) elif self.config_name == "record": lowerCAmelCase = [ { 'qas': [ {'id': ref['idx']['query'], 'answers': [{'text': ans} for ans in ref['answers']]} for ref in references ] } ] lowerCAmelCase = {pred['idx']['query']: pred['prediction_text'] for pred in predictions} return evaluate_record(UpperCAmelCase__ , UpperCAmelCase__ )[0] elif self.config_name == "multirc": return evaluate_multirc(UpperCAmelCase__ , UpperCAmelCase__ ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(UpperCAmelCase__ , UpperCAmelCase__ )} else: raise KeyError( 'You should supply a configuration name selected in ' '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' )
4
1
"""simple docstring""" import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): '''simple docstring''' super().tearDown() gc.collect() def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :List[str] = FlaxStableDiffusionPipeline.from_pretrained( 'stabilityai/stable-diffusion-2' , revision='bf16' , dtype=jnp.bfloataa , ) lowerCAmelCase__ :Optional[Any] = 'A painting of a squirrel eating a burger' lowerCAmelCase__ :int = jax.device_count() lowerCAmelCase__ :Optional[Any] = num_samples * [prompt] lowerCAmelCase__ :Optional[Any] = sd_pipe.prepare_inputs(__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = replicate(__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = shard(__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = jax.random.PRNGKey(0 ) lowerCAmelCase__ :Optional[Any] = jax.random.split(__UpperCAmelCase , jax.device_count() ) lowerCAmelCase__ :Dict = sd_pipe(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , num_inference_steps=2_5 , jit=__UpperCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 7_6_8, 7_6_8, 3) lowerCAmelCase__ :Any = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCAmelCase__ :Any = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] lowerCAmelCase__ :Optional[int] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCAmelCase__ :str = jnp.array([0.42_38, 0.44_14, 0.43_95, 0.44_53, 0.46_29, 0.45_90, 0.45_31, 0.4_55_08, 0.45_12] ) print(F"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Any = 'stabilityai/stable-diffusion-2' lowerCAmelCase__ , lowerCAmelCase__ :Tuple = FlaxDPMSolverMultistepScheduler.from_pretrained(__UpperCAmelCase , subfolder='scheduler' ) lowerCAmelCase__ , lowerCAmelCase__ :List[str] = FlaxStableDiffusionPipeline.from_pretrained( __UpperCAmelCase , scheduler=__UpperCAmelCase , revision='bf16' , dtype=jnp.bfloataa , ) lowerCAmelCase__ :Optional[int] = scheduler_params lowerCAmelCase__ :Any = 'A painting of a squirrel eating a burger' lowerCAmelCase__ :str = jax.device_count() lowerCAmelCase__ :List[str] = num_samples * [prompt] lowerCAmelCase__ :Union[str, Any] = sd_pipe.prepare_inputs(__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = replicate(__UpperCAmelCase ) lowerCAmelCase__ :Tuple = shard(__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = jax.random.PRNGKey(0 ) lowerCAmelCase__ :str = jax.random.split(__UpperCAmelCase , jax.device_count() ) lowerCAmelCase__ :Any = sd_pipe(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , num_inference_steps=2_5 , jit=__UpperCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 7_6_8, 7_6_8, 3) lowerCAmelCase__ :int = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCAmelCase__ :Dict = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] lowerCAmelCase__ :Dict = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCAmelCase__ :Union[str, Any] = jnp.array([0.43_36, 0.4_29_69, 0.44_53, 0.41_99, 0.42_97, 0.45_31, 0.44_34, 0.44_34, 0.42_97] ) print(F"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
254
"""simple docstring""" import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model __A = """0.12""" # assumed parallelism: 8 if is_torch_available(): import torch def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) ->List[Any]: """simple docstring""" if rng is None: lowerCAmelCase__ :Dict = random.Random() lowerCAmelCase__ :Tuple = 1 for dim in shape: total_dims *= dim lowerCAmelCase__ :List[Any] = [] for _ in range(_SCREAMING_SNAKE_CASE ): values.append(rng.randint(0 , vocab_size - 1 ) ) lowerCAmelCase__ :int = np.array(_SCREAMING_SNAKE_CASE , dtype=jnp.intaa ).reshape(_SCREAMING_SNAKE_CASE ) return output def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) ->List[Any]: """simple docstring""" lowerCAmelCase__ :Union[str, Any] = ids_tensor(_SCREAMING_SNAKE_CASE , vocab_size=2 , rng=_SCREAMING_SNAKE_CASE ) # make sure that at least one token is attended to for each batch lowerCAmelCase__ :Any = 1 return attn_mask @require_flax class _lowerCAmelCase : """simple docstring""" __magic_name__ :Optional[int] = None __magic_name__ :List[str] = () def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 lowerCAmelCase__ :Union[str, Any] = 2 lowerCAmelCase__ :List[Any] = inputs['input_ids'].shape[-1] // 2 lowerCAmelCase__ :Union[str, Any] = inputs['input_ids'][:max_batch_size, :sequence_length] lowerCAmelCase__ :str = jnp.ones_like(__UpperCAmelCase ) lowerCAmelCase__ :int = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens lowerCAmelCase__ :List[Any] = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` lowerCAmelCase__ :Optional[Any] = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Any = self._get_input_ids_and_config() lowerCAmelCase__ :int = False lowerCAmelCase__ :List[Any] = max_length lowerCAmelCase__ :List[Any] = 0 for model_class in self.all_generative_model_classes: lowerCAmelCase__ :int = model_class(__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCAmelCase__ :List[Any] = getattr(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = pt_model_class(__UpperCAmelCase ).eval() lowerCAmelCase__ :Dict = load_flax_weights_in_pytorch_model(__UpperCAmelCase , flax_model.params ) lowerCAmelCase__ :Union[str, Any] = flax_model.generate(__UpperCAmelCase ).sequences lowerCAmelCase__ :Union[str, Any] = pt_model.generate(torch.tensor(__UpperCAmelCase , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: lowerCAmelCase__ :Union[str, Any] = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :str = self._get_input_ids_and_config() lowerCAmelCase__ :Any = False lowerCAmelCase__ :Any = max_length for model_class in self.all_generative_model_classes: lowerCAmelCase__ :List[str] = model_class(__UpperCAmelCase ) lowerCAmelCase__ :Any = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) lowerCAmelCase__ :List[str] = jit(model.generate ) lowerCAmelCase__ :Optional[Any] = jit_generate(__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Dict = self._get_input_ids_and_config() lowerCAmelCase__ :int = True lowerCAmelCase__ :Optional[int] = max_length for model_class in self.all_generative_model_classes: lowerCAmelCase__ :Dict = model_class(__UpperCAmelCase ) lowerCAmelCase__ :int = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) lowerCAmelCase__ :List[Any] = jit(model.generate ) lowerCAmelCase__ :Dict = jit_generate(__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Optional[Any] = self._get_input_ids_and_config() lowerCAmelCase__ :Optional[Any] = False lowerCAmelCase__ :Dict = max_length lowerCAmelCase__ :Dict = 2 for model_class in self.all_generative_model_classes: lowerCAmelCase__ :List[str] = model_class(__UpperCAmelCase ) lowerCAmelCase__ :Dict = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) lowerCAmelCase__ :Any = jit(model.generate ) lowerCAmelCase__ :Dict = jit_generate(__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Any = self._get_input_ids_and_config() lowerCAmelCase__ :int = False lowerCAmelCase__ :Optional[Any] = max_length lowerCAmelCase__ :Optional[Any] = 2 lowerCAmelCase__ :Optional[int] = 2 for model_class in self.all_generative_model_classes: lowerCAmelCase__ :Union[str, Any] = model_class(__UpperCAmelCase ) lowerCAmelCase__ :str = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :str = self._get_input_ids_and_config() lowerCAmelCase__ :Optional[int] = True lowerCAmelCase__ :Tuple = max_length lowerCAmelCase__ :Optional[int] = 0.8 lowerCAmelCase__ :Any = 1_0 lowerCAmelCase__ :List[Any] = 0.3 lowerCAmelCase__ :Tuple = 1 lowerCAmelCase__ :Union[str, Any] = 8 lowerCAmelCase__ :Optional[Any] = 9 for model_class in self.all_generative_model_classes: lowerCAmelCase__ :List[Any] = model_class(__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = jit(model.generate ) lowerCAmelCase__ :Any = jit_generate(__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Optional[Any] = self._get_input_ids_and_config() lowerCAmelCase__ :Union[str, Any] = max_length lowerCAmelCase__ :str = 1 lowerCAmelCase__ :Tuple = 8 lowerCAmelCase__ :Optional[Any] = 9 for model_class in self.all_generative_model_classes: lowerCAmelCase__ :str = model_class(__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) lowerCAmelCase__ :List[str] = jit(model.generate ) lowerCAmelCase__ :Optional[int] = jit_generate(__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :List[str] = self._get_input_ids_and_config() lowerCAmelCase__ :str = max_length lowerCAmelCase__ :Dict = 2 lowerCAmelCase__ :Dict = 1 lowerCAmelCase__ :Optional[int] = 8 lowerCAmelCase__ :Optional[Any] = 9 for model_class in self.all_generative_model_classes: lowerCAmelCase__ :List[Any] = model_class(__UpperCAmelCase ) lowerCAmelCase__ :int = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) lowerCAmelCase__ :Dict = jit(model.generate ) lowerCAmelCase__ :Dict = jit_generate(__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Optional[int] = self._get_input_ids_and_config() # pad attention mask on the left lowerCAmelCase__ :Tuple = attention_mask.at[(0, 0)].set(0 ) lowerCAmelCase__ :Union[str, Any] = False lowerCAmelCase__ :Optional[Any] = max_length for model_class in self.all_generative_model_classes: lowerCAmelCase__ :Tuple = model_class(__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = model.generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) lowerCAmelCase__ :int = jit(model.generate ) lowerCAmelCase__ :Optional[Any] = jit_generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = self._get_input_ids_and_config() # pad attention mask on the left lowerCAmelCase__ :Any = attention_mask.at[(0, 0)].set(0 ) lowerCAmelCase__ :Optional[Any] = True lowerCAmelCase__ :Dict = max_length for model_class in self.all_generative_model_classes: lowerCAmelCase__ :str = model_class(__UpperCAmelCase ) lowerCAmelCase__ :Tuple = model.generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = jit(model.generate ) lowerCAmelCase__ :Optional[int] = jit_generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :int = self._get_input_ids_and_config() # pad attention mask on the left lowerCAmelCase__ :int = attention_mask.at[(0, 0)].set(0 ) lowerCAmelCase__ :Dict = 2 lowerCAmelCase__ :Optional[Any] = max_length for model_class in self.all_generative_model_classes: lowerCAmelCase__ :Any = model_class(__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = model.generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = jit(model.generate ) lowerCAmelCase__ :int = jit_generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-bert' ) lowerCAmelCase__ :List[str] = FlaxAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-bert-flax-only' ) lowerCAmelCase__ :Optional[int] = 'Hello world' lowerCAmelCase__ :Union[str, Any] = tokenizer(__UpperCAmelCase , return_tensors='np' ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(__UpperCAmelCase , 'do_samples' ): model.generate(__UpperCAmelCase , do_samples=__UpperCAmelCase ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(__UpperCAmelCase , 'foo' ): lowerCAmelCase__ :Optional[int] = {'foo': 'bar'} model.generate(__UpperCAmelCase , **__UpperCAmelCase )
254
1
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __lowercase (UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): """simple docstring""" _snake_case = StableUnCLIPImgaImgPipeline _snake_case = TEXT_GUIDED_IMAGE_VARIATION_PARAMS _snake_case = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _snake_case = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _snake_case = frozenset([] ) def UpperCAmelCase ( self ) -> int: snake_case : int = 3_2 snake_case : Any = embedder_hidden_size # image encoding components snake_case : Any = CLIPImageProcessor(crop_size=3_2 , size=3_2 ) torch.manual_seed(0 ) snake_case : List[Any] = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=A , projection_dim=A , num_hidden_layers=5 , num_attention_heads=4 , image_size=3_2 , intermediate_size=3_7 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) snake_case : Union[str, Any] = StableUnCLIPImageNormalizer(embedding_dim=A ) snake_case : Dict = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" ) torch.manual_seed(0 ) snake_case : Optional[int] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) snake_case : Union[str, Any] = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=A , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) ) torch.manual_seed(0 ) snake_case : Dict = UNetaDConditionModel( sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , block_out_channels=(3_2, 6_4) , attention_head_dim=(2, 4) , class_embed_type="""projection""" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=A , layers_per_block=1 , upcast_attention=A , use_linear_projection=A , ) torch.manual_seed(0 ) snake_case : str = DDIMScheduler( beta_schedule="""scaled_linear""" , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type="""v_prediction""" , set_alpha_to_one=A , steps_offset=1 , ) torch.manual_seed(0 ) snake_case : str = AutoencoderKL() snake_case : Dict = { # image encoding components """feature_extractor""": feature_extractor, """image_encoder""": image_encoder.eval(), # image noising components """image_normalizer""": image_normalizer.eval(), """image_noising_scheduler""": image_noising_scheduler, # regular denoising components """tokenizer""": tokenizer, """text_encoder""": text_encoder.eval(), """unet""": unet.eval(), """scheduler""": scheduler, """vae""": vae.eval(), } return components def UpperCAmelCase ( self , A , A=0 , A=True ) -> Union[str, Any]: if str(A ).startswith("""mps""" ): snake_case : Optional[Any] = torch.manual_seed(A ) else: snake_case : List[str] = torch.Generator(device=A ).manual_seed(A ) snake_case : str = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(A ) ).to(A ) if pil_image: snake_case : List[str] = input_image * 0.5 + 0.5 snake_case : List[str] = input_image.clamp(0 , 1 ) snake_case : Tuple = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() snake_case : Any = DiffusionPipeline.numpy_to_pil(A )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case : Dict = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case : Optional[Any] = self.get_dummy_components() snake_case : Optional[Any] = StableUnCLIPImgaImgPipeline(**A ) snake_case : List[Any] = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) snake_case : Any = self.get_dummy_inputs(A ) inputs.update({"""image_embeds""": None} ) snake_case : Any = sd_pipe(**A ).images snake_case : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) snake_case : List[str] = np.array([0.38_72, 0.72_24, 0.56_01, 0.47_41, 0.68_72, 0.58_14, 0.46_36, 0.38_67, 0.50_78] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case : Dict = torch_device in ["""cpu""", """mps"""] self._test_attention_slicing_forward_pass(test_max_difference=A ) def UpperCAmelCase ( self ) -> Optional[Any]: snake_case : int = torch_device in ["""cpu""", """mps"""] self._test_inference_batch_single_identical(test_max_difference=A ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def UpperCAmelCase ( self ) -> List[Any]: self._test_xformers_attention_forwardGenerator_pass(test_max_difference=A ) @slow @require_torch_gpu class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" ) snake_case : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy""" ) snake_case : Tuple = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-l-img2img""" , torch_dtype=torch.floataa ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() snake_case : Union[str, Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case : Tuple = pipe(A , """anime turle""" , generator=A , output_type="""np""" ) snake_case : List[str] = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(A , A ) def UpperCAmelCase ( self ) -> Any: snake_case : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" ) snake_case : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy""" ) snake_case : List[str] = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-h-img2img""" , torch_dtype=torch.floataa ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() snake_case : List[Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case : Any = pipe(A , """anime turle""" , generator=A , output_type="""np""" ) snake_case : Dict = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(A , A ) def UpperCAmelCase ( self ) -> Optional[Any]: snake_case : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case : Union[str, Any] = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-h-img2img""" , torch_dtype=torch.floataa ) snake_case : List[Any] = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() snake_case : Tuple = pipe( A , """anime turtle""" , num_inference_steps=2 , output_type="""np""" , ) snake_case : str = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 1_0**9
124
import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() lowerCamelCase : Any = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> Any: snake_case : Optional[int] = WavaVecaForSequenceClassification.from_pretrained(lowercase ,config=lowercase ) snake_case : List[str] = downstream_dict["""projector.weight"""] snake_case : Dict = downstream_dict["""projector.bias"""] snake_case : Dict = downstream_dict["""model.post_net.linear.weight"""] snake_case : List[Any] = downstream_dict["""model.post_net.linear.bias"""] return model def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> List[str]: snake_case : str = WavaVecaForAudioFrameClassification.from_pretrained(lowercase ,config=lowercase ) snake_case : List[Any] = downstream_dict["""model.linear.weight"""] snake_case : str = downstream_dict["""model.linear.bias"""] return model def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> str: snake_case : Any = WavaVecaForXVector.from_pretrained(lowercase ,config=lowercase ) snake_case : str = downstream_dict["""connector.weight"""] snake_case : Optional[Any] = downstream_dict["""connector.bias"""] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): snake_case : List[Any] = downstream_dict[ f"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] snake_case : Optional[int] = downstream_dict[f"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] snake_case : List[str] = downstream_dict["""model.utterancelevel_feature_extractor.linear1.weight"""] snake_case : Union[str, Any] = downstream_dict["""model.utterancelevel_feature_extractor.linear1.bias"""] snake_case : Any = downstream_dict["""model.utterancelevel_feature_extractor.linear2.weight"""] snake_case : int = downstream_dict["""model.utterancelevel_feature_extractor.linear2.bias"""] snake_case : Any = downstream_dict["""objective.W"""] return model @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ) -> Union[str, Any]: snake_case : Tuple = torch.load(lowercase ,map_location="""cpu""" ) snake_case : Any = checkpoint["""Downstream"""] snake_case : List[str] = WavaVecaConfig.from_pretrained(lowercase ) snake_case : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained( lowercase ,return_attention_mask=lowercase ,do_normalize=lowercase ) snake_case : str = hf_config.architectures[0] if arch.endswith("""ForSequenceClassification""" ): snake_case : int = convert_classification(lowercase ,lowercase ,lowercase ) elif arch.endswith("""ForAudioFrameClassification""" ): snake_case : Dict = convert_diarization(lowercase ,lowercase ,lowercase ) elif arch.endswith("""ForXVector""" ): snake_case : Optional[Any] = convert_xvector(lowercase ,lowercase ,lowercase ) else: raise NotImplementedError(f"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: snake_case : List[str] = checkpoint["""Featurizer"""]["""weights"""] hf_feature_extractor.save_pretrained(lowercase ) hf_model.save_pretrained(lowercase ) if __name__ == "__main__": lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') lowerCamelCase : int = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
124
1
"""simple docstring""" def __a ( _SCREAMING_SNAKE_CASE ) ->bool: return credit_card_number.startswith(('34', '35', '37', '4', '5', '6') ) def __a ( _SCREAMING_SNAKE_CASE ) ->bool: a__: Any = credit_card_number a__: Tuple = 0 a__: List[str] = len(_SCREAMING_SNAKE_CASE ) - 2 for i in range(_SCREAMING_SNAKE_CASE , -1 , -2 ): # double the value of every second digit a__: Tuple = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 a__: Optional[Any] = cc_number[:i] + str(_SCREAMING_SNAKE_CASE ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(_SCREAMING_SNAKE_CASE ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def __a ( _SCREAMING_SNAKE_CASE ) ->bool: a__: Optional[int] = F'{credit_card_number} is an invalid credit card number because' if not credit_card_number.isdigit(): print(F'{error_message} it has nonnumerical characters.' ) return False if not 13 <= len(_SCREAMING_SNAKE_CASE ) <= 16: print(F'{error_message} of its length.' ) return False if not validate_initial_digits(_SCREAMING_SNAKE_CASE ): print(F'{error_message} of its first two digits.' ) return False if not luhn_validation(_SCREAMING_SNAKE_CASE ): print(F'{error_message} it fails the Luhn check.' ) return False print(F'{credit_card_number} is a valid credit card number.' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number('4111111111111111') validate_credit_card_number('32323')
363
"""simple docstring""" import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __snake_case : def __init__( self , lowercase , lowercase=3 , lowercase=32 , lowercase=3 , lowercase=10 , lowercase=[10, 20, 30, 40] , lowercase=[1, 1, 2, 1] , lowercase=True , lowercase=True , lowercase="relu" , lowercase=3 , lowercase=None , ) -> Any: '''simple docstring''' a__: Union[str, Any] = parent a__: int = batch_size a__: List[Any] = image_size a__: Any = num_channels a__: Dict = embeddings_size a__: str = hidden_sizes a__: List[Any] = depths a__: Optional[int] = is_training a__: Optional[int] = use_labels a__: Tuple = hidden_act a__: Any = num_labels a__: Union[str, Any] = scope a__: Tuple = len(lowercase) def lowerCamelCase_ ( self) -> int: '''simple docstring''' a__: Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a__: str = None if self.use_labels: a__: Dict = ids_tensor([self.batch_size] , self.num_labels) a__: int = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self) -> Optional[int]: '''simple docstring''' return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def lowerCamelCase_ ( self , lowercase , lowercase , lowercase) -> Any: '''simple docstring''' a__: Dict = RegNetModel(config=lowercase) model.to(lowercase) model.eval() a__: List[str] = model(lowercase) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase_ ( self , lowercase , lowercase , lowercase) -> List[Any]: '''simple docstring''' a__: Tuple = self.num_labels a__: Tuple = RegNetForImageClassification(lowercase) model.to(lowercase) model.eval() a__: Any = model(lowercase , labels=lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def lowerCamelCase_ ( self) -> str: '''simple docstring''' a__: int = self.prepare_config_and_inputs() a__ , a__ , a__: List[Any] = config_and_inputs a__: Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __snake_case ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): a__ = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () a__ = ( {"""feature-extraction""": RegNetModel, """image-classification""": RegNetForImageClassification} if is_torch_available() else {} ) a__ = False a__ = False a__ = False a__ = False def lowerCamelCase_ ( self) -> Dict: '''simple docstring''' a__: Dict = RegNetModelTester(self) a__: Dict = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase) def lowerCamelCase_ ( self) -> Dict: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' return @unittest.skip(reason='RegNet does not use inputs_embeds') def lowerCamelCase_ ( self) -> List[str]: '''simple docstring''' pass @unittest.skip(reason='RegNet does not support input and output embeddings') def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' pass def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' a__ , a__: str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__: int = model_class(lowercase) a__: str = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__: int = [*signature.parameters.keys()] a__: List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase) def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' a__: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase) def lowerCamelCase_ ( self) -> Dict: '''simple docstring''' a__ , a__: int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__: int = model_class(config=lowercase) for name, module in model.named_modules(): if isinstance(lowercase , (nn.BatchNormad, nn.GroupNorm)): self.assertTrue( torch.all(module.weight == 1) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) self.assertTrue( torch.all(module.bias == 0) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) def lowerCamelCase_ ( self) -> Optional[int]: '''simple docstring''' def check_hidden_states_output(lowercase , lowercase , lowercase): a__: int = model_class(lowercase) model.to(lowercase) model.eval() with torch.no_grad(): a__: int = model(**self._prepare_for_class(lowercase , lowercase)) a__: Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states a__: List[str] = self.model_tester.num_stages self.assertEqual(len(lowercase) , expected_num_stages + 1) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) a__ , a__: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() a__: Dict = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: a__: Dict = layer_type a__: Dict = True check_hidden_states_output(lowercase , lowercase , lowercase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a__: str = True check_hidden_states_output(lowercase , lowercase , lowercase) def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' a__: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase) @slow def lowerCamelCase_ ( self) -> str: '''simple docstring''' for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__: Tuple = RegNetModel.from_pretrained(lowercase) self.assertIsNotNone(lowercase) def __a ( ) ->Dict: a__: str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __snake_case ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self) -> Any: '''simple docstring''' return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def lowerCamelCase_ ( self) -> Optional[int]: '''simple docstring''' a__: Tuple = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(lowercase) a__: Tuple = self.default_image_processor a__: str = prepare_img() a__: Optional[int] = image_processor(images=lowercase , return_tensors='pt').to(lowercase) # forward pass with torch.no_grad(): a__: List[Any] = model(**lowercase) # verify the logits a__: Tuple = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , lowercase) a__: Optional[Any] = torch.tensor([-0.4180, -1.5051, -3.4836]).to(lowercase) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase , atol=1e-4))
203
0
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml __snake_case :Optional[int] = NewType('''DataClass''', Any) __snake_case :str = NewType('''DataClassType''', Any) def __snake_case ( _UpperCAmelCase ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( f'Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).' ) def __snake_case ( _UpperCAmelCase ): __a = {str(_UpperCAmelCase ): choice for choice in choices} return lambda _UpperCAmelCase : str_to_choice.get(_UpperCAmelCase , _UpperCAmelCase ) def __snake_case ( *, _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = dataclasses.MISSING , _UpperCAmelCase = dataclasses.MISSING , _UpperCAmelCase = None , **_UpperCAmelCase , ): if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls __a = {} if aliases is not None: __a = aliases if help is not None: __a = help return dataclasses.field(metadata=_UpperCAmelCase , default=_UpperCAmelCase , default_factory=_UpperCAmelCase , **_UpperCAmelCase ) class _A ( __UpperCAmelCase ): UpperCamelCase__ : Iterable[DataClassType] def __init__( self : Dict , __SCREAMING_SNAKE_CASE : Union[DataClassType, Iterable[DataClassType]] , **__SCREAMING_SNAKE_CASE : Dict): '''simple docstring''' if "formatter_class" not in kwargs: __a = ArgumentDefaultsHelpFormatter super().__init__(**__SCREAMING_SNAKE_CASE) if dataclasses.is_dataclass(__SCREAMING_SNAKE_CASE): __a = [dataclass_types] __a = list(__SCREAMING_SNAKE_CASE) for dtype in self.dataclass_types: self._add_dataclass_arguments(__SCREAMING_SNAKE_CASE) @staticmethod def _lowerCamelCase ( __SCREAMING_SNAKE_CASE : ArgumentParser , __SCREAMING_SNAKE_CASE : dataclasses.Field): '''simple docstring''' __a = F'--{field.name}' __a = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , __SCREAMING_SNAKE_CASE): raise RuntimeError( '''Unresolved type detected, which should have been done with the help of ''' '''`typing.get_type_hints` method by default''') __a = kwargs.pop('''aliases''' , []) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): __a = [aliases] __a = getattr(field.type , '''__origin__''' , field.type) if origin_type is Union or (hasattr(__SCREAMING_SNAKE_CASE , '''UnionType''') and isinstance(__SCREAMING_SNAKE_CASE , types.UnionType)): if str not in field.type.__args__ and ( len(field.type.__args__) != 2 or type(__SCREAMING_SNAKE_CASE) not in field.type.__args__ ): raise ValueError( '''Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because''' ''' the argument parser only supports one type per argument.''' F' Problem encountered in field \'{field.name}\'.') if type(__SCREAMING_SNAKE_CASE) not in field.type.__args__: # filter `str` in Union __a = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] __a = getattr(field.type , '''__origin__''' , field.type) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) __a = ( field.type.__args__[0] if isinstance(__SCREAMING_SNAKE_CASE , field.type.__args__[1]) else field.type.__args__[1] ) __a = getattr(field.type , '''__origin__''' , field.type) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) __a = {} if origin_type is Literal or (isinstance(field.type , __SCREAMING_SNAKE_CASE) and issubclass(field.type , __SCREAMING_SNAKE_CASE)): if origin_type is Literal: __a = field.type.__args__ else: __a = [x.value for x in field.type] __a = make_choice_type_function(kwargs['''choices''']) if field.default is not dataclasses.MISSING: __a = field.default else: __a = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument __a = copy(__SCREAMING_SNAKE_CASE) # Hack because type=bool in argparse does not behave as we want. __a = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. __a = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way __a = default # This tells argparse we accept 0 or 1 value after --field_name __a = '''?''' # This is the value that will get picked if we do --field_name (without value) __a = True elif isclass(__SCREAMING_SNAKE_CASE) and issubclass(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): __a = field.type.__args__[0] __a = '''+''' if field.default_factory is not dataclasses.MISSING: __a = field.default_factory() elif field.default is dataclasses.MISSING: __a = True else: __a = field.type if field.default is not dataclasses.MISSING: __a = field.default elif field.default_factory is not dataclasses.MISSING: __a = field.default_factory() else: __a = True parser.add_argument(__SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): __a = False parser.add_argument(F'--no_{field.name}' , action='''store_false''' , dest=field.name , **__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : DataClassType): '''simple docstring''' if hasattr(__SCREAMING_SNAKE_CASE , '''_argument_group_name'''): __a = self.add_argument_group(dtype._argument_group_name) else: __a = self try: __a = get_type_hints(__SCREAMING_SNAKE_CASE) except NameError: raise RuntimeError( F'Type resolution failed for {dtype}. Try declaring the class in global scope or ' '''removing line of `from __future__ import annotations` which opts in Postponed ''' '''Evaluation of Annotations (PEP 563)''') except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(__SCREAMING_SNAKE_CASE): __a = '''.'''.join(map(__SCREAMING_SNAKE_CASE , sys.version_info[:3])) raise RuntimeError( F'Type resolution failed for {dtype} on Python {python_version}. Try removing ' '''line of `from __future__ import annotations` which opts in union types as ''' '''`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ''' '''support Python versions that lower than 3.10, you need to use ''' '''`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ''' '''`X | None`.''') from ex raise for field in dataclasses.fields(__SCREAMING_SNAKE_CASE): if not field.init: continue __a = type_hints[field.name] self._parse_dataclass_field(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : Optional[int]=None , __SCREAMING_SNAKE_CASE : Any=False , __SCREAMING_SNAKE_CASE : Any=True , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : Optional[int]=None , ): '''simple docstring''' if args_file_flag or args_filename or (look_for_args_file and len(sys.argv)): __a = [] if args_filename: args_files.append(Path(__SCREAMING_SNAKE_CASE)) elif look_for_args_file and len(sys.argv): args_files.append(Path(sys.argv[0]).with_suffix('''.args''')) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values __a = ArgumentParser() args_file_parser.add_argument(__SCREAMING_SNAKE_CASE , type=__SCREAMING_SNAKE_CASE , action='''append''') # Use only remaining args for further parsing (remove the args_file_flag) __a , __a = args_file_parser.parse_known_args(args=__SCREAMING_SNAKE_CASE) __a = vars(__SCREAMING_SNAKE_CASE).get(args_file_flag.lstrip('''-''') , __SCREAMING_SNAKE_CASE) if cmd_args_file_paths: args_files.extend([Path(__SCREAMING_SNAKE_CASE) for p in cmd_args_file_paths]) __a = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last __a = file_args + args if args is not None else file_args + sys.argv[1:] __a , __a = self.parse_known_args(args=__SCREAMING_SNAKE_CASE) __a = [] for dtype in self.dataclass_types: __a = {f.name for f in dataclasses.fields(__SCREAMING_SNAKE_CASE) if f.init} __a = {k: v for k, v in vars(__SCREAMING_SNAKE_CASE).items() if k in keys} for k in keys: delattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = dtype(**__SCREAMING_SNAKE_CASE) outputs.append(__SCREAMING_SNAKE_CASE) if len(namespace.__dict__) > 0: # additional namespace. outputs.append(__SCREAMING_SNAKE_CASE) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F'Some specified arguments are not used by the HfArgumentParser: {remaining_args}') return (*outputs,) def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : Dict[str, Any] , __SCREAMING_SNAKE_CASE : bool = False): '''simple docstring''' __a = set(args.keys()) __a = [] for dtype in self.dataclass_types: __a = {f.name for f in dataclasses.fields(__SCREAMING_SNAKE_CASE) if f.init} __a = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys()) __a = dtype(**__SCREAMING_SNAKE_CASE) outputs.append(__SCREAMING_SNAKE_CASE) if not allow_extra_keys and unused_keys: raise ValueError(F'Some keys are not used by the HfArgumentParser: {sorted(__SCREAMING_SNAKE_CASE)}') return tuple(__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : bool = False): '''simple docstring''' with open(Path(__SCREAMING_SNAKE_CASE) , encoding='''utf-8''') as open_json_file: __a = json.loads(open_json_file.read()) __a = self.parse_dict(__SCREAMING_SNAKE_CASE , allow_extra_keys=__SCREAMING_SNAKE_CASE) return tuple(__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : bool = False): '''simple docstring''' __a = self.parse_dict(yaml.safe_load(Path(__SCREAMING_SNAKE_CASE).read_text()) , allow_extra_keys=__SCREAMING_SNAKE_CASE) return tuple(__SCREAMING_SNAKE_CASE)
49
"""simple docstring""" import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class lowercase ( __UpperCAmelCase , __UpperCAmelCase): __lowerCAmelCase : List[Any] = 1 @register_to_config def __init__( self : Union[str, Any] , _lowerCamelCase : int = 10_00 , _lowerCamelCase : Optional[Union[np.ndarray, List[float]]] = None ): """simple docstring""" self.set_timesteps(_lowerCamelCase ) # standard deviation of the initial noise distribution A_ : Optional[Any] = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. A_ : List[str] = 4 # running values A_ : Optional[int] = [] def a_ ( self : str , _lowerCamelCase : int , _lowerCamelCase : Union[str, torch.device] = None ): """simple docstring""" A_ : Tuple = num_inference_steps A_ : Tuple = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] A_ : Optional[Any] = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: A_ : str = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: A_ : int = torch.sin(steps * math.pi / 2 ) ** 2 A_ : Dict = (1.0 - self.betas**2) ** 0.5 A_ : Tuple = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] A_ : int = timesteps.to(_lowerCamelCase ) A_ : int = [] def a_ ( self : int , _lowerCamelCase : torch.FloatTensor , _lowerCamelCase : int , _lowerCamelCase : torch.FloatTensor , _lowerCamelCase : bool = True , ): """simple docstring""" if self.num_inference_steps is None: raise ValueError( '''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''' ) A_ : Union[str, Any] = (self.timesteps == timestep).nonzero().item() A_ : Dict = timestep_index + 1 A_ : Union[str, Any] = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(_lowerCamelCase ) if len(self.ets ) == 1: A_ : Dict = self.ets[-1] elif len(self.ets ) == 2: A_ : List[str] = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: A_ : Optional[Any] = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: A_ : str = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) A_ : Union[str, Any] = self._get_prev_sample(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_lowerCamelCase ) def a_ ( self : Any , _lowerCamelCase : torch.FloatTensor , *_lowerCamelCase : List[str] , **_lowerCamelCase : List[Any] ): """simple docstring""" return sample def a_ ( self : int , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str , _lowerCamelCase : Any , _lowerCamelCase : Union[str, Any] ): """simple docstring""" A_ : Optional[Any] = self.alphas[timestep_index] A_ : Union[str, Any] = self.betas[timestep_index] A_ : int = self.alphas[prev_timestep_index] A_ : Tuple = self.betas[prev_timestep_index] A_ : str = (sample - sigma * ets) / max(_lowerCamelCase , 1E-8 ) A_ : List[str] = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self : List[str] ): """simple docstring""" return self.config.num_train_timesteps
167
0
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase__ ( __lowercase , __lowercase , unittest.TestCase ): a__ : Dict = StableDiffusionDiffEditPipeline a__ : Tuple = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""height""", """width""", """image"""} | {"""image_latents"""} a__ : int = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"""image"""} | {"""image_latents"""} a__ : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess a__ : Tuple = frozenset([] ) def __A ( self : List[str] ) -> Any: torch.manual_seed(0 ) __lowerCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=SCREAMING_SNAKE_CASE__ , ) __lowerCamelCase = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=SCREAMING_SNAKE_CASE__ , set_alpha_to_one=SCREAMING_SNAKE_CASE__ , ) __lowerCamelCase = DDIMInverseScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=SCREAMING_SNAKE_CASE__ , set_alpha_to_zero=SCREAMING_SNAKE_CASE__ , ) torch.manual_seed(0 ) __lowerCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) __lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=5_12 , ) __lowerCamelCase = CLIPTextModel(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __lowerCamelCase = { '''unet''': unet, '''scheduler''': scheduler, '''inverse_scheduler''': inverse_scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __A ( self : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str=0 ) -> Dict: __lowerCamelCase = floats_tensor((1, 16, 16) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) if str(SCREAMING_SNAKE_CASE__ ).startswith('''mps''' ): __lowerCamelCase = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: __lowerCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = { '''prompt''': '''a dog and a newt''', '''mask_image''': mask, '''image_latents''': latents, '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple=0 ) -> Dict: __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCamelCase = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE__ ) ).convert('''RGB''' ) if str(SCREAMING_SNAKE_CASE__ ).startswith('''mps''' ): __lowerCamelCase = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: __lowerCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = { '''image''': image, '''source_prompt''': '''a cat and a frog''', '''target_prompt''': '''a dog and a newt''', '''generator''': generator, '''num_inference_steps''': 2, '''num_maps_per_mask''': 2, '''mask_encode_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __A ( self : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int=0 ) -> Union[str, Any]: __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCamelCase = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE__ ) ).convert('''RGB''' ) if str(SCREAMING_SNAKE_CASE__ ).startswith('''mps''' ): __lowerCamelCase = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: __lowerCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = { '''image''': image, '''prompt''': '''a cat and a frog''', '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''decode_latents''': True, '''output_type''': '''numpy''', } return inputs def __A ( self : str ) -> Union[str, Any]: if not hasattr(self.pipeline_class , '''_optional_components''' ): return __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE__ ) pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) __lowerCamelCase = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = pipe(**SCREAMING_SNAKE_CASE__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.pipeline_class.from_pretrained(SCREAMING_SNAKE_CASE__ ) pipe_loaded.to(SCREAMING_SNAKE_CASE__ ) pipe_loaded.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) for optional_component in pipe._optional_components: self.assertTrue( getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) is None , f'''`{optional_component}` did not stay set to None after loading.''' , ) __lowerCamelCase = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = pipe_loaded(**SCREAMING_SNAKE_CASE__ )[0] __lowerCamelCase = np.abs(output - output_loaded ).max() self.assertLess(SCREAMING_SNAKE_CASE__ , 1e-4 ) def __A ( self : List[Any] ) -> List[str]: __lowerCamelCase = '''cpu''' __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE__ ) pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.get_dummy_mask_inputs(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = pipe.generate_mask(**SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) __lowerCamelCase = np.array([0] * 9 ) __lowerCamelCase = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(SCREAMING_SNAKE_CASE__ , 1e-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def __A ( self : Tuple ) -> List[str]: __lowerCamelCase = '''cpu''' __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE__ ) pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.get_dummy_inversion_inputs(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = pipe.invert(**SCREAMING_SNAKE_CASE__ ).images __lowerCamelCase = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) __lowerCamelCase = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.51050, 0.5015, 0.4407, 0.4799] , ) __lowerCamelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(SCREAMING_SNAKE_CASE__ , 1e-3 ) def __A ( self : List[Any] ) -> Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def __A ( self : Tuple ) -> Any: __lowerCamelCase = '''cpu''' __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = {'''beta_start''': 0.00085, '''beta_end''': 0.012, '''beta_schedule''': '''scaled_linear'''} __lowerCamelCase = DPMSolverMultistepScheduler(**SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = DPMSolverMultistepInverseScheduler(**SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE__ ) pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.get_dummy_inversion_inputs(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = pipe.invert(**SCREAMING_SNAKE_CASE__ ).images __lowerCamelCase = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) __lowerCamelCase = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.51050, 0.5015, 0.4407, 0.4799] , ) __lowerCamelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(SCREAMING_SNAKE_CASE__ , 1e-3 ) @require_torch_gpu @slow class lowerCAmelCase__ ( unittest.TestCase ): def __A ( self : Optional[Any] ) -> List[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def __A ( cls : Tuple ) -> List[str]: __lowerCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png''' ) __lowerCamelCase = raw_image.convert('''RGB''' ).resize((7_68, 7_68) ) __lowerCamelCase = raw_image def __A ( self : Optional[Any] ) -> Optional[int]: __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=SCREAMING_SNAKE_CASE__ , torch_dtype=torch.floataa ) __lowerCamelCase = DDIMScheduler.from_config(pipe.scheduler.config ) __lowerCamelCase = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = '''a bowl of fruit''' __lowerCamelCase = '''a bowl of pears''' __lowerCamelCase = pipe.generate_mask( image=self.raw_image , source_prompt=SCREAMING_SNAKE_CASE__ , target_prompt=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , ) __lowerCamelCase = pipe.invert( prompt=SCREAMING_SNAKE_CASE__ , image=self.raw_image , inpaint_strength=0.7 , generator=SCREAMING_SNAKE_CASE__ ).latents __lowerCamelCase = pipe( prompt=SCREAMING_SNAKE_CASE__ , mask_image=SCREAMING_SNAKE_CASE__ , image_latents=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , negative_prompt=SCREAMING_SNAKE_CASE__ , inpaint_strength=0.7 , output_type='''numpy''' , ).images[0] __lowerCamelCase = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5e-1 def __A ( self : Any ) -> str: __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=SCREAMING_SNAKE_CASE__ , torch_dtype=torch.floataa ) __lowerCamelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __lowerCamelCase = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = '''a bowl of fruit''' __lowerCamelCase = '''a bowl of pears''' __lowerCamelCase = pipe.generate_mask( image=self.raw_image , source_prompt=SCREAMING_SNAKE_CASE__ , target_prompt=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , ) __lowerCamelCase = pipe.invert( prompt=SCREAMING_SNAKE_CASE__ , image=self.raw_image , inpaint_strength=0.7 , generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=25 , ).latents __lowerCamelCase = pipe( prompt=SCREAMING_SNAKE_CASE__ , mask_image=SCREAMING_SNAKE_CASE__ , image_latents=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , negative_prompt=SCREAMING_SNAKE_CASE__ , inpaint_strength=0.7 , num_inference_steps=25 , output_type='''numpy''' , ).images[0] __lowerCamelCase = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5e-1
368
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated SCREAMING_SNAKE_CASE__ : Tuple = collections.namedtuple("_Datasets", ["train", "validation", "test"]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ SCREAMING_SNAKE_CASE__ : List[str] = "https://storage.googleapis.com/cvdf-datasets/mnist/" def __magic_name__ ( __lowerCAmelCase : Any ) -> int: __lowerCamelCase = numpy.dtype(numpy.uintaa ).newbyteorder('''>''' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=__lowerCAmelCase )[0] @deprecated(__lowerCAmelCase , '''Please use tf.data to implement this functionality.''' ) def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> str: print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=__lowerCAmelCase ) as bytestream: __lowerCamelCase = _readaa(__lowerCAmelCase ) if magic != 2051: raise ValueError( '''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) ) __lowerCamelCase = _readaa(__lowerCAmelCase ) __lowerCamelCase = _readaa(__lowerCAmelCase ) __lowerCamelCase = _readaa(__lowerCAmelCase ) __lowerCamelCase = bytestream.read(rows * cols * num_images ) __lowerCamelCase = numpy.frombuffer(__lowerCAmelCase , dtype=numpy.uinta ) __lowerCamelCase = data.reshape(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , 1 ) return data @deprecated(__lowerCAmelCase , '''Please use tf.one_hot on tensors.''' ) def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : List[Any] ) -> Dict: __lowerCamelCase = labels_dense.shape[0] __lowerCamelCase = numpy.arange(__lowerCAmelCase ) * num_classes __lowerCamelCase = numpy.zeros((num_labels, num_classes) ) __lowerCamelCase = 1 return labels_one_hot @deprecated(__lowerCAmelCase , '''Please use tf.data to implement this functionality.''' ) def __magic_name__ ( __lowerCAmelCase : Any , __lowerCAmelCase : str=False , __lowerCAmelCase : List[str]=10 ) -> List[str]: print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=__lowerCAmelCase ) as bytestream: __lowerCamelCase = _readaa(__lowerCAmelCase ) if magic != 2049: raise ValueError( '''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) ) __lowerCamelCase = _readaa(__lowerCAmelCase ) __lowerCamelCase = bytestream.read(__lowerCAmelCase ) __lowerCamelCase = numpy.frombuffer(__lowerCAmelCase , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(__lowerCAmelCase , __lowerCAmelCase ) return labels class lowerCAmelCase__ : @deprecated( SCREAMING_SNAKE_CASE__ , '''Please use alternatives such as official/mnist/_DataSet.py''' ''' from tensorflow/models.''' , ) def __init__( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : List[str]=False , SCREAMING_SNAKE_CASE__ : str=dtypes.floataa , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : str=None , ) -> Optional[int]: __lowerCamelCase , __lowerCamelCase = random_seed.get_seed(SCREAMING_SNAKE_CASE__ ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) __lowerCamelCase = dtypes.as_dtype(SCREAMING_SNAKE_CASE__ ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype ) if fake_data: __lowerCamelCase = 1_00_00 __lowerCamelCase = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f'''images.shape: {images.shape} labels.shape: {labels.shape}''' __lowerCamelCase = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 __lowerCamelCase = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. __lowerCamelCase = images.astype(numpy.floataa ) __lowerCamelCase = numpy.multiply(SCREAMING_SNAKE_CASE__ , 1.0 / 255.0 ) __lowerCamelCase = images __lowerCamelCase = labels __lowerCamelCase = 0 __lowerCamelCase = 0 @property def __A ( self : str ) -> Optional[int]: return self._images @property def __A ( self : Any ) -> Dict: return self._labels @property def __A ( self : List[Any] ) -> int: return self._num_examples @property def __A ( self : str ) -> Any: return self._epochs_completed def __A ( self : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : str=True ) -> str: if fake_data: __lowerCamelCase = [1] * 7_84 __lowerCamelCase = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(SCREAMING_SNAKE_CASE__ )], [fake_label for _ in range(SCREAMING_SNAKE_CASE__ )], ) __lowerCamelCase = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: __lowerCamelCase = numpy.arange(self._num_examples ) numpy.random.shuffle(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.images[perma] __lowerCamelCase = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch __lowerCamelCase = self._num_examples - start __lowerCamelCase = self._images[start : self._num_examples] __lowerCamelCase = self._labels[start : self._num_examples] # Shuffle the data if shuffle: __lowerCamelCase = numpy.arange(self._num_examples ) numpy.random.shuffle(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.images[perm] __lowerCamelCase = self.labels[perm] # Start next epoch __lowerCamelCase = 0 __lowerCamelCase = batch_size - rest_num_examples __lowerCamelCase = self._index_in_epoch __lowerCamelCase = self._images[start:end] __lowerCamelCase = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size __lowerCamelCase = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(__lowerCAmelCase , '''Please write your own downloading logic.''' ) def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any] ) -> List[Any]: if not gfile.Exists(__lowerCAmelCase ): gfile.MakeDirs(__lowerCAmelCase ) __lowerCamelCase = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) if not gfile.Exists(__lowerCAmelCase ): urllib.request.urlretrieve(__lowerCAmelCase , __lowerCAmelCase ) # noqa: S310 with gfile.GFile(__lowerCAmelCase ) as f: __lowerCamelCase = f.size() print('''Successfully downloaded''' , __lowerCAmelCase , __lowerCAmelCase , '''bytes.''' ) return filepath @deprecated( __lowerCAmelCase , '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' ) def __magic_name__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Dict=False , __lowerCAmelCase : List[str]=dtypes.floataa , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : int=5000 , __lowerCAmelCase : Any=None , __lowerCAmelCase : List[str]=DEFAULT_SOURCE_URL , ) -> Optional[Any]: if fake_data: def fake(): return _DataSet( [] , [] , fake_data=__lowerCAmelCase , one_hot=__lowerCAmelCase , dtype=__lowerCAmelCase , seed=__lowerCAmelCase ) __lowerCamelCase = fake() __lowerCamelCase = fake() __lowerCamelCase = fake() return _Datasets(train=__lowerCAmelCase , validation=__lowerCAmelCase , test=__lowerCAmelCase ) if not source_url: # empty string check __lowerCamelCase = DEFAULT_SOURCE_URL __lowerCamelCase = '''train-images-idx3-ubyte.gz''' __lowerCamelCase = '''train-labels-idx1-ubyte.gz''' __lowerCamelCase = '''t10k-images-idx3-ubyte.gz''' __lowerCamelCase = '''t10k-labels-idx1-ubyte.gz''' __lowerCamelCase = _maybe_download( __lowerCAmelCase , __lowerCAmelCase , source_url + train_images_file ) with gfile.Open(__lowerCAmelCase , '''rb''' ) as f: __lowerCamelCase = _extract_images(__lowerCAmelCase ) __lowerCamelCase = _maybe_download( __lowerCAmelCase , __lowerCAmelCase , source_url + train_labels_file ) with gfile.Open(__lowerCAmelCase , '''rb''' ) as f: __lowerCamelCase = _extract_labels(__lowerCAmelCase , one_hot=__lowerCAmelCase ) __lowerCamelCase = _maybe_download( __lowerCAmelCase , __lowerCAmelCase , source_url + test_images_file ) with gfile.Open(__lowerCAmelCase , '''rb''' ) as f: __lowerCamelCase = _extract_images(__lowerCAmelCase ) __lowerCamelCase = _maybe_download( __lowerCAmelCase , __lowerCAmelCase , source_url + test_labels_file ) with gfile.Open(__lowerCAmelCase , '''rb''' ) as f: __lowerCamelCase = _extract_labels(__lowerCAmelCase , one_hot=__lowerCAmelCase ) if not 0 <= validation_size <= len(__lowerCAmelCase ): __lowerCamelCase = ( '''Validation size should be between 0 and ''' f'''{len(__lowerCAmelCase )}. Received: {validation_size}.''' ) raise ValueError(__lowerCAmelCase ) __lowerCamelCase = train_images[:validation_size] __lowerCamelCase = train_labels[:validation_size] __lowerCamelCase = train_images[validation_size:] __lowerCamelCase = train_labels[validation_size:] __lowerCamelCase = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed} __lowerCamelCase = _DataSet(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) __lowerCamelCase = _DataSet(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) __lowerCamelCase = _DataSet(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) return _Datasets(train=__lowerCAmelCase , validation=__lowerCAmelCase , test=__lowerCAmelCase )
339
0